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EXECUTIVE SUMMARY 

 

1. MOTIVATION 

 

Cyanobacterial blooms and their effects are widespread, frequent and typically seasonal. The 

increasing number of events of cyanobacterial blooms in South African impoundments and rivers 

is a cause of concern to the Department of Water Affairs and Forestry (Van Ginkel & Conradie, 

2001; Harding & Paxton, 2001; Downing & Van Ginkel, 2002; Van Ginkel, 2003).  

 

Potable drinking water facilities often wait for problems to occur before they initiate 

interventions to protect users from exposure to potentially toxic events in hypertrophic 

impoundments. This lack of decision support tools to managers, to be prepared to managing 

cyanobacteria and algae bloom events, has been a problem throughout South Africa and 

especially at smaller drinking water facilities. The Ecological Society of America has decided in 

2004 that uniformity and training in such tools, namely ecological informatics, is one of the main 

aims of the society.  

 

Ecological Informatics is defined as interdisciplinary framework promoting the use of advanced 

computational technology for the elucidation of principles of information processing at and 

between all levels of complexity of ecosystems – from genes to ecological networks – and aiding 

transparent decision-making in relation to important issues in ecology such as sustainability, 

biodiversity and global warming. Biologically-inspired computation techniques such as fuzzy 

logic, cellular automata, artificial neural networks, evolutionary algorithms and adaptive agents 

are considered as core concepts of ecological informatics www.waite.adelaide.edu.au/ISEI/. 

 

The use of ecological informatics models is limited in South Africa and a visit of Prof. 

Recknagel, and the Eutrophication Management Workshop, highlighted the potential for the 

application of ecological inspired models. The technology of these models is advanced and their 

applicability to South African ecological systems has not yet been investigated fully.  

 

It is imperative to improve South Africa’s predictive capabilities and the use of these models on 

South African data will determine the applicability of it to South African ecosystems. This 

project will address the application of these models in the management of cyanobacterial blooms 

in South African conditions.  



iv 
 

The preliminary testing of the model SALMO and the preliminary results of the pattern analysis 

by non-supervised artificial neural networks on data from Roodeplaat Dam emphasized the need 

to investigate the full potential use of these models and that the application of these models may 

be highly applicable to South African conditions.  

 
The Department of Water affairs and Forestry has data available for a number of impoundments 

that can be used to test different models for application as management tools in the National 

Eutrophication Monitoring Programme. The outcome of the project will benefit South Africa 

nationally and locally because the application of the models will have been tested on South 

African resource data. Local capacity to use and apply these models will be improved after an 

Ecological Informatics Workshop and the applicability to other ecosystems have been made 

known to other researchers in South Africa. A cyanobacterial bloom prediction tool to be used by 

local water resource managers will be one of the major outcomes of the project. The model 

application will improve our knowledge regarding the limnological conditions within and the 

management of eutrophication in South African dams. 

 

Hypothesis 

 

A number of hypotheses were set before the commencement of the study to be included in the 

investigation and the development of a predictive tool for harmful algal blooms: 

 

1) A holistic approach is required to accommodate different levels of external (climate) and 

internal (trophic linkages and benthic-pelagic coupling) variability and their interactions. 

Therefore, the integration of biological and meteorological information is needed to 

understand and estimate the consequences of climate variations on the development of 

toxic cyanobacterial blooms.  

 

A detailed literature survey was done to determine the most important physical, chemical 

and biological factors in the development of harmful algal blooms. The literature survey 

also investigated the potential impact of climatic conditions on the development of 

harmful algal blooms, with special reference to cyanobacteria, which is the largest 

noxious phytoplankton problem within South African fresh water systems. 
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This hypothesis also led to the inclusion of a number of climatic variables in the 

statistical analysis of the collected data, to determine the potential use of climatic 

variables in predicting harmful algal blooms. 

 

2. A water body is one entity and when a cyanobacterial bloom does occur, there are toxins 

to be found in the system. 

 

This hypothesis aimed to investigate the distribution and potential for toxic cyanobacteria 

that may impact on recreational users, even though the regular sampling site does not 

indicate any or low cyanobacterial toxicity within the water column. 

 

3. Ecological Modelling methods are available to be tested and used to predict harmful algal 

blooms. 

 

This hypothesis was tested and proved to be quite applicable in the hypertrophic 

reservoirs of South Africa. 

 

2. OBJECTIVES 

 

1. To write a comprehensive literature review on the use of various methods to predict algal 

blooms and the application of these tools.  

 

2. To collect and collate an extensive dataset of five eutrophic impoundments in South 

Africa containing climatological data, physical and chemical data. 

 

3. To adapt the deterministic SALMO OO model for application as an algal bloom 

prediction tool for use by local water resource managers and potable water treatment 

works.  

 

4. To apply ecological informatics in the field of algal bloom prediction. 

 

5. Organise an Ecological Informatics Workshop to make known the cyanobacterial toxin 

prediction tool and to expand South African knowledge on the application of artificial 

neural network modelling and evolutionary algorithim approaches in ecosystem research 
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3. RESULTS AND DISCUSSION 

 

The hypertrophic reservoirs, Bon Accord, Hartbeespoort, Klipvoor, Rietvlei and Roodeplaat, 

situated in South Africa are, warm monomictic reservoirs, downstream of the most populated 

areas of South Africa. These reservoirs are known to experience annual cyanobacterial blooms of 

especially, the toxin producing cyanobacterium, Microcystis aeruginosa. These reservoirs lie 

within similar climatic conditions, with warm wet summers and dry, fairly cold winters. With this 

study in mind, five years of monitoring to determine the phytoplankton community trends and the 

presence of cyanobacterial toxins was initiated. During these five years Hartbeespoort and 

Roodeplaat were dominated primarily by Microcystis aeruginosa. Bon Accord, Klipvoor and 

Rietvlei reservoirs experienced both Microcystis aeruginosa and Ceratium hirundinella  blooms 

annually. 

 

Total microcystin (TM) concentrations were found to be orders of a magnitude higher in South 

Africa (> 10 000 ug/L) than in other countries (between 10 ug/L and 100 ug/L). The presence of 

TMs in all the reservoirs was primarily associated with the dominance and blooms of Microcystis 

aeruginosa. The depth distribution of the toxins measured in the Hartbeespoort and Roodeplaat 

Reservoirs indicated that during the periods of excessive Microcystis aeruginosa biovolume, 

toxins are often found all the way through the water column. 

 

Multivariate analyses of the reservoir’s data indicated that the five reservoirs are similar in both 

algal community and physico-chemical variables. The multivariate analyses showed that of the 

environmental factors, temperature is the most important factor, and can be used as an indicator 

of climatic conditions, in the development of cyanobacteria biovolume in these systems. Other 

environmental variables important to the development of algal blooms are dissolved inorganic 

phosphorous (DIP), dissolved inorganic nitrogen (DIN), the DIN:DIP ratio; total phosphorous 

(TP), total nitrogen (TN) and Chl a concentration. 

 

A number of generic and deterministic ecological models were tested on the data to determine 

their applicability for predicting harmful algal blooms in hypertrophic reservoirs in the northern 

central parts of South African. A summary of the key findings are as follows: 
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1) The relatively simple Vollenweider model is easy to apply and provides a manager with a 

quick answer. Relatively little information is needed to apply the model. It also provides 

the manager with the possibility of testing different management scenarios. 

 

2) The simulation library SALMO-OO allows forecasting abundances of cyanobacteria, 

green algae and diatoms in response to eutrophication control scenarios. It takes the 

complex limnological characteristics of reservoirs into consideration and it supplies the 

manager with a tool to test different management scenarios to assist in decision-making. 

The results were, however, only partly successful with large over and under predictions 

of nutrients and algal groups, even after the growth equations were adapted. 

 

3) Artificial neural network modelling techniques, both the supervised multilayered feed 

forward neural network and the non-supervised self-organising map were tested for the 

applicability to predict algal blooms in South African hypertrophic reservoirs. 

 

The multi-layered feed forward neural network model tested, provides visual predicted 

successes, but the strict tolerances set by the model, to determine acceptable prediction as 

part of the outcome of the model, may be a problem to validate the results and ensure that 

an acceptable amount of good predictions were found. 

 

The Self Organising Mapping (SOM) method technique is applicable to investigate 

before and after impact scenarios. This is more of a knowledge development tool than a 

predictive tool. 

 

4) Finally, the Hybrid Evolutionary Algorithm (HEA) method was used to develop 

algorithms for algal bloom prediction. The RULE set discovery by HEA was tested on 

long-term data in three reservoirs using different scenarios of real time, 7-days forward, 

14-days forward, 21-days forward and 28-days forward forecasting respectively of the 

abundance of the cyanobacterium, Microcystis aeruginosa. The developed rule sets are 

highly applicable to the hypertrophic reservoirs of South Africa. These methods however 

need, to be tested in other South African reservoirs to determine the applicability under 

different trophic status and different climatic conditions. 

 



viii 
 

The same method was used to develop a real time algorithm for the dinoflagellate, 

Ceratium hirundinella. The developed RULE set was then tested on the data of two 

“unseen” reservoirs (Bon Accord and Klipvoor) that both experienced extreme Ceratium 

hirundinella blooms during the study period. This application was found to be highly 

applicable to these reservoirs. This suggests that the developed RULE set may potentially 

also be applicable to reservoirs in other climatic areas of South Africa. 

 

Recommendations: 

 

The study showed that eutrophication and the associated problems is a real threat to South 

African fresh water resources but that modelling methods do exist to assist in managing the 

problem. The list of recommendations needs to be taken further by a number of stakeholders, e.g. 

the Department of Water Affairs and Forestry, future CMAs, Universities and other researchers: 

 

a) The project determined the necessary variables and institutions should monitor these 

variables for future modelling exercises.  

b) Include total microcystin monitoring in impacted fresh water resources at least during the 

summer periods to enable resource managers to issue warnings to all potentially impacted 

stakeholders. 

c) Initiate and test available management options to minimise serious eutrophication levels 

in South Africa.  

d) Manage the risk imposed by the cyanobacterial blooms and the associated toxins 

produced in the water resources, on drinking water facilities and the health of recreational 

users. 

e) In view of the successes of the modelling results initiate the testing of the developed tool 

in the short-term forecasting, for the algal blooms of Microcystis and Ceratium, to 

develop on-line water quality monitoring for early-warning and real-time forecasting for 

reservoir managers. 

f) The cause and effects of the changing composition of the phytoplankton (increasing 

Dinoflagellate blooms) for these five reservoirs need to be investigated. 

g) Institutions involved in reservoir management or use should monitor at different depths to 

determine the best depth for abstraction for treatment purposes. 
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h) Initiate, develop and maintain capacity in South Africa to use the Hybrid Evolutionary 

Algorithm (HEA) RULE set development in all research spheres, as the method is 

applicable to any type of numerical data. 

 

4. INFORMATION AND KNOWLEDGE DISSEMINATION 

 

4.1 Workshop 

 

As part of the original contract it was agreed to host a workshop in collaboration with Prof 

Friedrich Recknagel and other WRC research programs using similar research techniques. The 

workshop: Applicability of Modeling techniques and Biomanipulation in the aquatic environment 

was held from 28-30 July 2008. The workshop was attended by 50 delegates from different 

companies and institutions in the water related industry. The well-known Ecological Informatics 

Specialist, Prof Friedrech Recknagel from Adelaide University, was the key speaker at the 

workshop. Prof Recknagel has experience in Lake Catchment restoration and management, 

wetlands management and the predictive modelling of aquatic ecosystems. Various other South 

African specialists in the field also attend as speakers, namely Mr M Watson; Dr M Graham, Dr 

W Harding, Dr S Jooste and Mr N Rossow.  

 

4.2 Conferences attended 

 

Bezuidenhoudt, J, Van Ginkel, CE, Du Plessis, S & Van Rensburg, L. Applicability of ANN 

models as a possible early warning tool for algal bloom prediction. Fourth International 

Conference on Environmental Science and Technology, 28-31 July 2008, Houston Texas, USA. 

Paper 

 

4.3 Papers published 

 

VAN GINKEL, CE, SILBERBAUER, M.J., DU PLESSIS, S. AND CARELSEN, CIC (2006). 

Monitoring microcystin toxin and chlorophyll in five South African impoundments. Verh. 

Internat. Verein. Limnol. (29): 1611-1616. 

 

During November 2007 Mrs Van Ginkel submitted in her PhD thesis at the North-West 

University, Potchefstroom. The thesis titled: Investigating the applicability of ecological 
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informatics modelling techniques for predicting harmful algal blooms in hypertrophic reservoirs 

of South Africa, 

 

5. PROJECT CAPACITY DEVELOPMENT 

 

Dr CE van Ginkel obtained her PhD during 2008. Her thesis included all of the work discussed in 

this report. During this research program, Mr Jaco Bezuidenhout significantly expanded his 

expertise in the fields of statistical analyses and modelling. He also had the opportunity to present 

the work he had done at an international conference. 

 

After the workshop, Prof Recknagel and his collaborator Prof Chen from Beijing University, 

Beijing China, agreed to present a short course in Ecosystems modelling at the North West 

University, Potchefstroom as from 2009. The course will be managed by Dr S du Plessis. 



xi 
 

ACKNOWLEDGEMENTS 

 

We wish to acknowledge with thanks the following people for their participation as steering 

committee members as well as those who contributed to the research conducted during this 

program: 

 

Steering Committee: 

Dr S Liphadzi – Chairman 

Dr S Mitchell – WRC 

Prof L van Rensburg – NWU 

Dr S Jooste – DWAF 

Dr N Griffen – RU 

Me L Coetzee – Tshwane Rietvlei 

Me A Swanepoel – Rand Water 

Mr P Venter – DWAF 

 

Dr Friedrich Recknagel and his students, for assistance with the modelling techniques used 

during this study. 

 

Dr Honqging Cao, for her assistance with the use of the HEA modelling techniques. 

Chris Carelsen, Alice le Grange, Doris le Roux and Rika Schillack, the biological laboratory 

personnel of Resource Quality Services, for their continued dedication in providing the data 

for the project. 

 

The monitoring personnel of Resource Quality Services, Alfred Seloana and Johannes Phetla, 

for their monitoring of all the sampling sites of the study, on a regular basis. 

 

Marica Easmus, that was always willing to provide the requested data during the Australian 

visits. 



xii 
 



xiii 
 

TABLE OF CONTENTS 

 

Executive Summary  iii 
Acknowledgements  xi 
List of Figures    xiv 
List of Tables  xix 
List of Abbreviations  xxi 
CHAPTER 1: INTRODUCTION 1 
CHAPTER 2: MODELLING METHODS 4 
2.1 Vollenweider Model 4 
2.2 SALMO-00 Model 5 
2.3 Artificial Neural Networks 8 
2.3.1 Multilayered Feed forward Neural Network (MFNN) 8 
2.3.1.1 NeuroSolutions 5.04  10 
2.3.1.2 Forecaster XL   10 
2.3.2 Self-Organising Map (SOM) 11 
2.4 Rule Development by Hybrid Evolutionary Algorithms (HEA) 13 
CHAPTER 3: MODELLING RESULTS 18 
3.1 Vollenweider Model  18 
3.2 Lake Simulation Library of SALMO-00 20 
3.3 Artificial Neural Networks 24 
3.3.1 Multilayered Feed forward Neural Networks (MFNN) 24 
3.3.1.1 NeuroSolutions 5.04  24 
3.3.1.2 Forecaster XL   26 
3.3.1.3 Comparison of the Forecaster XL experiments 54 
3.3.2 Self-Organising Map (SOM) 58 
3.4 Rule Set Development by Hybrid Evolutionary Algorithms 61 
3.4.1 Experiment 1: Real-time prediction simulation and rule-set discovery for  
 Microcystis including Chl a as an environmental factor 62 
3.4.2 Experiment 2: Real-time prediction simulation and rule-set discovery for  

Microcystis excluding Chl a as an environmental variable 67 
3.4.3 Experiment 3: 7-Days-forward prediction simulation and rule set discovery  

for Microcystis  71 
3.4.4 Experiment 4: 14-Days-forward prediction simulation and rule set discovery  
 for Microcystis  75 
3.4.5 Experiment 5: 21-Days-forward prediction simulation and rule set discovery 

for Microcystis  79 
3.4.6 Experiment 6: 28-Days-forward prediction simulation and rule set discovery  

for Microcystis  83 
3.4.7 Experiment 7: Real-Time Simulation and Rule Set Discovery for Ceratium  87 
3.5 Conclusions and evaluation 95 
CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 100 
REFERENCES    105 
 
APPENDICES See attached CD 
 



 

xiv 
 

LIST OF FIGURES 

Figure 1 The structure of the supervised MFNN as used in this study (redrawn  
from Recknagel et al., 2006). 9 

Figure 2 The structure of the non-supervised SOM for ordination and clustering  
of inputs (redrawn from Recknagel et al., 2006). 11 

Figure 3 The non-supervised SOMs ordination and clustering maps shown as a) a  
distance matrix map and b) a partitioned map (Redrawn from Recknagel  
et al., 2006). 12 

Figure 4 Conceptual diagram of HEA for the discovery of a predictive rule set for 
Microcystis biovolume in three hypertrophic South African reservoirs.  
The same model was used for the real time prediction of the  
dinoflagellate biovolume predictive rule set. 14 

Figure 5 Flow chart showing the process of HEA (redrawn from Cao et al., 2006) 15 
Figure 6 Comparison of output results (line) with real measured data (markers)  

for the Hartbeespoort Reservoir with the original SALMO-00 growth  
and grazing equations; and with the adaptation of the growth and grazing  
equations from Arhonditsis and Brett (AB) (2005). Zooplankton is part  
of the model output and is thus included in the graph, although no  
zooplankton data was available.    21 

Figure 7 Comparison of output results (line) with real measured data (markers) for  
the Klipvoor Reservoir with the original SALMO-00 growth and grazing 
equations; and with the adaptation of the growth and grazing equations  
from Arhonditsis and Brett (AB) (2005). Zooplankton is part of the  
model output and is thus included in the graph, although no  
zooplankton data was available.    22 

Figure 8 Comparison of output results (line) with real measured data (markers) f 
or the Roodeplaat Reservoir with the original SALMO-00 growth and  
grazing equations; and with the adaptation of the growth and grazing  
equations from Arhonditsis and Brett (AB) (2005). Zooplankton is part  
of the model output and is thus included in the graph, although no  
zooplankton data was available.    23 

Figure 9 Results from the NeuroSolutions 5.04 ANN for the cyanotoxin producing  
group (CTTot exp), showing real time forecasting on the Roodeplaat  
Dam data.    25 

Figure 10 Results from the NeuroSolutions 5.04 ANN for the Non-CT producing  
group (TotNONCT), showing real time forecasting (pink line) versus  
the actual data (blue line).    26 

Figure 11 Actual (orange line) versus forecasted (blue line) results for Non-CT  
producing group bio-volume using only environmental variables and  
Chl a concentration as input with the Forecaster XL ANN software  
package    27 

Figure 12 Percentage contributions of measured environmental parameters and  
Chl a concentration to ANN prediction for the Non-CT group in the  
Hartbeespoort Dam.    28 

Figure 13 Actual (orange line) versus forecasted (blue line) results for CT` 
producing group using only environmental variables and Chl a  
concentration as inputs for the Forecaster XL ANN Software package  
on the Hartbeespoort Dam data.    29 



 

xv 
 

Figure 14 Percentage contributions of measured environmental parameters and  
Chl a concentration to ANN prediction of the CT group. 31 

Figure 15 Actual (orange line) versus forecasted (blue line) results for the  
Non-CT producing group using algal dominance, environmental variables  
and Chl a concentration as inputs for the Forecaster XL ANN  
Software package. 32 

Figure 16 Percentage contributions of algal dominance, selected environmental  
parameters and Chl a concentration to ANN prediction for the  
Non-CT group. 33 

Figure 17 Actual (orange line) versus forecasted (blue line) results for the CT  
producing group using algal dominance, selected environmental  
variables and Chl a concentration as inputs for the Forecaster  
XL ANN Software package. 34 

Figure 18 Percentage contributions of algal dominance, selected environmental  
parameters and Chl a concentration to ANN prediction for the CT group. 35 

Figure 19 Actual (orange line) versus forecasted (blue line) results for the  
Non-CT producing group using environmental variables and  
Chl a concentrationas inputs for the Forecaster XL ANN Software  
package. 36 

Figure 20 Percentage contributions of selected environmental parameters and  
Chl a concentration to ANN prediction for the Non-CT group. 37 

Figure 21 Actual (orange line) versus forecasted (blue line) results for the  
CT producing group using only environmental variables as inputs for  
the Forecaster XL ANN Software package. 39 

Figure 22 Percentage contributions of selected environmental parameters and  
Chl a concentration to ANN prediction for the CT group. 40 

Figure 23 Actual (orange line) versus forecasted (blue line) results for the  
Non-CT producing group using only environmental variables as  
inputs for the Forecaster XL ANN Software package. 42 

Figure 24 Percentage contributions of algal dominance, selected environmental  
parameters and Chl a concentration to ANN prediction for the  
Non-CT producing group in all the dams. 43 

Figure 25 Actual (orange line) versus forecasted (blue line) results for the  
CT producing algae group using environmental variables and algae 
 counts as inputs for the Forecaster XL ANN Software package. 44 

Figure 26 Percentage contributions of algal dominance data, selected  
environmental parameters and Chl a concentration as result of the  
Forecaster XL forecasting of the CT producing group. 45 

Figure 27 Actual (orange line) versus forecasted (blue line) results for the  
Non-CT producing group using only selected environmental variables  
as inputs for the Forecaster XL ANN Software package. 45 

Figure 28 Percentage contributions of the selected environmental parameters  
to Forecaster XL forecasts for the Non-CT group. 47 

Figure 29 Actual (orange line) versus forecasted (blue line) results for the  
CT producing group using only environmental variables as inputs for the 
Forecaster XL ANN Software package. 49 

Figure 30 Percentage contributions of elected environmental parameters to  
Forecaster XL forecast for the CT producing group. 49 

Figure 31 Actual (orange line) versus forecasted (blue line) results for the  
Non-CT producing group using only environmental variables and  
algal counts as inputs for the Forecaster XL ANN Software package. 50 



 

xvi 
 

Figure 32 Percentage contributions of algal dominance, selected environmental  
parameters and Chl a concentration to ANN prediction for the  
Non-CT group. 51 

Figure 33 Actual (orange line) versus forecasted (blue line) results for the  
CT producing group using only environmental variables and algal  
counts as inputs for the Forecaster XL ANN Software package. 52 

Figure 34 Percentage contributions of the algal dominance and the selected  
environmental parameters to ANN prediction for the CT group.a 53 

Figure 35 The ordination and clustering map of the PO4-P (DIP) and TP  
concentrations in the Roodeplaat Reservoir for the before and after  
construction of Zeekoegat WWTW that show the changes in the water  
quality. 58 

Figure 36 The ordination and clustering map of the Chl a compared to the  
Chlorophyta dominance in the Roodeplaat Reservoir for the before 
and after construction of Zeekoegat WWTW that show the changes  
in the water quality. 59 

Figure 37 The ordination and clustering map of the Chl a compared to the  
Cyanophyta dominance in the Roodeplaat Reservoir for the before 
and after construction of Zeekoegat WWTW that show the changes  
in the water quality. 60 

Figure 38 The ordination and clustering map of the Chl a compared to the diatom  
dominance in the Roodeplaat Reservoir for the before and after  
construction of Zeekoegat WWTW that show the changes in the  
water quality. 61 

Figure 39 Training results of the real-time forecasting of Microcystis biovolume  
including Chl a as an environmental variable in the Hartbeespoort,  
Rietvlei and Roodeplaat reservoirs during the development of the  
rule set for HEA Experiment 1. 63 

Figure 40 Testing results of the real-time forecasting of Microcystis biovolume  
(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs  
using the rule set as shown in Figure 41 64 

Figure 41 Sensitivity analysis of the input data for the THEN-branch (left)  
and the ELSE-branch (right) of the best developed rule set for real-time  
forecasting of Microcystis biovolume using the median concentrations 
of the most important environmental variables to determine the  
sensitivity of the Microcystis biovolume prediction to each variable. 66 

Figure 42 Training results of the real-time forecasting of Microcystis biovolume  
(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs during  
the development of the best rule set for HEA Experiment 2 that  
excluded Chl a as an environmental factor. 67 

Figure 43 Testing results of the real-time forecasting of Microcystis biovolume  
(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs  
using the best-developed rule set as shown in Figure 44 excluding  
Chl a as an environmental factor. 69 

Figure 44 Sensitivity analysis of the input data for the THEN-branch (left) and  
the ELSE-branch (right) of the best developed rule set for  
real-time forecasting of Microcystis biovolume using the median  
concentrations of the most important environmental variables  
(excluding Chl a) to determine the sensitivity of the Microcystis  
biovolume prediction to each variable. 70 



 

xvii 
 

Figure 45 Training results of the 7-days forward forecasting of Microcystis  
biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs using the developed rule set of experiment 3. 71 

Figure 46 Testing results of the 7-days forward forecasting of Microcystis  
biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs using the best-developed rule set as shown in Figure 43. 72 

Figure 47 Sensitivity analysis of the input data for the THEN-branch (left) and  
the ELSE-branch (right) of the best developed rule set for 7-days  
forward forecasting of Microcystis biovolume using the median  
concentrations of the most important environmental variables to  
determine the sensitivity of the Microcystis biovolume prediction to  
each variable. 73 

Figure 48 Training results of the 14-days forward forecasting of Microcystis  
biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs during the development of the best rule set for HEA  
Experiment 4, including Chl a as an environmental factor. 75 

Figure 49 Testing results of the 14-days ahead forecasting of Microcystis 
 biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs using the best developed RULE set as shown in  
Figure 50 including Chl a as an environmental variable. 76 

Figure 50 Sensitivity analysis of the input data for the THEN-branch (left) and  
the ELSE-branch (right) of the best developed rule set for 14-days  
forward forecasting of Microcystis biovolume using the median  
concentrations of the most important environmental variables to  
determine the sensitivity of the Microcystis biovolume prediction to  
each variable. 77 

Figure 51 Training results of the 21-days ahead forecasting of Microcystis  
biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs during the development of the best rule set for HEA  
Experiment 5 including Chl a as an environmental factor. 79 

Figure 52 Testing results of the 21-days ahead forecasting of Microcystis  
biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs using the best developed rule set as shown in Figure 53  
including Chl a as an environmental variable. 80 

Figure 53 Sensitivity analysis of the input data for the THEN-branch (left) and  
the ELSE-branch (right) of the best developed rule set for 21-days ahead 
forecasting of Microcystis biovolume using the median concentrations  
of the most important environmental variables to determine the  
sensitivity of the Microcystis biovolume prediction to each variable. 81 

Figure 54 Training results of the 28-days ahead forecasting of Microcystis  
biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs during the development of the best rule set for HEA  
Experiment 6 including Chl a as an environmental factor. 83 

Figure 55 Testing results of the 28-days ahead forecasting of Microcystis  
biovolume (MicB) in the Hartbeespoort, Rietvlei and Roodeplaat  
reservoirs using the best developed rule set as shown in Figure 56  
including Chl a as an environmental variable. 84 



 

xviii 
 

Figure 56 Sensitivity analysis of the input data for the THEN-branch (left) and  
the ELSE-branch (right) of the best developed rule set for 28-days  
ahead forecasting of Microcystis biovolume using the median  
oncentrations of the most important environmental variables to  
determine the sensitivity of the Microcystis biovolume prediction to  
each variable. 85 

Figure 57 Training results of the real-time forecasting of Ceratium biovolume  
(DinoB), in the Hartbeespoort, Roodeplaat and Rietvlei reservoirs  
during the development of the best rule set for HEA Experiment 7  
including Chl a as an environmental variable. 88 

Figure 58 Testing results of the real-time forecasting of Ceratium biovolume  
(DinoB), in the Hartbeespoort, Roodeplaat and Rietvlei reservoirs  
using the rule set as shown in Figure 59, including Chl a as an  
environmental variable.. 89 

Figure 59 Sensitivity analysis of the input data for the THEN-branch (left) and  
the ELSE-branch (right) of the rule set for real-time Dinoflagellate  
biovolume forecasting. 90 

Figure 60 Testing of the developed rule set on Bon Accord Dam for real-time  
Dinoflagellate (Ceratium) biovolume forecasting. 92 

Figure 61 Testing of the developed rule set on Klipvoor Dam for real-time  
Ceratium biovolume (DinoB) forecasting. 93 

 



 

xix 
 

LIST OF TABLES 
 

Page No. 
Table 1 Method to determine the constant parameters included for  

the Vollenweider Model.  5 
Table 2 Methods to determine the constant parameters included in SALMO.  6 
Table 3 Methods to determine the input variables included in SALMO.  7 
Table 4 The classification of seasons for the SOM modelling.  13 
Table 5 Parameter settings of the hybrid evolutionary algorithm rule set  

discovery for the Hartbeespoort, Rietvlei and Roodeplaat reservoirs.  16 
Table 6 Input variables for the Vollenweider Model with the results found by  

applying three different management scenarios in the hypertrophic  
Hartbeespoort, Klipvoor and Roodeplaat dams.  19 

Table 7 Summary of the initial neural network results using NeuroSolutions  
for prediction of the cyanotoxin producing group (CTTot exp) and the  
non-cyanotoxin producing group (TotNONCT).  25 

Table 8 A summary of the modelling result output with the Forecaster XL ANN  
software package for the Non-CT producing group using only  
environmental variables and Chl a concentration as inputs. 28 

Table 9 A summary of the modelling result output with the Forecaster XL ANN  
software package for the cyanotoxin (CT) producing group using only 
environmental variables and Chl a concentration as input. 30 

Table 10 A summary of the modelling result output with the Forecaster XL ANN  
software package for the Non-CT producing group using algal  
dominance, environmental variables and Chl a concentration as inputs. 32 

Table 11 A summary of the modelling result output with the Forecaster XL ANN  
software package for the CT producing group using algal dominance, 
environmental variables and Chl a concentration as inputs. 35 

Table 12 A summary of the modelling result output with the Forecaster XL ANN  
software package for the Non-CT producing group using selected  
environmental variables d Chl a as inputs. 37 

Table 13 A summary of the modelling result output with the Forecaster XL ANN  
software package for the CT producing group using selected  
environmental variables and Chl a as inputs. 40 

Table 14 A summary of the modelling results for the Non-CT producing group  
using algal dominance, selected environmental variables and Chl a  
concentration as inputs. 42 

Table 15 A summary of the modelling results for CT producing group using algal 
dominance, selected environmental variables and Chl a concentration  
as inputs. 45 

Table 16 A summary of the modelling results for the Non-CT producing group  
using only environmental variables as inputs. 47 

Table 17 A summary of the modelling results for the CT producing group using  
only the selected environmental variables as inputs. 49 

Table 18 A summary of the modelling results of the Non-CT producing group  
using the selected environmental variables, algal dominance and Chl a 
concentration as inputs. 51 

Table 19 A summary of the modelling results for the CT producing group using  
algal dominance and selected environmental variables as inputs. 53 



 

xx 
 

Table 20 Comparison of the experiments done with the MFF ANN modelling  
results of ForecasterXL showing the average actual errors, the good  
and bad forecasts and the contribution of the environmental, biomass  
and Chl a towards the output of each experiment. 55 

Table 21 Summary of the average actual error (AE), the mean square error (MSE)  
and the relative tolerance of the training and testing data sets of the  
Microcystis biovolume including Chl a as an environmental variable in  
real time rule set development. 64 

Table 22 Summary of the average actual error (AE), the average mean square  
error (MSE) and the relative tolerance of the training and testing data  
sets of the Microcystis biovolume real time rule set development  
excluding Chl a as an environmental variable. 68 

Table 23 Summary of the average actual error (AE), the average mean square  
error (MSE) and the relative tolerance of the training and testing data  
sets of the 7-days forward forecasting of Microcystis biovolume RULE  
set development. 72 

Table 24 Summary of the average actual error (AE), the mean square error (MSE)  
and the relative tolerance of the training and testing data sets of the  
Microcystis biovolume, 14-days ahead RULE set development. 76 

Table 25 Summary of the average actual error (AE), the average mean square  
error (MSE) and the relative tolerance of the training and testing data  
sets of the Microcystis biovolume 21-days ahead rule set development. 80 

Table 26 Summary of the average actual error (AE), the average mean square  
error (MSE) and the relative tolerance of the training and testing data  
sets of the Microcystis biovolume 28-days ahead rule set development. 84 

Table 27 Summary of the average actual error (AE), the average mean square  
error (MSE) and the relative tolerance of the real time training and  
testing data sets of the Ceratium biovolume rule set development. 89 

Table 28 The summarised results from the HEA Experiments, showing the  
correlation coefficient (R2), Root Mean Square Error (RMSE), the  
relative tolerances (10% for training and 30% for testing), the Environmental 
Variables important in Conditions to apply the THEN or ELSE Rule  
set, and the Environmental variables (in order of importance) that was  
used in the developed RULE sets. Experiment 1-6 was the development  
of RULE sets for Microcystis, and Experiment 7 was done for the  
development of a RULE set for the dinoflagellate, Ceratium. 94 



 

xxi 
 

LIST OF ABBREVIATIONS 
 
Alk Total alkalinity as CaCO3 
Ana_B Anabaena biovolume 
Asl above sea level 
ATMax Maximum air temperature on day of sampling 
ATMin Minimum air temperature on day o sampling 
BA Bon Accord 
Ca calcium 
ChlA chlorophyll a 
ChloroBi Chlorophyte biovolume 
ChrysoBi Chrysophyte biovolume 
Cl chloride 
CPV Cumulative percentage variance 
CryptoBi cryptophyte biovolume 
CTMax Maximum cyanobacterial toxin concentration 
CTMean Mean cyanobacterial toxin concentration 
CTMin Minimum cyanobacterial toxin concentration 
CTTot Total cyanotoxin producing group biovolume 
CyanoBio cyanophyte biovolume 
Cyl_B Cylindrospermopsis biovolume 
DIN Dissolved inorganic nitrogen (NO3 + NO2 + NH4 -N) 
DIN:DIP Dissolved inorganic nitrogen to dissolved inorganic 

phosphorous ratio 
DIP Dissolved inorganic phosphorous (measured as PO4-P) 
EC Electrical conductivity 
EV Eigenvalue 
EuglenoB Euglenophyte biovolume 
zeu:zmix euphotic depth: mixing depth ratio 
fsl full supply level 
HBP Hartbeespoort 
HEA Hybrid evolutionary algorithm 
K potassium 
KV Klipvoor 
MATMax14 Mean maximum air temperature 14 days before sampling 
MATMin14 Mean minimum air temperature 14 days before sampling 
MIB 2-methylisoborneol 
Mg magnesium 
Mic_B Microcystis biovolume 
MT Mean daily temperature 
MT5 Mean temperature 0-5m in water column 
Na sodium 
NH3 Ammonia 
Osc_B Oscillatoria biovolume 
OxyDV Oxygen depleted volume 
PCA Primary component analysis. 
pH Is the logarithm of the reciprocal of the concentration of 

free hydrogen ions. It measures the activity of the 
hydrogen ion. 

PhyrrBio Phyrrophyta biovolume (dinoflagellates) 
Pse_B Pseudoanabaena biovolume 



 

xxii 
 

Rad Radiation on day of sampling 
Rad14 Mean Radiation 14days before sampling 
RDA Redundancy analysis 
RDP Roodeplaat 
RV Rietvlei 
Secchi Secchi disc reading 
SO4 Sulphate 
Spec/Env Corr Species and environmental variable correlation 
TDS Total dissolved salts 
Tin14 Total inflow 14 days before sampling 
TM Total microcystin 
TMO Total monthly outflow 
TN Total nitrogen (KN + NO2 + NO3) 
TN:TP Total nitrogen to total phosphorous ratio 
TotNONCT Total non-cyanotoxin producing group biovolume 
TotVol Total volume on day of sampling 
TP Total phosphorous 
TR14 Total rainfall 14 days before sampling 
TV Total variance 
WST Water surface temperature 



 

1 

CHAPTER 1 

 

INTRODUCTION 

 

Worldwide and in South Africa, there seem to be an increase in the frequency of cyanobacterial 

and dinoflagellate blooms recorded (Codd et al., 2005; Guven & Howard, 2006; Harding & 

Paxton, 2001; Van Ginkel et al., 2001). This may be the result of increased eutrophication and/or 

increased and more effective monitoring of phytoplankton in the water resources. A number of 

factors can contribute to the phenomenon, of which the impact of global warning (Burroughs, 

2003; Guven & Howard, 2006; IPCC, 1992; Mitchell, 1991 as quoted by Kunz et al., 1995) and 

the then likely increases in water temperatures (Van Ginkel & Silberbauer, 2007), especially the 

increases in minimum temperatures (Kunz et al., 1995; Mühlenbruch-Tegen, 1992) is but one. 

 

Cyanobacteria blooms, as a symptom of eutrophication, have a notorious reputation to develop 

rapidly in biovolume from obscurity to massive blooms in nutrient enriched systems. It can then 

just as abruptly recede. Some waters exhibit frequent and even sustained aggregations of 

cyanobacteria, while others experience evanescent, but often extremely noxious growth events. A 

significant proportion of cyanobacteria genera produce one or more of a range of cyanotoxins 

(WHO, 1999) and many are associated with taste and odour problems for Water Treatment 

Works (Swanepoel et al., 2007). If water containing high cyanobacterial toxin concentrations is 

ingested (in drinking or in recreational waters), they present a risk to human and animal health 

(Pouria et al., 1998; WHO, 1999). 

 

The hypertrophic reservoirs, Bon Accord, Hartbeespoort, Klipvoor, Rietvlei and Roodeplaat, in 

South Africa are warm, monomictic reservoirs, known to experience annual cyanobacterial 

blooms of the toxin producing Microcystis aeruginosa (Robarts, 1984; NIWR, 1985; Chutter, 

1989; Zohary & Robarts, 1989; Chutter & Rossouw, 1991; Van Ginkel et al., 2000a; Van Ginkel 

et al., 2000b, Harding et al., 2004a). Hartbeespoort, Rietvlei and Roodeplaat reservoirs release 

water to downstream Water Treatment Works that withdrew water for potable use, and this 

presents a potential threat to the health of users. The extent of geosmin, MIB and cyanobacterial 

toxins associated with the cyanobacterial blooms highlighted the need to develop trustworthy 

short and long-term forecasting for hypertrophic systems so that Water Treatment Works can 

prepare for these algal bloom events. 
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These harmful algal/cyanobacterial blooms, often experienced in South African hyper-eutrophic 

fresh water systems, and its unpredictability, usually catch the water resource manager off-guard. 

Toxicity of these blooms is equally unexpected as blooms are not necessary toxic according to the 

literature. The water resource manager needs a modelling tool that can predict harmful bloom 

formation based on physical and chemical characteristics of the impoundment, including climatic 

conditions. 

 

The main aim of this project was to investigate the applicability of ecological infomatics 

modelling techniques to develop a predictive tool for harmful algal blooms in South Africa. This 

will enable water resources managers, managers of water treatment facilities and managers of 

recreational water use to be prepared for harmful algal blooms, e.g. 1) In planning management 

action timeously, 2) in purchasing activated carbon, and 3) To plan recreational activities and 

warn recreational users. 

 

A number of hypotheses were set before the commencement of the study to be included in the 

investigation and the development of a predictive tool for harmful algal blooms: 

 

1.1 In ecological studies a holistic approach is required to understand how ecosystems 

accommodate different levels of external (climate) and internal (trophic linkages and 

benthic-pelagic coupling) variability and their interactions. The integration of biological 

and meteorological information is needed to understand and estimate the consequences of 

climate variations on the development of toxic cyanobacterial blooms.  

 

A detailed literature survey was done to determine the most important physical, chemical 

and biological factors in the development of harmful algal blooms. The literature survey 

also investigated the potential impact of climatic conditions on the development of 

harmful algal blooms, with special reference to cyanobacteria, which is the largest 

noxious phytoplankton problem within South African fresh water systems. 

 

This hypothesis also led to the inclusion of a number of climatic variables in the 

statistical analysis of the collected data, to determine the potential use of climatic 

variables in predicting harmful algal blooms. 
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1.2 A water body is one entity and when a cyanobacterial bloom does occur, there are toxins 

to be found in the system. 

 

This hypothesis aimed to investigate the distribution and potential for toxic cyanobacteria 

that may impact on recreational users, even though the regular sampling site does not 

indicate any or low cyanobacterial toxicity within the water column. 

 

1.3 Various Deterministic and Ecological Modelling methods are available to be tested for 

the applicability to predict harmful algal blooms. 

 

A number of different types of models were tested and variable successes were achieved. 

The Hybrid Evolutionary Algorithms proved to be quite useful to develop algorithms that 

can be used in the prediction of cyanobacterial and algal bloomforming species in the 

hypertrophic reservoirs of South Africa. 

  

Five years (October 2000-September 2005) of data was collected on the above mentioned five 

hypertrophic reservoirs to test the hypothesis and to use in the ecological modelling of blooms of 

harmful algal genera. Climatic variables were included to determine the potential impact of the 

weather patterns on the development of the problem algae/cyanobacteria. Another fourteen years 

of additional data was extracted from the Water Management System (WMS) of the Department 

of Water Affairs and Forestry and was used in the Hybrid Evolutionary Algorithm method to 

develop predictive capability. 
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CHAPTER 2 

 

MODELLING METHODS 

 

2.1 VOLLENWEIDER MODEL 

 

The Vollenweider Model is a simple empirical model based on the relationship between the total 

phosphorus and Chl a measured in a system, rather than understanding the biological processes of 

the system. The Vollenweider model was developed as an eutrophication management tool. It 

does not provide information on the algal or cyanobacterial species that may pose a problem in a 

system (Vollenweider, 1976). 

 

 Chl a = 0.28 * TP0.98       (2.1) 
 

Where Chl a is the predicted mean Chl a concentration in mg/m3 which is equal to ug/L and TP is 

the mean total phosphorus concentration in the early summer measured in mg/m3. 

 

TP = (L * t ) / z * ( 1 / (1+ sqrt ( z ) ))     (2.2) 
 

Where: 

 - L is the specific phosphorus load (mg/m2/year). 

 - t is the water residence time determined as volume/flow. 

 - z is the mean water depth measured in meter and determined as volume/surface area. 

 

Case studies were done for the hypertrophic Hartbeespoort, Klipvoor and Roodeplaat Reservoirs 

looking at different management scenarios as inflow data that is essential for applying the 

Vollenweider Model, was available for these three Reservoirs. Bon Accord and Rietvlei 

Reservoirs were excluded because of a lack of inflow data. 

 

The information needed to do the Vollenweider model is shown in Table 1. 
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Table 1: Method to determine the constant parameters included for the Vollenweider 
Model. 

Parameter Definition Unit Calculation 

TAI Total Annual Inflow m3/year Sum of 365 consecutive daily flows 

MIP Mean In stream PO4-P mg/m3 Annual Average PO4-P concentrations 

MAPL Mean Annual PO4-P load mg/year TAI x MIP 

SA Surface Area m2 Known surface area at full supply level 

PAL Phosphorus Area Load mg/m2/year MAPL/SA 

V Volume m3 Volume at full supply level 

RT Residence Time year V/TAI 

MD Mean depth m V/SA 

TP Mean Annual Total phosphorus ug/l Annual Mean TP concentrations to 

determine the effectiveness and 

applicability of the model 

Chl a Mean Annual Chl a ug/l Annual Mean Chl a concentrations to 

determine the effectiveness and 

applicability of the model 

 

Three management scenarios were investigated, namely a) TP reduction by 50%, b) TP 

elimination by 90%, and c) Doubling of the residence time. 

 

2.2 SALMO MODEL 

 

The SALMO model developed by Bendorf and Recknagel (1982), is a process-based 

deterministic model that uses inflow, PO4-P and NO3-N concentrations in the inflow, solar 

radiation and water temperature to determine phytoplankton biovolume, functional algal groups, 

zooplankton biovolume and oxygen concentrations in the lake. Although only a few input 

variables are considered the model considers a great number of internal control mechanisms. The 

model has been tested on a number of lakes with different trophic states by Bendorf and 

Recknagel (1982). 

 

Constant parameters determinations are shown in Table 2. The number of the first decade of ice 

cover in South Africa is 1, as no ice cover is found. The first four constant parameters are 

basically determining the different seasons, while the other constants indicate the start situation in 

the reservoir regarding biological conditions and nutrient and oxygen concentrations as well as 

the underwater light conditions. 
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Table 2: Methods to determine the constant parameters included in SALMO. 

Parameter Definition Unit Calculation 

STW Number of first decade with ice cover   

VZF Number of first decade after ice cover   

STS Number of first decade with thermocline   

VZH Number of first decade after thermocline   

X1(0), 

X2(0), 

X3(0) 

Biovolume of cyanobacteria on day 1 

Biovolume of diatoms on day 1 

Biovolume of green algae on day 1 

cm3/m3 

cm3/m3 

cm3/m3 

(Chl a x %Cyanobacteria x 0,75) x 3 

(Chl a x %diatoms x 0,75) x 3 

(Chl a x %Chlorophyta x 0,75) x 3 

Z1(0) Biovolume of zooplankton on day 1 cm3/m3 Not available 

D(0) concentration of detritus on day 1 mg/l [Suspended Solids] 

P(0) concentration of PO4-P on day 1 mg/l [PO4-P] 

N(0) concentration of NO3-N on day 1 mg/l [NO3-N] 

O(0) concentration of diss. oxygen on day 1 

 

mg/l Average [DO] for 0-5 m depth 

LTMAX Maximum underwater light transmission  LTMAX = (min – 0.92)/(-0.46) 

min = 4.6 / (1.7*zsecchi) 

 

SALMO-OO data input start with the winter period and the data for Roodeplaat, Hartbeespoort 

and Klipvoor dams for the period July 2003 to June 2004 was prepared as 36decade periods as 

required by SALMO-OO. All the input variables required by SALMO-OO, the units and the 

method of calculation are shown in Table 3. The daily inflows of the Hartbeespoort, Klipvoor and 

Roodeplaat dams were available and it is essential in the model. It was decided to exclude Bon 

Accord and Rietvlei from this section as no flow data, which is essential for the SALMO-OO 

Model, was available. 
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Table 3. Methods to determine the input variables included in SALMO. 

Variable Definition Unit Calculation 

V Total water volume of the whole lake  million m3 Calculate V for total water depth of day 1 of each decade 

by means of the depth to volume relationship 

VE Epilimnion water volume  million m3 Calculate difference of V-VH 

VH Hypolimnion water volume million m3 Calculate VH for hypolimnion depth of day 1 of each 

decade in summer by means of the  depth to volume 

relationship 

ZMIXREAL Maximum water depth of lake during spring, 

autumn and winter  

or 

Depth of thermocline during summer  

m  

 

 

To be determined by depth at which maximum 

temperature difference per meter occurs 

ZMIX Mean mixing depth of total volume 

 

or 

epilimnion 

m Ratio of total volume V to total area during spring, 

autumn and winter 

or 

Ratio of epilimnion volume VE to total area during 

summer 

ZHM Mean mixing depth of hypolimnion m Ratio of hypolimnion volume VH to hypolimnion area 

during summer 

QIN Mean daily flow of streams entering the lake 

surface 

m3/day  

QHIN Portion of the mean flow of streams entering 

the hypolimnion  

m3/day  

QOUT Mean daily outflow from the lake surface m3/day QOUT = ( QIN –(Vi+1 – Vi))/10  

QHOUT Mean daily outflow from the hypolimnion m3/day  

SRF Factor reflecting strong rain events with 

implications for limiting underwater light 

- Absolute maximum ratio of flow measurements of 

consecutive days for each decade: 

abs(max (Qi/Qi-1)) 

I Mean global solar radiation J/cm2 /day  

T Mean water temperature over the lake depth 

or the epilimnion depth 

°C  

TH Mean water temperature over the 

hypolimnion depth 

°C  

PIN Weighted mean PO4-P concentration of 

streams entering the lake  

mg/m3  

NIN Weighted mean NO3-N concentration of 

streams entering the lake 

g/m3  

POMIN Weighted mean detritus concentration of 

streams entering the lake 

g/m3 In-lake suspended solids concentration 

 

A study by Cetin et al. (2005) investigated more process models for algal growth and grazing to 

be implemented in SALMO-OO to determine the applicability of such libraries of different 

growth and grazing equations on the modelling of lake ecosystems of different trophic status and 
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climate. The original SALMO-OO model was used in this study. The growth and grazing 

equations of Arhonditsis and Brett (2005), a model developed for the eutrophic Lake Washington 

(USA), was used additionally to improve the results. The main differences in the two models are 

the maximum photosynthesis rate per day, the half-saturation constant for P uptake by algae, 

phytoplankton settling velocity, optimum temperature for phytoplankton growth and the 

preference factor for each algal functional group. 

 

2.3 ARTIFICIAL NEURAL NETWORKS (ANN) 

 

Neural networks are simple computational tools for examining data and developing models that 

help to identify interesting patterns or structures in the data. The data used to develop these 

models is known as training data. Once a neural network has been exposed to the training data, 

and has learnt the patterns that exist in the data, it can be applied to new data (the testing data) 

thereby achieving a variety of outcomes (Smith, 2002). 

 

The method of ANN has been inspired by the biological nervous system, hence the name of the 

modelling technique. One of the most significant advantages of ANN is their ability to learn from 

a limited set of data. A well-trained and verified ANN for the specific problem at hand recognises 

the data and makes predictions with often desirable accuracy (Karul and Soyupak, 2006). 

However, one has to be wary of the pitfalls of neural networks, e.g. overtraining of a limited data 

set. Where  too much training occurs, the network only memorizes the training set and loses its 

ability to generalize to new data (Mendelsohn, 1993). 

 

Two known types of ANN, a) the multilayered feed forward neural network (MFNN) and b) the 

self-organising map (SOM) were tested and are discussed as part of the study. 

 

2.3.1 Multilayered Feed Forward Neural Network (MFNN) 

 

The multilayered feed forward neural network (MFNN), is an example of a neural network 

trained with supervised learning (Rumelhart & McClelland, 1986). With the models that have 

supervised learning, the data used for training contains the complete information about the 

characteristics of the data and the observable outcome. The study aims at developing a model that 

can learn the relationship between the inputs (the environmental variables) and the outputs (the 

algal groups). The MFNN is trained repeatedly with numerical data of the inputs and the outputs 
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in order to develop a model by learning to represent the relationships correctly (Figure 1). The 

method includes a three layer feed forward neural network. 

 

Figure 1 The structure of the supervised MFNN as used in this study (redrawn from 

Recknagel et al., 2006). 
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The input layer in this study, includes the variables WST, DIP, DIN, DIN:DIP and Chl a. This 

then feeds into the hidden layer (Neuron 1-n), which is fed into the feedback inputs. The final 

layer is the output, in this case the algae group as determined by the input data. 

 

The software package initially selected for the study was NeuroSolutions 5.04, by 

NeuroDimensions Inc. Due to certain limitations encountered during the study, the package 

Forecaster XL, was subsequently selected. Both NeuroSolutions 5.04 and Forecaster XL are 

subsequently discussed. 

 

2.3.1.1 NeuroSolutions 5.04 

 

The multivariate analysis the final set of environmental variables used for the training of the 

artificial neural networks (ANN) included the following measured parameters: water surface 

temperature (WST), dissolved inorganic phosphorous (DIP), dissolved inorganic nitrogen (DIN), 

the DIN:DIP ratio; and Chl a concentration. Furthermore, the community data was grouped into 

cyanotoxin (CT) producers and non-cyanotoxin producers (Non-CT) to simplify the modelling 

process. 

 

2.3.1.2 Forecaster XL 

 

The same data used with NeuroSolutions 5.04 was re-analysed with the Forecaster XL package, 

another MFNN. Firstly, the single dam (Hartbeespoort Dam) data was analysed (Experiment 1-4). 

Secondly, the analysis was done on the five reservoirs data (Experiment 5-12). In both these 

investigations, three approaches were followed to attempt the best fit and to determine the 

usefulness of the modelling techniques to South African Reservoirs and the importance of the 

main variables on the outcome of the model. 

a) Firstly, prediction of the algae blooms with only the environmental variables 

included and without the measured algae dominance, and 

b) Secondly, including the environmental variables as well as the algae dominance data. 

c) Thirdly, including the environmental variables, algal dominance and Chl a. 

 

The cyanobacteria were divided into two different groups, namely the Non-cyanotoxin group 

(Non-CT) and the Cyanotoxin producing group (CT). The Non-CT group included species like 
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Pseudoanabaena and Merismopedia. The CT group included all the known cyanobacterial toxin 

producers, e.g. Microcystis, Anabaena, Oscillatoria and Cylindrospermopsis. 

 

2.3.2 Self-Organising Map (SOM) 

 

The second type of neural network investigated is the self-organizing map (SOM). SOM is the 

most common example of a neural network, trained with un-supervised learning, and was 

developed by Kohonen (1982; 1988). The SOM requires that the data contain inputs that describe 

the characteristics of the variables or fields. The SOM then learns to ordinate and cluster or 

segment the data based on the similarities and differences of the input variables only (Smith, 

2002, Recknagel et al., 2006). 

 

Figure 2 The structure of the non-supervised SOM for ordination and clustering of inputs 

(redrawn from Recknagel et al., 2006) 

 

The SOM also has an input layer with the known variables and a hidden layer where the 

ordination and clustering are created with the mapping of the clustered output as the output layer 

(Figure 2). 

 

The learning process, in the hidden layer, is roughly as follows: 

a) It initialises the weights for each output unit; 
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b) It cycles until weight changes are negligible for each input pattern (by presenting the 

input pattern, finding the winning output unit, finding all units in the neighbourhood of 

the winner and update the weight vectors for all those units; and 

c)  It reduces the size of neighbourhoods if required (Kohonen, 2007). 

 

The non-supervised SOM as introduced by Kohonen (1982, 1988) was applied to the before and 

after impact data sets to ordinate, cluster and map the nutrients, Chl a and algal groups with 

respect to seasons to determine if significant changes took place since the establishment of the 

Zeekoegat WCW that discharge directly into the Roodeplaat Reservoir. 

 

The result of the training of the non-supervised SOM, by means of the normalised input data the 

Euclidean distance between the inputs, is calculated and then visualised as a distance matrix (the 

U matrix – Fig. 3a) and a partition map (K-means) (See Fig. 3b).  

 

Figure 3 The non-supervised SOMs ordination and clustering maps shown as a) a distance 

matrix map and b) a partitioned map (Redrawn from Recknagel et al., 2006) 

 

 

The criteria for the ordination of the seasons are shown in Table 4 and were selected using the air 

temperatures. 
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Table 4 The classification of seasons for the SOM modelling  

Classification Criteria Period 

Summer November-March 

Autumn April-May 

Winter June-July 

Spring August-October 

 

2.4 Rule development by Hybrid Evolutionary Algorithms (HEA) 

 

The bi-weekly data from three reservoirs, the Hartbeespoort, Rietvlei and Roodeplaat reservoirs 

for the period 1991 to 2004 were used. Simple linear interpolations were done with each data 

variable from each reservoir to create daily data sets. These interpolated data sets for the 

Hartbeespoort, Rietvlei and Roodeplaat Reservoirs were merged because of the similarity in 

hypertrophic and climatic conditions and because the CANOCO analysis showed that, there was 

no distinct difference between the studied hypertrophic systems. For this study the data training 

were done with data from 1991 to 2003, and 1993 and 2004 were used for testing the rule sets, 

giving a total of 36 years for training and 6 years for testing. These two years were chosen 

because the extent of Microcystis dominance was low in 1993 and high in 2004 in the 

Hartbeespoort Reservoir. This enables the modeller to determine if the extent of high values and 

low values can be correctly forecasted (Recknagel, 2006, Pers. Comm.). 

 

A number of experiments were done to determine the potential to use the developed rule set for 

prediction of real time forecasting of Microcystis, 7-days, 14-days, 21-days and 28-days ahead 

forecasting including Chl a as one of the environmental variables. One experiment was done to 

determine the rule set when Chl a, was not included as environmental variable. Similarly, the 

method was also used to develop a rule set for the real time forecasting of the dinoflagellate, 

Ceratium, a species that is becoming increasingly a nuisance within the studied reservoirs.  

 

The evolutionary algorithm (EA) methods mimics processes of biological evolution, natural 

selection and genetic variation. The method uses genetic operators and the ‘survival of the fittest’ 

principle to search for suitable representations of a problem solution (Cao et al., 2006). The 

ability of the method to apply self-organization, self-learning, intrinsic parallelism and generality, 

enables EAs to be applied to recognize patterns, predict outcomes, optimize control and do 

parallel processing (Goldberg, 1989; Bäck et al., 1997). 
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The basic framework of the rule discovery for Microcystis biovolume in hypertrophic South 

African reservoirs is represented in Fig 4. The detailed algorithm for the rule discovery and 

parameter optimization by HEA is the same as used by Cao et al. (2006) (Fig 5). 

 

Figure 4 Conceptual diagram of HEA for the discovery of a predictive rule set for 

Microcystis biovolume in three hypertrophic South African reservoirs. The same 

model was used for the real time prediction of the dinoflagellate biovolume 

predictive rule set. 

 

Genetic programming (GP) is used in the HEA to generate and optimize the structure of rule sets. 

The genetic algorithm (GA) is used to optimize the parameters of the rule set. GP computer 

programs are represented as parse trees, where a branch node represents an element from the 

functions set (this can be arithmetic operators, logic operators and elementary functions of at least 

one argument). A leaf node can be an element from a terminal set (this can be variables, constants 

and functions of no arguments) (Muttil and Lee, 2005; Cao et al., 2006). With each run of the 

program the results are evaluated by means of ‘fitness cases’. Fitter results are selected for 

recombination to create the next generation by using the genetic operators, e.g. crossover and 

mutation. These steps are repeated for consecutive generations until the criteria for termination of 

the program are met. A general genetic algorithm is then used to optimize the random parameters 

in the rule set. 
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Figure 5 Flow chart showing the process of the HEA (redrawn from Cao et al., 2006). 

 

The rule sets are expressed in an IF THEN/ELSE tree format and are simplified as discussed in 

Cao et al., 2006. This allows for the development of the rule set to consider and make provision 

for different conditions within the data set. The model output includes a list of the variables used 

within each run, as well as the list of outcomes and the effectiveness of each run (Appendix A). 

 

For the experimental programming using HEA, the Hartbeespoort, Rietvlei and Roodeplaat 

reservoirs data was used to do real time prediction for Microcystis and the dinoflagellate, 

Ceratium. These two species were selected because they formed the major blooms in the five 

reservoirs. Experiments 1, 3, 4, 5, 6 were run to model real-time, 7-days forward, 14-days 

forward, 21-days forward and 28-days forward for the prediction of the seasonal succession of 

Microcystis. The daily input data of the following variables: TP, DIP, Secchi depth, pH, TN, DIN, 

Tsurf, Chl a and Microcystis biovolume were used.  
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The data preparation for the forwards experiments were done by shifting the daily algae 

biovolume data backwards the number of days that are shown in the forward prediction. Training 

was then done on this data set. 

 

In Experiment 2 Chl a was omitted as an environmental variable to see if a reliable rule set could 

be developed without the Chl a as indicator of biovolume. In Experiment 7 a rule-set was 

developed for the dinoflagellate, Ceratium. The daily input data of the following variables: TP, 

DIP, Secchi depth, pH, SO4, TN, DIN, Tsurf, Chl a, and dinoflagellate biovolume were used. For 

the application of HEA during this study an initial population of 200, a maximum of 100 

generations and 20 runs were done on the data set. The experiment was performed on a Hydra 

supercomputer (IBM eServer 1350 Linux) with a peak speed of 1.2 TFlops using C++ 

programming language. The parameter settings are listed in Table 5. 

 

Table 5   Parameter settings of the hybrid evolutionary algorithm rule set discovery for the 

Hartbeespoort, Rietvlei and Roodeplaat reservoirs 

 

To validate the results of the rule sets the correlation coefficient of the measured and fitted data 

and the Root Mean Square Error (RMSE) of the training error, and the testing error are provided 

as outcomes of the model. The RMSE are calculated as follows: 

 

 

 

         (2.3) 

Where m is the number, of testing data points, yi and ŷi are the ith observation and the ith 

predicted value of the output variable Microcystis/dinoflagellate biovolume. 
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More validation was done on the best rule set for every Experiment by determining the Average 

Actual Error (A AE) and the Mean Square Error (MSE) by conventional methods. 

 

To consider the impurities between the actual measurements and the predicted values in the 

model outcome the Relative Tolerance was set at 10% for the training data and 30% for the 

testing set, to determine the percentage good and bad predictions within each best rule set for the 

training and the testing data sets of each experiment. The formula, used to determine the Relative 

Tolerance, is shown in formula 5.5 and 5.6 (Greenberg, 2003). 

  

   │v-V│ ≤ τr│V│+ τa 

(2.5) 

 

Where V is the measured value, v the predicted value, τr is the Relative Tolerance and τa is the 

Absolute Tolerance. 

 

However, when the measured value V = 0, then  

│v│≤ τ0,  

        (5.6) 

Where τ0 = 3. This Tolerance is pre-determined to be an acceptable outcome of the model. 

 

Sensitivity analysis for each environmental variable, used in the RULE set, was done by 

determining the biovolume outcome if an environmental variable changes stepwise within the 

range of the data for the specific variable. This was done for each variable used in a rule set. The 

median of the other variables used in a rule set, was used to determine the impact of a specific 

environmental variable. The impact on the biovolume outcome of the environmental variables 

used within each rule set was plotted together to verify the most important variable regarding the 

effect and greatest impact on the algal biovolume changes. The greater the slope, the greater is the 

impact on the outcome of the model. 
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CHAPTER 3 

 

MODELLING RESULTS 

 

3.1 VOLLENWEIDER MODEL 

 

The Vollenweider model is an easy to apply empirical model but does not take all the biological 

processes, into consideration. The model assumes that the system is in a steady state when 

Thornton and Walmsley (1981) tested the Vollenweider (1976) and Dillen and Rigler (1974) 

models on South African conditions, it was found that there is a certain degree of potential for 

predicting the steady state of a system. 

 

This model was developed for eutrophication management purposes and can be used to determine 

the trophic conditions within a system, and allows the modeller to apply quick management 

scenarios.  

 

Table 6 shows that for the Hartbeespoort Dam, the model over-predicts the TP concentrations by 

28.0% and under-predicts the Chl a concentration with 68.1%. In the Klipvoor and Roodeplaat 

dams, the model under estimated the TP concentration with 78.8% and 29.8% respectively. The 

Chl a concentrations was under-estimated in the Klipvoor Dam by only 5.8% and in the 

Roodeplaat Dam, an over estimation of Chl a of 26.5% was found. There is therefore no 

uniformity in the predictions between these three Reservoirs. However, IETC (2000) maintains 

that this model can have uncertainties from as low as 30% up to 300%. This may be quite 

acceptable because of the differences that may exist between these reservoirs. The acceptable 

discrepancies that are allowed are much higher than the 10% to 30% that are acceptable for the 

Forecaster XL ANN model that was tested with the data from the hypertrophic South African 

reservoirs. 

 

The scenarios were randomly selected to test different scenarios and to show what the potential 

outcome of management actions can be. The 50% P elimination (Table 6) showed that there will 

be a significant reduction in the predicted TP, Chl a, and PO4-P concentrations. This may be 

enough to improve the hypertrophic status to eutrophic in all three the reservoirs. The 90% 

elimination of P may change the reservoirs water quality into an oligotrophic state. This may not 

be achievable due to potential costs involved and it must be kept in mind that there may be 
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uncertainties between 30% and 300%, especially if the under prediction in the case of the 

Klipvoor Dam is considered.  

 

The Vollenweider Model is, therefore, still quite a usable tool for managers, but the potential 

discrepancies must be kept in mind when this model is used. It is a useful tool when a system is 

fairly unknown and little data is available to assist the manager in making decisions regarding 

such a system. 

 

Table 6 Input variables for the Vollenweider Model with the results found by applying 

three different management scenarios in the hypertrophic Hartbeespoort, 

Klipvoor and Roodeplaat dams. 

Input Variable/Scenarios Hartbeespoort Klipvoor Roodeplaat 

TAI (m3/year) 
985270000 113426870 63850000 

MIP (mg/m3) 
373 742 369 

MAPL (mg/year) 
367505710000 84162737540 23554999558 

SA (m2) 
20624100 7580000 3970000 

PAL (mg/ m2/year) 
17819 11103 5933 

V (m3) 
194637710 43800000 41900000 

RT (year) 
0.20 0.39 0.66 

MD (m) 
9 6 11 

TP (ug/L) 
101 751 205 

Chl a (ug/L) 
123 142 33.2 

PO4-P (ug/L) 
52.1 50 112 

Predicted Reference concentrations TP: 130 

Chl a: 39.2 

PO4-P: 43.5 

TP: 159 

Chl a: 47.1 

PO4-P: 52.9 

TP: 144 

Chl a: 42.0 

PO4-P: 48.1 

Scenario P Elimination 50% TP: 65 

Chl a: 20.9 

PO4-P:21.7 

TP: 79 

Chl a: 24.9 

PO4-P: 26.5 

TP: 72 

Chl a: 22.9 

PO4-P: 24.0 

Scenario P Elimination 90% TP: 13 

Chl a: 6.3 

PO4-P: 4.3 

TP: 16 

Chl a: 7.1 

PO4-P: 5.3 

TP: 15 

Chl a: 6.7 

PO4-P: 4.8 

Scenario Doubling the residence time TP: 264 

Chl a: 76.6 

PO4-P: 88.0 

TP: 164 

Chl a: 48.7 

PO4-P: 54.8 

TP: 88 

Chl a: 27.3 

PO4-P: 29.3 
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3.2 Lake simulation library SALMO-OO 

 

The results discussed here will focus on the outputs from the SALMO-OO model and the 

improvements made by replacing the original SALMO-OO growth model by the growth model of 

Arhonditsis and Brett (2005) for Lake Washington. The simulation library SALMO-OO 

developed by the object-oriented implementation of the lake ecosystem model SALMO-OO 

(Recknagel and Benndorf, 1982; Benndorf and Recknagel, 1982; Recknagel et al., 1995) is the 

core of a lake simulation library, implemented within JAVA. It provides optional access to 

alternative causal representations of ecological processes in lakes such as photosynthesis and 

respiration of diatoms, green and blue-green algae; grazing of diatoms, green and blue-green 

algae by zooplankton; growth of herbivorous zooplankton, and predation of zooplankton by 

planktivorous fish. Alternative process representations were adopted from published lake 

ecosystem models different to SALMO such as Park et al. (1974), Hongping and Jianyi (2002), 

and Arhonditsis and Brett (2005). 

 

The original SALMO-OO over-estimated the phosphorus and total algal population in 

Hartbeespoort and Roodeplaat Reservoirs (Fig 6 & 8). The actual and forecasted results for the 

Klipvoor Reservoir were much closer, although a certain period during 2003 in Klipvoor was 

over-estimated (Fig 7). The correlation coefficients of all three of the reservoirs between the 

measured and predicted variables was low and does not seem to reflect the conditions in the 

reservoirs, with the original SALMO-OO (Fig 6-Fig 8). 

 

The application of the Arhonditsis and Brett (2005) growth equation in SALMO-OO did reduce 

the errors. In the Hartbeespoort Reservoir the fitted PO4-P concentrations were much closer to the 

actual measured data, and the RMSE was improved from 79.67 to 37.67 (Fig. 6), however, the 

measured and predicted peaks did not correspond well. With SALMO-OO the total algal 

biovolume of the Hartbeespoort were slightly over-estimated and there was an improvement of 

the RMSE from 24.18 to 19.87, after the application of the Arhonditsis and Brett (2005) equation. 
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Figure 6 Comparison of output results (line) with real measured data (markers) for the 

Hartbeespoort Reservoir with the original SALMO-OO growth and grazing 

equations; and with the adaptation of the growth and grazing equations from 

Arhonditsis and Brett (AB) (2005). Zooplankton is part of the model output and 

is thus included in the graph, although no zooplankton data was available. 
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Figure 7 Comparison of output results (line) with real measured data (markers) for the 

Klipvoor Reservoir with the original SALMO-OO growth and grazing equations; 

and with the adaptation of the growth and grazing equations from Arhonditsis 

and Brett (AB) (2005). Zooplankton is part of the model output and is thus 

included in the graph, although no zooplankton data was available. 
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Figure 8 Comparison of output results (line) with real measured data (markers) for the 

Roodeplaat Reservoir with the original SALMO-OO growth and grazing 

equations; and with the adaptation of the growth and grazing equations from 

Arhonditsis and Brett (AB) (2005). Zooplankton is part of the model output and 

is thus included in the graph, although no zooplankton data was available. 
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3.3 Artificial Neural Networks 

 

The artificial neural networks (ANN) are a black box approach where the modeller does not know 

what is happening within the hidden layer of the model. The modeller does not need to know the 

complex characteristics within a water system to apply the model. However, the results can be 

quite accurate regarding the prediction of the outcomes. The outcomes of the model, despite the 

black box approach, can add insight as weights are allocated to the environmental variables in 

predictions. This supplies the modeller with the most important environmental variables in 

predicting algal biomass and blooms.  

 

3.3.1 Results with Multilayered Feed forward Neural Network 

 

3.3.1.1 NeuroSolutions 5.04 

 

Originally, data from Roodeplaat Dam was modelled with the ANN (NeuroSolutions 5.04). This 

modelling package achieved very good results. The results using this model are summarized in 

Table 7. The package was able to achieve 93.75% accuracy with the cyanotoxin producing group 

(CTTot exp) and 90 % accuracy with the non-cyanotoxin (TotNONCT) producing group. A 

graphical representation of the results is presented in Figure 9 and Figure 10. 

 

The normalised mean square error (NMSE) and the mean square error (MSE) are the performance 

measurements used to determine the accuracy of the model. The NeuroSolutions gives both the 

MSE and the NMSE as well as the mean actual error (MAE). The smaller these values the more 

accurate the prediction results. According to Velickov (2004), the NMSE is dimensionless and 

provides a better indicator for the error measurement since it is normalised by the error of the 

observed data. The r-value as indicated in Table 7 shows that there was a very good correlation 

between the predicted and the measured data. However, the minimum and maximum absolute 

errors do show that there are potentially, large uncertainties in the outcomes.  

 

Attempts were made to construct the solution equation, using NeuroSolutions 5.04 and other 

packages. However, the main disadvantage of ANN modelling is that it is a black box approach, 

and the developed algorithm, that provides the output of the model, could not be determined. 

However, it must be kept in mind that the aim of the study was to test the applicability of the 



 

25 

models for harmful algal bloom prediction, and not to develop improved knowledge of the 

models as such.  

 

The final step was to include the data from all the reservoirs in the training data set and leave one 

reservoir out for testing the model. 

 

Table 7: Summary of the initial neural network results using NeuroSolutions for 

prediction of the cyanotoxin producing group (CTTot exp) and the non-

cyanotoxin producing group (TotNONCT). 

Performance CTTot exp TotNONCT 

MSE 225.9431157 1088.47948 

NMSE 0.024515995 0.011171232 

MAE 12.91183814 21.47676731 

Min Abs Error 0.597656353 0.136831959 

Max Abs Error 33.21688555 142.0277588 

r 0.987846519 0.994490043 

Percent Correct 93.75 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Results from the NeuroSolutions 5.04 ANN for the cyanotoxin producing group 

(CTTot exp), showing real time forecasting on the Roodeplaat Dam data. 
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Figure 10 Results from the NeuroSolutions 5.04 ANN for the Non-CT producing group 

(TotNONCT), showing real time forecasting (pink line) versus the actual data 

(blue line). 

 

3.3.1.2 Forecaster XL 

 

At first only the data from Hartbeespoort Dam was modelled with the ANN (Forecaster XL). This 

modelling package achieved very good results and gave a better understanding of the results 

because of the build in verification. For each experiment, the results from this model are 

summarized in two graphs and a table, showing the errors and the relative tolerances of the 

training and testing data set. The percentage relative tolerance of the prediction versus actual data 

in the modelling package for the training set is 10%, and with the testing data set 30%. The model 

is, therefore, quite strict with itself in accepting the efficiency of the model. 

 

At the end of this section a summary of the results are shown. This is done to compare the 

outcome of the experiments and to compare the important variables to be included in modelling 

the forecasts for the cyanotoxin producing cyanobacteria (CT) and the non-cyanotoxin producing 

cyanobacteria (Non-CT) groups. 
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Modelling using data from a single dam 

 

Experiment 1: Non-cyanotoxin producer (Non-CT) group with only selected environment 

variables as input (single dam) 

 

Using only the measured environmental variables for the period 2000 to 2005 for the modelling 

exercise, the following results were obtained. The r2 value was 0.9595 and the correlation was 

0.9807. Figure 11 shows the actual measurements against the forecasted results for the Non-CT 

producing group. The results show that the forecasted results do occasionally over, or under 

predict, yet have very good correlations as mentioned. According to the results in Table 8, the 

number of good results is 0, which means that more than a 30% error was found within predicting 

and comparing all the test results. 

 

 

 

Figure 11 Actual (orange line) versus forecast (blue line) results for Non-CT producing 

group biovolume using only environmental variables and Chl a concentration as 

input with the Forecaster XL ANN software package. 
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Table 8 A summary of the modelling result output with the Forecaster XL ANN software 

package for the Non-CT producing group using only environmental variables and 

Chl a concentration as inputs. 

 Training set Test set 

# of rows: 30 6 

CCR: n/a n/a 

Average AE: 46.791955 62.012307 

Average MSE: 3862.6524 4339.2413 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 5 (17%) 0 (0%) 

# of Bad forecasts: 25 (83%) 6 (100%) 

 

One of the excellent features of this model is the graph that shows the percentage of importance 

of each variable that are used in forecasting the outcomes. Fig. 12 shows that with this first 

modelling attempt Chl a, was by far the most important variable in determining the outcomes of 

the modelling results. 

Figure 12 Percentage contributions of measured environmental parameters and Chl a 

concentration to ANN prediction for the Non-CT group in the Hartbeespoort 

Dam. 
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Secondly, the DIP concentration, and thirdly, the WST contributed to the outcome of the model. 

These results, therefore, indicate that the initial biomass is the most important determinant for 

future bloom development. Next are the nutrients, specifically in the form of DIP, and thirdly, the 

WST as a climate indicator in determining the forecasting of cyanobacterial biovolume. 

 

Experiment 2: Cyanotoxin producer (CT) group with only selected environment variables as 

input (single dam) 

 

In this second experiment with Forecaster XL only the selected environmental variables (See 

Section 4.2.5) were used to achieve results with predictive capacity for the CT group of the 

phytoplankton community. The correlation coefficient (r2) value was 0.2746 and the correlation 

was 0.5620. The periods of dominance by the CT group was forecasted quite well although there 

are a number of over and under predictions (Fig. 13). 

 

 

 

Figure 13 Actual (orange line) versus forecasted (blue line) results for CT`producing group 

using only environmental variables and Chl a concentration as inputs for the 

Forecaster XL ANN Software package on the Hartbeespoort Dam data. 
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This is still not accurate enough for the model as the average MSE and the average actual error 

(AE) for the testing set was much higher than with the training set. 

 

In this instance the results show that in predicting the CT group the most important environmental 

variable is WST with a 60.91% contribution to the modelling success and secondly the DIP with 

a contribution of 18.17% (Fig. 14). DIN:DIP and DIN is also showing more importance (8.303% 

and 7.028% respectively) in the contribution to the outcome of the modelling results than the 

initial biomass, as indicated by the Chl a concentration. Multivariate analyses has shown that 

WST, as the climatic indicator, (See Section 4.2.5) is the most important environmental variable. 

The importance of phosphorous and the DIN:DIP ratio is in accordance with existing literature 

(Vollenweider, 1990; Rossouw, 2000; Rossouw and Görgens, 2005). 

 

Table 9 A summary of the modelling result output with the Forecaster XL ANN software 

package for the cyanotoxin (CT) producing group using only environmental 

variables and Chl a concentration as input. 

  Training set Test set 

# of rows: 30 6 

CCR: n/a n/a 

Average AE: 23.211721 102.33326 

Average MSE: 1731.8002 31450.745 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 2 (7%) 3 (50%) 

# of Bad forecasts: 28 (93%) 3 (50%) 

 



 

31 

Figure 14 Percentage contributions of measured environmental parameters and Chl a 

concentration to ANN prediction of the CT group. 

 

 

Experiment 3: Non-Cyanotoxin producer (Non-CT) group algae dominance, Chl a 

concentration and environment variables as input to the Forexter XL model 

(single dam) 

 

With this experiment, the algal dominance was included in the modelling together with the 

measured environmental variables and the Chl a concentration to determine the predictive 

capacity for the Non-CT group. The actual data is the measured data, while the forecasted data is 

the predicted outcome of the model. The r2 value was 0.9963 and the correlation was 0.9982. The 

results are shown in Fig. 15. 
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Figure 15 Actual (orange line) versus forecasted (blue line) results for the Non-CT 

producing group using algal dominance, environmental variables and Chl a concentration as 

inputs for the Forecaster XL ANN Software package. 

 

 

Table 10 A summary of the modelling result output with the Forecaster XL ANN software 

package for the Non-CT producing group using algal dominance, environmental 

variables and Chl a concentration as inputs. 

 

  Training set Test set 

# of rows: 30 6 

CCR: n/a n/a 

Average AE: 13.922402 23.618138 

Average MSE: 293.51034 692.71795 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 7 (23%) 2 (33%) 

# of Bad forecasts: 23 (77%) 4 (67%) 
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Figure 16 Percentage contributions of algal dominance, selected environmental parameters 

and Chl a concentration to ANN prediction for the Non-CT group. 

 

The results with experiment 3 indicate that with the inclusion of the algal group dominance the 

average actual error (Average AE) is much smaller than with the previous results (Table 10). 

The number of good predictions with the training set is only 23%, but the 10% tolerance might be 

too strict. With the testing dataset the percentage good predictions for the Non-CT group is 33%. 

This is much higher than what was found with Experiment 1. 

 

The most important variables in the prediction of the Non-CT group are again Chl a, with an 

importance of 76.822% (Fig. 16). Secondly, the dominance determination of the total Non-CT 

groups that was added in this experiment was used and the importance of the input was 16.188%. 

Thirdly, the CT group dominance values were used and had an importance of 4.643%. Fourthly, 

the WST had an importance of only 1.588%. 

 

With experiment 3, the nutrient components did not feature as important factors in determining 

the algal group contribution in the phytoplankton community. There are two ways of looking at 

the results. Firstly, it may indicate that including the Chl a concentration as a variable in the 

Forecaster XL model, minimises the effect of the selected environmental variables for forecasting 

purposes. Secondly, it may indicate that the Chl a concentration as an indicator of the 

biomass/biovolume is closely related to the specific species dominant in the system. 
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Experiment 4: Cyanotoxin producer (CT) group algae counts and environment variables as input 

(single dam) 

 

Using the measured environmental variables together with the algal group dominance in the 

reservoir the results shown in Fig. 17 were obtained. The r2 value was 0.9843 and the correlation 

was 0.9932. The correlations show, therefore, good results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Actual (orange line) versus forecasted (blue line) results for the CT producing 

group using algal dominance, selected environmental variables and Chl a concentration as inputs 

for the Forecaster XL ANN Software package. 

 

The summary of the modelling results is shown in Table 11. The results show that the average 

actual error (Average AE) is much lower than any of the previous results (Experiments 1-3). This 

indicates that the results are significant. However, the tolerance values for the training set are 

again not within the acceptable tolerance of the model of 10%. Only 37% of the results fall within 

the 10% tolerance limit. With the training data set, only 17% good forecasts are within the 

tolerance limit of 30%. 
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Table 11 A summary of the modelling result output with the Forecaster XL ANN software 

package for the CT producing group using algal dominance, environmental 

variables and Chl a concentration as inputs. 

 

  Training set Test set 

# of rows: 30 6 

CCR: n/a n/a 

Average AE: 6.5620637 17.712396 

Average MSE: 88.862874 421.084 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 11 (37%) 1 (17%) 

# of Bad forecasts: 19 (63%) 5 (83%) 

 

Figure 18 Percentage contributions of algal dominance, selected environmental parameters 

and Chl a concentration to ANN prediction for the CT group. 

 

The percentage contribution of the selected environmental and biological components that were 

used as input for experiment 4 to predict the CT group, are shown in Fig. 18. In this experiment 
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the total CT dominance contributed 94.501% to the outcomes of the results. This is basically 

using the forecasted variable to predict itself. WST was the second most important contributor to 

the outcomes with only 4.481% contribution and the DIP contributes only 0.524%. In this 

instance the DIN:DIP ratio did not contribute at all to the outcome of the model. 

 

Modelling using data from all the dams 

 

With the combining of all the dams’ data, the experiments were again repeated as with the single 

dam data to determine if the outcomes are consistent with the first four experiments. 

 

Experiment 5: Non-cyanotoxin producer (Non-CT) group with selected environment variables 

as input (all dams) 

 

With Experiment 5, only the measured environmental variables were used as input into the model 

and the results obtained are shown in Fig. 19. The r2 value was 0.9331 and the correlation was 

0.9684. The correlation values indicate very good results and there is a linear relationship 

between the actual data and the forecasted data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Actual (orange line) versus forecasted (blue line) results for the Non-CT 

producing group using environmental variables and Chl a concentration as inputs 

for the Forecaster XL ANN Software package. 
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The Average AE (Table 12) is low and indicates that the results indicate good results. However, 

the number of good results with both the training dataset (13%) and with the testing dataset (17%) 

is not acceptable. 

 

Table 12 A summary of the modelling result output with the Forecaster XL ANN software 

package for the Non-CT producing group using selected environmental variables 

d Chl a as inputs. 

 

 

Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 136.34151 140.71186 

Average MSE: 42747.538 54454.783 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 18 (13%) 5 (17%) 

# of Bad forecasts: 124 (87%) 24 (83%) 
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Figure 20 Percentage contributions of selected environmental parameters and Chl a 

concentration to ANN prediction for the Non-CT group. 
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Fig. 20 shows the percentage contribution of the measured and input variables to determine the 

Non-CT group’s forecasts. As indicated, the main contribution to the outcome is the Chl a 

concentration. Secondly, the DIN:DIP ratio contributed 32.717%. Thirdly, the DIN 

concentrations contributed 13.857% to the outcomes of the model. Fourthly, the WST contributed 

12.208%. These results show that nitrogen may be more important than phosphorus in the 

forecasting of the Non-CT group of the phytoplankton community. 

 

Experiment 5 (all dams) can be compared to Experiment 1 (single dam). For both experiments, 

the Chl a concentration is the dominant variable that determines the outcome. Secondly, the 

nutrients are important. However, for the single dam the DIP concentration is more important, 

while the combination of the data from the different dams shows that DIN is the more important 

of the two nutrients. For modelling the combined dams, the DIN:DIP ratio is more pronounced 

than with the single dam. 

 

Experiment 6: Cyanotoxin producer (CT) group with only selected environment variables and 

Chl a concentration as input (all dams) 

 

In Experiment 6 the environmental variables and the Chl a concentration were used as input into 

the model. The actual and forecasted results are shown in Fig. 21. The r2 value was 0.6866 and 

the correlation was 0.8311, which indicate good correlation between the actual and forecasted 

data. 
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Figure 21 Actual (orange line) versus forecasted (blue line) results for the CT producing 

group using only environmental variables as inputs for the Forecaster XL ANN 

Software package. 

 

The results shown in Table 13, show that here are larger errors than before, and this makes the 

model outcome not acceptable. The number of good forecasts for the training dataset is 11% and 

for the testing dataset was only 17%. Again, one needs to look at the tolerance level and 

determine whether the model is not too strict regarding the percentage tolerance allowed. It may 

also indicate that increasing the dataset do not necessarily improve the results. 
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Table 13 A summary of the modelling result output with the Forecaster XL ANN software 

package for the CT producing group using selected environmental variables and Chl a as inputs. 

 

  Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 66.752897 142.20048 

Average MSE: 8735.5117 118584.66 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 15 (11%) 5 (17%) 

# of Bad forecasts: 127 (89%) 24 (83%) 

 

 

Figure 22 Percentage contributions of selected environmental parameters and Chl a 

concentration to ANN prediction for the CT group. 

 

In the outcome of this modelling experiment the most important contributing variables (Fig. 22) 

are the DIN concentrations (44.621%), then the Chl a concentration (26.121% and lastly the WST 

values (22.999%). However, all the input variables were used to determine the result. 
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When the results of single dam experiment (Experiment 2) are compared to Experiment 6 (all 

dams), there is no trend in the important variables that determine the outcome of the forecast. For 

the single dam, the most important variable is temperature that contributes over 60% towards the 

outcome of the results. The DIP concentration is the second most important variable for the single 

dam scenario. In Experiment 6 the DIN concentration is the most important environmental 

variable, contributing more than 40% towards the outcome of the results. The Chl a concentration 

and the DIN concentration is almost equally important, contributing over 20% towards the 

outcome of the results. 

 

Experiment 7: Non-Cyanotoxin producer (Non-CT) group using algae dominance, selected 

environment variables and Chl a concentration as input (all dams) 

 

In Experiment 7, to forecast the Non-CT group the selected environmental variables, the algal 

dominance and the Chl a concentration were used as the input to the model. The results obtained 

are shown in Fig. 23. The r2 value was 0.9863 and the correlation was 0.9932. This indicates an 

extremely good correlation between the actual and the forecasted datasets. 

 

In Table 14, there is a summary of the modelling results regarding the extent of the errors, the 

tolerance type and the number of good and bad forecasts according to the model. Results show 

that the average actual error is 65 for the training dataset and 86 for the testing dataset. The 

number of good forecasts in the training set is 18% and for the testing data set 28%. Within the 

tolerance levels of 10% and 30%, respectively this is quite acceptable. 
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Figure 23 Actual (orange line) versus forecasted (blue line) results for the Non-CT 

producing group using only environmental variables as inputs for the Forecaster 

XL ANN Software package. 

 

 

 

Table 14 A summary of the modelling results for the Non-CT producing group using algal 

dominance, selected environmental variables and Chl a concentration as inputs. 

 

  Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 64.584469 85.779019 

Average MSE: 8357.8507 13143.261 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 25 (18%) 8 (28%) 

# of Bad forecasts: 117 (82%) 21 (72%) 
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Figure 24 Percentage contributions of algal dominance, selected environmental parameters 

and Chl a concentration to ANN prediction for the Non-CT producing group in 

all the dams. 

 

Results (Fig. 24) show that the environmental parameters that contribute most to the outcomes of 

the model are the Non-CT counts (56.58% and the Chl a concentration (40.447%). The CT algal 

counts contribute only 1.987% to the outcome. All the other input variables contribute very little 

to the outcomes of the model and the suggestion is that these variables are not important in 

establishing the Non-CT group contribution to the phytoplankton community. 

 

Experiment 7 (for all dams) when compared to Experiment 3 (for the single dam) indicates that 

the Chl a concentration and the Non-CT dominance are important in forecasting real time 

outcomes of both the experiments. This indicates that the use of both these variables may not be 

applicable for future use. 
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Experiment 8: Cyanotoxin producer (CT) group algae counts and environment variables as input 

(all dams) 

 

In Experiment 8 to forecast the CT Group, algae dominance, the selected environmental variables 

together with the Chl a concentration were used as input into the model. The results obtained are 

shown in Fig. 25. The r2 value was 0.9911 and the correlation was 0.9962. This correlation is 

extremely good and statistically highly significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 Actual (orange line) versus forecasted (blue line) results for the CT producing 

algae group using environmental variables and algae counts as inputs for the 

Forecaster XL ANN Software package. 

 

 

The results of the model as shown in Table 15 also show that the model predicts the outcomes 

very well as the average actual error is very small and the average mean square error (MSE) is 

lower than any of the experiments before. The number of good forecasts has increased to 38% for 

the training dataset and to 52% with the testing dataset. 
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Table 15 A summary of the modelling results for CT producing group using algal 

dominance, selected environmental variables and Chl a concentration as inputs. 

 

  Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 12.951232 8.2859074 

Average MSE: 889.96353 239.1688 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 54 (38%) 15 (52%) 

# of Bad forecasts: 88 (62%) 14 (48%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 Percentage contributions of algal dominance data, selected environmental 

parameters and Chl a concentration as result of the Forecaster XL forecasting of 

the CT producing group. 

 

In Fig. 26 it is shown that the CT group counts contributed 92.305% to the outcomes of the 

model. The Chl a concentrations contributed 6.377% and the non-CT group counts 0.721% to the 

outcomes.  

0.028%

0.001%

0.280%

0.289%

6.377%

92.305%

0.721%

0% 20% 40% 60% 80% 100%

WST

DIP

DIN

NP_Ratio

ChlA

CT

NonCT

DIN:DIP 



 

46 

This shows that it is basically the CT counts itself that are used to predict the CT biovolume and 

this is not quite what one would want from a prediction model. Other factors, e.g. the 

environmental variables, need to contribute towards the successful forecasts of the outcome 

variable. 

 

When Experiment 8 (all dams) is compared to Experiment 4 (single dam), the CT biovolume 

contribute in both instances over 90% to the outcome of the forecast. In the case of Experiment 4 

the WST is an important environmental variable contributing to the results, while in the case of 

Experiment 8 the Chl a concentration is more important. 

 

Experiment 9: Non-Cyanotoxin producer (Non-CT) group environment variables, chlorophyll 

omitted, as input (all dams) 

 

In Experiment 9 the input variables used were only the measured environmental variables. Both 

the algae counts, and the Chl a concentrations, were omitted from the input variables. The results 

obtained are shown in Fig. 27. The r2 value was 0.3973 and the correlation was 0.7233. This is 

not such a good correlation, however, the fact that the Chl a, and the algal counts have been left 

out as input variables makes it more usable as forecasting tool. 

Figure 27 Actual (orange line) versus forecasted (blue line) results for the Non-CT 

producing group using only selected environmental variables as inputs for the 

Forecaster XL ANN Software package. 
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The errors and tolerances used in the model are shown in Table 16. The training dataset and the 

testing dataset errors were not as good as with experiment 8, but are still acceptable within the 

variability of the results. However, the number of good forecasts in the training set is only 6% 

and for the testing data set only 17%. 

 

Table 16 A summary of the modelling results for the Non-CT producing group using only 

environmental variables as inputs. 

 

  Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 266.95715 484.59321 

Average MSE: 238219.96 1281396.3 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 9 (6%) 5 (17%) 

# of Bad forecasts: 133 (94%) 24 (83%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 Percentage contributions of the selected environmental parameters to Forecaster 

XL forecasts for the Non-CT group. 
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In this case, where only the environmental variables were used as input to the model, the 

DIN:DIP ratio contributes 68.499% to the outcome(non-CT group) of the model (Fig. 28). This is 

contradictory to Chutter & Rossouw (1991) that suggests that the N:P ratio is a driving force for 

the presence of the CT group. The other environmental variables that contribute to the outcome 

are the DIN concentrations with a contribution of 16.546% and the WST with a contribution of 

14.217%. The DIP concentrations indicate that only 0.738% of the outcome is caused by the 

contribution of DIP. Therefore, these results show that the driving forces behind the forecasts of 

the non-CT group are the N:P ration, DIN concentrations and the WST at a given time. 

 

Experiment 10: Cyanotoxin producer (CT) group environment variables, Chl a omitted, as input 

(all dams) 

 

In Experiment 10, the algae counts and the Chl a, concentrations are not included as input 

variables. Only the measured environmental variables are used as input into the model and the 

results obtained are shown in Figure 29. The r2 value was 0.4681 and the correlation was 0.7018.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Actual (orange line) versus forecasted (blue line) results for the CT producing 

group using only environmental variables as inputs for the Forecaster XL ANN 

Software package. 

 

The errors and the tolerances of the results of the model for Experiment 10 are shown in  

Table 17. The average actual errors (AE) may be within acceptable limits but the average MSE 
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are quite high. The number of good forecasts according to the model is only 12% in the training 

dataset and 10% for the testing dataset. 

 

Table 17 A summary of the modelling results for the CT producing group using only the 

selected environmental variables as inputs. 

 

  Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 90.393001 171.97215 

Average MSE: 41676.174 69798.824 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 17 (12%) 3 (10%) 

# of Bad forecasts: 125 (88%) 26 (90%) 

Figure 30 Percentage contributions of selected environmental parameters to Forecaster XL 

forecast for the CT producing group. 

 

In the forecast of the CT group, using only the selected environmental variables as input it is 

shown in Fig. 30 that the DIP concentrations contributed most to the model’s outcome. The 
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second most important environmental variable was the DIN concentrations with a contribution of 

9.004%. This indicates the importance of the nutrients in forecasting the composition of the algal 

community. It seems that the DIP is the most important environmental variable in determining the 

presence of the CT group. The WST is also important in the outcome of the model by predicting 

the CT Group. With this experiment the N:P ratio was the least important variable in predicting 

the CT Group. 

 

Experiment 11: Prediction of the Non-cyanotoxin producer (Non-CT) group including 

environment variables and algae dominance; chlorophyll omitted, as input (all 

dams) 

 

In Experiment 11 the Chl a concentrations are not included as input variables. Only the measured 

environmental variables and the algae dominance are used as input into the model and the results 

obtained are shown in Fig. 31. The r2 value was 0.9799 and the correlation was 0.9904. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Actual (orange line) versus forecasted (blue line) results for the Non-CT 

producing group using only environmental variables and algal counts as inputs 

for the Forecaster XL ANN Software package. 

 

The errors and the tolerances of the results of the model for Experiment 11 are shown in  

Table 18. The average actual errors (AE) may be within acceptable limits but the average MSE 
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are quite high. The number of good forecasts according to the model is only 17% in the training 

dataset and 24% for the testing dataset. 

 

Table 18 A summary of the modelling results of the Non-CT producing group using the 

selected environmental variables, algal dominance and Chl a concentration as 

inputs. 

  Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 79.179105 73.15253 

Average MSE: 14788.918 6900.0463 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 24 (17%) 7 (24%) 

# of Bad forecasts: 118 (83%) 22 (76%) 

Figure 32 Percentage contributions of algal dominance, selected environmental parameters 

and Chl a concentration to ANN prediction for the Non-CT group. 

 

In the forecast of the Non-CT group using only the environmental variables and algal dominance 

as inputs, it is shown in Fig. 32 that the algal dominance contributed most (97.128%) to the model 
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outcome. The second most important environmental variable was the N:P ratio (1.452%) and 

thirdly, the DIN concentrations contribute 1.110%. The WST is used in determining the outcome 

of the model by predicting the Non-CT Group, however the contribution is very small. This 

indicates that the DIN concentrations may be more important in the development and forecasting 

of the Non-CT group. 

 

Experiment 12: Prediction of the Cyanotoxin producer (CT) group including the environment 

variables and algae dominance; chlorophyll omitted, as input (all dams) 

 

In Experiment 12 the Chl a concentrations are not included as input variables. Only the measured 

environmental variables and the algae counts are used as input into the model and the results 

obtained are shown in Figure 33. There is very little distinction between the actual and predicted 

values. The r2 value was 0.9811 and the correlation was 0.9911. This is a very good correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 Actual (orange line) versus forecasted (blue line) results for the CT producing 

group using only environmental variables and algal counts as inputs for the 

Forecaster XL ANN Software package. 

 

The errors and the tolerances of the results of the model for Experiment 12 are shown in  

Table 19. The average actual errors (AE) may and the average MSE are quite high. The number 

of good forecasts according to the model is 20% in the training dataset and 31% for the testing 
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dataset. The acceptance of a 30% tolerance is quite strict and does not give very acceptable 

results. 

 

Table 19 A summary of the modelling results for the CT producing group using algal 

dominance and selected environmental variables as inputs. 

  Training set Test set 

# of rows: 142 29 

CCR: n/a n/a 

Average AE: 30.124946 32.220362 

Average MSE: 1597.2205 1915.5839 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

# of Good forecasts: 28 (20%) 9 (31%) 

# of Bad forecasts: 114 (80%) 20 (69%) 

 

Figure 34 Percentage contributions of the algal dominance and the selected environmental 

parameters to ANN prediction for the CT group. 

 

In the forecast of the Cyanotoxin group using the environmental variables and algal dominance as 

inputs it is shown in Fig. 34 that the algal dominance contributed most (98.659%) to the model 
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outcome. The second most important environmental variable is the WST (1.100%) and thirdly the 

N:P ratio contributed 0.154%. The DIN and DIP concentrations do not contribute significantly to 

the outcome of this experiment.  

 

The results achieved with the MFNN (Forecaster XL) look promising, and give an output that 

shows the successes and failures of the results. The percentage tolerance of the modelling 

package with the training set is 10% and with the testing set is 30%. The presentation of the most 

important factors in determining the output of the model, does give a researcher insight into the 

driving environmental variables that were fed into the model.  

 

The modelling results did not show very high successes, however, the user friendliness of the 

program and the ease with which it can be used within the Microsoft background make it a good 

choice for further use and testing. The one main problem of the program is that it does not supply 

the user with the developed algorithms used within the model. 

 

3.3.1.3 Comparison of the Forecaster XL experiments  

 

A comparison of the 12 experiments with Forecaster XL is shown in Table 20. In forecasting the 

CT group, the experiments show that whenever either the algal dominance and/or the Chl a 

concentration is omitted as input variable to Forecaster XL, WST, DIP and DIN is the most 

important variables in determining the outcome of the model. Only in one experiment (Exp 9) did 

the DIN:DIP ratio show up as an important variable in determining the CT biovolume. 

 

Whenever Chl a concentration is included as an input variable and the algal dominance is omitted 

in the model, it usually came up as the most important variable in predicting the outcome of the 

Non-CT group. This indicates that the extent of the Chl a is important in forecasting new 

biomass, specifically, for the Non-CT producing group. Chl a seem to be not so important in the 

forecasting of the CT group. There is no consistency regarding this group (Table 20). 

 

If algal dominance is used as input variable, it dominates the contribution of the input variables. 

This is using the forecasted variable to predict the biovolume, and it should not be used in this 

type of modelling exercise. 
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3.3.2 Self-Organising Map (SOM) 

 

The primary application for the SOM is clustering and data segmentation. Non-supervised neural 

networks learn to ordinate, cluster or group the data patterns only by inspecting the similarities 

between the inputs (Smith, 2002; Recknagel et al., 2006). Clustering involves classifying or 

ordinating the data into groups based upon the natural structure of the data, rather than known 

pre-defined classifications. The data from the Roodeplaat Dam was divided into two groups 

(before 1991 and after 1991) to represent the before and after Zeekoegat Waste Water Treatment 

Works (WCW) conditions. The WCW discharge directly into the Roodeplaat Dam since 1991 

and the impact of the establishment of a WCW on a reservoir can be expressed in the ordination 

and clustering mapping of the unsupervised SOM. 

 

Figure 35 The ordination and clustering map of the PO4-P (DIP) and TP concentrations in 

the Roodeplaat Reservoir for the before and after construction of Zeekoegat 

WCW that show the changes in the water quality. 

 

In Fig 35, it is shown that there was a large increase in the maximum concentrations of both the 

PO4-P and TP in the Roodeplaat Reservoir in response to the impact of the Zeekoegat WCW. The 

maximum PO4-P concentration increased from 0.08mg/L to 0.33mg/L. The maximum TP 

concentration increased from 0.17mg/L to 0.60mg/L. The seasonal occurrence of the higher  
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PO4-P concentrations shifted from small peaks in all seasons, but primarily in summer to extreme 

high concentrations throughout the year. The changes in TP concentration showed similar 

patterns. The impact of the WCW was severe and the Roodeplaat Dam has since been shifted into 

hypertrophic conditions, as can be seen from this data as well. 

 

Figure 36 The ordination and clustering map of the Chl a compared to the Chlorophyta 

dominance in the Roodeplaat Reservoir for the before and after construction of 

Zeekoegat WCW that show the changes in the water quality. 

 

The modelling results also show an increase in the Chl a concentration between the before and 

after Zeekoegat WCW establishment. Chl a concentrations, increased from a maximum of  

70 ug/L to a maximum of 115 ug/l (Fig. 36). The occurrence of maximum Chl a, concentrations 

shifted from small peaks in the summer and the winter to large peaks during summer and smaller 

peaks throughout the year. The dominance of the Chlorophyta (green algae) shifted from being 

dominant during spring and summer before the establishment of the WCW to being dominant 

primarily during spring. The dominance of the Chlorophyta during spring was replaced by 

dominance of cyanobacteria (Cyanophyta) (Fig. 37). Before the WCW was established, 

cyanobacteria were prominent throughout the year but the dominant period shifted to primarily 
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summer through autumn with much higher biovolume overall as shown by the Chl a 

concentrations. 

 

Figure 37 The ordination and clustering map of the Chl a compared to the Cyanophyta 

dominance in the Roodeplaat Reservoir for the before and after construction of 

Zeekoegat WCW that show the changes in the water quality. 

 

The ordination and clustering map as output of the SOM method showed an increase in the 

maximum dominance of the diatoms from 41% to 52%. The diatoms have been and still are 

limited to be dominant primarily in the winter periods when biovolume is low (Fig. 38). The 

impact of the WCW on the diatoms was therefore not so severe. 

 

The SOM modelling method showed potential for further use in South Africa as it can be used to 

potentially: 

- Investigate, before and after situations, 

- To determine the potential effects of management actions, 

- Or changes in the environmental conditions.   

 

This method is not a prediction model but can assist in the search for answers in cause and effect 

investigations. 
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Figure 38 The ordination and clustering map of the Chl a compared to the diatom 

dominance in the Roodeplaat Reservoir for the before and after construction of 

Zeekoegat WCW that show the changes in the water quality. 

 

 

3.4 Rule Set Development by Hybrid Evolutionary Algorithms 

 

Previous studies on algal communities have demonstrated that highly complex ecological time 

series can be successfully probed to develop rule sets as prediction tools, by using hybrid 

evolutionary algorithms (HEA) (Cao et al., 2005). The HEA is an adaptive method that mimics 

ecological evolutionary processes, natural selection and genetic variations. A number of 

experiments were done to determine the most applicable and usable rule set in the prediction of 

Microcystis and the dinoflagellate, Ceratium. 

 

Each experiment will be discussed separately, showing the best-developed rule set for each 

experiment. Selected outcomes of each experiment are shown in Appendix A. All the results from 

the HEA experiments are available on the CD attached. 
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3.4.1 HEA Experiment 1: Real-time prediction simulation and rule-set discovery for 

Microcystis including Chl a, as an environmental factor. 

 

The 36 years of real-time daily data (See Section 5.1.4) of the Hartbeespoort, Rietvlei and 

Roodeplaat reservoirs was used as training data to develop a rule set for the prediction of 

Microcystis biovolume as shown in Fig. 39. 

 

The correlation coefficient (r2 = 0.88) and the root mean square error (RMSE = 9.3357) for the 

training data and the correlation coefficient (r2 = 0.73) and the root mean square error (RMSE = 

7.4620) for the tested data indicate that the predictions are quite good. The model manages to 

predict the peaks and lows as well, as shown in Fig. 35 and Fig. 36. The predictions for the 

Hartbeespoort and the Roodeplaat Dam were much better than for the Rietvlei Reservoir. 

 

More validation was done by determining the Average Actual Error (A AE) and the mean square 

error (MSE) as shown in Table 21. To further test the results of the experiment and to determine 

the impurities between the actual data and the test data set (Greenberg, 2003), the relative 

tolerance of the training set and of the testing data set was determined and is shown in Table 21. 

 

The results show that with a set relative tolerance of 10% in the training set and with a relative 

tolerance of 30% for the testing data set, there are respectively 38.5% and 44.8% good predictions 

61.5% and 55.2% bad predictions. This is a very strict relative tolerance when compared to the up 

to 300% that is allowed in the Vollenweider Model (IETC, 2000). 
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Figure 39 Training results of the real-time forecasting of Microcystis biovolume including 

Chl a, as an environmental variable in the Hartbeespoort, Rietvlei and 

Roodeplaat reservoirs during the development of the rule set for HEA 

Experiment 1. 

 

Fig. 40 shows the results of the tested data and it is clear that the rule set fits the Hartbeespoort 

and Roodeplaat reservoirs data better than the Rietvlei data, where under and over predictions are 

found. This may be due to the fact that Rietvlei also experienced dinoflagellate blooms during the 

study period. However, the magnitudes of the maximum Microcystis biovolume peaks are 

predicted quite well in all three of the reservoirs. 



 

64 

Table 21 Summary of the average actual error (AE), the mean square error (MSE) and the 

relative tolerance of the training and testing data sets of the Microcystis 

biovolume including Chl a as an environmental variable in real time rule set 

development. 

  Training set Test set 

# of rows: 13148 2193 

Average AE: 0.10422 0.974735 

MSE: 8.414296 7.063562 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

Good predictions: 38.5% 44.8% 

Bad predictions: 61.5% 55.2% 
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Figure 40 Testing results of the real-time forecasting of Microcystis biovolume (MicB) in 

the Hartbeespoort, Rietvlei and Roodeplaat reservoirs using the rule set as shown 

in Figure 41. 
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The conditions for the developed rule set (Fig. 41) include TP and Chl a concentrations that are 

used to determine if the THEN branch or the ELSE branch of the rule set is to be used for 

forecasting Microcystis biovolume. The sensitivity analysis that was done on the real-time testing 

data for the three reservoirs to determine the Microcystis biovolume show that with the THEN 

branch of the rule set surface temperature and total nitrogen are the variables to which the 

determination of the Microcystis biovolume is most sensitive to. Low TN concentrations and high 

surface temperatures are associated with high Microcystis biovolume. This suggests that the 

Microcystis biovolume decreases with an increase in the TN concentrations. The Tsurf has the 

expected opposite reaction. The higher the temperature rise, the larger the Microcystis biovolume 

grow. 

 

The ELSE branch of the rule set is used when Chl a concentrations are below 120.519 ug/L and 

total phosphorous concentrations are higher than 227.982 ug/L. In the ELSE branch of the rule set 

Chl a, is the variable that the Microcystis biovolume is most sensitive to. Both pH and Tsurf are 

also used in the developed RULE set to predict the Microcystis biovolume but is not so important 

in determining changes in the Microcystis biovolume under these high total phosphorous 

conditions. 

 

These results indicate that under phosphorus concentrations smaller than 431.729 ug/L (expressed 

as TP) the increases in Microcystis biovolume are driven negatively by high nitrogen 

concentrations and positively by the surface temperature (Tsurf). 

 

Under the ELSE rule set, where TP concentrations exceed 431.729 ug/L the Microcystis 

biovolume that develops is primarily driven by the initial biomass (as indicated by the Chl a 

concentration). Temperature is still also impacting on the developing Microcystis biovolume, but 

is not as important as the Chl a. 
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IF 

THEN ELSE 

Microcystis biomass = 
 

((((Tsurf*86.248)+Tsurf)+(TN*(-366.111)))/43.344) 

Microcystis biomass = 
((((Chl a-pH)*Tsurf)+((55.103/Chl a) 

+(-159.504)))/67.560) 

(((TP <= 431.729) AND (Chl a > 120.519)) 
AND ((Chl a > 290.385)  
OR (TP <= 227.986))) 

 

 

 

 

 

 

 

Figure 41 Sensitivity analysis of the input data for the THEN-branch (left) and the ELSE-

branch (right) of the best developed rule set for real-time forecasting of 

Microcystis biovolume using the median concentrations of the most important 

environmental variables to determine the sensitivity of the Microcystis 

biovolume prediction to each variable. 
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3.4.2 HEA Experiment 2: Real-time prediction simulation and rule-set discovery for 

Microcystis excluding Chl a, as an environmental variable. 

 

In the set-up of this experiment, no Chl a values, were included as an environmental variable. In 

Fig. 42 it is shown that, the predicted results are not as good as the previous experiment (HEA 

Experiment 1), therefore, for all subsequent experiments Chl a was included. A number of the 

peaks were not predicted correctly. However, the correlation coefficient (r2 = 0.81) and the root 

mean square error (RMSE = 11.7002) for the training data and the correlation coefficient (r2 = 

0.46) and the root mean square error (RMSE = 10.3676) for the tested data indicate that the 

predictions are still quite good. The model does manage to predict the peaks and lows quite 

accurately as shown in Fig. 42 and Fig. 43. Again, the predictions for the Hartbeespoort and the 

Roodeplaat Dam were better than for the Rietvlei Reservoir. 
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Figure 42 Training results of the real-time forecasting of Microcystis biovolume (MicB) in 

the Hartbeespoort, Rietvlei and Roodeplaat reservoirs during the development of 

the best rule set for HEA Experiment 2 that excluded Chl a, as an environmental 

factor. 
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Further validation was done by determining the Average Actual Error (A AE) and the average 

square error (MSE) as shown in Table 22. The impurities between the actual data and the test 

data set (Greenberg, 2003) was determined by the relative tolerance of the training set, and of the 

testing data set, and is shown in Table 22. 

 

The results show that with a set relative tolerance of 10% in the training set and with a relative 

tolerance of 30% for the testing data set, there are respectively 42.3% and 62.9% good predictions 

and respectively 57.7% and 37.1% bad predictions. Although this is a very strict relative 

tolerance, these results are better than the previous experiment, and the number of acceptable 

predictions is quite good. 

 

Table 22 Summary of the average actual error (AE), the average mean square error (MSE) 

and the relative tolerance of the training and testing data sets of the Microcystis 

biovolume real time rule set development excluding Chl a as an environmental 

variable. 

  Training set Test set 

# of rows: 13148 2193 

Average AE: 0.342782 1.630976 

MSE: 10.52243 7.503751 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

Good predictions: 42.3% 62.9% 

Bad predictions: 57.7% 37.1% 

 

A number of times the predictions were under predicting. This was especially the case in the 

predictions for Rietvlei. The Rietvlei Reservoir is known to lie within a colder area when 

compared to the Hartbeespoort and the Roodeplaat reservoirs. 

 

The conditions for the developed rule set (Fig. 44) in the absence of Chl a concentrations include 

the TN and Secchi depth as conditional parameters that are used to determine if the THEN branch 

or the ELSE branch of the rule set is to be used for forecasting Microcystis biovolume. For the 

rule set to use the THEN branch the TN concentration needs to be greater than 0mg/L and smaller 

than 7.77 mg/L. The Secchi depth to comply with the condition set for the THEN branch should 
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be less than 0.7 m. Otherwise, the ELSE branch applies to determining the Microcystis 

biovolume. 

 

The sensitivity analysis that was done on the real-time testing data for the three reservoirs to 

determine the Microcystis biovolume show that with the THEN branch of the rule set, total 

phosphorous (TP), total nitrogen (TN), pH and surface temperature (Tsurf) are the variables to 

which the outcome of the Microcystis biovolume is most sensitive to. Within this rule set TP has 

the highest impact, TN the second highest and Tsurf has a smaller impact on the extent of 

Microcystis biovolume development. The pH, although used in the rule set does not seem to play 

a significant role in determining the outcome. This phenomenon may be because of the small 

changes in pH in general. This suggests that the Microcystis biovolume increases with increase in 

the TP, TN and Tsurf. 
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Figure 43 Testing results of the real-time forecasting of Microcystis biovolume (MicB) in 

the Hartbeespoort, Rietvlei and Roodeplaat reservoirs using the best-developed 

rule set as shown in Figure 5.44, excluding Chl a, as an environmental factor. 

 

In the ELSE branch of the rule set, the Secchi depth and the pH are the variables that determine 

the outcome of the Microcystis biovolume. The Secchi depth is the most important variable that 

negatively impacts on the prediction of the Microcystis biovolume. Under low light conditions 
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(shallow Secchi depths), there is a strong decrease in the Microcystis biovolume. Again, the pH 

seems to have no significant impact on the Microcystis biovolume outcome when the input ranges 

increase stepwise. 

 

Figure 44 Sensitivity analysis of the input data for the THEN-branch (left) and the ELSE-

branch (right) of the best developed rule set for real-time forecasting of 

Microcystis biovolume using the median concentrations of the most important 

environmental variables (excluding Chl a) to determine the sensitivity of the 

Microcystis biovolume prediction to each variable. 
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MicB=exp((pH/(exp(Sec)+Sec))) 

 

((exp((TN*102.589))>=37.892)AND((Sec*2
54.787)<179.914)) 
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3.4.3 HEA Experiment 3: 7-Days forward prediction simulation and rule set discovery for 

Microcystis 

 

To develop a rule set for the 7-days forward prediction of Microcystis biovolume the daily 

interpolated data of the 36 years data set was used for training on the Hartbeespoort, Rietvlei and 

Roodeplaat reservoir. The Microcystis biovolume measured data was shifted backwards to create 

the condition of 7-days forward training. The training results from this experiment are shown in 

Figure 45. 
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Figure 45 Training results of the 7-days forward forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs using the 

developed rule set of experiment 3. 

 

The r2 = 0.69 and the RMSE = 14.9208 for the training data and the r2 = 0.52 and the RMSE = 

9.3582 for the tested data are very good results and show that this 7-days forward prediction can 

be used on reservoirs with similar trophic status and climatic conditions. Fig. 46 shows the results 

of the tested data and it is clear that the rule set fits the Hartbeespoort and Roodeplaat reservoirs 

data better than the Rietvlei data, where under and over predictions are found. However, the 

magnitudes of the maximum Microcystis biovolume peaks are predicted quite well in all three the 

reservoirs. 
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Table 23 Summary of the average actual error (AE), the average mean square error (MSE) 

and the relative tolerance of the training and testing data sets of the 7-days 

forward forecasting of Microcystis biovolume RULE set development. 

  Training set Test set 

# of rows: 13148 2193 

Average AE: -1.43515 -0.2281 

MSE: 12.22073 6.978118 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

Good predictions: 53.9% 70.3% 

Bad predictions: 46.1% 29.7% 

 

 

Figure 46 Testing results of the 7-days forward forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs using the best-

developed rule set as shown in Figure 43. 

 

The further validation shows that the Relative Tolerance of 10% do give an outcome of 53.9% 

good predictions for the training data set (Table 23). The Relative Tolerance of 30% for the 

testing set shows an outcome of 70.3% good predictions.  
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The smaller MSE found within the The testing data set, when compared to the training data set, 

show that the predictive capability of the RULE set is better.  Fig. 47 illustrates the IF-

THEN/ELSE RULE Set and the sensitivity analysis regarding the THEN- and ELSE- branches of 

the developed RULE Set for the 7-days-ahead prediction of Microcystis biovolume in the three 

reservoirs. Chl a concentrations, lower than 175.634 ug/l is the condition to use the RULE Set of 

the THEN-branch. 

 

In the THEN branch, the Chl a concentration and the surface temperature are the variables that 

are used to predict the Microcystis biovolume. The outcome of the Microcystis biovolume is 

sensitive to both these environmental variables. However, Chl a, is the most important 

environmental variable in determining the outcome. The input of Chl a ranges between 0.6 and 

175.66 ug/l. The surface temperature is the second most important variable regarding the 

sensitivity of the Microcystis biovolume and the surface temperature ranges between 10.4°C and 

32.4°C for the study.  

 

Figure 47 Sensitivity analysis of the input data for the THEN-branch (left) and the ELSE-

branch (right) of the best developed rule set for 7-days forward forecasting of 

Microcystis biovolume using the median concentrations of the most important 

environmental variables to determine the sensitivity of the Microcystis 

biovolume prediction to each variable. 

IF 
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THEN ELSE 
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For the ELSE branch, where Chl a exceeds 175.634 ug/l, TP is the most important environmental 

variable that determines the Microcystis biovolume (Fig. 43). 

 

These results indicate that the hypertrophic reservoirs have probably such an excess of nutrients 

available in the system that temperature and the presence of high primary productivity, as 

indicated by the Chl a concentrations, are the main factors that drive the development of further 

Microcystis biovolume. Thus, the initial inoculum of cyanobacteria leads to the extent and further 

development of Microcystis biovolume. 

 

Under high biovolume conditions, it is the TP concentrations present in the system, which drives 

the ELSE rule set. This is the case during high primary production biovolume conditions and TP 

is the sole variable used in the ELSE rule set to predict Microcystis biovolume. This can be 

because TP is used at a high rate, which determine the growth rate of the population.  
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3.4.4 HEA Experiment 4: 14-Days forward prediction simulation and rule set discovery for 

Microcystis 

 

To develop a rule set for the 14-days forward prediction of Microcystis biovolume the daily 

interpolated data of the 36 years data set was used for training on the Hartbeespoort, Rietvlei and 

Roodeplaat reservoir. The Microcystis biovolume, measured data, was shifted backwards to 

create the data set of the 14-days forward training. The training results from this experiment are 

shown in Figure 48. 

 

0

100

200

300

400

500

600

M
ic

B
 (

cm
3
/m

3
)

MicB fitted/predicted_MicBForecasing: 14 days ahead Microcystis biomass

r2 = 0.64
RMSE = 16.1432 

 

Figure 48 Training results of the 14-days forward forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs during the 

development of the best rule set for HEA Experiment 4, including Chl a as an 

environmental factor. 

 

The r2 of 0.64 and the RMSE of 16.1432 for the training data and the r2 of 0.29 and the RMSE of 

11.0926 for the tested data are still good results. However, the results are not as good as with the 

7-days forward predictions. The results show that the 14-days forward prediction can be used on 

reservoirs with similar trophic status and climatic conditions with relative success. Fig. 49 shows 

the results of the tested data and it is clear that the rule set does predict the peaks, however the 

extent of the peaks are not predicted accurately. 



 

76 

Table 24 Summary of the average actual error (AE), the mean square error (MSE) and the 

relative tolerance of the training and testing data sets, of the Microcystis 

biovolume 14-days ahead RULE set development. 

  Training set Test set 

# of rows: 13148 2193 

Mean AE: -0.34259 1.302998 

MSE: 13.85358 5.687873 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

Good predictions: 55.4% 67.5% 

Bad predictions: 44.6% 32.5% 
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Figure 49 Testing results of the 14-days ahead forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs using the best 

developed RULE set as shown in Figure 50 including Chl a as an environmental 

variable. 

 

The further validation show that the Relative Tolerance of 10% do give an outcome of 55.4% 

good predictions for the training data set. The Relative Tolerance of 30% for the testing data set 

shows an outcome of 67.5% good predictions (Table 24). The decrease in MSE found between 
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the training and the Testing data set show that the predictions capability of the RULE set is still 

quite good. 

 

Fig. 50 illustrates the IF-THEN/ELSE RULE Set and the sensitivity analysis regarding the 

THEN- and ELSE- branches of the developed RULE Set for the 14-days forwards prediction of 

Microcystis biovolume in the three reservoirs. Chl a concentration lower than, or equal to 

194.455 ug/L, or a dissolved inorganic phosphorous concentration of less than 498.225 ug/L, is 

the condition to use the RULE Set of the THEN-branch. 

 

Figure 50 Sensitivity analysis of the input data for the THEN-branch (left) and the ELSE-

branch (right) of the best developed rule set for 14-days forward forecasting of 

Microcystis biovolume using the median concentrations of the most important 

environmental variables to determine the sensitivity of the Microcystis 

biovolume prediction to each variable. 

 

In the THEN branch, the Chl a concentration and the Secchi disc depth are the two environmental 

variables that are used to predict the Microcystis biovolume. The outcome of the Microcystis 

biovolume is sensitive to these environmental variables are shown in Fig. 50. Chl a is the most 

important environmental variable in determining the outcome. The input of Chl a ranges between 

0.6 and 175.66 ug/l. The Secchi disc do have a slight negative impact on the outcome of the 

Microcystis biovolume and the Secchi disc readings ranges between 0.1m and 0.76m for the 

IF 

Chl a <= 194.455 OR DIP < 498.225 
 

THEN ELSE 

Microcystis biomass = 
(Chl a/ln(|(exp(Sec)*Chl a)|)) 

 

Microcystis biomass = 
MicB=((((Chl a/pH)+(-18.402))- 

((Sec*(-594.824))+62.195))+0.000) 
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THEN RULE set. This indicates that the THEN RULE set is applicable during all turbidity 

conditions. For the ELSE branch, where exceeds 194.455 ug/L or dissolved, inorganic 

phosphorous is greater than 498.225 ug/l, the RULE set make use of the Chl a, Secchi depth 

readings and the pH to determine the Microcystis biovolume. In this case the Secchi disc reading 

is the environmental variable that the most important environmental variable in determining the 

Microcystis biovolume (Fig. 50). The ELSE RULE set is applicable to low light conditions as 

shown by the range of Secchi disc readings in Fig. 50. The Chl a concentrations are the second 

most important variable in the determination of the Microcystis biovolume. 

 

As previously shown, these results indicate that these hypertrophic reservoirs have such an excess 

of nutrients available in the system that the light conditions in the systems (measured as Secchi 

disc readings) and the presence of high primary productivity (as indicated by the Chl a 

concentrations) is the main environmental variables that is used to determine the predicted 

development of Microcystis biovolume. 
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3.4.5 HEA Experiment 5: 21-Days forward prediction simulation and rule set discovery for 

Microcystis 

 

To develop a rule set for the 21-days forward prediction of Microcystis biovolume the daily 

interpolated data of the 36 years data set was used for training on the Hartbeespoort, Rietvlei and 

Roodeplaat reservoir. The Microcystis biovolume measured data was shifted backwards to create 

the condition of 21-days forward training. The training results from this experiment are shown in 

Figure 51. 
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Figure 51 Training results of the 21-days ahead forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs during the 

development of the best rule set for HEA Experiment 5 including Chl a as an 

environmental factor. 

 

The r2 of 0.56 and the RMSE of 17.9575 for the training data and the r2 of 0.15 and the RMSE of 

12.0300 for the tested data are still good results. However, the results are not as good as with the 

previous forward predictions. Despite the lower correlations, the results shown in Fig. 51 and Fig. 

52 of the 21-days forward prediction can still be used on reservoirs with similar trophic status and 

climatic conditions with relative success. Fig. 52 shows the results of the tested data and it is clear 

that the rule set does predict the peaks, however, the extent of the peaks was not reached and the 
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predictions of this experiment was, therefore, not nearly as good as with the previous 

experiments. 

 

Table 25 Summary of the average actual error (AE), the average mean square error (MSE) 

and the relative tolerance of the training and testing data sets of the Microcystis 

biovolume 21-days ahead rule set development. 

  Training set Test set 

# of rows: 13148 2193 

Average AE: -0.9561 -0.10506 

Average MSE: 13.21759 5.892838 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

Good predictions: 55.4% 64.6% 

Bad predictions: 44.6% 35.4% 
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Figure 52 Testing results of the 21-days ahead forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs using the best-

developed rule set as shown in Figure 53 including Chl a as an environmental 

variable. 
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The further validation show that the Relative Tolerance of 10% do give an outcome of 55.4% 

good predictions for the training data set. The Relative Tolerance of 30% for the testing data set 

shows an outcome of 64.6% good predictions (Table 25). The decrease in MSE found between 

the training and the Testing data set show that the predicting capability of the RULE set is still 

quite good. 

 

Fig. 53 illustrates the IF-THEN/ELSE RULE Set and the sensitivity analysis regarding the 

THEN- and ELSE- branches of the developed RULE Set for the 21-days forwards prediction of 

Microcystis biovolume in the three reservoirs. There is a number of conditions that are used to 

determine if the THEN or ELSE branch of the RULE set are used in the prediction. Within the 

first condition, Chl a concentration can range between 0.6 ug/l and 969 ug/l and the TN 

concentrations vary between 0mg/L and 8.3mg/L. High DIP and TP concentrations are set as 

potential conditions (Fig. 53). If any of these four conditions as shown in Fig. 53 are met the 

THEN branch is used to determine the predicted outcome. Only when none of these conditions 

are met is the ELSE branch used in the predicted outcome. 

 

Figure 53 Sensitivity analysis of the input data for the THEN-branch (left) and the ELSE-

branch (right) of the best developed rule set for 21-days ahead forecasting of 

Microcystis biovolume using the median concentrations of the most important 

environmental variables to determine the sensitivity of the Microcystis 

biovolume prediction to each variable. 

IF 
(((Chl a-exp(TN))<=322.580) OR (((DIP<=344.214) OR 

(TP<=322.913))OR(DIP<=245.677))) 
(0 < TN < 8.3; 0.6 < Chl a < 969) 

THEN ELSE 

Microcystis biomass = 
((Chl a+Tsurf)/(139.896/(Tsurf+(Chl a/(-51.954))))) 

Microcystis biomass = 
((TP/(exp(TN)+Chl a))*167.578) 
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In the THEN branch, the Chl a concentration and the Tsurf measurements are the two 

environmental variables that are used to predict the Microcystis biovolume. The outcome of the 

Microcystis biovolume is sensitive to these environmental variables as shown in Fig. 53. Chl a 

concentration is, once again, the most important environmental variable in determining the 

outcome. The input of Chl a concentration ranges between 0.6 ug/l and 969 ug/l. The Tsurf 

measurements do have a much smaller impact on the outcome of the Microcystis biovolume and 

the Tsurf measurements ranges between 9.3°C and 30.7°C for the THEN RULE set. It is 

interesting that at large changes in the Chl a, the sensitivity testing for the THEN branch in Fig. 

53 indicates that there is much lower Microcystis biovolume output, while the Tsurf input 

changes the development of Microcystis biovolume constantly. This may be explained by the 

shading effect of high biovolume, as indicated by high Chl a, on further growth. The THEN 

RULE set is applied under the lower phosphorus conditions although the set concentrations are 

still extremely high and typical of the hypertrophic conditions that is found in the set of 

reservoirs. 

 

For the ELSE branch Chl a ranges between 394.6 ug/l and 1290 ug/l, the TP is in excess of 

1247.87 ug/l up to 1990 ug/l and TN ranges between 3.23 mg/l and 6.68 mg/L. The nutrients are 

therefore in very high concentrations present in the systems during the ELSE RULE set 

determinations. The Microcystis biovolume outcome is sensitive to all three these variables under 

the ELSE RULE set conditions (Fig. 53). The ELSE RULE set is applicable to low light 

conditions as shown by the range of Secchi disc readings in Fig. 5.53. The Chl a concentrations 

are the second most important variable in the determination of the Microcystis biovolume. Both 

the high Chl a and the TN input has a negative impact on the outcome of the ELSE RULE set 

application, while the TP input has a positive increasing impact on the Microcystis biovolume 

outcome. 
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3.4.6 HEA Experiment 6: 28-Days ahead prediction simulation and rule set discovery for 

Microcystis 

 

To develop a rule set for the 28-days forward prediction of Microcystis biovolume the daily 

interpolated data of the 36 years data set was used for training on the Hartbeespoort, Rietvlei and 

Roodeplaat reservoir. The Microcystis biovolume measured data was shifted backwards to create 

the condition of 28-days forward training. The training results from this experiment are shown in 

Fig. 54. 
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Figure 54 Training results of the 28-days ahead forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs during the 

development of the best rule set for HEA Experiment 6 including Chl a as an 

environmental factor. 

 

The r2 of 0.47 and the RMSE of 19.6989 for the training data and the r2 of 0.20 and the RMSE of 

12.0657 for the tested data are still good results. However, the results are not as good as with the 

previous forward predictions. Despite this results in Fig. 54 and Fig. 55 show that the 28-days 

forward prediction can still be used on reservoirs with similar trophic status and climatic 

conditions with relative success. Fig. 55 shows the results of the tested data and it is clear that the 

rule set does predict the peaks, however, none of the highest peaks were predicted correctly. 
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Therefore, the 28-days forward predictions were not nearly as good as with the previous 

experiments, but do predict the cyclic occurrence of Microcystis correctly. 

 

Table 26 Summary of the average actual error (AE), the average mean square error (MSE) 

and the relative tolerance of the training and testing data sets of the Microcystis 

biovolume 28-days ahead rule set development. 

  Training set Test set 

# of rows: 13148 2193 

Average AE: 0.942485 1.805445 

Average MSE: 13.55385 4.613223 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

Good predictions: 53.6% 55.5% 

Bad predictions: 46.4% 44.5% 
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Figure 55 Testing results of the 28-days ahead forecasting of Microcystis biovolume 

(MicB) in the Hartbeespoort, Rietvlei and Roodeplaat reservoirs using the best-

developed rule set as shown in Figure 56 including Chl a as an environmental 

variable. 
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The further validation (Table 26) shows that the Relative Tolerance of 10% do give an outcome 

of 53.6% good predictions for the training data set. The Relative Tolerance of 30% for the testing 

data set shows an outcome of 55.5% good predictions. The decrease in MSE found between the 

training and the Testing data set show that the predicting capability of the RULE set is still quite 

good. 

 

Fig. 56 illustrates the IF-THEN/ELSE RULE Set and the sensitivity analysis regarding the 

THEN- and ELSE- branches of the developed RULE Set for the 28-days forwards prediction of 

Microcystis biovolume in the three reservoirs. There is a two conditions that are required for the 

THEN RULE set to be used, namely DIP concentrations must be higher or equal to 355.453 ug/L 

and the Chl a concentration should be higher or equal to 180.962 ug/L. 

 

 

Figure 56 Sensitivity analysis of the input data for the THEN-branch (left) and the ELSE-

branch (right) of the best developed rule set for 28-days ahead forecasting of 

Microcystis biovolume using the median concentrations of the most important 

environmental variables to determine the sensitivity of the Microcystis 

biovolume prediction to each variable. 

 

To use the ELSE RULE set, the DIP and Chl a concentrations need to be lower than the 

mentioned conditions as shown in Fig. 56. 

IF 

DIP>=355.453 AND Chl a>=180.962 

THEN ELSE 

Microcystis biomass = 
(Sec*((TP+(DIP+(-243.807)))/ln(|(Tsurf+121.455)|))) 

 

Microcystis biomass = 
MicB=((Tsurf+(-6.892))-ln(|(Sec*(Sec*290.821))|)) 
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In the THEN branch the Secchi depth reading, the TP and DIP concentrations and the Tsurf 

measurements are the environmental variables that are used to predict the Microcystis biovolume. 

The outcome of the Microcystis biovolume is sensitive to these environmental variables as shown 

in Fig. 56. In the RULE set for the THEN branch, the changes in Secchi depth readings are the 

most important variable in determining the outcome of the predicted Microcystis biovolume. The 

second and third environmental variables that cause large changes in the predicted Microcystis 

biovolume outcome is the TP and DIP concentrations. Fourthly, the Tsurf input changes do have 

a much smaller impact on the outcome of the Microcystis biovolume and the Tsurf measurements 

range between 22.13°C and 25.45°C for the THEN RULE set. It is interesting that the THEN 

branch is found in this very small temperature range as shown in Fig. 56, indicating optimum 

temperatures for the development of Microcystis biovolume in these reservoirs. The THEN 

RULE set is applied under extremely high phosphorus (TP and DIP). 

 

For the ELSE branch it is the Tsurf readings and the Secchi disc depth that are the most important 

environmental variables that affects the large changes in the Microcystis biovolume development. 

The Tsurf ranges between 9.3°C and 30.7°C and has the greatest impact on the model outcome. 

The Secchi disc readings that range between 0.1m and 7.2m have a negative impact on the 

Microcystis biovolume development. 

 

The ELSE RULE set conditions covers a very wide section of the data and model outcomes, 

while the THEN RULE set covers only a small section of the data as the Secchi disc reading 

range and the Tsurf range are very small. The THEN RULE set is applicable to very low light 

conditions as shown by the range of Secchi disc readings in Fig. 56. 
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3.4.7 HEA Experiment 7: Real-Time Simulation and Rule Set Discovery for the 

dinoflagellate Ceratium 

 

The rule set for the dinoflagellate, Ceratium, real time prediction was developed as discussed in 

the methods and the results were tested on the unseen data of Bon Accord and Klipvoor 

reservoirs. The method proved effective in the development of a rule set for predicting 

Microcystis biovolume and the method was thus applied to the prediction of dinoflagellate 

blooms that consists primarily of Ceratium. This species seem to be more pronounced since 1999 

in the studied reservoir systems (Van Ginkel et al., 2001). 

 

Testing of the Rule Set  

 

The developed rule set was tested for five reservoirs, namely the three reservoirs that it was 

trained and tested on (Hartbeespoort, Rietvlei and Roodeplaat) (Fig. 57 & Fig. 58) and two 

unseen reservoirs (Bon Accord and Klipvoor) (Fig. 60 & Fig. 61). Both the latter reservoirs 

experienced annually large blooms of dinoflagellates (consisting of Ceratium) during the period 

2000 to 2005. The rule set was applied and tested to 1993 and 2004 on the Hartbeespoort, 

Rietvlei and Roodeplaat Reservoirs (Fig. 58). The rule set was also tested and applied to the 2000 

to 2005 data of the two unseen reservoirs, Bon Accord and Klipvoor (Fig.60 & Fig. 61). 

 

To validate the results of the rule set the correlation coefficient of the measured and fitted data 

were determined. The Root Mean Square Error (RMSE) of the testing error was also calculated 

for the different reservoirs to indicate the standard error of the estimate. 

 

Sensitivity Analysis of Developed Rule Set 

 

Sensitivity analyses were done on the tested data for the Hartbeespoort, Rietvlei and Roodeplaat 

Reservoirs for the period 1993 and 2004. The sensitivity analysis was done for both the THEN 

and the ELSE rule set (Fig. 59).  

 

The input range changes (as percentage) were determined by applying the rule set to calculate 

changes in each variable that was used in the rule set, while the other variables median values 

were used. The starting point of the environmental variable was the minimum and the maximum 

values measured within the data set. This gives an indication of the importance of each variable in 
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driving the changes (increases or decreases) of the outcome, namely the Dinoflagellate 

biovolume.  

 

Real-time rule-set discovery for Ceratium biovolume in Hartbeespoort, Roodeplaat and Rietvlei 

Reservoirs 
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Figure 57 Training results of the real-time forecasting of Ceratium biovolume (DinoB), in 

the Hartbeespoort, Roodeplaat and Rietvlei reservoirs during the development of 

the best rule set for HEA Experiment 7 including Chl a as an environmental 

factor. 

 

The 36 years of real-time training on the Hartbeespoort, Rietvlei and Roodeplaat reservoir daily 

data produced a rule set for the prediction of Ceratium biovolume as shown in Fig. 38. The 

correlation coefficient (r2 = 0.83) and the root mean square error (RMSE = 6.3233) for the 

training data and the correlation coefficient (r2 = 0.85) and the root mean square error 

(RMSE = 6.7857) for the tested data are still significant. Fig. 58 shows the results of the tested 

data on the three reservoirs for the period 1993 and 2004 for the Hartbeespoort, Roodeplaat and 

Rietvlei reservoirs. It is clear that the rule set fits the Hartbeespoort Reservoir better than the 

Roodeplaat and the Rietvlei data, where under and over predictions were found. However, the 
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magnitudes of the maximum Ceratium biovolume peaks were predicted quite well in all three the 

reservoirs. 

 

Table 27 Summary of the average actual error (AE), the average mean square error (MSE) 

and the relative tolerance of the real time training and testing data sets of the 

Ceratium biovolume rule set development. 

  Training set Test set 

# of rows: 13148 2193 

Average AE: -0.59789 -0.63201 

Average MSE: 5.763118 6.593074 

Tolerance type: Relative Relative 

Tolerance: 10% 30% 

Good predictions: 78.4% 85.5% 

Bad predictions: 21.6% 14.5% 

 

 

Figure 58 Testing results of the real-time forecasting of Ceratium biovolume (DinoB), in 

the Hartbeespoort, Roodeplaat and Rietvlei reservoirs using the rule set as shown 

in Figure 59, including Chl a as an environmental factor. 
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Further validation shows that the Relative Tolerance of 10% does give an extremely good 

outcome of 78.4% good predictions for the training data set. The Relative Tolerance of 30% for 

the testing data set shows an outcome of 85.5% good predictions (Table 27). The increase in MSE 

found between the training and the testing data set show that the predicting capability of the 

RULE set decreased from the training to the testing data set. 

 

The conditions for the rule set included TP and Chl a concentrations that were used to determine 

if the THEN branch or the ELSE branch of the rule set was to be used for forecasting the 

Ceratium biovolume. The THEN branch is applicable to situations when the Chl a concentrations 

and the Dinoflagellate biovolume are very high (Fig. 40). The sensitivity analysis that was done 

on the real-time testing data for the three reservoirs to determine the Ceratium biovolume shows 

that with the THEN branch of the rule set Chl a, TN and TP are the variables that the 

Dinoflagellate biovolume is most sensitive to. The TN concentrations vary from 2.1 mg/L to 4.53 

mg/L and TP concentrations vary between 110.86 ug/l and 272 ug/l. Under these high nutrient 

conditions, other variables were not important in the forecasting of the Ceratium biovolume. 

 

Figure 59 Sensitivity analysis of the input data for the THEN-branch (left) and the ELSE-

branch (right) of the rule set for real-time Dinoflagellate biovolume forecasting. 

 

IF 

THEN ELSE 

Dinoflagellate biomass = 
(TN*(Chl a/(62.266/ln(|TP|)))) 

 

Dinoflagellate biomass = 
((Chl a/((Tsurf*0.662)-5.829))/ln(|DIP|)) 

 

(Chl a > 190.453) and 
((TP/Chl a) <= 1.342) 
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The ELSE branch of the rule set is used when Chl a concentrations varied between 2.1 ug/l and 

282.45 ug/l and the Ceratium biovolume was below 10 cm3/m3. The temperature change of the 

surface water is important in determining the Ceratium biovolume. Increases in the temperature 

input were important in the decrease of the Ceratium biovolume (Fig. 59). This showed that the 

optimum growth temperature that ranged from 5°C to 30°C according to Buck (1989) is only 

important under low Chl a concentrations and up to 17°C. Temperatures higher than 17°C 

showed no significance on the dinoflagellate biovolume. Higher Ceratium biovolume is more 

regulated by the availability of sufficient nutrients (Reynolds, 1978; Buck, 1989) within the water 

body as shown by the THEN rule set. Under lower Chl a concentrations, the availability of DIP 

was important up to 82 ug/l after which the effect of the change in input on the determination of 

the Ceratium biovolume was insignificant.  

 

Real-time rule-set for Ceratium biovolume testing in Bon Accord and Klipvoor Reservoirs 

 

Five years of data from both the Bon Accord and Klipvoor Reservoirs were used to test the 

applicability of the rule set to unseen data. The correlation of the measured and predicted 

Ceratium biovolume in the Bon Accord Reservoir (Fig. 60) was 0.62, which is statistically highly 

significant (P < 0.001). The RMSE of 6.803 also indicates that the results were significant. The 

extent of the peaks were under-predicted or over-predicted in certain instances, but all the peaks 

were predicted. 
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Figure 60 Testing of the developed rule set on Bon Accord Dam for real-time 

Dinoflagellate (Ceratium) biovolume forecasting. 

 

On two occasions, peaks were predicted that did not occur (Autumn 2003 and Spring 2004). This 

may be due to the occurrence of other phytoplankton taxa (e.g. Microcystis) that dominated the 

community and the rule set used the Chl a concentration in determining the predicted biovolume 

of the Ceratium in the Bon Accord Reservoir. The maximum peak of Ceratium biovolume in the 

spring of 2004 was predicted very well. 

 

In the Klipvoor Reservoir (Fig. 61), the correlation of the measured and predicted Ceratium 

biovolume was 0.48, which is significant (P < 0.001). Although the correlation coefficient is less 

than for Bon Accord the results is still statistically significant. The RMSE, as an ‘estimation’ of 

the standard deviation, of 2.53 also indicated that results were significant. The extents of the 

peaks were under-predicted or over-predicted, but all the peaks were predicted. Peaks were 

predicted in the spring of 2002 and the autumn of 2003, which did not occur. 
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Figure 61 Testing of the developed rule set on Klipvoor Dam, for real-time Ceratium 

biovolume (DinoB) forecasting. 

 

These results indicate that the RULE set developed on hypertrophic reservoirs in the summer 

rainfall and temperate region of South Africa is applicable to reservoirs within the same climatic 

region and of the same hypertrophic status. The methods used may further be investigated for 

applicability in other climatic regions of South Africa and on reservoirs with different trophic 

status to determine if a separate RULE set needs to be developed for different climatic zones or 

for reservoirs of different trophic status. 

 

The developed RULE sets made use of the most important environmental variables as have been 

determined through years of limnological research (Table 28). For the Microcystis RULE Set 

development, the inclusion of the Chl a concentrations gave the best results. The most important 

environmental variables that were used in determining the final most applicable RULE sets for 

the different experiments are the existing biovolume that are measured as Chl a, Tsurf, TP, DIP, 

Secchi (as indication of light conditions), TN and lastly pH. In no circumstances was DIN used in 

the most applicable RULE sets for the prediction of Microcystis or in the prediction of Ceratium. 

This may indicate that although DIN is the food source, the TN is more important and determine 

the eventual availability of nitrogen and contribution to growth. 
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Table 28 The summarised results from the HEA Experiments, showing the correlation 

coefficient (r2), Root Mean Square Error (RMSE), the relative tolerances (10% for training and 

30% for testing), the Environmental Variables important in Conditions to apply the THEN or 

ELSE Rule set, and the Environmental variables (in order of importance) that were used in the 

developed RULE sets. Experiment 1-6 was the development of RULE sets for Microcystis, and 

Experiment 7 was done for the development of a RULE set for the dinoflagellate, Ceratium. 

Experiment r2 RMSE 
Relative 

Tolerance 

Environmental 

Conditions 

Environmental Variables Used 

THEN ELSE 

Experiment 1: 

Real time + Chl a 

Training: 

Testing 

 

 

0.88 

0.73 

 

 

9.3357 

7.4120 

 

 

38.7% 

44.2% 

TP 

Chl a 

1. Tsurf 

2. TN (neg) 

1. Chl a  

2. Tsurf 

3. pH 

Experiment 2: 

Real time – Chl a 

Training: 

Testing 

 

 

0.81 

0.46 

 

 

11.7002 

10.3676 

 

 

42.3% 

62.9% 

TN 

Secchi 

1. TP 

2. TN 

3. Tsurf 

4. pH 

1. Secchi 

(neg) 

2. pH 

Experiment 3: 

7 days forward 

Training: 

Testing 

 

 

0.69 

0.52 

 

 

14.9208 

9.3582 

 

 

53.9% 

70.3% 

Chl a 1. Chl a 

2. Tsurf  

1. TP 

Experiment 4: 

14 days forward 

Training: 

Testing 

 

 

0.64 

0.29 

 

 

16.1432 

11.0916 

 

 

55.4% 

67.5% 

Chl a 

DIP 

1. Chl a 

2. Secchi 

1. Secchi 

2. Chl a 

3. pH 

Experiment 5: 

21 days forward 

Training: 

Testing 

 

 

0.56 

0.15 

 

 

17.9575 

12.0300 

 

 

55.4% 

64.6% 

TN 

Chl a 

1. Chl a 

2.  Tsurf 

1. Chl a 

2. TP 

3. TN 

Experiment 6: 

28 days forward 

Training: 

Testing 

 

 

0.47 

0.20 

 

 

19.6989 

12.0657 

 

 

53.6% 

55.5% 

DIP 

Chl a 

1. Secchi 

2. TP 

3. DIP 

4. Tsurf 

1. Tsurf 

2. Secchi 

(neg) 

Experiment 7: 

Real time + Chl a 

Training: 

Testing 1 

Testing 2 

Testing 3 

 

 

0.83 

0.85 

0.62 

0.48 

 

 

6.3233 

6.7857 

6.8030 

2.5300 

 

 

78.4% 

85.5% 

43.2% 

70.1% 

Chl a 

TP 

1. Chl a 

2. TN 

3. TP 

1. Chl a 

2. Tsurf 

3. DIP 
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For the dinoflagellate, Ceratium, it was shown that a temperature range of 5°C to 17°C and DIP 

concentrations below 82 ug/L are important environmental conditions during the development of 

the initial low Dinoflagellate biovolume. In the development of excessive Dinoflagellate blooms 

TN is the most important variable in determining the extent of the Dinoflagellate bloom. 

 

In all the cases where pH was used in the developed RULE set, the change in pH input had little 

effect on the output algal biovolume, and it can be considered to be not a major contributor to the 

final results. Tsurf seems to be one of the most important environmental variables together with 

the nutrient concentrations (Table 28). TP and DIP are the most important nutrients in 

determining the outcome of the algal biovolume. TN when used has mostly a negative impact on 

the algal biovolume output of the model. 

 

It is interesting, that for the forward prediction of Microcystis the 7-days ahead forecasting gave 

the best results (Table 28), followed shortly by the 14-days, the 21-days and the 28-days ahead 

forecasting. The worst predictions (28-days), as found with the real time results, can be explained 

by the fact that real time environmental conditions are not causing the biovolume, but are rather 

the result of the biovolume. 

 

From these results, it is shown that the existing biovolume, temperature, nutrients specifically 

phosphorous, and the existing light conditions are the most important environmental variables in 

the determination or prediction of the algal biovolume of Microcystis. In the case of Ceratium the 

nitrogen and temperature are the most important environmental variables in determining the 

predicted biovolume. 

 

3.5 Conclusions and Evaluation 

 

Five modelling techniques were included in the study and tested on hypertrophic reservoirs in 

South Africa. The data and results generated with the different models showed variable successes 

to predict chlorophyll a (Chl a), phosphorous, algal groups and specific species. The testing of 

management options in some of the models proved to be quite useful. 

 

Firstly, the relatively simple Vollenweider Model, a well-known and widely tested model was 

used. The Vollenweider model (Vollenweider, 1976) was applied in South Africa on a number of 

occasions (Thornton and Walmsley, 1981; Grobler and Silberbauer, 1984; Grobler, 1985). This 
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model was originally developed as an eutrophication management tool. It did not provide 

information on the algal or cyanobacterial species that may pose a problem in the system. The 

ease of application of the model using total phosphorus as major input to determine the Chl a 

outcome still makes this model a favourite with managers as the effect of decreases or increases 

in total phosphorus does give a quick result for management purposes. It does, however, give no 

information on the phytoplankton species that may be present in the system and hence 

management problems. 

 

The model does not take any of the complex characteristics of a freshwater system into 

consideration but uses a simple linear correlation that exist between the TP concentrations in a 

system and the potential to develop phytoplankton biovolume, as measured by Chl a. This model 

is giving the manager a quick reference on the trophic conditions within the system. It supplies 

the manager with an easy to use tool, for possible consideration of potential management options 

for phosphorous removal. 

 

The second model tested is the SALMO-OO model, a complex deterministic model that takes 

growth equations of the different algal groups into consideration and that takes the main 

impacting factors like inflow and nutrient loads, as inputs, into consideration. The simulation 

library SALMO-OO has been developed by the object-oriented implementation of the lake 

ecosystem model SALMO (Recknagel and Benndorf, 1982; Benndorf and Recknagel, 1982; 

Recknagel et al., 1995) as the core of a lake simulation library by means of JAVA. It provides 

optional access to alternative causal representations of ecological processes in lakes such as: a) 

photosynthesis and respiration of diatoms, green algae and cyanobacteria; b) grazing of diatoms, 

green algae and cyanobacteria by zooplankton; c) growth of herbivorous zooplankton; and d) 

predation of zooplankton by planktivorous fish. Alternative process representations were adopted 

from published lake ecosystem models different to SALMO-OO such as Park et al. (1974), 

Hongqing and Jianyi (2002) and Arhonditsis and Brett (2005) to test applicability in hypertrophic 

reservoirs of South Africa. 

 

SALMO-OO was tested on data from 2003 to 2004 on three hypertrophic reservoirs, 

Hartbeespoort, Klipvoor and Roodeplaat with regards to the simulation of seasonal abundances of 

diatoms, green algae and cynaobacteria. It proved to be valid for the temperate hypertrophic lakes 

and it can assist in optimising eutrophication control of these lakes based on complex 

management scenario analysis. The one problem foreseen with this model is the fact that it does 
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not make provision for dinoflagellates, which are becoming more dominant in the hypertrophic 

systems of South Africa. 

 

The nutrient loads are used in the model to predict the outcomes. The model is designed to test 

the application of different potential management options, which make it applicable for use by 

mangers that need to determine management options. 

 

The predicted outcomes of the method are not quite as accurate as for lakes in the literature, but 

do predict the highs and lows of bloom development to a certain degree of accuracy. 

Discrepancies in the predictions may be because not all algal groups are included in the model. 

Especially the Dinoflagellate group is not included, probably because major blooms was not 

pronounced during the development of SALMO-OO, and may account for the discrepancies in 

the predictions, as all five the reservoirs did experience dinoflagellate blooms during the study 

period. 

 

Thirdly, the Artificial Neural Network modelling methods tested for the study included two 

techniques. Firstly, the multilayered fast-forward neural network model (MFNN), Forecaster XL, 

and secondly, a Self Organising Mapping (SOM) technique were used to determine if it is 

applicable for usage in South African conditions. 

 

The results achieved with Forecaster XL gave an output that shows the successes and failures of 

the results. The percentage tolerance of the modelling package with the training data set is 10% 

and with the testing data set 30%. The model is, therefore, quite strict with itself, in accepting the 

efficiency of the model. The modelling results did not show very high successes, however, the 

user friendliness of the program makes it a good choice for further use and testing. Because of the 

hidden layer of the ANN modelling technique the main problem of the program is that it does not 

provide the user with the mathematical methods used within the model for easy application on 

new data for prediction purposes. 

 

The MFNN model, Forecaster XL, is easy to use and fits well within the wide use of Microsoft 

Excel as background. Data import, and the output from the model make this model very user 

friendly. The output does give one results that show the success and failures of the model. The 

two negative features of the model are:  

a) The modeller does not know what algorithms were used to determine the output, 
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b) The methods to determine the tolerance of the results within the model are unknown. 

 

The SOM modelling method, which is not a forward predictive modelling technique, but rather 

gives insight into historical events, showed potential for further use in South Africa as it can be 

used to: 

- Investigate the before and after situations, 

- To determine the potential causes of management actions, 

- To determine changes in environmental conditions. 

 

The SOM method is not a prediction method but is an ecological informatics method that can be 

used to determine cause and effect of changes that occur within a reservoir or catchment system. 

This method may need to be tested more intensively in South Africa for applicability to other 

systems and data sets. Using SOM, to test the impact of management and environmental changes 

that may have occurred within a catchment, reservoir or other system is highly applicable to this 

method.  

 

Lastly, with the hybrid evolutionary algorithm (HEA) development, a number of tests were done 

to develop real time RULE agents for the prediction of Microcystis spp. and the Dinoflagellate 

(Ceratium hirundinella) bloom events in South African hypertrophic reservoirs. Validation of the 

results was done on the limnological time-series data. The tests to develop a prediction tool for 

Microcystis spp. was done with real time prediction, 7-days forward, 14-days forward, 21-days 

forward and 28-days forward predictions. The 7 day-forward prediction rule-based agent for 

Microcystis spp. has proven to be most accurate. The HEA was designed to assemble and 

optimise both the structure and parameters of predictive rules using genetic programming and 

evolutionary computation. In order to develop the rule-based agent for Microcystis and the 

Dinoflagellate group, merged limnological time-series data of the hypertrophic reservoirs 

Hartbeespoort, Rietvlei and Roodeplaat dams have been used for training. Rigorous leave-k-out 

cross-validation for a total of 36 years (12 years from each reservoir during the period  

1991-2004) of data was used to do the rule based development training, excluding the years 1993 

and 2004 (from each reservoir) to use for testing the developed rule. 

 

The developed RULE sets of the hybrid evolutionary algorithms (HEA) for forecasting 

Microcystis and the dinoflagellate (Ceratium) biovolume proved to be highly applicable to 

complex unseen ecological data of South African Reservoirs with the same trophic status as the 
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reservoirs that were used to develop the RULE Set. The five reservoirs used for the testing of the 

RULE Set are all within the same temperate climatic region of South Africa and all reservoirs had 

the presence and dominance of either Microcystis or the dinoflagellate, Ceratium,  during the 

study period, even though the sizes and other limnological characteristics differed between the 

reservoirs.  

 

The sensitivity analysis and the best RULE set correspond well with theoretical hypotheses and 

experimental findings in previous studies. It can also refine ranges of variables that are 

deterministic in the development of the Dinoflagellate biovolume. This study indicates that the 

HEA methods for the development of RULE sets by machine learning of complex ecosystems 

such as manmade Reservoirs is extremely applicable. The method should also be tested for 

further application in other ecological environments within South Africa.  
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 CHAPTER 4 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 Summary of Conclusions 

 

The main aim of this project was to investigate the applicability of ecological infomatics 

modelling techniques to develop a predictive tool for harmful algal blooms in South Africa. 

 

The Reservoirs studied are hypertrophic systems and are situated downstream of the largest urban 

development in the summer rainfall area of South Africa. These systems are subjected to severe 

algal blooms, dominated primarily by Cyanobacteria (Microcystis) and lately, also 

Dinoflagellates (Ceratium hirundinella).  

 

The results from this study show that the cyanobacterial blooms in the Crocodile West/Marico 

Water Management Area are dominated by Microcystis, and although Anabaena and Oscillatoria 

are found occasionally in large numbers, they do form only a negligibly small component of the 

annual phytoplankton community. Furthermore, it was found that Microcystis is the most 

important cyanobacterial species, associated with the presence of cyanobacterial toxins in the five 

reservoirs. However, Anabaena & Oscillatoria are both also known TM producers and could 

contribute to the toxin production in all the reservoirs. 

 

All the sites showed regular cyanobacterial, and increasingly dinoflagellate, blooms. The 

dinoflagellate blooms are exclusively Ceratium hirundinella and these dinoflagellate blooms are 

associated with extremely high Chl a concentrations in the five Reservoirs. Ceratium dominated 

Bon Accord and Klipvoor Dams during the 5-year study period, while Hartbeespoort and Rietvlei 

experienced Ceratium blooms during 2000 and again in 2005. Roodeplaat Dam experienced for 

the first time a Ceratium bloom in 2005.  

 

The PCA of CANOCO indicated that the reservoirs are similar in both algal community and 

physico-chemical variables. This support the assumption that there are no major differences 

between the reservoirs and that the data could be combined in the modelling exercises that 

followed. The assumption that a reservoir is one site, and taking samples at five different sites as 

compared to the regular sampling in the reservoir, to determine toxin presence, may have led to 
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discrepancies in the cyanobacteria association with toxin results. However, it does give one a 

better perspective of when to potentially expect cyanobacterial toxins to be present in these 

hypertrophic reservoirs. This will enable Management to issue warnings in time, regarding the 

potential health risk that cyanobacterial blooms may pose to recreational users. 

 

The multivariate analysis shows that of the environmental factors, temperature is the most 

important factor in the development of cyanobacteria in these hypertrophic systems. Temperature 

is, therefore, one of the main driving forces of the blooms and is a good indicator of climate and 

weather impacts on a system. According to the multivariate analysis, the main driving force that 

correlates quite well with the TM is the DIP concentrations in these systems. This variable will 

thus play an important role in the prediction of the cyanobacterial toxin production (TM). 

 

The depth distribution of the toxins measured in the Hartbeespoort and Roodeplaat Reservoirs 

indicated that during the periods of excessive Microcystis biovolume, toxins are often found all 

the way through the water column. This may necessitate WCWs that produce potable water, to 

monitor at different depths, on the condition that they have the option to withdraw water at 

different depths, as is the case at the Roodeplaat Reservoir.  

 

Since the multivariate statistical analysis with the CANOCO program showed that the five 

reservoirs were so similar that it enabled us to combine all the data for further use in applying the 

modelling techniques, especially the Artificial Neural Network modelling technique and the 

Hybrid Evolutionary Algorithm development technique. The most important environmental 

variables that were also used in further predictive capability development were water surface 

temperature (Tsurf), nutrients (TP, TN, DIP &DIN), underwater light conditions (Secchi depth 

readings) and existing biovolume (Chl a).  

 

A number of different types of models were tested to determine the applicability to South African 

conditions: 

 

(1) The relatively simple Vollenweider model was tested for Hartbeespoort, Klipvoor and 

Roodeplaat reservoirs. This model is easy to apply and provide a manager with a quick 

answer and relatively little information is needed to apply the model. It also provides the 

manager with the possibility of testing different management scenarios. However, over 
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and under predictions of 30% to 300% (IETC, 2000) is possible and acceptable within the 

context of the model. 

 

(2) The simulation library, SALMO-OO, allowing forecasting abundances of blue-green 

algae, green algae and diatoms in response to eutrophication control scenarios for 

Hartbeespoort, Klipvoor and Roodeplaat reservoirs. The model is data intensive as it 

works with a ten-day time step and inflow and outflow data are necessary to apply the 

model. This information was not available for the Bon Accord and Rietvlei reservoirs. 

This model takes the complex limnological characteristics of reservoirs into consideration 

and it supplies the manager with a tool to test different management scenarios to assist in 

decision-making. The results were, however, only partly successful with large over and 

under predictions, even after the growth equations were adapted. 

 

(3) With the Artificial Neural Network modelling techniques, both the supervised 

multilayered feed forward neural network and the non-supervised self-organising map 

methods were tested. The Software Package Forecaster XL was used to predict the 

biovolume of the non-cyanotoxin producing group and the cyanotoxin producing group 

of algae. The five-year data set was used. The model provides visual successes but the 

strict tolerances, set by the model, to determine acceptable prediction as part of the 

outcome of the model, may be a problem to validate the results and ensure that an 

acceptable number of good predictions were found. The main disadvantage of the 

Forester XL model is that the outcomes do not provide the modeller with the algorithms 

and validation methods used, because of the black box nature of the technique.  

 

The Self Organising Mapping (SOM) method was used on the Roodeplaat Dam data for a 

period of 20 years. This was done to determine the differences of the before and after 

conditions of the influence of the Zeekoegat WCW. The seasonal changes and increases 

in nutrients and Chl a concentration are pronounced. This modelling technique is thus 

applicable to investigate before and after scenarios. This is more of a knowledge 

development tool than a predictive tool. Only one test was done and the applicability to 

the impacts of other environmental variables on the development of harmful algal blooms 

needs to be further investigated. 
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(4) The RULE set discovery by Hybrid Evolutionary Algorithm (HEA) was tested on 

different scenarios of real time and 7-days forward, 14-days forward, 21-days forward 

and 28-days forward forecasting of the abundance of the cyanobacterium, Microcystis in 

the Hartbeespoort, Rietvlei and Roodeplaat reservoirs. The developed rule sets are highly 

applicable to the hypertrophic reservoirs of South Africa. These methods need, however, 

to be tested in other reservoirs to determine the applicability under different trophic status 

and different climatic conditions. 

 

The same method was used to develop a real time algorithm for the dinoflagellate, 

Ceratium hirundinella, for the Hartbeespoort, Rietvlei and Roodeplaat reservoirs. The 

developed RULE set was then tested on the Bon Accord and Klipvoor Reservoirs that 

both experienced extreme blooms during the study period. This application was highly 

applicable to these reservoirs. This further suggests that the developed RULE set may 

potentially be applicable to reservoirs in other climatic areas of South Africa. This needs 

further investigation. 

 

4.2 Recommendations 

 

The study showed that eutrophication and the associated problems is a real threat to South 

African fresh water resources. The list of recommendations need to be taken further by a number 

of stakeholders, e.g. the Department of Water Affairs and Forestry, future CMAs, Universities 

and other researchers: 

 

a) Monitor all the necessary variables for future modelling exercises. These include 

temperature and volumes at inflow. Some of the reservoirs lacked essential variables and 

certain models, e.g. SALMO-OO could not be tested on Bon Accord and Rietvlei 

reservoirs due to a lack of flow data. WST is one of the most important variables to 

measure in-lake and should be included in all monitoring programmes, in addition to the 

regular chemical and biological monitoring. 

b) Include TMs monitoring in impacted fresh water resources at least during the summer 

 periods to enable resource managers to issue warnings to all potential impacted 

 stakeholders and also to provide data for future modelling exercises. 
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c) Initiate and test available management options to minimise the serious eutrophication 

 levels in the Crocodile-West/Marico Water Management Area. Information and data 

 collected during this testing should be available on the DWAF database for future use.  

d) The cause and effects for the changing composition of the phytoplankton of these five 

 reservoirs, which was previously dominated by Microcystis during summer periods and 

 by diatoms during winter periods to change to Ceratium dominance need to be 

 investigated. 

e) Reservoirs that have the option of extracting water at different depths and that are subject 

 to eutrophication related problems should monitor regularly at different depths, to 

 determine the best depth for abstraction. This will enable them to abstract the best quality 

 water and it will minimise the associated financial implications of treating water with 

 potentially bad quality. 

f) Of all the modelling methods used the Hybrid Evolutionary Algorithm (HEA) RULE set 

 development proved to very effective. It is recommended that capacity is developed in 

 South Africa regarding the use of this technique. Funding should be made available for 

 the implementation and use of this technique in all research spheres, as the method is 

 applicable to any type of numerical data. 

g) Manage the risk imposed by the cyanobacterial blooms and the associated toxins 

 produced in the water resources, on drinking water facilities and the health of recreational 

 users. 

h) In view of the successes of the modelling results the next step would be to develop short-

 term forecasting tools, for the algal blooms of Microcystis and Ceratium, with on-line  

 water quality monitoring for early-warning and real-time forecasting for reservoir 

 managers. 
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