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Abstract

This papet is the fitst in a series of three which deals with modelling and numetic techniques for biological reaction systems. A matrix for-
mat provides a useful method for model presentation. The matrix ensures clarity as to the compounds, processes, reaction terms and
stoichiometry comprising the model. It allows ready comparison of different models and facilitates incorporating the model in 2 computer

simulation program.

Introduction

The phenomenon of biological growth is harnessed in a wide
variety of applications. These may range from, for example, a
laboratory fermentation for the production of a pharmaceutical
compound to the treatment of municipal waste water in a full-
scale activated sludge process. The common feature in the various
systems is biological growth, even though the scale of operation
and the final objectives of the growth process may be very dif-
ferent. For example, in a fermentation process, the objective may
be to maximise certain soluble products of growth whereas in
sewage treatment an objective is to minimise the residual soluble
material. Whatever the objective, it is useful to quantify system
behaviour on the basis of a model of the process. Because
biological growth is the central feature in all of these applications,
it is likely that very similar considerations will be necessary in set-
ting up and solving a mathematical model for any of the systems.

Predicting the response of a biological system on the basis of
a mathematical model is usually achieved via a computer pro-
gram. Such a simulation program is useful for a number of
reasons. For example:

Model development: A mathematical model incorporates a
number of kinetic and stoichiometric expressions which represent
the biological interactions. These expressions are based on
hypotheses which are proposed for the biological processes occur-
ring within the system. In order to test these hypotheses, specific
experiments are designed and data on the system response are ac-
cumulated. This experimental data can then be compared with
the predictions obtained from the model. In turn, the biological
model can be altered with the objective of improving the predic-
tive capacity. A simulation program is thus an indispensable tool
in facilitating the development and sophistication of a biological
model.

System evaluation and optimisation: A simulation program can
be a useful aid in analysing the operation of existing biological
systems. If a system model can provide accurate predictions of
response behaviour, then these predictions can be compared to
observed responses. Any discrepancies can be useful in identify-
ing problems in system operation. An accurate and representative
computer model can also be used to optimise the performance of
existing systems. Vatious operating strategies can be proposed
and rapidly tested without having to tesort to potentially difficult
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practical evaluation.

System design: A simulation program can be a useful tool for the
design engineer. With the aid of an accurate and representative
computer model, proposed system designs and configurations can
be evaluated rapidly. In addition, a dynamic model can provide
valuable design information which is often only available through
empirical estimates. For example, a parameter such as peak oxy-
gen utilisation rate in an activated sludge system could be obtain-
ed directly from the simulation program run under time-varying
input patterns. This means that the peak aeration capacity can be
quantified accurately — traditional design methods rely on em-
pirical estimates.

Control strategy development: A simulation program allows
quick and efficient evaluation of control strategies in a mannet
similar to evaluation of system designs. Strategies can be tested
and compared in an economical way that reduces the need for
field evaluation.

In this series of papers, the problem of modelling the
behaviour of biological reaction systems is considered. The pro-
blem is presented in three parts:
® mathematical description and model presentation;

@ analysis of steady state conditions where the inputs to the
system (flow rate and concentrations) remain constant; and

@ analysis of dynamic tesponse behaviour where the inputs to
the system vary with time.

Mathematical description

A comprehensive mathematical model for the simulation of
biological system behaviour must account for a large number of
reactions between a large number of components (‘‘com-
pounds’’). In this presentation, the reactions will be referred to as
processes, where processes act on certain compounds in the
system, and convert these to other compounds. The set of distinct
biological processes and the manner in which these act on the
group of compounds constitute the biological model. The model
should quantify, for each process, both the kinetics (rate-
concentration dependence) and the stoichiometry (effect on the
masses of compounds involved) (Henze ez &/., 1987).

Once a model has been formulated for a biological system,
simulation of the system response involves two principal steps.
Firstly, the reactor configuration and the flow patterns need to be
specified. Once this information is fixed, it is possible to com-
plete mass balances over each reactot for each compound. Assum-
ing that the system operates at constant temperature, the mass
balances quantify the behaviour of each compound in the system.
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The concentrations of these compounds constitute the state
variables (dependent variables). The mass balances make up the
state equations which relate the dependent variables to the in-
dependent variables such as reactor volume. The mass balances
form a set of simultaneous non-linear equations which, when
solved, characterise the system behaviour. (The equations are
usually non-linear because the kinetic expressions for biological
systems generally are non-linear.) The simultaneous solution pro-
vides values of the state variables at points in space (different
reactors) and time (where there is a time-vatying input to the
system). In this way, the change of state of the system is related to
the transport (input and output) and convetsion (reaction) pro-
cesses occurring within the system.

At this point it is worth noting certain characteristics of
biological reaction systems which distinguish these from most
other applications in the chemical process industry:

® A feature commonly encountered with biological systems is
that the process occuts in a series of one or more completely
mixed stirred tank reactors (CSTRs). (Certain reactor con-
figurations such as oxidation ditch type systems for waste-
water treatment may not appear to fit the description given
here, as these are essentially plug flow reactors with recycle,
and are not divided into distinct zones. However, these
systems can be modelled as tanks-in-seties systems by con-
sidering the plug flow zones to be made up of a number of
small CSTRs in series. This is a standard approach adopted in
chemical engineering process simulation. )

@ An identical set of reactions often takes place in each reactor in
the system. For example, in a series of aerobic activated sludge
reactors, the behaviour in each reactor is governed by the same
kinetic and stoichiometric expressions i.e. the same model.
The only difference between the reactors would be the
magnitudes of the state variables, the reactor volumes and the
flow terms.

® The response of biological systems is often governed largely by
the effect of recycles.

These features of biological systems are not usually encountered
in operations in the chemical process industry. Those systems are
gererally made up of a distinct set of unit operations. Therefore,
each reactor unit is governed by a different collection of reaction
equations i.e. a different model. Also, the magnitude of the
tecycles and feedbacks is generally small. These distinguishing
features of biological systems demand that specific consideration
be given to their simulation.

Model representation

An important part of the simulation process is a clear and flexible
representation of the model itself. Because a model may incot-
porate a number of different components and a latge number of
biological conversion processes, one convenient method of
presentation is a mattix format.

The matrix method for model presentation described here is
based on the approach to chemical engineering kirietic modelling
of Petersen (1965). In the context of biological systems, the
method has been presented and used by the JAWPRC Task
Group on mathematical modelling in waste-water treatment
design (Henze ez 2/., 1987). The matrix reptesentation ensures
clarity as to what compounds, processes and reaction terms are to
be incorporated and allows easy compatison of different models.
In addition, the method facilitates transforming the model into a
computer program.

Setting up the matrix

Table 1 presents, in matrix format, the essential components of a
simple Monod-Herbert model for acrobic microbial growth on a
soluble substrate; accompanied by organism death.

The first step in setting up the mattix is to identify the com-
pounds of relevance in the model. The Monod-Herbert model
quantifies the growth of the biomass component (X;) at the ex-
pense of the soluble substrate component (Sg). By keeping track
of X and Sq, it is possible to calculate the oxygen requitement,

TABILE 1
THE MONOD-HERBERT MODEL SHOWING PROCESS KINETICS AND STOICHIOMETRY FOR HETEROTROPHIC BACTERIAL
GROWTH IN AN AEROBIC ENVIRONMENT

Component i 1 2 3 Rate expressions
j Process Xg Sg So
-1 -
1 Growth 1 I N 00 Y Xy —5
Y Y (Ks + S5)
2 Decay -1 1 b X;
Observed conversion Kinetic parameters:
rates (ML 3T 1) r = Zvy P, Maximum specific growth rate: i
Stoichiometric — Half saturation
parameters: 8 constant: K.
True growth vield: Y O Specific decay rate: b
.
é'r
i 9 .-:
LoloeL | €3
28 28 &0
<
28 | &S | T
A= n= C=
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so oxygen (Sg) can be included as a third component. The com-
pounds are presented as symbols across the top of the table, and
are defined (with dimensions) at the bottom of the corresponding
matrix columns. The index *‘i’’ is assigned to the range of com-
pounds. In this case, “‘I"’ ranges from 1 to 3 for the three com-
pounds considered in this simple model. (The recommended
symbol notation of the IAWPRC has been followed: namely, X
for particulate matter and S for soluble materials, Grau ez 4/.,
1982).

The second step in developing the matrix is to identify the
biological processes occurring in the system. These are conversions
or transformations which affect the compounds considered in the
model. Only two processes take place in this simple model —
aerobic growth of organisms at the expense of soluble substrate,
and organism decay. These are itemised one above the other at
the left of the matrix. The index *j"’ is assigned to the range of
processes: in this case ‘'j’’ can only assume a value of 1 or 2.

The kinetic expressions (rate equations) for each process are
recorded down the right-hand side of the matrix in the ap-
propriate fow. These ate given the symbol P, with j denoting the
index of the biological process. The kinetic parameters incor-
porated in the rate expressions are defined at the lower right cor-
ner of the matrix.

The elements within the matrix comprise the stoichiometric
coefficients, v;;, which define the mass action relationship be-
tween the components in the individual processes. For example,
aerobic growth of heterotrophs ( + 1) occurs at the expense of
soluble substrate ( — 1/Y); oxygen is used in the metabolic pro-
cess { — (1 - Y)/Y). The stoichiometric parameters are defined at
the lower left of the table.

The sign convention used in the matrix is ‘‘negative for con-
sumption’’ and ‘‘positive for production”’. Cognisance must be
taken of the units used in the rate equation. For example, the
rate equation for aerobic growth of biomass, p,, is written as a
biomass growth rate (not as a substrate utilisation rate) and has
units of (mg cell COD growth)(mg substrate COD utilised) !
d ~'. The stoichiometric values are thus normalised with respect
to the biomass concentration i.e. for growth, the stoichiometric
coefficients for X and Sq are 1 and ~ 1/Y respectively, and not
Yand -1

The stoichiometric coefficients v; are greatly simplified by
working in consistent units: in this case, all concentrations are ex-
pressed as COD equivalents. Provided consistent units have been
used, continuity may be checked from the stoichiometric
parameters by moving actoss any row of the matrix. With consis-
tent units, the sum of the stoichiometric coefficients must be zero
(noting that oxygen is equivalent to negative COD).

Use in mass balances

Within a system boundary, the concentration of a single com-
pound may be affected by a number of different processes. An
important benefit of the mattix representation is that it allows
rapid and easy recognition of the fate of each component, which
aids in the preparation of mass balance equations.

The fundamental equation for a mass balance within any
defined system boundary is:

Rate Rate Rate Rate of
of =| of |-| of |+ [production 1)
accumulation input output by reaction

The input and output terms are transport terms and depend
upon the physical characteristics of the system being modelled.

The incorporation of these is discussed later. The system reaction
term [usually denoted by r; for compound i {r; is the production
of compound i per unit time per unit volume [M; L ~* T ~1])]
must often account for the combined effect of a number of pro-
cesses. In the matrix format, this information is obtained by sum-
ming the products of the stoichiometric coefficients, v i times the
process rate expression, p;, for the component i being considered
in the mass balance, i.e. moving down the matrix column for the
specific component i and accumulating the product of v;; and p:

r. = Zv.pP (2)

For example, from Table 1, the rate of reaction for the compound
biomass (Xy) at a point in the system would be:

= lf‘ss X

= ' -bX; (3)
(K + Sg)

Iyp

Similarly for the component soluble substrate (S;):

fo=—L. _HS oy 4)
Y (K¢ + Sy

and for dissolved oxygen (S;):

_a-y s
Y (Kg + S¢)

- Xy - bX, )

50

To create the mass balance for any component within a given
system boundary (e.g. a completely mixed reactor) the conversion
rate, r;, would be combined with the reactor volume and the ap-
proptiate advective terms (input and output flow) for the par-
ticular system; this is not shown here as the system is not yet
defined. (The system reaction rate ot conversion rate, f;, may be
of interest on its own. For example, Eq. (5) defines the *‘rate of
production’’ of S ; therefore — 1., defines the oxygen utilisation
rate at a point within the system. This parameter is often of in-
terest in aerobic systems.)

Switching functions

At this point, it is worth introducing an aspect of the kinetic ex-
pressions used by the IAWPRC Task Group (Henze ez 4/., 1987)
which is often useful — ‘‘switching functions’’. Consider the
aerobic growth of biomass. In Table 1, the Monod growth rate
equation has been used:

o _#Ss
(Kg + Sg)
In an environment where the dissolved oxygen concentration (S,)
is zeto (or perhaps close to zeto), the rate of this aerobic process
should also decrease to zero. Mathematically, this can be achieved
by multiplying the Monod rate expression by a ‘‘switching’’ fac-
tor which is zero when Sy is zero, and unity when the environ-
ment is aerobic. In this case, it is convenient to write the switch-

ing function in the form:

(Ko + Sp) 7N

Xp (6)

1
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where K, = switching constant of small magnitude

(say 0,1 mg0/?)
The process rate equation then becomes:
i Sg So

P, = . X
(Ks + S5) (Ky + Sp)

(8)

With this “‘switching function’’ operating on the growth rate
equation, when S, is zero the value of the function is zero, and
the process rate p,, will be zero. However, if S, is say 1 mg0/¢
then the value of the switching function is close to unity and the
process rate will then be that given by the Monod equation. In
this way, the process of aerobic growth is switched ‘‘on’’ ot “‘off”’
automatically by the model depending on the dissolved oxygen
concentration. The selection of a small value for K, means that
the value of the switching function decreases from near-unity to
zero only at very low S, values i.e. when the dissolved oxygen
(D O) value decreases below, say 0,2 mg0/f. However, the func-
tion is mathematically continuous, which helps to eliminate pro-
blems of numerical instability in simulating system behaviour;
such problems can arise if the rate is switched ‘‘on’’ and ‘‘off”’
discontinuously.

In certain situations, the switching ‘‘off”’ of one process may
be linked to the switching ‘‘on’’ of another. If, for example, the
oxygen input to a nitrifying activated sludge system were ter-
minated periodically, thete would be a switch from aerobic to
anoxic growth. The latter process is governed by kinetic and
stoichiometric expressions which differ from those for the aerobic
growth process. To account for this phenomenon in a single
model, the rate equations for aerobic and anoxic growth can be
multiplied by the appropriate switching functions as follows:

So

Observed Poeobic = Pacrobic @ ——>—
(Ko + Sp) )
<
Observed Panoxic = Panoxic 1- -0
(Ko + So)
K
= Panoxic *© — o (10)
(Ko + Sp)

In this instance, it is apparent that the selection of K, will in-
fluence the point at which there is a switch from aerobic to anoxic
growth, and vice versa. That is, K, now influences the model
predictions and is not only serving a mathematical objective.
Therefore, whenever switching functions are used, care should be
taken in the selection of the magnitude of the switching constant
(K, here) to ensure that the model predictions ate not incorrectly
biased.

The consequence of using switching functions to switch be-
tween processes within a model should be highlighted. The ex-
ample of anoxic and aerobic growth illustrates how switching
functions enable incorporation of qualitative changes in system
behaviour within a single model. Without switching functions,
different models would be required to simulate the behaviour
either in an aerobic or an anoxic environment.

Biological model used in this study

The matrix approach to model representation becomes particular-
ly advantageous when presenting models incorporating many
biological processes operating on a large number of compounds.
An example of such a model would be that of Wentzel ez &/.
(1987) for describing the behaviour of an enhanced culture of

TABLE 2
THE REDUCED IAWPRC MODEL FOR UTILISATION OF CARBONACEQUS MATERIAL IN AN AERQBIC ACTIVATED SLUDGE SYSTEM
Component i 1 2 3 4 5 Rate expressions
j Process Xg Xg X Ss So
1 Growth 1 -1 _(1-Y) Ja Sg So
Y Y (Kg + Sg)  (Kg + Sg)
2 Decay -1 f (1-91) b X,
X /X,
3 Solubilisation -1 1 (KKH((——;(% B
x * (As/Ap
Stoichiometric & & Kinetic parameters:
parameters:
a =) é 8 Maximum specific growth rate: p
True growth yield: Y § a = E § Maximum solubilisation rate: Ky
Endogenous residue fraction: f ®] é’ g E = Half saturation constants: Kg,Kq, Ky
@ I @ E é‘ Specific decay rate: b
E o D - E o 2] o E -
I O ! ol i
g = g2 g = a = g»-x
[ oa a a a
= o /@
=S é & | 88 | 28| g8
&= = &= 2= o=
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phosphorus removing organisms. The matrix for this model com-
prises 15 rows and 16 columns. Without the matrix format it
would be very difficult to develop, describe or use this model. A
biological model of limited complexity has been selected as the
‘‘demonstration’’ model in this series of papers. That is, only a
limited number of compounds and processes have been incor-
porated. The objective of limiting model size has been to enable
rapid evaluation of numerical modelling techniques. Despite its
limited size, however, the model nevertheless incorporates a
range of characteristics encountered in biological systems.

Table 2 presents the limited model in matrix format. This
model is a reduced vetsion of that proposed by the IAWPRC Task
Group for mathematical modelling in waste-water treatment
.design (Dold and Marais, 1985; Henze ¢ /., 1987). The model
incorporates only those features which relate to the utilisation of
carbonaceous material in an aerobic activated sludge system.

Five compounds are identified in the demonstration model.
These are:

@ heterotrophic organism mass (Xp);

@ endogenous residue (X;);

@ particulate biodegradable substrate (X);
@ soluble biodegradable substrate (Sg); and
@ dissolved oxygen (S,).

These processes operate on the compounds in 2 manner defined
by the stoichiometry and the process rate equations:

Aerobic growth of heterotraphs: Soluble substrate (Sg) is used for
growth by the heterotrophic organisms (X;). There is an
associated use of oxygen (S,). The process is modelled by the
Monod expression together with a switching function which
reduces the rate to zero in the absence of oxygen.

Death of heterotrophs: Organism decay is modelled according to
the ‘‘death-regeneration’’ hypothesis. The heterotrophic
organism mass dies at a certain rate; a portion (f) of the material
from death is non-degradable and adds to the endogenous
residue (X) while the remainder (1 - f) adds to the pool of bio-
degradable particulate COD (Xj).

Hydrolysis of particulate COD: Biodegradable particulate COD
in the effluent is assumed to be enmeshed in the sludge mass
within the system. The enmeshed material is broken down ex-
tracellularly, with the products of breakdown adding to the pool
of readily biodegradable substrate (Sg) available to the organisms
for synthesis purposes. This *‘hydrolysis/solubilisation’” process is
modelled on the basis of Levenspiel’s surface reaction kinetics
(Levenspiel, 1972).

A number of features incorporated in this model, and which
may be encountered with other biological systems, should be
noted. These are:

Dual substrate: The model distinguishes between soluble and
particulate biodegradable influent material, and the manner
in which these are removed in the system.

Non-linear expressions: The non-linear nature of certain of
the process rate equations introduces non-linear terms into the
mass balance equations. This aspect influences the numerical
techniques for solution of the simulation problem.

Single and series reactions: Use of soluble substrate directly by
the organism is modelled as a single reaction. However, use of
particulate material is modelled as a series reaction occurring

in two steps: hydrolysis to soluble substrate followed by use of
the soluble substrate.

Bulk versus surface concentration terms: Process rate expres-
sions are usually formulated in terms of the bulk concentra-
tion of certain species in the system (i.e. the mass per unit
system volume). For example, the concentration of soluble
substrate (S;) as used in the Monod growth rate expression is
given by the mass of Sy in the system divided by the volume of
the system. However, in certain cases, the basis for quoting
concentration is some parameter other than the system
volume. For example, hydrolysis of particulate substrate is
hypothesised as being dependent on the concentration of par-
ticulate material adsorbed onto the organism mass, i.e. the
surface concentration. The ratio of two bulk concentrations
(Xs/Xg) is used to approximate the surface concentration,
and this term appears in the rate expression for hydrolysis.

Setting up the mass balance equations

In a system consisting of a series of completely mixed reactors, the
set of equations defining the state of the system is obtained by
performing a separate mass balance over each reactor for each
compound. Where a solids/liquid separator, such as a gravity set-
tling tank, is included in the configuration, an additional set of
mass balance equations is required.

The reactor

Consider a single component in the i reactor in a series. of n

completely mixed reactors (Fig. 1). Let C; denote the concen-

tration of this component in the i, reactor.

The inputs to the reactor could comprise some or all of the

following:

@ an influent feed stream at a flow rate Qg 4 and a concentra-
tion C 43

@ flow from the previous reactor [(i - 1)™] in the series, at a flow
rate Q,_, and a concentration C,_,;

® amixed liquor recycle (a) from the k™ reactor in the series, at a
flow rate Q, and a concentration C; and

® underflow from the settling tank at a flow rate Q, and a con-
centration C,.

Output streams from the i reactor could comptise some or all of

the following;

o flow from this reactor to the next reactor [(i + 1)®] in the series
at a flow rate Q; and a concentration C;;

® a mixed liquor recycle (b) out of this reactor at a flow rate Q,
and a concentration C;; and

® asludge wastage stream may be withdrawn from the reactor at
a rate q, and a concentration C;. (Biological sludge is
withdrawn to prevent a build-up of solids in systems incot-
porating a solids/liquid separator. In this presentation, waste
liquor will be withdrawn only from the last reactor in the
series.)

The reaction terms are obtained as described previously, by sum-
ming the products of the stoichiomettic coefficients and the pro-
cess rate expressions for the particular component being con-
sidered. These convetsion terms are combined with the flow
terms to create the mass balance equations.
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HIXED LEQUOR RECYCLE
(a) OUT OF &**
REACTOR

Qa i

INFLUENT
QreeerCroed

MIXED LIQUOR WASTAGE
qusCi
FLOW FROM (i-1)**
REACTOR IN SERIES
Q1-11Cyoy

FLOW TO (i+1)'* REACTOR
IN SERIES
Q15Cy

MIXED LIQUOR RECYCLE

(b) OUT OF {** RAS RECYCLE

REACTOR 0. 1Ce
@ Cy
Figure 1
Schematic representation of the 1" reactor in a series of n completely
mixed reactors.

Substituting in Eq. (1), the mass balance for a single com-
pound in the i reactor in a series is:

dC.
\4 Tt" = QeeaCreea + QiCicy + Q, G, + QC, - QC,
- Q,C - q,C + 1V, (11)
where V, = volume of the i*" reactor (L?)
C = concentration (ML3)
Q =flow rate (L’T"Y)
q, = wastage rate (LT )
r = rate of reaction or conversion rate of the com-

pound (positive for production) (ML 3T 1)

= 2vp
j

The solids/liquid separator

In certain circumstances, the output from the last reactor in the
biological system passes to a solids/liquid separation device (often
a gravity settler). This is usually with the intention of being able
to maintain an organism retention time in excess of the hydraulic
retention time and for maintaining a solids-free effluent. In this
presentation it has been assumed that the process which occurs in
the settling tank is merely one of physical concentration i.e. no
reaction takes place. In this way, the settling tank is treated as a

FLOW FROM LAST REACTOR
IN SERIES
(Qreed + Or - qu)iCs

EFFLUENT
(Qreee - qu)Ca FOR SOLUBLE

08 FOR PARTICULATE

separation point with no hold-up. Also, the settling tank is con-
sidered to operate at 100 per cent efficiency. This means that the
overflow from the settling tank comprises only soluble material
and all particulate compounds enteting the vessel are recycled
back to the chain of reactors. Mass balances over the settler must
therefore distinguish between particulate and soluble com-
pounds.
Fig. 2 illustrates the flow terms associated with a settling
tank situated at the end of a series of n reactors. These are:
® flow from the last (n) reactor at a flow rate (Q,,_; + Q, - q,)
and a concentration of C_;
® overflow from the settling tank at a rate of (Qgeed = 9u)and 2
concentration of C, for soluble material and C = O for par-
ticulate material; and
® underflow from the settling tank, at a flow rate of Q, and a
concentration C.

Mass balances for the particulate and soluble compounds are as
follows:

Particulate:

(Qpeed + Q — 90) G, = QC, (12)
Soluble:

(Qpeed + Q - 9,0 C, = QC, + (Qped - 94) G,

With C, = C, for soluble compounds, this yields the trivial mass
balance:

(13)
Dissolved oxygen mass balance

Although dissolved oxygen (S,) is included in the matrix, a mass
balance for S, will usually not be required. This is because in
aerated reactors the oxygen input to a reactor is generally
regulated externally to maintain the dissolved oxygen concentra-
tion at some constant value. The reason for including S is that it
allows computation of the oxygen utilisation rate ( -145), an im-
portant parameter in modelling aerobic behaviour.

A case study

Consider the system of Fig. 3 comprising a single aerobic reactor
and a settling tank. Underflow from the settling rank is returned
to the reactor. The system is described by eight mass balance
equations, one for each of the compounds, X5, X, X, and S¢ in
the reactor and in the settling tank underflow, respectively. (Ad-
ditional subscripts i and r denote the concentrations in the in-
fluent and underflow recycle respectively). The eight
simultaneous equations comprise a set of four non-linear ordinary
differential equations for the reactor and four algebraic equations

aer for the solids/liquid separator.
Reactor:
dX,
A% 1 =QiXB,i + QXy , - (Q + Q)X - bXyV +
Figure 2 t ,’.“ Ss X;
Schematic representation of a solids/liquid separator at the end of a series ——B.V (14)
of reactors. (K + Sg)
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INFLUENT, Qi

WASTAGE, aqu

(@1 + Qr - qu)

- qu)

Figure 3
A case study: a single aerobic reactor with settling tank

dX,

v P QXp i + QXp - (Q + Q)X + fbXy V(15)
t
dX
V—;]t_s = Q,'XS,i + Q;XS,; - (Q + Q)X +
(1-H)bX,V - _ KuXy V (16)
(Ky + X¢/Xy)
dSg
V_c-:lt_ =QiSs ;i + QS5 - (Q + Q)Ss -
B XS KaXs v an
Y (Kg+Sg)  (Ky+ X(/Xp)
Solids/liquid separator:
(Qi + Qr - qw) XB = Qr XB,r (18)
(Qi + Qr - qw) XE = Qr XE,( (19)
(Qi + Qr - qw) XS = Qr XS,( (20)
Sg = S5, (21)

Conclusions

For the steady state situation, where the system operates under
conditions of constant influent flow and load, the derivative
terms in the reactor mass balance equations fall away. This
reduces the single-reactor-plus-settler example problem to a set of
eight simultaneous non-linear algebraic equations. In the
dynamic situation, the problem remains one of solving the system
of four non-linear ordinary differential equations and four
algebraic equations. Solution procedures for solving the sets of
simultaneous equations resulting from the steady state and
dynamic situations necessitate specific considerations in each case.

The steady state problem involves finding a single value for
the concentration of each compound in each reactor and in the
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underflow recycle stream which satisfies the set of algebraic equa-
tions. Because the biological reaction expressions introduce non-
linear terms into the equations, the solution cannot be found
directly and iterative techniques must be employed. These
techniques range in complexity from simple successive substitu-
tion (with or without acceleration) to the various Newton-type
methods. The success and efficiency of the different techniques is
determined principally by the degree of non-linearity in the
equations.

Under dynamic conditions, a set of coupled ordinary dif-
ferential and algebraic equations describe the change in concen-
tration of each compound in each reactor with time subject to
variations in the input pattern. Because the biological system in-
corporates reactions involving both soluble and particulate com-
pounds at a range of concentrations, the system will exhibit
dynamics vatying from fast to slow for different compounds.
Therefore, use of an integration technique that exploits the dif-
fering dynamics exhibited by the compounds in a biological
system is indicated.

In the second and third parts of this series of papers atten-
tion is directed at the steady state case and the dynamic situation,
respectively. The objective has been to identify numerical tech-
niques which take advantage of the particular characteristics of
the equations describing the system in each case. Through explor-
ing the nature of the non-linearities, and exploiting the specific
dynamics of the biological reaction behaviour, it has been possi-
ble to identify techniques appropriate for either the steady state
or the dynamic situation.
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