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EXECUTIVE SUMMARY 
 
BACKGROUND 
 
The Vaal Dam is South Africa's second largest dam by area and a vital national resource. Since its levels are 
linked to summer rainfall in its catchment, summer inundation and drought have a significant impact on inflows 
and discharge. Due to the lack of operational real-time seasonal forecasting systems specific to the Vaal Dam, 
the project set out to develop and test statistical forecast systems for the Vaal dam on seasonal time scales, 
with the goal of eventually demonstrating operational forecasting capability using the developed models. 

AIMS 

In this project we test for seasonal predictability for Vaal Dam characteristics such as dam levels and 
downstream flows. We establish pragmatic and cost-effective ways that can also lead to real-time prediction 
and decision-making. In this project we use simplified statistical models to test for predictability and to establish 
real-time forecasting for the dam. The following are the aims of the project:  

1.To develop statistical forecast systems for the Vaal Dam on seasonal time scales.  

2.To test the models’ performances for both deterministic and probabilistic forecasts.   

3.To test operational forecasting capability using the developed models over various lead-times. 

METHODOLOGY 

Linear statistical models are developed for both dam levels and for downstream flows of the Vaal Dam. 
Catchment rainfall figures are used in a multiple linear regression model as predictors. Simple linear regression 
is used to see if dam levels can be linked to downstream flows. All the models are tested to determine if the 
models have potential use in a real-time operational forecast setting. 

RESULTS AND DISCUSSION 

A strong link is found between rainfall in the catchment and dam levels, as well as what happens downstream 
of the dam. This link is evident mostly during the summer rainfall season. There is also a link between dam 
levels and downstream flows. Although real-time prediction for both dam levels and downstream flows is 
possible, useful, including profitable, probabilistic forecasts are only found with short lead-times, and in 
particular for dam levels during the second half of summer. Notwithstanding these limitations, the real-time 
information that the forecast models can potentially provide is of interest and benefit to forecast users such as 
Rand Water. The latter is interested in water quality fluctuations caused by inundation and drought.  

GENERAL 

The robust statistical methods developed in this project show that seasonal predictability of the Vaal Dam is 
possible. This predictability is restricted to dam levels and downstream flows and are possible mainly during 
the summer rainfall season (Aim 1). Most of the predictability is found during the second half of the summer 
rainfall season, and the best predictor is antecedent rainfall in the catchment. These results are found using 
an approach where only the forecast models’ deterministic capability is assessed. This is a necessary step to 
first establish if predictability exists (Aim 2). After this, since seasonal forecasts are of a probabilistic nature, 
the models probabilistic forecast capability is tested. However, forecasts need to be made at lead-times in 
order for them to be of potential use, and hence probabilistic forecast performance over lead-times shows that 
operational real-time forecasts are possible, albeit at short forecast lead-times (Aim 3).  

CONCLUSIONS 

The statistical models developed here show a strong link between seasonal rainfall in the catchment and dam 
levels and with downstream flows, mainly during summer. There is also a concurrent link between dam levels 
and downstream flows, but this link is strongest during the second half of summer and during autumn. A 
significant result from the work is that real-time prediction for both dam levels and downstream flows is 
possible, but that the predictability is mainly a result of using antecedent rainfall in the catchment as predictor, 
and that the models only really work at short lead-times. Usually, high forecast skill can be obtained in certain 
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catchments where ENSO forcing is contributing strongly to seasonal variability. In the Vaal Dam catchment, 
however, where ENSO forcing is not that strong, antecedent rainfall is a critical component in the forecasts 
systems presented here and emphasises the importance of maintaining robust observational networks in the 
region. A significant conclusion to be drawn here is that predictability is restricted to the second half of summer, 
going into autumn. This result is to be expected for models where antecedent rainfall is the best predictor. In 
a catchment where no or very little rainfall is usually received during winter and spring, rainfall during these 
seasons is subsequently not a good indicator of what is to be expected later on in the season. 

The main conclusions that can be drawn from probabilistic skill assessments are that only short lead-times are 
associated with usable skill, and that only high skill forecasts may be profitable to a forecast user. This result 
is potentially a caveat that may result in such forecasts not being used by a forecast user, especially if longer 
lead-time forecasts are required for optimal decision-making. Notwithstanding, the added information that the 
forecast models can potentially provide may be of interest and benefit to a user such as Rand Water. Through 
this project, Rand Water has become aware of the operational forecasts of the Vaal Dam being produced at 
the University of Pretoria. Follow up meetings with Rand Water and other invested parties should happen so 
that the predictability identified here can be further applied and forecasting systems further developed in a true 
co-development process. 

RECOMMENDATIONS 

The work has demonstrated a seasonal forecast capability for the Vaal Dam. Since forecasts for the second 
half of summer, going into autumn, have been shown to be skilful, the planning of water release downstream 
can benefit from such forecasts, albeit at a short lead-time. The observation that high rainfall totals may have 
been observed during summer over the catchment can help with such planning. However, the forecast models 
presented here are not able to provide guidance on hydro-climate variability during spring or during winter. 
Sophisticated hydrological models should be configured to see if they can assist with seasonal forecasts for 
the Vaal Dam during these seasons and also to see if such models can improve on the forecasts presented 
here. Until such time, simple linear models may be the only viable way to make skilful seasonal forecasts for 
the Vaal Dam.  

Given these limitations, it is important that modellers (atmospheric and hydrologists) should more actively 
engage with the dam’s managers in order to start a process of co-development of seasonal forecast products 
most suitable for improved decision-making in areas where climate variability affects dam fluctuations. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 INTRODUCTION 

South Africa`s seasonal rainfall varies significantly in space and time. Roughly about 9% of rainfall eventually 
reaches river systems making an average annual runoff of 49 210 million m3/year for the whole country (Van 
Vuuren, 2012). The Vaal Dam has a full capacity of around 2575 million cubic metres and according to Rand 
Water there is a growing demand placed upon it since its establishment ( Dippenaar, 2013). It is the second 
largest dam in South Africa by area of around 323km2 and fourth largest by volume of around 1.4 million cubic 
meters. South Africa usually faces severe and prolonged droughts affecting much of the country at once, 
adding on to this, South Africa is water scarce and because of its hot summers faces a high rate of evaporation 
(Van Vuuren, 2012) 
 
Because the Vaal Dam is a key economic player, it has a requirement of 200% of its capacity to withstand a 
1:50 year drought. Dam management and development is an expensive business, Eutrophication and or 
hypertrophic, i.e. enrichment of water with nutrients is another problem influenced by urbanisation, agriculture 
and industry facing South African Dams (Van Vuuren, 2012). This can lead to water quality deterioration. 
Salination is a problem too. Sectors such as agriculture, which rely heavily on water provided by the dams for 
irrigation face a potential challenge due to population increase thus increase in water demand (IPCC, Chapter 
5). 
 
Even without the influence of climate change, it is predicted that South Africa will utilise most of its surface 
water resources within a few decades. The most significant impacts of climate change on water resources are 
the potential changes in the intensity and seasonality of rainfall. While some regions may receive more surface 
water flow, water scarcity, increased demand for water and water quality deterioration are very likely to be 
problems in the future. (UNFCCC 2000). 
 
Under a wetter future climate scenario, increased runoff would result in increased flooding, human health risks, 
ecosystem disturbance and aesthetic impacts. However, under drier future climate scenarios, there would be 
reduced surface water availability. Reduced water availability would most likely create significant trade-offs in 
terms of the allocation of water resources between agricultural and urban-industrial water use. Projections for 
national runoff range from a 20% decrease to a 60% increase based on an unmitigated emissions pathway, 
which reflects substantial uncertainty in rainfall projections. 
 
Because of these challenges facing Vaal Dam management, one approach to address these challenges is to 
only rely on technological strategies. However, in this report we propose an alternative solution in order to 
holistically manage the Vaal Dam as a socio-ecological system so that the delivery of ecosystem services to 
human populations can be better maintained – a so-called nature-based solution. We consequently argue that 
the development of seasonal-to-interannual prediction systems to assist with Vaal Dam management can help 
with disaster risk reduction, consequently, reduce vulnerability of, for example, agricultural ecosystems to 
drought as well as extreme precipitation events that may lead to flooding. Moreover, the models developed in 
the project have the potential to improve the flood resilience of the Vaal Dam. 
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1.2 THE VAAL DAM 

Vaal Dam has a height of 63m, volume 1.4 million m3, storage capacity 2610 million m3 and water surface area 
323 km2 (Van Vuuren, 2012). According to the South African Department of Water and Sanitation (DWS) “by 
mid-2019, 2.5% of water in South Africa is directed to mining, 3% to industrial use, 2% goes towards power 
generation and 61% is taken up by agriculture – leaving 27% for consumption for a population of over 60 
million” (www.gov.za). The Vaal Dam is a water source and key economic player – it feeds an estimated 33% 
of South Africa's population and is a major water source for Gauteng. It supplies water to about 46% of the 
country's economy (www.daily maverick.co.za). Its catchment area spans around 60% in the Free State, 
Gauteng, Northwest and Mpumalanga Province (Marx et al., 2003). Rivers which supply the Vaal Dam include 
Vaal River, the Little Vaal, Klip River, Watervals River and Wilge River, “that used to meet the Vaal River 
before the Vaal Dam was built but now flows straight into the Vaal Dam'' (Rand Water).  
 
The Vaal River catchment, which is part of the Vaal Dam catchment, has a zonal gradient of ~ 1m/km, spanning 
from the Drakensberg Escarpment. There is a cool-east to warm-west temperature gradient mirrored by the 
rainfall, thus rainfall decreases as you move from east to west. Rainfall over the Vaal River catchment peaks 
around October to November, but because of high potential evaporation, discharge rises during December 
and peaks by February. There is a one-month delay in inflow, therefore a focus period in a previous study was 
the influence of Dec-Jan rainfall on Jan-Feb discharge (Jury, 2016) 

1.3 HYDRO-CLIMATE MODELS 

Hydroclimate is part of the climate pertaining to the hydrology of a region, (IPCC 5th Assessment Report) and 
models which express this relationship are called hydro-climate models. In this project we aim to develop 
hydro-climate models based on linear statistics for Vaal Dam characteristics (inflow, downstream flow, and 
dam levels) as well as models predicting seasonal rainfall over the Vaal Dam catchment area, all on seasonal 
time scales. The main reason for this prediction model development is to determine if Vaal Dam characteristics 
are predictable at a level that is high enough for dam managers to include seasonal forecasts in their planning 
and decision-making. Once predictability has been demonstrated, then a meeting with a potential user of the 
forecasts can be had to talk about the way forward.  
 
Inflow forecasts are usually statistical regression analysis using inflow observations as the predictand and 
monthly rainfall observation as the predictor.  Other statistical methods may include singular value 
decomposition and partial least-squares regression (Moradkhani and Meier, 2010). (Najafi et al., 
2012)identified the Ensemble Streamflow Prediction (ESP) as a better way of forecasting streamflow but it 
requires sophisticated models, additional data analysis and the basin’s initial conditions, for example soil 
moisture. Seasonal rainfall predictability is not always possible for all areas and times of the year (e.g. 
(Landman et al., 2012). However, rainfall predictability for South Africa is highest during El Niño and La Niña 
years as opposed to ENSO-neutral years (Landman and Beraki, 2012). In such cases where a linear 
relationship is not possible nonlinear equations may be used in which transformed streamflow values are 
predicted by a linear equation (Pagano and Garen, 2003) 
 
Ways to verify a forecast is by using the relative operating characteristic (ROC) and the reliability diagram 
(Landman and Beraki, 2012), (Muchuru et al., 2016). And these features are present in the Climate 
Predictability Tool (CPT), the tool to be used in this work. “Much of statistical hydrologic and weather 
forecasting is based on linear least-squares regression.” (Moradkhani and Meier, 2010). 
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1.4 CASES 

A study by (Tootle et al., 2007)on using partial least square regression improved on a technique of streamflow 
prediction by “utilizing component scores of both sea surface temperatures and streamflow (i.e. SK LEPS 
score greater than 10%)” and this resulted in encouraging outcomes for certain areas of the United State. But 
this method did not work well for a particular ENSO affected area where cross-validation forecast skills were 
not so robust, possibly because of the nonlinearity of ENSO with streamflow response. This begs the question 
of how this analysis would work for the Vaal Dam catchment area since it is an ENSO affected area.(Kennedy 
et al., 2009)also used large-scale predictors “the Pacific North American Pattern, Southern Oscillation Index, 
Pacific Decadal Oscillation (PDO), Multivariate El Niño-Southern Oscillation Index, Niño3.4, and a revised 
Trans-Niño Index (TNI)” and found only TNI to have an influence of streamflow forecast. The area of study 
was Upper Klamath Lake (UKL-snow driven streamflow), Oregon, USA that has highly varying climatic 
conditions (Soukup et al., 2009) studied streamflow forecasts for North Platte River USA, also used SSTs 
(Niño 3.4 index, the PDO index and the AMO index.) as the predictor but included 500 hPa geopotential heights 
values as well. The latter yielded better results than SSTs. Geopotential heights predicted by climate models 
might be worth incorporating into this study. 
 
The motivation for the paper by (Muchuru et al., 2016) was to prevent disasters, loss of property and life caused 
by flooding over the Lake Kariba catchment leading to high inflow into the dam and subsequently flooding 
downstream. Thus, the paper had as one of its aims to investigate whether or not the climate model-based 
prediction system could have been able to issue a warning of the observed flooding several months ahead of 
time. The more sophisticated modelling system presented superior levels of skill over the simple statistical 
model. The discrimination and reliability of the forecasts showed to be able to prove guidance to users. For 
the months of DJF higher model skill was observed and may be attributed to the fact that the austral mid-
summer circulation is skilfully captured by most general circulation/climate models (Landman et al., 2012). For 
the peak months of rainfall and inflow a 1-month lead-time and a 3-month lead-time set of forecasts were 
shown as both probabilistic and deterministic outcomes, respectively. Thus, proving useful and reliable 
forecasts for the users. 
 
To investigate the impacts of changing climate on water resources for the Alabama-Coosa-Tallapoosa River 
Basin in south-eastern United States, a 33-member ensemble of hydrologic projections was generated using 
3 distributed hydrologic models of different complexity. The 8.5 emission scenario was dynamically 
downscaled and bias-corrected future climate simulations, with 40 years each in baseline (1966-2005) and 
future (2011-2050) periods. The uncertainty associated with the ensemble hydro-climate response, analysed 
through an analysis of variance technique, suggested that the choice of climate model is more critical than the 
choice of hydrologic model for the studied region. (Gangrade et al., 2020) 

1.5 DATA AND MAKING FORECASTS 

For statistical modelling to be successful as a means to predict seasonal climate and its derivatives (e.g. rainfall 
induced streamflow’s), certain criteria have to be met. First, phenomena to be predicted should contain a 
climate signal (e.g. ENSO) in the data. Second, the archived data to be used for statistical models must be 
over sufficiently long enough periods so that robust statistical relationships can be developed. Finally, some 
form of quality control of the data had taken place (Landman et al., 2012). From a southern African perspective, 
the reason why ENSO needs to be prevalent in the phenomena (e.g. High and low flows) is because global 
climate models are frequently used in the prediction process and these models do best during ENSO seasons 
as opposed to non-ENSO seasons (Landman and Beraki, 2012). Regarding sufficiently long period of data, 
not only do we need long periods to develop robust models, but for short testing periods, which is often the 
case in seasonal forecasting, e.g. (Landman et al., 2012), verification statistics are also more representative 
of true model skill if tested over longer as opposed to shorter periods (Landman et al., 2012). Data quality is 
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of course important since the models to be developed rely on this, since poorly observed data will negatively 
impact on the development of prediction models.  
 
Three types of observed data are usually used for this type of statistical seasonal forecast model development 
and prediction. The first type used for making seasonal forecasts is sea-surface temperature (SST) data. SST 
has been used successfully for making seasonal forecasts, especially during the early stages of seasonal 
forecasting in southern Africa, e.g. (Landman and Mason, 1999). The second is the use of antecedent rainfall 
totals (e.g. Muchuru et al., 2014), and the third involves the use of output from global climate models that have 
in the past been successfully used as predictors in statistical streamflow models, e.g. (Malherbe et al., 2014).  
 
Historical rainfall data often used in climate work is from the CRU (Climate Research Unit; Harris et al., 2020) 
or CHIRPS (Rainfall Estimates from Rain Gauge and Satellite Observations)  (Funk et al., 2014) sets, to name 
but two. The choice of rainfall data is significant since the data serve the dual purpose of predicting Vaal Dam 
data, as well as a verification set for modelling seasonal rainfall in the catchment. We also need good quality 
Vaal Dam data, for example flows in cumecs into the dam. For this purpose, we contacted the National 
Department of Sanitation who has provided daily data of inflow, downstream flow, dam levels, etc. values from 
1980 to present. The provision of such data is paramount to the success of a project of this nature, as has 
been demonstrated for the case of Lake Kariba ( Muchuru et al., 2016).   
 
Global climate model (GCM) output is also considered in the development of the statistical models for the dam. 
The ECHAM4.5-MOM3 (DeWitt, 2005) coupled ocean-atmosphere model data was successfully applied to 
test the predictability of inflows into Lake Kariba (Muchuru et al., 2016), as well as the predictability of seasonal 
rainfall in the catchment of the Lake (Muchuru et al., 2014). Here, we will use archived as well as real-time 
forecast fields from the North American Multi-Model Ensemble (NMME; Kirtman et al., 2014) that has recently 
been used for predictability studies over southern Africa (Landman et al., 2019). One of the NMME models 
has been used over the past few seasons to provide forecasts that form part of a prediction system for inflows 
into the Lake. Figure 1.1 shows a forecast produced in October 2019 for the Dec-Jan-Feb 2019/20 season. 
Similar products do not yet exist for the Vaal Dam and the project attempts to develop such products with the 
assistance from those managers involved with operations. 
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Figure 1.1: Hindcasts (or re-forecasts) (left) and probability real-time forecast (right) of inflows into Lake Kariba for the 
DJF season. The forecast on the right shows the probabilities of certain inflow thresholds being exceeded.

SST may also be used for Lake Kariba inflows but has not been tested for that dam specifically. However, 
since SSTs have been used for other hydro-climate modelling, e.g. (Tootle et al., 2007) (Kennedy et al., 2009)) 
forecast skill in predicting Vaal Dam characteristics need to be used too, at least to establish a baseline model 
that needs to be outscored by more complicated forecast systems that include the use of GCM output in the 
statistical models.

An important consideration that needs to be discussed between forecast producers and forecast users is the 
format of the forecast. In Figure 1.1 the Lake Kariba inflows forecast for the DJF season is presented as a 
probability of exceedance graph as explained here . The main advantage of presenting a seasonal forecast in 
this manner is to present forecasts within the full probability range and not only for the chance of a 
predetermined category threshold to be exceeded or not. The latter is usually done for operational seasonal 
categorised forecasts and may or may not be ideal for dam management that considers operating dam levels 
(water level to which the reservoir or storage lake is operated under normal operating conditions at a given 
time of the year). One of the most commonly used tools to aid reservoir operation is the rule curve. This rule 
gives a priori pattern of the desired storage values in every month of the year. According to such a curve the 
storage should gradually drop down between July and January, to provide sufficient storage for annual floods, 
which is expected to fill the reservoir in the following summer months. Figure 1.2 shows the reservoir levels of 
Lake Kariba for a number of years as well as the rule curve. The levels for one El Niño and two La Niña 
seasons are presented in the figure, which may have been predicted with the use of probability of exceedance 
graphs as presented in Figure 1.3. There is still a mismatch, however, since the forecasts are for inflows while 
the data presented in Figure 1.3 are for dam levels. This example shows the importance of what a climate 
modeller may deem as a useful forecast and what a user of that forecast may consider important. This 
discrepancy is probably the biggest gap there currently exists between the forecasts and what may be required. 
We will show in this project how this caveat can be addressed through a process of co-production between 
the modellers and the managers of the Vaal Dam. 
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Figure 1.2: Rule curve and levels at Lake Kariba during certain years.
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Figure 1.3: Probability of exceedance forecasts for DJF and MAM seasonal inflows into Lake Kariba during the one El Niño 
and two La Niña seasons presented in Figure 2. The green curves represent forecasts and the red curves the climatology 
of the respective seasons based on observations.

Other important considerations include the length of the seasons for which forecasts need to be made and the 
forecast lead-times. For the former consideration, users may want to get monthly as opposed to or in addition 
to 3-month seasonal forecasts. However, forecast skill may not be high enough for monthly forecasts as a 
result of a low signal-to-noise ratio for such forecasts and thus more risky than seasonal forecasts. Regarding 
lead-times, dam managers may need to make decisions several months ahead of the main rainfall season or 
may only need forecasts made at short lead-times when decisions need to be made in the middle of the main 
rainfall season. Another consideration is that the main inflow season may be several months after the main 
rainfall season. This discrepancy is found for Lake Kariba where it was found that the main inflow season is 2 
to 3 months after the main rainfall season and that the inflow during the main season is less predictable than 
inflows during the start of the maximum inflow period. Therefore, there are different temporal scales to 
consider, and before detailed modelling is embarked on there is a clear need for forecast producers and users 
to meet to discuss the way ahead for modelling Vaal Dam characteristics.

1.6 PROJECT AIMS

The general objective was to test for seasonal predictability for Vaal Dam characteristics in a pragmatic and 
cost-effective way that can also lead to real-time prediction and decision-making. The use of statistical models 
is far less computationally demanding than using more sophisticated models such as hydrological models, and 
so in this project we used simplified statistical models to test for predictability. Once predictability is established 
and the conditions under which Vaal Dam characteristics can be predicted, operational utility of the developed 
models needs to be ascertained. For this purpose, we effectively pursued three aims, namely: 
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1. To develop statistical forecast systems for the Vaal Dam on seasonal time scales by considering a 

number of statistical models that have in the past been shown to successfully predict hydrological 
variables such as inflows into Lake Kariba.  
 

2. To test the models’ performances using recognised forecast verification systems. Here we need to 
test for both deterministic and probabilistic forecasts. The former is to first find out if there are statistical 
links between predictors such as rainfall in the catchment and Vaal Dam characteristics, and the latter 
to see if the models demonstrate probabilistic forecast skill since seasonal forecasts need to be issued 
probabilistically.   
 

3. To demonstrate operational forecasting capability using the developed models. Forecasts need to be 
made at lead-times that are sufficiently long for effective decision-making. Here we test forecast skill 
over various lead-times and determine at which lead-times forecasts can be considered useful. 

1.7 SCOPE AND LIMITATIONS 

The methods tested here are based on linear statistics. No nonlinear methods are employed here and so more 
sophisticated techniques involving, for example, neural networks, may have to be developed to see if these 
techniques can outperform the linear models presented here. The focus is also on 3-month calendar months, 
and it may be worth it to test predictability on single-month periods.   
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CHAPTER 2: PRELIMINARY PREDICTION MODELS TO TEST 
PREDICTABILITY OF DAM INFLOWS AND LEVELS 

2.1 INTRODUCTION 

The Vaal Dam in South Africa lies on the Vaal River, one of South Africa's strongest-flowing rivers. Other rivers 
flowing into the dam include the Wilge, Klip, Molspruit and Grootspruit Rivers. Vaal River discharge in the Vaal 
River is strongly influenced by climate variations caused by ocean-atmosphere interactions (Jury, 2016)and 
may thus be predictable on seasonal climate time scales, owing to the climate “signal” in flow or related 
hydrological data (Muchuru et al., 2016). It has been demonstrated that river flows are sensitive to climatic 
variability – flows have, as a result, been successfully modelled on seasonal time scales (Coelho et al., 2006). 
In this deliverable, we will demonstrate predictability of Vaal Dam levels and of downstream flows by using 
linear statistical models developed in the project. 

2.2 DATA 

Vaal Dam data used here for statistical hydro-climate modelling includes dam levels (meters) and downstream 
flow (cumecs), obtained from the National Department of Water and Sanitation in South Africa. Daily data are 
averaged into 3-month seasonal means and are considered from the early 1980s to 2016. In order to ensure 
that all of the level and flow values are from normal distributions for optimal statistical modelling to be 
performed, the natural logarithms of the level and flow values for each season are calculated prior to 
developing the statistical models. 
 
Seasonal predictability is assessed first by investigating how seasonal rainfall in the catchment (Figure 2.1) 
may influence both dam levels and downstream flows. The rainfall data used for this part of the modelling are 
obtained from the CHIRPS set Rainfall Estimates from Rain Gauge and Satellite Observations; (Frank et al 
2014). The CHIRPS data are used to determine if antecedent as well as concurrent 3-month seasonal rainfall 
totals are linked to dam levels, and to downstream flows. The CHIRPS data are at a 0.05° x 0.05° resolution 
and are used over an area representing the Vaal Dam catchment of 23°S to 30°S, and 25°E to 31°E (Figure 
2.2). 
 
Sea-surface temperature (SST) anomalies are often used in statistical seasonal forecast models (e.g. 
Landman and Mason, 1999). Here, we use tropical and sub-tropical SST over the Indian and Pacific Ocean 
basins Figure 2.3 as predictors of dam levels and downstream flows. The SSTs are from the extended 
reconstructed sea-surface temperature data set (Huang et al., 2017) at a 2° x 2° resolution, and calculated as 
3-month averages. 
 
Finally, we use rainfall fields as forecast by a global climate model as predictors of dam levels and flows. The 
hindcasts (or re-forecasts) are from the fully coupled ocean-atmosphere model (GFDL-CM2p5-FLOR-B01, 
hereafter referred to as “GFDL”) of the North American Multi-Model Ensemble (Kirtman et al., 2014). Monthly 
global hindcast data from the early 1980s to the present are available at a 1° x 1° latitude-longitude resolution 
for 12 ensemble members and for several months lead-time. For simplicity, we are using only 1-month lead-
time hindcasts (e.g. a forecast for the December-February season made from observations through the end 
of October), and the ensemble mean. This GFDL model has recently been used successfully for southern 
African predictability studies (Landman et al., 2019, Landman et al., 2020). The area from which the model’s 
rainfall data is extracted is shown in Figure 2.2. 
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Figure 2.1: Vaal Dam catchment.

Figure 2.2: The domain is used to extract seasonal rainfall data from the CHIRPS set as well as from the GFDL hindcasts.
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Figure 2.3: The domain from which the SSTs are extracted for the SST-based statistical prediction models. Land points 
are masked out. 

2.3 METHODS 

Linear statistical models are developed for both dam levels and for downstream flows. The software used for 
the statistical modelling is the IRI's Climate Predictability Tool (CPT; (Mason and Tippett, 2016). First, 
concurrent seasonal rainfall data are used for simulating dam levels and downstream flows – for example, 
December to February (DJF) rainfall totals over the catchment are used to simulate DJF levels and flows. The 
reason for testing concurrent seasons is to determine to which extent rainfall in the catchment directly affects 
levels and flows. Canonical modes of the rainfall as calculated by the CPT are used in a multiple linear 
regression model as predictors (Landman et al., 2020). The models are tested in a 5-year-out cross-validation 
design (Efron and Gong, 1983). Second, antecedent seasonal rainfall is also used in the same modelling 
configuration, but for this part of the modelling, prediction skill instead of simulation skill is estimated. For 
example, September to November (SON) rainfall totals are used to predict DJF levels and flows. Thirdly, for 
those seasons for which the most skilful simulations and predictions are obtained, SST fields and GFDL rainfall 
fields are also used as predictors. For SST, for example, the SON temperatures are used to predict DJF levels 
and flows. For GFDL, DJF rainfall forecasts initialized in November (Landman et al., 2019) are used to predict 
DJF levels and flows. Therefore, as with antecedent rainfall as predictor, using SST and GFDL forecasts as 
predictors, a 1-month forecast lead-time is tested. Finally, simple linear regression is used to see if dam levels 
can be linked to downstream flows. 
 
All the models are tested over a common period from 1995/96 to 2015/16, a 21-year period for each statistical 
model. Each statistical model uses a stringent 5-year-out cross-validation design in order to minimize skill 
inflation. Simulation and forecast skill over the 21-year period are estimated in this deliverable by calculating 
the Spearman rank correlation between predicted and observed levels and flows. This preliminary approach 
is sufficient for demonstrating levels of predictability. 
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2.4 RESULTS 

The results (Spearman correlations) for the various statistical models across all 3-month seasons are 
presented in Figures 2.4 and Figure 2.5. Figure 2.4 shows the correlation when 3-month seasonal rainfall, 
concurrent with the dam levels and downstream flow seasons, is used to simulate the levels and flow. A general 
conclusion is that downstream flows have the potential to be more predictable than dam levels, owing to the 
mostly higher correlations for flows in the figure. The flow season with the highest correlation (skill) is found 
for DJF, and we thus test for true forecast skill by first using a climate model to predict DJF rainfall that can 
subsequently be used as a predictor of flows at a 1-month lead-time. In addition, we also used SST of the SON 
season to predict DJF flows. The prediction’s verification results are shown in Figure 2.4, but with correlations 
considerably lower than the DJF simulation case. Notwithstanding, at least for the case of using SST as DJF 
flow predictions, downstream flows are predictable at a level (Spearman correlation of 0.4442) that may be 
useful for dam management. 

 
Figure 2.4: Spearman correlations between simulated and observed dam levels and downstream flows. Also shown on the 
figure are correlations obtained by predicting DJF downstream flows with a) SON SST and b) GFDL rainfall predicted in 
November 

Figure 2.5 shows the correlation results obtained by verifying 1-month lead predictions of flows and levels, and 
results from experiments using concurrent dam levels to simulate downstream flows. The season of highest 
dam level predictability (highest Spearman correlation) is JFM when observed OND rainfall is used as a 
predictor. The best predictions of downstream flows occur during FMA, when NDJ rainfall is used as predictors. 
Those models using antecedent observed conditions as predictor outscore those forecasts from both the 
climate model and from using SST as predictor. Moreover, the skill levels for downstream flows from 
antecedent conditions compare favourably with the simulation results when concurrent dam levels are used to 
simulate flows. Take note that antecedent dams’ levels (i.e. SON) predicting downstream flows (i.e. DJF) 
produces low or negative Spearman correlations, which means dam levels cannot be used to predict 
downstream flows at a forecast lead-time. 
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We have demonstrated how statistical models using antecedent observed rainfall conditions can serve as 
skilful estimates of future dam level and downstream flow conditions, albeit at the short lead-times considered 
here. Next, we will look at the cross-validated time series of the skilful models in more detail. 

 
Figure 2.5: Spearman correlations between predicted and observed dam levels and downstream flows using antecedent 
rainfall conditions. Simulations using concurrent dam levels to simulate flows are also presented. Also shown on the figure 
are correlations obtained by predicting JFM dam levels and FMA downstream flows with a) SST and b) GFDL rainfall 
predicted by climate models. 

The correlation analysis above does not provide insight into the ability of the statistical models to predict for 
specific seasons of interest – for example seasons of extremely high or low downstream flows. Figure 2.6 to 
Figure 2.9 present cross-validated predictions and simulations over 21 years for several selected seasons 
during which the statistical models performed well. The DJF downstream flow model simulations and 
predictions are presented in Figure 2.6. A highly significant correlation is found when simulating downstream 
flows concurrent to the DJF rainfall season. The result shows that seasonal rainfall strongly influences how 
much of the dam water is allowed to flow downstream of the dam. Figure 2.6 moreover provides further 
evidence of skill in predicting such flows at a short lead-time of one month. 
 
As shown above, predicting for dam levels is not as skilful as predicting for downstream flows. However, Figure 
2.7 shows results from forecasts for dam levels and demonstrates that antecedent rainfall in the catchment 
can provide skilful forecasts of dam levels during JFM. Notwithstanding, neither SST nor the climate model 
could contribute to skilful dam level forecast models (statistical level of significance below 90%). Figure 2.8 
shows forecast performances for FMA downstream flows, and both antecedent (NDJ) rainfall in the catchment 
as well as predicting NDJ rainfall with a climate model, produce statistical downstream flow models with 
statistically significant results. 
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Figure 2.6: DJF downstream simulations and predictions, using concurrent (DJF) rainfall conditions for simulations, and 
SON SST and DJF rainfall forecasts from the GFDL climate model for predictions. 

The correlations and their level of statistical significance are listed in the same order from top to bottom as 
shown in the key. 

 
Figure 2.7: JFM dam level predictions, using antecedent (OND) rainfall conditions, OND SST and JFM rainfall forecasts 
from the GFDL climate model. The correlations and their level of statistical significance are listed in the same order from 
top to bottom as shown in the key. 
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Figure 2.8: FMA downstream flow predictions, using antecedent (NDJ) rainfall conditions, NDK SST and FMA rainfall 
forecasts from the GFDL climate model. The correlations and their level of statistical significance are listed in the same 
order from top to bottom as shown in the key. 

 

 
Figure 2.9: FMA downstream flow simulations using concurrent (FMA) dam levels in a statistical model. The correlation 
and its level of statistical significance are shown on the right of the figure. 
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Figure 2.9 shows the strong link between dam levels and downstream flows for the FMA season. In addition, 
Figure 2.5 demonstrates how simulating downstream flows using concurrent dam levels as predictors can 
provide insight into the characteristics (high or low) of the downstream flows – but that the usefulness is 
restricted to the second half of summer through autumn. It is important to note that, as mentioned above, there 
is no evidence of antecedent dam levels being linked linearly to downstream flows. Although there is, thus, no 
prediction utility found with these flow simulations, the results certainly show the strong link between dam 
levels and what happens further downstream. 

2.5 CONCLUSIONS AND DISCUSSION 

The main objective of this chapter is to develop prototype models in order to demonstrate that a subset of the 
hydrological characteristics of the Vaal Dam is predictable on a seasonal time scale. In this study, we used a 
number of predictors in linear statistical models for predicting dam levels and downstream flows, including 
concurrent and antecedent seasonal rainfall totals in the catchment, SSTs and seasonal rainfall forecasts from 
a climate model. 
 
From verifying the statistical models over a recent 21-year period, the following main conclusions may be 
drawn: 
 

1. As may be expected, there is a strong link between rainfall in the catchment and dam levels; as well 
as what happens downstream of the dam. This link is less pronounced during winter. 

2. There is also a concurrent link between dam levels and downstream flows, but this link is strongest 
during the second half of summer and autumn. 

3. Real-time prediction for both dam levels and downstream flows is possible, but the predictability 
demonstrated here is mainly a result of using antecedent rainfall in the catchment as predictor in a 
statistical model, as opposed to using a climate model’s forecasts or SSTs as predictors. This result 
does not mean that climate model output has been found to be redundant, but rather that one should 
be considering a range of possible predictors that may or may not include climate model forecasts. 

 
It is important to note that this chapter did not undertake an in-depth verification of Vaal Dam forecast models, 
nor did it verify a set of probabilistic seasonal forecasts of dam levels and flows, e.g. (Landman et al., 2020). 
Since seasonal forecasts are required to be expressed probabilistically (or at the very least be provided with 
an indication of uncertainty) the following chapters aim to provide a thorough assessment of the attributes of 
interest for probabilistic forecasts, such as discrimination and reliability. 
 
We have provided evidence of predictability that has the potential to be of benefit to managers of the Vaal 
Dam. In the next chapter we engage with Rand Water representatives in order to discuss the way ahead for 
more advanced modelling through a process called co-production, in which forecast users are part of the 
forecast system development. 
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CHAPTER 3: SOCIAL INCLUSION FOR USER-ORIENTED 
FORECAST SYSTEMS 

3.1 INTRODUCTION 

The focus of this project is the predictability of Vaal Dam characteristics such as levels, inflows and 
downstream flows on a multi-month seasonal time scale. Predictability is made possible since the Vaal River 
discharge is strongly influenced by climate variations caused by ocean-atmosphere interactions. Moreover, it 
was shown in Deliverable #2 that flows associated with the Vaal Dam are in fact predictable with lead-time and 
skill. Notwithstanding, even with perfect predictability of these hydrological variables, the modelling research 
will be insufficient if it does not benefit some of the sectors affected by the dam. Therefore, in this deliverable, 
we report on the meeting we had with representatives from Rand Water in order to discuss with them the 
modelling results of Deliverable #2 and to find out how forecast systems may be able to benefit from their 
decision-making. 

3.2 THE PRESENTATION TO RAND WATER 

The background and motivation for the study was presented first, including the objectives of the project and 
how the historical dam levels, inflows and downstream flows were obtained. Testing for the predictability of 
these three variables using statistical models is the primary modelling objective of the project. However, we 
do not only want to test models, but we made it clear in our presentation that we also wanted to find out from 
Rand Water whether or not our presented forecasts may be of any value to them.    
 
Five slides were presented in the meeting. The first slide (marked “Slide #1” on Figure 3.1) represents a 
preliminary estimate of our forecast capabilities since 3-month seasonal rainfall totals concurrent with 3-month 
dam levels and downstream flows are used to “simulate” levels and flows. The term simulate is used in this 
context because there is no forecast lead-time involved so that the models can only test if there may be 
potential predictability to be tapped from. Here it is evident that for the most part, the potential predictability of 
downstream flows is higher than that of dam levels. However, also presented on the figure are results from 
making 1-month lead-time forecasts by using as predictors in statistical models both equatorial sea-surface 
temperature (SST) fields for the September-October-November (SON) season and the December-January-
February (DJF) rainfall predicted in early December using a global climate model (GCM). With the statistical 
model using SST as predictor, the Rand Water representatives were introduced to the skill levels of operational 
forecasts associated with this type of modelling approach. Moreover, the figure also shows that mid-summer 
(DJF) rainfall over the catchment is strongly linked to dam levels and downstream flows. One of the Rand 
Water representatives was concerned where exactly the downstream measuring was taking place. 
Unfortunately, we do not know exactly where but assume that it is downstream close to the dam. A comment 
was also made on the use of physical hydrological models in the flow predictions. However, the modelling 
approaches presented in the project are much simpler than hydrological models and serve the purpose of first 
testing for predictability on a seasonal time scale and also to set a baseline skill level against which much more 
complicated systems (like hydrological models) can be tested at a later stage. Moreover, neither we nor the 
Rand Water representatives were aware of any hydrological model forecasts currently being used to produce 
operational flow forecasts on seasonal time scales for the dam. 
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Figure 3.1: Four of the five slides presented to the Rand Water representatives. The slides are some of the figures 
presented in Chapter 2.

One of the Rand Water representatives was concerned where exactly the downstream measuring was taking 
place. Unfortunately, we do not know exactly where but assume that it is downstream close to the dam. A 
comment was also made on the use of physical hydrological models in the flow predictions. However, the 
modelling approaches presented in the project are much simpler than hydrological models and serve the 
purpose of first testing for predictability on a seasonal time scale and also to set a baseline skill level against 
which much more complicated systems (like hydrological models) can be tested at a later stage. Moreover, 
neither we nor the Rand Water representatives were aware of any hydrological model forecasts currently being 
used to produce operational flow forecasts on seasonal time scales for the dam.

Next, results obtained by developing statistical models with a 1-month lead-time were discussed. From the 
second slide (marked “Slide #2” in Figure 3.1) it is evident that most of the predictability occurs during the 
second half of the summer rainfall season. This result is expected because most of the predictability arises 
from using antecedent rainfall totals in the catchment. In other words, since measured rainfall in the catchment 
provides the best estimate of both future levels and downstream flows, low rainfall totals usually occurring 
during winter and spring contribute little to predictability. Once again, using equatorial SST or climate model 
forecasts as predictors did not perform as well as when using rainfall totals over the catchment as predictor.

“Slide #3” and “Slide #4 of Figure 3.1 shows the time series of the best modelling results presented above in 
order to present a visual representation of how well the simulations and predictions compare with observed 
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data. Owing to the uncertain nature of seasonal forecasts, some of the seasons for particular years are missed 
by the models, and the variance of the forecasts is not a perfect match with the observed. A much more 
detailed verification exercise is required in order to obtain a more complete understanding of the attributes of 
the forecast systems. Here we only wanted to introduce our statistical models and to demonstrate that some 
of these models have forecast skill. We believe we have successfully demonstrated this notion. However, we 
need to more comprehensively demonstrate that our skilful models can produce useful forecasts to a user 
such as Rand Water. Since seasonal forecasts are inherently probabilistic, they need to be expressed 
probabilistically, especially in a real-time operational forecast environment. Such a probabilistic forecast is 
shown in Figure 3.2 (“Slide #5).

Figure 3.2: “Slide #5” presented during the meeting with Rand Water

Exceedance probability is referred to as the probability that a certain value (e.g. downstream flow) will be 
exceeded during a predefined future 3-month season. The exceedance probability can be used to predict 
extreme events such as downstream floods. Figure 3.2 is an example of a real-time forecast for the Vaal Dam’s 
downstream flow for the January-February-March season. The predictor used here is the October-November-
December (OND) observed rainfall in the catchment, thus constituting a 1-month lead-time forecast. Two 
graphs are shown on Figure 3.2. On the left a cross-validated hindcast (or re-forecast) set is presented against 
observations in order to show to a user the skill of the forecast system. On the right is the actual forecast 
represented as an excess of probabilities. We believe that a probability of exceedance forecast may be more 
useful to the water sector since one is not restricted to the usual three-category forecasts approach normally 
associated with seasonal forecasts – probabilities of certain extreme thresholds being exceeded, as specified 
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by the user, can be determined using such a forecast. When we raised the question to Rand Water, based on 
what we presented in terms of model skill and the probability of exceedance forecast, whether or not our 
forecasts may be useful they replied that as Rand Water they do not manage the Vaal Dam. That is the function 
of the Department of Water and Sanitation.  However, any information additional to what they currently obtain, 
is deemed useful. For instance, they have a big focus on water quality, and flows affect water quality. Water 
with poor quality needs treatment. During a season of inundation, lots of sediment and silt are deposited – all 
organic matter goes under water. This scenario requires treatment of the water and presents a big challenge 
to Rand Water. Therefore, a forecast of enhanced probabilities of large flow volumes associated with the 
coming summer season will assist Rand Water in their planning. Take note, however, that below-normal flow 
volumes also present water quality implications.

3.3 CURRENT OPERATIONAL FORECAST CAPABILITY

Seasonal downstream flow forecasts have been produced operationally by the University of Pretoria since 
November 2020 as part of the project. Figure 3.3 is from the forecast bulletin issued on the 10th of November 
2020 and shows downstream flow forecasts for January-February-March, February-March-April and March-
April-May. These forecasts are all predicting enhanced probabilities of high downstream flow volumes.   
Archived forecasts of the University can be found  here: and for real-time seasonal forecasts are updated at 
this link Click here and then click on the ( Seasonal Forecast Worx logo). 

Figure 3.3: The first Vaal Dam seasonal forecasts of the University of Pretoria, November 2020.

3.4 WAY FORWARD

The next chapter deals with case studies of tailored predictions for recent extreme flow years. We therefore 
made use of the meeting to ask Rand Water in which seasonal case studies they would be most interested in. 
They replied that any extreme season of high or low flows would be of interest to them, especially during recent 
events. We also enquired about the data they would be willing to share with us. Although all flow and dam 
level data are available from the Department of Water and Sanitation, Rand Water can share their water quality 
data recorded over several years. They will prepare the data and make it available to us. They advised that 
we should be cognizant of the fact that the dam is quite stable, and hence water quality measurements are 
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only made once or twice a month. They further advised that, regarding the dam’s water quality, the rainfall-
runoff relationship is not the only determining factor. We therefore need to explore other possible predictors 
than just the rainfall over the catchment if we want to develop water quality statistical models. 

3.5 CONCLUSIONS 

The previous chapter demonstrated our ability to use statistical models to predict dam levels and downstream 
flows, with greater forecast skill associated with the latter as opposed to the former. In this chapter we wanted 
to find out how our forecast models may be of benefit to a user, and in particular Rand Water. After our meeting, 
the following main conclusions may be drawn: 

1. Although Rand Water does not manage the operations at the Vaal Dam, the added information that 
the forecast models can potentially provide will be of interest and benefit to them. 

2. The meeting has resulted in Rand Water becoming aware of the forecasts that we produce on a 
monthly scale; we have learned from them that they are interested in water quality fluctuations caused 
by inundation and drought. This gaining of knowledge by both parties is a positive consequence of the 
co-production process we have embarked on during this deliverable.  
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CHAPTER 4: CASE STUDY TESTING 

4.1 INTRODUCTION 

The previous chapters have shown that there is a strong link between rainfall in the Vaal Dam catchment and 
dam levels, as well as what happens downstream of the dam. Real-time prediction for both dam levels and 
downstream flows has been shown to be feasible, but the predictability demonstrated has mainly been a result 
of using antecedent rainfall in the catchment as predictor in a statistical model, as opposed to using a climate 
model’s forecasts or sea-surface temperatures (SSTs) as predictors. Take note that the demonstrated forecast 
skill levels are estimated by calculating the Spearman rank correlation between predicted and observed levels 
and flows in order to demonstrate levels of deterministic predictability. However, since seasonal forecasts are 
required to be expressed probabilistically (or at the very least be provided with an indication of uncertainty), 
this chapter will provide an assessment of the attributes of interest for probabilistic forecasts, such as 
discrimination and reliability. Also, it will demonstrate typical tailored probabilistic forecasts over a recent 6-
year period that includes two El Niño, two La Niña and two ENSO-neutral summer seasons. 

4.2 THE MODELLING SETUP 

Since antecedent observed rainfall totals in the Vaal Dam catchment have been demonstrated in this project 
to be the best predictors for seasonal dam levels and downstream flows, we will use the same statistical model 
set up as discussed in the previous chapters. There is, however, a difference in the climate periods used for 
model training. First, we will set up the statistical model to perform an evaluation of the models’ probabilistic 
forecast skill. For this purpose, the statistical models are initially trained over an 11-year period from 1996 to 
2006 to make a probabilistic forecast for 2007. The models are then retrained over a 12-year period in order 
to make a forecast for 2008. This process is repeated until 10 years of probabilistic forecasts (2007 to 2016) 
have been produced. Forecast verification is subsequently performed over these 10 years. In addition to the 
verification work, we also produce probability of exceedance graphs for the 6-year period of 2011 to 2016 as 
examples of a set of tailored forecasts. 

4.3 ASSESSMENT OF PROBABILISTIC FORECAST SKILL 

We are assessing the probabilistic skill levels of the seasons and variables associated with the highest skill 
levels as presented in the previous chapters. Two seasons are considered, and they are the 3-month seasons 
of January-February-March (JFM) and February-March-April (FMA). The two dam variables are downstream 
flows for the JFM and FMA seasons, and dam levels for the JFM season. Forecast skill is determined for three 
near equi-probable categories of below-normal, near-normal, and above-normal. The forecast attribute of 
discrimination is determined by the calculation of relative operating characteristic (ROC) scores. The ROC 
score is able to indicate whether or not the probabilistic forecasts are discernibly different given different 
outcomes. ROC score needs to be above 0.5 for the forecasts to be considered skilful. We will also present 
verification results in terms of a graphical representation of forecast reliability using attributes diagrams. Such 
an assessment will provide insight if the forecast confidence communicated in the forecast is appropriate. For 
an explanation on the use of these two forecast attributes in a South African context, please consult: Landman, 
W.A., DeWitt, D. Lee, D.-E Beraki, A. and Lötter, D. 2012 by clicking here   
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The three models that we are evaluating are those with the highest correlation between forecast and observed 
and they are: 

1. October-November-December (OND) catchment rainfall predicting JFM dam levels, 
2. OND catchment rainfall predicting JFM downstream flows, 
3. November-December-January (NDJ) catchment rainfall predicting FMA downstream flows. 

 
The table below shows the ROC scores for the above – (A) and below-normal (B) categories for each of the 
three models. 
 
Table 4.1: ROC scores for the three models considered. 

 JFM levels JFM downstream FMA downstream 
ROC Above 0.813 0.810 0.833 
ROC Below 0.900 0.660 0.722 

 

All of the Table 4.1 ROC scores are higher than the cut-off value of 0.5 for skilful forecasts, indicating that all 
of the model forecasts possess the attribute of discrimination. Thus, model forecasts in general have high hit 
rates and low false alarm rates. However, ROC scores do not indicate if the probability forecasts are 
communicated with the correct confidence. For example, are the probability forecasts for above-normal in 
agreement with the frequency with which above-normal conditions are observed? Here we use the attributes 
or reliability diagram to test for this. Figure 4.1 shows the reliability estimates across all three categories of 
above-, near- and below-normal. 
 

 
Figure 4.1: Reliability diagrams for the three models across all three categories. Panel on the left: JFM levels; middle panel: 
JFM downstream flow; panel on the right: FMA downstream flow. 

 
Forecasts are reliable when the forecast probabilities match the observed frequencies. When this is the case, 
the thin straight line on each of the diagrams, which is a weighted linear regression line that represents the 
respective reliability curves, will fall on top of the diagonal line of perfect reliability. The forecast models for 
JFM dam levels and JFM downstream flow are therefore more reliable than the forecasts for FMA downstream 
flows. In fact, perfect reliability is nearly obtained for JFM dam level forecasts, while under-confidence in the 
forecasts is found for high forecast probabilities for the JFM downstream flow model. 
 
In general, all three of the models have the attributes of discrimination and of reliability. Next, we will show 
examples of probability forecasts for 6 years for each of the three models. 
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4.4 TAILORED PROBABILITY FORECASTS 

The most recent 6 years of the available dam data include two La Niña seasons (2010/11 and 2011/12), two 
ENSO-neutral seasons (2012/13 and 2013/14) and two El Niño seasons (2014/15 and 2015/16). The 2010/11 
was observed to have been a strong La Niña event, and 2015/16 a strong El Niño event. Usually, drought 
conditions over the austral summer rainfall regions occur during El Niño seasons, and wet conditions during 
La Niña seasons. These scenarios also tend to happen over the Vaal Dam catchment. Next, we discuss the 
probability of exceedance forecasts using the three models for the 6 years mentioned above. Figure 4.2 shows 
forecasts for JFM dam levels. The easiest way to interpret the forecast curves of Figure 4.2 would be to 
consider those curves below the red line (the line that represents the climatological distribution curve) to be 
probabilistic forecasts for anomalously low JFM levels. Forecast curves above the climatological distribution 
curve are probabilistic forecasts for anomalously high JFM levels. Take note that the years for which the 
forecasts may have turned out to be the most useful are 2011 (strong La Niña season), 2014 (ENSO-neutral 
season) and 2016 (strong El Niño season). The forecast for 2015 may also have been useful since the 
probability forecast curve is in fact to the left of the climatological distribution as is also found for 2016. 

 
Figure 4.2: Probability of exceedance forecasts for 6 years, for JFM dam levels. The red curves represent the climatological 
probability distribution of JFM dam levels, and the green curves the predicted probability distributions for each year. The 
vertical dashed lines represent the category thresholds. The letters A, B and N in the top left-hand corner of each panel 
represent the observed categories per year. 

 
Probability of exceedance forecasts for JFM downstream flow are shown in Figure 4.3. Here it seems that all 
of the probability forecast curves are in agreement with the observed outcome, except for 2013 when the 
forecast curve favoured above-normal downstream flow outcomes when it was found to have been below-
normal. As with the dam levels, there is a good agreement between the probability forecast curve and the 
observed outcome for the strong La Niña event of 2011 and the strong El Niño event of 2016. Figure 4.4 shows 
the downstream flow forecasts for the JFM season. Very similar outcomes are found between the forecasts 
and outcomes for JFM (Figure 4.3) and the outcomes for FMA (Figure 4.4). 
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Figure 4.3: As for Figure 4.2, bur for JFM downstream flow.

Figure 4.4: As for Figure 2, but for FMA downstream flow.
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4.5 CONCLUSIONS 

We have used the skilful models identified earlier to produce probabilistic forecasts over a 10-year test period, 
and then produced tailored forecasts for a 6-year period that contains two El Niño and two La Niña seasons. 
The main conclusions that can be drawn from this chapter are 
 

1. The probability forecasts for JFM dam levels and downstream flows, and the forecasts for FMA 
downstream flows display the attributes of forecast discrimination and reliability.  

2. We have developed a set of tailored forecasts of the most likely outcome of a coming season that can 
provide guidance to a user of the forecasts. 

3. There is some variation among the forecasts, but above-normal (below-normal) levels and flows are 
skilfully predicted during the strong La Niña (El Niño) event of 2011 (2016).   

 
Overall, the skilful models presented in this project should be suitable for operational use. In fact, forecasts for 
Vaal Dam downstream flows have been issued since November 2020. 
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CHAPTER 5: REPORT ON CASE STUDY APPLICATIONS 

5.1 INTRODUCTION 

Chapter 4 presented tailored forecasts for a 6-year period that contains two El Niño and two La Niña seasons. 
The main conclusions drawn from that chapter are that the probability forecasts for JFM dam levels and 
downstream flows, and the forecasts for FMA downstream flows display the attributes of forecast discrimination 
and reliability.  Moreover, there is some variation among the forecasts, but above-normal (below-normal) levels 
and flows are especially skilfully predicted during the strong La Niña (El Niño) event of 2011 (2016).  For this 
deliverable, on case study application, we first expand on the models presented thus far by increasing on the 
forecast lead-times from one to three months, and then test these expanded models over a 10-year 
independent period in terms of their ability to discriminate high (low) dam levels from medium and low (high) 
levels, and high (low) downstream flows from medium and low (high) downstream flows. Finally, we investigate 
which of these models can be used to benefit the users of such forecasts financially. 

5.2 THE MODELLING SET-UP 

As before, antecedent observed rainfall totals in the Vaal Dam catchment are used as predictors for seasonal 
dam levels and downstream flows. We use the same statistical model set up as discussed in the previous 
deliverables in order to generate 10 years of probabilistic forecasts from 2007 to 2016. In addition, in this 
deliverable we introduce forecast lead-times of up to three months ahead. For the JFM downstream and dam 
levels forecasts, the 1-month lead-time forecasts use OND catchment rainfall, SON rainfall for 2-month lead-
times, and ASO rainfall for 3-month lead-time forecasts. The FMA downstream flow forecasts use NDJ 
catchment rainfall for 1-month lead-time forecasts, OND rainfall for 2-month lead-times, and SON rainfall for 
3-month lead-times. 

5.3 ASSESSMENT OF PROBABILISTIC FORECAST SKILL 

Forecast skill is determined for three near equi-probable categories of below-normal, near-normal, and above-
normal, as determined over the 10-year independent test period (2007-2016). For this chapter we will focus 
only on the calculation of relative operating characteristic (ROC) scores in order to test for the attribute of 
discrimination (see an explanation in the previous chapter), and for generalized ROC (GROC) scores. The 
latter is also known as the 2AFC score (Mason and Weigel, 2009), and provides an indication of the forecast 
quality to the general public as well as communicating or transferring changes in forecast quality to officials. 
Therefore, this is a very useful and informative score not only to atmospheric scientists but also to a variety of 
stakeholders, such as Rand Water. Any value above 0.5 (or 50%) for this score indicates a skilful forecast, as 
it is better than purely guessing (Lazenby et al., 2014) 
 
Figures 5.1 and 5.2 respectively represent the ROC scores for the three models (predicting for JFM 
downstream flows and dam levels, and FMA downstream flows) and for the two outer categories of above-
normal levels and flows, and for below-normal levels and flows. ROC scores for the three lead-times are 
presented in these figures, but it is only the ROC scores for 1-month lead-time forecasts that are consistently 
above the threshold of 0.5 for skilful forecasts. This result means that for JFM flows and levels forecasts, one 
can expect skilful forecasts to be produced in early January as soon as the measured OND rainfall figures in 
the catchment have been obtained. Similarly, for FMA flows – skilful forecasts are possible only in early 
February. The GROC scores of Figure 5.3 show a similar verification result, since the scores for all three 
models for the two longer lead-times are all below 0.5. Only 1-month lead-time forecasts have skill. 
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Figure 5.1: ROC scores for the three models predicting above-normal dam levels and downstream flows for JFM and for 
FMA. Scores for all three forecast lead-times considered are shown.

Figure 5.2: As for Figure 5.1, bur for below-normal values.
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Figure 5.3: Generalized ROC scores for the three models and for the three forecast lead-times.

Figure 5.4: Cumulative profits graphs for the three models at 1-month lead-times.
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Figure 5.5: As for Figure 5.4, but for 2-month forecast lead-times
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5.4 CONCLUSIONS 

 
As with the previous chapter, we have used the skilful models identified earlier to produce probabilistic 
forecasts over a 10-year test period, but this time for 1-, 2- and 3-month lead-times. We then compared the 
ROC and GROC scores of the models and their lead-times. Then we introduced additional forecast 
performance evaluation in terms of its quality to the general public and its monetary value. The main 
conclusions that can be drawn from this deliverable are 
 

1. Forecast skill in terms of the models’ discrimination attributes, show that only short lead-times are 
associated with usable skill (i.e. ROC scores are only consistently above 0.5 for 1-month lead-times). 

2. Analysing the GROC scores again show forecasts to only be useful at short lead-times. 
3. Only high skill forecasts may be profitable to a user such as Rand Water, and in this case 1-month 

lead-time forecasts for JFM dam levels. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSION 

 
The project focussed on seasonal predictability of the hydroclimate of the Vaal Dam. The techniques used are 
based on linear theory to test for seasonal predictability by using a range of possible predictors. The predictors 
include tropical SST, output from a coupled climate model, and antecedent rainfall in the catchment. Models 
were initially tested in a deterministic sense that does not consider any uncertainties in the forecasts. This first 
step is necessary in order to obtain an initial understanding of Vaal Dam predictability. However, seasonal 
forecasts are of a probabilistic nature, and so probabilistic forecast verification was also performed. Forecasts 
over a test period displayed attributes of discrimination and reliability, but the best prediction are made by 
using the antecedent rainfall in the catchment and only at short lead-times.  
 
To summarize the results obtained with deterministic forecast models, we have found that:  
 

1. There is a strong link between rainfall in the catchment and dam levels; as well as what happens 
downstream of the dam. This link is less pronounced during winter. 

2. There is also a concurrent link between dam levels and downstream flows, but this link is strongest 
during the second half of summer and during autumn. 

3. Real-time prediction for both dam levels and downstream flows is possible, but the predictability 
demonstrated here is mainly a result of using antecedent rainfall in the catchment as predictor in a 
statistical model, as opposed to using a climate model’s forecasts or SSTs as predictors.  

 
Past studies (see references in this document) have shown that high forecast skill can be obtained in certain 
catchments where ENSO forcing is contributing strongly to seasonal variability. For these cases, the use of 
output from climate models to predict river flows even outscore the use of antecedent rainfall in the catchment 
as predictor. In the Vaal Dam catchment, however, where ENSO forcing is not that strong, the use of climate 
models (and of tropical SST) did not improve on forecast models that use catchment rainfall as predictors. For 
such cases, antecedent rainfall is a critical component in the forecasts systems presented here and 
emphasises the importance of maintaining robust observational networks in the region (and elsewhere).  
 
The three models that we evaluated are those with the highest correlation between forecast and observed and 
they are: 
 

1. OND catchment rainfall predicting JFM dam levels, 
2. OND catchment rainfall predicting JFM downstream flows,   
3. NDJ catchment rainfall predicting FMA downstream flows. 

 
A significant conclusion to be drawn here is that predictability is restricted to the second half of summer, going 
into autumn. This result is to be expected for models where antecedent rainfall is the best predictor. In a 
catchment where no or very little rainfall is usually received during winter and spring, rainfall during these 
seasons is subsequently not a good indicator of what is to be expected later on in the season. 
 
The models’ probabilistic forecast capabilities was tested over a 10-year test period and for extended lead-
times. The main conclusions that can be drawn from probabilistic skill assessments are: 
 

1. Forecast skill in terms of the models’ discrimination attributes, show that only short lead-times are 
associated with usable skill. 
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2. Only high skill forecasts may be profitable to a forecast user, and in this case short lead-time forecasts 
and in particular for JFM dam levels. 

 
This result is potentially a caveat that may result in such forecasts not being used by the dam’s managers, 
especially if longer lead-time forecasts are required for optimal decision-making. There does not seem to be 
any value in making forecasts at short lead-times (we defined 1-month lead times here, but in fact it is less 
than that since the observed rainfall of the season used as predictor is only available in the first week of the 
season being predicted.  
 
The work did not only focus on modelling but included a meeting with Rand Water. After our meeting, the 
following main conclusions may be drawn: 
 

1. Although Rand Water does not manage the operations at the Vaal Dam, the added information that 
the forecast models can potentially provide will be of interest and benefit to them. 

2. The meeting has resulted in Rand Water becoming aware of the forecasts that we produce on a 
monthly scale; and it is clear that they are interested in water quality fluctuations caused by inundation 
and drought. This gaining of knowledge by both parties is a positive consequence of the co-production 
process we have embarked on during our meeting with them. 

 
Although we did have a meeting with Rand Water when we demonstrated the forecasting capabilities 
developed during the project, we did not develop forecasting systems tailored specific to their needs. However, 
we did make them aware of the predictability identified and they have become aware of the operational 
forecasts of the Vaal Dam being produced at the University of Pretoria. Follow up meetings with Rand Water 
and other invested parties should happen so that the predictability identified here can be further applied and 
forecasting systems further developed in a true co-development process.  

6.2 RECOMMENDATIONS 

 
The work has clearly demonstrated a seasonal forecast capability for the Vaal Dam, given the following 
restrictions: 
 

1. Observed antecedent rainfall in the Vaal Dam catchment is a good predictor in linear statistical models. 
2. Forecasts are mostly skilful mainly during the second half of summer going into autumn. 
3. Forecasts work best, and can be used at lowest risk, only at very short lead-times. 

 
Since forecasts for the second half of summer, going into autumn, have been shown to be skilful, the planning 
of water release downstream can benefit from such forecasts, albeit at a short lead-time. The observation that 
high rainfall totals may have been observed during summer over the catchment can help with such planning. 
However, the forecast models presented here are not able to provide guidance on hydro-climate variability 
during spring or during winter. Sophisticated hydrological models should be configured to see if they can assist 
with seasonal forecasts for the Vaal Dam during these seasons and also to see if such models can improve 
on the forecasts presented here. Until such time, simple linear models may be the only viable way to make 
skilful seasonal forecasts for the Vaal Dam. 
 
Given these limitations, it is important that modellers should (atmospheric and hydrologists) more actively 
engage with the dam’s managers in order to start a process of co-development of seasonal forecast products 
most suitable for improved decision-making in areas where climate variability affects dam fluctuations.  
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