Investigation of drinking- and Nile-water samples of upper Egypt

RM Awadallah*, SS Ismail, MT Abd El Aal and ME Soltan

Chemistry Department, Faculty of Science, Aswan, Egypt

Abstract

Nile- and drinking-water samples which were collected from Aswan to Giza during January, June and August 1987, were investigated. The water temperature, transparency and pH were measured *in situ* and the samples were analysed for the following constituents, i.e. free CO₂ (0,00 to 7,04 mg/t), carbonate (0,0 to 2,0 mg/t), bicarbonate (120 to 160 mg/t), pH (7,00 to 8,45), nitrite (0,00 to 0,10 mg/t), nitrate (0,018 to 0,360 mg/t), phosphate (0,007 to 0,500 mg/t), Ca²⁺ (24,05 to 36,90 mg/t), Mg²⁺ (9,73 to 15,56 mg/t), total hardness (TH) (102 to 112 mg/t), chloride (6,5 to 11,7 mg/t), sulphate (3,5 to 15,5 mg/t), iron (0,00 to 0,11 mg/t), organic matter (0,8 to 5,2 mg/t) and total dissolved solids (125 to 230 mg/t). Ionic dominance patterns did not change within the seasons although Ca, Mg, HCO₃⁻, Cl⁻ and SO₄²⁻ in both Nile and drinking water increased from Aswan to Assiut and then decreased. No pH stratification with depth was observed. The results of both Nile and drinking water are within the reference recommended values. The divisive clustering methods were applied to identify these samples. The results of clustering analysis indicate that with the help of this technique, time variations and the type of water samples could be distinguished. The correlation coefficient values are positive and suggest that good correlations between these items and the cations exist as soluble chlorides, sulphates, phosphates, nitrates, bicarbonates and humates.

Introduction

The purpose of this paper is to document some characteristics of the chemistry of Nile and drinking water of upper Egypt. This paper supplements preliminary limnological (Zidan, 1983; Prowse and Talling, 1958) and chemical (Hurst, 1950; Klein, 1973) data of Nile basin water.

Nile water is the main drinking-water supply for the Egyptian population. Due to industrial growth in the last 30 years, especially in upper Egypt, the likelihood of contamination has increased. Thus it has become necessary to establish a comprehensive monitoring programme for chemical characterisation of the main water constituents of both Nile and drinking water. To evaluate the water quality of the Nile and drinking water, there is a need to consider the physical and chemical structure of these waters. The area covered stretches about 900 km along the Nile River. In order to investigate the water quality during the different seasons, the samples were collected in January, June and August. The reason for this choice is that January is peak (winter) season for tourism in Egypt and there are about 150 Nile craft (floating hotels) in addition to numerous port motor boats operating in Aswan and Luxor, constituting additional sources of free CO2, organic matter, oils, fats, nitrate, and phosphate contamination to the Nile water. May is the end of this season and June is the start of the summer season. August is the end of the summer season and it was chosen to represent the water quality after the rate of cruises and craft trips on the Nile had decreased during the summer period with minimal tourism.

Description of the study area

Data presented in this paper were collected from the area between Aswan 24°N and Giza 30°N (Fig. 1). The study stations represent all upper Egypt regions.

Figure 1
Locations of water sample sites on the Nile River

Methods

Sampling

Filtered Nile-water samples were collected from Aswan City (before and beyond the hotels district, beyond the Isis Hotel, before and behind the Kima Drain-Nile River confluence), Abu El Riesh, Kom Ombo, Edfu, El Sibaiya, Qena, Sohag, Assiut, El

Mediterranean Sea Giza 30 . Beni Suef I Menya 26 Nile Sohag Qena 26 26 SIbaiya Edfu Kom Ombo bu ElRiesh 24

^{*}To whom all correspondence should be addressed. Received: 22 May 1992; accepted in revised form 24 November 1992.

Г			Ī	1										_						
			10	%	8.12	2.64	00	120	7.17	0.0	0.24	0.000	24.05	9,73	100	6.5	3,6	0.065	1.2	130
	4	706	4	17.5	8.80	2,64	0.0	124	7,21	0,0	0,36	0,048	24.85	10,21	100	6,5	6.3	0.08	0.8	156
ANUARY 1987			0	17	8,72	1,76	0,0	124	7,25	0,0	0,32	0,050	24,85	10,70	104	7,8	5,0	0,10	1,2	149
TABLE 1 VATER SAMPLES COLLECTED IN ASWAN CITY DURING JANUARY 1987			10	18	9,04	1,76	0,0	124	7,10	0,004	0,31	0,070	24,85	10,21	104	7,8	5,7	90,0	1,2	151
I ASWAN CIT	6	212	4	17	8,40	2,64	0,0	128	7,10	0,0	0,30	0,007	24,05	11,67	108	9,1	6,0	0,11	3,6	132
LLECTED IN			0	16,5	8,56	2,64	0,0	128	7,15	0,0	0,34	0,048	25,65	10,70	108	7,8	5,0	0,09	1,6	125
TABLE 1 IR SAMPLES CO		;	10	17	9,20	2,64	0,0	128	7,05	0,0	0,18	0,075	25,65	9,73	104	7,8	0,9	0,05	1,2	135
-	2	0177	4	16,5	9,20	2,64	0,0	124	7,08	0,0	0,31	0,050	24,05	10,21	102	7,8	3,5	0,10	1,6	130
F NILE RIVER			0	16,5	8,72	2,64	0,0	128	7,10	0,0	0,30	090,0	24,85	9,73	102	7,8	5,3	0,085	1,4	135
NALYSIS O			10	17	8,72	2,64	0,0	128	7,0	0,0	0,26	0,130	25,65	9,73	104	6,5	4,5	0,08	1,0	150
HEMICAL A	1 235	653	4	16,5	8,56	2,64	0,0	124	7,01	0,0	0,20	0,035	25,65	10,70	108	7,8	6,0	60,0	2,0	140
RESULTS OF CHEMICAL ANALYSIS OF NII			0	91	80'8	3,52	0,0	124	7,01	0,0	0,26	0,038	27,25	9,73	108	9,1	6,5	0,11	8,0	149
R	Sampling point	Transparency, cili	Depth, m	T, °C	$D.O_2$, mg/ ℓ	Free CO ₂ , mg/t	CO ₃ ² as CaCO ₃ , mg/t	HCO ₅ as CaCO ₃ , mg/t	pH	NO_2 , mg/ℓ	NO ₃ , mg/t	PO ₄ ⁻ , mg/c	Ca ²⁺ , mg/ 6	Mg²⁺, mg/ℓ	TH as CaCO ₃ , mg/t	Cl ⁻ , mg/ <i>t</i>	SO ₄ -, mg/c	Fe, mg/ <i>t</i>	Organic matter, mg/e	TDS, mg/t

5 6 110 4 0 15 16,5 17 8,16 8,32 7,60 8 2,64 1,76 4,4 0,0 0,0 124 126 132 7,10 0,0 124 126 132 7,10 0,0 0,015 0,050 0,090 0,0 0,0 0,022 0,16 0,255 0,0 0,0 0,055 0,045 0,025 0,0 0,0 24,85 24,85 24,85 24,85 24,85 11,19 9,24 9,73 10 7,8 7,8 7,8 7,8 10,0 9,0 0,0 0,0 0,0 0,0 0,0 0,0 150 1,2 3,6 142 1,42
110 4 0 16,5 8,32 7,60 1,76 1,76 0,00 126 0,000 0,005 0,00
5 6 110 4 0 4 16.5 17 18 8,32 7,60 8,24 1,76 4,4 4,4 0,0 0,0 0,0 126 132 132 7,25 7,10 7,09 0,050 0,090 0,100 0,16 0,255 0,38 0,045 0,025 0,38 0,045 0,025 0,38 24,85 24,85 24,85 9,24 9,73 10,70 100 102 106 7,8 9,0 10,5 8,0 0,0 0,0 0,0 0,0 1,2 3,6 4,2 1,4 142 140
110 4 0 16,5 8,32 7,60 1,76 1,76 0,00 126 0,000 0,005 0,00
2 110
16.5 8.16 2.64 0.0 124 7,30 0,015 0,022 0,055 24,85 11,19 11,19 10,0 0,0 0,0 0,0 150

Menya, Beni Suef and Giza at the surface and 10 m depth for the Aswan Governorate (Aswan City, Abu El Riesh, Kom Ombo, Edfu, and El Sibaiya), and at the surface and 4 m depth for the other Governorates, during the study period (January, June and August 1987) using a water sampler (Goodwin and Goddard, 1974). Drinking-water samples were collected in the same study time from the Aswan City filters (7 filters and 3 wells), Abu El Riesh, Kom Ombo, Edfu and Sibaiya Filters (Aswan Governorate) and Qena, Sohag, Assiut, El Menya, Beni Suef and Giza Filters.

Analysis

Physical and chemical analysis were performed following methods outlined in *Standard Methods* (1980), Merck (1980), Vogel (1982) and Welcher (1965).

Field measurements were done on temperature, transparency, dissolved oxygen, pH, free CO₂, carbonates, nitrites, and phosphates. The pH was measured using an Orion Research Model 211 digital pH meter. Transparency was determined with a Secchi disc. Temperature was immediately measured in situ using a standard thermometer (100°C) and CO₂, HCO₃ and CO₃² were determined in situ by titration with HCl; dissolved oxygen in situ by the Winkler method; NO2; PO42; SiO2 (Standard Methods, 1980); SO₄⁻ (Merck, 1980); NO₃⁻ (Caron and Raquet, 1963) in situ spectrophotometrically by Spectronic 21 Spectrophotometer (1 cm fused silica cell, no. 1102227H, USA), C1 by $Hg(NO_3)_2$ method (Vogel, 1982); Ca^{2+} and Mg^{2+} titrimetrically by EDTA (Welcher, 1965); Fe by atomic absorption spectrophotometry, Pye Unicam Sp 1900; TDS by filtering 1 & water and drying; and organic matter by chromic acid digestion.

Clustering analysis

There are two statistical classification methods, i.e. the divisive clustering method and the classical clustering method. The main difference between classical classification and clustering is that the former refers mainly to predefined classes, while clustering is an aid to identify these classes and uses the divisive clustering method belonging to the hierarchical classification methods. It depends on an initial cluster being subdivided into 2 groups, each group being further subdivided into smaller and smaller clusters. In the clustering method, chemical concentrations of 12 constituents (i.e. variables) of water samples were tested to identify classes according to the water quality. The first step in clustering analysis is data standardisation before applying clustering models. One of the methods used is the Ztransformation technique which depends on subtracting the mean value of each variable and dividing the results by the standard deviation equations:

$$Z(ij) = \frac{X(ij) - X(j)}{S(j)}$$
(1)

$$S(j) = \sqrt{1/(n-1) [X(ij) - X(j)]^2}$$
 (2)

The next step for classification is to determine the dissimilarity between the objects found by determining the Euclidean distance. The Euclidean distance can be evaluated by applying the following equation:

$$d(i,1) = Z(ij) - Z(1,j)$$
(3)

Results and discussion

Results of physical, chemical, statistical (r, SD and SE) and divisive clustering analyses are reported in Tables 1 to 9 and represent graphically in Figs. 2 to 14. The figures show the vertical and horizontal variations in phosphate, sulphate, chloride, Ca, Mg, total hardness, bicarbonate, organic matter, dissolved oxygen, total dissolved solids, pH and nitrate values (Figs. 2 to 13) and clustering dendrographs (Fig. 14). Figures 8 to 14 show box-and-whisker plots of the Nile and drinking water of Aswan, Quena, Sohag, Assiut, El Menya, Beni Suef and Giza during January, June and August 1987, for the analysed constitutents.

There was little change in the water temperature, either vertically or horizontally, and thermal stratification was absent during January (15 to 20°C) but during June, the temperature increased vertically with depth and horizontally with distance (20,5 to 27,5°C). In August, the temperature showed slight vertical and horizontal decreases in both depth and distance (23.5 to 27,5°C). Increased surface water temperature may have been due to the effect of the absorption of sunlight and abundance of solid particles floating on the water, whereby heat was absorbed more rapidly than by the water itself. These particles radiated the heat again to the surrounding water medium (Husseiny, 1967). The drinking-water (from filters, artesian wells and mixed water) temperature was in the range 16 to 26; 22 to 31 and 25 to 31°C during January, June and August, respectively. The higher temperature may be explained on the basis that the water from deep wells comes from different sources and this agrees well with the fact that the temperature of water increases with increasing depth. In addition, direct sunlight on water pipes increases the water temperature.

Transparency decreased regularly along the distance between Aswan and Giza, while it showed a sharp drop at Sibaiya during the study period.

The sharp decrease in transparency at Sibaiya may be ascribed to the effect of phosphate dust falling from phosphate jaw crushers which caused turbidity to water during the charging and transportation of phosphate ores by ships. Here, the jaw crusher of El Nassr company phosphate mines is very close to the Nile River. The dissolved oxygen values were in the range 7.6 to 9.36: 2,4 to 6,2; and 1,28 to 5,32 mg/e for surface and bottom water. during January, June and August, respectively. However, the oxygen values increased with distance between Aswan and Giza. Increased dissolved oxygen content in January may be related to the decrease in temperature, leading to a dissolution of a great amount of atmospheric oxygen in the water (Hurst, 1950), while a decrease in dissolved oxygen may be attributed to the breakdown of organic matter by biological organisms which use up oxygen from the water and may be due to the effect of high temperatures during June and August. The dissolved oxygen content of drinking water was in the range 1,20 to 9,92 mg/l in January, June and August, 1987. CO2 contents of Nile River and drinking-water samples were in the range 1,76 to 7,92; 0,88 to 6,16 and 0,88 to 10,6 mg/ ℓ , and 1,76 to 24,64; 1,76 to 10,56 and 0,88 to 10,56 mg/ ℓ in January, June and August. However, it decreased from south to north. An increase in CO2 in January at Abu El Riesh, Kom Ombo, Edfu, and El Sibaiya, in June at Sohag, and in August beyond the Isis Hotel, beyond the Kima Drain-Nile River confluence, Qena (bottom), Sohag (bottom), Assiut, El Menya (surface), Beni Suef (surface) and Giza may be related to the respiration of dense growths of aquatic weeds. Lower free CO₂ values may be attributed to its consumption as a

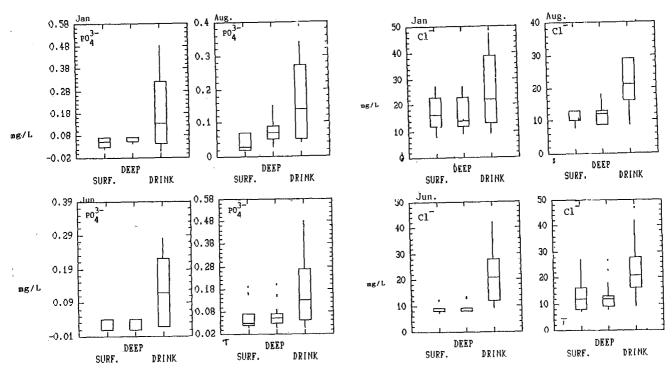
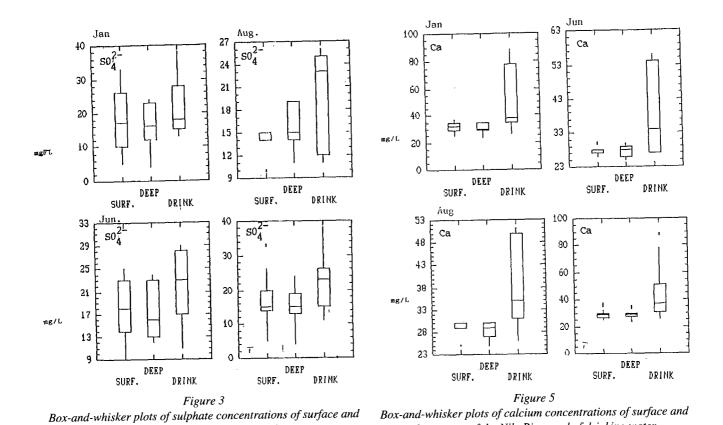



Figure 2
Box-and-whisker plots for phosphate concentrations in surface and deep water of the Nile River and in drinking water

Figure 4
Box-and-whisker plots of chloride concentrations of surface and deep water of the Nile River and of drinking water

deep water of the Nile River and of drinking water

ISSN 0378-4738=Water SA Vol. 19 No. 3 July 1993

deep water of the Nile River and of drinking water

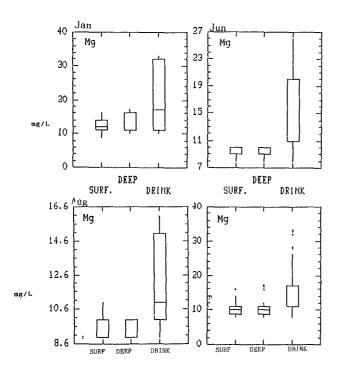


Figure 6
Box-and-whisker plots of magnesium concentrations of surface and deep water of the Nile River and in drinking water

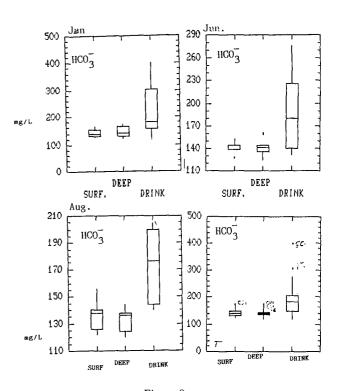


Figure 8

Box-and-whisker plots of bicarbonate concentrations in surface and bottom water of the Nile River and in drinking water

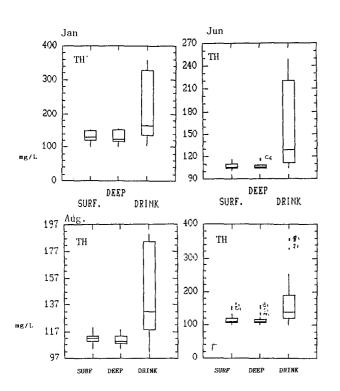


Figure 7
Box-and-whisker plots of total hardness (TH) in surface and deep water of the Nile River and in drinking water

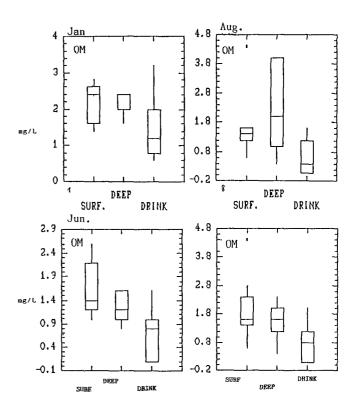
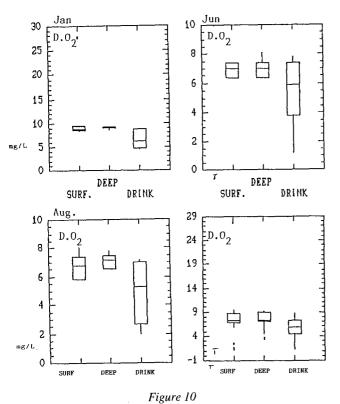



Figure 9
Box-and-whisker plots of organic matter contents in surface and deep water of the Nile River and in drinking water

Box-and-whisker plots for dissolved oxygen contents in surface and deep water of the Nile River and in drinking water

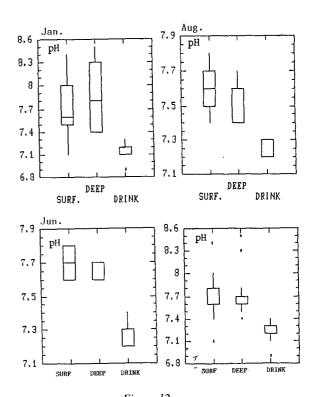


Figure 12
Box-and-whisker plots for pH measurements in surface and bottom water samples of the Nile River and in drinking water

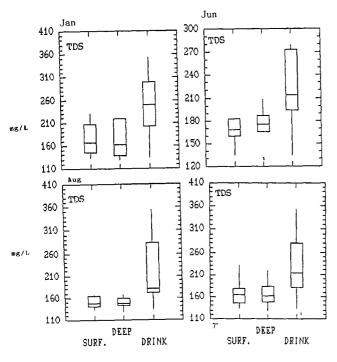


Figure 11
Box-and-whisker plots for total dissolved solids concentration in surface and bottom water of the Nile River and in drinking water

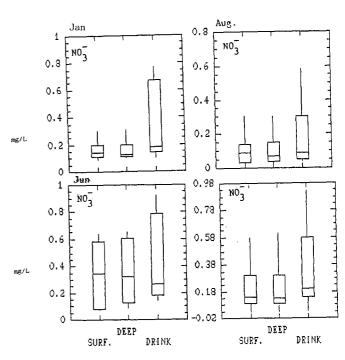


Figure 13

Box-and-whisker plots for nitrate concentrations in surface and deep water samples of the Nile River and in drinking water

		Sohag		Assint	nt nt	El Menva		Beni Snef		Ciza					
20 8,96 11,76 0,0 0,0 0,20 0,20 0,25 28,85 11,67	•	0	4		4	!	4	0	4	0	× ×	Mean	G	SE	
8,96				18	18,5	1	18	5,5	+			17.28	1.130	0.292	
1,76 0,0 0,0 7,5 0,013 0,20 0,25 28,85 11,67	8,56	8,8										,656	0,296	0,077	
0,0 7,5 0,013 0,20 0,20 0,25 11,67			0,0							70 2,46		3,131	1,83	0,472	
7,5 0,013 0,013 0,20 0,25 28,85 11,67					_							,200	2,713	0,700	_
0,013 0,20 0,25 28,85 11,67												7,51	14,358	3,707	
0,210 0,20 0,25 28,85 11,67		4,5										,428	0,428	0,111	
0,25 0,25 28,85 11,67		_	_		_	_	_			-		,017	0,024	900'0	
28,85							_					,212	0,073	0,019	
11,67							_					0,077	0,084	0,022	
120		20,40 10.7	10.7									28,411	3,778	0,975	
(17)					_							11,121	1,837	0,474	
11.7		15.6					_					10,579	16,284	4,204	
9.5	11.5	17	12									12,291	5,839	1,508	
0,00		0.0									_	505,	7,838	2,024	
atter, mg/t 2,8		2,6	- 2		_							170,	0,038	0,010	
145		150				191		208 220	230 230			2,230 162,755	27,988	7,227	
					TABLE 4	LE 4									
RESUL	TS OF CH	RESULTS OF CHEMICAL ANALYSES OF DRINKING-WATER SAMPLES COLLECTED DURING JANUARY 1987	ANALYSE	S OF DRIN	KING-W	ATER SAN	IPLES CC	LLECTE	D DURIN	G JANUAF	RY 1987				_
													Centres in Aswan	Aswan	
Locality				Ą	Aswan City	٨							Gover	Governorate	
Sampling points	-	7	e	4	w	9	7	· œ	6	1		_		71	
T, °C	18	18	61	18,5	22	19	19	26	24	26	+		31 1	1 0	
$D.O_2$, mg/ℓ	7,28	8,80	9,28	8,88	9,92	8,80	8,88	2	95'9	2,72					
Free CO ₂ , mg/c	3,52	4,40	4,40	8,80	4,40	4,40	4,40	14,96	16,72	24,64					
HCO: as CaCO, mg/c	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0					
nH	7 00 2	7 1 2	7 13	110	47 L	116	071	727	760	364					
NO ⁷ , mg/ <i>t</i>	0.0	0.0	200	0,0	01,	0,0	0,40	0,93	0,63	0,40					
NO ₃ , mg/t	0,79	0,22	0,20	0.24	0.55	0.21	0.67	0,33	0.00	0,010					
	0,030	0,010	0,007	0,026	0,007	0,012	0,040	0,055	0,150	0.400					
	26,45	24,05	25,65	25,65	24,05	24,85	25,65	86,57	72,14	76,95					
Mg ^{c,} mg/t TH as CaCO ma//	9,73	10,21	10,21	8,26	10,70	9,73	10,21	28,21	20,42	26,26	11,67	77 9,73	3 9,73	10,70	
CI mo/	001	102	100	100	5 5 7	102	5 5 5	332	264	300					
SO ₄ - , mg/t	10.5	7,5	13,4	ó, 0	10,4 %	10,4	, Y, I	68.5	64,87	80,44 44,08	-				
Fe, mg/e	0,0	0,0	0.0	0.0	0.0	0.0	00	0.36	98.0	9+0					
Organic matter, mg/t	1,2	, 7	, 7	2	1,2	2,5	2,0	0.8	0,00	0,0				ۍ پ	
TDS mg/t	130	156	125	135	162	135	134	475	425	505			2.050	2 اج	

thooplift	Oena	Sohag	Assiut	El Menya	Beni Suef	Giza	Mean	SD	SE
anny	16	20	20	16	19	18	20,050	2,573	0,575
1, C	17 0	27 7	4 ×	6.16	8,80	8	7,380	2,177	0,487
7.O ₂ , mg/c	9,4	6, t	5, 4 4	15.84	4,4	2,64	7,700	5,856	1,310
Free CO ₂ , mg/t	0,1	t C		0.0	0.0	0,0	0,000	0,000	0,000
OS as CaCO3, mg/c	304	9,0	180	248	168	156	185,00	86,189	19,373
HCO, as CaCO, mg/e	+ 05	7.15	7.3	7.1	7.1	7,2	7,081	0,128	0,029
	2,7	0.050	0.240	0.011	0,008	0,010	0,018	0,053	0,012
,, mg/t	0,000	0,038	0.14	0.18	0,20	0,10	0,376	0,309	0,069
NO ₃ , mg/c	0,77	0,19	0.48	0,13	0,04	0,01	0,110	0,139	0,031
, mg/c	0,20	2,0 88 18	35.27	54.5	36,9	38,5	42,566	23,152	5,177
_a^r, mg/e	22,10	33.07	14.60	28.21	10,70	16,54	16,050	8,356	1,869
Mg⁻⁻, mg/c	32,10	356	148	252	136	164	172,200	90,915	20,329
I'H as CaCO ₃ , mg/c	976	18.20	13	27.30	22,08	39	24,676	22,728	5,082
J., mg/e	40,00	19,20	51	, , , , , , , , , , , , , , , , , , ,	18	38	21,200	17,273	3,862
SO ₄ ² , mg/ <i>t</i>	17	CI 0	, T	800	0.0	0.0	0,036	0,108	0,024
Fe, mg/c	0,0	0,0	o, c	9,0	1.6	3,2	1,750	0,797	0,178
Organic matter, mg/t	8,0	7,1 000	6,00	386	250	213	230.100	118,288	26,450

	TDS	0,246 0,364 0,171 0,454 0,939 0,025 0,055 0,055 0,918 0,930 0,930 0,042 0,042
	ОМ	-0,021 -0,190 -0,461 0,254 0,156 0,035 0,045 0,045 0,03 0,03 0,136 -0,133 0,031 0,038 0,189 0,189 0,189
	Fe	0.80 0,066 -0,285 -0,009 -0,512 -0,433 -0,433 -0,240 -0,501 -0,273 -0,476 -0,648 1,00
	SO ₄ -	0,126 0,422 0,137 0,308 0,919 0,024 0,024 0,239 0,704 0,886 0,086 0,886 0,886 0,886 0,084
_	c	0,235 0,444 0,242 0,290 0,278 0,029 0,029 0,029 0,083 0,083 0,083 1,00
JARY 198'	TH	-0,167 0,466 0,271 0,316 0,316 0,038 0,038 0,038 0,120 0,120 1,00
LES, JANI	Mg	0,214 0,297 0,297 0,263 0,263 0,112 0,112 0,084 0,084 1,00
ER SAMP	Ca	-0,125 -0,203 -0,203 0,334 0,955 0,027 -0,027 0,140 1,00
VER WAT	PO ₄ -	0.668 0,220 0,220 0,087 0,026 0,224 0,202 1,00
TABLE 6 FFICIENT VALUES OF NILE RIVER WATER SAMPLES, JANUARY 1987	NO ₃	-0.047 -0.522 0.371 -0.505 -0.733 -0.729 0.135 1.00
VALUES	NO.	-0,400 -0,651 0,159 -0,040 0,122 -0,033 1,00
FFICIENT	Hd	0,400 0,358 -0,560 0,454 1,00
CORRELATION COE	HCO3	0,273 0,428 -0,087 0,138 1,00
ORRELA	CO	0,412 0,222 -0,521 1,00
č	60,	0,387 -0,225 1,00
	D.O.	1,00
	T.°C	071
		1,°C CO ₂ CO ₃ - CO ₃ - CO ₃ - PO ₄ - CO ₄ - CO ₄ - CO ₅

	TDS	0.571 0.571 0.6480 0.041 0.050
	OM	0.098 0.152 0.0152 0.094 0.470 0.264 0.132 0.332 0.332 0.227 0.447 0.396 0.429 0.066 0.139 1.00
	Fe	0,200 -0,102 -0,218 -0,031 -0,031 0,001 0,210 0,020 0,020 0,037 0,037 0,037 0,037 0,030 1,00
	SO4-	0.841 0.738 0.637 0.637 0.915 0.915 0.915 0.376 0.609 0.734 0.734 0.734 0.734 0.734
	Ci	0.592 0.373 0.277 0.365 0.365 0.365 0.066 0.109 0.245 0.893 1.00
NE 1987	TH	0.532 0.473 0.473 0.50 0.696 0.205 0.205 0.205 0.87 0.653 1.00
PLES, JUI	Mg	0.462 0,279 0,163 0,125 0,108 0,078 0,078 -0,127 -0,202 1,00
TER SAM	Ca	0,372 0,285 0,269 0,269 0,269 0,269 0,269 0,491 1,00
RIVER WA	PO.	0,525 -0,475 -0,475 -0,356 0,070 -0,522 -0,065 0,187 1.00
TABLE 7 ICIENT VALUES OF NILE RIVER WATER SAMPLES, JUNE 1987	NO;	-0,256 -0,114 -0,416 0,574 -0,307 0,059 1,00
NT VALUE	NO ₂	0,791 -0,721 -0,495 0,005 -0,794 -0,207 1,00
EFFICIE	hd	0,061 0,185 -0,517 0,876 -0,112 1,00
CORRELATION COEFF	нсо:	0.745 0.579 0.660 0.660 1,00
CORREL	CO3	-0,108 0,043 -0,626 1,00
·	co,	0.59 <u>6</u> 0.50 <u>2</u> 1,00
	D.O ₂	1,00
	T,°C	1,00
		1,°C D.O, CO, CO, CO, HCO; PH NO, TH CI - CO, TH TH TH TH OM

	T -	
	TDS	0.708 0.455 0.405 0.00 0.756 0.414 0.413 0.472 0.713 0.634 0.8824 0.8821 0.8821 0.8821 0.293 0.215
	OM	0,239 0,008 0,000 0,000 0,017 0,013 0,029 0,037 0,118 0,118 0,014 0,014 0,015 0,015 0,015 0,015 0,015 0,025 1,00
	Fe	0,323 0,363 0,469 0,00 0,159 0,408 0,360 0,381 0,102 0,358 0,154 0,154 0,246 0,246 0,218
	SO ₄ -	0.834 0.839 0,221 0,00 0,00 0,034 0,187 0,187 0,288 0,288 1,00
	Ċ.	0.781 0,727 0,445 0,00 0,939 0,347 0,347 0,210 0,210 0,210 0,215 1,00
1987 1987	TH	0.848 0.878 0.356 0.00 0.00 0.607 0.251 0.835 0.835 1.00
LES, AUC	Mg	0.715 0.837 0.00 0.702 0.347 0,127 0,277 0,404 1,00
TER SAME	Ca	0.708 0.633 0.070 0.00 0.668 0.668 0.137 1.00
IVER WAS	PO4-	-0,162 -0,304 -0,159 -0,00 -0,131 -0,268 -0,051 -0,259 1,00
TABLE 8 OF NILE R	NO3	-0,246 -0,153 0,305 0,00 -0,346 -0,097 0,744 1,00
TABLE 8 CORRELATION COEFFICIENT VALUES OF NILE RIVER WATER SAMPLES, AUGUST 1987	NO;	-0,289 -0,150 0,604 0,00 -0,197 -0,397 1,00
SFFICIEN	рН	0.541 0.678 -0,066 0,00 0,192 1,00
TION COI	нсо;	0.632 0.354 0.354 1,00
ORRELA	CO3	0,00
	CO ₂	0,34
	D.O ₂	1,00
	T,°C	1,00
		1,°C D,O ₂ CO ₃ HCO ₃ HCO ₃ PO ₄ R PO ₄ Ca Ca Ca Ca Ca Ca Ca Ca Ca TH TH TH TH Th

	TDS	0.769 0.00 0.839 0.045 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.368 0.450 0.045 0
	ОМ	0,453 -0,206 0,00 -0,503 -0,170 -0,345 -0,510 -0,537 -0,537 -0,534 -0,537 -0,322 -0,314 1,00
	Fe	0.641 0,463 0,463 0,00 0,275 0,275 0,276 0,270 0,230 0,530 0,461 0,647 0,783 1,00
	SO ₄ -	0.699 -0,704 0.641 0.00 0.565 -0,412 -0,040 0.197 0.257 0.257 0.257 0.257 0.257 0.257 0.294 1.00
87	CI.	0.780 0.699 0,00 0,00 0,00 0,406 0,392 0,406 0,392 0,406 0,392 1,00
IVARY 198	ТН	0.552 -0,749 0,458 0,00 0,951 -0,149 0,125 0,246 0,296 0,992 0,978 1,00
LES, JAN	Mg	0,416 -0,696 0,390 0,00 0,930 -0,053 0,154 0,228 0,602 1,00
TER SAMP	Ca	0.621 0.765 0,488 0,00 0.943 -0,203 0,105 0,254 0,258 1,00
VER WAT	PO3-	0,361 0,635 0,283 0,00 0,170 0,170 0,325 1.00
TABLE 9 OF NILE RI	NO;	0,452 -0,258 0,351 0,00 0,326 -0,311 -0,126 1,00
TABLE 9 CORRELATION COEFFICIENT VALUES OF NILE RIVER WATER SAMPLES, JANUARY 1987	NO ₂	0,023 -0,321 -0,188 0,00 0,184 0,452 1,00
FFICIENT	Hd	-0,386 0,169 -0,467 0,00 1,00
TION COE	HCO3	0,516 -0,732 0,477 0,00
ORRELAT	CO3	0,00
	CO ₂	<u>0.611</u> -0,630
	D.O ₂	1,00
	T,°C	00,1
		T,°C D.O ₂ CO ₂ CO ₂ - CO ₃ - HCO ₃ - PO ₄ - Ca Mg TH CI- CO ³ - Ca Mg TH TH TH TH TDS

	TDS	0.599 0.738 0.606 0.144 0.973 0.038 0.928 0.928 0.928 0.928 0.937 0.372 0.372 0.372
	OM	0,290 0,329 0,445 0,428 0,652 0,025 0,025 0,035 0,406 0,309 1,00
	Fe	-0.044 -0.004 -0.004 -0.005 0.118 0.226 -0.329 0.375 0.240 0.226 0.289 0.417 0.221
	SO4	0.768 0,573 0,410 0,410 0,163 0,755 0,471 0,471 0,671 0,639 0,639 0,839 0,639 0,839
	בּ	0.595 0.677 0.552 0.145 0.918 0.443 0.452 0.952 0.952 0.952 0.952 0.900 0.000 0.000
NE 1987	TH	0.584 -0,777 -0,1617 -0,165 0.983 -0,475 0,027 0,365 0,991 0,964 1,00
TABLE 10 TABLE SOF NILE RIVER WATER SAMPLES, JUNE 1987	Mg	0,491 0,759 0,164 0,960 0,126 0,248 0,248 0,918 1,00
ATER SAN	Ca	0.616 0.765 0.146 0.968 0.024 0.024 0.401 0.852 1.00
RIVER W.	PO.	0,402 -0,798 <u>0,585</u> -0,185 -0,488 0,239 1.00
TABLE 10 S OF NILE	NO.	0,203 0,220 0,054 0,354 0,354 0,434 1,00
YT VALUE	NO;	-0,044 -0,237 -0,208 0,208 0,114 -0,105 1,00
DEFFICIE	Hd	0,516 0,513 0,467 0,792 0,792 1,00
OBREI ATION COE	HCO;	0.578 0.796 0.665 0.0.186 1,00
CORRE	;00;	-0,324 0,196 -0,367 1,00
) o	0,315
	00	0,269
	J ₀ L	00,1
		T,°C CO ₂ CO ₃ - CO ₃ - CO ₃ - NO ₂ - NO ₃ - NO ₄ - C1- TH TH TH TH TH TH TO TO TO TO TO TO TO TO TO TO TO TO TO

	TDS	0,471 0,524 0,620 0,00 0,00 0,219 0,219 0,984 0,
	OM	-0.052 0,191 0,009 0,00 0,397 0,413 0,295 -0,158 -0,325 -0,325 -0,343 -0,343 -0,418 -0,076 1,00
	Fe	0,281 0,778 0,000 0,000 0,481 0,481 0,304 0,304 0,304 0,304 0,443 1,00
	SO ₂ -	0,453 0,439 0,556 0,00 0,251 0,139 0,212 0,22 0,2
	C.	0,500 0,500 0,612 0,000 0,000 0,112 0,112 0,112 0,976 0,112 0,976 0,100 1,00
UST 1987	TH	0.494 0.6358 0.000 0.274 0.265 0.154 0.154 0.159 0.100
LES, AUG	Mg	0.520 -0,483 0.578 0.00 0.568 -0,275 0,020 -0,052 0,328 0,328 0,328 1,00
ER SAMP	Ca	0,491 -0,551 -0,638 -0,00 -0,462 -0,180 -0,180 1,00
VER WAT	PO ₄ -	0,386 -0,535 0,468 0,00 0,891 -0,454 0,262 1,00
TABLE 11 FICIENT VALUES OF NILE RIVER WATER SAMPLES, AUGUST 1987	NO.	0,417 0,106 -0,004 0,00 0,157 -0,137 0,070 1,00
VALUES	NO ₂	0,246 -0,168 0,294 0,00 0,235 -0,154 1,00
EFICIENT	Hd	-0,418 0,235 -0,286 0,00 -0,482 1,00
CORRELATION COEFI	нсо;	0,414 -0,519 0,583 0,00 1,00
ORRELA'	CO3	00.00
)	CO ₂	0,296 -0,601 1,00
	D.O ₂	0,316
	T,°C	1,00
		1,°C 00,0 00,0 00,0 00,0 00,0 11,0

result of the reaction between free CO2 produced within the water body and CaCO₂ in the sediments and transferred into water as Ca(HCO₃)₂ and photosynthetic production of oxygen, hydrocarbons and carbohydrates by utilisation of CO₂. Carbonates are absent except in January at Sohag, Assiut (bottom) and Beni Suef (bottom) where the Nile showed abnormal values. This may be because the Nile River is close to limestone mountains present in these places. However, the drinking water is carbonate-free. Bicarbonate showed horizontal and vertical increases from south to north. The increase in bicarbonate may be ascribed to dissociation of H₂CO₃ into HCO₃ and H⁺, and the reaction between CO₂ and OH to produce HCO₃ (Kern, 1960). The relative decrease in HCO₃ may be attributed to the uptake of combined CO₂ into HCO₃ by algae and CO₂-H₂O interaction during the photosynthetic processes (Klein, 1973), and sedimentation of dissolved bicarbonates on the surface of suspended particles (Morel, 1983).

There was a slight horizontal and a slight vertical increase in pH values from the south to the north. This increase may be related to photosynthesis and growth of aquatic plants (Allem and Samaan, 1969; El Wakeel and Wahby, 1970) particularly in Sohag, Assiut, El Menya and Beni Suef, or may be attributed to industrial effluents being discharged into the river, while the pH of drinking water is the same. Nile River water in Aswan Governorate is nitrite-free while it showed low figures in Qena-Giza. The absence or decrease of nitrite may be principally due to the increase of its oxidation rate to nitrate and reduction of nitrate to ammonia as well as its uptake by plankton. However, the drinking water was nitrite-free. Nitrate decreased horizontally and vertically from the south to the north. However, Nile River water of Aswan Governorate showed slightly high nitrate concentrations. The slight increase in nitrate concentrations may be ascribed to nitrification of NH₃ and NO₂ produced by the biochemical decomposition of descending dead plankton into nitrate by nitrifying bacteria, and transformation of organic nitrogen to ammonia and nitrifying ammonia to nitrate. The decrease in nitrate concentration in January and August may be attributed to biological uptake in the photic zone and recycling from the hypolimnion (Goldman and Horn, 1983). The high nitrate concentrations in drinking water may be due to the fact that water from artesian wells is also used for drinking purposes. Horizontal and vertical distribution of phosphate showed a smaller decrease in January than in June and in August. The decreased phosphate concentration may be attributed to the higher rate of decay of phytoplanktons and release of the adsorbed phosphate from the sediment of the Nile River bed. On the other hand, the increase of phosphate was consistent with low pH and dissolved oxygen. The decrease and depletion of phosphate may be related to its adsorption on hydrous Fe₂O₃ and Al₂O₃, its consumption by algae, bacteria or aquatic weeds (Kramer et al., 1972; Harvey, 1955). Chloride showed horizontal increases and vertical decreases in January, June and in August. However, the highest values were reached in January. This may be related to some biological assimilation processes. Drinking water showed high concentrations of chloride, particularly water taken from Aswan wells. High chloride concentrations in drinking water may result from the chlorine added as a disinfection agent. Also, sulphate concentrations increased horizontally and decreased vertically from the south to the north. Increased sulphate concentrations may result from industrial effluents discharged into the river while the relative decrease of sulphate concentrations in bottom water may be attributed to reduction into sulphide as a result of the considerable effect of

Cluster	Symbo	l In	dicat	ion	Month
1	STI	Sohag	-	drinking w.	Jan
	ST6				June
	QT1	Qena	-	drinking w.	Jan.
	QT6				June
	MT1	El Menya		drinking w.	Jan.
2	SD1	Sohag	-	deep w.	Jan.
	SS1	_	-	surf. w.	
	ADI	Assiut	-	deep w.	
	AS1		-	surf. w.	
	BD1	Beni Suef	-	deep w.	
	BS1		-	surf. w.	
	GD1	Giza	-	deep w.	
	GS1	E1 M	-	surf. w. surf. w.	
	MS1	El Menya Giza	-	drinking w.	
	GT1	Giza			
3	BT1	Beni Suef	-	drinking w.	Jan
	BT6				June
	AT1	Assiut	-	drinking w.	Jan.
	AT6			1 1 1 1 - 1	June
	MT6	El Menya	-	drinking w. drinking w.	June June
	GT6	Giza		unnking w.	June
4	QD6	Qena	-	deep w.	June
	QS6		-	surf. w.	Ì
	ND6	Aswan	-	deep w.	
	NS6		-	surf. w.	
	NT6		-	drinking w.	T
	NT1		<u>-</u>	drinking w.	Jan.
5	QD1	Qena	_	deep w.	Jan
-	QS1		-	surf. w.	
	NDI	Aswan	-	deep w.	
	NS1		-	surf. w.	
	MD1	El Menya		deep w.	
6	SS6	Sohag	-	surf. w.	June
-	SD6		-	deep w.	
	AS6	Assiut	-	surf. w.	
	AD6		-	deep w.	
	MS6	El Menya	-	surf. w.	
	MD6		-	deep w.	
	BS6	Beni Suef	-	surf. w.	
	BD6		-	deep w.	
l	GS6	Giza	-	surf. w. deep w.	

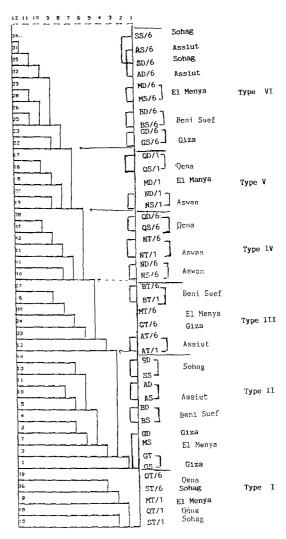


Figure 14
Dendrograph of water samples (clustering by divisive method)

reducing bacteria, protein synthesis and subsequent precipitation of detrital organic matter and its decomposition into H2S and insoluble sulphides (Beauchamp, 1953). However, drinking water contained higher concentrations of sulphate, particularly those in Aswan City (wells no. 8, 9 and 10), during the study period, but pumping from the wells has now been discontinued due to their undesired water quality. Ca, Mg, TH and TDS showed a horizontal increase and a slight vertical decrease from the south to the north in the Nile River and drinking water during the study period and along the distance Aswan-Giza. However, the highest values were obtained in January. The relative increase of Ca and Mg (TH and TDS) in January may be attributed to the increase in CaCO3 and MgCO3 solubility with the decrease in water temperature, while the relative decrease in Ca and Mg concentration in June and August may be attributed to photosynthetic precipitation of Ca as CaCO3 and Mg as Mg(OH)2, adsorption of Ca on Mg(OH)2, decreasing CaCO3 and MgCO₃ solubility as a result of temperature increase and loss of CO_2 [Mg(HCO₃)₂ \rightarrow MgCO₃+H₂O+CO₂]. However, Aswan (wells no. 8, 9 and 10), Qena, and Sohag utilised water wells and so water showed higher Ca, Mg, TH and TDS values. Iron and organic matter were very low in both Nile and drinking water.

Hig Item	(i hest desirable level	l) Maximum permissible level	(2) Approximate level above which trouble may arise	(3) Approximate level above which trouble may arise	(4) Data for Nile River water
D.O ₂ ,mg/ <i>l</i>			5	5	2,6 - 12,88
pН	7 - 8,5	6,5 - 9,2		6,5 - 9,2	7,18 - 8,77
Ca ²⁺ ,mg/ ℓ	75	200	200	200	23,24 - 38,47
Mg ²⁺ , mg/l	30	150	30-125	150	7,30 - 17,02
TH as CaCO, mg	e 100	500	100-500	500	90-162
Cl⁻, mg/ℓ	200	600	600	200 - 600	5,83 - 29,16
SO ₄ ² , mg/ ℓ	200	400	250	200 - 400	4,5 - 37,5
NO3, mg/e	45		50 - 100	45	0,04 - 2,86
Cu, mg/e	0,05	1,5	0,05	ı	0,002 - 0,022
Zn, mg/e	5	15	5	1	0,002 - 0,028
Fe, mg/l	0,1	1	0,1	I	0,0 - 0,34
Mn, mg/e	0,05	0,5	0,05	0,5	0,006 - 0,087

Statistical analysis

Correlation coefficient values between water quality variables (Tables 7 and 8) were all positive and between 0,41 and 0,989, indicating that the metals determined in Nile River and drinking water exist as significant pairs in soluble form.

Clustering analysis

As indicated on the graphs (Figs. 2 to 13), the middle line inside the box represents the median value and the whiskers extend out to the extreme (minimum and maximum) values. The outliers appear as separate points as the whiskers extend only to points within 1,5 times the interquartile range. The chemical constituents can be divided into 3 groups. The first contains phosphate, sulphate, chloride, calcium, magnesium and total hardness, the values of which are higher in drinking water than in the corresponding values of surface and deep water. Also, the values obtained in January are higher than those in June and August. The second group includes pH, dissolved oxygen and organic matter. These values are lower in the case of drinking water than in Nile water. The third group contains only nitrate. The values are nearly the same in Nile and drinking water. The distribution range between drinking water is much higher than in Nile-water samples. This may be that TDS values are higher due to mixing the underground (well) water with the drinking (filtered water from Nile) water or using well water directly in some governorates. The drinking-water quality at Qena and

Sohag is the same in January and June. These samples are completely different. The drinking water in these districts is a mixture of well and filtered water which increases the concentration of the chemical components of the water as shown in Tables 4 to 6 from those of Aswan, Assiut, El Menya, Beni Suef and Giza (most of the outliers belong to these samples). The second class of drinking water includes the samples taken from Assiut, El Menya, Beni Suef and Giza (cluster no. 3). The third class of drinking water contains the water samples collected from Aswan in January and June (cluster no. 4), and Nile-water samples collected from Aswan and Qena in June which indicates that the quality of drinking water of Aswan is very similar to the water quality of the Nile. The Nile-water samples collected from Sohag to Giza were divided into 2 clusters according to the sampling time (clusters no. 2 and 6 for samples collected in January and June 1987). Due to some technical problems, the results of January and June for clustering analysis were included while August was not included. This classification, however, is a promising method for the identification of water samples though it was necessary to employ other statistical methods, e.g. boxand-whisker plots to obtain the valid clustering results and to gain clarity about the distribution of the constituents between the samples.

Conclusion

The water quality (Nile and drinking water) of upper Egypt

differs remarkably between individual areas, and the total dissolved salts content in the drinking water (except Aswan) is higher than in the corresponding Nile water. However, the chemical components in Nile and drinking water are within the required safety baseline levels (Table 10). Clustering analysis using Z-transformation and Euclidean distance techniques for the divisive method (Table 8) is a fairly successful technique for sample characterisations.

References

- AHMED, ZA (1983) Studies on phytoplankton of the Nile system in upper Egypt. M.Sc. Thesis, Assiut Univ., Egypt.
- ALLÉM, AA and SAMAAN, AA (1969) Productivity of Lake Mariut, Egypt. Part I. Physical and chemical aspects. *Intern. Rev. Ges. Hydrobiol.* **54** 313-335.
- BEAUCHAMP, RSA (1953) Sulphate in African inland water. *Nature* 171 769.
- CARON, H and RAQUET, D (1963) Colorimetic determination of nitrates in presence of chloride. *J. Pharm. Chim.* Paris, **23** 446-447.
- EL WAKEEL, SK and WAHBY, SD (1970) Hydrography and chemistry of Lake Manzalah, Egypt. Arch. Hydrobiol. 67 173-200.
- GOLDMAN, CR and HORNE, AJ (1983) Limnology. Int. Stud. Ed., McGraw-Hill, Inc.
- GOODWIN, MH and GODDARD, CI (1974) An inexpensive multiple level water sampler. J. Fish. Res. Bd. Can. 31 1667-1668.
- HARVEY, HW (1955) The Chemistry and Fertility of Sea Water.

- Cambridge Univ. Press, England.
- HURST, HE (1950) The Nile Basin. VIII. The Hydrology of the Blue Nile and Atbra. Phys. Dept. Paper no. 55, Min. Rubl. Works, Egypt. Govt. Press, Cairo.
- HUSSEINY, US (1967) Studies on the limnology and primary production of a tropical Lake, India. *Hydrobiol.* **30** 335-352.
- KERN, DM (1960) J. Chem. Educ. 37 14.
- KLEIN, L (1973) River Pollution, Part I: Chemical Analysis (6th edn.) Butterworth, London.
- KRAMER, JR, HERBES, SE and ALLEN, HE (1972) Phosphorus Analysis of Water, Biomass and Sediments in Nutrients and in Natural Waters. Wiley Interscience, New York.
- MERCK, E (1980) Testing of Water. Darmstadt, Germany.
- MOREL, FMM (1983) *Principles of Aquatic Chemistry*. John Wiley and Sons Inc., New York.
- PROWSE, GA and TALLING, JF (1958) The seasonal growth and succession of plankton algae in the White Nile. *Limnol. Oceanogr.* 31 329-338.
- STANDARD METHODS (1980) Standard Methods for the Examination of Water and Wastewater (15th edn.) American Public Health Association. New York.
- VOGEL, AL (1982) A Textbook of Quantitative Inorganic Analysis Including Instrumental Analysis (4th edn.) The English Language Book Society, London.
- WELCHER, FJ (1965) The Analytical Uses of Ethylenediamine Tetraacetic Acid. D. van Nostrand Company Inc., New York, London
- ZIDAN, MA (1983) Laboratory and field studies on Nile phytoplankton Ph.D. Thesis, Assiut Univ., Egypt.