

Challenges of Hydrological Research in a developing country

Geoff Pegram 6 March 2012

Why is this Meeting important?

Why is this Meeting important? Good data are becoming scarce and costly

Why is this Meeting important? Good data are becoming scarce and costly

- 1. Risk of Flood & Famine require planning
- 2. Impossible to go back in time to 're-gauge'
- 3. Our models depend on data, not just imagination
- 4. With a changing climate we cannot depend only on past data, it has to be current

Therefore, we must continue monitoring the forcing variables

Some of our products

- PEGRAIN daily rainfall network model for DWA
- Soil Moisture & Evapotranspiration: K5/2024
- SA Flash Flood Guidance: K5/2068

&

 Possible future daily rainfall on networks: K5/1984

What data do I need?

- Daily raingauge network
- Streamflow hydrograph (continuous)

These are real data and are the most difficult to get hold of consistently

What data do I need?

- Daily raingauge network
- Streamflow hydrograph (continuous)
- Topographical, vegetation, soil properties
- Regional Circulation Model rain & pressure
- 3-hour TRMM real time
- Ingredients for ET: wind speed, temperature, humidity, radiation
- Remote sensing estimates for validation of SM products – probes are not yet deployed

Estimating Soil Moisture & ETa

There are 3 ways I know of estimating Soil Moisture:

Direct sampling (probes, grab samples)
Remote sensing (ERS, ASCAT, SMOS)

Physical modelling (hydrological and meteorological)

Data streams to model SSI & ETa

How we get ETa hence SSI

at 3-hour intervals

here shown as over a day

Product: Agric. Res. Council Umlindi

How good are these products?

- We need to validate
- Or at least perform model inter-comparison (done)
- We need data to do the first

Where does that leave us?

- The 150 Hydra probes bought by SAWS [2006!] for SM ground-truthing are still in a shed ...
- Our pricey SAWS raingauge network is *dying*, shall we rely on remote sensing?
- If so, we desperately need to soon get TRMM corrected, specially while we still have gauges
- We need to be able to validate our Hydrological models – when will DWA repair their data portals? [I can't get S/F data]

Global Mean Monthly rainfall Differences: TRMM ~ Gauges

trmm.chpc.utah.edu

Ground "Truthing" over Africa: 1° scale

FIG. 1. GPCC rain gauge distribution over Africa (Jan 2000). The dots represent grid cells in which at least one rain gauge is present in a 1.0° lat $\times 1.0^{\circ}$ lon box.

NOAA - Global Precipitiation Climatology Centre

Correcting SSI from (i) raw TRMM to (ii)conditioned with DWA daily gauges

Mean Δ_{SSI} - Region pooled

What about the future?

- Let's look at the rainfall in the Cape in 2 periods:
- Jan 1990 to July 2000 [Lynch data-base]
- Aug 2000 to April 2008 [SAWS from UCT]

The MAP map & 5 selected regions

The Cape region – SAWS 0.5° blocks

0043	0044	0045	0046	0047	0048	0049
-0023	0024	0025	0026			
0007	0008	0009	0010			

Gauge sites 1990 to 2000

Gauge sites 2000 to 2008

Gauge sites 2000 to 2008

Survivors – the Cape lost 13 out of 53 – over all 5 regions 36%

OK we have some gauge data

What about appropriate RCM data?

- We obtained some PRECIS data from UCT's CSAG
- Let's compare it with gauges

Compare Rainfall Time Series

Compare ranked frequency distributions

Compare ranked frequency distributions

PRECIS 'data' – currently 1990 – 2008 both daily Pressure and Rainfall

RCM CPs optimised on Cape Wetness

0.90

0.75

0.50

0.25

-0.10

0.25

-0.50

-0.75

-0.90

1.00 0.90

0.75

0.50

0.25

0.10

-0.10

-0.25

-0.50

-0.75

-0.90

0.90

0.75

0.50

0.25

0.10

-0.10

-0.25

-0.50

-0.75

-0.90

700 HPa geopotential height anomalies - CP01

) 75

0.50

0.25

0.10 -0.10

0.25

-0.50

-0.75

-0.90

1.00

1.00

75

0.25

0.10

-0.10

-0.25

-0.50

-0.75

-0.90

1 00

0.90

0.75

0.50

0.25

0.10

-0.10

-0.25

-0.50

-0.75

-0.90

700 HPa geopotential height anomalies - CPO2

700 HPa geopotential height anomalies - CP04

700 HPa geopotential height anomalies - CP07

700 HPa geopotential height anomalies - CP05

700 HPa geopotential height anomalies - CP08

700 HPa geopotential height anomalies - CP03

700 HPa geopotential height anomalies - CP06

700 HPa geopotential height anomalies - CP09

Compare RCM & Gauge in 2 periods

Observations = Gauge Block Averages; Simulations = RCM Modelling

Conclusion

Modelling without data for validation is phantasy and a self congratulatory exercise therefore

We need free, good and readily available DATA to realistically plan our Water Resources Future

For RSA, it is asking too high a price to ask us to pay for limited access to diminishing resources Please fix it

