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ASPECTS OF THE ECOLOGY AND POPULATION MANAGEMENT OF THE
BUSHVELD SMALLSCALE YELLOWFISH (LABEOBARBUS POLYLEPIS).
Editor: Gordon O’Brien’

EXECUTIVE SUMMARY

Yellowfishes (Labeobarbus spp.) are of the most easily related to and are amongst
the most widely distributed indigenous fishes of South Africa. These fishes are
actively targeted and utilised by various angling and subsistence fishing communities
throughout South Africa. They are also used as indicator species by resource
managers and conservationists to facilitate with the management of river ecosystems
which give them a high ecological, economical and social value to South Africans.
Although valuable, very little is known about these fishes and before we have the

chance to fully understand the biology of these species, we are losing them.

The Bushveld smallscale yellowfish is a large, small-scaled yellowfish that occurs in
the upper reaches of the Limpopo, Inkomati and Phongolo River systems in Southern
Africa. Throughout this distribution many fragmented populations of this species
occur. Apart from two recent assessments of this species, very little is known and to
date no formal conservation initiatives have been established to address the
conservation requirements of any potentially unique populations of this species. One
population of the Bushveld smallscale yellowfish that historically occurred in the
Letaba catchment (Limpopo Province of South Africa) is now locally extinct,
potentially due to the unsustainable use of the goods and services of this system by

people.

This study has been established to address the conservation and/or management
implications associated with the potential determination of any unique populations of
the Bushveld smallscale yellowfish from five isolated populations of this species from
the greater Inkomati and Phongolo River catchments in Mpumalanga. In particular,
this study considers potential differences in the biology and ecology of these
populations by undertaking selected assessments that are concerned with the
genetic and morphological differences between these populations, the occurrence of

metals in the liver and muscle tissues within these populations and the feeding

' Gordon O’Brien, Centre for Aquatic Research, Zoology Department of the University of
Johannesburg, Auckland Park. Email: gordono@uj.ac.za



biology of these populations. This study has been undertaken on behalf of the Water
Research Commission by the Centre for Aquatic Research, Zoology Department of
the University of Johannesburg in collaboration with the Department of Genetics,

School of Biological Sciences, University of Pretoria.

The Bushveld smallscale yellowfish populations used in this study were obtained
from the Inkomati River Catchment including populations from the Elands River,
Ngodwana Dam and the Komati River, and two populations from the Phongolo River
Catchment including populations from the Assegaai River and the Phongolo River.
An out-group population of the KwaZulu-Natal yellowfish, obtained from the Umvoti
River in KwaZulu-Natal was included in some of the analyses to facilitate with the

assessments.

Findings from the morphological and genetic assessment indicate that consistent
morphological and genetic differences do exist between the five populations of
Bushveld smallscale yellowfish considered in this study. Based on the genetic
assessment of these five populations, findings indicate that three groups, consisting
of the Phongolo/Assegaai populations (group 1), individuals from the Komati and
selected individuals from the Elands and Ngodwana populations (group 2) and most
of the individuals from the Elands and Ngodwana populations (group 3), should be
considered as separate conservation units. An extreme case of genetic variation
was obtained in this study in the discovery of a group of individuals from the Elands
River and Assegaai River that shows a clear unique genetic divergence not only from
the remaining populations of Bushveld smallscale yellowfish but also from all of the

other small-scaled yellowfishes considered in South Africa to date.

Following the morphological assessment, outcomes indicate that although all of the
individuals from the populations considered in this study are very similar, consistent
differences in the morphology of the populations do exist. Findings suggest that the
Elands River and Ngodwana Dam populations of the Bushveld smallscale yellowfish
are unique and that they are the only populations that can with certainty be separated
morphologically from the other Bushveld smallscale yellowfish populations.
Interestingly, this study showed that although the Elands River and Ngodwana Dam
individuals of the Bushveld smallscale yellowfish could be separated from the
remaining populations considered, no other populations, including the KwaZulu-Natal
yellowfish, which is a different species, could be separated with confidence in this

study.



The metal assessment was used as an indication of the extent of metal exposure and
uptake in the five different Bushveld smallscale yellowfish populations. The highest
concentrations for the selected metals were found in the liver samples for all the
sampled populations with the exception of one population which showed the highest
Ni concentration in the muscle. However, this was not consistent within all five
populations as some populations showed higher bioaccumulation patterns for certain
metals in the muscle samples. The metal concentrations found in this study were
relatively low and at most, very similar in concentration when compared to other

studies completed on other indigenous South African fish species.

From the feeding biology assessment undertaken in this study, results suggest that
the Bushveld smallscale yellowfish seems to be an opportunistic omnivore that preys
predominantly on aquatic macro-invertebrates and also feeds on detritus. This
species is well adapted to forage in substrates to capture their prey as well as in the
water column and from the water surface. This ability makes this species a
successful predator which can adapt to changing ecosystem types and take
advantage of various ecosystem niches. This study suggests that different
ecosystem types drive the feeding biology of this species of yellowfish and that they

may be able to adapt to moderate changes in ecosystem structure and function.

This study reveals that not only are there genetically based differences between the
populations that warrant conservation action, but that there are also morphological
differences that can successfully be used to separate at least two of the populations
from the rest of the group. Furthermore, this study has revealed that additional
experimentation should be undertaken to address the potential genetic differences
within this species in order to ascertain if the indication of a unique group of
individuals obtained in this study warrants evolutionary significant unit status which
would result in it being established as a new species of smallscaled yellowfish. Of
the five populations considered in this study, three groups of populations were
determined to be sufficiently different from one another to warrant conservation
significant unit status at this time. Very little concerning the other remaining isolated

populations of this species throughout South Africa has been considered.

Finally, following the outcomes of this study, the current approach to conserve the
Bushveld smallscale yellowfish as one species is considered to be erroneous and it

is suggested that the isolated populations of the Bushveld smallscale yellowfish that



are determined to be unique should be awarded with an individual conservation

status and conserved and/or managed accordingly.

Following the outcomes, it is recommended that the approach adopted in this study
should be expanded to consider the genetic, morphology, biology and general
ecology of the remaining populations of Bushveld smallscale yellowfish in South
Africa. In addition, the following recommendations should be considered by
ecosystem users, conservators, regulators and managers in accordance with the

outcomes of this study:

e This study has shown that the isolated population of the Bushveld smallscale
yellowfish in the Elands River and associated Ngodwana Dam is unique and
as such is of great ecological importance. The conservation status of this
isolated population should be addressed with urgency as this population has
historically been impacted on by chemical spillages and possibly by genetic
contamination through individuals from the Komati River, that have been
released into this system.

e More comprehensive geographic sampling of the Bushveld smallscale
yellowfish individuals from the systems included in the study as well as
nuclear DNA markers, to confirm the past and current gene flow between the
separate rivers, is required.

e Further research is required to validate the findings of the metal assessment
and to possibly establish causes for the levels obtained in this study.

e Additional assessments of the gut length and/or nutrient uptake potential of
the gut of Bushveld smallscale yellowfish should be undertaken to contribute
in addressing the uncertainty obtained in this study. In addition, due to the
unavailability of seasonal data in this study we recommend that additional
feeding biology assessments of this species be carried out during the
spring/summer periods. Finally, some stomach morphological assessments
should be undertaken which would address the uncertainty of the uptake of
detritus matter by this species and similar assessments to address
differences within and between the feeding biology of other isolated

populations of L. polylepis in South Africa.

vi
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1 General Introduction

Yellowfishes (Labeobarbus spp.) are of the most easily related to and are amongst
the most widely distributed indigenous fishes of South Africa (Skelton, 2001; Skelton,
2007). In addition yellowfish in South Africa are considered to be among the most
valuable of fishes in South Africa (Jackson and Coetzee, 1982). Yellowfish are
actively targeted and utilised by various angling and subsistence fishing communities
throughout South Africa and are used as indicator species by resource managers
and conservationists to facilitate with the management of river ecosystems (Gaiger,
1976; Jackson and Coetzee, 1982; Wolhuter and Impson, 2007). As such,
yellowfish have a high ecological, economical and social value to South Africans
(Gaiger, 1976; Jackson and Coetzee, 1982; Wolhuter and Impson, 2007; Skelton and
Bills, 2008). Although valuable, very little is known about these useful species, and
unfortunately, before we have the chance to fully understand the biology of these
species, we are facing the looming dilemma of losing them. Currently, at least one of
the six species of yellowfish occurring in South Africa are listed as endangered on
the IUCN Red Data List (Wolhuter and Impson, 2007; IUCN, 2008). In the recently
released State of the Yellowfish in South Africa Report (Wolhuter and Impson, 2007),
the plight of the yellowfishes in South Africa has further been highlighted due to the
excessive use of the river systems in which they occur. Wolhuter and Impson (2007)
stressed that as a result of excessive resource utilisation and widespread pollution
that is impacting many river systems in South Africa, yellowfish populations are being
adversely affected in that the distribution and abundance of these populations are

diminishing.

The Bushveld smallscale yellowfish (Labeobarbus polylepis, Boulenger, 1907) is a
large, small-scaled yellowfish that occurs in the upper reaches of the Limpopo,
Inkomati and Phongolo River systems in Southern Africa (Skelton, 2001; Roux,
2008). Figure 1 presents the distribution of L. polylepis, per quaternary catchment
within South Africa. Although L. polylepis is widely distributed across north eastern
South Africa, many fragmented populations of this species occur due to historical
changes in river connectivity, temperature barriers (the species prefers cool waters

above 600 m altitude), natural and recently due to artificial barriers (Roux, 2007b).
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In comparison to international trends, very little is known concerning the biology of
the Bushveld smallscale yellowfish. However, two detailed assessments of this
species have recently been undertaken; the assessment of the state of the Bushveld
smallscale yellowfish populations in South Africa and a comprehensive assessment
of the breeding biology of this species (Roux, 2007a, Roux, 2007b; Roux, 2008).
Labeobarbus polylepis is classified as a true yellowfish in that it has a hexaploid
karyotype of approximately 150 chromosomes and parallel striated scales
(Oellermann and Skelton, 1990). Following the assessment of the state of the L.
polylepis communities by Roux (2008), findings indicated that as of 2007 the
populations in the Limpopo, Inkomati and Phongolo drainage basins remained widely
distributed and abundant. As such, L. polylepis populations were generally deemed
to be in a fair to good state. However, populations in the upper Olifants catchment
and in Gauteng rivers were deemed to be in a poor state and that population size
and abundance continued to decline (Roux, 2008). One population that historically
occurred in the Letaba catchment is now locally extinct. This system has recently
been restocked with L. polylepis from the Crocodile catchment (Elands River) (Pers.

comm?., Wynand Vlok).

The existing populations of Bushveld smallscale yellowfish are widely used by
conservators or ecosystem managers ,who are responsible for the management of
aquatic ecosystems where these species occur, primarily as an indicator species that
has a specific preference for ecological flows and spawning requirements relating to
the timing and durations of flows alone (Roux, 2008). Although L. polylepis is
considered to be very useful and contributes towards the establishment of
management plans for the aquatic ecosystems in which they occur (Roux, 2008), the
potential importance of conserving individual isolated populations of this species has
to date not been addressed. In the recent study that aimed to determine the
conservation value of land in Mpumalanga (Emery et al. 2002), various ecologically
important species and ecosystem units where considered and utilised to establish a
conservation and or management plan for the province. In this assessment eleven
species of fishes that are endemic, near endemic, highly sensitive and/or that contain
limited distributions in Mpumalanga, were selected for the modelling activities
undertaken in this study. The Bushveld Smallscale yellowfish, although mentioned to

be useful in determining flows for systems, was not considered in this modelling

2 Wynand Vlok, June 2006, Former Researcher, Zoology Department, University of the North.

Now Environmental consultant, EcoAssets.



exercise, potentially due to the extensive distribution of the species which extends
into Limpopo, Gauteng and North-west provinces of South Africa. In accordance with
the National Environmental Management: Biodiversity Act (no 10 of 2004) of South
Africa, which states that not only species diversity but also genetic diversity should
be considered within the management and conservation of biodiversity, should any
uniqueness in any of the isolated L. polylepis populations be determined that these
populations should be conserved as unique populations contributing towards the
biodiversity of the country. As such, within Mpumalanga, should any isolated
populations of L. polylepis that are endemic, near endemic, highly sensitive and/or
that contain limited distributions in Mpumalanga be established, these populations

should be used in future conservation and or management activities of the province.

In this study various aspects pertaining to the management of L. polylepis
populations have been considered along with independent assessments of aspects
of the biology of five populations from the Inkomati and Phongolo catchments in
South Africa. As an out-group, a population of the KwaZulu-Natal yellowfish
(L. natalensis), from the Umvoti River, was included in selected assessments within

this study.

1.1 Study area

The L. polylepis populations used in this study included individuals from two
catchments of South Africa namely the Komati River and the Phongolo River. Within
the Komati River Catchment three isolated populations including the Elands River,
Ngodwana Dam and Komati River populations were used. In the Phongolo River

Catchment the Assegaai River and the Phongolo River populations were used.

The Elands River population of L. polylepis was included in this study as it was
considered to be the only population of L. polylepis that exhibited a high frequency of
rubber lip forms observed from as early as 1969 (Gaiger, 1969). The Ngodwana
Dam population was included in this study due to the close proximity of this
population to the Elands River population, the ease of sampling in the Ngodwana
Dam, the non-characteristic habitat in which this population occurs and the need to
assess the possible genetic contamination of this species by the release of individual

L. polylepis from the Komati River that were released into this system by



Mpumalanga Parks in the late 1990’s (Pers Comm?® Johan Engelbrecht). The
Ngodwana Dam population is separated from the Elands River population by the
Ngodwana Dam wall an artificial barrier constructed by Sappi to provide water to the
Sappi Ngodwana pulp and paper mill that was commissioned in 1967 (Hocking,
1987). Additional sampling sites for L. polylepis populations from the Komati,
Assegaai and Phongolo rivers were selected and included in this study according to
local expert knowledge of the locations of large abundances of L. polylepis in these
systems (Pers Comm®, Johan Engelbrecht and Horst Filter). The Komati River
population represented a population of L. polylepis that is well known and relatively
well documented; this population is additionally the source of individuals that were
relocated into the Ngodwana Dam by Mpumalanga Parks Board (Mulder et al.,
2004). The two sites selected in the Phongolo River Catchment namely the
Assegaai and Phongolo river sites where included to provide the assessment with
variation as these sites contain the two most southern distributed populations of L.
polylepis. For selected assessments in this study where an out group was required a
population of L. natalensis from the Umvoti River in KwaZulu-Natal was included in
this assessment. The locations of the sampling sites and an overview of the sites are

presented in Figure 2.

% Dr. Johan Engelbrecht, June 2004, Aquatic Scientist, Mpumalanga Parks Board.

* Dr. Johan Engelbrecht, June 2004, Aquatic Scientist, Mpumalanga Parks Board and Mr.

Horst Filter, Professional Bushveld smallscale yellowfish angling guide, River Hunter Safaris.
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Figure 2: Graphical representation of the location of the sampling sites of the five

Labeobarbus polylepis used in this study.

1.1.1 Collection

A minimum of thirty L. polylepis individuals were collected from each sampling
location in the Ngodwana Dam and the Elands, Komati, Assegaai and Phongolo
rivers between May and July of 2006 (Table 1). A sample of 22 individual L.
natalensis were collected in the Umvoti River and used in this study. Individuals
where captured using an array of sampling techniques including seine nets, cast
nets, electro-shocking, gill nets (mesh size 45 mm-95 mm) and fly fishing techniques.
In order to optimise the value of this bio-prospecting endeavour, as much of the L.
polylepis individuals as possible were used in this study and portions of the
remaining specimens, with genetic samples, will be sent to the South African Institute

of Aquatic Biodiversity to be lodged in the fish collection.
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In this study, the genetic and morphological differences between five isolated
populations of L. polylepis have been considered. In addition, notes on the feeding
biology, and the metal bioaccumulation in the muscle and liver tissue of the five

populations were considered.

This study has been divided into four sections in accordance with the aim of this
study. These sections include:
e Section 1: Genetic and morphological differences between five populations of
the Bushveld smallscale yellowfish, Labeobarbus polylepis in South Africa.
e Section 2: Metal bioaccumulation in muscle and liver tissue of five
Labeobarbus polylepis populations from Mpumalanga, South Africa
e Section 3: Notes on the feeding biology of five selected populations of
Labeobarbus polylepis in South Africa.



2 Section 1: Genetic and morphological differences between five populations
of the Bushveld smallscale yellowfish, Labeobarbus polylepis in South

Africa.

Carel Oosthuizen®, Amanda Austin®, Gordon O’Brien’ and Paulette Bloomer®.

2.1 Introduction

Within South Africa, many isolated populations of Bushveld smallscale yellowfish
(Labeobarbus polylepis, Boulenger, 1907) exist, specifically within the upper reaches
(above 600 m) of rivers in the Limpopo, Inkomati and Phongolo catchments (Mulder
et al., 2004; Roux, 2008). Due to the preference that this species has for upper
reaches of rivers, no fewer than eleven isolated populations of L. polylepis occur
(Roux, 2008). Although very little of the biology and ecology of L. polylepis is known,
some morphological and genetic variation between isolated populations have been
observed in the past (Gaiger, 1969; Kleynhans et al., 1992; Mulder et al., 2004).
From as early as 1969, consistent morphological differences between populations of
L. polylepis have been observed. This morphological difference relates primarily to
the occurrence of a single population that exhibited a high percentage of individuals
with the rubber-lip form, a rare occurrence in L. polylepis (Gaiger, 1969). Following
this initial account of morphological differences between L. polylepis populations,
similar observations have been noted by Kleynhans et al. (1992) and Mulder et al.
(2004). No formal assessment of the possible morphological differences between L.
polylepis populations has been undertaken. More recently, with the development of
methods to characterise genetic variation within and between populations, consistent

differences between three L. polylepis communities occurring in the Phongolo,

® Carel Oosthuizen, Department of Genetics, School of Biological Sciences, University of
Pretoria.

® Amanda Austin, Centre for Aquatic Research, Zoology Department of the University of
Johannesburg, Auckland Park.

" Gordon O’Brien, Centre for Aquatic Research, Zoology Department of the University of
Johannesburg, Auckland Park. Email: gordono@uj.ac.za

® Paulette Bloomer, Department of Genetics, School of Biological Sciences, University of

Pretoria.



Komati and Spekboom rivers were discovered (Mulder et al., 2004). Some of the
genetic variation observed between L. polylepis populations from the Phongolo,
Komati and Spekboom rivers were attributed to genetic contamination of specifically
the Spekboom River population due to the potential hybridisation of L. polylepis with
L. aeneus in this system (Mulder et al., 2004). These findings suggested that
although the possibility of genetic differences between isolated populations exists,
there is still insufficient data to warrant a change in the currently adopted
management and conservation strategies for this species towards conserving
isolated populations that may be unique and where the survival of these populations

is threatened.

The outcomes from a recently released assessment concerning the state of the
identified populations of L. polylepis are concerning in that at least five of the eleven
populations considered in this assessment are now believed to be rare, threatened or
declining in numbers (Roux, 2008). Seven populations were considered to be
negatively affected by hybridisation with other Labeobarbus spp., water quality and
quantity, river connectivity, river habitat destruction, competition with alien fishes and
excessive harvesting usually during spawning activities (Roux, 2008). One
population of L. polylepis that originally occurred in the Letaba River is now
considered to be extinct (Pers. Comm® Wynand Vlok). Within South Africa, national
legislation makes provision for the conservation of biological diversity between and
within species (NEMBA, Act 10 of 2004). Although the possibility of ongoing
differentiation between isolated populations of L. polylepis exists, no specific
management or conservation plans have, as yet, been implemented to conserve any
unique populations that may be facing some kind of threat (Emery et al., 2002; Roux,
2008).

In this study the genotypic and morphometric differences between the L. polylepis
populations were considered. In addition, any potential morphological adaptations of
the populations in response to different environmental variables were considered.
The aim of this portion of the study is to characterise the morphological and genetic
differences of the five isolated populations of L. polylepis in Mpumalanga. In order to
reach this aim the following two objectives have been established. Initially the use of
a genetic marker approach using mitochondrial DNA control region was adopted to

assess the genetic diversity within the populations. Thereafter the morphometric

o Wynand Vlok, June 2006, Researcher, Zoology Department, University of the North.
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assessment involved the use of multivariate statistical methods to assess the

potential differences of 159 morphological measurements taken

Based on the findings of numerous studies published on freshwater fish species, the
mitochondrial DNA (mtDNA) control region was selected as genetic marker for this
pilot study of genetic differentiation within L. polylepis. Mitochondrial DNA is
inherited independently of nuclear DNA and only passed on from the female parent in
most animal species (Moritz et al., 1987). There is therefore no mixing of maternal
and paternal alleles of particular genes. The mtDNA molecule contains 37 genes
and a control region (Harrison, 1989). The latter region does not code for a specific
molecular product but contains several very important signals for the normal
functioning of the mtDNA molecule. Compared to the 37 genes, however, the control
region evolves quite rapidly and it allows one to record the pattern of changes within
and between different species (Harrison, 1989, Avise, 2000). It can even resolve
differences between different populations within the same species, depending on the
dynamics of the past and present connections between them. Mitochondrial DNA is
not without limitations: As all the genes are linked on the circular molecule, it
represents a single locus and thus a single view of the species history (Moritz et al.,
1987). Due to the maternal inheritance, the mtDNA genealogy is also not always
representative of the species’ history. In addition, mtDNA has a smaller effective
population size than nuclear DNA and this will over many generations of inheritance
affect the pattern of variation. Specific alleles will become fixed much faster than
nuclear DNA alleles and many alleles will go extinct. For comprehensive reviews on
mtDNA and it's utility consult Moritz et al., (1987), Avise, (2000) and Zhang and
Hewitt, (2003).

The potential expressions of phenotypic differences between the populations were
considered in a morphometric assessment of the individuals from the five
populations. In order to potentially provide ecosystem stakeholders and users with
the ability to distinguish between the populations of yellowfishes assessed in this
study, it is important to address the external morphological differences of these
populations in an attempt to establish any key measurements that these stakeholders
could use. Although the relationship between the yellowfishes (Labeobarbus spp.) is
unclear, the group contains a broad range of morphological variation within species
and between species (Skelton, 2001). In particular, the small-scaled group of
yellowfishes namely; L. aeneus, L. kimberleyensis, L. natalensis and L. capensis

show a large, similar range of morphological characteristics which makes the
11



identification of these species very difficult. Without prior knowledge concerning the
historical distribution of a small-scaled yellowfish population it is very difficult to
clearly distinguish between these species using morphological characteristics. In
order to provide L. polylepis stakeholders with the information required to accurately
identify and possibly distinguish between the L. polylepis populations, a detailed
morphological assessment of all of the individuals used in this study has been

undertaken.

This section of the study details the methodologies implemented, the findings and
outcomes of the genetic and morphological assessment of five L. polylepis

populations and one L. natalensis population.

2.2 Materials and methods

2.2.1 Sample collection

In total 164 L. polylepis specimens were collected from five populations within the
Inkomati and Phongolo river systems (Figure 2) and 22 individual of L. natalensis
were collected from the Umvoti River in KwaZulu-Natal. During June in 2006, 32
specimens of L. polylepis were collected from the Phongolo River and 30 specimens
from the Assegaai River. During October in 2006, 34 specimens of L. polylepis were
collected from the Elands River and 38 specimens were collected from the
Ngodwana Dam. Finally, during January in 2007, 30 L. polylepis specimens were
collected from the Komati River. An additional 22 specimens of L. natalensis were
collected during October in 2006 from the Umvoti River, KwaZulu-Natal, and were

included in this study as an out-group.

Fish were collected using an array of standardised fish sampling techniques. These
techniques included the use of gill nets (37 mm, 45 mm and 57 mm mesh sizes),
small fyke nets, small and medium seine nets, electro-fishing and fly-fishing
techniques. Once the fish were sampled they were kept alive either in nylon keep-
nets within the river or dam where they were sampled or in a plastic holding tank
before they were dissected. The approach followed by Bloomer et al. (2007) in an
assessment of the morphological differences between L. aeneus and L.

kimberleyensis was followed for this assessment. This approach made use of 57

12



pre-selected morphological measurements of which 18 were recorded in the field
before specimens were dissected and an additional 39 measurements (Figure 3)
were taken in the laboratory of the University of Johannesburg. Muscle, heart and
liver samples were collected from fish dissected in the field and frozen using liquid
nitrogen. A subsample of muscle from each specimen was taken in the lab,

preserved in 96% ethanol and later used for the genetic assessment.

2.2.2 DNA extraction, PCR and DNA sequencing

Total genomic DNA was isolated from muscle samples using Chelex resin following
the protocol of Estoup et al. (1996). A short variable region of the control region was
amplified using Polymerase Chain Reaction (PCR) with Labeobarbus specific
primers designed in earlier research on L. aeneus and L. kimberleyensis (Bloomer
and Naran, 2006). Polymerase Chain Reaction and cycle sequencing were
performed in a Geneamp® PCR System 9700 (Applied Biosystems). Amplification
reactions were performed in 25 pl volumes, each containing 1 x buffer, 2.5 mM
MgCl,, 0.2 mM of each of the four nucleotides (Promega), 12.5 pmol of each primer,
1.5 units of SuperTherm DNA polymerase (Southern Cross Biotechnology) and
approximately 100 ng template DNA. Cycling conditions for PCR consisted of an
initial denaturation of 5 min at 94°C, followed by 35 cycles of 30 seconds at 94°C, 30
seconds at 51°C and 30 seconds at 72°C, with a final extension of 7 min at 72°C.
PCR products were precipitated using sodium acetate and 100% EtOH, followed by
elution in Sabax water (Adcock Ingram). Cycle sequencing was performed in 10 pl
volumes with the reaction mix containing 100 ng of purified PCR template, 3.2 pmol
of one of the above-mentioned primers and 2 ul of ABlI PRISM Big Dye Terminator
Cycle Sequencing Ready Reaction Kit V3.1 (Applied Biosystems). Cycle sequencing
and precipitation of the products followed the manufacturer’s instructions. Nucleotide
sequences were determined through electrophoresis on an ABI3130 automated
sequencer by Macrogen (Rockville, MD, USA). Consensus sequences were
obtained from the forward and reverse sequences through alignment and inspection
in Vector NTI (Invitrogen). All consensus sequences were aligned using Clustal X
(Thompson et al., 1997) and checked manually. The sequences of unique alleles will

be deposited in GenBank.
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2.2.3 Analysis of DNA sequence variation

Aligned sequences from Clustal X were analysed using statistical parsimony in TCS
(Clement et al., 2000) to identify all unique alleles and their frequencies. DNASP
version 4.0 (Rozas et al., 2003) was used to test for neutral evolution of the control
region analysed using Tajima’s D test statistic (Tajima, 1989) and to calculate
diversity indices such as allelic (Nei and Tajima, 1981) and nucleotide diversity (Nei,
1987). Arlequin 2.0 (Schneider et al., 2000) was used to plot a mismatch distribution
of pairwise differences between all samples. The observed distribution was
compared to the expected distribution under a population growth and decline model
(Harpending, 1994, Rogers, 1995). An Analysis of Molecular Variance (AMOVA,
Excoffier et al., 1992) was also conducted in Arlequin 2.0. The analysis partitions the
overall variation into two or three components such as: between pre-defined groups,
among populations within these groups and within populations. The amount of
variation within populations relative to the total variation gives an indication of
population structure (Fsr, Wright, 1951). The significance of the variance

components were evaluated using 10 000 permutations.

2.2.4 Phylogenetic and allele based analyses

An allele network was constructed using statistical parsimony in TCS (Clement et al.,
2000) which only joins alleles that can be connected with 95% confidence. An
unrooted distance based phylogenetic analysis of the sequences was done based on
the neighbour-joining algorithm (Saitou and Nei, 1987) as implemented in PAUP
(Swofford, 2003). Confidence in inferred relationships was determined based on

1000 bootstrap replicates (Felsenstein, 1985).

2.2.5 Morphological analysis

The morphological assessment of the study involved the initial assessment of the
scale counts and the fin ray counts of all L. polylepis and L. natalensis individuals
(refer to Appendix A). This assessment was undertaken by carrying out a Principle
Component Assessment (PCA) of the data using Primer version 6, multivariate
statistical package (PRIMER-E Ltd, Plymouth Marine Laboratory, United Kingdom).

Following this assessment an intra- and inter-species assessment of 54
14



morphological measurements was undertaken similarly by PCA using the Primer
version 6 multivariate statistical packages. Following the PCA assessments, key
measurements were determined using the Eigenvectors or coefficients in the linear
combinations of variables making up the principle components of the PCA
assessment (Clarke and Gorley, 2006). These key measurements where used to
discuss any differences within the populations assessed. Finally, standard length
and mass of the individuals where considered in order to address the condition of the

individuals by dividing the mass (g) by the length (cm).

In order to carry out the intra- and inter-species PCA assessments the approach
followed was to convert the initial measurements into a ratio value using the fork
length (measurement/fork length) for each individual. Similar approaches have been
widely used to assess the morphology of fishes in this manner in order to address the
impact of change in shape due to increasing body size, termed allometry
(Groenewald, 1958; Stewart, 1977; Kramer et al., 2007).

15



JARION

@ ) lateral line -dorsal fin

Prepecty Origin: pectoral - pelviof\
length lateral line - pelvic fin

Prepelvic length V. —

Preanal length T \

Standard Length

Snout length
Eye diameter
Orbital preoperculum gr/ove \$ \

Fork Length Head length
Total Length

Body width -
pectoral fins

80
3\
CP Width €%
WeP

3

Dorsal fin origin -

Caudal fin base

FX height

7~

N

/
-

Gape width

Gape
heigth
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yellowfish individual used in this study.
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2.3 Results and discussion

The findings of the study are presented in two sections namely the genetic

assessment and the morphological assessment.

2.3.1 Genetic assessment findings

Mitochondrial DNA control region sequences were generated for 147 L. polylepis
individuals from the five localities. Following identification of unique alleles, the
analysis was done in the following stages: (Analyses 1) Allele based analysis using
statistical parsimony. This analysis only connects the most closely related alleles that
can be connected with a 95% confidence limit; (Analyses 2) Alleles not connected in
the first analysis were then included in an allele tree that can also connect more
distantly related alleles; (Analyses 3) Long branches (i.e. very divergent alleles)
reduce resolution and thus a third analysis was conducted, including other
Labeobarbus spp. outgroups, to determine the placement of the most divergent

lineages.

2.3.1.1 Analysis 1: Population structuring and diversity within L. polylepis:

The statistical parsimony analysis could only connect 15 alleles (N=109) from the five
populations and several Elands River, Ngodwana Dam and one Assegaai River
alleles could not be connected with confidence. The fifteen unique alleles were
identified based on variation at 22 sites within a 427 base pair fragment of the 5’
variable segment of the mtDNA control region (Table 2). The relationships among
the alleles are summarized in the allele network (Figure 4). Several of the alleles
(Figure 4) are shared (6 of the 15 alleles were found in more than one locality), with a
number of high frequency alleles (such as allele 10 that was recorded from 22
individuals). Within our sample, a high number of alleles (9 out of the 15 alleles
identified) were only recorded from a single locality. The analysis indicates the
distinction of the Assegaai and Phongolo rivers populations from the northern

populations.
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Figure 4: Allele network, based on a statistical parsimony analysis conducted in TCS,
depicting the relationships between 15 unique maternal alleles identified among 109 L.
polylepis individuals, based on the analysis of 427 base pairs of the 5 variable
segment of the mitochondrial DNA control region. Each circle/square represents a
unique maternal allele defined by a unique set of DNA bases (Table 5). The sizes are
drawn relative to the frequency of each of the alleles. Allele 1 was identified as the
ancestral allele. The TCS analysis could join alleles with 95% confidence if they were
connected with eight or fewer mutational changes. Each line represents a single
mutational change and small dark circles indicate missing alleles (alleles not sampled

in the present study or extinct alleles).

A moderate level of allele diversity (0.876) and a relatively low level of nucleotide
diversity (1.5%) were recorded. These summary statistics not only allow comparison

across different freshwater fish species but also can reveal information about the
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population/species history of the species under investigation. Allele diversity gives
an indication of the number and frequencies of alleles irrespective of the actual
sequence differences between them; when randomly drawing any two individuals
from the population, it reflects the probability of the two individuals having different
alleles. Allele diversity ranges from 0 to 1, with O indicating that all individuals are
identical whereas a value of 1 would be obtained if each individual had a unique
allele. The allele diversity estimated among the 109 samples analysed here thus
indicates a reasonable degree of differentiation among individuals and compares well
with that found within other freshwater fish in South Africa, for example in redfins
(Pseudobarbus spp.), where lineages within single species are often isolated in
different river systems, values higher than 0.8 are typically recorded (see for example
Bloomer and Impson, 2000; Swartz, 2005).

Nucleotide diversity shows the extent of sequence difference among alleles. The
estimate is influenced by the frequencies of different alleles but not by the number of
different alleles. On average, the alleles in the present study differed from each other
at 22 sites within the 427 bp region, i.e. less than 2% divergence; this is reasonably
low and expected for within-species variation. The number of pairwise differences

however ranged from 0-12.

The estimate of Tajima’s D statistic (1.95) was non-significant (P > 0.98) indicating
that the control region, studied here, is evolving in a neutral fashion (unaffected by

selection) and is thus appropriate for studying population/species history.

An Analysis of Molecular Variance was used to test several independently defined
groupings. When considering all individuals as a single lineage, most of the variation
was recorded between (77.69%) rather than within the populations (22.31%) and the
overall population structure (Fst = 0.78) was significant. When defining two groups,
Ngodwana/Elands/Komati versus the Assegaai/Phongola, 80.05% of the variance
could be accounted for by the two groups, 3.75% of the variation was found among
populations within these two groups and 16.21% within populations. This confirms
the need to investigate the relationship between these rivers in greater detail. We
need more comprehensive geographic sampling and nuclear DNA markers to

confirm the past and current gene flow between the separate rivers.
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The mismatch distribution analysis, comparing the trend of observed pairwise
sequence differences among the 109 Bushveld smallscaled yellowfish, showed a

significant fit to the trend expected under a population growth model (Figure 5).

3
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Pairwize Differences

Figure 5: Pairwise comparison of nucleotide differences between 109 Bushveld
smallscaled yellowfish from five localities based on 427 base pairs of the 5’ end of the
mtDNA control region. The observed data show a significant fit to the trend expected
under a population growth/decline model [Sum of Squared deviation: 0.036; P(Sim. Ssd
>= Obs. Ssd): 0.053; Harpending's Raggedness index: 0.05, P(Sim. Rag. >= Obs. Rag.):
0.081].

2.3.1.2 Analysis two: Allele tree for Labeobarbus polylepis

The alleles that could not be connected with confidence in Figure 3 were included in
the allele tree (Figure 6). We had to prune a divergent branch connecting two alleles,
one from the Assegaai and one from the Elands (n=11). The tree confirms the
distinction between the Assegaai/Phongolo population and the northern populations.
There is also significant separation between most individuals from the Elands
population versus the Inkomati, Assegaai and Phongolo populations. The Ngodwana
Dam and Elands River individuals share some alleles with the Komati River
population; this could reflect shared history of these populations in the past or may

reflect the result of a previous translocation of individual L. polylepis from the Komati
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River into the Elands River and Ngodwana Dam (Pers. Comm' Francious Roux).
We recommend that as a precautionary principle, these three groupings (Figure 6)
should be treated as separate conservation units, pending more in-depth analysis

based on nuclear genes and wider sampling.

Inkomati River (29)
Ngodwana Dam (20)
Elands River (3)

Elands River (16)
Ngodwana Dam (9)

Assagai River (29)
Phongolo River (28)

—— 0.001 substitutions/site

Figure 6: Unrooted phylogram based on a neighbour-joining analysis of the 15 unique
control region alleles as well as alleles A and B that represents a unique lineage from
the Elands River and Ngodwana Dam, identified among 134 Bushveld smallscaled
yellowfish. The branches are drawn relative to the number of mutational changes in
the 427 base pair segment of the control region. Notice the longer branches
connecting alleles 1-6 and 7-15, compared with the close relationship between alleles

1-5 for example.

'% Francious Roux, 2005, Aquatic specialist, Mpumalanga Parks Board.
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2.3.1.3 Analyses 3: Broader level phylogenetic relationships

A representative of each of the lineages from the above analyses as well as the two
divergent Assegaai and Elands population lineages were compared in terms of the
sequence divergence between them. To put the latter into perspective we also
compared some of our unpublished data for L. polylepis from Swaziland and the
other four species of smallscaled yellowfishes (Table 3) and determined the
phylogenetic relationships of the divergent L. polylepis alleles to these outgroups
based on the genetic distance estimates. The sequence divergences show that three
L. polylepis individuals sampled from the Assegaai River and eleven individuals from
Elands Rivers were highly divergent, with the estimates even exceeding those
between the isolated L. capensis and all other taxa. The unrooted neighbour-joining
phylogram (Figure 7) summarize these relationships. Clearly there is highly
significant differentiation within L. polylepis and we have this far only considered five

of at least 11 populations identified by Roux (2008).
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L. polylepis? L. polylepis?
Assegal River Elands River

Elands River/Ngodwana Dam

Assagai River/Phongolo River L. aeneus / L. kimberleyensis
Orange/Vaal

L. polylepis
Usuthu system, Swaziland
. . L. asneus
Nkomati system, Swaziland Lower Orange
Inkomati River
Mtamvuna River
Tugela River
L. natalensis
L. capensis
s (0.005 substitutions/site Clanwilliam Olifants

Figure 7: Unrooted phylogram based on a neighbour-joining analysis of the unique
control region alleles identified for L. polylepis and four other smallscaled yellowfish
species. The branches are drawn relative to the number of mutational changes in the
427 base pair segment of the control region. Notice the longer branch connecting the

two alleles identified for L. polylepis from the Assegaai and Elands rivers.

2.3.2 Morphological assessment

The morphological assessment was undertaken by carrying out a multivariate
statistical analyses approach using the Principle Components Analyses (PCA) to
identify any driving measurements that may result in the unique grouping of any

given measurements or morphological variable.
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Initially an assessment of the scale counts and amount of fin rays were undertaken
to test for any consistent differences between the populations of L. polylepis and the

L. natalensis out-group collected from the Umvoti River (KwaZulu-Natal).

The initial assessment considered the amount of rays for all fins, and scale counts
from the lateral line to the origin of the dorsal fin, lateral line scales, predorsal scales
and caudal peduncle scales (Refer to Appendix A). Finding of the initial scale and fin
ray PCA assessment are presented in Figure 8. Findings indicate that an overlap of
all populations exists and that no individual or combination of scale and or fin ray

counts can be useful in identifying any of the individual populations.
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Figure 8: Principle Component Analysis based on the fin ray counts and the scale
counts of the five Labeobarbus polylepis populations and the one Labeobarbus
natalensis population considered in this study.

Following the scale and fin ray assessment, consideration of the morphological
measurements of the intraspecies differences between the L. polylepis populations
has been carried out using a PCA (Figure 9) (Refer to Appendix B). Findings suggest
that based on morphology, the populations can be separated into three groups: one
group consisting of specimens from the Phongolo and Assegaai River, a second
group of specimens from the Komati River only, and the third group consisting of
specimens sampled at Elands River and Ngodwana Dam. The second group that
contained specimens from the Komati River partially overlapped with the Phongolo
and Assegaai rivers group. Findings revealed no overlap between the Elands River
and Ngodwana Dam groups, with any of the other two groups.
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The grouping of the Elands River and Ngodwana Dam populations confirms that
these two populations, although occurring in vastly different habitats, are similar. If
the effects of different habitat variables were a main driver of differing morphology
within this species the Ngodwana Dam sample, which occurs in a lentic ecosystem,
should have separated from the remaining populations which were all collected in
lotic systems. As such these findings suggest that the morphological differences,
although slight amongst these populations, may be arising as a result of genotypic

influences rather than phenotypic influences.

The groupings of the individuals from the Phongolo and the Assegaai rivers suggest
that although these populations currently seem to be isolated from one another,
these populations may still be connected and/or may have only recently been
isolated. Considering these results, the morphological assessment for the L.
polylepis populations correspond well to the geographical distribution of these
populations. The Elands River population (most northerly population) is
morphologically very similar to the Ngodwana Dam population which occurs in close
proximity to this population. Thereafter the Komati River population is more similar to
the Elands River and Ngodwana Dam populations of which all three occur within the
greater Inkomati River catchment. The Assegaai River, and lastly the Phongolo
River populations, that occur within the greater Phongolo River catchment, link onto
the initial grouping of the Inkomati River populations. Important to highlight is that the
Elands River and Ngodwana Dam populations do not overlap with any other
population whilst the remaining Komati River, Assegaai River and Phongolo River

populations do overlap (Figure 9), suggesting the uniqueness of this population.

An inter species assessment (Refer to Appendix B) was undertaken by the addition
of a KwaZulu-Natal yellowfish L. natalensis sample, obtained from the upper Umvoti
River (Figure 10). . Morphologically, the new sample of L. natalensis overlapped the
L. polylepis individuals from the Komati, Assegaai and Phongolo rivers. This
suggests that the L. natalensis population included were morphologically similar to
the L. polylepis communities from the Komati, Assegaai and the Phongolo rivers.
This also indicated that there is no overlap between the L. natalensis population with

the Elands River and Ngodwana Dam L. polylepis populations.
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Figure 9: Principle Component Analysis based on morphological measurements from

five Labeobarbus polylepis populations.

Previous assessments (Groenewald, 1958; Gaiger, 1969; Bloomer et al., 2007)
concluded that large morphological variation exists, specifically within the Small-scale
yellowfish group. This variation is evident when comparing the morphology of the L.
natalensis population from the Umvoti River with the three southern L. polylepis
populations. These findings suggest that a gradient of morphological differences
may exist across some of the isolated populations of L. polylepis and L. natalensis.
There were no overlap in the findings from the morphological assessment of the
Elands River and Ngodwana Dam populations of L. polylepis and any other
population, this may originate from an extended period of isolation that has rendered
this population morphologically different from the other L. polylepis and the L.

natalensis populations.

28



0.10— e
- . oy
e = X xS A A
/’, - LN
e
g ® Y
e A A A
. . S x
. * o xo .
- K
0.05— ,°* E xx R 1
' ‘0 A x <o A 1
.
PN X o ]
. ® ® o X  aA.-TTAN e A
¢ A x LA, a
L R TRy o7 +
% i + el A ° ),'I -
7 e + * T - - el
+ © <o O Ay *.
‘ ’ . ‘ . *
N . . .
Q 0T R4 L e “
N . + it N <> x o e o o'-
~ - + €. _.AET *e ':
" E m mgm - o m om W WD [ Lo 4 & ‘ ¢ '
T + ** . o
+ + + P o o ° ;
+ . [e) ;
+ + 4 * o o * ® (o] o
+ ;
+ o ¢ o * E
e - K o
0054  TTrmmemeeeenttt o o
N *
% Umvoti R. 0 & o
A Phongolo R. ' o PS le)
& Ngodwana Dam o ©O
O Elands R. o
O Assegaai R.
+ Komati R. e o _____
.0.10:} | | | | |
-0.15 -0.10 -0.05 0 0.05 0.10

PC1
Figure 10: Principle Component Analysis based on morphological measurements from
five Labeobarbus polylepis populations and the Labeobarbus natalensis population

considered in this study.

In order to carry out an assessment of the individual measurements that contributed
towards the establishment of the groupings presented in the interspecies assessment
(Figure 9), the measurements that act as key coefficients in the PCA where
considered. Key coefficients in the PCA were those measurements that were
considered to have the most influence in the formation of the PCA, these
measurements were selected as those that had coefficient values of > 0.1 and those
that are < -0.1.

Table 4) Key coefficient measures are considered to be those that contributed
significantly to the groupings observed in the PCA graph (Figure 9) that was drawn
using the five L. polylepis populations. Results indicated that there were ten key
measurements that contributed to the variation explained by PC1 and ten
measurements (eight key measurements similar to those indicated in PC1) that
contributed to the variation observed in PC2.  Standardised key measurement

values (measurement/fork length) are presented in Table 5, and, using Microsoft
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Excel box and whisker plots, presenting the minimum and maximum value, upper
and lower quartile and the median of the key measurements are presented in Figure

11, Figure 12, Figure 13 and Figure 14.

Key measurement assessment results indicated that the morphological differences
between populations were slight but consistent. Key measurements included the
median sizes of the fins, differences in the median lengths of the heads, mouth
measurements, trunk lengths (pre-pelvic length, pre-pectoral length and pre-anal
length measurements) and median differences in height (lateral-line to pelvic and
post pelvic to post dorsal) and in width (before dorsal fin) of individuals between the

different populations.

Graphical representation, Figures 11, 12, 13 and 14) of key measurements allow for
the comparison between measurements from the L. polylepis populations. In this
assessment the L. natalensis population data has been included to allow for a holistic

review of the morphological.

Table 4: Key coefficients, those above 0.1 and below -0.1 (based on variable

measurements), in linear combinations making up PC1 and PC2.

Variable PC1 PC2
Caudal fin max height -0.768 -0.355
Lower ray length -0.204 -
Head length -0.200 0.277
Prepectoral length -0.193 0.265
Prepelvic length -0.192 0.189
Origin of pectoral - premaxilla -0.176 0.214
Upper ray length -0.173 -0.118
Premaxilla - supraoccipital -0.138 0.154
Pre anal length -0.131 0.338
Pectoral fin length -0.103 -
Dorsal fin origin - pelvic origin - -0.236
Post pelvic - post dorsal - -0.203
Max dorsal spine length - -0.171
Anterior pelvic - origin of pectoral - -0.159
Lateral line - dorsal fin - -0.139
Lateral line - pelvic fin - -0.133
Body width (before dorsal fin) - -0.100
Origin of pectoral - supraoccipital - 0.119
Lower jaw length - 0.160
Gape height - 0.176
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Table 5: Standardised key measurement median values (measurement/fork length) of

Labeobarbus spp. assessed in the study.

=
, a
. « o . ©
o = c ;
- - s o
S 5 2 g 3 2
S < 7 S =] ]
=) o < 4 P w
Caudal fin max height 0.32 0.32 0.36 0.42 0.32 0.34
Upper ray length 0.25 0.22 0.22 0.24 0.22 0.22
Lower ray length 0.25 0.22 0.22 0.24 0.22 0.22
Head length 0.23 0.23 0.23 0.23 0.21 0.20
Origin of pectoral - premaxilla 0.22 0.23 0.23 0.23 0.21 0.21
Premaxilla - supraoccipital 0.12 0.12 0.1 0.12 0.10 0.09
Origin of pectoral - supraoccipital 0.18 0.18 0.18 0.18 0.17 0.17
Gape height 0.07 0.09 0.09 0.08 0.07 0.07
Lower jaw length 0.06 0.07 0.07 0.06 0.05 0.05
Anterior pelvic - origin of pectoral 0.26 0.26 0.26 0.26 0.26 0.27
Prepectoral length 0.23 0.23 0.23 0.24 0.21 0.20
Prepelvic length 0.49 0.49 0.49 0.49 0.47 0.47
Pectoral fin length 0.19 0.17 0.19 0.18 0.17 0.17
Max dorsal spine length 0.19 0.15 0.16 0.18 0.17 0.17
Pre anal length 0.71 0.70 0.71 0.70 0.68 0.68
Lateral line - dorsal fin 0.17 0.15 0.16 0.17 0.16 0.16
Lateral line - pelvic fin 0.07 0.07 0.07 0.08 0.08 0.09
Dorsal fin origin - pelvic origin 0.23 0.19 0.22 0.23 0.22 0.23
Post pelvic - post dorsal 0.22 0.20 0.20 0.21 0.21 0.21
Body width (before dorsal fin) 0.12 0.13 0.13 0.13 0.14 0.14
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Figure 11: Graphical representation of the key measurements contributing to
morphological differences obtained in the study. Measurements include: (A) anterior
pelvic — origin of pectoral, (B) body width (before dorsal fin), (C)caudal fin max height,
(D) dorsal fin origin — pelvic origin, (E) gape height and (F) head length.
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Figure 12: Graphical representation of the key measurements contributing to
morphological differences obtained in the study. Measurements include; (A) lateral
line — dorsal fin, (B) lateral line — pelvic fin, (C) lower jaw length, (D) lower ray length,

(E) max dorsal spine length and (F) origin of pectoral — premaxilla.
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Figure 13: Graphical representation of the key measurements contributing to
morphological differences obtained in the study. Measurements include; (A) origin of
pectoral — supraoccipital, (B) Pectoral fin length, (C) post pelvic — post dorsal, (D) pre

anal length, (E) premaxilla — supraoccipital and (F) prepectoral length.
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Figure 14: Graphical representation of the key measurements contributing to
morphological differences obtained in the study. Measurements include; (A) prepelvic

length and (B) upper ray length.

Findings indicate that a large amount of variation and overlap exists in the key
morphological measurements of the populations. This does not allow for easy
separation of the L. polylepis populations or for the L. natalensis population. This
study confirms that a large amount of variation and overlap exists at least amongst
the L. polylepis and L. natalensis, small-scaled yellowfishes of South Africa. In
particular the L. natalensis population collected from the Umvoti River in KwaZulu-
Natal showed the highest amount of variation particularly due to the outliers of the
measurements including body width (before dorsal fin) (Figure 11 (B)), caudal max
fin height (Figure 11 (C)), dorsal fin origin to pelvic origin (Figure 11 (D)), premaxilla
to supraoccipital (Figure 13 (E)) and Upper ray length of the caudal fin (Figure 14
(B)). Interestingly, in the species comparison of the body width, the L. natalensis
population reflected a larger variation in body width between individuals, while all of
the L. polylepis showed uniform widths, particularly in the Assegaai and Elands

populations.
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Within the L. polylepis populations a large amount of variation was observed in the
following measurements:

o (Figure 11 (A)) Anterior pelvic to origin of pectoral for the Ngodwana
population.

e (Figure 11 (C)) Caudal fin max height predominantly for the Komati River
population.

e (Figure 11 (D)) Dorsal fin origin to pelvic fin origin for the Elands River and the
Phongolo River populations.

e Figure 12 (A)) Lateral line to dorsal fin origin for the Assegaai River
population.

e Figure 12 (B)) Lateral line to pelvic fin for the Komati River population.

e Figure 12 (C)) Lower jaw length for the Phongolo River population.

e Figure 12 (F)) Origin of pectoral to premaxilla for the Ngodwana, Assegaai
and Phongolo populations.

e (Figure 13 (A)) Origin of pectoral to supraoccipital for all of the L. polylepis
populations.

o (Figure 13 (B)) Pectoral fin length for all of the L. polylepis populations.

o (Figure 13 (C)) Post pelvic to post dorsal for the Komati River and Phongolo
River populations.

e Pre-anal length (13 (D)) predominantly for the Komati, Assegaai and
Phongolo populations.

o (Figure 14 (A)) Pre-pelvic length for all of the L. polylepis populations.

e (Figure 14 (B)) Upper ray length predominantly for the Komati River

population.

This large amount of variation within the L. polylepis populations makes the clear
separation between populations difficult. The assessment, presented in Figure 9,
does however indicate that separations are possible between the grouping of the
Elands River and Ngodwana Dam populations, with the rest of the L. polylepis

populations.

Initially, by considering the box and whisker plots (Figures 11-14), the probability is
high, although not certain, that an individual with a measurement equal to the
measurement represented in the box would belong to the population represented by
that the box, if no overlap of any given measurement occurs between populations.

This is possible as 75% of the data points, or those data that occur between the
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upper and lower quartile of the measurements of each population, are represented
by the boxes. To be certain of the distinctions, only those measurements that occur
within a data range of any populations that occur above or below the minimum and
maximum values for all other populations can be used. As such the morphological
measurements that can be used with certainty to separate the Elands River and
Ngodwana Dam populations from the rest of the L. polylepis populations, considered
in the assessment, include the gape height (Figure 11 (E)), the head length (Figure
11 (F)), the origin of pectoral to supraoccipital (Figure 13 (A)) and the prepectoral
length (Figure 13 (F)). In particular, if any individual L. polylepis individual originating
from any of the populations included in this study are obtained with a gape height
smaller than 0.72%, a head length smaller that 0.21%, an origin of pectoral to
supraoccipital less than 0.164% and a prepectoral length smaller than 0.213% of the
fork length of the individual the individual belongs to the Elands River or Ngodwana

Dam populations.

Based on the key measurements of the study, the measurements that can be used
with a high probability and those that can be used with certainty to identify the L.
polylepis populations considered are presented in Table 6. In accordance with the
PCA assessment of the L. polylepis populations (Figure 9) the Elands River and
Ngodwana populations are similar and contain seven measurements that can be

used with a high probability to identify individuals from these populations.

Of the seven measurements, five can be used with certainty to identify these
individuals. Following the Elands River and Ngodwana Dam populations, four
measurements can be used with a high probability to identify individuals from the
Komati River, three measurements can be used with certainty. For the Assegaai
River population only two measurements are available to identify populations with
certainty and for the Phongolo River population only one measurements can be used
with a high probability and with certainty should the measurement fall within the
range of the certainty measurement. One additional measurement (Max dorsal spine
length) can be used with a high probability to identify individuals from the Assegaai

River and Phongolo River populations.
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Table 6: Key measurements that can be used with a high probability and with certainty

to identify the L. polylepis populations considered in this study.

Population Measurements High probability ~ With certainty
Gape height 0.07 & 0.08 <0.007
Elands River Head length 0.2 & 0.21 <0.21
Lower jaw length 0.05 & 0.06 <0.052
and _ ;
Ngodwana Or!g!n of pectoral - premax!lla 0.2 & 0.21 -
Dam Origin of pectoral - premaxilla | 0.16 & 0.17 <0.179
Premaxilla - supraoccipital 0.09 & 0.11 -
Prepectoral length 0.2 & 0.22 <0.21
Caudal fin max height 0.40 & 0.43 >0.39
Lateral line - pelvic fin - - - <0.055
Komati River |Lower ray length 024 & 025 >0.239
Max dorsal spine length 0.17 & 0.19 -
Upper ray length 0.24 & 0.25 -
I Gape height - - - >0.097
Assegai River Lateral line - dorsal fin - - - <0.136
Phongolo {11 fin origin - pelvic origin | 0.19 &  0.21 <0.197
River
Assegai and
Phongolo |Max dorsal spine length 0.15 & 0.17 -
rivers

Results indicate that the Ngodwana Dam and Elands River populations have
noticeably smaller heads compared to the other populations. Smaller heads may be
attributed to the slightly different ecological niche of this species as they are the only
two populations of L. polylepis (in this study) that do not occur with any other large
cyprinids such as L. marequensis and/or Varicorhinus nelspruitensis. In relation to
head size, populations from the Elands River and the Ngodwana Dam had relatively
smaller mouth sizes. The Assegaai and Phongolo rivers populations had the largest

mouths of the populations assessed.

In addition, a relatively high prevalence of the rubber-lip form amongst L. polylepis
individuals from the Elands River and from the Ngodwana Dam was observed. The
relationship between head size, gape size and lip form are unknown. Occurrence of
the rubber-lip form, considered not to exist in L. polylepis (Mulder, 1989), within the
populations from the Phongolo and Komati rivers was also observed and has not
been noted before. It is currently believed that the rubber-lip formation within the
smallscaled Labeobarbus spp. is due to their feeding behaviour as a result of

grubbing between pebbles, cobbles and loose rocky substrates (Skelton, 2001).
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Historical assessments of these mouth formations within L. aeneus indicated that the
rubber-lip form can revert to the varicorhinus lip form if the feeding behaviour of the

individual changes (Groenewald, 1958).

Results further indicate that although the heads of the Elands River and Ngodwana
Dam communities are noticeably smaller than the remaining populations, the trunk
lengths of these populations were the greatest. The Komati River population has the
largest head lengths, in relation, which are similar to the Umvoti River population of
L. natalensis. Finally in consideration of the trunk lengths of the remaining
populations, the Phongolo River population had the smallest trunk lengths followed
by the Umvoti and Assegaai rivers populations and finally the Komati River
population which were all smaller than the Ngodwana Dam and Elands River

populations.

In consideration of the fin lengths, although the L. natalensis population had relatively
longer fins compared to the L. polylepis populations, only the Phongolo and Assegaai
rivers populations have pectoral fins that were longer than their dorsal fins. In all of
the remaining populations the lengths of the dorsal and pectoral fins were equal.
These differences in fin length of L. polylepis and L. natalensis populations are
considered to possibly occur as a result of the influence of different habitats on the

populations.

In consideration of the height of individuals from all of the populations, results
showed that all the populations were similar in height. Interestingly all the
populations (excluding the Phongolo River population) had a dorsal fin origin to pelvic
fin origin measurement that was slightly longer than the post pelvic to post dorsal
length. In the Phongolo River population the post pelvic to post dorsal length was

slightly longer than the dorsal fin origin to pelvic fin origin.

In consideration of the width from all of the populations, this assessment revealed
that the width of the L. polylepis populations was relatively greater than the width of
the L. natalensis population. Findings showed that the width of the L. polylepis
populations from the Elands River and the Ngodwana Dam were greater than for any
of the other L. polylepis populations. The width of the Komati and Assegaai rivers
populations were similar whilst the width of the Phongolo River population was
slightly less than that of the Assegaai River population, but greater than that of the L.

natalensis population.
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Finally this study allowed for an assessment of the condition of populations that were

obtained from the different systems.

Findings of the condition assessment are presented in Figure 15 and reveal that
based on the mass (in g) per cm, the condition of individuals assessed in the study
ranged from 0.35g per centimetre to 43.3g/cm. Both the minimum and maximum
condition values were obtained from the Phongolo River population. A better
refection of the overall condition of the populations is provided by considering the box
of the box and whisker plots. These data points include 75% of the data from the
populations. By considering this the Assegaai River and the Ngodwana Dam
populations had the highest condition, followed by the Elands River population, the
Komati River population and the Umvoti River population respectively (Figure 15).
Interestingly the amount of variation of the condition of the L. polylepis populations
where considerably greater than the L. natalensis population from the Umvoti River.
This assessment indicates that differences in the condition of the populations
assessed in this study exist. These differences may have occurred as a result of
differing habitats that are available to these individuals and that the availability of

food for populations in these systems may be different.
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Figure 15: Graphical presentation of the condition index outcomes (grams per cm of

Standard length) of the populations assessed in this study.
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2.4 Conclusions

In conclusion, results from the genetic and morphological assessment of the isolated
populations of L. polylepis showed that consistent morphological and genetic
differences do exist between the five populations of L. polylepis considered. Based
on the genetic assessment of the populations, outcomes indicate that a large range
of genetic variation exist within L. polylepis. An extreme case of genetic variation is
represented by a group of individuals from the Elands River and Assegaai River that
show a clear unique divergence not only from the remaining populations of L.
polylepis but also from all of the other small-scaled Labeobarbus spp in South Africa.
Findings further suggest that three groups, the Phongolo/Assegaai populations
(group 1), the Komati and selected individuals from the Elands and Ngodwana
populations (group 2) and the Elands and Ngodwana populations (group 3), should
be considered as separate conservation units pending further investigation within the
species and/or the small-scaled group whereby this status may be elevated to
management units or even evolutionary units. Due to individuals from the Elands
River and the Ngodwana Dam containing alleles from two of the proposed
conservation units, this study may indicate that remnants from a stocking exercise of
L. polylepis into these systems from the Komati River may still remain or alternatively

that these two conservation units may have a shared history.

Following the morphological assessment, outcomes indicate that although very
similar, consistent differences in the morphology of the populations considered do
exist. These outcomes suggests that the Elands River and Ngodwana Dam
populations of L. polylepis are unique and that they are the only populations that can
with certainty be separated morphologically from the other L. polylepis populations

and the L. natalensis populations from the Umvoti system.

In conclusion, the use of a genetic marker such as the mitochondrial DNA (mtDNA)
control region, is extremely useful in identifying populations of yellowfish that are
sufficiently different from other populations to warrant specific conservation and
management. Although the morphological and genetic assessment identified the
uniqueness of the Elands River and the Ngodwana Dam populations of L. polylepis,
without the genetic assessment the uniqueness of the isolated Assegaai and
Phongolo river Bushveld smallscale yellowfish in comparison to the northern

populations considered in this study would not have been established.
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3 Section 2: Metal bioaccumulation in muscle and liver tissue of five

Labeobarbus polylepis populations from Mpumalanga, South Africa

Victor Wepener'' and Andrew Husted'?

3.1 Introduction

Metal pollution of rivers is a world-wide phenomenon and this can be attributed to the
growth in mining, industrial and agricultural activities, as well as a proliferating human
population (He and Morrison, 2001). According to Abel (1989) the most important
metals in water pollution management are cadmium (Cd), chromium (Cr), copper
(Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn). Some of these studied
metals are essential trace elements to living organisms (i.e. Cu and Zn), while other
metals (i.e. Cd and Pb) are non-essential and have no known biological function
(Connel et al., 1999). At elevated levels, all metals are toxic to aquatic organisms.
This toxicity may cause direct or indirect effects such as histological damage or a
reduction in the survival, growth and reproduction of species (Heath, 1987).
Environmental factors such as temperature, pH and water hardness may have an
influence on the toxicity of metals. According to Abel (1989) these conditions help to
determine the chemical speciation of metals and as a result influence the
bioavailability of the metals to aquatic organisms. Interactions between pollutants, the
developmental stage of the organism and interspecific variations in susceptibility to

metals are other factors which may influence metal toxicity (Hellawell, 1986).

The need to monitor river systems which may be impacted either directly or indirectly
by industrial and mining activities is extremely important when viewed in the light of
the consequences of metal pollution in aquatic ecosystems. These determined metal
concentrations can then be compared to the set metal concentrations published in
the existing water quality guidelines for these systems (Wepener et al., 2000). The

state of the system to which the aquatic organisms is exposed can then be assessed.

" Victor Wepener, Centre for Aquatic Research, Zoology Department of the University of
Johannesburg.
'2 Andrew Husted, Centre for Aquatic Research, Zoology Department of the University of
Johannesburg.
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According to Abel (1989), biological monitoring is very important in order to obtain a

reliable and general assessment of the metal pollution of the impacted system.

According to Hellawell (1986) the aquatic organisms which accumulate pollutants
from their environment and/or food, sequestering them in their bodies, so that an
indirect estimate of prevailing environmental concentrations of these substances can
be made once the tissues are analysed. Van der Oost et al. (2003) suggest that the
concept associated with the term “biological indicator” is that of an organism, which
accumulates substances in it's tissues in a way so as to reflect the environmental
levels of these substances or the extent to which the organism has been exposed to
them. Organisms such as these are “bio-accumulators” of these substances, and as
they are able to concentrate very low environmental levels of substances they are

very useful, as they facilitate with detection and analysis (Hellawell, 1986).

According to Dallinger et al. (1987) many fish species are considered to be top
consumers in an aquatic ecosystem. As a result, fish are most likely to accumulate
pollutants and pose a potential risk not only to themselves but also piscivorous birds
and mammals, including humans (Grimanis et al., 1978; Adams et al., 1992). The
uptake of metals by fish through the diet can be as important as waterborne metal
uptake and the relative importance of the different uptake routes is variable (Dallinger
et al.,, 1987; Kraal et al., 1995; Langevoord et al., 1995). Little information is
available on the relationship between internal tissue levels of metals and condition of

fish under natural exposure conditions (Bervoets & Blust, 2003).

In an aquatic ecosystem, organisms which are near the top of the food chain such as
fish are generally considered to be reliable indicators of the health of the overall
system. The use of fish for this study as a biological monitoring organism is based on
the fact that living organisms can provide useful information on the chemical quality
of the water as they have experienced it throughout their lives, whereas a chemical
analysis (purely physical and chemical analysis of the water) can only indicate the
conditions of the system at the time of the sampling (Abel, 1989). A number of
reasons are available as to why fish are good organisms to use for biological
monitoring. According to Hellawell (1986) fish are known to accumulate metals in
their organs and tissues. In addition to this, fish are easily identified in comparison to
other aquatic organisms, they are sampled with relative ease and they have a wide

distribution. According to Van der Oost et al. (2003) fish have an economic
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importance as a resource which provides fish with an added feature of great

importance.

Many factors influence the uptake of metals by fish and their use in environmental
assessment programmes (Van der Oost et al., 2003). Such factors are morphometry,
pH, alkalinity, modes of metal uptake and release, dissolved organic matter, trophic
relationships of fish, differences among species, and fish weight within populations
(Johnson, 1987, Saiki and May, 1988, Wren and MacCrimmon, 1986).

The uptake routes of pollutants can vary greatly and bioaccumulation can only occur
if the rate of uptake by the organism exceeds the rate of elimination (Spacie and
Hamelink, 1983). In fish, a control mechanism for the uptake of metals is found, and
as a result, elimination rates may be more dependent upon uptake rates (Bryan,
1964, 1967) than is probably the case for non-essential metals such as lead. The
oral route is the most significant uptake route for metals by fish, through ingested
food (Manahan, 1989, Berg et al., 1995), ingested non-food particles such as
sediment, drinking water, the gills or the skin (Du Preez, 1990). According to Mason
(1991) contaminants accumulate faster in fish with higher metabolic rates and,
because a higher metabolism is a result of feeding, a greater uptake of contaminants
across the gills may occur in feeding as opposed to starved fish. It is for this reason
that gills should be assessed for metal accumulation, which was excluded for this
study. According to Klaassen (1976) the liver is known as a storage and
detoxification organ and as a result the liver as considered for the study as the
amount of metal accumulated therein might reflect the severity of the pollutant.
According to Du Preez et al. (1997) the muscle is the tissue generally consumed by
humans and the metal accumulation content is important for the presumed effect on

human health, for this reason muscle was considered for this study.

The Labeobarbus genus is generally considered to be a cosmopolitan species as
they are distributed all over South Africa and for this reason L. polylepis was selected
for this study. This distribution will assist in acquiring information about the relevant
and respective systems sampled through the L. polylepis distribution. In addition to
this, little information on yellowfish is published. The lack of research with regard to L.
polylepis, as well as the status of this species is a concern that needs to receive
urgent attention. An assessment of the bioaccumulation of L. polylepis will help to
determine the state of the systems sampled for this study as well generate

information for this species.
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The objectives of this component of the study were to determine the extent of metal
bioaccumulation in the organs and tissues of L. polylepis, to determine the preferred
order of bioaccumulation of the 9 selected metals in the different organs and tissues
of L. polylepis and to determine if there were any temporal differences in metal

bioaccumulation between the selected sampling localities.

3.2 Materials and methods

3.2.1 Study area

The Bushveld smallscale yellowfish, L. polylepis is widely distributed, occurring in the
southern fributaries of the Limpopo, Incomati and the Phongolo river systems in
South Africa (Skelton, 2001). Fish populations assessed in this study were collected
from three separate catchments in Mpumalanga (Figure 2), from the Assegaai River
(Usutu Catchment), the Phongola River (Phongola Catchment) and the Elands and

Komati Rivers and the Ngodwana Dam (all three from the Komati Catchment).

3.2.2 Field sampling

Twenty individual L. polylepis were sampled from the five different rivers between
May 2006 and July 2006 using array of sampling techniques which included seine
nets, cast nets, electro-shocking, gill nets (mesh size 45 mm-95 mm) and fly fishing
techniques. The sampled fish were processed in the field where the following data
was recorded from each fish according to the process adopted by Coetzee et al.
(1996).

The captured fish were (i) individually weighed and their total length measured. The
sampled fish were (ii) dissected on a polyethylene work-surface, using stainless steel
work instruments (Heit and Klusek, 1982) whilst wearing surgical gloves. The
following tissues were removed for metal analysis: muscle and liver. All the samples
were then frozen, until they could be subjected to metal concentration analysis in the

laboratory.
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3.2.3 Laboratory procedures

In the laboratory distilled water was used to thaw and rinse the tissues to remove the
excess mucus coating and/or other foreign particles that could have absorbed metals
(Nussey, 1998). An inductive coupled plasma mass spectrometry (ICP-MS) was used
for metal screening for prepared whole body tissues. According to the procedures
used in Nussey (1998), the samples were weighed in pre-weighed polypropylene
falcon tubes, the tissues were then dried in an oven at 60°C for a period of 48 hours,
and in order to determine the moisture content of the tissues, both the wet and dry
weights of the samples were recorded. The samples were then digested by adding 5
ml nitric acid (65%) and 200 ul hydrogen peroxide (50%) to each sample. These
samples were then left to stand for a period of 12-24 hours. A 1000 watt microwave
oven was used for the digestion of the samples. Samples were place in the
microwave oven for 15 minutes at 10-40% full power until the solutions appeared
clear (fully digested) (Blust et al., 1988). After digestion, each of the samples as
made up with 9.5 ml ultrapure water produced by a Milli-Q Academic system and was
ready to be analysed. The concentration of the following metals: Al, Cd, Cr, Cu, Fe,
Mn, Ni, Pb and Zn were measured using an ICP-MS. These metals were selected
based on the results of the ICP-MS scan of the water sample. The metal

concentrations of each sample were calculated as follows:

Metal concentration (ug/g) = 1CP-MS reading pyg/l x Sample volume (10 ml)

Sample dry mass (g)

3.2.4 Statistical analyses

In accordance with Zar (1984) the statistical analysis of the data was performed by
using standard ANOVA tests using Tukey’s multiple comparison-tests in order to be
able to measure significant differences. The P < 0.05 level was where significance

was tested.

The differences in metal concentrations were tested by one-way analysis of variance
(ANOVA), considering sites as variables. Data were tested for normality and
homogeneity of variance using Kolmogorov-Smirnoff and Levene’s tests, respectively
(Zar, 1984). When the ANOVA revealed significant differences, post-hoc multiple

comparisons between sites were made using the appropriate Scheffe (parametric) or
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Dunnette-T3 (non-parametric) test to determine which means differed significantly.

The significance of results was ascertained at P<0.05.

3.3 Results

The findings of the metal bioaccumulation experiment are presented here. The metal
concentrations (aluminium — Al, Cd, Cr, Cu, iron — Fe, manganese — Mn, Ni, Pb and
Zn) found in the tissues (muscle and liver) of L. polylepis, were analysed to obtain
site specific bioaccumulation data. The mean and standard error of heavy metal
concentrations (ug/g dry mass) of the 9 selected metals found in the muscle and liver
samples of the five L. polylepis populations are presented in Figure 16, Figure 17,
Figure 18 and Figure 19. The summary statistics for all the bioaccumulation data are

presented in Appendix H and Appendix I.
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significant differences (P< 0.05).
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Figure 18: The mean metal concentration in the liver from L. polylepis at the different

sampling areas in pg/g (dry mass). Common superscript is used to denote significant
difference (P< 0.05)
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Figure 19: The mean metal concentration in the liver from L. polylepis at the different
sampling areas in pg/g (dry mass). Common superscript is used to denote significant
difference (P< 0.05)

3.3.1  Aluminium

The order of bioaccumulation for Al in L. polylepis was the highest in the liver for the
Elands River, Assegaai River and the Ngodwana Dam populations (Figure 18).
Significant differences (P < 0.05) were found between the liver samples of the Elands
River and Komati River populations, The Komati River and Ngodwana Dam
populations as well as the Phongola River and Ngodwana Dam Populations. The Al
concentrations of L. polylepis showed high variations in both the liver and muscle
samples. The highest Al concentrations were found in the liver samples of the
Assegaai River population with the lowest Al concentration being found in the liver
samples of the Komati River population. Variations in the Al concentrations found in

the muscle samples from the sampled populations are not significant.

The tissue which showed the highest Al concentration (82 ug/g) was the liver

samples taken from the Assegaai River. The remaining Al concentrations from both
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tissue samples taken from the remaining four systems were significantly lower than

the Assegaai River liver sample.

3.3.2 Cadmium

Cadmium showed the highest bioaccumulation in the liver of L. polylepis in the
Elands River and Assegaai River populations (Figure 18). No significant differences
(P < 0.05) were found between any of the populations of L. polylepis. High variations
in the Cd concentrations of the liver samples were evident between all five
populations with the Elands River populations showing the highest concentration and
the Phongola River population showing the lowest concentration. Cadmium
concentrations in the muscle samples of all five populations were consistently low
(0.137-0.3025 pg/g) (Figure 16). The Assegaai River showed the second highest Cd
concentration which was found in the liver sample (0.9 pg/g). The remaining Cd
concentrations found in the liver and muscle samples from all five systems are similar

in concentration.

3.3.3 Chromium

The order of bioaccumulation for Cr in L. polylepis was the highest in the liver
samples for all the sampled populations except for the Phongola River population
which showed higher Cr concentrations in the muscle sample (Figure 6.1) No
significant differences (P < 0.05) were found between any of the populations of L.
polylepis. Variations in the Cr concentrations of the liver samples was very little (0.3-
0.9 ug/g) with the Phongola River population showing the lowest bioaccumulation. In
contrast, the Phongola River population showed the highest Cr concentration in the
muscle samples with the other four populations showing very little variation in
concentrations (0.16-0.2 pg/g) (Figure 16).

The highest Cr concentration found in the muscle samples taken from the five
sampled L. polylepis populations was found in the Phongola River population (0.5
Mg/g). In addition to this, the Cr concentrations found in the muscle samples from the
other L. polylepis populations were similar in concentration to the Phongola River
population. This concentration is significantly lower than the chromium

concentrations found in muscle samples from other fish species from four other
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systems (Table 7). The highest Cr concentration found in the liver samples from this
project was found in the Ngodwana Dam population (0.9 ug/g) (Figure 18) and again
all Cr concentrations from liver samples for the L. polylepis were similar. This
concentration is also significantly lower than the Cr concentrations found in the liver
samples from other fish species from other systems (Table 7). This is an indication

that all sampled systems for this project have low chromium concentration levels.

3.3.4 Copper

The Cu bioaccumulation order in L. polylepis was highest in the liver samples of all
populations except for the Komati River population (Figure 18), with significant
differences (P < 0.05) between the liver samples between the Elands River and
Phongola River populations as well as between the Komati River and Phongola River
populations. L. polylepis showed the highest Cu concentrations in the liver samples
in the Elands River population, with the Phongola River populations showing the
lowest Cu concentrations. Similar concentrations of Cu were found in the muscle
samples between all populations excluding the Phongola River population which

showed lowest Cu concentration (Figure 16).

The highest Cu concentration found in the muscle samples from the five L. polylepis
populations was found in the Komati River populations with a concentration of14.7
Mg/g. In comparison with the copper concentrations found in the fish species in Table
7 we are able to deduce that the Cu concentrations for the muscle samples identified
in this project are reasonably low as well as normal when compared to other the fish

species found in other systems.

3.3.5 Iron

Iron showed the highest bioaccumulation in the liver of L. polylepis in the Elands,
Assegaai and Phongola rivers populations (Figure 18). A significant difference (P <
0.05) was found between the muscle samples of the Komati River and Phongola
River populations. The highest Fe concentrations were found in the Elands River liver
populations, and with the lowest concentrations being found in the liver samples of
the Ngodwana Dam population. The iron concentrations showed little variation

between all the sampled populations except for the Assegaai River population which

53



was relatively higher in Fe concentration. A large variation in Fe concentrations was

evident in the liver samples.

3.3.6 Manganese

The Mn bioaccumulation order in L. polylepis was highest in the liver sample taken
from the Elands River population (Figure 19). The Mn concentrations were highest in
the liver samples for all the populations except for the Komati River population where
the muscle sampled showed a higher Mn concentration (Figure 17). A significant
difference (P < 0.05) was found in the muscle sample between the Elands River and
Assegaai River populations. The highest Mn concentration was found in the liver
sample taken from the Elands River population, and the lowest Mn concentration was
taken from the muscle sample from the Phongola River population. Variations in the
Mn concentrations of both the muscle and liver samples taken from the five

populations were found.

3.3.7 Nickel

Nickel showed the highest bioaccumulation in the muscle of L. polylepis in the
Phongola River population (Figure 17). The liver samples taken from the Elands and
Assegaai Rivers, as well as the Ngodwana Dam showed higher Ni concentrations
than the muscle samples (Figure 19). A significant difference (P < 0.05) was found in
the muscle samples between the Elands and Phongola River populations, the Komati
and Phongola River populations, the Assegaai and Phongola River populations as
well as between the Ngodwana Dam and Phongola River populations. In addition, a
significant difference (P < 0.05) was found in the liver samples between the Komati
and Assegaai River populations as well as between the Assegaai and Phongola
River populations. The Ni concentrations from the liver samples were very similar
between the Komati and Phongola river populations, as well as between the Elands
and Assegaai rivers and the Ngodwana Dam. Little variation in the Ni concentration
was evident with the muscle samples except for the Phongola River population which

showed the highest overall Ni concentration.

The highest Ni concentration for this project was found in the muscle samples from

the Phongola River (1.8 pg/g). The Ni concentrations found in the four remaining
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populations were all relatively similar in concentration to the Phongola River sample.
The Assegaai and Elands Rivers’ populations as well as the Ngodwana Dam
population had very similar Ni concentrations found in the liver samples with 0.97

Mg/g being the highest.

3.3.8 Lead

The order of bioaccumulation for Pb in L. polylepis was the highest in the liver of all
the sampled populations except for the Phongola River population which showed the
highest Pb concentration in the muscle of all populations (Figure 17). A significant
difference (P < 0.05) was found in the muscle samples between the Elands and
Phongola River populations, the Komati and Phongola River populations, the
Assegaai and Phongola River populations and lastly between the Ngodwana Dam
and Phongola River populations (Figure 17). The highest Pb concentration was found
in the muscle samples taken from the Phongola River population. Variations in the
Pb concentrations found in the muscle samples were found to be limited, with the
exclusion of the Phongola River population which showed a significantly higher Pb
concentration in the muscle sample. A limited variation in Pb concentrations was

evident in the liver samples taken from the five populations.

The highest Pb concentration measured was in the muscle samples taken from the
Phongola River population (9.7 ug/g). The remaining Pb concentrations for the four
remaining L. polylepis populations were significantly lower and similar in

concentration to one another.

3.3.9 Zinc

The order of bioaccumulation for Zn in L. polylepis was the highest in the liver
samples taken from the Ngodwana Dam (Figure 19). The Zn concentrations were
highest in all the liver samples except for the Komati River populations which showed
higher Zn concentrations in the muscle samples (Figure 17). A significant difference
(P < 0.05) was found in the muscle samples between the Komati and Phongola River
populations. A significant difference (P < 0.05) was also found in the liver samples
between the Elands and Komati River populations, the Komati and Phongola River

populations and also between the Komati River and Ngodwana Dam populations.
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The variations in the Zn concentrations taken from the liver samples were greater as
well as more significant (4.1-100.1 pg/g) than variations amongst the muscle
samples. Variations in the Zn concentrations taken from the muscle samples were

found to be relatively small (7.8-17.9 pg/g).

The highest Zn concentration found in the muscle samples of L. polylepis was 17.9
pg/g found in the Komati River population. The Ngodwana Dam population had the
highest Zn concentration in muscle tissue (100.1 pg/g) with the lowest Zn

concentrations being recorded for the Komati River population (4.1 pg/g).

3.4 Discussion

Bioaccumulation results of other bioaccumulation studies on indigenous South
African fish species are presented in Table 7. From this table comparisons can be

made with the metal concentrations found in L. polylepis during this project.

Aluminium is not considered an essential nutrient in organisms but it is one of the
more toxic metals (Dallas and Day, 1993). In spite of free Al ions being scarce, in an
aqueous solution, aluminium can form a diversity of complexes with water, fluoride,
hydroxide, silicate and sulphate (Freeman and Everhart, 1971). The toxicity of Al is
dependant on the chemicals involved, and it’s solubility is very dependant on the pH.
With a pH less that 6 (acidic), Al is present as a soluble, available and toxic
hexahydrate (aqua) species. Aluminium is partially soluble and probably occurs as a
polyhydroxo- and hydroxo-complexes with an intermediate pH. With a pH above 8
(alkaline), Al is present as soluble but biologically unavailable hydroxide complexes
or as colloids and flocculants (Dallas and Day, 1993; DWAF, 1996). Although Al has
been described as a non-critical metal, there is increased concern over the effects
that elevated concentrations of Al may have on the aquatic environment. This is
particular for areas where it has been mobilised as a result of acid precipitation and
acid mine drainages (DWAF, 1996). The toxicity of Al is dependant on the biological
species exposed, life stages of the organism, pH and temperature of the water as

well as the calcium concentration in the water (Neville, 1985).

The highest Al concentrations were found in the liver samples with exception to the
Phongola and Komati Rivers populations which showed the highest Al concentrations

in the muscle tissues. The high Al concentration found in the liver samples from the
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Assegaai River may suggest a higher presence of Al in this system when compared
to the other systems. Further research would need to be conducted on the Assegaai
River to verify these findings. The relatively high Al concentrations found in the
muscle samples of the Phongola and Komati Rivers population would require further
research to validate this finding and to possibly establish a reason for this. The
comparisons made with two other fish species (Table 7) indicate that the Al
concentrations found in this study were lower and at the most, similar to those
concentrations found in L. capensis and L. umbratus. The lowest Al concentrations
found in this study were found in the liver samples from the Komati and Phongola
Rivers as well as from the muscle samples from the Ngodwana Dam. These

concentrations were similar to concentrations found by Groenewald (2000).

Cadmium requires added attention due to it's potential hazards to aquatic biota
(Mayer et al., 1991; Barber and Sharma, 1998) as well added potential hazards to
human beings (Groten and Van Bladeron, 1994; Vanderpool and Reeves, 2001).
Cadmium is the type of heavy metal which is biologically non-essential, persistent
and non-biodegradable and it's compounds are known to have high toxic potentials
(Panchanathan and Vattapparumbil, 2006). According to Panchanathan and
Vattapparumbil (2006) a gross biological impact resulting from continuous, low level
exposure may be comparable to that of recurring exposures at much greater
intensity. The uptake of Cd in fish has three primary routes, namely the gills, the skin
and then also from food via the intestinal wall (Karlsson-Norrgran and Runn, 1985).
The retention capacity of Cd by the fish is dependant on the metal assimilation and
excretion capacities of the fish concerned (Rao and Patnaik, 1999). Cadmium is a
common aquatic pollutant and is known to be very toxic to most organisms and holds

true even at low concentrations in natural waters (Lovert et al., 1972)

The liver samples taken from the Elands and Assegaai Rivers showed the highest Cd
concentrations, with the highest Cd concentration being found in the liver of L.
polylepis, whilst the muscle accumulated the lowest Cd concentration. The Cd
concentrations in all the tissues suggest no serious Cd exposures in the study areas,
in spite of the significant difference in Cd concentrations between the Elands and
Assegaai Rivers populations and the remaining populations. The Cd concentrations
found in this study were relatively low when compared to L. capensis and L.

umbratus (Groenewald, 2000).
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Chromium is a relatively scarce metal and thus the occurrence of concentrations
found in aquatic ecosystems is generally very low (0.001-0.002 mg/l — Moore &
Ramamoorthy, 1984; DWAF, 1996). In spite of the naturally low concentration of Cr
in the aquatic ecosystems, natural water can receive Cr from anthropogenic sources
such as, effluent from industry, resulting from the production of corrosion inhibitors
and pigment (Galvin, 1996), thus resulting in a pollutant to the aquatic ecosystem
being harmful to aquatic ecosystems (Srivastava et al., 1979). Aspects such as
species, body size and life stage of the organism, pH of the water and to a lesser
extent, hardness, salinity and temperature all affect the degree of toxicity of Cr to the
organism (Holdway, 1988; Wepener et al., 1992a). Fish are generally more resistant
to Cr than other aquatic organisms, but they may be affected sublethally when
exposed to concentrations ranging from 0.013 to 50 mg/l (Olson and Foster, 1956;
Van der Putte, 1982), lethal concentrations range from 3.5-280 mg/I Cr (Moore and
Ramamoorthy, 1984; Van der Putte et al., 1981a; 1981b). These variations in
exposure concentrations can be attributed to different species response and a

difference in water chemistry (Wepener et al., 1992a).

The highest Cr concentrations were found in the liver samples with exception to the
Phongola River population which showed the highest Cr concentration in the muscle
samples. The detected concentrations found in the fish tissues suggested no serious
Cr contamination in the study areas. These concentrations are lower than the Cr
concentrations found in muscle samples from other fish species from four other
systems (Table 7). The concentrations found in the liver were also lower than the Cr

concentrations found in the liver of fish species from other systems (Table 7).

Copper is one of the world’s most widely used metals (DWAF, 1996). Copper is
essential for the formation of bone and thus appears as a micronutrient in animals. It
also aids in maintenance of myelin within the nervous system, synthesis of
haemoglobin, a component of key metalloenzymes and forms an important part of
cytochrome oxidase and various other enzymes involved in redox reactions in the
cells (Sorensen, 1991; Dallas and Day, 1993). In spite of Cu occurring naturally in
most waters, it is regard as being potentially hazardous (USEPA, 1986).
Anthropogenic sources such as industrial, mining and plating operations, the use of
Cu salts to control aquatic vegetation or influxes of Cu containing fertilizers result in
Cu reaching the natural waters (Felts and Heath, 1984; El-Domiaty, 1987). With a
high pH (alkaline), Cu precipitates and is thus not toxic, whilst at a low pH (acidic) Cu

is mobile, soluble and toxic. A reduction in water dissolved oxygen, hardness,
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temperature, pH, chelating agents such as NTA and EDTA amino acids and
suspended solids increases the toxicity of Cu (Il) (EIFAC, 1978, Hellawell, 1986).

The liver accumulated the highest Cu concentrations, with exception to the Komati
River population which showed the highest Cu concentrations in the muscle. The
high Cu concentration found in the muscle samples of the Komati River population
would require further research to validate this finding and to possibly establish a
reason for this. The highest Cu concentration found in the liver samples was 37.7
Mg/g and when this is compared to the Cu concentrations found in other fish species
from other systems (Table 7) are lower with the exception of the concentrations
found in L. marequensis by Seymore et al. (1995). The Cu concentrations found in

the liver samples were very similar to those found by Seymore et al. (1995).

Iron is present in many types of soils, in particular clay soils, it may also be present in
natural waters in varying quantities depending on the geology of the specific area
and other chemical properties of the water body (Train, 1979). In addition to leaching
and weathering of sulphide ores as well as igneous metamorphic and sedimentary
rocks into the aquatic environment, Fe concentrations can also be elevated in the
aquatic environment through anthropogenic sources such as industrial and mine
drainage waste, sewage and burning of coal (Nussey, 1998). In the aquatic
environments the form in which Fe is present is determined by the pH and redox
potential (Environment Canada, 1987). Various forms of Fe can be found but the two
forms of common concern in water, are the ferrous of bivalent (Fe (1)) and the ferric
or trivalent (Fe (lll)) states (DWAF, 1996). According to Dallas and Day (1993) Fe is
an important nutrient in all organisms, in fish microcytic anaemia is a result of Fe

deficiency and elevated Fe concentrations can be lethal.

The highest Fe concentrations were found in the liver samples with the exception of
the Komati River and the Ngodwana Dam populations which showed higher Fe
concentrations in the muscle tissues. The Fe concentrations found in the muscle for
this study were higher than concentrations found by Groenewald (2000) in L.
capensis and L. umbratus. This may give an indication of slightly higher Fe
concentrations being available to L. polylepis populations in the Assegaai River. The
Fe concentrations found in this study indicate that when compared to previous

studies (Table 7) they are relatively low.
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According to Dallas and Day (1993), Mn is an essential micronutrient, which does not
occur naturally as a metal in aquatic ecosystems but does occur in various minerals
and salts (<1.0 mg/l — Hellawell, 1986). Manganese may be available in the soluble
manganous Mn (ll) form but it can be effortlessly oxidized to the insoluble manganic
(Mn (1V)) form (WHO, 1986; DWAF, 1996). Although as a pollutant Mn has little
significance (Hellawell, 1986), it is one of the first metals to show increased
concentrations levels in acidic waters (Bendell-Young and Harvey, 1986).
Manganese can be moderately toxic to aquatic organisms (Kempster et al., 1982).
The toxicity of Mn can be affected by the pH of water (Wepener et al., 1992b). The
haematology and carbohydrate metabolism of freshwater fish can be impacted by
sublethal Mn concentrations (2584 mg/l — Nath and Kumar, 1987; 4.43 mg/l —
Wepener et al., 1992b; 172 259 and 345 mg/l — Barnhoorn, 1996).

L. polylepis bioaccumulated the highest Mn concentrations in the liver tissue
samples, with the exception to the Komati River population which showed the highest
Mn concentrations in the muscle samples. The Mn concentrations found in the
muscle samples from previous projects on three different fish species (Table 7) are
all higher than the highest Mn concentration recorded in this study, which was found
in the Elands River population. In addition to this, the highest Mn concentration found
amongst the liver samples was also found to be in the Elands River population. In
spite of this, the concentrations found in this population (4.9 pg/g) were lower than

most of the concentrations found in the three previous projects (Table 7).

According to Birge and Black (1980), Ni constitutes approximately 0.008% of the
earth’s crust. Nickel is a natural ever-present element of the earth and earth’s water
(0.001-0.003 mg/l — Snodgrass, 1980). Nickel is discharged into the water and air
through increased industrial activities such as mining, electroplating and steel plant
operations (Galvin, 1996). Nickel ions form insoluble Ni hydroxides at a pH above 6.7
and otherwise tend to be soluble ions at a pH below 6.5 (Dallas and Day, 1993).
Dissolved Ni concentrations in aquatic ecosystems are generally between 0.005 and
0.010 mg/I (Galvin, 1996). The toxicity of Ni to aquatic organisms is dependant on the
organism species, pH, water hardness amongst others (Doudorff and Katz, 1953;
McKee and Wolf, 1963; Pickering and Henderson, 1966; Birge and Black, 1980).
According to Khangarot and Ray (1990) the toxicity of Ni is generally low, but
sublethal effects of Ni are possible at increased concentrations. The range for
sublethal Ni concentrations is 0.04-6.0 mg/l (Baylock and Frank, 1979; Dave and

Xiu, 1991).
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In this study, the liver tissue accumulated the highest Ni concentrations with
exceptions to the Komati and Phongola River populations that showed the highest Ni
concentrations in the muscle samples. In addition to this, the highest over Ni
concentration was found in the muscle sample from the Phongola River. With
reference to Table 7 it is noted that Seymore (1994) had a similar uptake pattern for
L. marequensis. The Ni concentrations found in the muscle and liver tissue for this
project are also lower than the Ni concentrations found in the muscle samples from

three different fish species (Table 7).

Lead is available in several oxidation states (0, I, Il and IV) of which all are
environmentally important (Nussey, 1998). According to DWAF (1996), the divalent
form, Pb (ll), is the stable ionic species present in the environment and is thought to
be the form in which most Pb is bioaccumulated by aquatic organisms. The
physiological importance of Pb to living organisms is considered to be non-essential
and is defined as being potentially hazardous to most forms of life by the USEPA
(1986). According to DWAF (1996) Pb is relatively accessible to aquatic organisms
and considered to be toxic. Lead is used in industry for the production of pesticides,
paints, fuels and batteries, and as a result of erosion and leaching from the soil, Pb-
dust fallout, municipal and industrial waste discharges, runoff of fallout deposits from
streets and other surfaces as well as precipitation it enters the aquatic environment
(Pagenkopf and Newman, 1974). Lead is known to accumulate in the organs and
tissues of fish, which consists mainly of the bone, gills, kidneys, liver and scales. The
uptake of aqueous Pb (I) across the gills is the primary mode of uptake in freshwater
fish (Coetzee, 1996). Variables such as the life stage of fish, pH and hardness of the
water as well as the presence of organic materials all influence the toxicity of Pb

(Pickering and Henderson, 1966).

The highest Pb concentrations were found in the liver samples with exception to the
Phongola River population which showed the highest Pb concentrations in the
muscle tissues. The detected Pb concentrations found in the fish tissues suggests no
serious Pb pollution problems in the study areas. The significantly higher Pb
concentration found in the muscle samples of the Phongola River population would
require further research to validate this finding and to possibly establish a reason for
this. The comparisons made with the Pb concentrations found in the muscle samples
of three different fish species (Table 7) indicates that the Pb concentrations found in

the muscle of L. polylepis is low when compared to L. marequensis (Seymore, 1994).
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Zinc forms the active sites in various metallo-enzymes, including DNA and RNA
polymerases and is thus an important micronutrient for organisms (Dallas and Day,
1993; DWAF, 1996). In spite of Zn being a metallic element, it is relatively scarce in
nature and it occurs in combination with many minerals (Moore and Ramamoorthy,
1984). According to Hellawell (1986) Zn is a common pollutant of surface waters in
many industrial areas, since it is a constituent of industrial and mining effluent. Liquid
effluent discharge, atmosphere deposition, the leaching of domestic sewage and
metal bearing minerals can also cause elevated concentrations of Zn in the aquatic
environment (Van Loon and Beamish, 1977; Weatherly et al., 1980). According to
DWAF (1996) Zn occurs in two oxidation states in the aquatic ecosystems, namely
Zn (lI) and the metal (Zn), and in the aquatic environment the Zn (Il) is toxic to
aquatic organisms and fish at relatively low concentrations (0.02 mg/lI — Sellers et al.,
1975). The toxicity of Zn to fish is dependent on dissolved oxygen concentrations,

hardness, pH and temperature of the water (Skidmore, 1964; Buthelezi et al., 2002)

The liver of L. polylepis accumulated the highest Zn concentrations, whilst the muscle
accumulated the lowest. The Zn concentrations in all the tissues suggest no serious
Zn exposure problem in the study areas, although the Zn levels detected in the liver
samples from the Ngodwana Dam population might indicate chronic Zn exposure of
the fish, causing possible sub-lethal effects. In comparison to work carried out on
three different fish species (Table 7), the Zn concentrations found in the muscle
samples of this project appear to be relatively low. A significant variation in the Zn
concentrations found in the liver samples of L. polylepis was evident for this project.
When compared to the Zn concentrations found in the liver of three different fish
species (Table 7), the concentrations found in L. polylepis do not appear out of
ordinary, with the concentrations for the Komati and Phongola River populations

appearing relatively low.
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3.5 Conclusion and Recommendations

This section reported on the extent of the bioaccumulation of Al, Cd, Cr, Cu, Fe, Mn,
Ni, Pb and Zn in two different tissues of L. polylepis from five localities within
Mpumalanga, South Africa. In this study the bioaccumulation of metals in fish tissue
were used as an indication of the extent of metal exposure and uptake in the five
different L. polylepis populations. The highest concentrations for the selected metals
were found in the liver samples for all the sampled populations with the exception of
one population which showed the highest Ni concentration in the muscle. However,
this was not consistent within all five populations as some populations showed higher
bioaccumulation patterns for certain metals in the muscle samples. The metal
concentrations found in this study were relatively low and at the most, very similar in
concentration when compared to other studies completed on other indigenous South
African fish species. It is suggested that further research be conducted on these
systems in order to verify these findings. Monitoring programmes and further
research would also need to be conducted on the other systems with an aim to
expand the research by including other fish species, water and sediment as well as

other tissues.

The accumulated metals (Al, Cd, Cr, Cu, Mn, Ni, Fe, Pb, Zn) found in the liver and
muscle samples taken from the five different L. polylepis populations provided a good
indication of the metal levels to which these fish were exposed. The extent of metal
exposure is considerably lower when compared to the metal bioaccumulation in fish
from metal contaminated systems such as the Vaal Barrage and the Olifants River,

Mpumalanga.

The use of fish as biological indicators provides valuable information for effective
water resource management. Management of the water resources is critical to
ensure a healthy system as well as to secure a future for these resources. The
management of these water resources will only be effective if the information
gathering process is appropriate. Thus the correct information needs to be collected,
processed analysed and presented in a way that allows the success or failure of a
particular action or decision to be evaluated objectively (Heath, 2000). Through these
monitoring programmes, current conditions can then be compared to these critical

guideline values.
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4 Section 3: Notes on the feeding biology of five selected populations of

Labeobarbus polylepis in South Africa.

Gordon O’Brien' and Andrew Husted'.

4.1 Introduction

Yellowfish are a generally cosmopolitan species and are distributed all over South
Africa (Wolhuter and Impson, 2007). L. polylepis is a good indicator species as it
occurs throughout the Mpumalanga area, in the Usutu Catchment (Assegaai River)
the Phongola Catchment (Phongola River) and the Komati Catchment (Komati River,
Elands River and the Ngodwana Dam). It features in the catch of both the
subsistence and recreational fisheries. The conservation initiative associated with L.
polylepis has not only an influential role on science, but also on the general public

who are now able to associate environmental impacts with the Smallscale yellowish.

Of all of the yellowfishes that occur in South Africa very little, relating to the biology of
the Bushveld Smallscale Yellowfish (Labeobarbus polylepis), is known. Apart from a
recently completed, comprehensive assessment of the breeding biology of this
species (Roux, 2007a) no specific assessments have been carried out to
characterise any additional biological aspects of this species. The Bushveld
Smallscale Yellowfish is considered to be a cool water species, as the distribution
range of this species does not extend below an altitude of 600 m (Skelton, 2001).
This species is known to select a range of habitats depending on the time of year,
including deep pools and flowing waters of permanent rivers and this species readily
establishes in dams although it is not clear if the species can successfully breed in
still waters (Skelton, 2001; Roux, 2007b). Due to the limited distribution of this
species, above an altitude of 600 m, many isolated populations of L. polylepis occur
within many of the upper river reaches and tributaries of the Phongolo, Inkomati and
Limpopo catchments (Scott et al., 2006). Currently this species is managed as one
population and to date no research assessments have been undertaken to determine
if any differences between the isolated populations exist. This study forms a part of a

research programme that has been established to study selected biological aspects

' Gordon O’Brien, Centre for Aquatic Research, Zoology Department of the University of
Johannesburg, Auckland Park.
' Andrew Husted, Center for Aquatic Research, Zoology Department of the University of
Johannesburg, Auckland Park.

65



of five isolated populations of L. polylepis in Mpumalanga, South Africa. In this
chapter the any potential differences in the feeding biology of these populations have

been considered.

Although very little regarding the feeding biology of L. polylepis is known, there is a
considerable amount of speculation surrounding this topic. According to Le Roux
and Steyn (1968) L. polylepis is a bottom feeder that selectively feeds on algae and
detritus covering the substrates and similar surfaces. Gaigher (1969) considered L.
polylepis to be an opportunistic feeder that is capable of accepting any food types
depending on the availability of the food type. In addition, Gaiger (1969) described L.
polylepis in quiet, deep, still waters to feed predominantly on algae during the winter
and spring months. During the high flow period throughout the summer and autumn
months this species is considered to change it's dietary requirements to an
insectivorous diet due to a reduction in the availability of algae. Gaigher (1969)
further proposes that detritus, in the form of decomposing roots stems and leaves, is
accidentally consumed in greater portions during the high flow season while the
species targets aquatic macro-invertebrates. Skelton (2001) proposed that L.
polylepis feeds primarily on algae and is an opportunistic aquatic macro-invertebrate

predator.

What can be assured if that as member of the cyprinid family L. polylepis does not
have a real stomach (Eccles, 1985). The Labeobarbus spp. has an alimentary canal
which is made up of a pseudogaster, varying lengths of a mid gut and a simple hind
gut (Eccles, 1985). The length of the gastro-intestinal tract within the Labeobarbus
genus is variable and considered to be dependent on the feeding biology of the
species. Some Labeobarbus spp such as L. kimberleyensis has a simple relatively
short alimentary canal whilst other species such as L. aeneus has a relatively long,
convoluted alimentary canal (Eccles, 1985). The relatively short length of the L.
kimberleyensis alimentary canal is indicative of the carnivorous feeding biology of
this species while the extended length of the alimentary canal of L. aeneus is
indicative of the omnivorous feeding biology of this species (Eccles, 1985). Today
Labeobarbus polylepis is considered to be an omnivore which feeds on filamentous
algae and detritus during autumn and winter and on invertebrates during the rest of
the year (Roux, 2007b). The mouth of this species is sub-terminal, with simple,
generally un-fleshy lips although some authors have reported observing numerous
rubber-lip forms, specifically in the Elands River, Mpumalanga (Gaiger, 1969;

Skelton, 2001; Roux, 2007b).
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The potential uniqueness of the Elands River population of L. polylepis has received
a considerable amount of attention in recent years in that from as early as 1969 this
population was considered to be only population of L. polylepis that exhibited a high
frequency of a rare mouth formation termed the rubber lip formations (Gaiger, 1969).
Due to the historical account of the potential morphological uniqueness of L. polylepis
in the Elands River, this study was initiated in this area. The additional populations
considered include the populations from the Ngodwana Dam, the Komati, Assegaai
and Phongolo rivers. The habitat and food availability of the systems in which the
populations occur is potentially different and should be considered. In addition, the
Ngodwana Dam represents a population occurring within a still water (lentic)
reservoir while to the remaining populations which were collected from lotic, river

ecosystems.

The aim of this chapter is to characterise the feeding biology of the L. polylepis
individuals obtained in this study to allow for an inter-population and intra-population
comparisons. As such this chapter aims to present the general feeding biology of five
L. polylepis populations within South Africa, thereby contributing towards the

knowledge base on the biology of this species.

4.2 Materials and methods

421 Study area

The L. polylepis populations used in this study included individuals from the Elands
River and Ngodwana Dam (Crocodile River Catchment), and the Komati, Assegaai

and Phongolo Rivers (Figure 2).

4.2.2 Collection of specimens

Twenty L. polylepis individuals were collected from each sampling locality between
May and July of 2006. The individuals were captured using array of sampling
techniques including seine nets, cast nets, electro-shocking, gill nets (mesh size 45
mm-95 mm) and fly fishing techniques. Following the methodology prescribed by
Coetzee (1996) the captured individuals were individually weighed and the total and

fork length of each individual was measured. The individuals were then dissected on
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a cleaned polythene work-surface, using cleaned stainless steel work instruments.
The entire alimentary canal was removed according to the method adopted by
Mandima (1999), and preserved in a 10% neutral buffered formalin solution prior to

laboratory analysis.

4.2.3 Stomach content analysis

In the laboratories of the University of Johannesburg, the stomach contents were
removed from each stomach and preserved in an 80% ethanol solution, in
preparation for later identification. A dissection microscope was initially used to
analyse the stomach contents, and where a higher magnification the contents were
required for identification a high power Nikon inverted compound microscope was
used. The food items were identified to the lowest taxonomic level possible. The
stomach contents of the L. polylepis individuals were analysed using the approach
prescribed by Lima-Junior and Goitein (2001). Following this method the total wet
weight of the stomach contents were determined and then the frequency of
occurrence of each food item, the Volumetric Analyses Index and the Food Item
Importance Index were determined. The different methodologies adapted from Lima-

Junior and Goitein (2001) and used in this study are presented below:

1. Frequency of occurrence:
a. This assessment is based on the following formula:
F; =100n/n
Where:
F:: frequency of occurrence of the i food item in the sample;
n;: number of stomachs in which item i is found;
n: total amount of stomachs with food in the sample.
2. Volumetric Analyses Index:
a. Determine the stomach contents standard weight (SW) or the
arithmetic mean of stomach contents weight of all specimens captured
per community assessed. The SW of each community is used as a
constant to analyse the differences between individuals within each
community and the differences between populations.
b. Following the establishment of the SW for each community, using an

integer point scoring system, a score was assigned to each of the
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identified stomach contents of each community in relation to the SW of
each community.

c. The points ascribed to each food item are then transformed into an
mean abundance for each food item using the following equation:
Mi=3/n
Where:

M;: mean of the ascribed points for food item i;
Y i: sum of the ascribed points of for the food item i;
n: total number of stomachs with food in the sample.

d. In order to communicate the outcome of the Volumetric Analyses
Index the mean (M;) was transformed into a percentage as follows:
Vi=25. M;

Where:
: Volumetric Analyses Index if the i food item in the sample;
25: multiplication constant to obtain a percentage;
M;: mean of the ascribed points for food item ;.
3. Importance Index:

a. The relative importance of each food item per community was

determined using the following formula:

Al=F.V;

Where:

Al;: Importance index if the food item in the sample;
F;: Occurrence of frequency of the item;

V;: Volumetric analyses Index of the item.

4.2.4 Statistical analysis

Finally, to delineate the possible spatial differences in distribution of L. polylepis
populations based on diet through the stomach contents, multivariate statistical
techniques were applied to the findings. Non metric multi-dimensional scaling
(NMDS) based on Bray-Curtis similarity coefficients and group averaged sorting was
performed on both the percentage contribution of taxa making up the stomach
content at each site and the Volumetric Analyses Index (%) data using the PRIMER
(Plymouth Routines in Marine Environmental Research) program v6.1, (Plymouth

Marine Laboratory).
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4.3 Results

Of the 100 stomachs examined in this study, none were empty. Table 8 presents
the findings of the Occurrence of Frequency, mean ascribed points, Volumetric
Analyses Index and Importance Index of food types consumed by the L. polylepis
populations assessed from the five locations included in this study. Results revealed
that a relatively high diversity of food types (minimum of five types) were obtained in
the stomach contents of all populations of L. polylepis. The Frequency of
Occurrence findings (Table 1) indicate that the food types which appear to have
incidentally been consumed (F <15) were limited. This included the Philopotamids in
the Phongolo River community where only one individual L. polylepis from this
sample contained this food type in it's stomach and the Gomphids in the Elands
River population. The mean of ascribed points (M) were consistently low in all
populations showing that there was no clear single dominant food type that were
targeted by L. polylepis within the study. The only food type with an M score that
was consistently above a value of 1 was the Baetidis. The percentage volumetric
analyses (V%) results have further been presented graphically in Figure 20. Findings
indicate that food types consumed per population vary considerably and that there
does not seem to be any clear relationship between the populations apart from the
V% results of the Baetid content which were observed to be between 30% and 33%
in the populations collected in the rivers and only 15% in the population collected
from the Ngodwana Dam. All populations had a V% value of between 18% and 24%

for detritus.

Finally when considering the Importance Index values of the food types which are
presented in Table 1 and Figure 21, findings indicated that as a species L. polylepis
may be selecting Baetids and detrital matter, while individual populations may be
selecting selected additional food types. The results further indicate that of the
population which had the highest preference for selected food types, the Phongolo
River population seemed to select in the order of importance; Baetids, Gomphids and
detritus while the other populations such as the Komati River population targeted
fish. In addition to the Frequency of Occurrence findings which reveal that the
occurrence of Philopotamids in the Phongolo River population and the Gomphids in
the Elands River population may be incidental, the Importance Index findings indicate
that the Corbiculids and the Lebellulids do not appear to be targeted by any

population included in the study

70



L2

£'90¥ 8'819 G'/66 0 0 61012 0 0G0l Gz8 (Iv) xepu| eouepodw| =
SZL's  GZ90C  S299l 0 0 selee 0 SLL Sl (%A) xapul sishjeuy oupawnjop
GzZe0 GZ8'0 G/9°0 0 0 GZ6'0 0 L0 90 (W) sjulod paguose jo ues|y
0S o€ 09 0 0 G6 0 09 GS (4) @ouano0( Jo Aousnbaiy 3
9'G9¢ 9'69¢ Gze 8'81Z €95 GGl 6'961 696l  8'€60€ (1v) xepu| souepodu|
GzZL's  GZ90L  SZL'8 GZ'9 GL'¢ G/l GZ9'G GZ9S  GlEPE (%A) xapu| sisjeuy omawnjop I
GzZe0 v0 GZe'0 GZ'0 GL'0 L0 GzZ'0 GzZZ'0 G/EL (IN) sjutod paquose jo ues|\ m
Gt Gz ot Ge Gl 06 Ge Ge 06 (4) ®2ud1N20Q jo Aousnbaig
€90y  €9SLL  9G9¢ 0 0 8'¢6G1 0 Gy 96182 (Iv) xepu| souepodw
GzZL's  gzL'ez  GZL'8 0 0 G/'8l 0 G/'8 gzlLee (%A) Xapu| siskjeuy ouBWNIOA &
Ge'0 GZ6°0 GzZe'0 0 0 6.0 0 Ge'0 Gze'l (W) sjutod paquose Jo ues|y m
0S 0S S 0 0 8 0 0S 8 (4) ®2u81Nn20Q Jo Aousnbaiy
00S 0 8'cy8 0 0G¢ G/€T 0 8’89y  GZ18Z (Iv) xepuy souepodwy
(] 0 G/89l 0 GL'8 GL'€T 0 G/E6 GZ'Le (%) xopu| siskjeuy oLyeWNIOA m
0 0 G/9°0 0 Ge'0 G6'0 0 G/E0 ST (W) syutod paquose jo uesiy Q
0S 0 0S 0 ov 00l 0 0S 06 (d) #ua1no0Q Jo Aouenbaiy =
G/9 0 L'e G/ 00LL 8¢S 0 G796 6062 (Iv) xapu| sduepoduw|
GZ'LL 0 GZ9'0 Gl'€ Gz'1e G/'8l 0 Gl'€l  GZ90¢ (%) xapu| sisAjeuy oLyeWNIOA m
G0 0 G200 GL'0 G8'0 GL0 0 GG'0 gzTL (IN) syurod paquose jo uespy G
09 0 S 0z 08 G8 0 0L G6 (4) ®ua1n22Q Jo Aousnbaig ©
c M - ® O 2
3. ) o o) o 9 = w
a T © @ 3 @ =5 g 3
o x o 5 el ) S 3 2 swa)l poo4
= ol 3 g oY = = 3 5y
@ ot ) ) « 53 oy ()
Q % o @ o) %

"ApN)S SIY} Ul passasse suoleao| aAl ayy ul sidsjfjod -7 Aq pawnsuod sadA}

pooj JO Xapu| souepodul| pue xapu| sasAjeuy oujEWN[OA ‘sjuiod paquose uesw ‘Aousnbal4 Jo 8ouUs1IN20Q0 By} Jo sbBulpul] :g ajqel



10%

21%

19% 0%

C. D
8% 8%
33% 33%
9% 60/0
E.
8% 15% [0 Baetidae B Chironomidae
21% o Corbiculidae O Detritus
118%
B Gomphidae O Libellulidae
0%

Philopotamidae 0O Fish

21%
B Unidentified

Figure 20: Graphical representations of the overall percentage of stomach contents
of the L. polylepis populations sampled in the study (legend in the figure). Graphs
represent the Elands (A), Komati (B), Phongolo (C) and Assegaai (D) rivers as well

as the Ngodwana Dam (E).
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Figure 21: Graphical overview of the Importance Index results for each community of
L. polylepis surveyed in this study.

Results of the multivariate statistical assessments (Figure 22 and Figure 23) reveal
that using untransformed data three significantly different groups emerge which
reduce to two groups if the data is square root transformed. Untransformed findings
indicate that the Elands River and Komati River populations are distinctly different
from the Assegaai River and Phongolo River individual. The findings reveal that the
Ngodwana Dam community’s feeding biology seems to be isolated when using
untransformed data but is included with the Elands River and Komati River

populations when a square root transformation is applied to the data.
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Figure 22: Bi-plots representing the NMDS ordination of the stomach content based
on A. percentage contribution and B. Importance Index values (%) of the populations
of L. polylepis assessed in this study. MDS of the raw data represented at a
similarity cut off of 75%. Differences between group 1, 2 and 3 represented spatially
in the graph.
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Figure 23: Multi-disciplinary Scaling (MDS) of the stomach content of the populations
of L. polylepis assessed in this study. MDS of the square root transformed data
represented at a similarity cut off of 75%. Differences between group 1 and 2

represented spatially in the graph.

4.4 Discussion

Outcomes of this study indicate that L. polylepis is an omnivore, feeding as an
insectivore, piscivore and as a herbivore. With the ability to uncover small organisms
in sandy substrate, L. polylepis can be classified as diggers of localized excavations
(Sazima, 1986) and this type of feeding biology is specifically evident in the Phongolo
and Assegaai rivers where numerous small excavations are evident in the softer finer
sediments revealing the locations where L. polylepis individuals forage for embedded
aquatic macro-invertebrates. This species undoubtedly makes use of their sensory
barbels to locate prey mainly through touch which would be required during the
warmer months when turbidity levels may potentially increase in the systems (Moyle
and Cech Jr., 1982).

Additionally, as a successful predator of aquatic macro-invertebrates and fish,
findings indicate that a possible reliance on vision to find prey exists especially during

the cooler autumn/winter months when the clarity of the rivers in which these species
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occurs improves. In addition, the upper reaches of river systems do not generally
become as turbid as the lower reaches and this may be a factor for the selection of
reaches of rivers above an altitude of 600 m by this species. This possible
requirement by this species should be considered in the management of river
ecosystems where these species occur in that as a result of anthropogenic activities
these reaches may be become excessively turbid impacting on the potential of this
species to feed successfully. Although the dominance of detritus within the gut of the
L. polylepis populations suggests that this species targets this food type sufficient
uncertainty exists suggesting that the intake of this food type may be accidental
(Gaiger, 1969). This species appears to frequently forage in embedded substrates
for aquatic macro-invertebrates, suggesting that the occurrence of the high
percentages of detritus observed in the stomach contents may be elevated and that
this species may primarily be more carnivorous than and herbivorous. Additional
assessments of the gut length and or nutrient uptake potential of the gut of L.
polylepis should be able to contribute to addressing this uncertainty. Detritus did
however contribute towards a noticeable portion of the diet of all populations
assessed and at this point in time, cannot be ignored and as such the possibility that

this species is omnivorous remains.

This study was undertaken in the cooler autumn/winter months of 2006, a period
when the L. polylepis populations are not expected to be breeding or conditioning
themselves for breeding (Roux, 2007). Based on the available literature L. polylepis
should switch feeding modes from a predominantly predatory mode to a herbivorous
mode where individuals would rely on filamentous algae and detritus to maintain
them through the winter months. Findings in this study however suggest that not
only does L. polylepis continue dedicate a considerable amount of time to foraging
for food but that this species actively targets aquatic macro-invertebrates throughout
the cooler winter months. The findings of this study further suggest that this species
is an opportunist predator during the cooler autumn/winter months and will predate
on high protein food types by foraging, targeting Corbiculids and Odonates or by

preying on other fish and invertebrates within the water column.

The variation in the size of prey items consumed by L. polylepis individuals observed
in this study may be an indication of a shift in targeted prey items by larger
individuals, which develop the ability to target relatively large prey items such as

Barbs, large odonates, amphibians and even small mammals (fur was collected in

75



one individual). This is in line with the feeding biology in other Labeobarbus spp.
(Mulder, 1973; Skelton, 2001; Wolhuter and Impson, 2007).

The multivariate statistical analysis of the stomach content data revealed specific
groupings of populations based on the percentage food type contributions and
resulted in the distinct groupings of fish from Elands and Komati Rivers (both part of
the greater Inkomati River Catchment) and the Phongolo and Assegaai Rivers (part
of the greater Phongolo/Usuthu River Catchment). The feeding biology of the
Ngodwana Dam community of L. polylepis appears to be unique which is possibly
attributed to the unique (amongst the populations included in this study) ecosystem in
which this community occurs. When the data are analysed in the form of the
Importance Index values, the Ngodwana population’s stomach contents group with
the other two populations in the greater Inkomati Catchment. These findings suggest
that the feeding biology of the populations are driven by the unique invertebrate
structure of the particular catchment rather than the particular habitat type, viz. L.

polylepis feeding biology differing between lotic and lentic habitats.

During this study only a few individual L. polylepis individuals were observed to have
the “rubber-lips” formation. Individuals with this mouth-form were collected in the
Elands River as well as in the Phongolo River. Of the 100 individuals used in this
assessment only three exhibited the “rubber-lips” formation while the remaining 97
individuals contained the simple non-fleshy, varicorhinus lip formation. Although
considered to be absent from L. polylepis the “rubber-lips” form has been observed
on occasion (Crass, 1964; Gaiger 1969; Skelton, 2001). Although there is
speculation concerning the origin of the “rubber-lips” form within the larger
Labeobarbus spp. Group, the individuals which contained this mouth form (Elands
River and Phongolo River) contained Corbiculids or Gomphids which can only be
obtained by aggressive, deep foraging within the sediment/substrate. This would
suggest that there is a relationship between the mouth form and the ability of L.
polylepis to feed on benthic invertebrates or that this mouth form develops as a result
of the individual foraging in deep sediments/substrates. This possibility needs to be
further explored as this relationship is only based on three individuals and as such

cannot be considered to be a confident outcome.
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4.5 Conclusion and Recommendations

Labeobarbus polylepis seems to be an opportunistic omnivore that preys
predominantly on aquatic macro-invertebrates and detritus. This species is well
adapted to forage in substrates to capture their prey as well in the water column and
from the water surface. This ability makes L. polylepis a successful predator which
can adapt to changing ecosystem types and take advantage of various ecosystem
niches. This study suggests that different ecosystem types drive the feeding biology
of this species of yellowfish and that they may somewhat be able to adapt to
moderate changes in ecosystem structure and function. From a feeding biology
perspective, as a single species it appears that L. polylepis has the potential to adapt
to different ecosystem types that does not warrant conservation actions for individual

populations.

Due to the unavailability of seasonal data in this study we recommend that additional
feeding biology assessments of this species be carried out during the spring/summer
periods. In addition some stomach morphological assessments should be
undertaken which would address the uncertainty of the uptake of detritus matter by
this species. Similar assessments should be undertaken to address and differences

within and between other isolated populations of L. polylepis in South Africa.

5 General conclusion

Within South Africa it is of the utmost importance that the conservators and the
managers of the biodiversity in the country are provided with the information and or
technology needed to facilitate, prioritise and direct their efforts. These stakeholders
of biodiversity rely heavily on the conservation status of species within the area that
they are mandated to conserve and or manage. Without the scientific evidence
initially required to characterise the biodiversity of these areas and then the
information needed to facilitate this conservation and or management their efforts will

often be misguided and possibly ineffective.

In this study, selected biological and ecological differences of five populations of the
Bushveld smallscale yellowfish in Mpumalanga have been considered. Prior to this
study no specific conservation or management actions have been put in place to

conserve any of the at least eleven isolated populations of this species, presumably
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due to the lack of any scientific proof that these isolated populations warranted any

action.

The outcomes of this study reveal that not only are there genetically based
differences between the populations that warrant conservation action, but that there
are morphological differences that can successfully be used to separate at least two
of the populations from the rest of the group. Furthermore this study has revealed
that additional experimentation should be undertaken to address the potential genetic
differences within this species in order to ascertain if the indication of a unique group
of individuals obtained in this study warrants evolutionary significant unit status which
would result in it being established as a new species of smallscaled yellowfish. Of
the five populations considered in this study three groups of populations were
determined to be sufficiently different from one another to warrant conservation
significant unit status at this time. Very little concerning the other remaining isolated

populations of this species throughout South Africa has been considered.

This study reveals that differences in the biology and ecology of these populations
exist in that it presents the influences that different habitat availability within each of
the systems has on the morphology and the feeding biology of the populations. In
addition, this study illustrates that the unique geology of these systems results in
unique metal composition of these systems that is accumulated into the individuals of

these systems resulting in different chemical constituents within these populations.

Finally, following the outcomes of this study, the current approach to conserve the
Bushveld smallscale yellowfish as one species is considered to be erroneous. The
authors suggest that isolated populations that are determined to be unique should be
awarded with an individual conservation status and conserved and or managed

accordingly.

6 Recommendations

Initially, following the outcomes of this study, it is recommended that the approach
adopted in this study should be expanded to consider the genetic, morphology,
biology and general ecology of the remaining populations of L. polylepis in South
Africa. This study has the potential to contribute towards the future conservation of

ecologically important populations of this species that are currently not being
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considered as unique ecologically important species and prevent the possible loss of
this biodiversity within South Africa similar to the L. polylepis population that has
become locally extinct in the Letaba River system. In addition, within South Africa
should any additional isolated populations of L. polylepis that are endemic, near
endemic, highly sensitive and/or that contain limited distributions be established,
these populations can be used the establishment of future conservation and or

management activities for the country.

In addition the following recommendations should be considered by ecosystem
users, conservators, regulators and managers in accordance with the outcomes of

this study:

e This study has shown that the isolated population of L. polylepis in the Elands
River and associated Ngodwana Dam is unique and as such is of great
ecological importance. The conservation status of this isolated population
should be addressed with urgency as this population has historically been
impacted on by chemical spillages and possibly by genetic contamination of
L. polylepis individuals from the Komati River that have been released into
this system.

e The outcomes of the genetic assessment component of this study resulted in
the establishment of three separate population groups of L. polylepis that are
of ecological importance (conservation units) and should be conserved as
such, pending more in-depth analysis based on nuclear genes and wider
sampling. More comprehensive geographic sampling of L. polylepis
individuals from these systems and nuclear DNA markers to confirm the past
and current gene flow between the separate rivers is required.

o Following the metal accumulation assessment, interesting outcomes in the
assessment of the cadmium, copper, lron, nickel, lead and zinc and
manganese concentrations in the livers and muscles of the populations were
obtained that requires further research to validate these findings and to
possibly establish causes for the levels obtained in this study. It is suggested
that further research be conducted on these systems in order to verify these
findings. Monitoring programmes and further research would also need to be
conducted on the other systems with an aim to expand the research by

including other fish species, water and sediment as well as other tissues.
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Following the outcomes of the feeding biology assessment, additional
assessments of the gut length and or nutrient uptake potential of the gut of L.
polylepis should be undertaken to contribute to addressing the uncertainty
obtained in this study concerning the feeding status of this species. In
addition, due to the unavailability of seasonal data in this study we
recommend that additional feeding biology assessments of this species be
carried out during the spring/summer periods. In addition some stomach
morphological assessments should be undertaken which would address the
uncertainty of the uptake of detritus matter by this species. Similar
assessments should be undertaken to address and differences within and
between the feeding biology of other isolated populations of L. polylepis in
South Africa.
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Appendix H: Overview of the descriptive statistical assessment of the metals found in

the muscle of the five Labeobarbus polylepis populations included in this study.

95% Confidence Intervals

Metals Population N  Mean SD Std. Error Lower Bound  Upper Bound Minimum Maximum
Elands 19 14.817 16.306 3.741 6.958 22.677 0.02 59.17
Komati 20 9.713 9.700 2.169 5.173 14.252 1.09 45.16

Al |Assegai 20 16.979 17.362 3.882 8.853 25.105 1.31 65.51
Phongola 20 22.794 17.021 3.806 14.827 30.760 3.95 74.96
Ngodwana 17 3.327 2.192 0.532 2.200 4.454 0.96 10.19
Elands 19 0.228 0.145 0.033 0.158 0.299 0.03 0.54
Komati 20 0.303 0.143 0.032 0.236 0.369 0.09 0.58

Cd |Assegai 20 0.247 0.150 0.034 0.177 0.317 0.02 0.61
Phongola 20 0.137 0.168 0.038 0.058 0.216 0.02 0.76
Ngodwana 17 0.231 0.116 0.028 0.172 0.291 0.1 0.56
Elands 19 0.169 0.122 0.028 0.110 0.228 0 0.56
Komati 20 0.200 0.157 0.035 0.126 0.273 0.03 0.68

Cr |Assegai 20 0.201 0.314 0.070 0.054 0.348 0 1.31
Phongola 20 0.535 0.374 0.084 0.360 0.709 0.05 1.59
Ngodwana 17 0.217 0.258 0.063 0.084 0.350 0 0.76
Elands 19 4.303 5.127 1.176 1.832 6.774 0.25 17.14
Komati 20 14.682 12.792 2.860 8.695 20.668 0.82 38.32

Cu |Assegai 20 10.341 10.739 2.401 5.315 15.366 0.14 41.17
Phongola 20 0.659 0.512 0.115 0.419 0.898 0.04 1.74
Ngodwana 17 11.655 10.644 2.582 6.183 17.128 0.63 39.03
Elands 19 54164 54529 12.510 27.882 80.446 0.27 198.58
Komati 20 71910 53.037 11.859 47.087 96.732 2.08 161.66

Fe |Assegai 20 157.263 182.487 40.805 71.856 242.670 2.74 640.65
Phongola 20 22.460 44.184 9.880 1.781 43.138 0.55 196.94
Ngodwana 17 75.242 54.358 13.184 47.293 103.190 8.89 169.72
Elands 19 1.859 1.382 0.317 1.193 2.526 0 4.98
Komati 19 1.149 0.714 0.164 0.805 1.494 0 2.53

Mn |Assegai 20 0.636 0.575 0.129 0.367 0.905 0.11 2.08
Phongola 20 0.425 0.368 0.082 0.252 0.597 0.06 1.23
Ngodwana 17 0.776 0.492 0.119 0.524 1.029 0.12 1.77
Elands 19 0.298 0.155 0.035 0.224 0.373 0.06 0.63
Komati 20 0.357 0.164 0.037 0.280 0.433 0.16 0.73

Ni  |Assegai 20 0.282 0.216 0.048 0.181 0.383 0.04 0.82
Phongola 20 1.838 1.049 0.235 1.347 2.328 0.13 3.53
Ngodwana 17 0.271 0.117 0.028 0.211 0.331 0.12 0.52
Elands 19 0.351 0.226 0.052 0.242 0.460 0.03 0.71
Komati 20 0.461 0.168 0.038 0.382 0.540 0.19 0.73

Pb |Assegai 20 0.313 0.227 0.051 0.207 0.419 0.04 0.93
Phongola 20 9.717 6.671 1.492 6.595 12.839 0.04 24.5
Ngodwana 17 0.315 0.239 0.058 0.192 0.438 0.02 0.82
Elands 19 12.874 11.045 2.534 7.551 18.198 0.03 37.05
Komati 20 17.932 11.824 2.644 12.398 23.465 0.65 41.15

Zn |Assegai 20 17.712 18.976 4.243 8.831 26.593 1.31 76.85
Phongola 20 7.843 6.751 1.510 4.683 11.002 1.64 24.23
Ngodwana 17 11.372 10.037 2434 6.211 16.532 0.02 36.43
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Appendix I: Overview of the descriptive statistical assessment of the metals found in

the livers of the five Labeobarbus polylepis populations included in this study.

95% Confidence Intervals

Metals Populaton N  Mean SD Std. Error Minimum Maximum
Lower Bound Upper Bound
Elands 19 18.141 21.270 4.880 7.889 28.393 3.34 79.59
Komati 20 1.387 1.842 0.412 0.525 2.249 0.11 5.88
Al Assegai 19 82.033 159.713 36.641 5.054 159.012 1.69 567.86
Phongola 19 3.345 2.629 0.603 2.078 4.612 0.59 9.19
Ngodwana 19 12.401 10.604 2.433 7.289 17.512 3.04 49.96
Elands 19 1.321 2.300 0.528 0.212 2.430 0.21 10.33
Komati 20 0.183 0.243 0.054 0.069 0.297 0.00 0.98
Cd Assegai 19 0.864 1.097 0.252 0.335 1.392 0.08 3.85
Phongola 19 0.127 0.071 0.016 0.092 0.161 0.01 0.30
Ngodwana 19 0.205 0.446 0.102 -0.009 0.420 0.00 1.69
Elands 19 0.828 0.997 0.229 0.348 1.309 0.15 4.59
Komati 20 0.614 1.268 0.284 0.020 1.208 0.06 5.88
Cr Assegai 19 0.609 0.767 0.176 0.239 0.979 0.00 2.95
Phongola 19 0.371 0.879 0.202 -0.053 0.794 0.01 3.93
Ngodwana 19 0.919 1.211 0.278 0.335 1.503 0.17 5.62
Elands 19 37.697 38.044 8.728 19.360 56.034 0.60 126.86
Komati 20 3.915 12477 2.790 -1.925 9.754 0.07 56.75
Cu Assegai 19 12.670 20.658 4.739 2.713 22.627 0.76 66.96
Phongola 19 3.076 7.275 1.669 -0.430 6.583 0.21 31.82
Ngodwana 19 12.373 32.843 7.535 -3.457 28.203 0.33 142.08
Elands 19 449.847 642.478 147.395 140.183 759.512 0.60 2536.35
Komati 20 60.781 258.855 57.882 -60.367 181.929 0.00 1160.34
Fe Assegai 19 313.107 545.314 125.104 50.274 575.940 0.22 1701.54
Phongola 19 38.173 81.503 18.698 -1.111 77.456 0.27 366.30
Ngodwana 19 1.593 2.540 0.583 0.368 2.817 0.00 11.09
Elands 19 4.997 6.498 1.491 1.866 8.129 0.43 28.32
Komati 20 0.906 3.234 0.723 -0.608 2.419 0.00 14.50
Mn Assegai 19 3.004 3.586 0.823 1.276 4.733 0.09 11.03
Phongola 19 0.441 0.622 0.143 0.141 0.741 0.10 2.84
Ngodwana 19 1.181 1.051 0.241 0.675 1.687 0.15 4.49
Elands 19 0.912 1.252 0.287 0.309 1.516 0.16 5.74
Komati 20 0.204 0.233 0.052 0.095 0.313 0.01 0.98
Ni Assegai 19 0.970 1.011 0.232 0.483 1.457 0.08 3.29
Phongola 19 0.211 0.143 0.033 0.142 0.280 0.06 0.55
Ngodwana 19 0.874 1.595 0.366 0.105 1.643 0.17 7.30
Elands 19 1.134 1.651 0.379 0.339 1.930 0.14 7.65
Komati 20 0.658 1.047 0.234 0.168 1.148 0.07 4.90
Pb Assegai 19 1.903 1.843 0.423 1.015 2.792 0.06 6.59
Phongola 19 0.659 1.028 0.236 0.164 1.155 0.00 4.80
Ngodwana 19 1.537 3.589 0.823 -0.193 3.267 0.22 16.29
Elands 19 69.454 74.805 17.162 33.399 105.509 0.06 317.26
Komati 20 4.138 15.316 3.425 -3.030 11.306 0.00 68.86
Zn Assegai 19 80.516 142.816 32.764 11.681 149.351 2.46 493.27
Phongola 19 20.871 14.873 3.412 13.703 28.039 3.61 70.62
Ngodwana 19 100.131 111.429 25.563 46.424 153.837 6.44 480.90
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