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Abstract

This study is concerned with the estimation of the parameters of the general (or generalised) extreme value (GEV) distribution by the
methods of maximum likelihood (ML) and probability-weighted moments (PWM) for complete and type I censored samples.

For complete samples, the PWM provided estimators which ate less biased than the ML estimators. For the variances/ covariances of the
parameter estimators, the PWM had a comparable efficiency to the ML. Howevet, for the extreme quantiles, the PWM estimators had much

larger variances.

For censored samples, the extension provided in this study for the PWM did not perform satisfactorily in terms of the bias and variances
of the estimators. The ML, on the other hand, still functioned well. It can reduce the bias and even the variances of the estimators at some

censoting levels.

Finally, the Akaike information criterion, used along with the ML estimators, can identify the extremal models with a high accuracy

level for both complete and censored samples.

Introduction

The magnitude of extreme events may be taken, to a reasonable

approximation, as being distributed according to one of the three

extreme-value distributions defined by Fisher and Tippett

(1928). The three extremal models ate as follows:

® The extreme value type I (EV1) distribution is widely known
as the Gumbel distribution after Gumbel (1958) first ap-
plied it to flood frequency analysis. This two-parameter
distribution is advantageous from a theoretical point of view
since 1t is simple in the sense that it has both the density and
distribution function in closed form; moreover, it has all
useful moments also in closed form. Its application is,
however, limited because it has only two parameters and a
constant skewness coefficient and thus cannot be flexible
enough to represent adequately a number of extreme se-
quences, such as flood data.

® The extreme value type II (EV2) distribution is sometimes
known as the Frechet distribution. It is applied to the
estimation of maximum rainfall amount, since to a con-
siderable extent rainfall amounts are *‘uncontrollable’’, and
extremely high values may be recorded.

® The extreme value type III (EV3) distribution is the most fre-
quently found in nature. It is also known as the Weibull
distribution since Weibull (1951) introduced it to describe
the behaviour of the breaking strength of matetials.

Jenkinson (1955) combined these three extreme-value distribu-
tions into one, i.e., the general (or generalised) extreme value
(GEV) distribution, by using a transformation and reparameter-
isation of the three-parameter Weibull distribution. The GEV
distribution was recommended by the National Environmental
Research Council (NERC, 1975) for representing the distribution
of annual maximum flow sequences in the United Kingdom and
Ireland.

In practical applications, the three parameters of the GEV
must be estimated from sample data. For complete samples,
Jenkinson’s (1969) method of sextiles, method of probability-
weighted moments (PWM) and method of maximum likelihood
(ML) can readily be used. An assessment of the performance of
these methods was partly made by Hosking ez /. (1985). In this
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study, an extension of the PWM was made for the case of cen-

soted samples. Monte Carlo experiments were then carried out to

compare the performance of the ML and PWM methods on such

samples, and to investigate the effect of censoring on the

estimates of the T-year flood. It should be noted that type I

(rather than type II) censoring was considered in this study

because of the following reasons:

® Results related to type II censoring are already available
(Prescott and Walden, 1983).

® Type I censoring is commonly encountered with measure-
ment devices. It is very useful in flood frequency analysis
when historic information is incorporated (Leese, 1973; Con-
die and Lee, 1982; Stedinger and Cohn, 1986).

A definition of the two types of censoring is given in the next sec-
tion.

General considerations
Definition

The generalised extteme-value (GEV) distribution with
parameters >0, b and ¢ has the distribution function given by:

exp{ - [1 - b(x - ¢)/a]*’P} (b#0)

too O

F(X) = P(X<x) = [exp{ — exp[ - (x - c)/a]}

with x bounded by c + a/b from 2bove if b>0 and from below if
b<0. Here ¢ and 2 are location and scale parameters, respectively,
and the shape parameter, b, determines which extreme-value
distribution is represented. Fisher-Tippett types I, II and III cor-
respond to b =0, b<0, and b>0, respectively.

Censoring

Formal definitions of type I or type II censoring can be found in
Kendall and Stuart (1979), and Condie and Lee (1982) where il-
lustrations ate also given. Basically, a sample is censored when a
known number of the smallest or largest observations are missing
(David, 1970). If the censoring takes place above or below a
known value, then type I censoring occurs. In this case the
number of missing values is a random variable. Type II censoring
occurs when a fixed number of observations are removed. Cot-
respondingly, the censorting point is a random variable.
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In the present context of double censoring, let us consider a
random sample of size N, where m values on the left of the lower
point xy, k values as the right of the upper point xy are missing,
and n = N — m - k values in the middle are observed. If x; and xy
are fixed, then the sample is censored according to type 1. In this
case, m, 0 and k are random variables. However, if m and k (and
hence n) are fixed, then the sample is censored according to type
I1. In this case, x1 and xy are two random variables. As type I cen-
soting is considered in the rest of the paper, xuy and x are fixed.

Method of probability-weighted moments
a) Uncensored (complete) samples

The probability-weighted moments, a generalisation of the usual
moments, were introduced by Greenwood ef a/. (1979). For the
GEV distribution, they are given (Hosking ez 4/., 1985) by:

T=(+ 1) {erafl-(t+ Nra+bl/bl, b>-1

When b< - 1, T, (the mean of the distribution) and the rest of
the T, do not exist.

Given a random sample of size N from the distribution, an
estimator of T, is most conveniently based on the ordered
samples x;<x,<. . . xn. The statistic

N (-1)3-2)... (-1
t,=N"'

p3 X; (2)
i=1(N-1)(N-2)...(N-1)

isan unbiased estimator of T, (Landwehr ez 4/., 1979). In GEV
case, only three estimators of PWM are needed, which ate as
follows:

N
to=N"T1 I x (3)
i=1
N
t=NTIN-1)7 = (i-1)x; 4)
1=1
N
t,=NT(N-DI(N-2)"1 = (i-1)(i-2)x (5)
1=1

From these equations, the PWM estimator of b can be approx-
imated (Hosking ef 4/., 1985) by:

6 = 7,8590d + 2,9554d’ (6)
where

d = [(2t, - to)/(3t; - to)] - (In2/1n3)

Given the estimator of b, the scale and location parametets can
be obtained successively as:

7

4= [t - to)Bl/[Fra+b)Y1-27)
¢ (8)

=to+alf(1+b)-11/b
b) Censored samples
For samples subjected to censoring the necessary adjustments for
PWM estimators to, t; and t, are needed. Suppose that m

smallest and k largest observations are censoted, then the summa-
tion in the PWM estimator exptession should include only the
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uncensored portion; that is from (m + 1) to N, or 1 t0 (n—-k) for
left censoring and right censoring tespectively. For doubly cen-
sored samples the range will be changed from (m + 1) to (N - k).
The cotresponding equations can be written as follows:

N-k
tp=N"' T x 9)
i=m+1
N-k
t,=NTI(N-1)" I (i-1x (10)
i=m+1
N-k
t,=NIN-D)I(N-2"" T (i-1)(i-2)x; (11)
i=m+1

For left censoring, k = 0; and for right censoring, m = 0.

Method of maximum likelihood

By differentiation, the density function of the GEV distribution
is obtained from Eq. 1 as:

fx) = exp{ - exp(- )+ (- y)}/ [a(1 - 1)] (12)
where y, the reduced variable, is given by:
y=-bln(1-t),andt=bz,z=(x-c)/a (13)

The likelihood function of a random sample of size N, of which
m lowest and k largest observations are censored, is proportional
to (Kendall and Stuart, 1979):

m k
XL n o
f f(x)dx « o f(x) * [ f(x)dx
— © =1 Xy

where x; and xy denote the left and right censoring points
respectively and n is the number of uncensored observations:

n=N-m-k

It should be noted that for type I censoring, m, n and k afe ran-
dom variables while x and xy ate fixed.
The log likelihood function (to additive constants) is:
n

L = mlnF(x;) + z

i=1
The maximum likelihood equations are obtained by equating to
zero the partial derivatives of L with respect to a, b and c. These
are given by:

Inf(x;) + kln[1 - F(xy)] (14)

91/9a =mP; + 2P+ kPy =0
2L/3b =mQ +3Q + kQu=10
9L/d¢c =mR;+2R +kRy =0

(15)

In these exptessions, the summation is taken over n uncensored
observations. The different terms which were used in Eq. 15 are
as follows:

P =2Inf(x)/da = -1/a+(-1+ b+ e Y)*y,
Q =dlnfx)/3b =y+(-1+b+eM)xyp (16)
R = dlnf(x)/dc =(-1+b+e ¥ )*y



Py = 9lnF(x1)/da = e Yix(y)),

QL = alnF(xL)/ab = C—YL*(YL)b 17
Ry = 3lnF(x;)/ dc = e Yix(yy),
PU = 31[1[1 —F(xU)]/aa

= -Fxu)*e U * (yu)a/ [1 - Fxy)]
Qu = 8ln[1 - F(xy)]/ b

= —Fxu)xe U (yu)b/ [1 - Fxu)) (18)
RU = aln[l —F(Xu)]/ac

= —F(xu)*e "U*(yu)c/ (1 - F(xy)]

and
y. = 0y/da = -z/[a(l ~1)]
yb = dy/3b ={z/[b(1-1)]}-y/b (19)
yo =3dt/8c = -1/[a(1-1)]

For complete samples, Eqs. 17 and 18 ate zeros; for censored
samples, Egs. 17 and 18 give the adjustments necessary to allow
for left, right or double censoring. Left and right censorings are
indicated by terms with subscripts L and U, respectively.

The ML equations can be solved using the algorithm
developed by Hosking (1985) which modifies Newton'’s iterative
procedure. The basic Newton-Raphson method solves the
likelihdod equations 8L/ 3@ = 0 iteratively as follows:

®i+1 = @i +do
where:

® O = [abc]T is the parameter vector;

dL/da
9L/ db
dL/ac ;

i

e do=[-M]!

® jis the sequence number of the iteration; and

® M is the observed information matrix, i.e. the matrix of
the second derivatives of L with respect to the
parametess, evaluated at their current values.

d’L/d2’ =mdP./da+ S8P/da+kAPy/da
3’L/3adb = mdP./db + SdP/ab + kdPy/ b

8L/ 8adc = maR./ da + ZAR/Ba + kdRy/ da (20)
3'L/ab? =mdQ./db + 20Q/ab + kaQy/ab
3’L/3bdc = maR./db + ZAR/3b + kORy/ ab
9°L/ac® =mdR;/3c+3ZAR/dc+ kdRy/ ac

The derivatives based on the uncensored observations are given
by:

’ OP/da =(-1+b+ C'Y)y&—c‘Y*ya*ya + 1/2%
OP/db =(-1+b+e Vyp—e Yy *yp + v,
3Q/3b =(-1+b+e M)y -e Vryptyy + 2y @1)

dR/9a =(-1+b+ C_Y)yca—C_Y*Yc*Ya
dR/3b =(-1+b+eMygp-e Vayry +y.
8R/Bc =(~1+b+e V)y—cVaycry,

where y,, =22 - t)/[a%(1-1)?]
yab = —2*/[a(1 - t)?]
Vb = —22/[b(1 - t)2] - (2/b)*yy,
Va = 1/[a%(1-1))
Yoo = —2/[a(1-1)’]

Ve = b/[a’(1 - 1t)]

The derivatives of Py, Q1 and R cortesponding to the left censor-
ing are given by:

OPL/da = e Y lk[(y1)a — (Y1) *(yD)4]
AP/ 3b = e Vix[(y1)m — (YD) a*(yD)b)
3Q1/8b = e Lx [(y)ob = (Y)b*(yL)b] (22)
AR/ 02 =e lx[(y)a — (Y)c*(YL)a]
dRL/3b = e Lx[(yr)e — (YL)c*(yo)b]
3RL/6c = C-YL* [(YL)CC - (YL)C*(YL)C]

For samples subjected to right censoring, adjustments in terms of
the derivatives of Py, Qu and Ry are required. These are given by
the following equations:

dPy/8a =Pu*[(yu)ar(e ™YV =1) + (yu)a/ (yu)a—Pu]
3Py/ @b =Pu[(yu)p(e ™YV - 1) + (yu)ap / (yU)s = Qul
3Qu/8b = Quxl(yu)p¥(e VU ~ 1) + (yu)ob / (yudb “QU](23)
dRu/da =Ry*[(yu)a*(e YU - 1) + (yu)a/ (yu). —Pu]
dRy/ @b =Ru*[(yu)p*(e "V = 1) + (yu)ar/ (yu)c ~Qu]
dRy/ 8¢ =Ruy*[(yu)ex(e YU - 1) + (Yu)e/ (Yu)e —Ru]

The elements of the observed information matrix are obtained by
adding the appropriate expressions in Eqs. 22 and 23 to those in
Eq. 21 depending on whether the sample is left, right or doubly
censored. These six second derivatives are used to form the 3x3
symmetric matrix needed in the iterative procedure.

Monte Carlo experiments and results
Generation of GEV variables

The inverse forrn of the GEV distribution with patameters a, b, ¢,
is defined as:

x=c+(a/b) + [1 - (~InF)”] (24)
where F is the GEV distribution function.

The GEV variables can be obtained by converting the
uniform random variables, U on (0,1), which were generated ac-
cording to the algorithm developed by Wichmann and Hill
(1982) by taking:

x=c+ (a/b)x[1 - (-InU)"] (25)
Given 2 set of parameter values, the fixed censoring points are
determined from:

xp=c + (a/b)*([1 - (~Inp)’] (26)
XL = ¢ + (a/b)*{1 - [~In(1 - q)]°}

where p and q are the truncation levels specified by the following
probabilities:

p=f  fdx
o @
q=/ fx)dx
Xy

For each sample size N, N values of x were generated and cen-
sored at x1 and/or xy, whereby the censored variable numbers m
and/or k were inttoduced. The PWM and ML estimators wete

.then obtained by using suitable equations.
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TARBLE 1
RELATIVE BIAS (PERCENTAGE) FOR UNCENSORED SAMPLES

Parameters X

N a b c 100 years 500 years 1 000 years
PWM ML PWM ML PWM ML PWM ML PWM ML PWM ML
30 0,8 2,6 -2.8 -15,3 -0,3 -1,3 -0,7 2,5 -2,1 2,0 -2,8 1,5
40 0,5 2,0 -23 -11,6 -0,2 -1,0 -0 2,2 -14 2,0 -19 1,9
50 0,4 1,6 -2,0 - 9,2 -0,2 -0,8 -0,3 1,8 -1,0 1,7 ~-14 1,6
60 0,3 1.4 -19 - 78 -0,2 -0,7 -0,2 1,6 -0,7 1,6 -1,0 1,6
70 0,2 1,1 -1,9 - 6,8 -0,2 -0,6 -0,1 1,4 -0,6 1,5 -0,9 1,4
80 0,1 1,0 -1,6 - 6,1 -0,1 -0,5 -0,1 1,3 -0,6 1,3 -0,8 1,3
90 0,1 0,9 -1,5 - 56 -0,1 -0,5 -0,1 1,2 -0,5 1,3 -0,7 1.3
100 0,1 0,8 -1,5 - 53 -0,1 -0,5 -0,1 1,1 -0,4 1,2 -0,6 1,2

TABLE 2

VARIANCES AND COVARIANCES OF PARAMETER ESTIMATORS FOR UNCENSORED SAMPLES

N Var(a) Var(b) Var(c) Cov(a,b) Cov(b,¢) Cov(a,c)
PWM ML PWM ML PWM ML PWM ML PWM ML PWM ML
30 39,93 39,15 0,020 0,025 78,02 77,59 0,45 0,35 0,52 0,61 3,28 7,77
40 28,96 28,47 0,014 0,015 56,80 57,07 0,32 0,36 0,36 0,40 2,49 4,77
50 23,18 22,19 0,011 0,011 45,71 45,48 0,25 0,27 0,28 0,30 1,58 3,24
60 19,11 18,81 0,009 0,009 38,16 37,34 0,21 0,22 0,23 0,23 1,54 2,43
70 16,35 15,92 0,008 0,007 32,52 32,26 0,18 0,18 0,20 0,20 1,49 2,00
80 14,30 13,89 0,007 0,006 28,38 27,53 0,16 0,16 0,18 0,17 1,18 1,73
90 15,60 12,54 0,006 0,005 25,40 24,74 0,14 0,14 0,16 0,15 1,08 1,46
100 11,38 10,95 0,005 0,005 22,76 21,98 0,13 0,12 0,14 0,13 0,97 1,31

TABLE 3

VARIANCES OF THE T-YEAR EVENT ESTIMATORS
(UNCENSORED SAMPLES)

Return period T
N 100 years 500 years 1 000 years
PWM ML PWM ML PWM ML

30 | 5758 5584 13836 1179,8 18844 14936
40 | 4189 3359 963,2 689,0 1283,6 866,6
50 | 330.1 259.6 7462 534.5 985.8 674.,1
60 | 269.4 226,7 602,7 460,5 719,6 579,5
70 1 230,5 171,7 511,4 353,7 668,8 4474
80 | 200,9 151,1 4437 309,6 578.4 391,2
90 | 176,5 125,4 386,1 255,3 501,3 322,6
100 | 1574 1159 3433 177.,8  445.1 250,0
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Criteria used

In order to investigate the propetties of parameter estimators and
the effect of censoring on the estimation of the quantiles, the
following statistics are adopted to be the petformance evaluating
indices:

@ Mean of relative errors:

The relative error of the parameter a, for example, is:
Rel(a) = (a - a)/a

For a large value of NR, the number of replications, the
mean of these relative errors is completed. This is more
informative than the mean of the parameter estimator,
since the bias of the estimation has been adjusted by
the magnitude of the parameter itself. The mean of
relative etrors of parameter therefore can be considered
as the relative bias in estimating that parameter,
® Variances and covatiances:

The simulated variances and covariances of parameter
estimators can be computed directly from 10 000
replications. Updating formulas (Phien, 1988) were us-
ed in this connection.

® T-year event:

The T-year event xt is defined as
Prob(x>x1) = /T
and in view of Eq. 24:

Xt =c+(a/by+ {-[-In(1-1/T)]°} (28)
The relative bias in estimating X is the mean of the
relative error Rel(X1) = (X1 - X1)/ Xt

where X1 is an estimate of X .

In practical applications, the variance of the T-year event is more
important than the variances of the parameter estimators. It can
be directly computed from the estimated values of Xt in NR
replications.

In this study, for any sample size N = 30(10)100, 10 000
replications (NR = 10 000) were generated on the ND-570
available at the Division of Computer Science, Asian Institute of
Technology. For each sample and in each replication, the PWM
and ML were used to estimate the parameters of the GEV. Once
the parameters have been estimated, the cortesponding value of
Xt can be computed according to Eq. 24 with the estimated
values substituted fora, b and ¢. As much work has been done for
the EV1 (a particular case of the GEV with b = 0) (Phien, 1986;
1987), Raynal and Salas (1987), this study focused on the GEV
only. The results reported in the following were obtained for:

a=425 b = 0,2486 c=105.8
but the same pattern was also observed for other sets of parameter
values. The values used for T are 100, 500 and 1 000 years, that
correspond to the following non-exceedance probabilities:

0,99 and

0,998 0,999

Correspondingly:

XIOO = 222,87 X500 = 240,28 X1 000 = 246,57

Results and discussions

For uncensored samples, the relative bias of each parameter and

each T-year event is shown in Table 1. It is clear from this Table

that:

® the relative bias for both the PWM and ML methods
decreases with an increasing sample size;

® the PWM estimators have a lower relative bias than the cor-
responding ML estimators; and

® as the non-exceedance probability increases, i.e. T increases,
the PWM estimator of X1 become slightly more biased,
while the ML estimator does not have a clear pattern.

Since all the above relative biases are small, one may consider -
both PWM and ML estimators to be unbiased for N = 30(10)100.

Also for uncensored samples, the PWM seems to produce
values of the variances/ covatiances of the estimators quite close to
those produced by the ML (Table 2). For the T-year event,
however, the vatiance estimated by the PWM is much larger than
that estimated by the ML (Table 3). The difference between the
two methods becomes more distinct with an increase in the values
of T, i.e. in the upper tail of the GEV distribution.

For censored samples, the PWM produces unreasonable
results in terms of both the relative bias and the variances of the
T-year event. Extremely large values were observed quite fre-
quently for both these statistics. Such an inferior performance of
the PWM deserves no further considerations.

The problem now reduces to the investigation of the effect
of censoring on the ML estimatots. To save space, the relative bias
and the variance of the T-year event estimator are tabulated for a
number of censoring levels.
® From Table 4, it is seen that the relative bias in estimating

the T-year event decreases as the sample size incteases in the

same way experienced from uncensored samples (Table 1),

although several irregularities exist. It seems that, for this

patticular set of parameter values, censoring on the left at
low level (<0,10) can reduce the bias. Censoring to the right
and double censoring may reduce the bias on large samples.
® From Table 5, it is clear that the variances of the T-year
event estimator for censored samples increases in most cases.

However, for a sample of 100 (or 30), left (or right) censor-

ing may slightly reduce the variance.

From the simulation results just reported, it is clear that the effect
of censoring on the ML estimators depends on whether it is left,
right or double censoring. In other words, censoring at the same
level (when the censoring points are represented by the cor-
responding probabilities of non-exceedance for left censoting and
exceedance for right censoring) can result in different effects.
This difference is believed to be due to the non-symmetry of the
GEV distribution.

The fact that the ML method provides reasonable estimators
for the parameters and the quantiles (expressed in the form of the
T-year event) of the GEV is quite encouraging in exploring the
capability of the Akaike information criterion (AIC) (Akaike,
1974) in identifying an extreme disttibution from the three ex-
tremal models (Tutkman, 1985).
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TABLE 4
RELATIVE BIAS (PERCENTAGE) OF THE ML ESTIMATOR OF THE T-YEAR EVENT

p q T Sample size, N
30 40 50 60 70 80 90 100
. 100 0,9 1,1 0,9 0.7 0,7 0,7 0,7 0,6
0,05 0,0 500 - 0,9 0,2 0,1 0,1 0,2 0,3 0,3 0,2
1000 - 19 -04 -0,3 -03 -0,1 0,1 0,0 0,0
100 1,7 2,2 2,2 2,4 2,4 2,1 2,1 2,0
0,0 0,05 500 0,2 1,6 1,9 24 2.4 2,2 2,3 2,1
1 000 0,6 1,1 1,6 2,2 2,4 2,2 2,3 2,2
100 - 4,6 -2,5 - 1,6 -1,1 -08 -0,6 -04 -0,4
0,025 0,025 500 - 91 -4,9 -33 -23 -17 -1.3 1,0 -0,9
1000 -11,6 -6,1 -4,1 -3.0 -2,.2 -1,7 14 -1,2
100 1,2 1,5 1,2 1.1 0,8 0,9 0,9 0,7
0,10 0,0 500 - 05 0.7 0,5 0.6 03 0,5 0,7 0,4
1000 - 15 0,2 0,1 0,3 0,0 0,3 0,5 0,2
100 4,0 3,4 2,7 2,3 1,6 1,3 1,1 0,8
0,0 0,10 500 3,2 2,9 2,3 2,0 1,7 1,0 0,8 0,5
1000 2,6 2,5 2,1 1,8 1,1 0,8 0,7 0,3
100 - 5,7 -3,0 -2.2 -15 -1,2 -1,0 -0,8 -0,7
0,05 0,05 500 -12,2 -6,3 -4,5 -33 -2,5 -2,1 -1,7 -1,6
1 000 -16.2 -8,1 -3,7 4,1 -3,1 -2,7 -2,2 -2,0
TABLE 5
VARIANCE OF THE ML ESTIMATOR OF THE T-YEAR EVENT
P q T Sample size, N
30 40 50 60 70 80 90 100
100 519,6 3314 285,7 202,9 180,9 159,9 127,3 106,4
0,05 0,0 500 1157,7 725,6 618,8 436,8 388,2 340,8 2717 223,1
1000 1 498,1 936,3 796,2 562,4 499,4 437,3 349,5 285,9
100 450,2 341,5 303,3 228,2 2219 168,8 180,8 162,7
0,0 0,05 500 1007,9 742,8 646,3 482,5 463,1 354,1 376,8 3363
1 000 1299,8 949,3 820,9 612,0 584,5 448,5 475,7 423,7
100 759,1 486,3 404,1 344,5 285.,4 220,5 203,9 191,1
0,025 0,025 500 17735 1094,8 896,5 756,4 6237 479,9 440,5 414,6
1 000 23334 14224 1.157,7 973,1 801,0 616,1 563,5 5318
100 560,6 335,8 2439 207,7 199,0 163,6 136,9 102,9
0,10 0,0 500 1246,9 718,3 517,0 437,0 4173 3445 282,7 212,0
1 000 1613,6 921,9 663,4 558,8 532,7 440,4 359,9 270,3
100 549,2 461,8 401,5 343,7 3413 287,7 270,2 232,9
0,0 0,10 500 1139,8 947 .4 824,2 703,5 700,5 592,9 5534 483,0
1000 1430,1 1186,1 1032,7 881,8 879,2 745,7 695,1 609.,4
100 10674 745,1 543,6 453,2 402,1 3543 280,4 253,1
0,05 0,05 500 2 472,6 1674,7 1221,9 1011,3 890,3 779.,3 619,2 559,4
1 000 32283 2 164,1 1578,4 1303,1 11441 999.5 795,6 718,8

62 ISSN 0378-4738 = Water SA Vol. 15. No. 2. April 1989




Akaike information criterion
This criterion can be stated as follows:
AIC = -2L + 2r

where L denotes the log-likelihood function and r is the number
of parameters involved. For the EV1, r=2, while for the other
two remaining models EV2 and EV3, r=3.

In the simulation, the number of replications for each sam-
ple size N = 30(10)100 was 1 000. Two sets of parameter values
wete used:

I:2a=425 b =0,2486
II: a=42,5 = —0,2486

¢=105,80 (EV3)
c=105,80 (EV2)

The percentage of times that the AIC identifies the model cot-
rectly are collected in Table 6. It is clear that the AIC can identify
the extremal models with a very high accuracy level. In all cases
considered over 90 per cent of the time, the identification is cor-
rect.

TABLE 6
CORRECT IDENTIFICATION BY AIC EXPRESSED IN
PERCENTAGE
N 1)) (m
v @ @ @G@]jo @ @ @
30 { 97,6 954 96,6 89,9922 929 922 919
40 | 99,1 98,1 97,1 956 957 962 952 94,7
50 | 99,3 98,7 985 968|970 978 962 959
60 1 99,7 99,6 99,2 97,7985 992 984 97,8
70 1 999 99,6 99.8 99,11 994 99,2 99,2 985
80 | 99,9 100,0 999 99,5] 99.4 994 994 99,1
90 1100,0 100,0 100,0 99,5 | 99,5 99,8 99,4 99,6
100 | 100,0 100,0 100,0 99,7 } 99,5 99,6 994 995
() a=425 b= 0248 ¢ = 10580
(I a =425 b= -02486 c = 105.80
(1) uncensored samples
(2) left censoring p=005 q=0
(3) right censoring p = 0 q = 0,05
(4) double censoting p = q = 0,025

Use of the AIC has a clear advantage over some existing statistical
tests like that of Hosking (1984) ot the likelihood-ratio test,
because no significance level is to be specified.

Summary and conclusions

The estimation of the parametets of the general extreme value
(GEV) distribution by the methods of probability-weighted
moments (PWM) and maximum likelihood (ML) was treated in
this study for both complete and type I censored samples. The
PWM was extended to the case of censored samples by adjusting
the ranks of the elements in the uncensored portion with respect
to the whole sample. All the needed expressions were derived and
simulation experiments were carried out to evaluate the perfor-
mance of the two methods. Finally the AIC was applied to iden-
tify the suitable extremal model from the GEV for both uncen-
sored and censored samples. From the simulation results, the

following conclusions can be drawn:

® For uncensored samples, the PWM produces estimators with
less bias than the ML. However, the bias is quite small for
both methods. In terms of the variances/covariances of the
parametet estimators, the PWM seems to have a comparable
efficiency as the ML. The variance of the extreme quantile,
like the T-year event with T>100, estimated by the PWM is,
however, quite large compared to that estimated by the ML.

® For censored samples, the PWM (in the present extension)
does not petform satisfactorily in terms of the bias and
variance. It was dropped from further considerations related
to censored samples.

® Censoring at a certain level may reduce the bias of the ML
estimators, and it might reduce even the variances of these
estimators in some cases.

® The AIC (used along with the ML method) can identify the
extremal model with a high accuracy level, for both uncen-
sored and censored samples.

At present, the work on the determination of the elements of
Fisher's information matrix and its approximation to the inverse
of the variance-covariance matrix is being undertaken. The results
of this work will soon be teported.
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