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Abstract

Five commonly used regression methods, namely ordinary least squares, ridge, principal components, stepwise, and least absolute value
regressions, were considered in this study in the context of daily flow forecasting. From applications to two catchments located in the Lower

Mekong Basin, it was found that:

® Ordinary least squares, stepwise, and least absolute value regressions have very good and comparable forecasting capability which is bet-

ter than that of the remaining two methods.

® Stepwise regression and least absolute value regression are respectively the least and most time-consuming methods.

Having 2 very good performance, requiring the least computing time, and resulting in simpler equations, stepwise regression is the best

among the considered methods.

Introduction

Regression analysis methods have been used quite extensively in
river flow forecasting. In many countries, some forms of multiple
linear regression are used to forecast the flow at a (downstream)
station expressed as a function of the flows at upstream stations. In
the literature, the work of Nash and Barsi (1983), Liang and Nash
(1988), Phien and Lee (1986), Phien ez al. (1988a,b) among many
others, confirms this popularity. However, in almost all cases, a
particular method has been adopted for use without giving any
evidence why such a form had been chosen. In other words, the
question of appropriateness of the selected method has not been
dealt with.

In this study, an evaluation of the most commonly used regres-
sion methods in river flow forecasting was made. These comprise
ordinary least squares regression (OLS), ridge regression (RIR),
principal components regression (PCR), stepwise regression
(STR) and least absolute value regression (LAV). For this com-
parative study, relevant data at two stations, (one at Nam Ngum
Dam Site in Laos and the other at Ban Chot of the Chi River Basin
in Thailand) were used.

Regression methods

A very brief description of the regression methods to be used is
given in this section. More details can be found in Draper and
Smith (1981).

Ordinary least squares regression

Suppose that the dependent variable Y can be expressed as a linear
function of m predictor variables X, XZ,...,Xm:

Y=8,+BX +..+BX +¢€ 1)
where 8 = [BO B; Bm]’ (2)

is the vector of regression coefficients to be estimated (with the
prime (°) denoting the transpose of a vector or a matrix) from a
given set of data points I(xﬂ,...,ximyi), i=1,..,n,>m+1).
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Each observation (x“,...,xim,yi) satisfies the equation:

Vi= By + Bx . 4B x €,
=b +bx +..+b x +e 3)
0 171 m im i

where €, and €, are the random error and residual, respectively,
associated with the response y,, and

.b T 4)

is the estimate vector of 3, consisting of the estimates bO’bl""’bm
of BO’BI’""Bm’ respectively.

By minimising the sum of square errors:

n 5
SSE= L ¢}
i=1
one obtains
b=(X'X)"! X’Y (6)
where X is the following nx(m+ 1)-matrix:
1 11 XIZ Im
1 L X, .
X =
™
1 nl xn2 Xnm

Ridge regression

In the least squares method, if there is an excessive amount of
multicollinearity among the predictor variables, the matrix X’X
approaches a near singular condition. In this case, the least squares
method still yields unbiased estimators for the regression coeffi-
cients, but their variances can be very large. One solution to the
problem is to abandon the least squares method and accept biased
estimation methods. Ridge regression is a method to obtain the
estimates by minimising the sums of square errors for the model:
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Y=Xb*+e , e= [ee,...e) ®)

subject to the following constraint:
Lb2=C ©

where C is a positive constant.

By means of a Langrange multiplier A, the ridge regression
estimates can be shown to be given by:

b* = X'X + A\) 1 XY (10)
where N> 0 and [ is the identity matrix of order k = m+ 1. Clear-
ly, the ridge estimates depend on the ridge parameter () and they.
coincide with least squares estimates when A = 0. In this study,

the optimum value of A is determined using the method proposed
by Lee (1987).

Principal component regression

When multicollinearity exists among the predictor variables, in-
stead of ridge regression, one can employ regression on principal
components. In this case, the predictor variables are transformed
into a set of independent variables known as the principal com-
ponents. These components have been arranged according to the
portions of variation in the predictor variables explained by them,
with the first component accounting for the largest variation. In
other words, from m predictors X :X,., X in which
multicollinearity may exist, one obtains m independent com-
ponents denoted Wi W where all the variation in the Xi’ j=
1,...,m, is fully explained by the Wis j = 1,...,m, with w, accounting
for the largest portion, followed by w,, and so on. Since these prin-
cipal components are independent, the ordinary least squares
method can readily be applied.

In most cases, only a small number of these components can ac-
count for a very large portion of the total variation. As such, one
may consider only these principal components and the number of
independent variables can significantly be reduced. In the present
study, all the components which contribute to 90 per cent of the
total variation were used in the regression analysis.

Stepwise regression

Stepwise regression method is a standard procedure for searching
for the optimum subset of predictor variables. It begins with the
smallest subset of predictor variables consisting of only one
variable and subsequently increases the number of variables in the
equation until no further inclusion is possible. It comprises both
forward selection and backward elimination in every step to ensure
that only predictor variables which contribute significantly are
entered and retained. More information can be found in many
statistical textbooks, particularly in Draper and Smith (1981).

Least absolute value regression

Let yand % j = 1,...,m denote the sample means of Y and Xi:
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then the linear programming formulation of this regression tech-
nidue is as follows:

n
minimise Z = T (et + €] )
i=1 ' 09))
subject to: -
m - PH .
L (bi+ + bi_) (xii’.'i('j)+e:' +el =y5
j= |
ei=ei+‘-ei' el iy _30 i=1,...,n
b =b!-b- ;br b7 =0 ji=1,..,m
m
b= ¥ - L bi_xi
j=1
This formulation makes sure that the centroid (XI,X;,...,xm,jf) lies

in the hyperplane determined by the equation:

Y=b+bX + .. +b X

m m

The details of the solution technique can be found in Narula and
Wellington (1977), while the properties of the LAV estimators are
given in Dielman and Pfaffenberger (1982).
Models considered
Two models were considered in this study.

The standard linear regression (SLR) model

In this model, the discharge on day t+L is expressed as a linear
function of the rainfall data on days t, t-1,... and its past values:

r S
Q, . =Qt+L)=A+ L aiQ(t-j)+ ) biR(t-j) (12)
j=0 i=0
where A,ai,bi are regression coefficients,
I,$ are maximum lags in the discharge and rain-
fall, respectively, and
L is the forecasting lead time (in days).

The extended linear perturbation model

Following the idea introduced by Nash and Barsi (1983), Phien
and Lee (1986) developed the extended linear perturbation (ELP)
model, particularly useful for flow forecasting. When based upon
the model of Eq. 12, the ELP model can be expressed as:

r s
UHL=U(t+L)=A+ r ajU(t-j)+ ) ij(t-j) (13)
j=0 =0
In this case, U and V are the variables defined as follows:
U, =Q-q V,=R-r (14)



in which q, and 1, are respectively the daily means of diScharge and
rainfall data computed from the record used. Explicitly, if N years
of records are variable, then:

N .
a,=(I/N) L@, (15)
. k=1
N
r,=(UN) T R)
k=1

where (Q), and (R), denote, respectively, the discharge and rain-
fall on day i of the kth year.

The ELP model differs from the model of Nash and Barsi (1983)
in that it incorporates the lagged variables U!,Ut_l,...,UH. Such in-
corporation can greatly improve the performance of the hybrid
scheme introduced by Nash and Barsi (1983), as evidenced by the
studies by Phien and Lee (1986) and Phien ez al. (1988a).

In the following analysis, the lead time was set equal to 1. This
means that only forecasting one day in advance was considered.

Case studies
Data employed

Two reliable data sets from two catchments located in the Lower
Mekong Basin were given by the Mekong Secretariat for use in
this study.

@ Nam Ngum Dam site: For this station (catchment area = 8 460
km?), data on the discharge and rainfall are available for 4 years
and 11 months, from April 1, 1966 to February 28, 1971. The
first four years of data were used for “model calibration”,
whereby all the regression coefficients were estimated, while
the data in the remaining period of 11 months were used for
model validation.

® Ban Chot Station: This station (with catchment area of 10 200
km?) is in the Nam Chi River basin, Thailand. Both rainfall
and discharge data are available for 11 years (from May 1, 1975
to April 30, 1986). The data for the first eight years were used
in model calibration, and those for the remaining three years
were used in model validation.

In both cases, the rainfall data employed were computed as the
arithmetic means of daily rainfall of all stations located within the
corresponding catchment area.

With the forecasting lead time L. = 1 day, it was found, from the
autocorrelation function of the discharge and cross-correlation
function of discharge and rainfall that the values of r and s are 24
and 8, respectively.

Performance indices

The commonly used indices are defined below.

® The mean relative

error: MRE=(1/T)

e

. (QF)Q, (15

i

® The mean absolute deviation: In this study, the MAD
statistic is defined as

MAD = [I/TQ)] T (16).

® The mean square .

error: MSE=(T) g (QFy 7
i=1

In these equations, T denotes the length of the forecasting period

(in days) considered, Q, and F, denote, respectively, the observed

and forecast discharges on day 1, and Q is the mean daily discharge

over the entire forecasting period:

Q=@m Q (18)

It

i=1
In connection with the MSE, another index, namely the root mean
square error with respect to the mean (RMSEM) is also in com-
mon use:

RMSEM = (MSE)'2/Q (19)
® The efficiency index: This index is extensively used. It is
computed from the following equation

E = (S,8,)S, (20)

where S is the total variation in Q:

T

S,= L

(Q-Q

1=

and S, is the sum of square errors

T
I (QFpP =T*MSE
=1

)

1

The MRE indicates the bias involved in the forecasting, and a
perfect forecasting model gives rise to a zero value for MRE. The
MSE and its accompanying indices like RMSEM and efficiency
(E), are closely connected with the least squares approach, which
weighs the performance of a model according to the square error
e?, = (Q-F?. However, when there are outliers in the observed
data, it may not be appropriate to attach much weight to them. As
such, the MAD would be more appropriate as it is more resistant
to possible outliers. It is obvious that for the same data set the or-
dinary least squares (OLS) method will give rise to the smallest
values for the MSE, RMSEM and the largest value for the effi-
ciency E, while the least absolute value (LAV) regression will give
rise to the smallest value of MAD.

Results and discussions

The results obtained for the first station (Nam Ngum) correspon-
ding to the SLR model are summarised in Table 1, while those ob-
tained for the ELP model are shown in Table 2. For the second
station (Ban Chot), the results are shown in Table 3 and Table 4,
for the SLR and ELP models, respectively.

General observations
® In all cases, the values of the mean relative error (MRE) are very

small, indicating that all the forecasting equations obtained by
the SLR and ELP models are almost unbiased.
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TABLE 1
RESULTS OF THE STANDARD LINEAR REGRESSION
MODEL FOR NAM NGUM DAM SITE

Method
Index OLS RIR PCR STR LAV
Calibration
MRE -0,0610 -0,1757 -0,0952 -0,0592 -0,0102
MAD 0,1679 0,2118 0,2472 0,1673 0,1529
RMSEM 0,3648 0,4148 0,5141 0,3687 0,3846
E 0,9298 0,9092 0,8606 0,9283 0,9220
MSE 15178 19617 30318 15504 16865
Validation
MRE -0,0376 -0,1204 -0,0609 -0,0379 -0,0004
MAD 0,1373 0,1802 0,2160 0,1340 0,1274
RMSEM 0,3281 0,3700 0,4922 0,3275 0,3372
E 0,9360 0,9186 0,8559 0,9362 0,9324
MSE 21806 27733 49079 21732 23033

Ridge parameter (for RIR) = 0,0048

results obtained for the SLR model by the ordinary least
squares (OLS) method for the validation stage are better than
those corresponding to the calibration stage. This applies to
both stations (Tables 1 and 3). The same observation can also
be made for the STR and LAV methods.

Performance evaluation

By examining Tables 1 to 4, one can observe the following:

® As mentioned previously, the OLS method has the best perfor-
mance during the calibration stage, in terms of the indices

which are closely linked to that method, namely E, MSE and
RMSEM. Likewise, the LAV regression has the best perfor-

TABLE 2
RESULTS OF THE EXTENDED LINEAR PERTURBA-
TION MODEL FOR NAM NGUM DAM SITE

Method
Index OLS RIR PCR STR LAV
Calibration
MRE -0,0081 0,0419 : -0,0078 -0,0096 -0,0240
MAD 0,1562 0,2220 0,2276 0,1569 0,1486
RMSEM 0,3141 0,3920 10,4359 0,3171 0,3239
E 0,9479 0,9189 0,8997 0,9469 0,9446
MSE 11262 17545 21696 11480 11890
Validation
MRE 0,0042 0,0701 0,0025 -0,0009 -0,0144
MAD 0,1591 0,2282 0,2397 10,1592 10,1571
RMSEM 0,3499 0,4215 0,5230 0,3529 0,3569
E 0,9272 0,8943 0,8374 0,9260 0,9242
MSE 24805 35993 55401 25222 25805

Ridge parameter (for RIR) = 0,0095

TABLE 3
RESULTS OF THE STANDARD LINEAR REGRESSION
MODEL FOR BAN CHOT (NAM CHI)

® In terms of the MAD and the efficiency (E), one may say that
all the resulting equations have a satisfactory performance.
With respect to E, all the resulting equations can explain more
than 85 per cent of the variation in the daily discharge
(E > 0,85). In fact, except for the method of regression on prin-
cipal components (PCR), the value of E exceeds 0,90. As com-
pared to the overall mean discharge, the root mean square error
is within 50 per cent in most cases, as indicated by the values of
the RMSEM.

® It has been frequently observed that the performance indices
have “better” values for the calibration stage than for the
validation stage. However, this is not true all the times as
revealed by several indices employed in the present work. For
example, in terms of the MRE, MAD, RMSEM and E, the
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Method
Index OLS RIR PCR STR LAV
Calibration
MRE -0,0884 -3,8763 -0,0665 -0,1018 -0,0109
MAD 0,0509 0,2631 0,0949 0,0502 0,0379
RMSEM 0,1994 0,5120 0,2842 0,2009 0,2216
E 0,9911 0,9413 0,9819 0,9910 0,9890
MSE 145 956 294 147 179
Validation
MRE -0,0584 -2,9833 -0,0351 -0,0655 -0,0052
MAD 0,0491 0,3218 0,0865 0,0482 0,0336
RMSEM 0,0877 0,6065 0,1362 0,0880 0,0808
E 0,9963 0,8239 0,9911 0,9963 0,9969
MSE 15 704 35 14 12
Ridge parameter (for RIR) = 0,0001
TABLE 4

RESULTS FOR THE EXTENDED LINEAR PERTURBA-
TION MODEL FOR BAN CHOT (NAM CHI)

Method
Index OLS RIR PCR STR LAV
Calibration
MRE -0,2780 0,2823 -0,0472 -0,0408 -0,0142
MAD 0,0539 0,2532 0,0955 0,0537 0,0462
RMSEM 0,1876 0,4461 0,2665 0,1892 0,1993
E 0,9921 0,9555 10,9841 0,9920 0,9911
MSE 128 725 259 130 145
Validation
MRE 0,0297 0,8117 0,0459 0,0131 0,0027
MAD 0,0627 0,3812 0,1084 0,0627 0,0524
RMSEM 0,1281 0,6267 0,1922 0,1289 10,1247
E 0,9921 0,8120 10,9823 0,9920 0,9926
MSE 31 752 71 31 30

Ridge parameter (for RIR) = 0,0001




mance during the calibration stage in terms of the MAD. How-
ever, there is no guarantee that these hold true for the verifica-
tion stage, because the data used in this stage were not
employed in the related optimisation techniques.

In terms of the indices used, three methods, namely OLS, STR
and LAV have comparable performances, which are better than
those of the remaining two methods, RIR and PCR.

The fact that two methods viz. OLS and LAV, perform con-
sistently well indicates that there are no highly influential
outliers in the data sets employed (otherwise, different perfor-
mances would result in the two methods).

The stepwise regression (STR) method has a similar per-
formance to that of the OLS. This is understood because the
procedure employed in the STR is also based upon the max-
imisation of the portion of variation explained by the resulting
equation, which is equivalent to the minimisation of the sum of
square errors.

As shown in Tables 1 to 4, the optimum value of the ridge
parameter A is very small in all cases. This indicates that even
with the incorporation of lagged variables for medium-sized
catchments (8 460 km? and 10 200 km?), there exists no serious
multicollinearity among the predictor variables. However, the
allowance for biased estimation (Eq. 10) leads to a significant
reduction in the efficiency of the resulting model. In all cases,
the results for the RIR are worse than those obtained by the
OLS. In fact, they are inferior to those obtained by the STR
and LAV also.

When both the OLS and PCR are applicable, the results ob-
tained by them should be comparable. In the case studies, the
results obtained by the PCR are consistently worse than those
obtained by the OLS. This is because of the fact that only those
components which contribute to 90 per cent of the variation in
the discharge have been used. Fortunately, the corresponding
reduction in the efficiency is less than 10 per cent. As one of
the important reasons for using principal component analysis is
the reduction in the dimensionality, it would be unwise to take
all the components which are obtained from the original
predictor variables.

In view of the results obtained, it seems that for the data sets
employed it is not necessary to adopt the methods intended for
use in the existence of multicollinearity. Using these (namely
RIR and PCR) would worsen the performance of the resulting
forecasting models without any real advantage on compensa-
tion.

In order to have more insight into the performance of the
aforementioned regression methods, the execution time of each
method for Ban Chot (Nam Chi) is shown in Table 5. Due to
the fact that the LAV method consumes too much time on the
microcomputer (an APC IV, AT compatible, from NEC), only
six years of data were employed for this case. The results col-
lected clearly show that the stepwise regression (STR) method
consumes the least time among the five methods considered,
followed by the OLS. In all cases, least absolute value regres-
sion (LAV) is most time-consuming.

Remarks

® Statistical tests (like the t-test) were used in assessing the signi-

ficance of each coefficient in the resulting equations for all

TABLE &
EXECUTION TIME OF REGRESSION METHODS
FOR THE STANDARD LINEAR REGRESSION
MODEL AT BAN CHOT (NAM CHI)

Method Microcomputer* Main frame*

(1) (1) )
OLS 2 min 00 s 24 s 1min30s
RIR 5 min 59 s 52s 1 min 31 s
PCR 4 min 02 s 29 s 2 min 48 s
STR 1 min 42 s 11s 30s
LAV 92 min 6 min 20 s 19 min 56 s

Notes: (1) For 6 years of data
(2) For 11 years of data
(+) APC IV (AT compatible)
(*) IBM 3083

methods, except the LAV, because the properties of LAV
estimators are not so popular (see Dielman and Pfaffenberger,
1982). This means that in the resulting equations for the LAV,
some coefficients may not be significantly different from zero.
As such the performance of the LAV method, in terms of the
indices used, may appear to be better than it actually is.

® With regard to the two methods, namely the standard linear
regression and extended linear perturbation models, the results
in Tables 1 to 4 show that both have comparable performances
in all regression methods.

Conclusions

This study considered five commonly used regression methods in
the context of daily flow forecasting. These are ordinary least
squares, ridge, principal components, stepwise and least absolute
value regressions, Based on the results obtained from their applica-
tions to two reliable data sets along the the standard linear regres-
sion model and the extended linear perturbation model, the fol-
lowing conclusions can be drawn.

® The ordinary least squares, stepwise and least absolute value
regressions have comparable performance in terms of the com-
monly used statistical indices. However, least absolute value
regression is the most time-consuming method, while stepwise
regression is the least time-consuming method.

® For the two catchments considered, which are of medium sizes,
the value of the ridge parameter is very small. This indicates
that no serious multicollinearity exists among the predictor
variables, which include lagged values of both rainfall and
discharge. Even so, the bias induced by introducing the ridge
parameter may lead to a considerable reduction in the perfor-
mance of the resulting forecasting equations (obtained by ridge
regression).

@® Stepwise regression method is the least time-consuming
method and has a very good performance. Moreover, the
resulting equations involve only the best predictor variables
and hence are simple in their form. As such, it is therefore the
most suitable method for use in daily flow forecasting.

ISSN 0378-4738 =Water SA Vol. 16 No. 3 July 1990 183



References

DIELMAN, T and PFAFFENBERGER, R (1982) LAV (Least Ab-
solute Value) estimation in linear regression : A review. In:
S Zanakis and J Rustagi (eds.) Optimisation in Statistics, North
Holland, Amsterdam.

DRAPER, NR and SMITH, H (1981) Applied Regression Analysis
(2nd edn.), John Wiley and Sons, Inc., New York.

LEE, TS (1987) Optimum ridge parameter selection. Apphed Sta-
tistics 36(1) 112-118.

LIANG, GC and NASH, JE (1988) Linear models for river flow
routing on large catchments. Journal of Hydrology 103 157-188.

NARULA, SC and WELLINGTON, JF (1977) Multiple linear regres-

sion with minimum sum of absolute errors. Applied Stratistics
26(1) 106-111.

NASH, JE and BARSI, BI (1983) A hybrid model for flow
forecasting on large catchments. Journal of Hydrology 65 125-137.

PHIEN, HN and LEE, ST (1986) Forecasting of daily discharges
of Burmese rivers. International Journal for Development Technology
4 173-188. .

PHIEN, HN, NGUYEN, VTV and LEE, ST (1988a) Forecasting
daily flows of the Mekong River. In: International Water Resources
Association: Water for World Development, Proceedings of the VIth
IWRA Congress on' Water Resources 11 265-273.

PHIEN, HN, AUSTRIACO, NC, PORNPRASERTSAKUL, A and
DECHAVICHITLERT P (l988b) Forecasting of daily d1scharges
for the lower Indus basin during the flood season. Proc. Sixth
Congress of APD-IAHR, Kyoto. 1 191-198.

184 ISSN 0378-4738 = Water SA Vol. 16 No. 3 July 1990



