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Abstract

Momentum transport characteristic expressions for saturated water seepage through granular porous media are simplified by approximations
for low and very low porosity cases. These simplifications are incorporated in momentum transport equations and result in relatively simple
expressions for the hydrodynamic permeability of low porosity granular media. The porosity is allowed to differ spatially, but geometrical
isotropy is demanded on an average basis. The results are restricted to laminar flow within the pores, but inertial effects due to
hydrodynamic flow development within each pore section are accounted for. Results are quantitatively compared to that of the general
granular porous medium model and also to experimentally correlated results.
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Introduction

In recent years a unified approach towards the modelling of
saturated flow through porous media has been developed
(Bachmat and Bear, 1986; Du Plessis and Masliyah, 1988) and
applied with considerable success to various flow phenomena
(Du Plessis and Masliyah, 1987; Du Plessis, 1989). Volumetric
averaging of the fluid transport equations, together with explicit
assumptions regarding the average geometrical properties of the
void passages within a porous medium, leads to powerful
transport equations capable of resembling flow conditions within
a porous medium. Corresponding permeability coefficients were
expressed explicitly in terms of microstructure parameters
through introduction of simple rectangular representation of the
mean characteristics of the microstructure.

Water filtration, percolation, ground-water flow phenomena
and numerous other industrial processes such as flow through
synthetic membranes frequently concern Newton fluid flow
through granular porous media of very low porosity, i.e. also
very low hydrodynamic permeability. The momentum transport
equation, developed by Du Plessis and Masliyah (1991), is
applicable for all porosity values from zero through unity. In case
of low porosity granular porous media some of the expressions in
their equations can be simplified extensively. This simplification
and the resulting equations will be the prime objective of this
paper. Such equations may be very beneficial to numerical
simulation of porous flows when the entire computational
domain is filled with low porosity media. Although confined to
low porosities, the porosity may differ spatially.

The mathematical analysis of any isotropic porous medium
requires the qualification of 3 independent parameters. In this
paper the porosity, the physical dimension of the granules and the
structure (granular, in this case, vs. sponge-like) will therefore be
assumed known. The results to be obtained may equally well be
expressed in terms of other parameters which prove to be
measureable, e.g. permeability, pore length, pore area.

Modelling of the granular microstructure

The analysis of this study is based upon a granular porous
medium which is rigid, stationary and locally isotropic with
respect to average geometrical properties. Both variation in
porosity and characteristic microscopic length are assumed to be
continuous variable functions of position.
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The concept of a representative unit cell (RUC), introduced by
Du Plessis and Masliyah (1988), was used to describe the
geometrical properties of the porous medium in order to quantify
the fluid-solid dynamic interaction. An RUC provides the facility
to consider flow conditions within the most elementary control
volume of the particular porous medium and still have all the
geometrical properties of the medium at hand for modelling of
physical phenomena.

The assumption of mean geometrical isotropy allows the
introduction of a cubic RUC of linear dimension d and volume
V., so that its (fluid filled) "void" part can be written in terms of
the porosity as:

V, = eV, = ed’ )

It is assumed that the average geometrical properties of the
granular solid structure within the RUC can be resembled by a
cube of solid material, nested centrally within and aligned with
the sides of the cubic RUC. Furthermore, the hypothetical
arrangement of solid cubes in neighbouring RUCs is required to
provide maximum possible staggering of resulting duct sections
within the porous medium. This requirement ensures that
isotropy is maintained and that fluid is forced to traverse all
transverse void sections of the medium.

If the sides of the solid cube are of length d,, the volume V, of
solid material within the RUC is given by:

V, =& = (1-¢)a® @

Introduction of the tortuosity 7 in terms of the total tortuous path
length d,, which is available within the RUC for flow under the
constant cross-section A, and over a streamwise displacement of
length d, then leads to:

A7 = ed? &)

This correct inclusion of the tortuosity is the key to a satisfactory
quantitative agreement between theory and experiment. It should
be noted that the tortuosity as defined in this paper is the inverse
of its counterpart in most of the references quoted. The following
relationship between the porosity and tortuosity of the granular
porous medium can also be deduced (Du Plessis and Masliyah,
1991) from Egs. (2) and (3):

" 1-(1e—e)m ®

It is evident that the average geometry of the porous
microstructure is determined by the parameters € and d only.

Momentum transport equations

The traversing fluid is assumed to consist of a single fluid phase
with constant physical properties. The flow itself is considered
laminar with no local flow separation within the pores. A no-slip
boundary condition applies to all fluid-solid interfaces. There is
no restriction on averaged flow separation or recirculation due to
the presence of external boundaries or regions of different
permeabilities.

The continuity equation for conservation of mass of the fluid
within the void sections of the porous medium is given by:

Vey =0 )
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with v the actual velocity field present within the pore volume V,.
The Navier-Stokes equation, governing the transport of
momentum locally within V; and under the conditions mentioned
above, may be written as follows:

p%‘,i + plv-¥ly + Vp - pg - uv = 0 (6)

Equations (5) and (6) govern the fluid movement within the
pores and they have to be transformed to equations governing the
specific fluid discharge ¢ through the porous medium. The latter
uantity gives the fluid discharge rate relative to the bulk area of
the porous medium and is defined as follows as the volumetric
phase average of the actual fluid velocity:

g = % Lv av = Q)

(4

The velocity variable ¢ is therefore identical to the filter or Darcy
velocity used in ground-water literature. Its relationship with the
intrinsic phase averaged velocity,

W, =1 Lv dv

S
t4

commonly used in literature to describe the average magnitude of
the pore velocity, is given by:

8
g=c®, ©

Volumetric phase averaging (Bachmat and Bear, 1986) of the
continuity equation (Eq. 5) yields the following generalised
equation for fluid mass conservation during its traversing of a
porous medium:

Vig=0 o)

Similarly, and neglecting dispersion of the fluid momentum at
large averaged velocity gradients by the solid particles (Du
Plessis and Masliyah, 1988; 1991), the volumetrically averaged
form of the Navier-Stokes equation (Eq. 6) can be written as:

09+ pg-viglo) + €Vp, - epg - uV’q
at
10
+ ii(pv - ;w-Vv) as =0
v, 2
The evaluation of the surface integral in Eq. (10) is subject to
evaluation of the real local velocity gradients and pressure levels
at the pore surfaces. This in turn warrants a fairly accurate
description of the porous microstructure and the actual velocity
field within the pores. At this point the present work deviates
from general literature by introduction of a better estimate on the
magnitude velocity field vectors than the instrinsic phase average
<¥> , mentioned above. In accordance with the definition of
tortuosity (Eq. (3)) and mass conservation within V, the
following pore-wise mean velocity v, may be defined (Du Plessis
and Masliyah, 1988):

(1n

b =16, = Ig

The flow through the porous matrix was modelled (Du Plessis
and Masliyah, 1991) according to the assumption of laminar



developing flow in each pore section from a uniform pore entry
velocity of v,. The surface integral in Eq. (10) was shown by the
full analysis to be expressible as LWFg and this reduces the full
momentum equation (Eq. (10)) to:

p% + pq-V(gle) + €Vp, - epg ~ puV’q + uFg = 0 (12)

The frictional effects introduced by the presence of the porous
medium are governed by the term WFg, the factor F being given
by the following expression (Du Plessis and Masliyah, 1991) for
the case of granular porous media:

R - 36(1-¢
[141-0"] [1-1-¢""]

|, 0.0822 Re, fi1-9>-1] ! 13)
[1+1-9]

In case of small Reynolds number flow, the square-rooted factor
on the RHS of Eq. (13) approaches unity, rendering the term UFg
linear in velocity. The hydrodynamic permeability, inclusive of
the non-linear microscopic inertial effects, is given by &F and
this leads to a velocity-independent Darcy-permeability for very
low Reynolds number flow (Re,, < (Re,,),) of:

(14)

K _ e[l -(1 -e)”’] [1 -1 —e)m]

a 36(1-¢)"

In case of higher Reynolds numbers the square-rooted factor
becomes significantly larger than unity, causing a non-linear
deviation in the dependence of pressure gradient on velocity and
which is known as the Forchheimer effect. The critical Reynolds
number (Re,,), gives the location of the centre of the transition
region between the Darcy region of velocity-independent F and
the Forchheimer region, where non-linearity is introduced by the
inertial effects. This critical value corresponds to the case where
the two terms of the square-rooted factor in Eq. (13) are equal
and it can therefore be expressed explicitly in terms of porosity
as follows:

173
. 1414 (15)

Re
( 0.0822 [(1-5)'”’-1]

.

The internal pore flow Reynolds number Re, based upon a flat
plate configuration of the pore microstructure, is given by:

Re=#Re

16
- a9

This Reynolds number is important as it provides a clear
indication of the flow conditions present within V.

Depending on the application it may sometimes be more
convenient to express Eqs. (13) through (16) in terms of the
locally averaged linear dimension d, of the solid granules. To this
end the following expressions can be derived readily (Du Plessis
and Masliyah, 1991) from those presented above:

i - 36(1-¢"” [ |, 00822 Re, [(1-5)"”-1]]l )
[1-1-o] [1-1-6] (1-9[1+(1-¢/"] (
rey) - 19" 141-d"]
0.0822 [(1 -e)'”’—l] (18)
e [1-0-9"] [1--"] 19

LS
d2 )4/3

36(1-¢

Equation (19) is graphically represented in Figs. 1 and 2,
illustrating the dependence of the hydrodynamic permeability on
porosity.

The intra-pore Reynolds number, i.e. the Reynolds number for
the flow conditions locally within a pore, can be written as
follows:

1
Q

Re (20)

Equations (13) through (20) are cumbersome to evaluate and the
last 4 equations, written in terms of d,, will be simplified in the
following sections for cases when the porosity remains low
enough to allow binomial series truncations to within tolerable
accuracy.

Low porosity porous media

In case of low porosity porous media a truncated binomial series
expansion may be applied (Roos, 1992) to all the factors
involving fractional powers of (1-€). If first order accuracy of

these factors is sufficient, the following approximation may be
used:

(1-¢)° = 1 - xe 1)

Using Eq. (21), Egs. (17) through (20) simplify to:

12
Fd’ = g(e-ue) {1+0.0822 Re,, -%(6”6)} 22)

(Re ) = (6—76)
#e 0.0822 € (23)
K 3
;‘2 = 567—2(6*116) 24)
= |1+£ 25
Re [1 2] Re, (25)

The result of Eq. (24) is graphically compared with Eq. (19) in
Fig. 1. It is clear that very good agreement with the full
expression is obtained up to a porosity of 0,2.

The error introduced by truncation of the binomial series
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Figure I .
Low porosity and very low porosity approximations of the
hydrodynamic permeability

expansion as shown above, can be minimised for a specific small
range of porosity by applying a throwback method. In this
method the coefficient of the highest retained power of € is
changed to incorporate the neglected higher-order terms of the
series. This is accomplished through the difference between the
original equation and the approximation, at a specific porosity.
Fixed permeable beds constructed of granular material normally
yield porosity values of about 0,45. Applying throwback to Eq.
(24) at € = 0,45 yields:

K _é
EZ— = 9—72-(6"'25.726) (26)
= T3_0(1.11«»4.7&) @7

In Fig. 2 the result of throwback at € = 0,45 is shown graphically
and compares favourably with the full expression for a range of
porosity values around the throwback porosity.

For low porosity values, the tortuosity T approaches 3/2, as can
be seen by application of the truncation (21) to (4). The tortuosity
(1) decreases monotonically with increase in porosity and at € =
0,45 its value is 1,37.

Yery low porosity porous media

In case of very low porous media the expressions given above for
low porosity media could be truncated even further to yield very
simple expressions for the various quantities of Egs. (13) through
(20). Egs. (13) through (16) and also (17) through (20) are thus
both approximated by the following:

Fd* = Fé? = 162(1 + 0.0137 ¢ Re )"
2 .

€

(28)
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Hydrodynamic permeability with throwback at porosity 0,45

7
(Re,), = (Re,), = — (29
K_X_ ¢ (30)
P R T5)

Re = Re 31)

Figure 1 presents a graphical comparison between Eq. (30) and
Egs. (19) and (24). This simple expression is clearly quite usable
up to a porosity of 0,1.

Applying throwback at € = 0,45 to Eq. (30) yields:

kK _ @&
& 5529 63

In Fig. 2 Eq. (32) is compared to the results of Egs. (19) and (27).

The full three-dimensional momentum equation for seepage
through an isotropic porous medium is given by substitution of
F in Eq. (12) by its value from Eq. (28) when Re,, — 0,
yielding:

g . 162
p=l + pa-Vlale) + eVp, - eog ~ uVig + ———gd’;q =0 (33)

s

Discussion

To compare the results obtained above to quasi-experimental
results, the following form of the well-known Blake-Carman-
Kozeny equation (Bird et al., 1960) with the Macdonald
correction (Dullien, 1979) is used:

K_2¢ (l—e)—2

2
It should be noted that this equation was derived on the
assumption of a non-tortuous void structure necessitating the
results to be multiplied by a factor of 2,5 to correspond with
experimental data (Bird et al., 1960).7{—va1ues for different
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porosities according to Eq. (33) are compared in Fig. 2 to the
results obtained earlier in this paper. It is clear that all the present
results yield the experimentally observed hydrodynamic
permeability at a porosity of 0,45.

If the truncation-cum-throwback treatment described above (e =
0,45) is applied to Eq. (33), the following first-order result is
obtained for low Reynolds number flow through packed beds:

L € (1+5.12¢)

150 35)

P

where d, = d is the mean diameter of the solid particles. The
close qualitative and quantitative correspondence between the
presently derived expression (27) and the quasi-experimental
result (34) and (35) for packed beds confirms the practical
applicability of the present analysis.

Substitution of F in Eq. (10) through Egs. (22) and (28)
respectively for the low and very low approximations leads to
full momentum transport equations for flow through granular
porous media.

Whenever the macro-scale inertial effects may be disregarded,
i.e. when the average flow is predominantly unidirectional (x-
direction), the momentum transport for flow in case of the very
low porosity approximation is given by:

dp 162
Ef = pg + % Vig-ug d2,/1+0.0137eReq,

ed,

(36)

where V1 refers to the Laplacian operator in a plane normal to the
x-direction. If, furthermore, no solid boundaries are present, the
so-called Brinkman term may also be dropped, leaving the
following Darcy equation for low and intermediate Reynolds
number flows:

Pr gy = 16289 [10.0137¢Re,, 37
dx ed?
suggesting an effective hydrodynamic permeability of:
2
ésd, (38)

K=

162/1+0.0137Re,,

In cases of low Reynolds number flow this equation simplifies to
the expression given in (30) and therefore presents an analytical
proof of the "Darcy Law". For high Reynolds number flow, the
expressions for F may be simplified as illustrated in the
following example for Eq. (37):

1624
E3_‘12,/0.013761«;0:

'S

dpf
E +pg =

d
_ 1629 1 0137, P9
éd’ [

1.5
- 16244" 1 0137 2%
€'d; I 39

Experimental results seem to be pointing towards a squared
dependence on g (e.g. Bird et al., 1960) as opposed to a power of
1,5 in present results as is clear from Eq. (39). It is evident that
the introduction of flow development in pore sections does not
produce satisfactory results in the higher Reynolds region where
the so-called Forchheimer effect signifies onset of a non-linearity
in the velocity-pressure gradient relationship. This matter is
currently being investigated in order to extend the applicability of
the present results to high Reynolds number flow.

As a last comment it should be stressed that the philosophy of
the present approach is to provide a unified set of momentum
transport equations, which comply with the severe needs of
satisfactory computational work for flow through porous media.
Such equations should be robust and simple, yet they should be
of sufficient accuracy over the entire spectrum of variable values
encountered during the numerical computational process, so as to
aid convergence and physical plausibility. Invariably the
comparison of computational results to experimental results often
necessitates the introduction of coefficients or value changes of
existing coefficients to enhance correlation efficiency. Such
changes may have adverse effects on the behaviour of the
differential equations under computation. Although the present
equations were derived from the assumption of a rectangular
geometric model, it is constructed in such a way that, if needed,
any multiplicative shape or "fudge” factors introduced should be
near to unity or at least of the order of unity. This will keep the
transport equations as close as possible to their original nature
over a wide range of water-related applications. Current
experiences indicate that the model performs so well that such a
shape factor need not be introduced.

Conclusions

Substantial simplification of the expressions regarding saturated
flow through granular porous media was obtained by imposing a
restriction to low and to very low porosity values respectively.
These simplifications will improve the efficiency of large-scale
numerical analyses of porous flows, because of the simpler
expressions to be computed during iterative numerical
procedures, when the porosity values comply with these
restrictions temporally and spatially over the computational
domain.

The extremely favourable comparison with the well-known
Blake-Carman-Kozeny equation provides confidence in the
quantitative as well as qualitative plausibility of the present type
of analysis. It is clear that the correct introduction of tortuosity
(Du Plessis and Masliyah, 1988) as portrayed here in Eq. (3) and
the corresponding pore velocity v, according to Eq. (11) is the
key towards rendering quantitative agreement between theory
and experiment without the need for an arbitrary correlative
adjustment.
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