Prediction of phosphorus load from non-point sources to

South African rivers

DH Meyer!* and J Harris?
1Department of Statistics, University of the Witwatersrand, PO
2WATERTEK, CSIR, PO Box 395, Pretoria 0001, South Africa

Abstract

It has been found that the simple linear regression equation: InY,

Wits 2050, South Africa

=1In8 + BllnX’ does not adequately describe the relationship between

phosphorus export (Y ) and runoff (X ) for South African rivers. Serial correlation plays an important role in this relationship and must be in-
corporated into the model. In addition, for some rivers the above equation under-estimates phosphorus export for both low and high runofs.

This can be corrected by including a quadratic (In Xt)2 term in the model. Finally,

in order to eliminate the estimated bias in phosphorus

prediction produced by anti-logging, it is necessary to apply a correction factor.

Introduction

Water eutrophication is caused by excessive fertilisation with
nutrients such as phosphorus and nitrogen. Eutrophication leads
to excessive growth of algae and aquatic plants. This interferes
with the use of water for domestic and industrial water supply, ir-

rigation, recreation and fisheries. Jones and Lee (1982) maintain’

that phosphorus is the nutrient which most commonly determines
algal growth in a water body. Consequently eutrophication control
usually relies on the control of phosphorus loading.

The most common sources of phosphorus in a water body are,
according to Jones and Lee (1982), domestic waste-water treatment
plant effluents, runoff from land, atmospheric precipitation and
dry fall-out. The first of these sources is commonly referred to as a
point source while the remaining sources are referred to as non-
point sources. In models designed to test the effect of phosphorus
control on eutrophication, models to simulate non-point source
phosphorus export to impoundments are required. As illustrated
in Fig. 1, for non-point source dominated rivers such as the Vaal
River, monthly phosphorus loads are strongly influenced by
monthly runoffs.

Grobler and Rossouw (1988) have modelled the non-point
source phosphorus export for South Affican rivers in terms of

runoff. They describe the phosphorus export for non-point source .

dominated rivers by the equation:

Y, = bXe*

where:
Y, denotes the phosphorus export for month t
X‘ denotes the runoff for month t
b, and b, are coefficients estimated for each river using
nonlinear regression.

@)

In this paper we consider the Grobler and Rossouw (1988)
monthly data for 6 non-point source dominated South African
rivers. For these rivers we find that an improved method for
estimating and modelling phosphorus export can be developed.

Data

Grobler and Rossouw (1988) estimated monthly phosphorus loads
from continuous flow measurements and periodic measurements
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of phosphorus concentration. Walker (1986) suggested numerous
methods for achieving this. His most successful method, stratified
regression (Cochran, 1977), was used by Grobler and Rossouw
(1988) to compile their data.

In this method contemporaneous daily flows and phosphorus
concentration data are divided into strata on the basis of daily flow.
Frequencies, mean flows and mean concentrations are calculated
for each stratum. A weighted regression analysis is then performed
on the mean flow and concentration data using the strata frequen-
cies as weights. This produces a regression line which can be used
to predict daily phosphorus concentrations, allowing the calcu-
lation of daily phosphorus loads by taking the product of the
estimated concentrations and the measured daily flows. Grobler
and Rossouw (1988) calculated monthly flows (m?) and monthly
phosphorus loads (kg), in this manner. Their final figures were
standardised for catchment size. :

Ostensibly this method may produce spurious correlations be-
tween phosphorus load and flow, since the loads are calculated as a
product of concentration and flow. But, since the influence of
runoff on phosphorus concentration is a real phenomenon
(Chesters et al., 1980), we consider this argument to be invalid.

Methods

Several measures, namely bias (%), R?, s, and the Durbin-Watson
statistic, have been used to assess the adequacy of the approaches
considered for predicting phosphorus load from runoff.

Bias indicates the extent to which mean predicted values for
phosphorus export exceed mean observed phosphorus export.
Ideally there should be no bias. The formula used to estimate
“Bias (%)”’ is given by:

@

Bias (%) = 29047 - ¥) ‘3;' 2,

where:

¥ = mean for ¥,
y = mean for y,.

For want of a better name the adequacy of the fit is measured by
the R2, defined as follows for t=1, 2,...n:

Y e - 907

R? =1 - t=;. . (3)
3 (v, - P2
t=1

The R? is used in linear regression to measure the proportion of
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variability in y_which is explained by the regression equation. In A Durbin-Watson statistic value of close to 2 suggests independent
linear regression O R? < 1 with an R? of one indicating a perfect ~ consecutive errors. Values close to zero suggest positively cor-
fit. related consecutive errors and values close to four suggest
The root mean squared error, s,, defined by the equation: negatively correlated consecutive errors. Critical values for this
statistic were originally produced by Durbin and Watson (1951)
but are reproduced in many standard statistics texts, for example
Neter et al. (1988).
(4)

. is used to compare the relative accuracy of the various approaches. Results
A low s_is indicative of a good fit.

" Finally the Durbin-Watson statistic is used as the measure ofer- Regression

 tor independence. If errors cannot be considered as independent it

© means that time dependencies in the data are incorrectly modelled.  When Eq. (1) is log-transformed one obtains the regression line:
The Durbin-Watson statistic is defined as follows:

- In(Y) = In(b) + ,In(X)) (6)
Y (ecn-er)
pw = Lt In an attempt to check the linearity of this relationship the logged
z": &? phosphorus loads were smoothed using LOWESS smoothing
&= {5) (Cleveland, 1979) and plotted against log-transformed runoffs. In
this smoothing procedure the smoothed points are obtained from
where: weighted regression lines, a different regression line for each
€ =¥e = Pe- point. The weights used reduce as distance from the line increases
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and as distance from the point in question increases. As illustrated
in Fig. 2, for the Vaal River the LOWESS smoothed points do not
suggest a linear relationship between In(phosphorus load) and
In(runoff). Two lines with different slopes for low and high
runoff levels are suggested. Such a relationship is better described
by a quadratic equation with coefficients ’bo, b, and b, of the form:

InY, = nb + b InX + b(InX ? 7
than the simple linear regression Eq. (6).

Regression lines (6) and (7) were fitted to the raw (unsmoothed)
data and predicted values for Y, §, were obtained by anti-logging
the predicted values obtained from these equations. The resuits
shown in Table 1 indicate that the quadratic regression (7) pro-
duces less bias and better fits for four of the six rivers considered.

The values for the Durbin-Watson statistic(DW) in Table 1 in-
dicate that the errors from Egs. (6) and (7), Y-y, exhibit signifi-
cant serial correlation. Neter er al. (1988, p.880) explain that, when
the errors exhibit significant serial correlation, the s in Table 1

‘may be seriously understated, causing the corresponding R? values

to be seriously overstated. This can be avoided and the fit im-
proved by incorporating time dependence in the phosphorus pre-

diction equation, using a time series transfer model (Bok and
Jenkins, 1970). ’

Time series transfer model
The transfer model corresponding to Eq. (6) has the form:

iny, - ylny,, = B, (InX, - ylnX,,) + € 8)
where y and 8, are parameters and €, is assumed to be a normally
distributed random variable with mean p and variance o2

Predicted values for Y‘, 3}‘, are obtained from the equation:
9. =exp(fi +§1lny,, + b lln X, - 91n X, ,1) (9)

using least squares estimates for 8, y and (denotéd by b, ¥ and
/). These parameter estimates are obtained by minimising:

y (y, - 9)°
Cz",; : ’ (10)
= E ei
t=1
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.~ TABLE1
LINEAR REGRESSION PHOSPHORUS PREDICTION
River Simple linear regressio:i Quadratic regression
Bias% R2% s, DW Bias % R2% s, DW
Magalies 7,4 94,7 0,10 1,18 2,5 98,5 0,05 1,37
Vaal 44,7 51,7 2,85 0,68 5,5 95,8 0,84 0,89
Vet 8,5 96,9 0,07 Lu -1,9 79,3 0,17 1,25
- Umgeni 21,5 77,1 1,12 1,17 5,3 88,3 0,80 1,33
Karkloof 2,9 99,7 0,07 1,04 -2,0 99,3 0,11 1,33
Sterk 15,8 91,7 0,29 0,84 -1,9 99,3 0,08 1,76
TABLE 2
TRANSFER MODEL PHOSPHORUS PREDICTION
River Simple linear model Quadratic model
Bias% R?% S, Bias% R?% 8, P.values
for b
_ 2
o Magalies 4,9 96,8 0,08 1,1 99,9 0,04 0
: Vaal 25,0 77,0 1,96 4,3 95,1 0,91 0
‘ Vet -0,6 93,9 0,09 9,1 80,8 0,16 0,00005
Umgeni 13,8 82,2 0,99 2,2 88,6 0,79 0
Karkloof 1,7 99,4 0,10 -2,1 99,5 0,10 0,00012
Sterk 6,5 97,1 0,17 2,3 99,2 0,09 0

. The transfer model corresponding to Eq. (7) has the form:

InY, - ylnY., =
8,(1nx, - ylnx,,) + B,({1nXx,]?
- y[lnx, ,J» +e,

(11

* where 3, 8, and vy are parameters and it is assumed that€ has the

same distribution as in (8). Predicted values for Y , 9(, are obtained

. from the equation:

214

9. =explf +yln y,, + b[lnXx, - ¥ln X, ,]

+b,[(1n X)? - ¥(1n %) ?1) (2

' using least squares estimates for 3, 8,, v and (denoted by b, b,
"4 and f). These estimates are also obtained by minimising Eq.

(10).

The s, and R? values calculated for models (8) and (11) in Table
2 are reliable because the errors from these models can be con-
sidered to be independent. Table 2 suggests that the quadratic

'model (11) produces better fits than the simple linear model (8) for

five of the six rivers. In the case of the Vet River, model (8) gives
better results than model (11), despite the very low P-value
associated with b,

The levels of bias found in Table 2 tended to be lower than in
Table 1. This strengthens the argument for transfer models as op-
posed to linear regression models for phosphorus load prediction.

Bias removal

In our final developmental phase we multiply the predictions, ¥,
by a suitable factor which produces a mean predicted phosphorus

|| 1SSN 0378-4738=Water SA Vol. 17 No. 3 July 1991

load equal to the mean observed phosphorus load. In this way we
eliminate the estimated bias in our predictions of phosphorus load.

As suggested by Fig. 3 for the Vaal River, the errors obtained
when Egs. (11) (and (8)) are fitted to the data do tend to be normal-
ly distributed. In Fig. 3 the mean is estimated by the median and
the standard deviation is estimated by 74% of the interquartile
range. In this case the %2 goodness of fit statistic produces 2
P-value of 0,52 when we test for a normal distribution. This means
that the hypothesis of a normal distribution for these errors cannot
be rejected.

If the €, in Eqs. (8) and (11) are distributed N(u, %) then it is
possible, theoretically speaking, to eliminate the estimated bias by
multiplying the j, predictions by:

exp(Zo%) (13)
However, in practice we find that, if we substitute the maximum
likelihood estimate for o*

n
Y (e, -@?
=1

8% = (14)

n

in Eq. (13), the estimated bias is not equal to zero. Indeed, the
estimated bias may actually increase.

Instead of using the factor given in (13) to correct for bias, it is
suggested that we multiply y, by the factor:

exp((k,-1)f + %kozaZ) (15)
where: _

k: y

£ _p_\ az + 262(1n% + f) (16)
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In Eq. (15) k  is an additional coefficient which must be estimated
separately for each river using Eq. (16). As confirmed by the R2
values for this and the other rivers in Table 3, bias correction has
little, if any, detrimental effect on the R2.

In Fig. 4 the final, bias corrected predictions for phosphorus
load are compared to the observed loads in the case of the Vaal
River.

Discussion

In Table 3 we find that for the Vet and Karkloof Rivers the R2 for
the simple linear transfer model is higher than for the quadratic
transfer model. It appears that for the Vet and Karkloof Rivers a
simple linear transfer mode! is more appropriate than a quadratic
transfer model. This is a surprising result because the P-values
associated with the Eq. (11) quadratic coefficients, b,, in Table 2,
are all highly significant. The effect of anti-logging is to amplify
high predicted values. In the case of the Vet and Karkloof Rivers
the effect of the quadratic model is to over-predict for high values
of In(Y ). When we anti-log these over-predictions we inflate the er-
ror, hence reducing the R2. This means that only for highly signifi-
cant quadratic coefficients, b, (P-values < 0,00001), it is necessary
to consider a quadratic rather than a simple linear transfer model.

Conclusions
It has been found that the equation:

InY, = Inb, + b InX, (17)

-0.2 0.8

ERRORS WHEN MODEL (11) IS FITTED

e.2

TABLE 3
ELIMINATION OF ESTIMATED BIAS
Simple linear Quadratic transfer
transfer model model
River
R2 s R? s
e €
Magalies 97,7% 0,07 99,1% 0,04
" Vaal 88,6% 1,38 95,7% 0,84
Vet 94,0% 0,09 87,4% 0,13
Umgeni 86,0% 0,88 88,6% 0,80
Karkloof 99,9% 0,04 99,7% 0,08
Sterk 98,1% 0,14 99,4% 0,08

does not adequately describe the relationship between phosphorus
export and runoff for South African rivers.

For 4 of the 6 rivers studied it was found that a quadratic
(ln(Xt))2 term was needed in the equation. In addition, for all 6
rivers serial correlation was found in the prediction errors obtained
from this equation. This problem was circumvented by recogni-
sing the time dependence in the data, using a time series transfer
model in place of a regression model to predict phosphorus loads.
In order to eliminate the estimated bias entirely, the phosphorus
predictions had to be multiplied by a suitable scaling factor, name-

ly:

exp ((ko-1) + 2K3 67) (18)
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where: RC and ROBINSON, JB (1980) Pollution from land runoff. Environ.

4 and o2 denote estimates for p and o2
and k_is optimised for each river as indicated in (16).
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