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Abstract

Two motor forces, namely capillarity and gravity, play a major role as water moves down a soil profile. Initially capillary forces are dominant
but assume a lesser role as infiltration becomes slowed down progressively by viscous forces. On the other hand, the gravity force is negligible
at the beginning, but becomes quite active and noticeablerapidly. These changes suggest modification of solution methods for flow through
porous media. In this study the non-linear Fokker-Planck equation is firstly non-dimensionalised to reflect the time-dependent motion of flow
through a soil profile and the resulting equation is linearised with the Newton-Richtmeyer scheme. Some representative cases are studied
with the numerical model and the results obtained are found to be physically realistic.

Introduction

Water in the soil is subjected to various factors, among which are
diffusivity, evaporation, rate of water application and plant uptake.
A combined effect of these factors determines a scalar profile,
which can be quantified by numerical or analytical techniques.
In the analytical approach, both the boundary conditions and the
soil hydraulic properties are considerably simplified in order to
enhance the development of quasi-analytical solutions. For
- example, the non-linear one-dimensional infiltration equation
was solved by using the Boltzmann substitution to replace the
two independent variables x and t (Philip, 1957). By integrating
the new variable within the limits of initial soil moisture content,
and soil moisture content at saturation, a new term, the
‘sorptivity’ was introduced. Similar solutions with implicit
extraction functions have been recorded (Warrick, 1975; 1976).

One advantage of the analytical approach, despite the
simplification of both the governing equations and their boundary
conditions, is that the solutions so obtained, present in a more vivid
way, the underlying physics of the flow process and their depend-
enceon certain flow and soil physical parameters. Inaddition, they
provide a means of checking numerical algorithms.

Numerical techniques, on the other hand, have the capability of
handling more realistic boundary conditions without necessarily
oversimplifying the governing equations. Finite difference
solutions of unsaturated flow models can be found in the
classical works of Hanks and Bowers (1962), and Klute et al.
(1965). The application of finite element methods to subsurface
flow is a fairly recent development. In this approach, the solution
for any dependent variable is approximated by interpolating
functions, which, when substituted in the original equation,
results in a residual. The Galerkin method seeks to reduce this
residual by integrating over the element area and equating to zero.
By carrying out this process over the solution domain, a set of
simultaneous equations is obtained which is solved to yield the
scalar profile (Hayhoe, 1978; Neumann et al., 1975; Pinder and
Frind, 1972).

Recently, a major interest in the solution of fluid movement in
porous media is the consideration of the advancement of the solid-
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liquid interface. The key factor lies in the specification of the liquid
position with respect to time. A similar approach had been
adopted in heat transfer problems (Ockendon and Hodgkins,
1975; Gupta and Kumar, 1983; Wood, 1991).

The present study aims at producing a numerical model which
reflects the physics of soil-water movement as well as the
influence of different boundary conditions on the moisture
content profile.

Problem development

The evolution of water content in time and space as water moves
down asoil profile can be described by the non-linear FokkerPlanck
equation, namely:

386 = V. [D(8) V8 ] - 48 k(o) ae )
at ‘ a6 9z
The first and second terms of the RHS respectively account for the
effects of moisture gradients and gravity. If we consider both

effects as equally important, the one-dimensional version of Eq.
(1) is given by:

28 = & [ D(6) a8 - K(8) ) @)
at az az
where:

t = time

0 = volumetric moisture content

D(@) = soil water diffusivity

K@) = hydraulic conductivity

z = distance from the soil surface, positive downward.

Figure 1 illustrates a typical soil profile, with the z coordinate
pointing positive downwards. Equation (2) is non-dimensionalised
according to Appendix 1 to yield:

36 =68 [ D(8)* 88] - 0K* + z* ds 96 3

at* dz* dz* az* s dt*x gz* )

with:

- TD(68) = D(@)* ; and - T K(8) = K*
SZ
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where :
* = superscript to denote dimensionless quantities
T and s are characteristic time and distance parameters (see
Appendix 1).

Equation (3)is then linearised with the Newton-Richtmeyer scheme
(see Appendix 1 for detail). The resulting equation is discretised
to yield the delta formulation of a linear finite difference model,
whose equation is described by :

kel = k K _ Ky o 4% kK _ gk
A_B albl/Z(elol el) al-l/a(el el—l)
At " (Az*)?
k k+1 ke+l k ke+1 k+1
+al'1/2(Aelol Ael ) l-l/Z(Ael Aal-l
(Az*)?2
k k k k+1l k+1
+[a_a] (6 - 8 ) (ne - 48 )
9@ J1e1/2 At ! tet !
2(Az*)2
3 k k k llul k+l
(_g] (8, - 8,4) (88 - 48,,)
ae 1-1s2
2(Bz*)2
1 3 k
- 1+1 Kl-l
2(hz*) 2 (C))
. where:

k is a superscript referring to time increment
C* and « are as defined in Appendix 1
t is the time interval.

+ Equation (4) can be put in the tridiagonal form:

k kel k kel k kel

+ BAB,  + CA8 ®)

where A, B, C are coefficients of AB. The Thomas algorithm or any
appropriate method is employed to solve Eq. 4. To finally obtain
the dependent variable, the delta formulation is resolved as shown:

ae = 8 ' -8 (6)

K+t k K (62)
This calls for a complete updating of the tridiagonal matrix with
; time and position.

" Numerical results

. Twotest cases serve to verify the accuracy and convergence of the
" solution scheme developed herein. The model is used to check the
effect of horizontal movement of the wetting front on a barrier for
. the case of furrow irrigation leading to horizontal infiltration into
' a homogeneous soil (Braddock et al., 1982). Figure 2 shows 2
symmetrically placed ditches and a barrier at the right end. The
physics of the one-dimensional horizontal movement of water
inthe systemcan be described by Eq. (2). To facilitate comparison,
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Figure 1
Soil profile

Figure 2
Furrow irrigation with a barrier

both the initial and boundary conditions,as well as the soil
moisture diffusivity, are made the same as those specified by
Braddock et al. (1982). Figure 3 shows that the front reaches the
barrier at a time slightly less than 0,1 s. The front exhibits a sharp
steepness up to 0,45 s because of the low value of the diffusivity.
After this, the effect of the zero flux condition at the boundary
becomes more noticeable as the water content between the bound-
ary and the source tends to remain constant. There is a close
agreement between the results obtained with this model and
those of Braddock etal. (1982). Next, the model is applied to solve
a non-linear PDE with a non-linear source term, and the steady
state results obtained are compared with the analytical solution
(see Appendix 2 for the PDE, and analytical solution). Table 1
shows an excellent agreement between the numerical and
analytical results.

TABLE 1
COMPARISON OF EXACT AND NUMERICAL
RESULTS FOR SOIL MOISTURE CONTENT AT
STEADY STATE
z Exact Numerical
0,0 1,0 1,0
0,1 0,9219 0,9220
0,2 0,8467 0,8469
0,3 0,7735 0,7734
0,4 0,7013 0,7020
0,5 0,6287 0,6290
0,6 0,5539 0,5541
0,7 0,4739 0,4736
0,8 0,3835 0,3836
0,9 0,2687 0,2700
1,0 0,0 0,0

One of the interesting aspects of this work is to observe the
profiles of the scalar front within the problem domain. For this
analysis, we considered a sinusoidal domain A defined by : .
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A =045 sin (2nt) + 1 (7)  Figure 4 shows the initial moisture distribution and the different
profiles obtained at different time levels. At a small time interval,
The initial condition is defined by a polynomial: (At=0,01), the profile still maintains its sinusoidal shape, despite
6 (t*= 0) = 6602%2 (1 - Z*)9 the fact that a considerable movement, in arelative sense, has
’ (7a)  taken place from the lower boundary. At subsequent times the

+ 2500z*!5(1-z%)2

For the boundary conditions:

8 =0 at 2z* = 0, and 6 = 0 at z* = 1 (7b)

both the conductivity and diffusivity are functions of moisture
content and are respectively given by :

D(8) (7¢)

exp(1.320)

K(8) = 4.86%10 "exp(2.568) (7d)

scalar profile is diffused and conducted within the soil profile; at
the same time it tries to maintain the zero boundary conditions at
the 2 ends. A steep scalar gradient is more noticeable at the
beginning of the domain. The front is not well developed in this
region, because of the relatively small value, and weak non-
linearity of the diffusivity. As time increases, the influence of the
boundary conditions on the dependent variable becomes more
pronounced, the gradients decrease as both the conductivity and
diffusivity assume constant values.

The model is now applied to- study the movement in a soil
characterised by the following hydraulic properties:
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p(e) = exp(1i.56) (3

K(8) = 8.56%10™° exp(3.466) (8a)

Most realistic infiltration problems involve alternate wetting,
drying and moisture redistribution and hence require the
imposition of Neuman or Cauchy type boundary conditions. For
the case of continuous wetting, a Cauchy type boundary condition
was imposed on the first computational node. This is defined by:

q* = - D(8)* 36 + Kx(8) ®
azx*

Where g* is the non-dimensional irrigation rate. For moisture
redistribution :
0 = (93)

D*(8) 38 + K*(8)

az*

Since this simulation involves a finite depth, the no-flux boundary
condition is initially applied at the end region. This approach is
valid before the approach of the wetting front. Thereafter it can be
represented by a polynomial (Khan et al., 1982):

8 = 8(n-4) + 4(6(n-3) + 6(n-1))-6(n-2) (9b)

. where nrepresents the last node in the problem domain. Two cases
involving continuous wetting, intermittent wetting and soil
moisture redistribution are tested. For continuous wetting
application the soil is initially assumed wet and the boundary
~ condition at the starting node is of the Cauchy type, with a 0,2

cm/d irrigation rate. A no-flux boundary condition is initially
imposed at the terminal node. Figure 5 shows the profiles
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Figure 5

Soil moisture content distribution for continuous and
intermittent wetting
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obtained for different time levels. The scalar gradients decrease
v/ith time showing that the soil pores are filled continuously
behind the wetting front. The flatter gradients correspond to
vrhen the soil is approaching saturation. At 3,5 d for example, the
soil could be described as completely saturated. For the next case
treated, instead of continuous wetting, equal times are allowed
for intermittent wetting and soil moisture redistribution.

Equations (9) and (9a) are alternatively applied to the starting
node of the problem domain. The downstream boundary is the
same as that previously considered. Note that at each time level,
less water is recorded at the starting node than in the previous
case. More time is now allowed for the water to drain vertically.
As the soil becomes progressively wet, the scalar gradient
decreases. As expected, saturation is achieved at arelatively longer
time, at 6,2 d.

Conclusions

This study has illustrated in a straightforward manner how to
handle the one-dimensional version of the non-linear Fokker-
Planck equation and adapt it to the practical aspects of the soil
water movement in porous media. The response of the scalar field
to realistic initial and boundary conditions has been studied. The
results obtained show that the model is capable of explaining some
pertinent aspects of water movement in porous media and is also
capable of modelling various cases of infiltration with little
adaptation.
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Appendix 1

96 v.[D(B)V 8] - 3k(8) 36
at at 3z )
ae = 8 [(D(e) 98 - K(8) ] @
at az az
If q = q(z*, t*) then:
ae 36 dz* . 38 at* 3
at az* 3t at* at
Similarly:
ae = 98 dz* + ©06 at* (a)
3z dz* dz at* az
Definition:
z* = 2 (3b)
s(t)
From Eq. (3b):
az* = 2 ds Go)
at sz dt
Definition:
t* = t
_ 3d
= (3d)
Then:
at* = 1
— _ 3e
at T (e)
After substitution Eq. (3) can be simplified to give:
a8 = 096 (- 2% ds ) o+ a6 (l ) (4a)
ot az* sT dt at*x T
Similarly Eq. (3a) becomes:
ae = ae 1 (4b)
<X az* s
Hence:
ak (8) ak (8) 1 (40)
3z az* s
Following the method of Eq. (3a):
a ( [=1=] ) = gz* 4 ( a0 ) + adt* 48 (89 ) (4d)
8z az az dz* 3dz az at*x gz
But:
ae = 388 1 ; and at* =0 (4e)
az dz*x s az
a ( a0 ) = 1 a ( ?_6_ ) (4f)
0z 8z s az az*
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According to Eq. (4d):

1 3 (69 ) = 1 9z* 3 ! (68 y o+ at*x g ( a8 )

s 38z d9dz* s J8z dz*x 9Jz* dz dt* dz*
It therefore folllows that:

8 (88 ) = 1 a2e

dz  az g2  dz%?
By the same token:

8 [ D(8) ae ] = 1 [ D(8) 826 )

dz 4z s2 dz*2

substituting Egs. (4), (4c) and (4i) into Eq. (2), we obtain:

96 ( -z* ds ) + 486 (1) =1 [ D(6) 926 ] - 1 3k(9)

at* sT dt 8t* T s2 azx2 3z *
Hence:
ae = d [ D(e)* a0 ] - 3K* + z ds 3@
atx dz* z* az* s dt* gz*
‘ where:
|
! T D(@) = D(@)* and ; - T k(8) = Kx
s? . s

For the linearisation method, apply the Newton-Richtmeyer scheme. Let oo = D(0)*, then:

=0 N T M R
[aa_e]"‘“z [aﬁ.Q]k+Af[a( 2% )+ (2x) (28) ]‘:

az* dz*), . atoz* at az*

x (o« 80 1+ Atfa 86 (36 ).+ (dx ) (230) (288) )
(22 ) )

az*/y dz* 9t a0 at az*

Adopt a forward difference formula for the time term:

( ae )“ = gk+1 _ gk = Ag k+t
at 1. At At i

AG*' now becomes the new independent variable. Eq. (5) now reads:
y .
[a 28 ]“”= (@ 38 y+ of anee (s \*( 28 " ae**!
az 71 az 1 8z* 1 dz*% 1 -9z* i i

For the rest of the terms on the RHS of Eq. (4k) follows: X
> “k
*

k *
[aK*] = Kivr - Ky
az 1 20z*
[ zx ds 06 }“ =
s dt* Jdz* 7
k - k |3
¢ = i- ds [91 - 91-1] for -z*x ds > 0 (5
s dt* Az* s dt*
Kk . k k
C = ji-1 ds [exn - 61 J for -z ds < O
s dt#* Az* s dt*
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4g)

(4h)

(41)

S

(4k)

&)

(5a)

(5b)

(50

(59)

(5¢)

- (56)

(5g)



We can now substitute Eqs. (5b), (5¢), (Se) and (5f) into Eq. (4k) to give:

( Y] ]“” = 8 [a( 86 )]T + af a a8 +( da )* +
Tapw O az% az* Fz* ECH
kK k+l +* " k'
‘(/_33 ) A8, + K - Ky, + < (5h) sty
e az*x i 24z %

For ease of computation, the first term on the RHS of Eq. (5i) must be treated specially.

The preferred way is given as follows:

a6 )k i (98 )"
K kK o= k ==
a (% ae) = oi+1/2 9z* 1+1/2 ~ qi-1/72 3z* 1-1/2
az* gz Kz
k k k k k k
= a1+1/2(81+1 - 81) - a1-1/72 ( B1 - 81-1)
(Az*) 2 (51)
Similarly:
K k+1 k k41 k+1 K k+1 k+1
8 (a1 8 AB1L ) = ar1+1/2(AB1+1 - Ay ) ar-1/2(A61 ~ AB1-1) i)
*
dz*x gz* (Az%)2
Also:
k k k+1 k k k k+1
3 [( da) ( 88) Asi J _ [ () * (B1+1 = B81)ABi+1/2
8z\ 86 1 az* 36 14172
" k k k+1
-( dx) (61 - 81-1)A8x-1/zJ
96 1
(Az*)2 (5k)
The following approximations can be used for the delta terms:
k+1 k+1 k+1
ABi+1/2 = ABi1+1 + A6
2 (5D
k+1 k+1 k+1
AB1-1/2 = A8 + AB1-1/2
. (5m)
2
Substituting Egs. (5i), (5j), and (5k) into Eq. (5h) and factorising terms of
the delta dependent variable yields:
k k k k k
=081-1[ ai-172 - (r/2) (8a/80)1-172 (81 - @i-1 )]
k k- K Kk k k
= rai-1/2(0is1 - 81 ) - wi-1/2(61 - 8i-1)]  +
(5n)

k k "
(Atx/2Az*) [K¥a - K¥) + atx ¢

where:
r = (At*/Az¥*)
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Appendix 2

Consider a non-linear PDE given by:

ae/at =
I.Cc. ¢+ 8
B.C. : @6

At steady state, Eq. (1)

a/az (e 8e/doz) - 6°

=0 at t =0

=1at z = 0; and 8 = 0 .at z =1

is given by:

d/dz (e de/dz) - ez_ = 0 (1a)

Multiply Eq. (1a) by 2 to give:

d/dz(26 de/dz) =- 260 = 0
Hence:

d.ze/dz2 - 262 = 0
Let@=v -

then Eq. (1c) becomes:

dav/dzz

- 2V =0

Then the analytical solution of Eq. (1e) is given by:

v = A sinh (2v2) + B sinh(zv2)

At 2 = 0 ,

At z =1,

Substituting Eq. (1g) into Eq. (1f):

B=1, and A

Equation (1f) becomes:

v =
Since * = v

8 = 1 ; from equation (1d), v =1
8 = 0 ; from equation (1d),.v = 0
= -(coshv2)/(sinhv2) = - cothv2

{ cosh(zv 2 ) =~ coth(zv 2 ) ]

@ = [ cosh(zv 2 )'- coth(zv 2 ) fs

¢y

(1b)

(1¢)

(1d)

(le)

(1f)

(1g)

(1h)

(13)

)

8
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