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PREFACE

This report is part of a larger study on the occurrence
and severity of drought in South Africa. In so far as
various aspects of the study may be of interest to re-
searchers and practitioners who are not specifically con-
cerned with drought, it was decided to separate the
results of the research into three self-contained reports.
Naturally this has led to some repetition but it is hoped
that this disadvantage is outweighed by making the methods
and results more conveniently accessible to a wider
audience,
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1, [INTRODUCTION

There are at lTeast two good reasons why it is important to
develop methods of assessing the risk of deficiencies in
streamflow. Firstly streamflow constitutes the inflow to
reservoirs whose storage levels during times of drought are
a matter of national concern. The annual inflow to most
reserveirs in South Africa varies so much from year to

year that it is obviously inadequate to base water re-
sources planning on only the average inflow; the risk of
deficiencies simply has to be taken into account.

Secondly as the integral of spatial catchment processes,
with rainfall as the driving force, streamflow constitutes
a direct measure of spatial drought. The spatial corre-
lation structure of rainfall particularly on a seasonal
basis is extremely difficult to adequately reproduce in

a model. Although theory for this type of model is avail-
able its practical application, for example the simulation
of spatial daily rainfall, is unrealistic at the present
time. The problem involves the estimation of more para-
meters than is feasible with present methodology and with
the available data base.

The study of droughts in terms of duration, magnitude

{mean deficit) and severity (maximum deficit) is one of the
most neglected aspects of engineering hydrology. Particu-
larly little attention has been directed towards the
quantitative assessment of drought risk compared to, say,
the massive body of literature accorded to the study of
extreme-values such as floods and storm rainfall. No valid
methodology for the frequency analysis of drought is
generally available and stochastic models used to generate
event series fail to accurately reproduce historical
critical periods (Askew et af 1971) unless the appropriate
generating model is very carefully identified. Yevjevich



(1967) applied the statistical theory of runs to drought
analysis,but 1ittle if any of this approach has found its
way into standard hydrological analysis. This is largely
confined to the examination of flow-duration curves

(NERC 1980) or the identification of a frequency mode)
for regional analysis. In the latter case Eratakulan
(1970) used moment-ratio diagrams to select between com-
peting univariate models but such a procedure fails to
associate sufficient weight to the appropriate portion of
the distribution function, that is the lower tail.

The statistical problems associated with drought analysis
are fairly complex since a drought, unlike a flood or a
storm, is not an "instantaneous" event. It has a dura-
tion and a critical deficit associated with each level of
risk. One needs, therefore, to consider not only modelling
a simple sequence of random variables, such as the annual
sequence of inflows to a reservoir, but further to consider
the distribution of sums of these variables, for example
the 2, 3, 4,... year total infiow volume, and the distribu-
tion of these sums over, say, an operational horizon of
interest such as 5 years. Statistical models which accaommo-
date all of these requirements are in fact available, but
they can be complex and ;nalytica]Iy intractable. In
general, one has little choice but to resort to Monte Carlo
methods. In this respect this report offers no new
alternative.

The two main issues which arise when one attempts to answer
questions by statistical means are the choice of model and
the accuracy of the estimates. A substantial proportion



of the effort which went into the research described in
this report was devoted to developing a statistical theory
for model selection, a subject which is not adequately
covered in existing statistical literature. The detaiis
of this theory are discussed in Appendix 2. The purpose
of concentrating on this particular aspect of the overall
project is that, as with other appiications which involve
the use of statistical models, so here one's estimate of
the risk associated with a given event will vary consider-
ably if different models are fitted to the historical
record. In the final analysis the accuracy of one's esti-
mates is directly dependent on the accuracy of the model
and therefore on the quality of one's model selection
technique. '

The available historical data records are typically quite
short (for the purpose of assessing drought risk) and con-
sequently one would expect estimates to be accordingly in-
accurate. Any realistic assessment of risk must take
account of potential unreliability of the estimates. The
analytical derivation of confidence 1imits or even standard
errors for the estimates which we need here is, except for
a few special models, hopelessly complex. HWe propose

that this problem can be solved by using something of a
statistical innovation - the Bootstrap technique.

The proposed approach is adventurous and somewhat contrary
to much of the direction of current statistical hydrological
research and method. This has to an increasing degree

moved forward in terms of theoretical developments based

on classical statistical theory, but the practical applica-
tion of these achievements has been minimal because of

their mathematical complexity and the specialist skills
needed to implement them. Our intention is to illustrate

a scheme for the probabilistic analysis of annual and
monthly streamflow which,although computer intensive,



requires no specialist mathematical skills to comprehend.
The methods have been applied to extreme storm rainfaill
(Zucchini and Adamson 1983) and have considerable potential
in the field of hydrology in general.

The traditional hydrological measure of risk is the return
period, i.e. the reciprocal of the probability that a

given event will take place in any given year, For some of
the questions which we consider the return period is an
inappropriate measure of risk, and we will simply use pro-
bability instead. 1In fact one of the points which we wish
to emphasise in this report is that there is a broad
diversity of design and operational questions which can be
proposed, and that the risk of deficiencies in streamflow
can be elaborated beyond the simple assessment of the
return period associated with a particular event. Our
purpose here is to demonstrate how the proposed methodology
can be applied to answer a variety of questions which may
be of interest; the four discussed in Chapter 2 should be
regarded as examples and not a complete list,



2. FOUR QUESTIONS OF INTEREST

In a drought analysis several questions need to be asked of
the data., We will consider the following four:

(1) What is the probability that the streamflow in a
given year will be less than 'x' units?

(11) What is the probability that the total streamflow
over 'm' given years will be less than 'x' units?

(I11) Given a time horizon of 'h' years, what is the
probability that the lowest streamflow in the 'h'
years will be less than 'x' units?

(IV) Given a time horizon of 'h' years, what is the
probability that the lowest consecutive '‘m'-year
total streamflow will be less than 'x' units?

One can of course invert the questions and inquire ¢of the
streamflow 'x' associated with a given probability 'p’.
Questions I and Il are probably most pertinent to reser-
voir design whilst III and 1V are more relevant to opera-
tional considerations over a fixed interval of time. It
is assumed that we have a sequence of annual streamflow
totals Xis XpsavesXy which can be regarded as realisations
of independently and identically distributed random vari-
ables. As can be seen by examining the estimates in
Appendix 3, the annual serial correlation coefficient for
practically all the rivers in South Africa is not signifi-
cantly different from zero. From the point of view of
persons having to assess drought risk this is indeed
fortunate, because otherwise rather more sophisticated
methodology would be required to answer the above questions.
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In theory all four questions can be answered if one knows

F(x), the common distribution function of the annual stream-
flow, but even if this is the case it is rarely possible to
provide simple computational formulae. Suppose, however,

that F(x) were known then the answer to (I} is simply F(x)
jtself. Question II is a 1ittle more tricky since one has

to derive the distribution function, Fm(x), of the sum of m independ-
ently and identically distributed random variables. Formally,
one has that:

Ful) = {] " [ fee feep) ool st ey g, gty

- . tm
where R = {{ty, t,, t3 ... t ) @ Ju 4 ty < x} and
f(x) is the probability density function corresponding to
the distribution function F{x).

For certain families of distributions, that is those that
enjoy the so-called "reproductive property® (notably the
Normal and the Gamma), Fm(x) can be evaluated explicitly,
but for others (the Log-Normal, the Weibull, the Extreme
Value etc) this is not possible. McMahon and Srikanthan (1982) did in
fact find the Gamma model and its reproductive properties
appropriate to the computation of Fm(x) for a selection

of Australian reservoir inflows. A similar study for South
African reservoir inflows by the authors found the model

to be inappropriate and one is left with the fact that for
a number of well known distributions Fm(x) is simply not
available in any utilitarian form. For large m one can of
course apply the Central Limit Theorem and approximate
Fm(x) using a Normal distribution. In practice though the
values of m of interest are rather small, typically
m=2,3, 4, 5, and so such a approximation would be in-
accurate, particularly in the tails of the distribution.



To answer Question II then, one has to resort to using
numerical techniques to evaluate Fm(x) or, more simply, to
using Monte Carlo methods. 1In the latter case one simply
generates many sequences of m random numbers having the
distribution function F(x) and approximates Fm(x) by the
empirical distribution of the sums of the generated
sequences.

Turning now to Question III, if F(x) is known then the
answer is easy to come by. The distribution function
Fl,h(x)’ of the smallest of h independently and identi-
cally distributed random variables is given by:

Fyopx) =1 - (1 - F(x))".

Finally, in order to answer Question IV, one needs Fm’h(x),
the distribution function of the minimum total of m conse-
cutive random variables in a sequence of length h. In all
but a few very special cases Fm,h(x) is very complex and

not available in closed form. One has little alternative
but to use Monte Carlo techniques to generate sequences of
iength h, compute the totals over m years and find the
minimum,. The empirical distribution function of the minimum
converges to Fm’h(x).

Summarising, the answers to the 4 questions posed above are
simply:

(1) »p

F(x) (11) p

Fra{x)

(II1) p F1,h(*) (1v) »p = Fm,h(x)

The answers to the inverse questions, i.e. if we wished
to enquire of the streamflow, x, associated with a
probability, p, of not being exceeded, are then



(1)° X

F1(p) (1 x = F2'(p)

L]
n

(1D x = £ ) (V) x = F21 (p),

These distribution functions are, of course, unknown, The
four steps required to compute the required answers are:

1. Select a suitable model for the distribution function
of the annual streamflow. The selection procedure
which was used for the 60 rivers analysed in Appendix 3
is discussed in Chapter 3. Details of the theory of
this and of univariate model selection in general are
given in Appendix 2.

2. Estimate the parameters of the selected model. Detailed
algorithms for computing maximum 1ikelihood estimates
of the parameters are given in Appendix 1. The para-
meter estimates for the rivers considered in Appendix 3
are also given there.

3. Use the estimated distribution function, E(x), to derive
an esgimate of the distribution function of interest,
e.qg. Fz,s(x). As mentioned this is carried out by
simulation (see Chapter 5). Algorithms to generate ran-
dom deviates for the six distributions which are con-
sidered here are given in Appendix 1.

4, Replace the distribution function of interest by its
estimator, e.g. replace F2 5(x) by F, 5(x) in 1V,
] ]
above, to obtain the desired estimate (see Chapter 5),

5. Apply the Bootstrap method to compute estimates of the
confidence 1imits for the answer obtained in 4.
Methods to do this are discussed in Chapter 4,



Steps 1 and 3 are computationally quite intensive but

still well within the capababilities of a typical desk-

top microcomputer. Step 5 involves the repeated applica-
tion of steps 2, 3 and 4 and as a rule c¢an only conveniently
be fully carried out on a larger computer. Where only a
microcomputer 1is available we nevertheless strongly recom-
mend that step 5 be carried out even if only 10 Bootstrap
repetitions are feasible. Even an inaccurate assessment of
the variation of the final estimate is far better than none.
The main factor determining the computing time is the model
which is selected at step 1: the exponential distribution
requires the least time and the gamma distribution the most
(for questions of the type 11l and 1V).
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3. MODEL SELECTION

For the purposes of illustration, and for the analyses
summarised in Appendix 3, six families of distributions
are considered:

Normal : f(x) = /?f_a e'(x'u)ZIZc2
Log-Normal : f(x) = s—1 e-(fn x - w)2/2ez
a=1 -x/8
Gamma : f(x) = Z ae x>0
8™ Tia)
Exponential : F(x) = 1 - e */® x>0
- p
Weibull : F(x) = 1 - e (x/8) ks 0

Extreme (Type 1) : F(x) = exp(-e'(x'a)/") , x>0

The theory discussed in Appendix 2 is not restricted to
these particular families., In fact the theory can be used
to compare a parametric model of the above type to
"distribution-free" models such as those based on the
empirical distribution function using, for example, the
Weibull plotting positions. We have not included the dis-
tribution-free models in the above list of candidates
because for the typical sample sizes which are available
and for the types of distributional shapes which arise in
the application considered here, they would very seldom
indeed come into contention for selection.

It is quite natural to expect that each model applied to a
sample of total annual flows will lead to different answers
to our questions. It is therefore of sinqular importance
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to select with great care between competing models. The
“true" or operating distribution, F(x), is only approximated:
firstly because F(x) is extaemely unlikely to belong to the
fitted family,and secondly even if it did the parameters
are unknown and can only be estimated on the basis of a
finite (usually small) sample. Proper model selection
needs to take account of both sources of error and the
object is not to find the operating model, but rather the
most appropriate approximation for the situation at hand.
In our application our attention is directed at the low
annual inflows to a reservoir, that is at the lower tail of
the distribution. A measure ¢of the discrepancy between the
operating model and the approximating model which empha-
sises the fit in this region of the distribution is

A = max |F(x)d - Fe(x)d[
X

where Fe(x) is the approximat{ng distribution function
having parameter vector 6, e.g. for the normal distribution
& = (u, 02). The selection constant d determines where the
emphasis in the fit should be placed. For emphasis in the
lower tail 0 < d < 1 is appropriate. The resulting
empirical discrepancy {(cf. Appendix 2 for definitions of
this and other terms) is

8 (8) = max [{i/(n+1)}9 - F (x)°]
n 1<i<n !

where X1s XpreessX, are the observations. This in turn

leads to the following criterion

¢ = E. max |{i/(n+1)}d - F.(xi)d|
F 1<i<n ]

where 6 is the maximum likelihood estimator of 8.

The evaluation of C is carried out by the Bootstrap method.
(As mentioned above we will again use the Bootstrap method to
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estimate confidence limits; here we use it for the purpose
of model selection.) The procedure to compute C is as
follows:

Step 1: Select a random sample of size n (with replace-
ment) from the original observations
{x1, xz,...,xn} to obtain a Bootstrap sample

{X?. Xé’,...,xa}.

Step 2: Compute the maximum likelihood estimate g of the
parameter vector & using the Bootstrap sample as
the data.

Step 3: Compute C* = max I{i/(n+1)}d - F. &,)dl
1<i<n g* 1

Step 4: Repeat Steps 1 to 3 a large number of times, keeping
a record of the criteria C*.

As the number of Bootstrap iterations increases so the
average of the generated values C* converges to the required
criterion C. In practice about 100 iterations are suffi-
cient to yield reasonable accuracy.

The above procedure is repeated for each family of models.
That family which leads to the smallest value of C is
selected as most appropriate.

In Appendix 3 the values of the criteria corresponding to
d =1;d = 5;andd = 0,25 are given for 60 rivers and for
each of the 6 distribution families considered here. The
results for three rivers are discussed in Chapter 6.

To save computing time one can eliminate, at the very
beginning, those families which obviously do not fit the data.



13.

4, CONFIDENCE LIMITS

Any answer to the four questions proposed above are esti-
mates which are themselves subject to sampling variations.
We need therefore to assess the accuracy of our answers by
attaching confidence limits to them. Efron (1982) gives
methods of estimation of confidence intervals pertinent

to our situation in which the statistical accuracy of our
estimate cannot be found analvtically. This is the so-called
Bootstrap algorithm which can be implemented as follows:

Suppose that a model has been selected for our inflow data
on the basis of which, for a given x (inflow), we have
estimated a probability p. Then:

Step 1 : Select a random sample of size n (with replace-
ment) from the set {xl, Xpye++sX,} to obtain a

Bootstrap sample {x;, xi,...,x;}.

Step 2 : Fit the same model as selected for the original
data to the Bootstrap sample using the same
estimation procedure and use this to obtain an
estimate of the required probability 5*.

Step 3 : Repeat Steps 1 and 2 a large number of times,
keeping a record of the estimates p*.

As the number of Bootstrap iterations increases so the
sample percentage points of the 5* converge to estimates
of the corresponding percentage points of p. For example,
the estimates of the 90% confidence interval of p based on
1000 Bootstrap realisations would be Ehe interval between
the 50th and 950th largest values of p*.



14,

We recommend the following refinement to the above method
which we might term "the smooth Bootstrap". Instead of
sampling from the observed flows as in Step 1, that is
sampling from the empirical distribution, one can sample

from a smoothed version of this distribution. In the ex-
amples to follow the smooth Bootstrap was used. The observed
inflows X1s XppeeeX, wWere plotted against their Weibull plotting
positions w, = i/{n+1). A polynomial

Xy ™ Q(wi) = o +oagWy 4 azwg + ... 4 azwiz

was fitted to these points by the method of least squares
where the degree of the polynomial was sufficiently high
(in the examples £ = 9) so as to fit the observed points
fairly closely. Particular care is needed to ensure that
the fitted polynomial, Q(w), leads to reasonable values in
the neighbourhood of w = 0 and w = 1. Step 1 in the Boot-
strap algorithm is then replaced by:

Step 1* Generate n uniformly and independently distributed
* random deviates Ugs UpseenylUp and set
xg = Q(ui). i = 1,2,...40,

This modification is particularly recommended when only a
small sample is available, as is often the case in South
Africa., It enables one to augment the information available
in the sample with one's judgement about how the distribu-
tion of the streamflow is likely to behave. For sample sizes
of about 50 or more this refinement is unlikely to lead to
substantial improvement in accuracy and we recommend that the
original algorithm be used because it involves less compu-
tation.

For completeness we also give the algorithm to compute the
confidence "interval for x for a given p. It is a straight-
forward modification of the above algorithm.
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Step 1: Select a random sample of size n (with replace-
ment) from the set {xys X5s000,x,} to obtain a
Bootstrap sample {x;, x§....,x;}.

Step 2: Fit the same model as selected for the original
data to the Bootstrap sampie using the same
estimation procedure and use this to obtain an
estimate of x*.

Step 3: Repeat Steps 1 and 2 a large number of times,
keeping a record of the estimates of x*,

As the number of Bootstrap iterations increases so the
sample percentage points of the x* converge to estimates
of the corresponding percentage points of x.
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5. ESTIMATING THE RISK OF DEFICIENCIES

We now give in more detail the requirements to answer our
four questions. We assume that the model F(x) for F(x)
has been selected,.

Question 1

To estimate the probability that the flow in a given year
will be less than x units we simply use

(1) »p.= Fix).

In this and in all other cases which follow, the Bootstrap
algorithm is then used to estimate the confidence limits
for p. To estimate a deficient inflow associated with a
given risk p one uses:

(1)' x = F Y(p)

Detailed algorithms to evaluate F'1(p) for the distributions
discussed here are given in Appendix 1,

Question I

For the Normal distribution, the distribution of the sum

of m independently and identically distributed N(u,o2?)
random variables is also Normally distributed as N(mu,mo2).
Similarly for the Gamma distribution, G(a,B), the sum is
distributed as G{ma,8). The Exponential distribution is

a special case of the Gamma with a = 1 and so the sum of m
independently and identically distributed Exponential
variables, E(A), is distributed as G(m,rx). It follows that
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for these distributions once F(x) has been fitted an
estimator for Fm(x) is immediately available,

For the Log-Normal, Weibull and Extreme Value Type 1 dis-
tributions, however, the distribution of the sum is not
known. Here we recommend that Monte-Carlo methods be wused:

Step 1: Generate a random sample xi, xé,...,x& from E(x)
and compute y' = xi + xé + .. + xé.

Step 2: Repeat Step 1| a large number of times and keep a
record of the generated y'.

(For details of the generating algorithms see Appendix 1.)

The empirical distribution of the y' converges to the dis-
tribution of the sum of m random variables which have the
distribution function F(x). The required estimate is
then given by:

(1) p = Fylx).

The deficient streamflow corresponding to a given risk p
is given by:

e

(11)* x = F_'(p).

Question II1

Here 51 h(x) is a simple function of E(x):
Foop(x) =1 - (1 - F(x))"
1,h

and the required estimates are given by
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(111} p = Fy y(x) and

s F;:h(p)

> »

(111)°

Question 1V

Here there is little choice but to use Monte-Carlo methods:

Step 1: Generate a random sample xi, xé,....xﬁ from
F(x), and set

Yj = E%:?-1 X R J=1,2,...,h=-m+1 ,

Z' min (,Yi. yé.-...ya_m+1).
Step 2: Repeat Step 1 a large number of times and keep a
record of the z',

The empirical distribution of the z' converges to Em’h(x),
the distribution of the minimum m-year flow in h years,
given that the flows are distributed as F(x). The required
estimates are then given by

(Iv) p

Em,h(x) and

(1v)' «x

Fon(P) -
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6. MONTHLY STREAMFLOW GENERATION

The above analysis is on an annual basis, however, for the
operation of reservoir storage systems in a drought situa-
tion,decisions need to be made at least on a monthly basis.
In this chapter we demonstrate how the above methodology
can be expanded to deal with monthly flows. The Method of
Fragments (Svanidze 1980 ; Huynh Ngoh Phien and
Vithana 1982 ) has been found to be capable of reprodu-
cing the mean, standard deviation, skew and serial correla-
tion* of monthly streamflow sequences and is used here.
Essentially we generate annual flows as before, find the
historical annual flow which is nearest in magnitude, and
disaggregate the generated annual total in direct pro-
portion to the corresponding historical monthly sequence.

To assess drought risk over an operational horizon of say

h years one generates a large number of h-year sequences

of monthly flows and accumulates on 2 monthly basis. The
percentilies of the distribution of these running totals

are then plotted. The 5% percentile curve, for example,
gives the cumulative monthly inflow associated with a 5%
risk of occurrence. It is important to note that these
percentile curves can only be used to assess risk from the
given time origin - they cannot be entered at any arbitrary
subsequent time since no cognisance of prior information is
taken. This is a weakness of the method, but the practical
problem 1in South Africa is simply this : that inflows to

*In fact the serial correlation structure is only partially
preserved. The serial correlation between the last month in a
year and the first of the next year produced by this method is
zero, whereas in reality it will be different from zero.
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reservoirs are highly seasonal and operational consider-
ations require an assessment of the risks associated with
possible m-seasonal inflow generally from 1 October.

Figures 1 and 2 illustrate such curves for the Vaal and
Midmar dams. These graphs are of course based on average
initial conditions. In theory one could account for ante-
cedent flow,and models of varying complexity which can do
this are available. However one would then need to produce
a set of curves for each season and for each possible
initial condition. If one wishes to do this then an alter-
native method of generating monthly sequences would have

to be found.

Figure 1 shows the percentiles of the distribution of cumu-
lative monthly inflows into Vaal Dam. Historically the
two most severely deficient inflow sequences occurred
during the early nineteen thirties and during the present
drought,which is generally regarded as having started in
the 1978/79 season. The three-season inflow starting

in October 1930was more severe than the initial 36-month
sequence of the present drought. However the total 60-
month inflow of the present drought is less than half of
the corresponding inflow in the earlier drought and is
associated with a probability of less than 1%.

September 1980 marked a critical point in storage level at
Midmar since the reservoir was considerably drawn down.

The focus of interest here was to decide on suitable re-
strictions on consumption. Figure 2 starts at this point
in time and provides a means of assessing the risk of
further deficiencies in inflow over the ensuing three
seasons. It can be seen that the actual sequence of events
was particularly severe, At no stage over the 36-month
period did the cumulative inflow exceed the 20% percentile
level and it ended below the 2,5% level.



FIGURE 1

Vaal Dam: Simulated non-exceedance percentiles from 1 October over a 60-month period for
the cumulative monthly inflows. The solid line represents October 1978 to September
1983, the dashed line October 1930 to September 1935.
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FIGURE 2

Midmar Dam: Simulated non-exceedance percentiles from 1 October over a 36-month period for
the cumulative monthly inflows, The solid line represents October 1980 to September 1983.
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7. EXAMPLES OF APPLICATION

The annual sequence of inflows to three South African
reservoirs are considered to illustrate the proposed method
of drought analysis. Vaal Dam,Midmar and Kalkfontein
illustrate three distinct types of empirical density func-
tions with regard to the distribution of their sequences

of annual inflows, from a 'J' shape at Kalkfontein to an
almost symmetrical density at Midmar. These data are given
in Table 1 and the maximum likelihood estimates for the
parameters of each of the six distributions considered are
given in Table 2.

The selection criterion (cf. Chapter 3) for each distri-
bution and for various values of d are given in Table 3.

For Vaal Dam the Log-Normal distribution leads to the lowest
criterion for each value of 'd' and consequentiy this dis-
tribution was selected to represent the flows. For Midmar
the Extreme Value (Type 1) distribution leads to the
smallest criterion for d = { and d = 0,5, whereas for

d = 0,25 the criterion for the Gamma model is a little lower.
Because the difference is small the Extreme Value distri-
bution was selected in this case. For Kalkfontein the
choice is a little more complex. At d = 1 the Log-Normal
distribution is the obvious choice, but at d = 0,5 and

d = 0,25 the Exponential distribution becomes a better can-
didate. As we are mainly interested in the low flows more
weight is given to the criterion at d < 1 and so the
Exponential model is chosen. However, it is worthy of note
that for Kalkfontein none of the six univariate models
considered leads to a particularly good fit.

Having completed the process of model selection for the
annual inflows to each reservoir, we now generate a stochastic
sequence on each model and use the explicit algorithms pre-
sented earlier in order to answer our four questions. The
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results for each dam are presented in Tables 4 to 9,
These tables are completed by adding the 90% confidence
limits to our estimates using the “smooth" Bootstrap
procedure,

A detailed examination of the tables reveals some parti-
cular features. Firstly, the confidence limits are not
symmetrical about our estimates and are as should be ex-
pected. The asymmetry of confidence intervals is naturally
influenced by the shape of the distribution function about
a particular quantile.

The confidence limits are hauntingly wide but reflect the
precision with which the estimate of a particular quantile
is known and the considerable qualification of results that
is required of the engineering hydrologist when making such
estimates, We do at least know in our case just how good
these are and this information should be incorporated into
any subsequent analysis.

Our percentile estimates in Tables 4 to 9 were drawn from
a generated sequence of 20 000 years for each reservoir
and the confidence limits estimated from 300 replicates of
length n (historical sample size). It is of obvious
interest to know just how good our Bootstrapped estimates
of the confidence limits are. Stedinger

(1983) gives exact confidence limits for design events
drawn from a Log-Normal model. Table 10 reveals that for
Vaal Dam (where the Log-Normal was the selected univariate
model) our result is comfortably close to the exact result
and inspiresauthenticity to those where the exact result
is not in fact available.

Using the material contained in the tables we are now in a
position to pose some specific questions and provide answers
and confidence {in this case the 90% interval) in our answers,
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(1) What is the probability that over the next water
year more than the mean annual inflow will dis-
charge into each of the 3 reservoirs?

Vaal (x

1 975.10°%m3) (27%) 38% (52%)

Midmar (x 152.10%m2) (22%) 42% (56%)

Kalkfontein (x

H

164.10°m3) (27%) 36% (45%)

(II}' For each reservoir what is the total inflow volume
over the next two water years that can be expected
such that there is only a 10% chance of failure to
achieve this unknown sum (in units of 10%m3)?

Vaal (1 593) 1 783 (2 464)
Midmar { 155) 185 ( 221)
Kalkfontein ( 25) 88 ( 101)

(ITI)' For each reservoir let Q be the minimum flow in
the next 5 years. Which value, q, is such that
the probability that Q is less than q is 20% (in units

of 10%m3)?
Vaal (361} 457 (587)
Midmar ( 33) 53 { 80)

Kalkfontein ( 0) 6,0 (14,7)



(1v)'

(1v)

(111)

26.

Consider an operating horizon of 10 years for
Kalkfontein dam and let q be the minimum 3-year
inflow which will occur. What levels of q are
associated with 5%, 10% and 20% risks of deficiency?
Here h = 10, m = 3 and from Table 9 we see that the
required levels are (in units of 10%m3):

risk estimate estimated 90%
confidence interval
5% 84 (57, 130)
10% 95 (73, 161)
20% 119 (86, 190)

Over the next four water years at Midmar dam a total
infiow of not less than 400.10°m® is required. What
is the probability that this requirement will be
met?

Here h = 4, m = 4 and 5 = 97% with (90%) confidence
limits (80%, 99%). ‘

Operation considerations at Midmar require a minimum
assured one year inflow of 50.10°m® within the next

four-year period. What is the probability that this
is met? )

Here h = 4, m = 1 and p = 86% with (90%) confidence

interval of (63%, 95%).

It is also possible by using the methodology described here
to give an estimate of the probability that the last two
conditions concerning inflow into Midmar are simultaneously

met

»

and to estimate a confidence interval for this

probability.
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8. CONCLUSIONS

The diversity of complex problems associated with the study
of droughts have to date very largely been approached from
a qualitative point of view. The question of drought defi-
nition is a well known case in point where the precise
level of deficient rainfall, storage or river-flow is a
function of climate and major usage., Thus, there are a
vast number of drought definitions pertinent to particular
climates, crops and seasonal patterns. of demand. Where
quantitative analyses of drought have been attempted they
have been found to be severely restricted by the lack of
any precise analytical technique with which to tackle the
guestions that are undoubtedly of interest.

Monte Carlo techniques allow us to address these complicated
problems and to draw statistical inferences. Furthermore,
the Bootstrap algorithm allows us to assess the accuracy

of our result, We have posed four specific questions with
respect to the risk of deficient annual inflow and sequences
of them to a reservoir and have shown how these risks can be com-
puted given an operational horizon of interest. The pro-
vision of extensive tables for each reservoir has per-
mitted us to illustrate how a further broad diversity of
design and operational questions can be proposed and how

the concept of risk of deficient inflows to storage systems
can be elaborated beyond the simple notion of "the T-year
event",

The scheme proposed above does require a good deal of com-
puting. However it must be kept in mind that data in such
situations is scarce, and expensive to collect, code and
distribute., Furthermore one has to consider the potential
cost of the consequences of incorrect decisions being taken
because they are based on unrealistic estimates of risk.
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Compared to these the computing cost is negligibly small
and there is no excuse for not using the best available
estimation methods.
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TABLE 1

Water Year (1) (2) (3) Water Year (1) (2) (3)
1912/13 57 1947/48 1101 150 717
1913/14 58 1948/49 642 87 40
1914/15 363 1949/50 1939 130 385
1915/1¢6 56 1950/51 639 142 53
1916/17 174 1951/52 1167 109 95
1917/18 46 1952/53 1951 132 67
1918/19 19 1953/54 882 119 101
1919720 554 1954/55 3510 129 335
1920/21 64 1955/56 1546 89 162
1921722 41 1956/57 5379 313 97
1922723 389 1957/58 3656 134 119
1923/24 765 194 1958/59 1345 237 46
1924/25 4778 748 1959/60 1449 74 35
1925/26 809 44 55 1960/61 2039 164 57
1926/27 1284 110 111 1961/62 962 126 105
1927/28 863 92 67 1962/63 1316 146 237
1928/29 1612 122 140 1963/64 1136 135 21
1929/30 2755 146 166 1964/65 2890 188 52
1930/31 779 68 114 1965/66 520 111 194
1931/32 698 84 140 1966/67 3393 208 271
1932733 470 89 74 1967/68 597 120 38
1933/34 3302 258 474 1968/69 687 86 195
1934/35 2550 156 86 1969/70 1173 153 46
1935/36 1689 124 9 1970/71 1008 121 125
1936/37 4361 142 159 1971/72 1977 202 345
1937/38 1146 141 22 1972173 440 163 5
1938/39 3929 256 69 1873/74 2176 401 1324
1939/40 2178 179 82 1974/75 5727 204 53
1940/41 2535 159 168 1975/76 4803 419 492
1941/42 1039 215 74 1976/77 2395 132 48
1942/43 3598 369 334 1977/78 2367 174 6
1943/44 6864 191 82 1978/79 600 194 15
1944/45 1696 99 20 1979/80 1464 36 85
1945/46 1278 56 100 1980/81 1202 96 7
1946/47 1117 146 42 1981/82 375 86

1982/83 38

Annual inflow records (1) Vaal Dam; (2) Midmar; (3) Kalkfontein
Note: (a) The inflows are nett volumes (10°m?).

(b) The figures for Vaal Dam include Sterkfontein.

(c) The record at Midmar prior to 1963/4 was augmented using
annual rainfall, using the Pitman model based on monthly data.

{d) The figure for 1982/3 at Midmar represents a
projected figure at March 1983.
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TABLE 2

VAAL DAM

GAMMA a = 2,153E + 00 B = 9,174E + 02
NORMAL M= 1,975E + 03 o = 1,462E + 03
LOGNORMAL u = 7,339 + 00 o = 7,082E - 01
EXPONENTIAL 6 = 1,975E + 03

WEIBULL p = 1,467E + 00 § = 2,200E + 03
EXTREME-1 £ = 1,353E + 03 n = 9,559E + 02
MIDMAR DAM

GAMMA a = 4,216E + 00 g = 3,594E + 01
NORMAL = 1,515E + 02 o = 7,910E + 01
LOGNORMAL u = 4,897E + 00 o = 5,034E - 01
EXPONENTIAL 6 = 1,515E + 02

WEIBULL p = 2,036E + 00 8§ = 1,717E + 02
EXTREME-1 E = 1,179 + 02 n = 5,604E + 01
KALKFONTEIN DAM

GAMMA a = 9,515 + 01 B = 1,723E + 02
NORMAL u = 1,640E + 02 o = 2,133E + 02
LOGNGRMAL u = 4,489E '+ 00 o = 1,145E + 00
EXPONENTIAL 6 = 1,640E + 02

WEIBULL p = 9,182 - 01 § = 1,565E + 02
EXTREME-1 £ = 8,947E + 01 n = 1,030E + 02

Maximum likelihood estimates of the parameters of each
of the six distributions fitted to the annual inflow data
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TABLE 3
CRITERION C
MODEL VAAL DAW MIDMAR DAN RALKFONTETN DAN

d = 1

GAMMA 0,0993 0,0843 0,1059
NORMAL 0,1690 0,1497 0,2273
LOGNORMAL 0,0595 0,0837 0,0739
EXPONENTIAL 0,1776 0,3058 0,1129
WEIBULL 0,0987 0,1144 0,0879
EXTREME-1 0,1187 0,0680 0,1628
d = 0,5

GAMMA 0,0896 0,0725 0,1190
NORMAL 0,2408 0,1367 0,3576
LOGNORMAL 0,0444 0,1066 0,0968
EXPONENTIAL 0,2867 90,3268 0,0780
WEIBULL 0,1389 0,1103 0,0949
EXTREME-1 0,1197 0,0693 0,2006
d = 0,25

GAMMA 0,1084 60,0707 0,1427
NORMAL 0,2489 0,1558 0,3450
LOGNORMAL 0,0358 0,1479 0,1231
EXPONENTIAL 0,2855 0,3152 D,0636
WEIBULL 0,1584 0,0874 0,0986
EXTREME-1 0,1395 60,0797 0,2201

Univariate model selection based on the minimisation

of the criterion
the model at the lower tail

lcl.

As

'd' decreases so the fit of
is emphasised.




TABLE 4

P(Q) <q m=1 m=2 m=3 m=4 m=25

5% ( 333) 475 ( 598) | (1059) 1470 ( 2133)| (2049) 2646 ( 3802) | ( 3012) 3911 ( 5172)| ( 4050) 5320 ( 6950)
10% ( 454) 630 ( 754)| (1593) 1783 ( 2464) | (2741) 3133 ( 4392)| ( 3626) 4577 { 6093)| ( 4607) 5958 ( 7817)
20% ( 655) 841 (1031)| (1927) 2247 ( 2932)| (3178) 3760 ( 4945)] ( 4217) 5361 { 6802)| ( 5261) 6890 ( 8662)
30% ( 831) 1067 (1288) | (2241) 2655 { 3449)| (3611) 4349 ( 5463){ ( 4857) 6043 ( 7554)| ( 6194) 7801 ( 9460)
40% (1048) 1298 (1553) | (2568) 3080 ( 3923); (3965) 4821 ( 6007)| { 5400) 6787 { 8041) | ( 6947) 8591 (10096)
50% (1287) 1538 (1858) | (2822) 3461 ( 4261) | (4426) 5387 ( 6483) | ( 5909) 7390 ( 9066) | ( 7464) 9428 (11451)
60% (1544) 1877 (2230) | (3107) 3960 ( 4520)1 (4842) 6019 ( 7223)| ( 6384) 8092 (10082) | ( 8095) 10222 (12460)
70% (1865) 2278 (2739) | (3569) 4574 ( 5461) | (5245) 6779 ( 8082)| { 7092) 8897 (11926)| ( 8687) 11121 (14264)
80% (2364) 2818 (3504) | (4112) 5379 ( 6651) | (6103) 7778 ( 9871)| ( 7779).10085 (12847) | ( 9733) 12560 (16847)
90% (3209) 3881 (4815)| (5003) 6698 ( 8487)) (6927) 9053 (10960)| ( 9082) 11899 (18611) | (11365) 14708 (21453)
95% (4048) 4911 (6511) ) (6099) 8112 {13114)] (8620) 11433 (16493) | (10881) 13775 (23860) | (13857) 16354 (28232)

VAAL DAM : Percentiles of m-year inflow volumes with 90% confidence intervals

A



TABLE 5

P(Q) < q = 1 m=2 m=3 m=4 m=5

5% (43) 57 (74) | (111) 155 (192) { (204) 273 (340) | (288) 391 ( 474) | (420) 515 ( 609)
10% ( 61) 72 (101) | (155) 185 (221) | (261) 309 (371) | (351) 430 ( 502) | (483) 556 ( 650)
20% (80) 92 (121) | (184) 213 (250) | (315) 349 (411) | {420) 485 ( 558) | (540) 612 { 705)
30% ( 92) 107 (139) | (217) 244 (280) | (341) 377 (439) | (468) 524 ( 607) | (591) 661 ( 765)
40% (106) 123 (159) | (237) 267 (311) | (372) 412 (481) | (487) 556 ( 612) | {(615) 709 ( 801)
50% (118) 139 (180) | (262) 290 (340) | (394) 443 (508) | (510) 591 ( 680) | (662) 760 ( 867)
60% (132) 157 (200) | (280) 314 (366) | (414) 472 (557) | (550) 640 ( 722) | (680) 791 ( 889)
70% (150) 177 (236) | (305) 343 (403) | (440) 508 (599) | (573) 679 ( 764) | (709) 850 { 962
80% (167) 202 (270) | (322) 378 (434) | (466) 555 (611) | (603) 727 ( 836) | (744) 890 (1002)
90% (188) 246 (317) | (357) 437 (497) | (509) 639 (700) | {626) 790 ( 882) | (801) 981 (1245)
95% (211) 285 (354) | (378) 488 (541) | (523) 661 (751) | (700) 878 (1171) | (827) 1041 (1473)

MIDMAR : Percentiles of m-year inflow volumes with 90% confidence intervals

“EE



TABLE b

P(Q) <q m=1 m= 2 m=3 m=4 m=25

52 ( 0,00 8,4 (10,2) | ( 3) 57 ( 8) |(25) 135 (149) | (98) 227 ( 256) | { 140) 326 ( 359)
10% ( 7,7) 16,9 (21,3) [ (25) 88 (101) | (130) 179 ( 248) | (138) 283 ( 326) | ( 221) 411 ( 495)
20% ( 28,1) 37,4 (47,8) | (60) 133 ( 153) [ (201) 256 ( 340) | (290) 377 ( 521) | { 343) 514 ( 700)
30% ( 46,6) 57,3 (70,0) | (141) 178 ( 214) | (255) 324 ( 463) | (377) 452 ( 670) | ( 441) 593 ( 819)
40% ( 60,2) 83,2 ( 98,0) | (202) 230 ( 391) | (311) 377 ( 560) | (415) 526 ( 728) | ( 526) 682 (1004)
50% ( 86,0) 116,0 (149,0) | (261) 285 ( 463) | (372) 440 ( 613) | (512) 606 ( 875) | ( 606) 770 (1206)
60% (119,0) 153,0 (188,0) | (314) 339 ( 520) | (433) 519 ( 719) | (577) 689 ( 997) | ( 680) 869 (1460)
703 (155,0) 198,0 (244,0) | (371) 406 ('611) | (491) 593 ('859) | (812) 767 (1157) | ( 762) 970 (1693)
80% (212,0) 266,0 (332,0) | (420) 491 ( 754) | (570) 711 (10%1) | (707) 912 (1376) | ( 869) 1126 (1978)
90% (301,0) 379,0 (477,0) | (503) 630 (.961) | (633) 870 (1432) | (829) 1147 (1655) | ( 904) 1329 (2311)
95% (389,0) 494,0 (630,0) | (721) 771 (1160) | (719) 1098 (1782) | (992) 1322 (2019) | (1137) 1561 (2747)

KALKFONTEIN : Percentiles of m-year inflow volumes with 90% confidence intervals

2>



TABLE 7

h=2 h=3 h=24 h=5 h =10
P{Q<q) m=1 m=1 m=1 m=1 m=1

5% | (259) 395 { 486) | (221) 340 (45%) | (190) 313 (429) | (167) 293 (408) | (151} 250 (395)
10% | (309) 482 ( 570) | (274) 425 (520) | (239) 390 (486) | (206) 360 (444) | (191) 305 (413)
20% | (497) 632 ( 762) | (466) 556 (711) | (421) 495 {(662) | (361) 457 (587) | (329) 370 (559)
30% | (580) 765 ( 878) | (519) 650 (756) | (457) 582 (690) | (419) 540 (662) | (370) 425 (621)
40% | (706) 870 ( 988) | (625) 750 (874) | (555) 660 (791) | (492) 612 (733) | (421) 475 (640)
50% | (877) 1045 (1109) | (781) 862 (977) | (679) 755 (872) | (600) €94 (808) | (461) 530 (689)

(with 90% confidence intervals)

h=3 h =4 h=5 h =10
P(0<n) m=2 m=2 m=2 m=2
5% ( 881) 1225 (1721) |[( 760) 1175 (1645) |( 688) 1115 (1519) ]{ 565) 950 (1366)
10% ( 990) 1480 (1961) |{ 864) 1355 (1804) [( 750) 1275 (1662) |( 669) 1085 (1581)
20% (1287) 1860 (2301) |[(1089) 1665 (2130) |( 944) 1535 (1927) |( 821) 1270 (1762)
30% (1542) 2175 (2692) |[(1377) 1925 (2483) |(1245) 1765 (2246) |{1000) 1415 (1964)
40% (1881) 2475 (3007) |(1621) 2170 (2863) |[(1460) 1975 (2629) |(1308) 1565 (2108)
50% (2211) 2805 (3462) |(1931) 2400 (3198) |(1699) 2175 (2888) [(1463) 1705 (2511)
h = 4 h = 5 h = 10
P(0<1) me=3 m=3 m=3
5% (1990) 2360 (2602) |{(1883) 2200 (2502) |[(1511) 1920 (2320)
10% (2469) 2720 (2975) |[(2295) 2530 (2882) [(1854) 2150 (2545)
10% (2822) 3300 (3499) |[(2481) 3040 (3333) |(1921) 2460 (2820)
30% (3303) 3790 (3961) |(3006) 3450 (3824) [(2490) 2730 (3261)
40% (3727) 4250 (4318) |(3390) 3870 (4270) |[(2554) 2970 (3487)
50% (3965) 4670 (4821) |(3549) 4230 (4598) |(2843) 3190 (3581)
VAAL DAM : Percentiles of the m-year minimum annual inflow over a time horizon h years

"GE




TABLE 8

h__.3 h=4 h=5 h=10
P(G) m =1 m =1 m=1 m =1
5% { 23) 36 { 61) i 22) 35°( 57)] ( 19) 32 ( 50)| ( 18) 25 ( 43)
10% 32) 46 ( 70)| { 30) 45 ( 66)| ( 26) 41 ( 65)| ( 24) 32 ( 60)
20% (42) 63 (91)|(38) 57 (86)| (33) 53 (80)|(29) 42 72)
30% (56) 74 { 99)| ( 47) 66 ( 98)| ( 44) 62 ( 89)| ( 37) 50 ( 83)
40% ( 63) 83 (113)] ( 55) 75 (103)| ( 49) 70 (100)| ( 43) 56 ( 94)
50% ( 74) 93 (127)] ( 60) 83 {111)] ( 53} 77 (106)| ( 49) 62 (101)
h=3 h=4 h=5 h = 10
P(0<q) m=2 m=2 m=2 m=2
5% ( 94) 140 (186) | ( 81) 132 (170) | ( 76) 125 (164) | ( 69) 111 (150)
10% (106) 161 (208) | { 96) 151 (192)| ( a1) 143 (181) [ ( 76) 124 (170)
20% (129) 190 (228){ (105) 175 (211)| ( 94) 165 (195) | { 83) 143 (184)
30% (153) 214 (241) 1 (119) 195 (236) | {103) 182 (227)| { 99) 156 (218)
40% (177) 233 (266) | (138) 212 (259) | (127) 199 (139) | (117) 168 (227)
50% (203) 254 (285)] (166) 227 (271) ] (181) 215 (260) | (131) 180 (240)
h =4 h=5 h =10
P(Q<q) m=3 m=3 m=3
5% 205) 249 (291) | (200) 239 (279)| (191) 206 (259)
10% 222) 280 (330) | (216) 268 (321)| (203) 232 (311)
20% (259) 317 (364) | (229) 300 (348)| (224) 264 (329)
30% (288) 348 (399) | (243) 327 (377)| (238) 280 (360)
403 (317) 377 (431)| (270) 352 (400)| (249) 299 (391)
50% (350) 403 (363)| (291) 377 (441)] (265) 313 (427)

MIDMAR DAM : Percentiles of the m -year minimum annual inflow over a time horizon of h

years (with 90% confidence intervals)
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TABLE 10
o) 90% confidence interval
T (years) josqe | Stedinger Bootstrap
(1983) 300 replicates TUUUU replicates
100 292 | 378-207 392-193 378-204
50 355 | 449-259 466-270 444-291
10 616 { 743-487 754-454 743-487

VAAL DAM : Exact and Bootstrapped 90% confidence intervals for
the T-year annual drought inflow estimated from a lognormal

mode]
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APPENDIX 1 SIX DISTRIBUTIONS

The six distributions considered in the main text are ex-
tensively discussed in the statistical literature, an ex-
cellent source being Johnson and Kotz (1970). The main
reason for repeating this material here is to provide a
convenient summary of only those properties of these dis-
tributions which are required in order to apply the methods
described in the text. It is hoped that this will make the
methods more accessible to non-statisticians who will be
spared the necessity of extracting the relevant properties
from statistical textbooks. In particular several expiicit
algorithms (which are seldom given in such books) will be
given. Some of these are available as parts of packages on
larger computer systems, but not yet for microcomputers.

The algorithms described here have been implemented on an
IBM PC microcomputer.

Throughout this appendix we will use Xgs XoneoeesXp to de-
note n observations which are assumed independently and
identically distributed.
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NORMAL DISTRIBUTION

Parameters

u  (location)
g? (dispersion})

Moments

Expectation: U
Varjance: o2
Coefficient of variation: o/u
Skew: 0

Probability density function

Flx) = /?#LE e-(x-u)zlza2 ' < x <

Distribution function

2
F(z) = I f{x) dx . -0 € 2 ¢ @

There is no closed expression for F(z), but one has that

F(z) = o(22%)

where ¢ is the standard normal distribution function for
which approximations are available. The approximation em-
ployed in the following algorithm is due to Hastings (1955);:
cf. Abramowitz and Stequn (1972):
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STEP 1 INPUT Z

STEP 2 SET S = 0,3989423+EXP(~0,5+Z+Z)
T = 1/(1+0,23164194ABS(2))

0
= =4
—
n

STEP 3 SET S«T=(0,3193815 - T«(0,3565638

-T+(1,781478 - T=(1,821256
-T»1,330274))))
STEP 4 TEST IF Z > 0 THEN SET PHI = 1 - PHI

STEP 5 O0utTPUT PHI

The absolute magnitude of the approximation error is less
than 10°°,

Percentage points

Z(p) = F 1 (p) , 0<p<i

Again no closed expression is available, but Z(p) may be
computed using

Z(p) = ¢~ H{plo + u . 0<p<t.

The following algorithm for ¢'1(p) {called INVPHI below)
is from Abramowitz and Stegun (1972):
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STEP 1 INPUT P

STEP 2 TEST IF P > 0,5 THEN SET S =1, SET T = 1-P
ELSE SET S =-1, SET T =P
STEP 3 SET U = SQR{-2«L0OG(T))
STEP 4 SET V = U-(2,515517 + U»(0,802853
+U*0,010328))/(1+U=(1,432788
+ U=(0,189269 + U+0,001308)))
STEP 5 SET INVPHI = S»V

STEP 6 OQUTPUT INVPHI

The absolute magnitude of the approximation error is less
than 4,5*10'4.

Maximum 1ikelihood estimators

1 en
W Liag X
1

o = 1 19, 13 - i

Generating normal deviates

It is assumed that a random number generator which gene-
rates uniformly distributed random deviates between 0 and

1 is available. Several methods to generate normal

deviates {using uniform deviates) are available. For example
one can simply add a certain number (usually 10) of uniform
deviates and transform these using a suitable linear trans-
formation. A second, and more accurate method is to

generate a uniform deviate, R, and use @‘1(R) as normal
deviate. The algorithm described below, due to Box and
Muller (1958) is exact in the sense that the transformation
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from uniform to normal is exact.

The following algorithm can be used to generate pairs of
standard normal random deviates.

STEP 1 GENERATE two uniform random deviates R1, R2
STEP 2 SET T = SQR(-2«LOG(R1})

STEP 3 SET X1 = T«SIN(6,283185*R2)
X2 = T+C0S(6,283185+R2)

STEP 4 OUTPUT X1, X2

To generate deviates with mean u and variance ¢2 one simply
multiplies X1 and X2 by o and adds u.



LOGNORMAL DISTRIBUTION

Parameters

u (location in log-space)
o2 (dispersion in log-space)

Moments
2
Expectation: e‘,‘ec /2
2 2
Variance: e?Me% (97 -1)

Coefficient of variation: (e -1)?

Skew: (eoa-l)i(e°z+2)

Probability density function

1 __ o~(&n x-u)?/20?

Fix) = Jmrox - x>0 .
_Distribution function
z
F(z) = I f(x) dx . z > 0.
0

There is no closed expression for F(x) but one has

F(z) = ¢(£g_%;g) R z >0,

where ¢ is the standard normal distribution for which an
approximation was given above.

Percentage points

2(p) = F~1(p) . 0<p<ct .

No closed expression is available for Z(p) but one has that
Z(p) = exp(o™'(p)o+u)

and an approximation for o'1(p) was given above.
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Maximum likelihood estimators

-

_ 1 ¢n
o= Ly tnlxy)

g2 = % 2?21 enixg)? - @2

Generating lognormal deviates

To generate a lognormal deviate, X, with parameters u and
o? one first generates a standard normal deviate, D, and
sets

X = exp(Do+u)

An algorithm to generate standard normal deviates has
already been given above.
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EXPONENTIAL DISTRIBUTION

Parameter

8 >0 (scale)

Moments

Expectation:

Variance: g2
Coefficient of variation: 1

Skew: 2

Probability density function

f(x) = % e™%/8

Distribution function

F(z) = 1 - e 2/8

Percentage points

Z{p) = -9 &n(1-p)

Maximum likelihood estimator

~ . 1 ¢n
o = 5 Li=y Xy

Generating exponential deviates

X = -8 &n(R)

where R is a uniform (0,1) random deviate.

x>0

0 <p<1
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WEIBULL DISTRIBUTION

Parameters

§ >0 (scale)
p >0 (shape)

Moments
Expectation: ST{1+1/p)
Variance: §2{r{1+2/p) - (1+1/p)2}

Coefficient of variation: {I‘(1+2/p)/1"(1+1/p)2-1}i
Skew {T(1+3/p) - 3r(1+2/p)T(1+1/p)
+ 20 (141/0)33/{T(1+2/p) - T{1+1/p)2}* /2

Probability density function

flx) = (&)%) e (x/8)° , x >0

Distribution function

F(x) = 1 - e-(x/é)p

Percentage points

Z(p) = &8i-en(1-p)11/P , 0 ¢<p <1

Maximum likelihood estimators

The maximum likelihood estimation of p is the solution to

the equation
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o = (0% %Ptn x0Ty x®) - I0ny tn xg)

This equation can only be solved numerically; an algorithm
to do this is given below. Once p is available one can
compute

< 1 en 0 1/
6-{H21=1xi}

In the following algorithm to estimate p (RHO) and & (DELTA)
it is assumed that at least N = 3 observations are available.
The notation SUM [ ] denotes the sum of the term in the
brackets for I = 1,2,...,N.

STEP 1 INPUT N, X(1), X(2),...,X(N), where the observa-
tions are arranged in increasing order of

magnitude.
STEP 2 SET I1 = INT(N/4), I2 = INT(N*3/4)
RHO = LOG(LOG{1-12/N)/LOG(1-I1/N))/

LOG(X(I2)/(X(1%))
T = SUM [LOG{X(I))1/N

STEP 3 SET TO = SUM [X(I)=«RHO]
T1 = SUM [LOG(X(I))*X(1I)**RHO]
T2 = SUM [LOG(X(I)*#+2+X(I)**RHO])
T3 = RHO*(T1/70-T) =1
T4 = (T1/T0-T) + RHO*(T2/T0=-(T1/T0)**2)

RHO

RHO - T3/T4
STEP 4 TEST IF ABS{T3) »> 0,0001 THEN GO TO STEP 3
STEP 5 SET DELTA = (TO/N)*+(1/RHO)

STEP 6 0uUTPUT  RHO, DELTA
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Notes:

(1) To enhance efficiency the computation of TO0,T1,T2 and
T3 in STEP 3 should be carried out in a single loop.

(2) If storage is available the quantities LOG(X(I))
should be computed once only in STEP 2,rather than
repeatedly computed in the iteration.

(3) For some data sets no real maximum likelihood estimate
exists. It is therefore advisable to 1imit the number
of iterations, e.g. to stop if there is no convergence
after 50 iterations,

Generating Weibullrandom deviates

X = 6[- en(R)IV/P

where R is a Uniform (0,1) random deviate.
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EXTREME (TYPE I) DISTRIBUTION

Parameters

2 (location)

n>0 (scale)

Moments

Expectation: E+ynwmt + 0,577216n
Varifance: m2n?/6 ~ 1,644934n2
Coefficient of variation: 1,282550n/(t +0,577216n)
Skew: 1,13955

Probability density function
1 - (x=£)/nyq-(x-E)/n

f(x) = 7 expl-e . x>0
Distribution function

F(z) = exp[-e'(z'g)/"] . z >0
Percentage points

Z(p) = £ - n &n(-Ln (p)) , 0 <p<1

Maximum 1ikelihood estimators

The maximum Tikelihood estimator - of n is the solution to
the equation

1 ¢en n =Xy/n n =Xy/n
Ny lia Xyt {Zi=1 Xy @ }’ PHEI }

This equation can only be solved numerically; an algorithm
to do this is given below. Once n is available one can
compute



g =

brac
STEP

STEP

STEP

STEP

STEP
STEP
STEP

Note

(1) To enhance efficiency, the computation STEPS 3 and 4
should be carried out in a single loop.
to store the Y(I) values in an array.

(2)

- 1 ¢n
-7 £Zn (ﬁ Z]=1 e

-x]

-/;l) '

In the following algorithm to estimaten (ETA) and & (XI)
the notation SUM [ ] denotes the sum of the term in the

A1-13

1 INPUT N, X{1), X(2),...,X(N)

S TEST IF ABS(T3) > 0,0001 THEN GO TO STEP 3

SuM [X(I)31/N
SUM [X(I)*X(I)]/N = XM*xXM
0,779697 *SQR(XV)

N SET Y(I) = EXP{-X{I)/ETA)

SuM [Y(1)]

SUM [Y(I)*X(I)]

SUM [Y(I)=X(I)=*X(1)]

ETA + T1/7T0 - XM

1+ (T2*TO-T1*T1)/(TO*ETA)**2
ETA - T3/T4

-ETA*LOG(TO/N)

ket for I = 1,2,...,N.
2 SET XM =
XV =
ETA =
3 FOR I =170
4 SET 70 =
T1 =
T2 =
T3 =
T4 =
ETA =
6 SET XI =
7 OUTPUT ETA,

5:

also unnecessary

For some data sets no real maximum Tikelihood estimate
exists, It is therefore advisable to limit the number

of iterations, e.g. to stop after 50 iterations if

X1

there is no convergence by then.

It is then
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Generating Extreme {(Type I) deviates

X = £ -n &n(-2n (R))

where R is a uniform (0,1) random deviate.
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GAMMA DISTRIBUTION

Parameters

a > 0 (shape)
g > 0 (scale)

Moments

Expectation: af

Variance: ap?
Coefficient of variation: a~?
Skew: 2/(:i

Probability density function

a-1 _=-x/B
f(x) = % 5 € . x >0
B T(a)

Distribution function

Z
F(z) = ] £(x) dx : 250
. |

There is no closed expression for F(z); one has that

F(z) = T, a(a)/T{a)

where Px(a) is the incomplete gamma function defined by

rla) = J

X
£2=1 o=t gt , x >0 .
0

Algorithms for this function, the complete gamma function,
T'(a), the digamma function, y(a), and the trigamma function,
¥'(a), are given at the end of this appendix. The latter
two functions are needed for maximum likelihood estimation
of the parameters.
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Percentage points

2(p) = F \(p) . 6 <p <1

No closed expression is available for Z(p), nor do we know
of any accurate direct approximation. One way to solve the
problem is to solve the equation

F(Z) - p =10

for Z using an iterative method. An approximation for F
was given above. The Newton-Raphsonmethod works well in
this case, but of course one has to evaluate F a number of
times and consequently there is a good deal of computation
which needs to be carried out. This computation is never-
theless well within the capabilities of a typical micro-
computer.

In the following algorithm it is assumed that subprograms
to compute the incomplete gamma function rx(a) and the

gamma function T{(a) are available. We use the notation
GAMINC (X,ALPHA) and GAMMA (ALPHA) for these subprograms.



Al1-17

STEP 1 INPUT ALPHA, BETA, P

STEP 2 SET Z = ALPHA*BETA
G = GAMMA (ALPHA)
STEP 3 SET D = EXP(-Z/BETA)*(Z/BETA)**(ALPHA-1)/
(BETA*G)
F = (GAMINC(Z/BETA, ALPHA)/G-P)/D

v

I THEN SET 1
ELSE SET 2

L}

STEP 4 TEST IF F /2, GO TO STEP 3

Z-F

STEP 5 TEST IF ABS(F) > 10°% THEN G0 TO STEP 3
STEP 6 OUTPUT 2

Maximum likelihood estimation

The maximum 1ikelihood estimators of o« and f are the solutions to
the equations

() - en (@) + &n (X 30, %) - (57 en x) =0

:

1,cn -
alli=g X3 H/a

where ¥ denotes the digamma function. In the following
algorithm to solve these equations by iteration, it is
assumed that subprograms PSI{ ) and PSID{ ) to compute the
digamma and trigamma functions are available. For explicit
algorithms see the end of this appendix.
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STEP 1 INPUT N, X(1), X{(2},...,X(N)

STEP 2 SET XM = SUM [X(I)I/N
XLM = SUM (LOG(X(I)) I/N
R = LOG(XM) - XLM
ALPHA = (1 +SQR(1 +4*R/3))/(4#R)
STEP 3 SET H = (PSI(ALPHA) - LOG(ALPHA) + R)/
(PSID(ALPHA) - 1/ALPHA)
ALPHA = ALPHA - H

STEP 4 TEST IF ABS(H) > 0,0001 THEN GO TO STEP 3
STEP 5 SET BETA = XM/ALPHA
STEP 6 OuTPUT  ALPHA, BETA

Generating gamma deviates

Until recently no simple "exact" algorithm for generating
gamma random deviates was available except for the case
where a is an integer or half-integer. Direct solution of
the equation

R = F(X)

where R is a uniform (0,1) random deviate using the algorithm
described for computing the percentage points is not re-
commended because it involves substantial computing. 1In a
typical simulation program hundreds or even thousands of
random deviates are required. The well-known Wilson-
Hilforty transformation (cf., Johnson and Kotz 1970) re-
quires less computation but is rather inaccurate for small

values of a. The following algorithm is due to Whittaker
(1973).
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STEP 1 INPUT ALPHA, BETA
STEP 2 SET IA = INT(ALPHA)
FA = ALPHA-IA
X1 =0
X2 =0

STEP 3 TEST IF IA 0 THEN GO TO STEP 5

STEP 4 GENERATE wuniform random deviates R(1), R(2),...,R{IA)
X1 = SuUM [-LOG(R(1))]

STEP & TEST IF FA = 0 THEN GO TO STEP 9
STEP 6 GENERATE wuniform random deviates R1, R2
SET S1 = R1=*{1/FA)
S2 = R2*+(1/(1-FA))

STEP 7 TEST IF S1+S2 > 1 THEN GO TO STEP 6

STEP 8 GENERATE a uniform random deviate R

SET X2 = -S1*%LOG(R)/(S1 + 52)
STEP 9 SET X = (X1+ X2)*BETA
STEP 10 OUTPUT X

Notes:

(1) It is not necessary to actually store the array R{1),
R(2),...,R(IA), above; they can be used directly and
then discarded.

(2) This algorithm employs a rejection technique, that is
unless S1 + S2 < 1 STEP &6 has to be repeated. It can
be shown that on average the number of rejections is
not large, in fact the worst case {with FA = 0,5)
involves about 21,5% rejections.
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GAMMA FUNCTION

The algorithm given below is based on an asymptotic ex-
pansion of the gamma function:

I"(a) = Jw ta-i e-t dt » o # 0, ‘1' '2,...
(o]

For a > 10 a 4-term Stirling approximation is used
{Abramowitz and Stegun page 257). For a < 10 the following
recurrence relationship is applied in order to increase the
argument of the gamma function to a number greater than or
equal to 10

F(a+1) = al'(a) , a # 0, -1, =2,...
STEP 1 INPUT ALPHA

STEP 2 SET A ALPHA

1

[
1]

STEP 3 TEST IF A > 10 THEN GO TO STEP 5

STEP 4 SET G G*A
A A+ 1
GO0 TO STEP 3

STEP § SET T = 1+(0,0833333 +(3,47222E-3
-2,681327E-3/A)/A)/A
GAMMA = EXP(-A+ (A-0,5)*LOG(A)+0,918939)+*T/G

STEP 6 OUTPUT  GAMMA
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DIGAMMA FUNCTION

The algorithm given below is based on an asymptotic ex-
pansion of the digamma function (Abramowitz and Stegun
1972 , page 258):

‘J-’(a) = i_%xr_(u—, Y a # 09 '19 "2,--.
For a < 4 the recurrence relationship

Ylat1) = pla) + 1/a , a £ 0, -1, =-2,...

is used repeatedly until the argument is greater than or
equal to 4.

STEP 1 INPUT ALPHA

ALPHA
P=20

STEP 2 SET

STEP 3 TEST IF A > 4 THEN GO TO STEP 5

STEP 4 SET P P-1/A
A= A+1
GO 10 STEP 3

STEP 5 SET T = 1/(A*A)
U= T*(8,333333E-2 - T~(8,333333E-3
- T»3,968254E~3))
DIG = P+LOG(A)-0,5/A-U

STEP 6 OUTPUT DIG
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TRIGAMMA FUNCTION

The algorithm given below is based on an asymptotic ex-
pansion (Abramowitz and Stegun (1972), page 260);

v'ia) = & ‘355‘“’ ’ a 0,

-1’ -2,0.-

For a < 4 the recurrence relationship
o' (a+1) = y'(a) - 1/a2

is used repeatedly until the arqument is greater than or
equal to 4.

STEP 1 INPUT ALPHA

STEP 2 SET A = ALPHA
P=20

STEP 3 TEST IF A >4 THEN GO TO STEP 5

STEP 4 SET P =P + 1/(A+*A)
A=A+1 '
GO TO STEP 3

STEP 5 SET T = 1/(A*A)
U = T+(1,666667E-1 - T*{3,333333E-2
- T«2,380953E-2))
TRIG = P+ 1/A+0,5+T + U/A

STEP 6 OUTPUT  TRIG
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INCOMPLETE GAMMA FUNCTION
The incomplete gamma function

Fx(a) = Jz x®Te"t 4t R a >0, x>0
is required for the computation of probabilities associated
with the gamma distribution. Several methods of approxi-
mating this function have been suggested, e.g. series ex-
pansions, a continued fraction representation, asymptotic
expansions, etc. While each of these representations is
suitable for approximating Px(a) within a particular range
of the parameter a and the argument x, the programmer should
beware of using any single representation for all a and x
because for certain combinations of values nonsensical
results are obtained on a digital computer.

The algorithm given below is based on a confluent hyper-
geometric representation of I, (a) and is suitable for

a < 50 and for "reasonable" x values, i.e. x values which
are such that e < rx(a)lr(a) < 1-e where € = SX10'7
(approximately). In other words, it is suitable for com-
puting probabitities of the gamma distribution for x lying
between the € and 1-¢ percentiles. This range easily
contains the region of interest in practical applications.



STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

Notes:

INPUT

SET

SET

TEST IF

SET

outrurt
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ALPHA, X
T =1

S =

L =0

T = Tx((1+L)/(1+ALPHA+L) )~ (X/(L+1))

wn
H

S+ T

ABS(T/S) > 10°7 THEN SET L = L +1
GO TO STEP 3

GAMINC = S+EXP(-X)#*(X++~ALPHA)/ALPHA

GAMINC

(1) The order of multiplication and division at STEP 3 is
important to avoid "overflow" on the computer.

{2) For all but certain extreme combinations of o and x
convergence is quite rapid (less than 20 terms).

(3) The accuracy of the above algorithm is dependent on the
type of machine used. On a typical microcomputer one
can expect 6-figure accuracy for rx(a)/r(a).
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APPENDIX 2 SELECTING AN APPROXIMATING DISTRIBUTION

The theory described in this appendix was developed in
coliaboration with.Professor H. Linhart of the Institut
fiir Statistik und dkonometrie, University of Gdttingen,
West Germany. The results of this research have subse-
quently been published in Linhart and Zucchini (1986).
For the most part this appendix contains those extracts
from the book which are relevant to applications in

hydrology.

We have included theory relating to the selection of dis-
crete distributions. Although this material is not required
for the methods described in the main text it is relevant

to the study of the occurrence of storms,as is demonstrated
in an example to follow,and can be applied to any other of
the many discrete variables which arise in the context of
hydrology.
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t. DOISCREPANCIES

Suppose that the observations Xqs XgseoesX, Can be regarded
as realisations of n independently and identically distri-
buted random variables and that we wish to estimate their
common distribution. As a rule a number of different
models can be fitted to the data and the question arises as
to which one should be selected.

Traditionally selection has been based on naive methods com-
paring the values of certain goodness-of-fit statistics,

Cox (1961, 1962) considered the problem more systematically
from the classical point of view. A bibliography of sub-
sequent developments along these lines is given in Pereira
(1977). MWe use a general approach {(Linhart and Zucchini,
1982a, 1982b) which differs from the above. A well-known
example which emerges in this framework is Akaike's (1974)
Information Criterion.

Briefly we suppose that the operating model has some un-
known distribution function F, and that a number of diffe-
rent (parametric) approximating families are available.
Let Fe’ 8 € 0, denote the distribution function correspon-
ding to one of these approximating families.

Whichever approximating family of models is used there will
be, as a rule, a number of discrepancies between the
operating model and the model which is fitted to the data.

Each discrepancy describes some particular aspect of the
"lack of fit". The relative importance of these discre-
pancies will differ according to the application at hand,
and consequently it is suggested that the user should decide
which discrepancy is to be minimized. 1In what follows we
suppose that this decision has been made and we will refer
to the selected discrepancy as the discrepancy.
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It is a mapping
A : Mx M=+ R s

where M is the space of all distribution functions, and
should be such that for any F, G € M,

A(F,G) > (F,F) .
For simplicity we write
A(6) = A(e,F) = A(Fe.F) .

Some examples of discrepancies are:

Kullback-Leibler: a(e) = -EF log fe(x)
Gauss: a(e) = £ (f(x) - fo{x))2
Kolmogorov: a{8) = max |F{x) - Fe{x)l

X

zx(f(X) - fe(x))zlf(x)s f(x) # 0

Neyman-chisquared: A(S)

Pearson-chisquared: A(8) Zx(f(x) - fe(x))zlfe(x), fe(x) £ 0

Here f and fe are the probability functions or probability
density functions corresponding to F and Fe. respectively.
In the case of continuous random varijables the sums must

be replaced by integrals.

We assume that each approximating family, Fe, 8 € 0, has a

best member, Fe , in the sense that
0

8. = arg min A(F,,F)
0 8eo 8’

exists and is unique. The corresponding discrepancy
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a(68,) = A(Fy .F)
o

is called the discrepancy due to approximation.

Let 5 be an estimator of 60. then Fé is the fitted model
and

a(8) = A(Fé.F) ,

the overall discrepancy, is a measure of the eventual lack
of fit., [t is a random varjable whose distribution depends,
inter alia, on what we call the fitting procedure, namely
the approximating family and the associated method of
estimation.

In principle any method of estimation could be combined with
a given approximating family to provide a fitting procedure,
but the most natural method would seem to be minimum dis-
crepancy estimation:

If An(e) is an asymptotically unbiased estimator of A(9)
then

8 = arg min A_(9)
n geg "

is a2 minimum discrepancy estimator.

Such estimators are also known as minimum distance estimators.
(Wolfowitz 1953.) See also the bibliography of Parr 1981.)
They are also M-estimators (see, e.g. Serfling 1980).

As a basis for model sglection one can either use A(eo) or
the distribution of A{(8) (perhaps some characteristic of
this distribution, typically the expectation). The latter
takes errors due to estimation into account, and indicates
how much can be achieved for the given sample size. On the
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other hand A(eo) indicates what could be achieved in
principle, not just for the given sample size.
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2. ESTIMATING THE EXPECTED DISCREPANCY

To implement the above procedure one.needs to derive the
expected (overall) discrepancy, EFA(B). and to find an
estimator for it. The derivation is often, though not
always, straightforward but the estimation presents diffi-
culties. 1In many cases it is practically impossible to
obtain a reasonable estimator with finite sample methods
and one has to resort to asymptotic methods.

Under certain regularity conditions one can prove (Linhart
and Volkers, 1984):

-

If o, is a sequence of minimum discrepancy estimators then
EFA(en) o A(B,) + tr 9'1}:/2n R

where

Q= (9,4} = {azA(eo)/aeiaej}

and £ is the asymptotic covariance matrix of

/a8, (00)738,3, 1= 1,2,...,p,

where p dimension (8) is the number of free parameters,

-+

. -1 .
EFAn(B) tr @ 'E/n w EFA(G) .

+

Ecd (8) + tr @71E/2n ~ A(8,) .

The approximations are obtained by replacing the covariance
matrix of /ﬁ(an-eo) by its asymptotic covariance matrix

and by omitting an Op(1/n) term. Under additional conditions
on uniform integrability of certain sequences the error in
the approximation is 0(1/n})}, and
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z ={zij}=(llz Epnlaa,(e,)/36,)(aa (8 )/3¢8,))
The resu]ts lead to asymptotically unbiased estimators of
Epa(e) and of A(eo). i.e. to criteria,

If tr 215 is not known it is estimated by tr 9;1

Qn and Zn are estimators of R and £ and one uses

Zn, where

12 /n

(1) An(é) +tra 'L

as criterion based on EFA(é) and
- -1
(I1) An(e) + tr Q, En/2n
as criterion based on A(BOJ.

For some discrepancies (including the Kullback-Leibler,
Pearson-chisquared and Neyman-chisquared discrepancies) it
can be shown that if the approximating family contains the
operating model then tr 9'12 depends only on p = dim(8)

(in the mentioned cases the trace is p and 2p respectively)
and so simpler criteria can be given. For the Kullback-
Leibler discrepancy for example this leads to

(1)*  a,(8) + p/n
(I1)* A (8) + p/2n
i.e. Akaike's {(1974) Information Criterion.

There are many situations where even the asymptotic methods
outlined above lead to difficulities. Then one could use
Bootstrap estimation methods which are particularly suit-
able in this context., These give estimators of EFA(B)
directly and it is not necessary to derive this expectation
at all.
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In our context the Bootstrap method introduced by Efron
(1982) can be briefly explained as follows.

Let F be the operating distribution function and Fn the
empirical distribution function. The expected discrepancy
is in fact of the form EFA(B.F) and a natural estimator

of it is EFnA(e,Fn) = EFnAn(e). Note t?at F, and & are
fixed now, the only random variable is 6, The essential

trick is to evaluate this last expectation by Monte Carlo
methods. One generates repeated samples of size n from the
now given and fixed distribution F . Each sample leads to
another (Bootstrap) estimate 6* {(usually obtained by mini-
mizing another (Bootstrap) A;) and a corresponding An(é:).

The average of the generated An(e*) converges to E An(e).
n
Furthermore the observed distribution of thg generated

An(e*) converges to the distribution of An(e) under Fr s
which is an estimate of the distribution of A{(6) under F.
So by means of Bootstrap methods one c¢an not only estimate
the expectation of the overall discrepancy but in fact

its complete distribution.

An additional advantage of the Bootstrap method is the ease
with which it is possible to switch from one discrepancy to
another without the need for tedicus derivations of theore-
tical results. The discrepancy discussed in Chapter 3 is a
case in point. It would be very difficult indeed to obtain
even approximate expressions for the expected discrepancy.
Bootstrap methods allow us to circumvent this theoretical
difficulty entirely. This is fortunate because otherwise
we would not have been able to focus attention on the part
of the distribution which is of interest, namely the lower
tail.
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3. AN EXAMPLE OF THE ASYMPTOTIC METHODS:
THE KULLBACK-LEIBLER DISCREPANCY

The main advantage which asymptotic methods enjoy over
Bootstrap methods is that they do not require much com-
putational effort. There are two purposes to this
section: firstly to illustrate how asymptotic results are
obtained for a particular discrepancy,and secondly to give
the results for some of the important univariate distribu-
tions. The Kullback-Leibler discrepancy is the natural
discrepancy if one uses maximum likelihood estimation and
as such is clearly important, It is defined by

a{e) = ~Ep log fe(x) .

where fe is the probability density function of the appro-
ximating family, and where the expectation is taken with
respect to the operating model. Here

8,08) = -(1/n) IT_, Tog fglx;)

where X5 i=1,2,...,n, are the observations, and one has
that the minimum discrepancy estimator is the maximum

1ikelihood estimator.

This discrepancy was used by Akaike (1974) to develop his
Information Criterion for model selection under the assump-
tion that the operating model is a member of the approxi-
mating family. White (1982) analysed this problem rigo-
rously and in his development ailows for the possibility

of misspecification.

For this discrepancy one obtains

{Q}rs = -Ep{32 log fBo(x)/aeraes}
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~—

™~

L
"

Ep{(3 log feo(x)/aer)(a log feo(x)/aes)}

fn)

pe

—
n

ntre -(l/n){{?=1 32 log fé(xilfaeraes}

——

[ e ]

e
I

g = (1/0) {1?31 (3 Tog f,(x{)/30)(3 Tog fé(xi)/aes)} :

The criterion is

1

An(en) ¢ tr QT /n

n
which can be approximated by An(e) + p/n unless p, the
number of parameters, is small, say 1 or 2.

We now give some of the intermediate results in the deriva-
tion of the criterion for the lognormal distribution and
then simply l1ist the criteria for a number of other impor-
tant distributions.

The lognormal distribution

For this distribution the logarithm of the density function
is

log fa(x) = =log x - (1/2) log 27 - (1/2) logx- (1/2x)

(log x-u)2z , x >0,

where, for convenience we have written X instead of the
usual o2,

One has

9 log f(x)/dx = (1/22)((log x - u)2/xr-1)

3 log fo{x)/du = (1/2)(1og x -u) ,
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and the maximum likelihood estimators are u = mi and i = m,
vhere mﬁ and My h=1,2,..., are the samplie moments and
sample moments about the sampie mean respectively except
that in this case (i.e. lognormal distribution) they are
computed using the log x; instead of the x.,

i i
i=1,2,...,n, It follows that

L]

{2}11 (1/41;)(E(log X - uo)“/A; - 28{log x - uo)2/l°+1).

(T}, = {2}y, = (1/233)(E(log x = u)?),

{£},, = (1/22)E(1og x - u )

{z }yy = (mg-m3)/4m3 ,

(Zodyp = {53y = my/2m) '

(Il = 1/m,

Also

32 log fe(x)/au2 = ~1/A .
32 log fa(x)/aual = =(log x - u)/Ar? .

32 log f,{(x)/3x2 = 1/2X2 - (log x - u)2/A3
8

The elements of -0 are the expectations of these derivatives
with respect to the operating model taken at the values

Ao and Mo and it follows immediately that
(2n3yy = 1/2m3 :
Bpd1p = (g = 0

{ptpp = 1/my :
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1

Thus tr Q; L, = (m4+m§)/2m§ and the criterion is
n log f.{x,)/n + tr a-ls /n
j=1 109 ToAXy n “n

= mi + (1/2)(%og 2mm, + 1) «+ (my + m%)/Zmin .
For the normal distribution the criterion is
(1/2)¥(10g 2mm, + 1) + (m4 + m;)/Zm%n .

where the sample moments are computed using the original
data rather than their logarithms.

The criterion for the gamma distribution with density
fo(x) = x*7le™*B/(a%(a)) , x >0
is given by

log P(&) + &(109 é +1) - (; - l)mi[1cg x] +tr Q;12n/n R

where a and 8 are the maximum likelihood estimators of a
and B, 1.e. the solutions to the equations

aB =m}[x]
-log B - w(&) = -myflog x] .
Here $(z) = 9 log T(z)/3z is Euler's y-function and mﬁ[ }

and mh[ ] denote the sample moments of the variables in the
brackets. One also needs:
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{(Zphyy = mplx] '

{In}12 = {Zn}21 = -myix, log x1 ,
{Z )y = myllog x] ,

(2}, = mix)?/a \

(9,4, = (2,15 = -mjlx]/o,

{a,},, = v ()

For the Poisson distribution with parameter A it is easy

to show that tr 9;1£n = mzlmi and the criterion is

mi(1 - log m3) + millog F(x+1)] + my/myn
The geometric distribution with probability function
folx) = 8(1-0)* X = 0,1,2,...,

-1
has tr Qn

Z, = m2/m5(1+mi) and criterion given by
(1+mi) Tog (1+mi) - mi log mi + mzlmi (1+mi)n .

For the negative binomial distribution with probability
function

folx) = T(8+x) (1-a)P®/(r(B)T(x+1)) ,  x = 0,1,2,...,

the maximum likelihood estimators are the solutions to
the equations

Z:=1 F(k)/(8+k-1) + n log {B/(B+m])) = O ,

a = mj/(B+m}) :
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where F(k) is the number of observations greater or equal
to k, k = 1,2,... . It can be shown that:

{Zpdyy = mplx1/at \
{zn}12 = {zn}21 = m,i[X.W(é+x)]/; »
{znlzz = mz[w(é*x)] »
{Qn}11 = é/;(t'&)z ’
(2.}, = (9.}, = 1/(1-a) :

{Qn}zz = w'(é) - mi[w'(é+XJJ
The criterion is
-mi[log r(x+§)] -é log (1-&)

-mi[x] log ; + mi[log r(x+1)]

+ log T(B)

-1
+ tr Qn Zn/n
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4. NEYMAN'S AND PEARSON'S CHISQUARED DISCREPANCIES

1f one has n independent observations on a discrete vari-
able the frequencies of the k different possible values
are multinomially distributed. The operating model is the
saturated model: the k-1 free parameters are simply the
probabilities of the possible values of the variable. The
same holds if data (on discrete or continuous variables)
are grouped into k categories.

For such situations we developed (1986) model selection
criteria which use the classical chisquared goodness of fit
statistics. The two discrepancies, empirical discrepancies
and criteria are the following.

. Empirical Crite-
Discrepancy discrepancy rion
Neyman-chisq. I;(w.,-f.(8))2/n; Lilpy-fi(8))2/py Xj+ep

Pearson-chisq. Zi(“i'fi(e))zlfi(e) zf(pi'fi(e))zlfi(e) x;+2p

Here =, and fi(a) are the probabilities under the operating
and the approximating model and Neyman's (Xﬁ) and Pearson's

(x;) chisquared are the empirical discrepancies at & = 9,

The estimator é can either be maximum likelihood or minimum
(Neyman and Pearson) chisquared estimator. As a rule one
should use tge minimum discrepancy estimator in the fitting
procedure. 8 will thus usually be a minimum chisquared
estimator (Neyman or Pearson, respectively) if the Neyman-
chisquared or Pearson-chisquared discrepancy is used.

For the saturated model the criterion is for both discrepan-
cies equal to 2(k-1).



A2-16

5. A DISCREPANCY WHICH EMPHASISES THE FIT IN THE
LOWER TAIL OF A DISTRIBUTION

The discrepancy which was dis;ussed in Chapter 3 of the main
text is:

A(FS,F,d) = m:x]F(x)d-Fe(x)dI .

Now both Fe and F are distribution functions and are there-
fore non-decreasing and take on values in the interval

[0, 1]. For any distribution function, say G(x), and any d
in the interval (0, 1) one has that

K(x,d) = 6(x)% - G(x) > 0

and as d is decreased so this difference becomes smaller
{(except for G(x) = 0 or 1). Also it is easy to show that

K(x1,d) > K(xz,d) for Xy < Xy .
and that for all x which are such that G{(x) > 0

lime(x)d = 1 .
d-+o

It follows from these two properties that by selecting
d small enough

IF(x)d - Fa(x)d[

in the above discrepancy will be relatively unaffected by
differences between F(x) and Fe(x) in the upper tail of

the distribution,whereas for those values of x for which
F(x) and Fe(x) are small (i.e. the lower tail) the differ-
ences between these two functions will contribute more sub-
stantially to the discrepancy.
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An asymptotically unbiased estimator of this discrepancy,
i.e. an empirical discrepancy is

. d d
A (6,d) = max i/(n+1)° = F.(x:)" 1.
n 1<i<n | AN l

The expected overall discrepancy, i.e. EFAn(B,d),is in-
tractable. However we can estimate it by means of Bootstrap
methods. An algorithm to do this was outlined in Chapter 3.
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6. EXAMPLES OF APPLICATION

6.1 Annual flow of the Vaal river at Standerton

The table below gives the annual flow of the Vaal river at
Standerton in the years 1905 to 1969. The flow is in
millions of cubic meters measured over "water years", ij.e.
October to September.

1905 222 1927 235 1949 534
1906 1095 1928 346 1950 129
1907 452 1929 778 1951 317
1908 1298 1930 95 1952 640
1909 882 1931 11 1953 291
1910 889 1932 78 1954 1461
1911 276 1933 554 1955 611
1912 216 1934 364 1956 809
1913 103 1935 460 1957 637
1914 490 1936 1151 1958 336
1915 446 1937 286 1959 245
1916 386 1938 1401 1960 686
1917 2580 1939 651 1961 319
1918 408 1940 746 1962 365
1919 258 1941 224 1963 306
1920 606 1942 568 1964 479
1921 715 1943 1593 1965 42
1922 1539 1944 217 1966 683
1923 183 1945 496 1967 250
1924 696 1946 256 1968 324
1925 110 1947 295 1969 556
1926 193 1948 274

Annual flow [million m*] of the Vaal river at Standerton

We consider three approximating families; the normal,
lognormal and gamma. The fact that the normal distribution
yields a non-zero probability for the event that the flow
is negative is not of practical importance unless this
probability is not sufficiently small.
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For the purposes of comparing the asymptotic results given
in section 3 with the results of Bootstrap methods we will
use firstly the Kullback-lLeibler discrepancy.

The criteria for the three models using the results of
section 4 are:

Normal: 7,517 + 4,763/65 = 7,590
Lognormal: 7,184 + 2,110/65 = 7,216
Gamma: 7,199 + 2,227/65 = 7,233

The lognormal distribution has the smallest value of the
criterion and is judged to be the most appropriate.

The results of 100 Bootstrap simulations yielded:

mean standard deviation
Norma?l 7,552 0,060
Lognormal 7,202 0,021
Gamma 7,216 0,020

With 100 simulations the given means estimate EF A(é,FnJ
n

(which in turn estimates EFA(é,F)) with a standard error
of 0,006 (normal) and 0,002 (lognormal and gamma).

These means, the Bootstrap criteria, are very close to the
values of the asymptotic criteria. The rank order is preser-
ved and the lognormal distribution is deemed to be the

most appropriate.

When the Kolmogorov discrepancy was applied in connection
with maximum likelihood estimation the following Bootstrap
estimates were obtained:
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mean standard deviation
Normal 0,164 0,040
Lognormal 0,092 0,032
Gamma 0,102 0,032

The lognormal distribution emerges also here as the most
appropriate.

6.2 Annual number of storms in Pretoria

The table below gives the annual number of storms observed
in Pretoria (Station 513/404) for the 71 years 1906 to 1976.

Number of Storms 1 2 3 4 5 ' 6 7 8
Frequency 2 2 3 4 10 8 i0 6

Number of Storms 9 10 11 12 13 14 15 16 17
Frequency 5 7 5 3 -0 2 2 1 1

Annual number of storms

For the purposes of deriving the distribution of large storms
it is of interest to hydrologists to estimate the distribu-
tion of the annual number of storms. In this context the

two approximating families of interest are the Poisson and
negative binomial.

Using the asymptotic results for the Kullback-Leibler cri-
terion one obtains the following criteria.

Poisson: 2,714 + 1,606/71
Negative Binomjal: 2,593 + 1,937/71

2,737
2,620

The negative binomial distribution is preferable,
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By means of Bootstrap methods {100 replications) we obtained

mean standard deviation
Poisson 2,837 0,825
Negative Binomial 2,608 0,451

There is again good agreement between the Bootstrap means
(standard errors 0,08 and 0,05) and the criteria.

For the Pearson-chisquared discrepancy and fitting procedures
using minimum chisquared estimators the criterion of section

4 gives:

Poisson: 45,5
Negative Binomial: 13,6 -

The Bootstrap results, based on 100 replications, were

mean standard deviation
Poisson 45,7 - 61,8
Negative Binomial 13,9 37,6

The standard deviation of the Bootstrap distribution is
exceptionally large. The reason is the strong dependence
of the chisquared discrepancy on the tail of the distri-
bution, The tails of repeated small samples from long-
tailed distributions vary considerably.

6.3 Annual maximum storms at Vryheid

The standard statistical method of estimating design storms
(and other design events such as floods), from observed
annual maximum storms can be described briefly as follows:
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Let F be the distribution function of annual maximum storms,

Then under the assumption that these storms are independently
and identically distributed, the distribution function of

the largest storm in h years is Fh. 50 the storm asscciated

with a design horizon of h years and risk {(i.e. probability)

of occurrence r, is the solution to the equation

Fh(X) = {-r .

The design storm, x, is estimated by fitting a model to F,
say Fé, where 0 are the parameters, and then using

x = F,-Vep-m iy

8
The risk, r, is given and is seldom more than 0,20 in prac-
tice, so one is dealing with the upper tail of the distri-
bution function F. As h is increased so the design storm
becomes associated with increasingly extreme values of
this tail.

Clearly for this application it is important to select
approximating models which fit the upper tail of the distri-
bution function F well. The lower tail is not so important.
Also, in order to take account of the relevant portion of
the distribution, the discrepancy should be a function of
design horizon, Since it is Fh which is finally of in-
terest (rather than F), a discrepancy which seems reasonable
and which satisfies the above desiderata is

a{Fg,F; h) = max|FOO - 6 (0 .
X

This discrepancy was applied to select an approximating
model for the data given below, viz. the annual maximum one-
day storms at Vryheid.
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Year depth year depth year depth

1951 45,2 1961 52,5 1971 84,5
1952 66,5 1962 50,0 1972 74,5
1953 142,0 1963 170,0 1973 94,0
1954 83,9 1964 62,0 1974 80,0
1955 61,1 1965 43,5 1975 74,0
1956 60,6 1966 60,0 1976 64,0
1957 84,5 1967 60,0 1977 60,0
1958 80,0 1968 53,5 1978 51,5
1959 79,0 1969 58,0 1979 58,5
1360 137,5 1970 93,0 1980 88,0

Annual maximum 24-hour storm depths [mm] at
Vreyheid, 1951-1980.

The following families were considered: gamma, normal,
lognormal, exponential, Weibull, Extreme (type I).

The following empirical discrepancy, based on the "Weibull
plotting position", was used:

An{B) = max [(i/(n+1))h - Fetxijh]
1<i<n

Maximum Jikelihood estimation was used throughout.

Gamma: o = 8,97 8 = 8,44
Normal: u = 75,7 g = 28,6
Lognormal: u = 4,27 c = 0,321
Exponential: 6 = 75,7 i

Weibull: p = 2,68 § = 85,1
Extreme (I): E = 64,1 n=17,9
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The table below gives the Bootstrap estimates of the mean
and standard deviation of the overall discrepancy.

Design Smallest
horizon. h Gamma  Normal Lognorm, Expon. Weibull Extr.I mean
; mean 0,1676 0,1922 0,1560 0,4200 0,180t 0,1545 Extr. 1
std.dev. 0,0352 0,0352 0,0349 0,0250 0,0288 0,0363
5 mean 0,3131 o0,3318 o0,3008 0,3829 0,3168 0,3261 Lognorm.
std.dev. 0,0696 0©,0657 0,0701 0,0786 0,0489 0,0882
10 mean 0,4493 0,4697 0,4258 0,4569 10,4249 0,4593 Weibull

std.dev. 0,093t 0,0934 0,085 0,0727 0,0713 0,1065

Estimates of expectation and standard deviation of overall
discrepancy based on 200 Bootstrap replications.

On the basis of this criterion the extreme (type 1) distri-
bution should be used for h = t, the lTognormal for h = §

and the Weibull for h = 10. However, for h = 1 and h = 10
the lognormal distribution leads to criteria which are quite
close to those minima and consequently it would not be un-
reasonable to use the lognormal distribution for each case.

7. CONCLUDING REMARKS

The universal applicability of the Bootstrap method and the
ease with which it can be implemented makes it particularly
attractive for the purpose of selecting a univariate dis-
tribution family. Although we have not discussed this
aspect here, the method can also be applied to compare para-
metric models (such as the normal, gamma etc ..) to "dis-
tribution-free" models (histogram-type densities) which

are frequently used by hydrologists. It has however been
our experience that for the sample sizes which are usually
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available parametric models are preferable by far. In the
terminology of section 1 they lead to significantly lower

discrepancies due to estimation; distribution-free models

may fit the observed sample better but in general they

fit the operating model, i.e. the underlying distribution,
less well,
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APPENDIX 3

APPLICATION OF THE MODEL SELECTION CRITERIA TO 67
ANNUAL INFLOW RECORDS

The model selection methods described in Appendix 2 were
applied to 67 selected reservoir annual inflow records
whose positions are indicated in Figure A3.1. Each of the
six models discussed in Appendix 1 was fitted to each re-
cord and the corresponding parameter estimates are given,
as are the original data.

Three selection criteria were computed for each model based
on the discrepancy described in Chapter 3. These corres-
pond to values of d = 1,00 ; 0,50 and 0,25 (represented

on the printout by the letter H). The model leading to

the smallest value of the criterion should be selected.

For strong emphasis on the fit in the lower tail of the
distribution H 0,25 should be used, whereas for an over-
all best fit H 1,00 is more appropriate.

Also given are estimates of the serial correlation coeffi-
cents of lag 1 together with approximate critical points
for the null hypothesis that the population values are
equal to zero (at the 95% level of significance). This
hypothesis 1s rejected in only 7 out of the 67 cases.
However it should be kept in mind that at this level of
significance and with 67 independent tests,one would expect
3 out of the 67 to be rejected even if the null hypothesis
were true in all the cases. Some of the high estimates

are probably due to non-stationarity rather than "ordinary"
serial correlation (cf. Nzhele Dam).



FIGURE A3.1

Positions of the 67 selected inflow records within
the drainage regions of South Africa.

2=ty
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ALPHABETICAL LIST OF DAM INFLOWS ANALYSED IN THIS APPENDIX.
{eeeee). STATION NO.; (..) MAP KEY.

Albasint (A9R01) (14) Lindley's Poort (A2RO7) (6)

Allenmanskraal (CHRO1) {2%) Loskop (B3RD2) (18)
Armenia (D2RO2) (32) Luphephe/Nwanedze  (ABR02) (13)
Beervlei (L3RO1) (52) Marico-Basveldt (A3RO1) (8)

Bellair (JIR02) (45) Menin (C8RO1) (31)
Bethulie (D3RO1) (33) Mentz (N2RO1) (56)
Boskop (C2RO1) (24) Midmar (U2RO1) (64)
Bospoort (A2R06) (5) Nooitgedacht (X1R01) (67)
Bronkhorstspruit  (B2ROt1) (16) Nuwe Doringpoort (B1RO1)} (15)
Buffelspoort (A2RO5) (4) Nzelele (ABRO1) (12)
Calitzdorp {J2RO1) (47) Ohrigstad {B6RO1) (20)
Chelmsford (V3RO1) (65) Olifantsnek (A2R03) (3)

Doorndraai (ABRO1) (11) Qukloof (J2R03) (49)
Duiwenhok (H8RQ1) (43) Paul Sauer (LBRO1) (53)
Ebenezer (B8RO1) (22) Poortjieskloof (H3RO1) (41)
Erfenis (C4R02) (26) Prinzrivier (JIRO1) (48)
Floriskraal (J1R03) (46) Rietvlei (A2R04) (3)

Grassridge (Q1R01) (58) Rooiberg (D5R01) (36)
Groendal (MIRO1) (54) Rooikrans (R2RO2) (62)
Hartebeespoort (A2RO1) (1) Rust de Winter (B3RO1) (17)
H.F. Verwoerd (A3R02) (34) Rustfontein (C5R03) (29)
Kalkfontein (C5R02) (28) Slagboom (N4RO1) (57}
Kommanassie (J3RO1) {50) Steenbras (GARO1) (39)
Keerom {H4R02) (42) Stettynskloof (HTROt) (40}
Klasferie (B7RO1) (21) Tierpoort (CSRO1) (27)
Klein Marico (A3R02) (9) Tonteldoos (B4RO1) (19)
Kommandodrif (Q2R02) (60) Vaal (C1RO1) (23)
Koppies (C7RO1) (30) Vanryneveldtspas (N1RD1) (55)
Krommellenboog (A3R03) (10) Victoria West {DBROT) (37)
Kromrivier (K9RO1) (51) Wagendrif (V7R01) (66)
Laing {R2RO1) (61) Warmbad (A2R08) (7}

Lake Arthur (Q1R04) (59) Waterdown (S3R01) (63)

Leeubos (D4RO1) (35) Wemmershoek (G1RO2) (38)
Leeugamka (J2R02) (48) ‘



1900
1910
1920
1930
19410
1950
1960
1970
1980

1) HARTEBEESPCORT DAM, A2RO1,

DATA. (10%w6 . MHen3},

0/1 172 2/3 3/4 4/5 576
66.40 270.00 95.9¢0
73.50 54.50 32.00 235.00 80.10 145.00
156.00 86.40 221.00 621.00 194.00 169.00
92.50 63.90 91.30 72.90 350.00 148,00
99.90 50.30 60.80 79.20 70.10 43.70
177.10 166.30 89.30 152.00 418.00 475.70
233.70 147.30
CORRELATION AMALYSIS.
LAG COMF. INT.(L} CORRELATION
1l 0.255 0.361
UNIVARIATE MODEL PARAMETERS.
HORMAL MU= 164.6441 SIGHA=
LOGHORMAL m= 4.8711 SIGHA=
GAMHA ALPHA= 2.3021 BETA=
HEIBULL RHO= 1.4406 DELTA=
EXTREHE-1 XI= 113.9954% ETA=
EXPONENTIAL THETAS  164.6941
SELECTION CRITERIA
H=1.0 H=0.5
HORHAL 0.2042 0.2740
LOG NORHAL 0.1140 8.09°5
GAMHA 0.1407 0.1365
HEIBULL 0.1392 0.1906
EXTREME TYPE-1 0.1495 0.1385
EXPONEHTIAL 0.2279 0.3289

6s7

72.20
182.00
88.50
204.00
352.00
413.40Q

CONF, INT.{ 2}

=0,.255

131.0841
0.6612
71.5183
183.5580
74.4778

H=0.25

0.2751
0.0966
0.1429
0.1974
0.1439
0.3105

/8

121.00
98.60
127.00
178.00
g2.20
644.80

8/9

141.00
155.00
74.30
126.00
52.80
1564.40

9/0

152,00
113.00
170.00
7%.2¢0
7%.00
28¢.00



1900
1910
1920
1930
1940
1950
1980
1970
1980

6/l

7.13
17.90
7.84
9.00
13.80

172 2/3
2.79 1.49
7.97 14.10
4.65 7.37
2.79 1.27
8.70 4.90

LAG CONF. IHT.(1) -

1

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG NORMAL
GANMA

MEIBULL
EXTREHE TYPE-1
EXPONENTIAL

2) CLIFANTSNEK DAM. A2R03.

DATA. (10%%6.M#%3},

34

23.20
57.20
2.95
r .11
7.50

4/5

11.00
15.70
25.10

3.56
16.00

5/6

14.70
2.99
4.98

11.39

111.90

CORRELATION ANALYSIS.

0.274

HuUu=z
=
ALPHA=
RHO=
Xi=
THETA=

14.5592
2,1842
1.1500
0.9903
8.3429

14,5592

CORRELATION

0.0%4

UNIVARIATE MODEL PARAMETERS.

SIGMA=2
SIGHAz
BETA=

DELTA=

ETA=

SELECTION CRIVERIA

H=1.0

0.2505
0.1005
0.1459
0.1381
0.1638
0.1521

H=0.5

0.339%4
0.0969
0.1426
0.1708
0.1756
0.1796

6/7

16.00

5.95
13.40
62.90
24.50

CONF. INT.( 2)
-0.274%

19.2939
0.95%0
12.6598
14.4895
8.417%

H=0.25

0.3181
0.0889
0.1489
6.1767
0.1856
0.1843

/8

9.50
10.70
23.50

2.7%
57.30

8/9

13.00
14.40
3.92
11.00
2.47
$.19

9/0



1900
1910
1920
1930
19990
1950
1960
1970
1980

0/1

1z.10
5.12
%.97
15.49

31 RIETYLEI DAM. A2R04.

DATA. (10w#§ Mun3),

172 2/3 3/4 4/5 5/6
12,10 2.8} 14.60
6.89 13.40 37.50 14.40 8.72
31.63 8.58 6.17 17.90 10.60
1.58 1.28 3.55 5.70 5.56
28.13 8.48 17.30 82.93 48. 59
CORRELATION ANALYSIS.
LAG CONF. INT.(1} CORRELATICN
1l 0.289 0.259
UNIVARIATE MODEL PARAMETERS.
HORHAL MU= 14,8709 SIGHA=
LOGHORMAL Hu= 2.2481 SIGHA=
GAMHA ALPHA= 1.24983 BETA=
HEIBULL RHO= 1.0303 DELTA=
EXTREME-1 XI= 8.7413 ETA=
EXPONENTIAL THETA=  14.8709
SELECTION CRITERIA
H=1.0 H=0.5
HORMAL 0.2697 0.3190
L0G HORMAL 0.1096 0.1056
GAMMA 0.1633 0.1263
WEIBULL 0.1567 0.1595
EXTREME TYPE-1 C.1696 0.1479
EXPONENTIAL €.1759 0.1913

CONF.,

6/7

16.20

1“:40
34,70
18.99

INT.1 2)

-0.289

18.7862
0.9125
11.9125
15.0931
8.2852

H=0.25%

0.2937
0.1072
0.1221
0.1542
0.1502
0.1801

/8

1.94
6.05
9.66
7.35
96.51

a/9

9.87
4.36
6.33
4.76
14.34

9/0

9.09
11.40
5.78
2.97



1900
1910
1920
1930
1940
1950
1960
1970
1980

0/}

17.90
13.40
11.90
13.50
1z2.80

172 /3

?.10 21.30
9.20 12.50
5.90 3.70
12.10 a.ze

LAG
1

HORMAL
LOGHORMAL
GAMMA
HWEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG HORHMAL
GAMMA
HEIBULL

EXTREME TYPE-1

EXPONENTIAL

{ 4) BUFFELSPCORT DAM. AZROS.

DATA. 1105 Hun3),

374

81.70
a.a0
2.50

19.20

%/5

4.90
1a.10
25.10

4.50
19.90

5/6 6s/7
15.640 26,30
16.50 8.70
14.70 15.20

3.00 25.80
27.60 26.70

CORRELATION ANALYSIS.

COMF. INT.(1)  CORRELATION  COHF. INT.( 2)
0.286 0.253 -0.286
UNIVARIATE MODEL PARAMETERS.

M= 14.1936  SIGHA=  9.0027

= 2.4565  SIGMAZ  0.8580

ALPHA=  2.7289  BETA= 5.2012

RHO= 1.7017  DELTA=  15.9832

XI= 10.3539  ETA= 6.4005

THETA=  14.1936

SELECTION CRITERIA
H21.0 H=0.5 H=0.25
0.1329 0.1712 0.1793
0.1152 0.1115 6.1130
0.0945 0.0936 0.0848
0.0940 0.1011 0.0998
0.0987 0.1021 .0904
0.209 0.2797

0.26%5

178

%.50
16.40
13.00

6.60
25.40

as9

22.70
9.%90
11.20
5.30
6.20

970

13.50
18.00
5.70
3.70
13.50



1900
1910
1920
19130
1940
1950
1960
1970
1940

0’1 12 23
22.50 7.30 31.10
6.06 6.61 1.57
10.20 0.31 0.89
6.40 12.60 1.38
LAG
1
NORMAL
LOGHORMAL
GAMMA
WEIBULL
EXTREME-1
EXPONENTIAL
HORHAL
LOG NORMAL
GAMHA
HEIBULL

EXTREME TYPE-1

EXPONENTIAL

51 BOSPDORT DAM. A2R0S.

DATA, (10wwg Mex3),

/4

97.00
1.23
0.47

10.70

4/5

34.20
52.10

5.33
64.20

576

37.00
13.90
.66
254.60

CORRELATION ANALYSIS.

CONF. INT.(1)

0.302

MU=
MU=
ALPHA=
RHO=
Xr=
THETA=

CORRELATION

28,0771
2.17139%
0.5406
@.6552

12.2503

25.0771

£2.159

UNIVARIATE HODEL PARAMETERS.

. SIGMA=
SIGHA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

M=1.0

0.2805
0.1072
0.1485
0.1:17
0.2339
0.2566

R=9.5

0.3720
0.1167
8.1709
0.1180
0.2559
0.2468

6s7

_32.50

%.19
14.50

-142.00

53.30

CONF. INT.( 2)

-0.302

49.07¢1

1.46981
51.9397
19.93877
20.7312

H=0.25

0.3335
g.i020
0.1767
0.1200
0.2481
0.219%

1/8

4.0%
17.90
28.90

0.44%

146.00

8/9

30.20
11.1¢0
6.21
1.01

9/0

12.30
10.70
2.22
0.62



( &) LIMNOLEY'S POORT DAM. AZ2RO7.

DATA. (1o%n6 Mnn3),

0/1 172 2/3 34 4/5 576 6/7 /8 8/9 9/0
1900
1910
1920
1930 . 2.90
1940 4.30 7.90 18.20 96.90 10.70 14.90 7.30 5.10 3.90 6.20
1950 3.50 T 2.50 5.00 4.50 315.40 29.80 33.10 26.40 8.00 4.10
1960 41,20 6.70 2.70 4.10 .60 10.80 115.00 8.60 3.30 0.a0
1970 21.90 . 22.20 7.00 46.50 22.00 115.40 41.4¢ 117.70 4,30
1960 .

CORRELATION AMHALYSIS.

LAG CONF. INT.(1) CORRELATION CONF. INT.( 2)

1l 0.310 0.054 =-0.310

UNIVARIATE MODEL PARAMETERS.

NORMAL
LOGHORMAL
GAHMA
HWEIBULL
EXTREME-1
EXPUHENTIAL

HORHAL

LOG HORMAL
GAMMA

HEIBULL
EXTREHE TYPE-1
EXPONENTIAL

M=
U=z
ALPHAZ
RHO=
XI=
THETA=

SIGHA=
SIGHAZT
BETA=
QELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2475
0.1501
0.2023
0.1704
0.2462
0.2323

H=0.5

0.3346
0.1304
0.1739
0.1870
0.2257
0.1916

32.235%

1.2092
26.8083
20.7344
15,9395

H=0.25

0.3052
0.1272
0.1697
0.1766
0.2217
0.1438



1900
1910
1920
1930
1540
1950
1960
1970
19a¢

0/1

1.80
22.00
19.30

1r2 2/3

0.80 9.10
1.50 1.10
13.3%0 2.30

LAG CONF.,
1

71 HARMBAD DAM.

A2R08.,

DATA. (10wwg hiwel),

/4 4r5
5.0 23.30
0.50 0.80
15.10 35.30

576

0.30
13.60
0.20
38.40

CORRELATION ANALYSIS,

INT.11)

0.336

CORRELATION

0.403

UHIVARIATE MODEL PARAHETERS.

HORMAL
LOGHORMAL
GAMHMA
WEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

106G HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

XI=
THETA=

8.2147
1.34%6
0.7065
0.8372
4,2685
8.2147

SIGHA=
SIGMA=
BETA=
DELTA=
ETA=

SELECTICN CRITERIA

H=1l.0

0.2393
0.1379
0.1716
0.1531
0.2280
0.2086

H=0.5

0.2779
0.111%
0.1398
0.1257
0.19a9
0.1751

67 78
2.50 1.40
4.60 2.60

15.60 2.30
18.70 13.10

CONF. INT.( 2)

-0.334

9.8481
1.35¢48
10.4448

7.4371

5.7147

H=0.25

0.2566
0.1046
0.1168
0.1051
0.1884
0.1237

a8s9

9/0



{ 8) HARICO-BOSYELD DAM. A3ROl.

DATA. (l0x#6 . Hwn3),

0/1 2 2/3 /4 4/5 576 - 6/7 /8 a9 9/90
1900
1510
1920
193¢0 92.90 36.10 19.460 45.90 2%.80
1940 25.60 19.3¢ 52.3¢ 160.00 35.80 61.10 17.00 21.30 12.%0 8.80
1950 12.00 5.1¢0 10.9¢C 13.80 45.40 27.50 29.00 20.70 14.20 a.10
1960 33.70 16.40 8.40 15.80 4.70 19.90 52.80 10.40 10.20 3.60
1970 35.60 1a.70 12.20 30.50 45.10 95.70 31.80
1980

CORRELATION ANALYSIS.

.LAG CONF. INT.(1) CORRELATION _ CONF. INT.( 2)
1 0.302 0.228 -¢.302

UNIVARIATE MODEL PARAMETERS.

HORHAL = 30.6095 SIGHA=  29.2549
LOGNORMAL = 3. 0063 SIGMA= 0.68243
GANHA ALPHA= 1.6485 BETA= 18.5480
WEIBULL RHO= 1.2311 DELTA=  33.0408
EXTREME-1 XI= 19.8184 ETA= 15.9769
EXPONENTIAL THETA=  30.6095

SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
NORMAL 0.1742 ¢.2311 0.2266
LCG HORHAL 0.09%90 0.1071 0.1066
GAMMA 0.1150 0.106% 0.0984%
WEIBULL 0.1113 0.1258 0.1214%
EXTREHE TYPE-1 0.1296 0.1205 0.1141

EXPONENTIAL 0.3658 0.2239 0.2144



1900
1910
1920
1930
1%40
1950
1960
1970
1980

o/l

lr2 2/3
7.08 15,480
0.73 .11
6.27 0.66
4.60 2.36

LAG CONF. INT.(21) CORRELATION CONF., INT.{ 2)
1 0.295 0.545 -0.295
UNMIVARIATE MODEL PARAMETERS.
HORMAL = 11.8675 SIGMA=  16.5761
LOGHORMAL Hu= 1.645% SIGMA= 1.3790
GAMMA ALPHAZ 0.7262 BETA= 14.3409
HEIBULL RHO= 0.7887 DELTA= 10,2080
EXTRENE-1 XI= 5.8803 ETA= 8.2664
EXPONENTIAL THETA=  11.8675
SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
HOPMAL 0.2427 0.3349 0.3092
LOG RORMAL 0.0951 0.0996 0.00886
GAMMA 0.1245 0.1392 0.1492
WEIBULL 0.1023 0.1204 0.1277
EXTREME TYPE-1 0.1823 e.2186 0.21728
EXPOHENTIAL 0.1687 0.1601 0.1216

(

9) KLEIN-MARICO DAM. A3RO2.

DATA. (10%s§ Hu»3),

A4

45.50
1.47
0.74
9.87

4/5

14.60
16.70

0.48
19.80

576

9?.19
40.10
1.90
9.17
24.61

CORRELATION ANALYSIS.

6/7

12,20
11.60

5.72
3z.90
51.31

7/8

3.9¢
5.10
7.48
1.93
82.79

8/9

9.54
1.45
2.44
1.63
29.53

9/0



1%00
1910
1920
1930
1940
1950
1960
1970
1980

0/1

(10) KROHELLENBOCG DAM. A3RO3.

DATA. (10%n5 Huw3).
1/2 2/3 3/4 4/5 576 6/7
21.80 7.40 7.10
4.80 5.80 .70 10.20 49.80 3.90
3.20 9.90 19.00 94.60 39.10
CORRELATION AHALYSIS.
LAG  COMF. INT.(1)  CORRELATION  CONF. INT.( 2)
1 0.418 0.289 -0.418
UNIVARIATE MODEL PARAMETERS.
HORMAL tus 15.0045  SIGMAZ  21.4361
LOGNORMAL Hu= 2.1236  ‘SIGMA=  1.0341
GAMA ALPHA®  0.9885 BETA=  15.1789
WEIBULL RHO= 0.9120  DELTA=  14.2092
EXTREME=-1 XIiz 7.9047 ETA= 9.2618
EXPOMENTIAL THETA= 15,0045
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL 0.2961 0.2826 0.2432
LOG MORMAL 0.1548 0.1255 0.1066
GAHMA 0.2190 0.1563 0.1216
WEIBULL 0.1948 0.1647 0.1417
EXTREME TYPE~-1 0.24135 0.1743 9.1404%
EXPONENTIAL 0.2266 0.1823 0.1407

7/8

5.50
4.30

2.10
1.10

9/0

10.10
11.40



1900
19lo
1920
193¢0
1940
1950
1960
1970
1980

e/l

4.90
%5.7¢

172 2/3
. 30.9¢
4.80 4,90
76.50 56.69

(11) DOORMORAAI DAH.

A6RO1,

DATA, (10%w6 Hen3),

3/4 ass
63.16 53.80
15.30 4,30
29.20 19.10

576

24.80
12.00

CORRELATION ANALYSIS.

LAG CONF. INT.(1) CORRELATION
1l 0.409 0.207
UNIVARIATE MODEL PARAMETER3.
HORHAL MU= 29.3565 SIGHA=
LOGHORMAL MU= 2.9328 SIGHA=
GAMMA ALPHA= 1.2597 BETA=
HEIBULL RHO= 1.1723 DELTA=
EXTREME-1 XI= 18.4781 ETAz
EXPOHENTIAL THETA=  29.3565
SELECTION CRITERIA
H=1l.0 H=0.5
HORMAL 0.1694 0.1554
LCG MORMAL 0.1659 0.1581
GAMMA 0.151¢ 0.1398
HWEIBULL 0.1445 0.1441
EXTREME TYPE-1 0.1589 0.1507
EXPONENTIAL 0.1619 0.1491

&/7

10.80
11.30

CONF. INT.( 2)

-0.409

24,3930

1.0899
23,3038
31.0070
17.6311

H=0.25

0.1386
0.1621
0.1122
0.1201
0.1136
0.1190

1/8

34.30
19.50

89

8.1¢c
34.30

9/

67.30
1.50



1900
1910
1v2d
1930
1940
1950
1960
1970
1980

¢/

4.50

ra 2/3

22.10 73.90

LAG CONF. INT.(1)

1

HORMAL
LOGNORMAL
GAMMA
REISULL
EXTRENE-1
EXPONENTIAL

HORHAL

10G NORMAL
GAMHA

WEIBULL
EXTREME TYPE-1
EXPONENTIAL

0.490

NZEHELE DAM. ASROL.

DATA. {10n%5.Hne3),

bV e} 4/5
15.60 4.60
5.70 856.50

576

6.60
116.50

CORRELATION ANALYSIS.

MU= 60.7625
Hu= 3.25463
ALPHA= 0.70%92
RHO= 0.7836
X1= 30.5218
THETA2  60.7625

CORRELATICH

0.611

UNIVARIATE MODEL PARAMETERS.

SIGMA=
SIGMA=
BETA=
DELTA=
ETA=

SELECTIOH CRITERIA

H=1.0

0.23%4
0.1616
0.1815
0.1643
0.22849
0.2203

H=0.5

0.2127
0.14469
0.1448
0.1456
0.1801
0.206%

6/7

22.80
95.60

CONF. INT.( 2)

=0.490

75,2655

1.4597
85.6808
52.5112
43.9208

H=0.25

0.1783
0.1184
0.1060
0.1121
0.12%8
0.1581

778

38,790
230.20

8s9

2.70
22a.50

w0

17.70



1900
1910
1920
1930
1940
1950
1960
1970
1780

0/l

11.20

/72 /3

50.40 6.40

(13) LUPHEPHE/HHANEDRSI DAM3 (COMBINED).

DATA. (10%x4 M1},

374

5.50
46,60 63.70

4/5

5/6 6/7
11.70 23.20
48.00

CORRELATION ANALYSIS.

LAG CONF. INT.(1) CORRELATICN CONF. INT.( 2)
1 0.546 0.236 -0.566
UNIYARIATE MODEL PARAHETERS.
HORMAL = 25.6033 SIGHA=  20.6490
LOGHORMAL = 2.91%8 SIGHA= 0.8637
GAMHA ALPHA=z 1.6808 BETA= 15.2008
HEIBULL RHO= 1.3335 DELTA®  28.0969
EXTREME-1 XI= 16.6163 ETA= 14.2102
EXPOHENTIAL THETA=  25.6833
SELECTION CRITERIA
H=1.0 H=z0.5 H=0.25
HORHAL 0.2420 0.1904 0.1358
LCG HORMAL 0.2118 0.1619 0.1151
GAHMA 0.2349 0.1318 0.124%
HEIEULL 0.22496 0.1780 0.1274
EXTPEHE TYPE-1 0.2440 0.18%% 0.1276
EXPOHENTIAL 0.2021 0.1917 0.1542

78

8.90

19645 TO 1975/6.

a8/9

21.30

9/0

11.30



N

1900
1910
1920
1930
1940
1950
1960
1970
1960

e/l

3s6.80
10.2¢

172 2/3
- 32.40
a.50 8.%0
12.70 131.3¢

114) ALBASINI DAM. AROL,

DATA. (10wng tiwnl),

/4 /5
39.80 §5.70
2.40 5.70

64:90 13.70

5/6

$3.70
0.80
7.10

CORRELATION ANALYSIS,

LAG CONF. INT.(1) CORRELATICH
1 0.377 0.238
UNIVARIAYE MOUDEL PARAMETERS.
NORMAL pu= 24.2185 SIGMA=
LOGNORMAL M= 2.5543 SIGMA=
GAMMA ALPHAZ 0.9212 BETA=
HEISULL RHO=3 0.9437 DELTA=
EXTREME-1 XI= 13,8110 ETA=
EXPOHENTIAL THETAT  24.2185
SELECTION CRITERIA
H=1l.0 H=0.5
HOPMAL 0.2257 0.2342
L0G HORMAL 0.1311 0.1615
GAMMA £.1349 0.1086
HEIBULL 0.1268 0.1237
EXTREME TYPE-1 0.1925 0.1545
EXPONENTIAL 0.1507 0.1591

6/7

17.50
860
41.00

COHF,. INT.C 2)

-0.377

25.7123

1.3438
26.2900
23.54818
15.5084

H=0.25

0.2131
g.2022
0.0883
0.1151
0.1258
0.1492

178

109.00
7.20
6.10

as9

46,00
0.30
4.00

9/0

14.10
23.50

[

-



1200
1910
1920
1930
1940
1950
1960
19370
1980

0/l

73.40
48.30

318,30
25.00

172 2/3

31.70
30.50

LAG CONF. INT.(1}

1

HORMAL
LOGHORMAL
GAHMA
HEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPOHENTIAL

136.00
4%.60
100.60

0.392

NUKE DOORINGPOORT DAM. BIRO1.

DATA. {(l0wn6 Manl),

3/4 4/5

495.00
65.80
2e7.30

576

398.00
5.10
187.90

CORRELATICN AMALYSIS.

nu= 123.4380
= 4.393%
ALPHAS= 1.3260
RHQ= 1.1327
XI= 75.982¢

THETA= 123.4880

CORRELATICH

0.574

UNIVARIATE MODEL PARAMETERS.

SIGMA=
SIGHA=
BETA=
DELTA=
ETA=

SELECTICH CRITERIA

H=1.0

0.2204
0.1225
0.1453
0.1404
0.16¢8
0.1499

H=0.5

0.21e88
0.1464
0.1222
0.1372
0.1353
0.192%

6/7

256.00
183.00
114,70

CONF. INT.( 2)

-0.392

120.8977
0.9%66
93.1278
129.6934
69.7481

H=0.25

0.1981
0.1765
0.1073
e.lz7a
0.1051
0.1668

7/8

108.00
41.30
96.%0

es/9

91.80
45.30

.

/0

122.00
57.70



1500
1910
1920
1930
1940
1950
1960
1970
1930

o/l

6.70
15.50
113.80

(16) BROMKHORSTSPRUIT DAM. B2RO1.

DATA. (1l0®e6 . Nwul),

vz 2’3 374 4/5 5/6
13.20 15.80 64.10 58.80 73.90
18.80 15.80 46.80 10.20 85.50

6.30 14.90 161.40 110.2¢ 47.60

CORRELATION ANALYSIS.

LAG COtF. INT.{1) CORRELATION

1l 0.353 -0.037

UNIVARIATE HODEL PARAMETERS.

HORMAL
LOGHORHAL
GAMMA
HEIBULL
EXTRERE-1
EXPCHENTIAL

HORMAL

LOG HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXFONENTIAL

MU= 52.8500
= 3.5401
ALPHAS 1.3116
RHO= 1.1072
XI= 32.1893
THETA=  52.8500

SIGHA=
SIGHA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1‘°

0.2116
0.1439
0.15%
0.1442
0.1811
0.139%%

H=0.5

0.2518
0.1271
0.13%8
0.1404
0.1652
0.1734%

/7

3a.80
32.90
268,00

CONF. INT.( 2)

~0.356

54,9751

0.9531
40.2940
55.1402
30.5656

H=0.25

0.230%
0.0993
0.1173
0.1302
0.1433
0.1662

e

80.10
15.40
10.10

a/9

18,00
46.20
47.00

970

43.40
33.90
69.90



(17) RUST DE HINTER DAM. BIRCL.

DATA. {10wwg Mend),

o/l 172 2/3 3/4 4/5 5/6 6/7 78 8/9 9/0
1900
1910
1920 . . -
1930 .- 8.10 63.90 147.00 23.00 47.00 50.40 51.10
1940 12.70 55.60 144.00 15.60 46,50 8.20 19.1¢0 11.80 15.90 10.1¢
195¢ 5.50 13.00 18.5¢0 61.5¢ 206.00 99.70 22.2¢0 12.40 15.40 25,20
1960 12,20 8,20 5.40 13.20 3.1¢0 166.00 39.3¢% 47.80 83.00 44.90
1270 234.00 6,00 24.40 138.50 110.4¢0 80.90 95.20 5.00 26.4¢0 38.70
a0

CORRELATION ANALYSIS.

LAG CONF, INT.(1) CORRELATION CONF. INT.( 2)

1 0.206 0.104 =0.286

UHMIVARIATE HODEL PARAMETERS.

HORHAL = 50.7064 SIGMA= 55,7597
LOGNORHAL MU= 3.357¢ SIGMA= 1.113
GAMMA ALPHA= 1.0138 BETA= 50.01348
HEIRULL RHO= G,.9682 DELTA: 49.9382
EXTREHE-1 X1= 28_3255 ETA= 32.5167
EXPONENTIAL THETA= 50,7064

SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
HORMAL 0.2187 0.2995 0.2061
LO5 NORMAL 0.117¢ 0.1036 0.0657
GAMMA 0.1524 0.1409 0.14496
HEIBULL 0.1336 0.1414 0.1464
EXTPEME TYPE-1 0.1915 0.1984 ¢.2050

EXPONEMTIAL 0.1453 0.1457 0.1377



o/

848,00
133.00
439.00
31s8.00

118}

LOSKOP DAM. B3RO02.

DATA, (10ww5 tunl],

1/2 2/3 /% 4/5 576 &/7
21.50
221.00 733.00 1334.00 227.00 678.00 211.00
103.00 300.00 339.00 1150.00 1089.00 597.0t
127.00 121.00 132.00 192.00 43.00 572.00
339.00 111.00 341.00 1143.00 680.00 2685.00
CORRELATION ANALYSIS.
LAG COHF. INT.(1) CORRELATICH COHF. INT.L 2)
1 0.302 0.306 =-0.302
UNIVARIATE HODEL PARAMETERS.
HORMAL = 445.1310 SIGMA= 326.0901
LOGHORMAL M= 5.7967 SIGMA= 0.8717
GAITIA ALPHA= 1.8061 BETA=  246.4629
HEIBULL £HO= 1.4200 DELTAZ 490.4806
EXTREME-] XI= 302.4076 ETA= 229.7365
EXPONENTIAL THETA= 445.1310
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL 0.1963 0.1764% 0.1764%
LOG KNORMAL 0.1244 0.1402 0.2047
GAMMA 0.1248 0.1076 0.1021
HEIBULL 0.1292 0.114é 0.10%9%
EXYTREME TYPE=1 0.146% g.1180 0.0916
EXPOHENTIAL 0.1680 0.2004 0.1677

778

3719.00
239.4090
316,00
306.00
643.00

693.00
23%.00
445,00
327.00

970

ar7.00
3319.00
405.00
56C.00



1900
1910
1920
1930
1940
1950
19560
1970
1980

0/1

7.20

/2 2/3
2,60 2.50
2.10 11.490

(191 TONTELDOOS DAM. B4SROL.

DATA. (10%w6 . Maw3),

374

4/5

576

CORRELATION AMNALYSIS.

LAG CONF. INT.(1)

1

HORMAL
LOGHORMAL
GAMHA
RWEIBULL
EXTREME-1
EXPOHENTIAL

NORMAL

LOG MORHAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPOMENTIAL

0.450

CORRELATION

-0.059

3.7526
1.0629
2.0779
1.4957
2,589¢6
3.7526

UNIVARIATE MODEL PARAMETERS.

SIGHA=
SIGHA=
BETA=
DELTA=
ETAz

SELECTION CRITERIA

H=1.¢0

0.2106
0.13%4
0.1590
0.1633
0.1693
0.1899

H=0.5

0.1459
0.1424
0.1331
0.1323
0.1383
o.2128

CONF .

6/7

INT.L 2)

-0.45¢0

2.7204
0.7770
1.8059
4.1774
1.0629

H=0.25

0.1322
0.1272
0.1031
0.0971
0.1020
0.1796

1/8

a9

9/0



1900
1910
1920
1930
1940
1950
1960
1970
1980

0/1

21.%0
6.10

(20) OHRIGSTAD DAM. BSROL.
DATA. (10%#6.Hen3),
1/2 /3 3/4 5/6 &/7
4.60
28.40 9.70 10.80 16.10 8.70
7.30 29.90 12,00 27.50 14.60 33,40
CORRELATION ANALYSIS.
LAG  CONF. INT.(1)  CORRELATION INT.C 2)
1 0.409 0.137 -0.409
UNIVARIATE MODEL PARAMETERS.
HORMAL M= SIGHA=  8.9301
LOGNORMAL Mz SIGHAT  0.5753
GAMMA ALPHAZ BETA= 4.7581
MEIBULL RHO= DELTA=  18.6623
EXTREME-1 XI= ETA= 6.7978
ENPONENTIAL THETA=
SELECTION CRITERIA
H:1.0 H=0.5 #=0,25
NORMAL 0.1982 0.15646 0.1241
LOG MORMAL 0.1619 0.1248 0.0992
GAMMA 0.1761 0.1340 0.0966
WEIBULL 0.1803 0.1382 0.1051
EXTREME TYPE-1 0.177% 0,1355 0.0951
EXPONENTIAL 0.2646 0.3234 0.2712

/8

?.50
14.80
23.70

8/9

26.70
e.zo
28.60

90

16.40
10.30



1300
1910
1920
1930
1940
1950
1940
1970
1940

0/l

ta21

12 2/3

16.20 17.10

LAG COHF.

1

INT.(1)

0.653

KLASERIE DAM. B7RO1.

DATA. {10%%6 Hen3),

/4 4/5

8.70 48.90

/6

14,50

CORRELATION AMALYSIS.

CORRELATION

=-0.431

UNIVARIATE MODEL PARAMEYERS.

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME-]
EXPONEHTIAL

HOPMAL

LOG HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

= 18.9889
MU= 2.7834
ALPHA= 3.2731
RHO= 1.7381
XI= 14.0490

THETA=  18.9889%

SIGHA=
SIEMA=
BETA=
DELTA=
ETAs=

SELECTION CRITERIA

H=1.0

0.1990
0.1727
0.188%
0.1841
0.1891
0.2864

#=0.5

0.1625
0.1611
0.1713
0.1585
0.1780
0.2981

6/7

27.00

CONF. INT.L 2)

-0.653

12.7535
0.5768
5.8014%

21.5211
7.6134

H=0,.25

0.1153
0.1206
g.1262
0.1158
0.1338
0.22c8

/8

9.60

a8/9

20.60

970

a.30



(22) EBEHEZER DAM. BSRO1.
DATA. (10%»§ Hen3),

e/l 2 /3 3% %/5 576 6/7 1/8 a/9 970

1900
1910
1920
1930
1940
1950 . - . 45.60 53.20
1960 25.30 27.30 17.80 15.00 26.30 %%.70 18.60 31.30 15.50 18.20

197¢ 86.790 17.890 101.40 60.40 68.50 78.00 98.20 3a.70
1580 N

CORRELATION ANALYSIS.

LAG CONF. INT.(1) CORRELATION CONF. INT.( 2}
1 0.438 0.15% =0.438

UNIVARIATE MODEL PARAMETERS.

HORMAL = 45.4850 SIGHAZ  27.9461
LOGHORMAL = 3.6382 SIGMA= 0.6181
GAMHMA ALPHA= 2.9458 BETA= 15.4406
HEIBULL RHO= 1.7904 DELTA= 51.5018
EXTREHE-1 XI= 33.0873 ETA= 19.6206
EXPONENTIAL THETA= 45,4850

SELECTICH CRITERIA

H=1.0 H=0.5 H=0.25
HORMAL 0.1843 0.1736 0.1500
L0G HORMAL 0.1547 0.1479 0.1179
GAMMA 0.1664 0.1519% 0.1183
WEIBULL 0.1627 0.1595 0,1325
EXTREME TYPE-1 0.1693 0.1561 0.1163

EXPOHENTIAL 0.2630 0.3355 0.2760



1900
1910
1920
1930
1950
1950
1960
1970
1980

0’1

779.00
2535.00
619.00
2039.00
1¢03.00
1202.00

103%.00
1167.00

1977.00

172 /3

698,00 470.00
3598.00
1951.00
1316.00

440.00

962.00

375.00

LAG

1

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME~-1
EXPOHENTIAL

HORMAL

LOG HORMAL
GAMMA
HEIBULL

EXTREME TYPE-1

EXPOHENTIAL

123}

VAAL DAM. C1ROL.

DATA. (10%%6 Huu3),

34

765.00
3302.00
686%.00

8az.o0
1136.00
21746.00

4/5

4778.00
255¢.00
1696.00
3510.00
2890.00
5727.00

576

809.00
1689.00
1278.00
1546.00

520.00
4303.00

CORRELATION ANALY3IS.

COHF. INT.(1)

0.255

CORR

ELATION

0.118

UNIVARIATE HODEL PARAMETERS.

MU=
MU=

ALPHA=

RHO=
XI=

THETA=

1975.3898
7.3387
2.1535
1.4673

1353.3556

ETA=

1975.38%8

SELECTION CRITERIA

H=1.0

0.1791
0.0937
0.1235
0.1225

0.1376

0.1913

H=0.5

0.2470
0.0352
0.1187
0.1565
0.1348
0.3079

SIGMA=
SIGHA=
BETA=

DELTA=

6/7

1284.00
4361.00
1117.00
5379.00
3393.00
2395.00

COHF. INT.UL 2}

~0.255

1474.3916

0.7143

917.2808
2201.6486
955.9212

#=0.25

0.2536
0.0787
0.1319
0.1740
0.1506
6.3015

7/8

8563.00
11446.00
1101.00
3456.00

597.00
2367.00

as9

1512.00
3929.0¢
642.00
1345.00
687,00
600,00

9/0

2755,00
2178.60
1939.00
1449.00
1173.00
1464 .00



(24) BPOSKOP DAM. C2R01.
DATA. (10%n6 . Hen3),

o/l 172 3 /4 4/5 576 6/7 /8 a8/9 /0

1900 '
1310
1920
1930
1940

1950 . 53.00 319.50 46.70
1960 54.60 53.50 54.10 58.70 91.20 53.70 52.50 51.70 83.40 78.50
1970 69.10 80.40 74.40 340.50 129.00 209.10

1930 -

CORRELATION ANALYSIS.

LAG CONF. INT.(1} CORRELATION CONF. INT.L 2)
1l 0.450 0.469 =-0.450
UNIVARIATE MODEL PARAMETERS.
HORMAL MU= 77.8211 SIGHA=  41.5201
LOGHORMAL M= 4.2575 SIGMA= 0.4213
GAMMA ALPHA= 5.3213 BETA= 14. 6245
HEIBULL RHO= 2.0650 CELTA= 88.3731
EXTREME-1 XI= 62.1981 ETA= 22.5083
EXPONENTIAL THETA=  77.8211
SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
HOPHMAL 0.2214% 0.2023 0.1757
LCG HORMAL G.1798 0.1481 0.1149
GAMMA 0.1961 0.1595 0.1763
RWEIBULL 0.1979 0.2052 0.1775
EXTREME TYPE-1 0.1934 0.1560 0.1ca2
EXPONENTIAL 0.3785 0.4259 0.3320



1900
1910
1920
1930
1940
1950
1960
1970
1950

0/1

62.60
111.00
20.50

{25) ALLEHANSKRAAL DAH. C4RQ1.

DATA, (10%ng Mwn3),

6’7

13.1¢
79.50

-0.409

72.3348

0.8012
46.7506
91.1779
42,7059

H=0.25

0.1861
0.1107
0.1007
0.1165
0.1065
0.2111

/2 2/3 3/4 &/5 576
67.50 53.30 49.70 60.640 256.00
16.50 104.00 176.00 296.00 92.50

CORRELATION ANALYSIS.
LAG COMF. INT.{1) CORRELATION COMF. INT.( 2}
1 0.409 0.122
UNIVARIATE MODEL PARAMETERS.
MORMAL = 83.3739  SIGMA=
LOGNORMAL = 4.1175 SIGHA=
GAMA ALPHA=  1.7834  BETA=
HEIBULL RHO= 1.3078  DELTA:
EXTREME~1 X1= 54.8819  ETA=
EXPONENTIAL THETAS  83.3739
SELECTION CRITERIA
H=1.0 H=0.5
HORMAL 0.2013 0.2048
LDG HORHAL 0.1247 0.1312
GAMHA 0.1396 0.1231
WEIBULL 0.1324 0.1238
EXTREME TYPE-1 0.1487 0.1299
EXPOMENTIAL 0.1806 0.2381

178

4%4.50
19.10

879

52.80
28.00
18.30

9/0

57.70
95.40
125.00



(26} ERFENIS DAH. C4RO2Z.
DATA, (1Ow%6.Mxx3),

o/l 72 /3 374 4/5 576 &/7 178 ars9 970

1500 ;

1910 .

1920

1930

1940 .

1950 85.50 67.50
1960 103.00 123.00 145.00 136.00 182.00 687.00 60.40 114.00 34.30 125.70
1970 189.90 34.10 199.00 144.30 %27.30 101.40 227.10 20.7¢

1%80 - -

CORRELATION ANALYSIS,

LAG CONF. INT.(1) CORRELATION CONF. INT.( 2)
1 0.418 -0.124 -0.433

UNIYARIATE MODEL PARAMETERS.

HOPHAL = 160.3600 SIGMA= 152.8762
LOGHORMAL = 4.7556 SIGHA= 0.8266
GAMA ALPHAS 1.7014% BETA= %4, 2512
WEIBULL RHO= 1.2494 DELTA® 173.7662
EXTREME=-1 X1= 105.1%a88 ETA= 81.1102
EXPOHENTIAL THETAZ 160.34600

SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
HORMAL e.2313 0.2012 0.1771
LOG HORMAL 0.1415 0.1412 0.1279
GAMHMA 0.15a87 0.1261 0.0992
HEIEULL 0.1570 0.1259 0.1030
EXTREME TYPE~1 0.1628 0.1324% 2.1033

EXPOHENTIAL 6,1825 6.1829 0.15490



1900
1910
1920
1930
194¢
1950
1940
1970
1980

/1

11.40
6.50
3.10
%.50
3.20

1r2

3.20
32.70
5.30
1a.20
40.50

2/3

7.00
13.50
19.00

5.20
10.10

5.70

{7

TIERPOORT DAM. CSRO1.

DATA, (10%w6 Hanl),

3/4 “/5
100.00 9.490
7.80 2.50
7.80 12.460
52.70 45,20
2.60 49.90
118.10 23.00

5/6

22.00
21.40
1.80
14.80
.40

CORRELATION ANALYSIS.

LAG  CONF, INT.(1)

1

HORMAL
LOGNORMAL
GAMHA
HEIBULL
EXTREME-1
EXPONENTIAL

MHORMAL

L0G HORMAL
GAMHA

HEIBULL
EXTREME TYPE-1
EXPCNENTIAL

0.269

CORRELATION

~0.168

20.41396
2.3837
0.9199
0.809%

1¢.7054

20.4394

UHIVARIATE MODEL PARAHETERS.

SIGHA=
SIGMA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2641
0.0966
0.1613
0.1409
0.19%2
0.1704

-H=0.5

0.3462
0.1332
0.1737
0.1%949
0.2086
0.1712

CONF.

/7

B.40
0.5¢0
137.00

12.70

INT.C 2)

=0.269

28.2043

1.11%
22.2200
19.00853
13.1010

H=0.25

0.3250
0.1626
2.1712
0.1848
0.2145
0.1631

778

9.30
2.90
2.60
5.30
5.20

8/9

2.70
11.00
38.30
14.70
13.00

970

13.70
14.70
4.90
6.20
5$8.20



1900
1910
1920
1930
1940
195¢
1960
1970
1980

071

64,00
114.00
168.00

53.00

57.00
125.00

7.00

172 2/3

57.00
189.00
74.00
334.00
95.00 67.00
105.00 237.00
345.00 5.00

41.00
146.00
74.00

LAG
b §

HORHAL
LOGHORMAL
GAHMA
HEIBULL
EXTREME-1
EXYPONENTIAL

HORMAL

10G HORMAL
GAITMA
HEIBULL

EXTREME TYPE-1

EXPOHENTIAL

(28) KALKFONTEIM DAM. C5R02.

DATA. (10%%6,Mun3),
34 4/5 576 6/7
58.00 363.00 £6.00 174,00
194.00 745.00 55.00 ill.¢0
474.00 86.00 9.00 159.00
82.00 20.00 100.00 42.00
101.00 335.00 152.00 97.00
2l.00 52.00 - 194.00 271.00
1324.00 53.00 492.00 48.00

CORRELATION AMALYSIS.

CONF. INT.(1)

0.236

CORRELATION

-0.216

UNIVARIATE MODEL PARAMETERS.

Huz 163.9710

Hu=
ALPHAZ
RHO=
XI=

CONF, INT.( 2)

-0.236

SIGHA= 214.8925

4.4906 SIGHA= 1.1506
0.9532 BETA=  172.0302
0.9188 DELTAz 156.5901

89.4787 ETAz

THETA= 163.9710

SELECTION

H=1.0

0.2498
0.0916
0.140%
0.1216
0.1858
0.1445

CRITERIA

0.3517
0.1131
0.1207
0.1233
0.1998
n.1227

102.9869

H=0.25

0.3403
0.1303
0.1320
6.1255
0.2176
0.0995

178

46.00
67.00
22.00
717.00
119.00
38.00
6.00

8/9

19.00
140.00
69.00
40.00
46.00
195.00
15.00

9/0

£54.00
166,00
82.00
3as5.00
35.00
96.00
a85.00



1500
1910
192¢
1930
1940
1950
1960
13970
1980

o/l

7.60
58.60

1/2 2/3
33.30 17.80
1.20 70.70

LAG CONF, INT.(1)}

1

RORMAL
LOGHOPHAL
GAHHA
HEIBULL
EXTREME-]
EXPONENTIAL

HORHAL

LOG MNORMAL
GAMHA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

(29

DATA. (10%w5 Hwed),

374 4/5
110.00
8.80 56.50

3.90 139.20

RUSTFONTEIN DAH. CSRO3,

5/6 6/7
21.40 10.50
52.40 29.70
26.60 13.10

CORRELATION AMALYSIS.

CORRELATION CONF. INT.( 2)
0.392 -0.132 -0.392
L]
UNIVARIATE MODEL PARAMETERS.
Y= 29.4320 SIGHA=  34.7765
KU= 2.7316 SIGHA= 1,2451
ALPHA= 0.8929 BETA= 32.7438
PHO= 0.9073 DELTA=  27.9887
X1= 16,0498 ETA= 19.0764
THETA=  29.4320
SELECTIOH CRITERIA
H=1.0 H=0.5 H=0.25
0,2368 0.24491 0.2191
0.1373 0.1475 0.1479
0.1546 0.1220 0.0913
0.1418 6.1236 0.0967
0.2048 0.1602 0.1291
0.1582 0.1509 g.1247

178

14.10
14.60
2.30

8/9

6.90
11.70
1.10

9/0

13.8¢0
9.60



1900
1910
1920
1930

1940

1950
1960
1970
15480

0/1

172.00
14,80
72.40
14.50
$9.80
84,10

172

212.00
17.60
75.60
37.00
Bi.50
85.50

/3

82.60
19.70
116.00
464.00
55.00
26.30

LAG
1

HORHMAL
LOGHORMAL

GAMHA

HEIBULL
EXTREME-1
EXPONENTIAL

MOIZMAL
LOG HORMAL

GAMHA

HEIBULL

EXTREME TYPE-1

EXPONENTIAL

(30) KOPPIES DAM. C7RO1.

DATA. (10%x6 . Hun3].

374

47.90
324.00
334.00

14.10

48.80

76.40

4/5

284,00
173.00

28.80
113.00
139.00
126.60

576

22.90
32.50
13,70
10.90
46,060
90.80

CORRELATION ANALYSIS.

COMF. INT.(1)

0.255

z 95.0237

= 4.0454
ALPHAT  1.1202
RHO= 1.0417
XI= 56.1446
THETA=  95.0237

CORRELATICH

=0,145

UNIVARIATE MODEL PARAHETERS.

SIGHA=
SIGHMA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.1876
0.11%4
0.1035
0.0981
0.1359
0.1018

H=0.5

0.2742
0.1156
0,.0936
0.1036
8.1556
0.1308

o/7

18.20
239.00
247.00
193.00
161.00

50.40

CONF. INT.( 2)

~0.255

96.1761

1.0973
84.08282
96.7011
58.0711

H=0.25

0.275%
0.1523
0.1029
0.1097
0.1725
0.1336

778

25.70
109.00
52.80
105.00
8.60
86.50

as9

40.50
261.00
16.40
15.20
8.20
2.30

970

84.30
24.10
110.c0
3a8.30
30.70



1900
1910
1920
1930
1940
1950
1960
1970
19490

0/1

{31) MENIMN DAM. CBROL.

DATA. (10%xg Mexl),

12 2/3 74 4/5 5/6 67
1.40 0.71 3.68 0.25 0.33 0.70
0.28 3.32 4.93 0.20 7.11 0.47
3.06 3.05 0.83 0.66 1.51 0.92
0.99 0.22 2.21 0.23 3.80 4.18
1.48 0.49 1.52 0.31 1.76 0.61
0.10 1.16 1.22 1.11 0.81 1.10

CORRELATION AMALYSIS.

LAG  CONF. INT.(1)  CORRELATION  CONF. INT.( 2)
1 0.280 -0.063 -0.260
UNIVARIATE MODEL PARAMETERS.

NOPMAL = 1.3547  SIGMA=  1.3461
LOGHORMAL = -0.1806  SIGMA=  1.0745
GAMHA ALPHA=  1.1712  PETA= 1.1567
HETBULL RHO= 1.0683  ODELTA=  1.3925
EXTRENE-1 XI= 0.817¢  ETA= 0.8050
EXPONENTIAL THETA=  1.3547

SELECTION CRITERIA

H=1.0 Hz0.5 H=0.25

HORMAL 0.1998 0.2818 0.2798
LOG MIRMAL 0.1090 0.1057 0.1127
GAMMA 0.1011 0.0990 0.1022
HETRULL 0.0983 0.0780 0.0997
EXTREME TYPE-1 0.1259 0.1534 0.1689
EXPONENTIAL 0.1059 0.1206 0.1204

7/8

l.84
1.68
0.08
1.32
0.49
0.20

8/9

1.79
1.08
.45
0.82
0.26

9/0

0.18
1.13
3.02
1.18
0.15



132) ARMEHINIA OAM. DZROZ.
DATA. (10#%5 Mund},

/1 12 2/3 1/4 4/5 5/6 6/7 e a9 8/0

1900 - N

1910

19z0

1930

1940 .

1950 . . 28.80 17.70 37.80 3.7¢ 4.50 10.10
1960 17.30 28.80 14.90 7.30 37.10 50.50 11.00 23.80 S 40 6.60
1970 45.80 1.40 39.90 41.70 103.00 46.490 4%.40 11.10 :

1980 -

CORRELATION AHALYSIS.

LAG COMF. INT.(1) CORRELATION CONF. INT.( 2)
1 0.400 0.230 -0.400

UNIVARIATE MODEL PARANMETERS,

HORMAL MU= 26,6250 SIGMA=  22.9101
LOGHORMAL Hu= 2,8474 SIGHA= 1.0358
GAMMA ALPHA= 1.3488 BETA= - 19.73%6
HEIBULL RHO= 1.1987 DELTA= 28,2339
EXTRENE-1 X1= 16.9979 ETA= 15.4810
EXPCHENTIAL THETA=  26.6250

SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
HORMAL 0.1771 0.1761 0.1570
LOG HORMAL 0.1541 0.1341 0.1379
GAMHA 0.14%4 0.1183 0.0920
HEIBULL 0.1943 0.11%0 0.0986
EXTREME TYPE-1 0.1666 0.1403 0.1018

EXPOHENTIAL 0.1502 0.1422 0.1209



1900
1910
1920
1930
1940
1959
1940
1978
1980

o1

(33}

5.60 1.0
0.90 7.1¢
5.00 7.50
2.20 6.70
3.60 2.00

LAG COHF,

1

BETHULIE DAH. DIR01.

DATA. (10%#6 Mma3),

/4

13.590
1.50
4.19
4.10

sg8.60

4’5

5/6

CORRELATION AMALYSIS.

INT.(1)

0.289

CORRELATION

=0.061

UNIVARIATE MODEL PARAMETERS.

HORMAL
LOGHORMAL
GAMMA
WEISULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG HORMAL
GAMMA

WEIBULL
EXTPEME TYPE-1
EXPCHEHTIAL

6.0022
1.0870
0.8348
6.8372
3.1746
6.0022

S1GMA=
+ SIGHA=
BETA=z
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2548
0.152¢0
0.2736
0.1460
0.1695
0.1808

H=0.5

0.3238
0.1842
0.28109
¢.1786
0.1640
0.1865

6s7

10.60
1.7¢
2.30

15,60

CONF. INT.( 2)

-0.289

11.7653
1,2427
7.1729
5.3161
3.7064

H=0.25

0.2988
0.2227
0.2495
¢.1530
0.1612
0.1585

7/8

1.50
14.70
.70
2.00

a9

/0

12.20
1.90
7.30
0.30
3.0



1900
1910
1920
1930
1940
1950
1960
1970
1380

0/1

5619.00
7004.00

vz 2/3
9024.00  2254.00
3598.00  2709.00

LAG COMF. INT.L))

1

HORMAL
LOGHORMAL
GAMMA
HWEIEULL
EXTREHE-1
EXPONENTIAL

HOPMAL

LOG HORMAL
GAMHA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

13455, 00

0.544

HENDRICK YERWOERD DAM. D3ROZ,

DATA. (10%%5 . Men3),

3% 4/5

5/6

7334.00 20372.00

CORRELATION AHALYSIS.

= 7572.8462

HU= 8.7447
ALPHA= 2.82008
RHO= 1.6948

Xl= 5492.1870
THETA= 7572.8462

CORRELATION

0.074

UNIVARIATE HODEL PARAMETERS.

SIGHA=
SIGHA=
BETA=
DELTAz
ETA=

SELECTICH CRITERIA

H=1.0

0.1668
0.1327
0.1395
0.1379
0.1435
0.2317

H=0.5

0.1367
0.1350
0.1333
0.1187
0.1405
0.2428

6/7

lo2s5.00

INT.( 2)

~0.54%

5025.3379

0.6404
2684.6054
8548.6930
3311.4452

H=z0.25

0.1053
0.1128
0.1051
0.0895
0.1101
0.2108

778

al97.00

8/9

5132.00

9/0

34¢64.00



1900
1910
1920
1930
1940
1950
1940
1970
1%80

0/}

172 2/3
0.43 2.48
1.51 o.08

LAG CONF. INT.(1)

1

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME-1
EXPONENTIAL

HORHAL

LOG HORMAL
GAMMA

HEIBULL
EXTREHE TYPE-1
EXPOHENTIAL

(35}

0.428

LEEUBOS DAM. D4ROI.

DATA. (10w=6 Huwd),

3/4 4/5
3.42 £.57
1.18 0.88

576

CORRELATION AHALYSIS,

MU= 1.4948
MU= -0.1940
ALPHA= 0.9718
RHO= 0.9718
XI= 0.861%

THETA= 1.4948

CORRELATION

0.176

UHIVARIATE MODEL PARAHMETERS.

SIGHA=
51GMA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2305
0.150%
0.1398
0.1340
0.1796
0.1581

K=0.5

0.1942
0.1562
0.1134
0.120%6
0.1350
0.1525

&7

CONF. INT.( 2)

-0.428

1.5756
1.2795
1.5382
1.4757
0.9310

H=0.25

0.1693
0.1800
0.0927
0.1072
0.1003
0.1235

7/8

a9

9/9



1900
1910
1920
1930
1940
1950
1960
1970
19890

0/1

63.10
17.00
106.00

12 273
1.80 64.30
5.70 0.30
37.490 20.60

LAG CONF. INT.(1)

1

HORMAL
LOGNORMAL
GAMMA
HWEIBULL
EXTRENE-1
EXPONENTIAL

HORHAL

LOG HORMAL
GAMA

HWEIBULL
EXTREHE TYPE-1
EXPONHENTIAL

136)

0.336

ROOIBERG DAM. DSROL,

DATA. (10w#6 Hun3),

374 4/5
92.80 1l.40
5.60 28.490
911.00 2.00

1.30 152.40

5/6

2.1¢%
10.20
20.90
96.00

CORRELATION ANALYSIS.

Mys a1.3028
MU= 2.6976
ALPHA= 0.3687
RHO= 0.5326
X1= 26,3336

THETA=s  81.3008

CORRELATION

=0.02%

UNIVARIATE MODEL PARAMETERS.

SIGHA=
SIGMA=
BETA=

DELTA=

ETA=

SELECTION CRITERIA

H=1.0

0.3268
0.1171
0.1701
0.1233
0.2537
0.3304

H=0.5

0.3882
0.1160
0.2072
8.1526
0.2779
0.3194%

/7

23.30
24.30
14.10
876.50

CONF. INT.L 2)
-0.336 "

209.4879

1.5000

209.1679
38.3104
64.8567

H=0.25

0.3343
0.1048
0.1%981
0.1416
0.2562
0.265%

7/8

8.90
1.20

34.00

a9

47.40
9.00
1.20

8/0

2.90
4,20
77.00



1900
1910
1520
1939
1940
1950
1940
19740
1980

0/1

(371 VYICTORIA WEST DAM. D&RO].

DATA. (10#%&.Mwx]},

172 2/3 3/4 %/5 576
0.77 1.48 0.24 0.89% 0.01
2.50 0.98 0.65 1.19 0.0%
1.54 0.40 2.41 0.94 1.17
0.36 0.45 0.51 14,10 0.93
9.01 .72 0.07 0.01 0.01

CORRELATION AMALYSIS,

LAG COHF. INT.(1) CORRELATICON CONF. INT.( 2)

1 0.272 0.004

UNIVARIATE MODEL PARAMETERS,

HORMAL MU= 1.2533 SIGHA=
LCGHORMAL MU= ~0.6024 SIGHA=
GAMMA ALPHA= 0.7261 BETA=
WEIBULL RHO= 0.8071 DELTA=
EXTREHE-1 XI= 0.6876 ETA=
EXPOHENTIAL THETA= 1.2533

SELECTION CRITERIA

H=1.0 H=0.5
HORMAL 0.2297 0.3266
LOG HORMAL 0.1835 2.1901
GAMHA 0.12a0 £0.1142
HEIBULL 0.125% 0.1455
EXTREME TYPE-1 0.1409 0.1652

EXPONENTIAL 0.1464 0.1952

6/7

~0.272

2.02008
1.60%1
1.7261
1.1047
8.7974

H=0.25

0.3076
0.2374
0.1152
0.1479
0.1759
0.2159

7/8

1.05
.71
1.66
1.38
2.67

8/9

9/0

0.02
0.40
1.00
0.84
0.20
3.17



1900
1910
1920
1930
1940
1950
1960
1970
1980

o/l

106,00
36,50
51.10

172 2/3
69.00 60.40
41.40 92.00

LAG CONF. INT.(1)

1

HORMAL
LCGHORMAL
GAMHA
HEIBULL
EXTREHE~1
EXPOHENTIAL

HOFRMAL

LCG HORMAL
GANMA

HEIBULL
EXTREME TYPE-1
EXPOMENTIAL

0.392

(38} HEMMERSHOEK DAM. GlROZ,

DATA. (10wn5.N¥n3),

4 4/5
74.20 67.40
82.60 79.00

576

63.00
162.20

CORRELATION ANALYSIS.

MU= 69.44800
MUz %.1884
ALPHA= 9.6557
RRO= 2.760%
XI= 59.183%
THETA=  69.4800

CORRELATION

=-0.027

UNIVARIATE MODEL PARANETERS.

SIGMA=
* SIGHA=
EETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.1619
0.1205
0.1308
0.17%%
0.1186
0.3954

H=0.5

0.1397
0.1067
0.1100
0.1713
0.1148
0.4563

&/7

80.60
82.10
42,10

COMNF. INT.( 2}
-0.392

25.4655
0.3208
7.1958

77.7619

17.1965

H=0.25

0.1249
0.99a8
0,0942
0.1571
0.1073
0.3648

/8

70.30
£6.00
57.70

8’9

“6.40
76.50
54.80

9/0

65.50
51.30
65.90



1900
1910
1920
1930
1940
19590
1960
1970
1980

/1

46.30
77.00
64.70
54.20
31.5¢0

(39) STEENBRAS DAM. G4ROL.

DATA. (10%x%4 Mex3),

172 2/3 3/4 /5 5/6 6/7
76,10 49.60 64.20 54.20 42,60
71.80 47.50 29.40 35,30 23.80 51.70
£2.10 33.40 75.50 70.60 45.70 37.50
37.00 71.70 49.3% 54,80 62.60 50.90
44.50 34.40 36.30 40.10 18,80 47.20
22.00 44.90 42.40 32,40 59.60 27.20
CORRELATION AHALYSIS.
LAG  CONF. INT.(1)  CORRELATION  CONF. INT.( 2)
1 0.257 0.212 -0.257
UNIVARIATE MODEL PARAMETERS.
HORMAL hu= 44,2726  SIGMAT 14,4179
LOGHORMAL my= 3.7402  SIGMA=  0.3184
GAMMA ALPHAZT 10,1269  BETA= 4.3718
HEIBULL RHO= 3.2855  DELTAT 49,1952
EXTREME-1 X1= 37.6626  ETA= 11.2141
EXPONENTIAL THETA=  44.2724
SELECTION CRITERIA
#z1.0 Hz0.5 H=0.25
HORMAL 0.1173 0.1246 0.1406
LCG MORMAL 0.0918 0.0795 0.0726
GAMIA 0.0991 0.0866 0.0823
MEIBULL 0.1133 0.1426 0.1592
EXTREME TYPE-1 0.0935 0.0914 0.0741
EXPOHENTIAL 0.4003 0.5081 0.4380

778

26.00
37.50
32.90
54.00
29.7¢0
35.00

89

24.90
30.90
36.60
31.10
%3.30
43.£0

/0

28.40
42.50
32.60
35.10
20.10
43 40



1900
1910
1920
1930
1940
1950
1960
1870
1980

72.20
25.40

vz 2/3
4%.50 35.20
33.10 73.30

(40) STETTYHSKLOOF DAM. H1ROL.

DATA. (10=%b.Nux3),

3/ 4/5
39.20 41.10
47.80

53.80

576

35.90
114.10

CORRELATION AHALYSIS.

LAG CONF. INT.(1) CORRELATION
1 0.438 =-0.195
UNIYARIATE MODEL PARAMETERS.
HORHAL M= 47.5950 SIGHMA=
LDGHORMAL = 3.7875 SIGHA=
GAMMA ALPHA= 6.8084 BETAz
HWEIBULL RHO= 2.4115 DELTA=
EXTREME~1 XI= 39.1095 ETA=
EXPOHENTIAL THETA=  47.5%50
SELECTION CRITERIA
Hz1l.0 H=0.5
HORMAL 0.1837 0.1548
LOG HORMAL 0.1423 0.1184
GANHA 0.1593 0.1270
HEIEULL 0.1666 0.1568
EXTREME TYPE-1 0.1488 0.1288
EXPONENTIAL 0.3739 0.4232

6/7

61.60
23.80

COHF. IHT.( 2)

=-0.433

21.0326
0.3831
6.9906

53.7673

13.3146

H=0.25

0.1322
¢.00897
0.0941
0.1348
0.1008
0.3335

1/8

£8.50
35.60

ars9

36.70
52.50

9/0

36.40
3l.20



1900
191¢
1929
1930
1940
1950
1960
1970
1980

o/1

15.80
6.00
13.43

172 2/3
17.70 3.52
0.40 7.10

LAG COMF. INT.(1)

HORMAL
LOGHORMAL
GAMHA
HEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

LO5 HORMAL
GAMMA

WEIBULL
EXTREME TYPE-1
EXPOHENTIAL

(41} POORTJESKLOOF DAH. H3IROL.

DATA. (10%w4 Hwnl),

3/4 4/5
2.49 5.76
1.50 0.25

5/6 6/7
- . 10.10
22.60 3,15
9?.20 0.66

CORRELATION AMALYSIS.

CORRELATICN COHF. INT.( 2)
0.392 0.026 -0.392
UNIVARIATE MODEL PARAMETERS.
M= 8.1212 SIGMA=  10.4112
U= 1.3175 SIGHA= 1.4077
ALPHA= 0.7680 BETA= 10.5748
RHO= 0.8269 DELTA= 7.2895
XI= 64,2839 ETA= 5.5411
THETA= 8.1212
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
0.2078 0.2521 0.2258
0.l452 0.147% 0.1199
0.1419 0.1310 0.1092
0.1361 0.1335 0.1072
0.1811 0.1672 0.1499
0.1797 0.19C6 0.15064

1/8

47.60
0.52
3.63

a/%

/0

1.88
6.90
17.70



1900
1910
1920
1930
1940
1950
1960
1970
1980

0’1

470.00
3.40

12 /3
17.1¢ 4.70
3.60

LAG COHF. IHT.(1)

1

HORMAL
LOSNOPHAL
GAITA
WEIBULL
EXTREME-1
EXPOHENTIAL

NORMAL

LOG HORMAL
GAHHA

HWEISULL
EXTREHE TYPE-1
EXPOHENTIAL

0.450

(42} KEERCHM DAB. H4RO2.

DATA, (l0%#6.Hew3),

3/% 4/5

576

CORRELATION AHALYSIS,

tu= 30.8342
= 1.9935
ALPHA= 0.4500
RHO= 0.5934
X1= 7.5726

THETA=  30.8342

CORRELATION

-0.035

UNIVARIATE MODEL PARAMETERS.

SIGHA=
SICHA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.3791
0.2499
0.3323
0.2764
0.3590
a.5278

H=0.5

0.3226
0.2151
0.2539
0.2911
0.2661
0.4481

6/7

CONF, INT.( 2)

-0.450

106.4005
1.0923
68,5250
14.134%
24.7887

H=0.25

0.2614
0.1820
0.2105
0.2408
0.2160
0.3073

/8

8/9

4.93
5.56

9/0



1900
1910
1920
1930
1940
1950
1960
1970
1980

o/l

19.80

/2 2/3

15.10 29.60

(43)

DUIHENSHOX DAM. HERO1.

DATA. (10%%6, 0wn3),

3/4
16.40 39.20
18.10 28.40

5/6

50.10
42.60

CORRELATION ANALYSIS.

LAG COMF. INT.{1)

1

HORMAL
LOGHORMAL
GAHHA
HEIDULL
EXTREME-1
EXPONENTIAL

HORMAL

LCG NORMAL
GAMMA

HEIEULL
EXTREME TYPE-1
EXPOHERTIAL

0.524

Mu=
MU=
ALPHA=
RHO=
X1=
THETAz

CORRELATION

-0.090

UNIVARIATE MODEL PARAMETERS.

SIGHA=
' SIGMAS
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.1825
0.1619
0.1742
0.1a03
0.1697
0.3316

H=0.%

0.1430
0.1325
0.1402
0.1405
0.1405
0.36249

6/7

21.60
21.20

CONF. INT.C 2)

-0.524

11,6040
0.43208
4.4890

30.1541
8.5%07

H=0.25

0.1701
0.1038
0.1032
0.1015
D,lo82
0.2793

7/8

22.50

as9

11.40

9/0

37.30



Gt

1900
19190
1920
1930
1940
1950
1960
1970
1940

0/1

6.60
3.61
2.06
0.78
5.17
1.90

LaRT AT N N - N
.
SR E- RV

t44) PRINGRIVIER DIM.

J1RO01.

DATA. (20%»b,Hv#3),

1r2 2/3 374 4/5 576
3 0.18 4.9% 0.20 0.09
1 0.87 2.61 0.55 14.80
1 1.66 7.24 0.56 2.29
0 11.20 1.67 6.26 12,80
8 1.06 1.3 8.08 10.40
0 5.60 2.59 3.40 %.60
CORRELATION AMALYSIS.
LAG COMF, INT.11) CORRELATICH
1 0.249 0.002
UHIVARIATE MODEL PARAMETERS.
HORMAL 3.3410 SIGHA=
LOSHORHAL 0.5340 SIGHA=
GAMMA ALPYHA= 0.8595 BETA=
HEIBULL PHO= 0.8747  DELTA=
EXTREME-1 X1 1.8491  ETA=
EXPCHENTIAL THETA=  3.3810
SELECTION CRITERLA
H=1.0 H=0.5
HORMAL 0.2462 0.3515
LOG MORMAL 0.1149 0.2320
GAMTIA 0.1172 0.0992
WEIBULL 0.1028 0.1082
EXTREME TYPE-1 0.1553 0.1832
EXPONENTIAL 0.1342 0.1265

Canr.

&s7

[-N-E RN R K -]

. .

OO0 o W
- . «
W o B

INT.( 2}

=9.24%9

4.9391
1.3377
3.9338
3.1320
2.1151

H=0.25

0.3350
0.2316
0.1004
0.1184
0.1986
0.1491

778

S VO WONO
QD OM SO -

DSDoMNMNMMDOMND

as9

1.2%

.15
2.14
1.29
0.79
0.81

9/0

33,50
1.59
2.86
5.03
2.80
2.70



1900
1910
1920
1910
19490
1950
1960
1970
1940

01

¢.24
.12
1.74
5.65
6.37

LA

HORMAL

2/3

G
1

LOGHORMAL

GAMMA

WEIBULL
EXTREME
EXPONEN

HORMAL

-1
TIAL

LOG HORMAL

GArMA
HEIZULL

EXTRENE TYPE-1

EXPONENTIAL

(45) BELLAIR DAM, J1IR02Z,

DATA. [10%wj Muwd),

3/4

1.31
4.54
5.09
5.01
5.43

a/5

e.02
0.44
1.66
1.63
0.67

576

CORRELATION ANALYSIS.

6.272

COMF. IMT.(1}

SELECTION

H=1.0

0.2326
0.1224
0.1268
0.1204
0.1804
0.1357

CORRELATION

-0.029

2.3085
0.1452
0.8515
0.9014
1.2888
2.3085

UHIVARIATE MCOEL PARAMETERS.

SIGMA=
SIGMA=
BETA=Z
DELYA=
ETA=

CRITERIA

H=0.5

0.2778
0.1434
4.0911
0.1012
0.1735
0.1237

CONF.

6/7

INT.( 21}

=-0.272

2.4467
1.4304
2.7110
2.1965
1.5098

H=0.25

0.2734
0.2280
0.0845
0.1160
0.1855
0.144%

7/8

89

10.1¢
0.69
1.28
0.82
0.18



(46) FLORISKRAAL DAH. J1RO3.
CATA. (10%r6, 1xa3),

o/l /2 3 3/4 4/5 576 /7 /78 a8s9 90

1900
1910
1920
1930
1940 -
1950 T 16.00 1a8.80 3.10 54.10
1960 37.70 20.60¢ 17.90 8.20 1.30 £8.00 9.60 5.00 3.00 70.20
1970 4.50 6.00 34.70 10.40 58.70

1980 : . -

CORRELATION AMALYSIS.

LAG COHF. INT.(1) CORRELATION CONF. INT.( 2)

1 0.450 -0.213 ~0.450
UNIVARIATE MODEL PARANETLRS.
HORMAL HU= 21.44632 SIGHA= 20,6567
LOGHORMAL Hu= 2.5550 SIGHA= 1.1261
GAMHMA ALPHA= 1.1150 BETA= 19.2500
HEIBULL RHO= 1.0537 DELTA=  21.9363
EXTREHE-1 XI= 12.7125 ETA= 13,3850
EXPOHENTIAL THETA= 21,4632
SELECTION CRITERIA

Hz1.0 H=0.5 H=0.25
HORMAL 0.2037 0.1862 0.1626
LCS HORMAL 0,1502 0.1335 0.1205
GAMMA 0.1573 0.1305 0.0954
HWEIBULL 0.1499 0.1282 0.0992
EXTRENE TYPE-2 0.1825 0.1523 0.1111
EXPOHENTIAL 0.1602 0.1443 0.1102



1900
1910
1920
1930
1940
1950
1960
1970
1380

0’1

10.30
5.21
4.48

15.00

11.00
9.00

1r2 2/3
11.2¢ 15.7¢
19.50 9.81

2.14 5.8
2.86 7.18
2.94% 7.50
5.00 1.90

(47) CALITZOQRP DAM. J2RO1.

DATA. (10%»b Hew3),

374

1.68 -1
4.5% 1
10.30
11.7¢
4.85
3.80

4/5

2.00
8.00
2.02
5.80
2.32
%.30

576

CORRELATION ANALYSIS,.

LAG CONF. INT.(1)

1l

HORMAL
LCGHORMAL
GAMMA
WETBULL
EXTREHE-1
EXPOHENTIAL

HCRMAL

105 HORMAL
GAMHA

HEIBULL
EXTRPEME TYPE-1
EXFONENTIAL

0.255

CORRELATIOH

=-0.048

6.8193
1.7015
2.4448
1.6125
4.8087
6.68193

UNIVARIATE MODEL PARAMETERS.

SIGMA=
SICHA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.1889
0.1073
0.1259
0.1327
0.1316
0.2137

H=0.5

0.2299
e.lo01
0.1243
0.1603
0.1334
0.3430

/7

1.82
13.00
3.06
5.88
7.5%
11.90

CONF, INT.( 2)

-0.255

4,5544
0.6773
2.7893
7.6659
3.1a98

H=0.25

0.21393
0.1032
0.1349
0.1774
0.1505
0.3276

7/8

8/9

14.00
10.40
3.80
5.1%
5.23

9/0

3.67
6.94
10.7¢0
3.77
1.71
1.7%



1900
1910
1920
19310
1940
1950
1960
1970
1980

0/1

163.0)
9.83
22.00
6%9.90
24.30

172 2/3
11.30 ?.60
48,00 0.70

3.00 8.90
4,50 12.10
15.00 5.20

(48) LEEUGANX

A DAM. J2ROZ.

DATA. (10%%6.Hwe3),

374 4/5 5/6
37.80 2.20 0.70
31.30 128,00 £8.10
5.60 108,00 2.60
53,40 0.60 1.40
16.00 3.50 12.30

CORRELATION AMALYSIS.

LAG CONHF, INT.L1)

1

HORMAL
LOGHORMAL
GAMMA
WEIBULL
EXTREME-1
EXPOMENTIAL

HORMAL

LOG HORMAL
GAMHMA

WEIBULL
EXTREME TYPE-1
EXPOMENTIAL

0.2086

MU=
MU=
ALPHA®
RHO=
XI=
THETA=

CORRELATION

0.04%

UNIVARIATE MODEL PARAMETERS.

30.2468 SIGHA=
2.4797  “SIGHAS
0.6560 BETA=
0.7430 DELTA=

14.5251 ETA=
30.2468

SELECTION CRITERIA

H=1.0

0.2492
0.1060
0.1523
0.1264
0.2189
0.2242

H=0.5

0.3340
0.0956
0.1512
0.1227
0.23%9
0.2013

6’7

33.00
36,20
76.20

4.30

CONF. INT.( 2)

-0.286

40.4547

1.5047
46,1066
24.8930
22.0114

H=0.25

0.3115%
¢.0876
0.1583
0.1230
0.2396
0.1453

/8

15.79
4%8.40
32.40
144.00

a9

11.70
29.80
6.30
8.20

%7e

90.90
3.60
1.20
2.80
?.10



1900
191¢
1920
1930
1940
1950
1960
1970
19890

ol

1.50
1.07
9.60
9.23
10.51

12

7.890
3.21
0.66
1.18
3.20

/3

2.06
1.67
4.97
5.31
1.00

LAG

1l

HeRMAL
LOGHORMAL

GAMHA

KEIBULL
EXTREME~-1
EXPONENTIAL

HORMAL
LOG MORMAL

GAMMA

HEIEULL
EXTREME TYPE-1
EXPONENTIAL

(49) OUXLOOF DAM. J2RO].

DATA. (10%%4 Mund},

3/4

0.29
4.02
19.460
2.49
1.0

4/5

576

0.56
0.86
1.13
4,34
4.61

CORRELATION AMALYSIS.

CoOMF. INT.(1)

¢.277

CORRELATICN

~-0.030

UNIVARIATE NMODEL PARAMETERS.

MU=
MU=
ALPHA=
RHO=
XI=
THETA=

6.3474
0.7523
0.8242
0.8289
2.1882
4.3474

SIGHA=
SIGHA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2800
0.1106
0.2178
0.1499
0.2376
0.2135

H=8.5

0.3752
0.0950
0.1a56
0.1527
0.2187
0.1632

6/7

1.84
0.68
1.82
13.50
50,44

CONF. INT.( 2)

-0.277

7.6725
1.1690
5.2247
3.8225
2.8546

H=0.25

0.3425
0.0976
0.1837
0.1480
0.2214
0.1137

/8

&/9

9/0

DOMNO M
Ll B3 D O
T i

D ]



1900
1910
1920
1930
1940
1950
1960
1970
1980

orl

206.00
25.70
179.00
45.60
25.50

(50) KAMMANASIE DAM. J3RO1.

DATA. {10%»6.M¥n3),

172 2/3 /64 4/5 576 6/7
30.30 20.00 75.40 34.20 19.00 2.30
31.20 1z.80 171.00 20.60 27.69 11.30
13.70 19.10 18.20 14,90 16.90 26.40
33,60 16.60 23.60 14.60 26.80 18.30
20.60 27.30 81.20 45.20 13.70 3.60
19.30 17.80

CORRELATION ANALYSIS.
LAG CONHF. INT.(1) CORRELATICH CONF, INT.( 2}
1 0.272 ~0.090 -0.272
UNIVARIATE MODEL PARAMETERS.
HORMAL = 38.0532 SIGMA=T  42.6293
LOGHORMAL HMu= 3.2568 SIGHMA= 0.8347
GAMMA ALPHA= 1.4525 BETA= 256.1997
WEIBULL PHO= 1.1148 DELTA=  39.9372
EXTREHE-1 X1= 23.3298 ETAz 19.8628
EXPONENTIAL THETA=  38.0538
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL 0.2391 0.3182 0.3040
LOG HORMAL 0.1250 0.221% 0.1369
GAITMA 0.1913 0.132% 0.1196
HEIBULL 0.1826 0.1710 0.15%95
EXTREME TYPE-1 0.195% 0.1419 0.1425
EXPONENTIAL 0.1839% 0.2223 0.1%49

178

32.40
J2.e0
11¢.00
11.40
111.00

8/9

58.20
22.50
17.70
39.50
22.80

9/0

19.50
7.40
41.80
43.10
3.60



1900
1910
192¢
1930
1940
1950
1960
19790
1980

0/1

86,50
24.90
48.10

(51)

172 2/3

33.70 15¢0.00
47.8¢C 57.80
?.5¢0 93.00

LAG CONF.
1

KROMRIVIER DAM. K9RO1.

DATA. (10wx5 Mun3),

374

59.40
30.%90
34.00

4/5 576

92.80  171.00
53.90 %7.00
26.30 79.40

CORRELATION ANALYSIS,

INT.(1)

0.346

CORRELATION CONF. INT.{ 2)

-0.248

UHIVARIATE MODEL PARAMETERS.

HORHAL
LOGHORMAL
GArMA
HEIRULL
EXTREHE-1
EXPONEHTIAL

HORMAL

LOG HCRHAL
GAMMA

HWEIEBULL
EXTREME TYPE-1
EXPOHENTIAL

72.5719 SIGHMA=
3.8954 SIGHA=
1.4206 BETA=
1.1515 DELTA=

45.4512 ETA=

12.571%

SELECTION CRITERIA

H=1.0

0.2164%
0.1186
0.1344
0.1333
0.1597
0.1601

H=0.5

0.22890
0.115¢
0.1032
0.1127
0.1251
0.1708

6/7

45.10
142.00
12.99

~0.346

74.3140

0.9127
50.8009
76.7607
39.9438

H=0.25

0.2125
0.1164
0.0911
0.0981
0.1057
0.1545

1/8

49.20
25.00
128,30

e/9

19.60
60.40

6.90
11.30

9/0

103.00

31.80
390.00
170.00



1900
1910
1920
1930
1940
1950
1960
1970
1980

01

12 23 3/4 4/5 576
16.00 21.40 15.20 26.40
184,40 9.20 142,00 59.00
CORRELATION AMALYSIS.
LAG  CONF. INT.(2)  CORRELATION
1 0.438 -0.267
UNIVARIATE HMODEL PARAMETERS.
NORMAL = 69.6690  SIGHA=
LOGHORHAL x 2.9764  SIGHA®
GAMHA ALPHAS  0.5010  BETAz
WEIBULL RHO3 0.621% DELTA=
EXTREME=1 XI= 28,7032 ETA=
EXPCHENTIAL THETAZ  69.6690
SELECTION CRITERIA
H=1.0 H=0.5
NORMAL 0.2586 0.2965
LCS HORHAL 0.1399 0.1394
GAMMA 0.1899 0.1448
HEIBULL 0.1556 0.1272
EXTRERE TYPE-1 0.273%9 0.2113
EXPONENTIAL 0.3156 0.2772

(52) BEERYLEL

DAM. L3R01.

DATA. (10w#6 Mend),

677

CCNF. INT.( 2}
-0.433

122.5073
1.7912
139.0529
45,4001
54.1992

11=0.25

0.24%
0.1399
0.1145
0.1036
0.1802
0.2361

Ve

3.06
6;.70

a/9

0.34
14,70

9/0

520.00
202.10



1900
1910
1920

1930

1940
1950
1950
1970
1380

0/1

580.50

(53} PAUL SAUER DAM. LE&ROL.

DATA, (10wwd tunl},

/2 2/3 G /5 576
79.90 218.00 154,00 90.40 172.00
161.00 38.60 272,00 115.7¢ 108.40

CORRELATION ANALYSIS.

LAG CONF. INT.{1) CORRELATICH CONF. IHNT.U 2)

1 0.462 -0.200

UNIVARIATE MODEL PARAMETERS.

HORMAL Hu= 172.1333 SIGHA=
LOGHORMAL MU= 4.9105 ~ SIGMA=
GAMHA ALPHA= 2.25548 BETA=
WEIEULL RHO= 1.5003 DELTA=
EXTREHE-1 XI= 120.7036 ETA=
EXPCHENTIAL THETA= 172.13313

SELECTION CRITERIA

H=1.0 H=0.5
NORMAL 0.1878 0.1604
L05 NORHAL 0.1221 0.1368
GAMMA 0.1324 0.1186
WEIBULL 0.1337 0.1116
EXTREME TYPE-]1 0.1394 0.1231

EXPONENTIAL 0.1998 0.2301

6/7

194,00
124.70

=0.462

128.9355
0.7280
76.3078
192.0599
81.5017

H=0.25

0.1384
0.1265
0.0957
0.0923
0.0%40
0.1919

778

299.00
£4.60

a/9

130.00
280.60

9/0

34.00



1900
1910
1920
1930
19490
1950
1960
1970
1950

0l

4.80
29.30
3.20
5.20

7.30
8.70
42.70
3.490

/3

45.70
52.00
14.10
%l1.30

(54) GROENDAL DAM. MI1RCl.

DATA, (10wné Huw3),

/s

4.10
18.10
5.70
24.10

4/5

8.40
4.80

10.20

7.00

576

2.90
29.460
28.70
16.50

CORRELATION AHALYSIS.

LAG CONF. INT.(1)

1

HORMAL
LOGHORMAL
GAMHA
HEIBULL
EXTRENE=-]
EXPONENTIAL

HORMAL

LOG HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

0.31%

HU=
3 JH
ALPHA=
RHO=
XI=
THETA=

CORRELATION

-0.155

15.9%4%
2.3510
1.3287
1.1101
9.5538

15.9949

UNIVARIATE MODEL PARAMETERS.

SIGMA=
SIGHA=
BETA=

DELTA=

ETAs

SELECTION CRIVERIA

H=1.90

0.2266
0.1527
0.l881
0.1696
0.2112
0.1585

H=0.5

0.2865
0.12786
0.1657
0.1880
0.1906
0.2374%

6s/7

12.80
12.10
21.00

7.29

CONF. INT.( 2)

-0.314

16,1672

0.912¢4

12.0377
16.7158
?2.3344

Hz0.25

0.2688
0.1097
0.1629
0.l881
0.1895
0.2304

/8

8/9

4.7¢
17.20
2.40
5.20

9/90

5.50
23.20
5.90
72.80



(55) VANRYHEVELDSPAS DAR. M1RO1.

DATA. {10%w6 Muwl),

/1 /2 /3 3/ 4/5 576 &6/7 7/8 e’9 9/0
1900 '
1910
1920 - - 7.20 14.80 58.00 26.60 26.90 34.50
1930 127.00 15.80 54.50 34.20 13.40 24.20 32.60 44.10 46.90 14.60
1940 9.60 6.80 64.20 18.30 .70 4.30 80.80 9.90 43.50 38.70
1950 33.07) 17.50 24.50 5.20 6.30 9.20 4.20 1.50 2.70 117.0v0
1940 7.29 107.00 10.80 7.70 1.70 10.20 5.40 12.00 29.80 65.80
1970 6.20 13.20 330.40 20.30 N
1940

CORRELATION ANALYSIS.

LAG CONF. INT.(1} CORRELATION CONF. INT.( 2}

1 0.277 ~0.109 -0.27

UNIVARIATE MODEL PARAMETERS.

HORMAL nu= 34.1580 SIGMA=  51.9472
LOGHORMAL MU= 2.8751 SIGHMA= 1.149%
GAMHA ALPHA= 0.8923 BETA= 3a.2827
HEIEULL RHO= 0.8740 DELTA=  31.4909
EXTREME-1 XI= 18.0402 ETA= 22,0507
EXPOHENTIAL THETA= 34,1580

SELECTION CRITERIA

H=1l.0 H=0.5 H=0.25
HORMAL 0.2285 0.3401 0.3177
LOG NORMAL 0.0914 0.0933 0.0952
GANNA 0.1313 0.1362 0.1412
HEIBULL 0.1028 0.1413 0.1419
EXTREME TYPE-1 0.1757 0.1991 g.2072

EXPOHENTIAL 0.1399 0.1395 0.123%



1900
1910
1920
1930
1940
1950
1950
1970
1980

0/1

610.00
320.00
202.00
&87.50
32.10

152.00
5%.00
£6.20

217.00
53.00

/2 2/3

72.60
218.00
374.00
541.00

85.30
733.00

LAG CONF. INT.(1)

b

HORMAL
LOGHCPMAL
GAMHA
HEIBULL
EXTRENE-1
EXPONENTIAL

HORHAL

LOG HORMAL
GAMHA

HEIBULL
EXTREME TYPE-1
EXPOMENTIAL

(56) HENTZ DAM. H2RO1.

CATA. {10%w6 Nwe3),

3/4

105.00
193.00
49.50
63.40
39.90
22.40

4/5

258.30
98.40
62.490
37.50
35.60
234.00

5/6

21.30
138.00
46.90
69,30
41.80
5ca.00

CORRELATION ANALYSIS.

0.260

CORRELATION

~0.229

UNIVARIATE MODEL PARAMETERS.

MU= 157.7982
MU= %,5780
ALPHA= 1.1732
RHO= 1.0410
x1= 91.2409
THETA= 157.7982

SIGMAz
* SIGHA=
BETA=
.DELTA=
EJA=

SELECTION CRITERIA

Hz1l.0

0.207%6
0.113%6
0.1482
0.12%%
0.1788
0.1246

H=0,5

0.3210
0.1133
0.1315
6.2036
0.2177
g.2242

&/7

502.00
161.00
406.00
29.30
52.30
23.70

COHF. INT.( 2)

-0.260

167.2078
0.9899
134.5045
160.7759
96.0470

H=0.25

0.311%
0.1296
0.1963
0.2157
0.2281
0.2315

78

92.40
212.00
48.00
43.30
19.40
1%91.%0

879

119.00
206.00
149.00
36.40
22.59
57.30

90

116.60

41.00
119.00
462.00
230.00



1900
1910
1920
1930
1940
1950
1980
1970
1920

0/1

1r2 2/3
8.73 12.40
0.20

(57 SLAGBOOM DAM. NGROL.

DATA. (10ww6 Muxd),

/4 /5
0.49
1.42 158.90

576 6/7
35.20 0.12
11.70 7.13

CORRELATION AMALYSIS.

LAG CONF, INT.[1)

HORHAL
LOGHORMAL
GAMHA
HEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

105 HORHAL
GAMHA

HEIBULL
EXTREME TYPE-1
EXPOHEMTIAL

0.462

CORRELATICH CONF. INT.( 2}

-0.237 -0.462

UMIVARIATE MODEL PARAMETERS.

8.07%%
0.7066
0.4892
0.6112
3.5992
8.079%

SIGHA=  11.6829
SIGHA= 1.9589%

SELECTION CRITERIA

H=1.0

0.2548
0.1463
0.1575
0.1477
0.2384
0.2819

BETA= 16,5146

DELTA= 5.5366

ETA= 6,2551
H=0.5 H=0.25
0.2584 0.2190
0.1338 0.1148
0.1354 0.1080
0.1322 0.0993
0.1911 0.155%
0.3067 0.2589

178

8/9

9/0



1900
1910
1920
1930
1940
1950
1960
1970
1980

0/

22,60
39.80
39.40

9.40
10.30

1/2

7240.50
26.90
17.10
23.00
22.00

2/3

33.70
30.70
29.30
20.10

7.10

LAG COMF. INT.(1)

1

HOPHAL
LOGHORMAL
GAMMA
KWEIBULL
EXTREHE=-1
EXPONENTIAL

HORMAL

LOG HORMAL
GAMMA

HEIBULL
EXTREHE TYPE-1
EXPONENTIAL

(58) GRASSRIDGE DAHM. QIRO1.

DATA. (10%mp Huu3),

3/4

123,008
103.00
40.70
10.10

4/5 5/6
103.00 22.80
43.40 &.10

5.60 1%.00
11.10 6.00
0.60 6.90

CORRELATION ANALYSIS.

0.2a0

CORRELATION
~0.030

UNIVARIATE MODEL PARAMETERS.

MU=
MU=
ALPHA=
RHO=
Xi=
THETA=

46,2612
3.0209
6.72376
0.771¢

21.7558 ETA=

46.2612

SELECTION CRITERIA

SIGHA=
SIGHA=
BETA=

DELTA=

H=1.0

0.2907
0.1047
0.3:78
0.1484
0.2191
0.2091

H=0.5

0.3733
0.126%
0.3093
0.1953
0.2158
0.1868

6/7

13.70
22.60
17.80
11.50
40.10

CONF. INT.L 2)
-0.280

107.489%%

1.1925

62.7175
37.3117
30.5360

H=0.25

0.3391
0.1646
0.3048
0.1812
0.2142
0.1548

778

27.30
14.10
50.00
13.50

5.10

8/%

60.60
87.30
5,70
10.30
7.40

970

26.00
28.40
190.00
1.80
20.20



1900
1910
1920
1930
1940
1950
1960
1970
1980

/1

151.00
65.80
66.90
37.30
47.90

67.10
93.20
27.10
64.00
33.60

172 2/3

224.00
285.00
75.30
51.40

LAG COMF. INT.(1)}

1

NORHMAL
LOGHIRMAL
GAMMA
WEIBULL
EXTREME~]
EXPOHENTIAL

HIORMAL

LCG HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPONEHTIAL

0,283

LAKE ARTHUR DAM. G4ROl.

DATA. {10%w4 Muu3),

3/4 4/5
39.00

94.40 464.70
30.20 45.40
34.80 22.40
25.80 25.20

5/6

34.60
64.90
33.30
60.90
34.20

CORRELATION AHALYSIS.

MU= 67.0813
= 3.94495
ALPHA= 2.0639
RHQ= 1.364%
XI= 45.8592
THETA=  67.0813

COBRRELATION

0.058

UNIVARIATE MHODEL PARAMETERS.

SIGMA=
SIGHA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1l.0

0.2170
0.1166
0.1453
0.15¢08
0.14%
0.2344%

H=0.5

0.2373
0.1283
e.1217
0.1597
0.1135
0.2819

6/7

57.50
40.70
51.20
146.70
44.70

CONF, INT.{ 2}

-0.283

57.3258

0.7260
J2.5020
74.0918
31.1134

H=0.25

6.2333
0.1717
0.1139
0.1434
0.0959
0.2393

/8

83.4a0
143,00
5.40
44.90
46.90

8/9

28.390
99.60
249.00
13.20
31.10

9/0

61.10
a%.00
93.1¢
15.70
38.40



{60} KOMMANDODRIF DAM. G2RO2,
DATA. (10w»j . Men3),

v/l 172 2/3 3/4 4/5 5/6 6/7 778 a9 /0

1900

1910

1920

1930

1940 ' . ; -
1950 53.90 21.70 41.30 13.20 37.30

1940 14.80 110.00 17.90 12.60 25;30 102.00 6.80 47.50 43.10 72.60
1970 35.7¢ 15.10 32.80 -
1980 .

CORRELATION AHALYSIS,.

LAG COHF, INT.(1) CORRELATION CONF. INT.C 2)
1l 0.4562 -0.288 -0.4562
UMIVARIATE MODEL PARAMETERS.
HORHAL MU= 40.0333 SIGHA=  29.2052
LOSHORMAL M= 3.4438 SIGHA= ¢.7432
GAMMA ALPHA= 2.1857 BETAs 18.3164
HEIBULL RH0= 1.5094% DELTA®  449.6855
EXTREME-1 xXI= 27.7753 ETA= 19,3641
EXPOHENTIAL THETA= 40,0331
SELECTION CRITERIA
H=1.0 Hz0.5 H=0.25
HORMAL 0.1458 0.14% 0.1271
LOG HORMAL 0.1460 0.1371 0.1241
GAMHA 0.1459 0.1259 0.0970
WEIBULL 0.1448 0.1187 0.0923
EXTRENE TYPE-1 0.1538 0.1316 0.0973
EXPONENTIAL 0.2090 0.2361 0.1922



1900
1910
1920
1930
1940
1950
1940
1970
1980

0/1

18.60
25,10
28.10

172 2/3

28.90 156.00
157. 00 93.80
5.30 83.90

LAG CONF. INT.{1) CORRELATION CONF. INT.( 2)

1

HORMAL
LOSHORMAL
GAMHA
HEIBULL
EXTREME-1
EXPOMENTIAL

HORMAL

L0G HORMAL
GAMHA

WEIBULL
EXTREME TYPE~1
EXPONENTIAL

(61) LAIING DAM. R2RO1,

DATA. (10wwb M#x]),

3/4 4/5 576
14.90 15.70 76.70
7.50 15.80 45.50
27.20

CORRELATION AMALYSIS.

0.392 -0.128

UNIVARIATE MODEL PARAMETERS.

s 50.6480  SIGMA:
1= 3.4427 - SIGMAS
ALPHAZ  1.1756  BETAs
RHO= 1.0601  DELTA=
XI= 29.6549 ETA=

THETAz  50.6480

SELECTICH CRITERIA

H=1l.0 H=0.5

0.2372 0.2161
0.1552 0.1224
0.1859 0,1398
0.1750 0.1333
0.2171 0.1684
0.1672 0.1471

&/7

14.49
23.50

-0.392

51.0234

1.0361
43.0826
£1.950
30.8883

H=0.25

0.1961
0.1978
0.0955
0.1004
0.1245
c.1212

778

83.490
4.20

8/9

13.20
lal.o0

970

40.10
13.4990
76.00



1900
1910
1920
1930
1940
1950
1960
1970
1930

0/1

11.30
268,80
%.6)
0.50

72 2/3

11.60 10.50
19.80 2.40
20.40 5.90

LAG
1

HORMAL
LOGHORHMAL
GAMNA
WEIBULL
EXTRENE-1
EXPOHENTIAL

HORMAL

LOG MHORHAL
GAMMA
HEIEULL

EXTPEHME TYPE-1

EXPCHEHTIAL

(62) ROOIKRANSDAH.

RZROZ.

DATA. (10w HMun3}),

374

3.40
7.40
16.30

45

15.50
10.70

5.30

576

5.20
2.90
9.00

CORRELATION ANALYSIS.

0.352

CONF. INT.(1}

MU=
MU=
ALPHA=
RHO=

X1=

THETA=

CORRELATION

=-0.011

10.1419 SIGHA=
1.9%02 SIGMA=
1.6783 EETA=
1.4426 DELTA=

UNIVARIATE MODEL PARAMETERS.

6.9705 ETA=
10.1419

SELECTION CRITERIA

H=1.0

0.1315
0.1578
0.1302
0.1202
0.1234
0.19c6

H=0.5

0.1260
0.1717
0.1357
0.1473
0.1215
0.1831

&/7

6.80
5.80
17,30

CONF. INT.{ 2}

=0.352

6.95459

0.9671

6.0412
11.1352
5.4025

H={.25

0.1159
0.209%
0.1321
0.1485
0.1051
0.1367

/8

5.80
14,00
0.80

a8/9

12,20
22.90
14.40

9/0Q

13.50
7.90
1.1¢



1900
1910
1920
1930
1940
1950
1940
1970
1940

0’1

30.90
71.10

(63) HWATERDOHH DAH. S3ROL.

DATA. {10%%6 Hunl),

172 2/3 374 4/5 §/6 /7
- - 13.90

69.30 42.50 19.40 39.50 52.9¢ 43.10
20.50 276.70 31.10 166.90 83.50 33.00

CORRELATICH ANALYSIS,

LAG CONF. INT.L1) CCRRELATIOH CCHF, INT.[ 2}

1 0.428 -0.197 ~0.428

UHIVARIATE HODEL PARAMETERS.

HORMAL Hys= 66.3333 SIGMA=  61.2899
LOGNIRMAL = 3.8973 SIGMA= 0.7653
GANMA ALPHA= 1.8305 BETA= 36.2386
HEIBULL RHO= 1.2051 DELTA=  72.4350
EXTREME-1 XI= 43.4469 ETA= 312.9834
EXPOHENTIAL THETA=  66.3333

SELECTION CRITERIA

H=1.0 H=0.5 K=0,25
HOPHAL 0.2190 0.2059 0.1307
LOG HORMAL 0.1303 0.1200 0.0995
GAMMA 0.1596 0.1247 0.0970
HEIEULL 0.1562 0.1405 0.1125
EXTREME TYPE-1 a.1691 0.1324 0.09%%
EXPOHENTIAL 0.1989 0.2911 0.2077

7/8

77.90
15.50

a8/9

126.80
35.30

9/0

58.10
e8s.1p



1900
191¢
1920
1930
1940
1950
1960
1970
19ag

/1

68,00
159.00
142.00
164,00
121.00

96.00

(641 HIDMAR DaH, UZROL.

DATA. (10%w5.Mun3),

172 2/3 4 4/5 5/6 6’7
44.00 110.¢c0
44.00 a%.00 256.00 156,00 124.00 142.03
215.00 369.00 191.00 99.00 56.00 146.00
10%9.00 132,00 119.00 129,00 89.00 313.00
126.00 146,00 135.00 188,00 111.00 208.00
202.00 163,00 401.00 204,00 419.00 132.00
86.00 38.00 : )
CORRELATION ANALYSIS.
LAG COHF. IHNT.(1) CORRELATION CONF, IHT.( 2)
1 0.257 0.15% ~0.257
UHIVARIATE MODEL PARAHETERS.
HORHAL M= 151.6207 SIGMAs  79.8140
LOGHORMAL Mu= 4,8%82 SIGMA= 0.5076
GAMHA ALPHA= %.2187 BETA= 35,9403
HEIBULL RHO= 2.0367 DELTA= 171.7742
EXTREME-L XI= 118.0040 ETA= 56.0623
EXPOHENTIAL THETA= 151,6207
SELECTICH CRITERIA
H=1.0 H=0.5 H=0,25
HORMAL 0.15489 0.1428 0.1536
1L0G HORMAL 0.1149 0.1223 0.1547
GAMMA 0.1094 0.0980 g.1005
HEIBULL 0.1276 0.1215 0.1120
EXTREME TYPE-1 0.1012 0.0961 0.1024
EXPONENTIAL 0.3106 0.3559 0.3273

/8

92.00
141.00
150.00
134,00
120.00
174.00

8/9

122.00
256.00
87.00
237.00
86.00
1%4.00

90

146,00
179.00
130.00
74.00
153.00
36.00



1900
1910
1920
1930
1940
1950
1940
1970
1980

e/l

a80.70
156.00
10.00

(65) CHELM3IFORD DAM. V3IRO1.

DATA. (10n%h Hun3),

172 2/3 374 4/5 576 6/7
46.50 43.10 174.00 58.00 208.00 34.20
27.50 182.90 223.10 253.90 125.60  189.50

6.20
CORRELATION ANALYSIS.
LAG  COHF. INT.(1)  CORRELATION  COMF. INT.{ 2)
1 0.418 0.164 -0.418
UNIVARIATE MODEL PARAMETERS.

NORMAL M= 102.9866¢  SIGMA=  74.8343
LOGHORMAL My= 4.2838  SIGMA=  0.9839
GAItA ALPHAS  1.5714  BETA:  65.5376
HETBULL RHO= 1.3666  DELTA= 112.3705
EXTPEME~1 X1= $8.8247  ETA=T  56.7487
EXPONENTIAL THETA=  102.9864

SELECTION CRITERIA

H=1.0 H=0.5 H=0.25

HORMAL 0.1722 0.1428 0.1193
106 HORMAL 0.1476 0.1697 0.1831
GAMMA 0.13182 0.1340 0.1246
HEIBULL ¢.1379 0.1458 0.1370
EXTREME TYPE-1 0.1477 0.1252 0.0983
EXPONENTIAL 0.1650 0.1590 0.1267

7/8

68.90
31.00

8/9

73.00
76.50

9/0

104,10
8a.00



s

1900
1910
1920
1930
1940
1950
1960
1970
1980

o/l

179.90
59.60

/2 /3
166.00
143.10 395.30

(66} WAGENDRIFT DAM, V7ROL,

DATA. (1lowsb Meu3},

74 a/5
230.00 170.00
.250.00 440.00

576

450.00
173.80

CORRELATION ANALYSIS,.

LAG CONF. INT.(1} CORRELATION
1 ¢.450 -0.115
UNIVARIATE MODEL PARAMETERS.
HOPHAL M= 207.9947 SIGHA=
LOGHOURMAL MU= 5.2085 ° SIGHA=
GAHIMA ALPHA= 4.0360 BETA=
WEIBULL RHO= 2.0541 DELTA=
EXTREME-1 xI= 140.21%¢ ETA=
EXFONENTIAL THETA=  207.9947
SELECTION CRITERIA
H=1.0 H=0.5
HORMAL 0.2151 0.1506
LOG HORNAL 0.164% 0.1453
GALIHA 0.177% 0.1390
HEIBULL 0.1a8s6 0.1375
EXTREHE TYPE-1 0.1713 0.1401
EXPOHENTIAL 0.3122 0.3251

&/7

77.30
245,80

CONF, INT.( 21

-0.450

111.3493
0.5278
51.5146
235.9769
78.3816

H=0.25

0.1074
0.1359
0.1099
0.1021
0.1207
0.2651

/8

167.00
155.30

8/9

169.00
2¢3.30

$/0

108.00
128.50



1900
1910
1920
1930
19490
1950
1940
1970
1980

0/1

84.20
18,80
56.60

(67) NOOITGEDACHT DAH. XIRO1.

DATA. {10xwg tend),

172 273 3/4 4/5 576
10.10 33.00 31.40 61,20 9.30
37.80 32,10 173.00 149,00 165.00
18.00

CORRELATION ANALYSIS.
LAG  CONF. INT.11)  CDRRELATION
1 0.418 0.365
UMIVARIATE HODEL PARAMETERS.
NOEMAL MU= 61.0818  SIGMA=
LOGNORMAL M= 3.8277  SIGMA=z
GAMHA ALPHAZ  1.9075  BETA:
WETBULL RHO= 1.4035  DELTA=
EXTREME-1 x1= 41.1177  ETAs
EXPOMENTIAL THETA=  61.0818
SELECTION CRITERIA
H=1.0 H=0.5
HORMAL 0.1675 0.1588
LOG NORMAL 0.1299 0.1190
GAMMA 0.1332 0.1114
WEIBULL 0.1259 0.1055
EXTREME TYPE-1 0.1436 0.1222
EXPOMENTIAL 0.1806 0.2091

&6/7

69.90
26.20

COMF. INT.I 2)

-0.418

47.4836

0.7976
32.0226
67.4763
31.0773

H=0.25

0.1448
0.1128
0.0861
0.0842
e.a900
0.1815

1/8

78.4¢
41.60

8/9 9/0
92.20 €5.00

12.00 59.09
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PREFACE

This report is part of a larger study on the occurrence
and severity of drought in South Africa. 1In so far as
various aspects of the study may be of interest to re-
searchers and practitioners who are not specifically con-
cerned with drought, it was decided to separate the
results of the research into three self-contained reports.
Naturally this has led to some repetition but it is hoped
that this disadvantage is outweighed by making the methods
and results more conveniently accessible to a wider
audience.
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1. INTRODUCTION

There are at least two good reasons why it is important to
develop methods of assessing the risk of deficiencies in
streamflow. Firstly streamflow constitutes the inflow to
reservoirs whose storage levels during times of drought are
a matter of national concern. The annual inflow to most
reservoirs in South Africa varies so much from year to

year that it is obviously inadequate to base water re-
sources planning on only the average inflow; the risk of
deficiencies simply has to be taken into account.

Secondly as the integral of spatial catchment processes,
with rainfall as the driving force, streamflow constitutes
a direct measure of spatial drought. The spatial corre-
lation structure of rainfall particularly on a seasonal
basis is extremely difficult to adequately reproduce in

a model. Although theory for this type of model is avail-
able {its practical application, for example the simulation
of spatial daily rainfall, is unrealistic at the present
time. The problem involves the estimation of more para-
meters than is feasible with present methodology and with
the available data base.

The study of droughts in terms of duration, magnitude

(mean deficit) and severity (maximum deficit) is one of the
most neglected aspects of engineering hydrology. Particu-
larly little attention has been directed towards the
quantitative assessment of drought risk compared to, say,
the massive body of literature accorded to the study of
extreme-values such as floods and storm rainfall. No valid
methodology for the frequency analysis of drought is
generally available and stochastic models used to generate
event series fail to accurately reproduce historical
critical periods (Askew et a2 1971) unless the appropriate
generating model is very carefully identified. VYevjevich



(1967) applied the statistical theory of runs to drought
analysis,but little if any of this approach has found its
way into standard hydrological analysis. This is largely
confined to the examination of flow-duration curves

(NERC 1980) or the identification of a frequency model
for regional analysis. In the latter case Eratakulan
(1970) used moment-ratio diagrams to select between com-
peting univariate models but such a procedure fails to
associate sufficient weight to the appropriate portion of
the distribution function, that is the lower tail.

The statistical problems associated with drought analysis
are fairly complex since a drought, unlike a flood or a
storm, is not an "instantaneous" event. It has a dura-
tion and a critical deficit associated with each level of
risk. One needs, therefore, to consider not only modelling
a simple sequence of random variables, such as the annual
sequence of inflows to a reservoir, but further to consider
the distribution of sums of these varjables, for example
the 2, 3, 4,... year total inflow volume, and the distribu-
tion of these sums over, say,an operational horizon of
interest such as 5 years. Statistical models which accommo-
date all of these requirements are in fact available, but

they can be complex and analytically intractable. In
general, one has little choice but to resort to Monte Carlo
methods. In this respect this report offers no new
alternative.

The two main issues which arise when one attempts to answer
questions by statistical means are the choice of model and
the accuracy of the estimates. A substantial proportion



of the effort which went into the research described in
this report was devoted to developing a statistical theory
for model selection, a subject which is not adequately
covered in existing statistical literature. The details
of this theory are discussed in Appendix 2. The purpose
of concentrating on this particular aspect of the overall
project is that, as with other applications which involve
the use of statistical models, so here one's estimate of
the risk associated with a given event will vary consider-
ably if different models are fitted to the historical
record. In the final analysis the accuracy of one's esti-
mates is directly dependent on the accuracy of the model
and therefore on the quality of one's model selection
technique, '

The available historical data records are typically quite
short {for the purpose of assessing drought risk) and con-
sequently one would expect estimates to be accordingly in-
accurate. Any realistic assessment of risk must take
account of potential unreliability of the estimates. The
analytical derivation of confidence limits or even standard
errors for the estimates which we need here is, except for
a few special models, hopelessly complex. We propose

that this problem can be solved by using something of a
statistical innovation - the Bootstrap technique.

The proposed approach is adventurous and somewhat contrary
to much of the direction of current statistical hydrological
research and method. This has to an increasing degree
moved forward in terms of theoretical developments based

on classical statistical theory, but the practical applica-
tion of these achievements has been minimal because of
their mathematical complexity and the specialist skills
needed to implement them. Our intention is to illustrate

a scheme for the probabilistic analysis of annual and
monthly streamflow which,although computer intensive,



requires no specialist mathematical skills to comprehend.
The methods have been applied to extreme storm rainfall
{(Zucchini and Adamson 1983) and have considerable potential
in the field of hydrology in general,

The traditional hydrological measure of risk is the return
period, i.e. the reciprocal of the probability that a

given event will take place in any given year. For some of
the questions which we consider the return period is an
inappropriate measure of risk, and we will simply use pro-
bability instead. 1In fact one of the points which we wish
to emphasise in this report is that there is a broad
diversity of design and operational questions which can be
proposed, and that the risk of deficiencies in streamflow
can be elaborated beyond the simple assessment of the
return period associated with a particular event. Our
purpose here is to demonstrate how the proposed methodology
can be applied to answer a variety of questions which may
be of interest; the four discussed in Chapter 2 should be
regarded as examples and not a complete 1list.



2. FOUR QUESTIONS OF INTEREST

In a drought analysis several questions need to be asked of
the data., We will consider the follaoawing four:

(1) What is the probability that the streamflow in a
given year will be less than ‘'x' units?

(I1) What is the probability that the total streamflow
over 'm' g<iven years will be less than 'x' units?

(III) Given a time horizon of 'h' years, what is the
probability that the lowest streamflow in the 'h'
years will be less than 'x' units?

(1v) Given a time horizon of 'h' years, what is the
probability that the lowest consecutive ‘m'-year
total streamflow will be less than 'x' units?

One can of course invert the questions and inquire of the
streamflow 'x' associated with a given probability ‘'p’.
Questions I and II are probably most pertinent to reser-
voir design whilst III and IV are more relevant to opera-
tional considerations over a fixed interval of time. It
is assumed that we have a sequence of annual streamflow
totals Xqs XgsesesXp which can be regarded as realisations
of independently and identically distributed random vari-
ables. As can be seen by examining the estimates in
Appendix 3, the annual serial correlation coefficient for
practically all the rivers in South Africa is not signifi-
cantly different from zero. From the point of view of
persons having to assess drought risk this is indeed
fortunate, because otherwise rather more sophisticated
methodology would be regquired to answer the above questions.



In theory all four questions can be answered if one knows
F(x), the common distribution function of the annual stream-
flow, but even if this is the case it is rarely possible to
provide simple computational formulae. Suppose, however,

that F(x) were known then the answer to (I) is simply F(x}
jtself., Question 1] is a little more tricky since one has

to derive the distribution function, Fm(x), of the sum of m independ-
ently and identically distributed random variables. Formally,
one has that:

Folx) = JJJ e J flty) flty) o0 f(t)) dty dt, ... dt]

- . om
where R = {(t;, t,, ty cou tp) ¢ Iy, ty < x} and

f(x) is the probability density function corresponding to
the distribution function F(x).

For certain families of distributions, that is those that
enjoy the so-called “reproductive property” (notably the
Normal and the Gamma), Fm(x) can be evaluated explicitly,
but for others (the Log-Normal, the Weibull, the Extreme
Value etc) this ‘is not possible., McMahon and Srikanthan (1982) did in
fact find the Gamma model and its reproductive properties
appropriate to the computation of Fm(x) for a selection

of Australian reservoir inflows. A similar study for South
African reservoir inflows by the authors found the maodel

to be inappropriate and one is left with the fact that for
a number of well known distributions Fm(x) is simply not
available in any utilitarian form. For large m one can of
course apply the Central Limit Theorem and approximate
Fm(x) using a Normal distribution. In practice though the
values of m of interest are rather small, typically

m=2, 3, 4, 5, and so such a approximation would be in-
accurate, particularly in the tails of the distribution.



To answer Question II then, one has to resort to using
numerical techniques to evaluate Fm(x) or, more simply, to
using Monte Carlo methods. In the latter case one simply
generates many sequences of m random numbers having the
distribution function F(x) and approximates Fm(x) by the
empirical distribution of the sums of the generated
sequences.

Turning now to Question III, if F(x) is known then the
answer is easy to come by. The distribution function
Fi,h(x)' of the smallest of h independently and identi-
cally distributed random variables is given by:

Fppx) =1 - (1 - F(xNh.

Finally, in order to answer Question IV, one needs Fm.h(x)'
the distribution function of the minimum total of m conse-
cutive random variables in a sequence of length h, In all
but a few very special cases Fm.h(x) is very complex and

not available in closed form. One has little alternative
but to use Monte Carlo techniques to generate sequences of
length h, compute the totals over m years and find the
minimum, The empirical distribution function of the minimum
converges to Fm,h(x)‘

-

Summarising, the answers to the 4 questions posed above are
simply:

(I)  p = F(x) (I1) p = Fplx)

(I11) p = F1’h(x) (Iv) p = Fm,h(x)

The answers to the inverse questions, i.e. if we wished
to enquire of the streamflow, x, associated with a
probability, 'p, of not being exceeded, are then



(' x = F'(p) (1) x = £ (p)

(1 x = £l (p) (v)* x = Frl(p).

These distribution functions are, of course, unknown. The
four steps required to compute the required answers are:

1. Select a suitable model for the distribution function
of the annual streamflow. The selection procedure
which was used for the 60 rivers analysed in Appendix 3
is discussed in Chapter 3. Details of the theory of
this and of univariate model selection in general are
given in Appendix 2.

2. Estimate the parameters of the selected model. Detailed
algorithms for computing maximum likelihood estimates
of the parameters are given in Appendix 1. The para-
meter estimates for the rivers considered in Appendix 3
are also given there,

3. Use the estimated distribution function, E(x), to derive
an esgimate of the distribution function of interest,
e.g. F2,5(x)‘ As mentioned this is carried out by
simulation (see Chapter 5). Algorithms to generate ran-
dom deviates for the six distributions which are con-
sidered here are given in Appendix 1.

4. Replace the distribution function of interest by its
estimator, e.g. replace F, 5(x) by Fy 5(x) in 1v,
above, to obtain the desired estimate (see Chapter 5).

5. Apply the Bootstrap method to compute estimates of the
confidence 1imits for the answer obtained in 4.
Methods to do this are discussed in Chapter 4,



Steps 1 and 3 are computationally quite intensive but

still well within the capababilities of a typical desk-

top microcomputer. Step 5 involves the repeated applica-
tion of steps 2, 3 and 4 and as a rule can only conveniently
be fully carried out on a larger computer. Where only a
microcomputer 1is available we nevertheless strongly recom-
mend that step 5 be carried out even if only 10 Bootstrap
repetitions are feasible. Even an inaccurate assessment of
the variation of the final estimate is far better than none.
The main factor determining the computing time is the model
which is selected at step 1: the exponential distribution
requires the least time and the gamma distribution the most
(for questions of the type III and IV).



10.

3. MODEL SELECTION

For the purposes of illustration, and for the analyses
summarised in Appendix 3, six families of distributions
are considered:

Normal : f(x) = /Efj; e~ (x-u)?/20?
Log-Normal : f(x) = /?Tlc_i' e~(8n x - u)*/20% ., x>0
a=-1 _-x/8
Gamma : f(x) = % ae . x >0
B I'(a)
Exponential : F(x) = 1 - e~Xx/® , x>0
- P
Weibull : F(x) =1 - e (x/8) . x >0

Extreme (Type I) : F(x) = exp(-e'(x's)/”) y x>0

The theory discussed in Appendix 2 is not restricted to
these particular families. In fact the theory can be used
to compare a parametric model of the above type to
"distribution-free" models such as those based on the
empirical distribution function using, for example, the
Weibull plotting positions. We have not included the dis-
tribution-free models in the above list of candidates
because for the typical sample sizes which are available
and for the types of distributional shapes which arise in
the application considered here, they would very seldom
indeed come into contention for selection.

It is quite natural to expect that each model applied to a
sample of total annual flows will lead to different answers
to our questions. It is therefore of singular importance
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to select with great care between competing models. The
"true" or operating distribution, F(x), is only approximated:
firstly because F(x) is extaremely unlikely to belong to the
fitted family,and secondly even if it did the parameters
are unknown and can only be estimated on the basis of a
finite (usually small) sample. Proper model selection
needs to take account of both sources of error and the
object is not to find the operating model, but rather the
most appropriate approximation for the situation at hand.
In our application our attention is directed at the low
annual inflows to a reservoir, that is at the lower tail of
the distribution. A measure of the discrepancy between the
operating model and the approximating model which empha-
sises the fit in this region of the distribution is

A = max |F(x)d - Fe(x)dl
X

where Fe(x) is the approximating distribution function
having parameter vector 6, e.g. for the normal distribution
# = {u, 02). The selection constant d determines where the
emphasis in the fit should be placed. For emphasis in the
lower tail 0 < d <1 is appropriate. The resulting
empirical discrepancy (cf. Appendix 2 for definitions of
this and other terms) is

8,(8) = max I{i/(n+1)}d - Fe(xi)dl
1<i<n

vhere Xgs XgseaesX, are the observations. This in turn

leads to the following criterion

C = E. max I{i/(n+1)}d - F»(Xi)dl
F 1<i<n 8

where é is the maximum 1ikelihood estimator of 6.

The evaluation of C is carried out by the Bootstrap method.
(As mentioned above we will again use the Bootstrap method to
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estimate confidence limitsy here we use it for the purpose
of model selection.) The procedure to compute C is as
follows:

Step 1: Select a random sample of size n {(with replace-
ment) from the original observations
{xl, xz,....xn} to obtain a Bootstrap sample

{XT’ XE,....X;]‘.

Step 2: Compute the maximum likelihood estimate o of the
parameter vector 8 using the Bootstrap sample as
the data.

Step 3: Compute C* = max I{il(n+1)}d - F. &.)dl
1<i<n g*

Step 4: Repeat Steps 1 to 3 a large number of times, keeping
a record of the criteria C*.

As the number of Bootstrap iterations increases so the
average of the generated values C* converges to the required
criterion C. 1In practice about 100 iterations are suffi-
cient to yield reasonable accuracy.

The above procedure is repeated for each family of models.
That family which leads to the smallest value of C is
selected as most appropriate.

In Appendix 3 the values of the criteria corresponding to
d = 13;d = 5;and d = 0,25 are given for 60 rivers and for
each of the 6 distribution families considered here, The
results for three rivers are discussed in Chapter 6.

To save computing time one can eliminate, at the very
beginning, those families which obviously do not fit the data.
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4, CONFIDENCE LIMITS

Any answer to the four questions proposed above are esti-
mates which are themselves subject to sampling variations.
We need therefore to assess the accuracy of our answers by
attaching confidence 1imits to them, Efron {1982) gives
methods of estimation of confidence 1intervals pertinent

to our situation in which the statistical accuracy of our
estimate cannot be found analvtically. This is the so-called
Bootstrap algorithm which can be implemented as follows:

Suppose that a model has been selected for our inflow data
on the basis of which, for a given x (inflow), we have
estimated a probability p. Then:

Step 1 : Select a random sample of size n (with replace-
ment) from the set {x1. xz....,xn} to obtain a

Bootstrap sample {x}, x;,...,x;}.

Step 2 : Fit the same model as selected for the original
data to the Bootstrap sample using the same
estimation procedure and use this to gbtain an
estimate of the required probability p¥*.

Step 3 : Repeat Steps 1 and 2 a large number of times,
keeping a record of the estimates p*.

As the number of Bootstrap iteraEions increases so the
sample percentage points of the p* converge to estimates
of the corresponding percentage points of p. For example,
the estimates of the 90% confidence interval of p based on
1000 Bootstrap realisations would be Ehe interval between
the 50th and 950th largest values of p*.
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We recommend the following refinement to the above method
which we might term “the smooth Bootstrap". Instead of
sampling from the observed flows as in Step 1, that 1is
sampling from the empirical distribution, one can sample

from a smoothed version of this distribution. 1In the ex-
amples to follow the smooth Bootstrap was used. The observed
inflows Xgs XpseoessX Were plotted against their Ueibull plotting
positions w, = i/{n+1). A polynomial

Xy Q(wi) = o, + ogWg 4 a2w§ S a£w1£

was fitted to these points by the method of least squares
where the degree of the polynomial was sufficiently high
(in the examples £ = 9) so as to fit the observed points
fairly closely. Particular care is needed to ensure that
the fitted polynomial, Q{w), leads to reasconable values in
the neighbourhood of w = 0 and w = 1, Step 1 in the Boot-
strap algorithm is then replaced by:

Step 1* Generate n uniformly and independently distributed
random deviates Ugs Upseoaeyl and set

x; = Q(ui), i = 1,2500.4N,

n

This modification is particularly recommended when only a
small sample is available, as is often the case in South
Africa. It enables one to augment the information available
in the sample with one's judgement about how the distribu-
tion of the streamflow is likely to behave. For sample sizes
of about 50 or more this refinement is unlikely to lead to
substantial improvement in accuracy and we recommend that the
original algorithm be used because it involves less compu-
tation,

For completeness we also_give the algorithm to compute the
confidence "interval for x for a given p. It is a straight-
forward modification of the above algorithm,
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Step 1: Select a random sample of size n (with replace-
ment) from the set {xi. xz.....xn} to obtain a
Bootstrap sample {x;. xE....,x;}.

Step 2: Fit the same model as selected for the original
data to the Bootstrap sample using the same
estimation pfocedure and use this to obtain an
estimate of x*,

Step 3: Repeat Steps 1 and 2 a large number of times,
keeping a record of the estimates of x*.

As the number of Bootstrap iteraEions increases so the
sample percentage points of the x* converge to estimates
of the corresponding percentage points of x.
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5. ESTIMATING THE RISK OF DEFICIENCIES

We now give in more detail the requirements to answer our
four questions. We assume that the model F(x) for F(x)
has been selected.

Question I

To estimate the probability that the flow in a given year
will be less than x units we simply use

(1) p.= F{x).

In this and in all other cases which follow, the Bootstrap
algorithm is then used to estimate the confidence limits
for ﬁ. To estimate a deficient inflow associated with a
given risk p one uses:

(1) x=FYp

Detailed algorithms to evaluate E'I(p) for the distributions
discussed here are given in Appendix 1.

Question 11

For the Normal distribution, the distribution of the sum

of m independently and identically distributed N(u,c?)
random variables is also Normally distributed as N{mu,mo2),
Similarly for the Gamma distribution, G(a,B8), the sum is
distributed as G(ma,B). The Exponential distribution is

a special case of the Gamma with a = 1 and so the sum of m
independently and identically distributed Exponential
variables, E(A)}, is distributed as G{m,x). It follows that
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for these distributions once F{(x) has been fitted an
estimator for Fm(x) is immediately available,

For the Log-Normal, Weibull and Extreme Value Type 1 dis-
tributions, however, the distribution of the sum is not
known. Here we recommend that Monte-Carlo methods be used:;

Step 1: Generate a random sample x;, XpseessXxg from E(x)

and compute y' = xi + xé + ... + xé.

Step 2: Repeat Step 1 a large number of times and keep a
record of the generated y'.

(For details of the generating algorithms see Appendix 1.)
The empirical distribution of the y' converges to the dis-
tribution of the sum of m random variables which have the

distribution function F(x). The required estimate is
then given by:

(1) p = Fplx).

The deficient streamflow corresponding to a given risk p
is given by:

(1) x = Fl(p).

Question III

Here 51 h(x) is a simple function of E(x):
Foop(x) =1 - (1 - Fx)P
1,h

and the required estimates are given by
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Question IV

Here there is little choice but to use Monte-Carlo methods:

Step 1: Generate a random sample xi. xé,...,xﬁ from
F(x), and set

u
| |
e
+
a3
]
—
o
s -

y3 ) j = 1,230--|h'm+1 H

/]

z' = min (yi, yé....,yﬂ_m+1).
Step 2: Repeat Step 1 a large number of times and keep a
record of the z'.

The empirical distribution of the z' converges to Fm,h(x),
the distribution of the minimum m-year flow in h years,
given that the flows are distributed as F(x). The required
estimates are then given by

(1v) Fm,h(x) and

>
]

(1v)* x = F oM o)
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6. MONTHLY STREAMFLOW GENERATION

The above analysis is on an annual basiss however, for the
operation of reservoir storage systems in a drought situa-
tion,decisions need to be made at least on a monthly basis.
In this chapter we demonstrate how the above methodology
can be expanded to deal with monthly flows. The Method of
Fragments (Svanidze 1980 ; Huynh Ngoh Phien and
Vithana 1982 ) has been found to be capable of reprodu-
cing the mean, standard deviation, skew and serial correla-
tion* of monthly streamflow sequences and is used here.
Essentially we generate annual flows as before, find the
historical annual flow which is nearest in magnitude, and
disaggregate the generated annual total in direct pro-
portion to the corresponding historical monthly sequence.

To assess drought risk over an operational horizon of say

h years one generates a large number of h-year sequences

of monthly flows and accumulates on a monthly basis. The
percentiles of the distribution of these running totals

are then plotted. The 5% percentile curve, for example,
gives the cumulative monthly inflow associated with a 5%
risk of occurrence. It is important to note that these
percentile curves can only be used to assess risk from the
given time origin - they cannot be entered at any arbitrary
subsequent time since no cognisance of prior information is
taken. This is a weakness of the method, but the practical
problem in South Africa is simply this : that inflows to

*In fact the serial correlation structure is only partially
preserved. The serial correlation between the last month in a
year and the first of the next year produced by this method is
zero, whereas in reality it will be different from zero.
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reservoirs are highly seasonal and operational consider-
ations require an assessment of the risks associated with
possible m-seasonal inflow generally from 1 October.

Figures 1 and 2 illustrate such curves for the Vaal and
Midmar dams. These graphs are of course based on average
initial conditions. In theory one could account for ante-
cedent flow,and models of varying complexity which can do
this are available, However one would then need to produce
a set of curves for each season and for each possible
initial condition. If one wishes to do this then an alter-
native method of generating monthly sequences would have

to be found.

Figure 1 shows the percentiles of the distribution of cumu-
lative monthly inflows into Vaal Dam. Historically the
two most severely deficient inflow sequences occurred
during the early nineteen thirties and during the present
drought,which is generally regarded as having started in
the 1878/79 season. The three-season inflow starting

in October 1930was more severe than the initial 36-month
sequence of the present drought. However the-total 60-
month inflow of the present drought is less than half of
the correspanding inflow in the earlier drought and is
associated with a probability of less than 1%.

September 1980 marked a critical point in storage level at
Midmar since the reservoir was considerably drawn down.

The focus of interest here was to decide on suitable re-
strictions on consumption., Fiqure 2 starts at this point
in time and provides a means of assessing the risk of
further deficiencies in inflow over the ensuing three
seasons, It can be seen that the actual sequence of events
was particularly severe. At no stage over the 36-month
period did the cumulative inflow exceed the 20% percentile
level and it ended below the 2,5% level.



FIGURE 1

Vaal Dam: Simulated
the cumulative month

non-exceedance percentiles from 1 October over a 60-month period for
ly inflows. The solid line represents October 1978 to September

1983, the dashed 1ine October 1930 to September 1935,

e

200C0:

IE00C

t

12000

19000

VAAL DAM.

INFLOW, 1 m

MONTHS

%@%&Q%ﬁ@&@%&%&@%$

"12



FIGURE 2

Midmar Dam: Simulated non-exceedance percentiles from 1 October over a 36-month period for
the cumulative monthly inflows. The solid line represents October 1980 to September 1983,
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7. EXAMPLES OF APPLICATION

The annual sequence of inflows to three South African
reservoirs are considered to illustrate the proposed method
of drought analysis. Vaal Dam,Midmar and Kalkfontein
illustrate three distinct types of empirical density func-
tions with regard to the distribution of their sequences

of annual inflows, from a 'J' shape at Kalkfontein to an
almost symmetrical density at Midmar. These data are given
in Table t and the maximum likelihood estimates for the
parameters of each of the six distributions considered are
given in Table 2.

The selection criterion (cf. Chapter 3) for each distri-
bution and for various values of d are given in Table 3.

For Yaal Dam the Log-Normal distribution leads to the lowest
criterion for each value of 'd' and consequently this dis-
tribution was selected to represent the flows. For Midmar
the Extreme Value {(Type 1) distribution leads to the
smallest criterion for d = 1 and d = 0,5, whereas for

d = 0,25 the criterion for the Gamma model is a little lower.
Because the difference is small the Extreme Value distri-
bution was selected in this case. For Kalkfontein the
choice is a little more complex. At d = 1 the Log-Normal
distribution is the obvious choice, but at d = 0,5 and

d = 0,25 the Exponential distribution becomes a better can-
didate. As we are mainly interested in the low flows more
weight is given to the criterion at d < 1 and so the
Exponential model is chosen. However, it is worthy of note
that for Kalkfontein none of the six univariate models
considered leads to a particularly good fit.

Having completed the process of model selection for the
annual inflows to each reservoir, we now generate a stochastic
sequence on each model and use the explicit algorithms pre-
sented earlier in order to answer our four questions. The
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results for each dam are presented in Tables 4 to 9.
These tables are completed by adding the 90% confidence
limits to our estimates using the "smooth" Bootstrap
procedure.

A detailed examination of the tables reveals some parti-
cular features, Firstly, the confidence limits are not
‘symmetrical about our estimates and are as should be ex-
pected. The asymmetry of confidence intervals is naturally
influenced by the shape of the distribution function about
a particular quantile.

The confidence 1imits are hauntingly wide but reflect the
precisfon with which the estimate of a particular quantile
is known and the considerable qualification of results that
is required of the engineering hydrologist when making such
estimates. We do at least know in our case just how good
these are and this information should be incorporated into
any subsequent analysis.

Our percentile estimates in Tables 4 to 9 were drawn from
a generated sequence of 20 000 years for each reservoir
and the confidence limits estimated from 300 replicates of
length n (historical sample size). It is of obvious
interest to know just how good our Bootstrapped estimates
of the confidence limits are. Stedinger

(1983) gives exact confidence limits for design events
drawn from a Log-Normal model, Table 10 reveals that for
Vaal Dam (where the Log-Normal was the selected univariate
model) our result is comfortably close to the exact result
and inspiresauthenticity to those where the exact result
is not in fact available.

Using the material contained in the tables we are now in a
position to pose some specific questions and provide answers
and confidence (in this case the 90% interval) in our answers.
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What is the probability that over the next water
year more than the mean annual inflow will dis-
charge into each of the 3 reservoirs?

Vaal (x 1 975.10%m*) (27%) 38% (52%)

Midmar (x 152.10%m?) (22%) 42% (56%)

Kalkfontein (X

164.10°m3) (27%) 36% (45%)

For each reservoir what is the total inflow volume
over the next two water years that can be expected
such that there is only a 10% chance of failure to
achieve this unknown sum (in units of 10°m3)?

Vaal {1 593) 1 783 (2 464)
Midmar ( 155) 185 ( 221)
Kalkfontein ( 25) 88 ( 101)

For each reservoir let Q be'the minimum flow in
the next 5 years. Which value, q, is such that
the probability that Q is less than q is 20% {(in units

of 106m3)?
Vaal (361) 457 (587)
Midmar ( 33) 53 { 80)

Kalkfontein { 0) 6,0 (14,7)



(1v)!

(IV)

(111)

26.

Consider an operating horizon of 10 years for
Kalkfontein dam and let q be the minimum 3-year
inflow which will occur. What levels of q are
associated with 5%, 10% and 20% risks of deficiency?
Here h = 10, m = 3 and from Table 9 we see that the
required levels are (in units of 10%m3):

risk estimate estimated 90%
confidence interval

5% 84 (57, 130)

10% 95 (73, 161)

20% 119 - (86, 190)

Over the next four water years at Midmar dam a total
inflow of not less than 400.10°m? is required. What
i{s the probability that this requirement will be
met?

Here h = 4, m = 4 and B = 97% with (90%) confidence
1imits (80%, 99%). :

Operation considerations at Midmar require a minimum
assured one year inflow of 50.10%m® within the next

four-year period. What is the probability that this
is met? .

Here h = 4, m = 1 and p = 86% with (90%) confidence

interval of {(63%, 95%).

It is also possible by using the methodology described here
to give an estimate of the probability that the last two
conditions concerning inflow into Midmar are simultaneously

met,

and to estimate a confidence interval for this

probability.
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8. CONCLUSIONS

The diversity of complex problems associated with the study
of droughts have to date very largely been approached from
a qualitative point of view. The question of drought defi-
nition is a well known case in point where the precise
level of deficient rainfall, storage or river-flow is a
function of climate and major usage. Thus, there are a
vast number of drought definitions pertinent to particular
climates, crops and seasonal patterns.of demand. Where
quantitative analyses of drought have been attempted they
have been found to be severely restricted by the lack of
any precise analytical technique with which to tackle the
questions that are undoubtedly of interest.

Monte Carlo techniques allow us to address these complicated
problems and to draw statistical inferences. Furthermore,
the Bootstrap algorithm allows us to assess the accuracy

of our result. We have posed four specific questions with
respect to the risk of deficient annual inflow and sequences
of them to a reservoir and have shown how these risks can be com-
puted given an operational horizon of interest. The pro-
vision of extensive tables for each reservoir has per-
mitted us to illustrate how a further broad diversity of
design and operational questions can be proposed and how

the concept of risk of deficient inflows to storage systems
can be elaborated beyond the simple notion of "the T-year
event",

The scheme proposed above does require a good deal of com-
puting. However it must be kept in mind that data in such
sftuations is scarce, and expensive to collect, code and
distribute. Furthermore one has to consider the potential
cost of the consequences of incorrect decisions being taken
because they are based on unrealistic estimates of risk.
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Compared to these the computing cost is negligibly small
and there is no excuse for not using the best available
estimation methods.



29.

TABLE 1

Water Year (1)} (2) (3) Water Year (1) (2) (3)

1912/13 57 1947/48 1101 150 717
1913/14 58 1948/49 642 87 40
1914/15 363 1949/50 1939 130 385
1915/16 56 1950/51 639 142 53
1916/17 174 1951/52 1167 109 95
1917/18 46 1952/53 1951 132 67
1918/19 19 1953/54 882 119 101
1919720 554 1954/55 3510 129 335
1920/21 64 1955/56 1546 89 152
1921/22 41 1956/57 5379 313 97
1922/23 389 1957/58 3656 134 119
1923/24 765 194 1958/59 1345 237 46
1924/25 4778 748 1959/60 1449 74 35
1925/26 809 44 55 1960/61 2039 164 57
1926/27 1284 110 111 1961/62 962 126 105
1927/28 863 92 67 1962/63 1316 146 237
1928/29 1612 122 140 1963/64 1136 135 21
1929/30 2755 146 166 1964/65 2890 188 52
1930/31 779 68 114 1965/66 520 111 194
1931/32 698 84 140 1966/67 3393 208 271
1932/33 470 89 74 1967/68 597 120 38
1933/34 3302 258 474 1968/69 687 86 195
1934/35 2550 156 86 1969/70 1173 153 46
1935/36 1689 124 9 1970/71 1008 121 125
1936/37 4361 142 159 1971/72 1977 202 345
1937/38 1146 141 22 1972773 440 163 5
1938/39 3929 256 69 1973/74 2176 401 1324
1939/40 2178 179 82 1974/75 - 5727 204 53
1940/41 2535 159 168 1975/76 4803 419 492
1941/42 1039 215 74 1976/77 2395 132 48
1942/43 3598 369 334 1977/78 2367 174 6
1943/44 6864 191 82 1978/79 600 194 15
1944/45 1696 99 20 1979/80 1464 36 85
1945/46 1278 56 100 1980/81 1202 96 7
1946/47 1117 146 42 1981/82 375 86
1982/83 38

Annual inflow records (1)} Vaal Dam; (2) Midmar; (3) Kalkfontein
Note: (a) The inflows are nett volumes (10°m3).

(b) The figures for Vaal Dam include Sterkfontein.

(c) The record at Midmar prior to 1963/4 was augmented using
-annual rainfall, using the Pitman model based on monthly data.

(d) The figure for 1982/3 at Midmar represents a
projected figure at March 1983.
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TABLE 2

VAAL DAM

GAMMA a = 2,153 + 00 B = 9,174E + 02
NORMAL u = 1,975 + 03 g = 1,462E + 03
LOGNORMAL w = 7,339E + 00 o = 7,082E - 0%
EXPONENTIAL 8 = 1,975E + 03

WEIBULL p = 1,467€E + 00 § = 2,200E + 03
EXTREME-1 & = 1,353E + 03 n = 9,559E + 02
MIDMAR DAM

GAMMA a = 4,216 + 00 B = 3,594k + 01
NORMAL u = 1,515 + 02 g = 17,910E + 01
LOGNORMAL u = 4,897E + 00 o = 5,034E - 0%
EXPONENTIAL o = 1,515E + 02

WEIBULL p = 2,036E + 00 § = 1,717E + 02
EXTREME-1 £ = 1,179E + 02 n = 5,604E + 01
KALKFONTEIN DAM

GAMMA a = 9,515E + 01 g8 = 1,723E + 02
NORMAL u = 1,640E + 02 g = 2,133E + 02
LOGNORMAL u = 4,489E + 00 g = 1,145%E + 00
EXPONENTIAL o = 1,640E + 02

WEIBULL p = 3,182 - 01 § = 1,565E « Q2
EXTREME-1 £ = 8,947E + 0 n= 1,030 + 02

Maximum 1ikelihood estimates of the parameters of each
of the six distributions fitted to the annual inflow data
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TABLE 3
CRITERION C

MODEL VAAL DAN WIDMAR DAN KALRFONTETN DAH
d = 1

GAMMA 0,0993 0,0843 0,1059
NORMAL 0,1690 0,1497 0,2273
LOGNORMAL 0,0595 0,0837 0,0739
EXPONENTIAL 0,1776 0,3058 0,1129
WEIBULL 0,0987 0,114 0,0879
EXTREME-1 0,1187 0,0680 0,1628

i |

d =0,5

GAMMA 0,0896  0,0725 E 0,1190
NORMAL 0,2408 0,1367 | 0,3576
LOGNORMAL 0,0444 0,1066 0,0968
EXPONENTIAL 0,2867 0,3268 0,0780
WEIBULL 0,1389 0,1103 i 0,0949
EXTREME-1 0,1197 0,0693 | 0,2006

\

d = 0,25

GAMMA 0,1084 0,0707 0,1427
NORMAL 0,2489 0,1558 0,3450
LOGNORMAL 0,0358 0,1479 0,1231
EXPONENTIAL 0,2855 0,3152 0,0636
WEIBULL 0,1584 0,0874 0,0986
EXTREME-1 0,1395 0,0797 0,2201

Univariate model selection based on the minimisation
of the criterion 'C', As 'd' decreases so the fit of
the model at the lower tail is emphasised.




TABLE 4

P(Q) < q m=1 m=2 m=3 m=4 m=25

5% ( 333) 475 ( 598) | (1059) 1470 ( 2133)| (2049) 2646 ( 3802) [ ( 3012) 3911 ( 5172)| ( 4050) 5320 { 6950)
10% ( 454) 630 ( 754) | (1593) 1783 ( 2464) | (2741) 3133 ( 4392)| ( 3626) 4577 ( 6093) | ( 4607) 5958 ( 7817)
20% ( 655) 841 (1031)| (1927) 2247 ( 2932)| (3178) 3760 ( 4945)| ( 4217) 5361 ( 6802){ ( 5261) 6890 ( 8662)
30% ( 831) 1067 (1288) | (2241) 2655 ( 3449)| (3611) 4349 ( 5463) | ( 4857) 6043 ( 7554)| ( 6194) 7801 ( 9460)
40% (1048) 1298 (1553) | (2568) 3080 ( 3923), (3965) 4821 ( 6007)| ( 5400) 6787 ( 8041)| ( 6947} 8591 (10096)
50% (1287) 1538 (1858) | (2822) 3461 ( 4261) | (4426) 5387 ( 6489) | ( 5909) 7390 ( 9066) | ( 7464) 9428 (11451)
60% (1544) 1877 (2230)| (3107) 3960 ( 4520)) (4842) 6019 ( 7223)| ( 6384) 8092 (10082)| ( 8095) 10222 (12450)
70% (1865) 2278 (2739) | (3569) 4574 ( 5461)| (5245) 6779 ( 8082) | ( 7092) 8897 (11926)| ( 8687) 11121 (14264)
80% (2364) 2818 (3504)( (4112) 5379 ( 6651) | (6103) 7778 ( 9871) | ( 7779).10085 (12847) | ( 9733) 12560 (16847}
90% (3209) 3881 (4815)| (5003) 6698 ( 8487)] (6927) 9053 (10960) | ( 9082) 11899 (18611) | (11365) 14708 (21453)
95% (4048) 4911 (6511){ (6099) 8112 (13114)| (8620) 11433 (16493) | (10881) 13775 (23860) | (13857) 16354 (28232)

VAAL DAM : Percentiles of m-year inflow volumes with 90% confidence intervals

'ee



TABLE 5

P{Q) < q m=1 ms=2 m=3 m=4 m=25

5% (43) 57 ( 74) | (111) 155 (192) { (204) 273 (340) | (288) 391 ( 474) | (420) S15 ( 609)
10% ( 61) 72 (101) | (155) 185 (221) | (261) 309 (371) | (351) 430 {( s502) | (443) 556 { 650)
20% ( 80) 92 (121) | (184) 213 (250} | (315) 349 (411) | (420) 485 ( 558) | (540) 612 ( 705)
30% { 92) 107 (139) | (217) 244 (280) | (341) 377 (439) | (468) 524 ( 607) | (591) 661 ( 765)
40% (106) 123 (159) | (237) 267 (311) | (372) 412 (481) | (487) 556 ( 612) | (615) 709 ( 801)
50% (118) 139 (180) | (262) 290 (340) | (394) 443 (508) | (510) 591 ( 680) | {662) 760 ( 867)
60% (132) 157 (200) | (280) 314 (366) | (414) 472 (557) | (550) 640 ( 722) | (680) 791 ( 889)
70% (150) 177 (236) | (305) 343 (403) | (440) 508 (599) | (573) 679 ( 764) [ (709) 850 ( 962
80% (167) 202 (270) | (322) 378 (434) | (466) 555 (611) | (603) 727 ( 836) | (744) 890 (1002)
90% (188) 246 (317) | (357) 437 (497) | (509) 639 (700) | (626) 790 ( 882) | (801) 981 (1245)
95% (211) 285 (354) | (378) 488 (541) | (523) 661 (751) | (700) 878 (1171) | (827) 1041 (1473)

MIDMAR : Percentiles of m-year inflow volumes with 90% confidence intervals

‘€t



TABLE 6

P(Q) < q m=1 m=2 m=3 m=4 m=25

5% ( 0,00 8,4 (10,2) | ( 3) 57 ( 8) |(25) 135 (149) | ( 98) 227 ( 256) | ( 140) 326 ( 359)
10% ( 7,7) 16,9 (21,3) | (25) 88 ( 101) | (130) 179 ( 248) | (138) 283 ( 326) | ( 221) 411 ( 495)
20% (28,1) 37,4 (42,8) | ( 60) 133 ( 153) | (201) 25 ( 340) | (290) 377 ( 521) | ( 343) 514 {( 700)
302 ( 46,6) 57,3 ( 70,0) | (141) 178 ( 214) | (255) 324 ( 463) | (377) 452 ( 670) | ( 441) 593 ( 819)
40% ( 60,2) 83,2 ( 98,0) | (202) 230 ( 391) | (311) 377 ( 560) | (415) 526 ( 728) | ( 526) 682 (1004)
50% ( 86,0) 116,0 (149,0) | (261) 285 ( 463) | (372) 440 ( 613) | (512) 606 ( 875) | ( 606) 770 {(1206)
60% (119,0) 153,0 (188,0) | (314) 339 ( 520) | (433) 519 ( 719) | (577) 689 ( 997) | ( 680} 869 (1460)
70% (155,0) 198,0 (244,0) | (371) 496 ( 611) | (491) 593 ( 859) | (612) 767 (1157) | ( 762) 970 {1693)
802 (212,0) 266,0 {332,0) | (420) 491 ( 754) | (570) 711 (1011) | (707) 912 (1376) | ( 869) 1126 (1978)
90% (301,0) 379,0 (477,0) | (503) 630 (.961) | (633) 870 (1432) | (829) 1147 (1655) | ( 904) 1329 (2311)
95% (389,0) 494,0 (630,0) | (721) 771 (1160) | (719) 1098 (1782) (992) 1322 (2019) | (1137) 1561 (2747)

KALKFONTEIN : Percentiles of m-year inflow volumes with 90% confidence intervals
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TABLE 7

h=2 h=3 h=4 h=5 h =10
P(Q<q) m=1 m=1 m=1 m=1 m=1

5% | (259) 395 ( 486) | (221) 340 (451) | (190) 313 (429) | (167) 293 (408) { (151) 250 (396)
10% | (309) 482 { 570) | (274) 425 (520) | (239) 390 (486) | (206) 360 (444) | (191) 305 (413)
20% | (497) 632 ( 762) | (466) 556 (711) | (421) 495 (662) | (361) 457 (587) | (329) 370 (559)
30% | (580) 765 ( 878) | (519) 650 (756) | (457) 582 (690) | (419) 540 (662) | (370) 425 (621)
40% | (706) 870 ( 988) | (625) 750 (874) | (555) 660 (791) | (492) 612 (733) | (42%1) 475 (640)
50% | (877) 1045 (1109) | (781) 862 (977) | {679) 755 (872) 7 (600) 694 (808) | (461) 530 (689)

P(Q<q)

h=3
m=2

4
2

=2
Mot

m

h

5
m=2

10
2

=
ron

5%
10%
20%
30%
40%
50%

( 831) 1225 (1721)
( 990) 1480 (1961)
(1287) 1860 (2301)
(1542) 2175 (2692)
(1881) 2475 (3007)
(2211) 2805 (3462)

( 760) 1175 (1645)
( 864) 1355 (1804)
{1089) 1665 (2130)
(1377) 1925 (2483)
(1621) 2170 (2863)
(1931) 2400 (3198)

( 688) 1115 (1519)
( 750) 1275 (1662)
( 944) 1535 (1927)
(1245) 1765 (2246)
(1460) 1975 (2629)
(1699) 2175 (2888)

( 565) 950 (1366)
( 669) 1085 (1581)
( 821) 1270 (1762)
(1000) 1415 (1964)
(1308) 1565 (2108)
(1463) 1705 (2511)

P(Q<q)

h
m

4
3

h
m

5
3

h =10
m=3

5%
10%
10%
30%
40%
50%

(1990) 2360 (2602)
(2463) 2720 (2975)
(2822) 3300 (3499)
(3303) 3790 (3961)
(3727) 4250 (4318)
(3965) 4670 (4821)

(1883) 2200 (2502)
(2295) 2530 (2882)
(2481) 3040 (3333)
(3006) 3450 (3824)
(3390) 3870 (4270)
(3549) 4230 (4598)

(1511) 1920 (2320)
(1854) 2150 (2545)
(1921) 2460 (2820)
(2490) 2730 (3261)
(2554) 2970 (3487)
(2843) 3190 (3581)

VAAL DAM : Percentiles of the m-year minimum annual inflow over a time horizon h years

(with 90% confidence intervals)
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TABLE 8

h=2 h=3 h =14 h=25 h =10

P(M) m=1i m=1 m=1 m=1 m=1
5% (28) 44 ( 68) { 23) 36 { 61) i 22) 35°( 57) s 19) 32 ( 50) i 18) 25 ( 44)
102 (39) 56 ( 83) 32) 46 ( 70) 30) 45 ( 66) 26) 41 ( 65) 24) 32 ( 60)
20% (58) 72 ( 96)| ( 42) 63 ( 91) f 38) 57 ( 86)| ( 33) 53 ( 80)| ( 29) 42 ( 72)
30% (71) 89 (118)] ( 56) 74 ( 99) 47) 66 ( 98)| ( 44) 62 ( 893)| ( 37) 50 ( 83)
40% (85) 102 (128)| ( 63) 83 (113)| ( 55) 75 (103)( ( 49) 70 (100} | { 43) 56 ( 94)
50% (93) 106 (136)| ( 74) 93 (127)| ( 60) 83 (111)| ( 53) 77 (106)| { 49) 62 (10%)

h =3 h=a h=5 h =10

P(M) ms=2 m=2 m=2 m=2
5% ( 94) 140 (186) ] ( 81) 132 (170)| ( 76) 125 (164)| ( 69) 111 (150)
10% (106) t61 (208) |  96) 151 (192)| ( 81) 143 (181)| ( 76) 124 (170)
20% (129) 190 (228} | (105) 175 (211)| ( 94) 165 (196) | ( 83) 143 (184)
30% (153) 214 (241)| (119) 195 (236) | (103) 182 (227)| ( 99) 156 (218)
40% (177) 233 (266) | (138) 212 (259) ] (127) 199 (139)] (117) 168 (227)
50% (203) 254 (285)| (166) 227 (271)| (141) 215 (260) | (131) 180 (240)

h=4 h=5 h=10

P(G<n) m=3 m=3 m=3
5% {205 249 (291) | (200) 239 (279)| (191) 206 (259)
102 222) 280 (330)| (216) 268 (321) | (203) 232 (311)
20% (259) 317 (364)| (229) 300 (348)| (224) 264 (329)
30% (288) 348 (399) | (243) 327 (377)| (238) 280 (360)
40% (317) 377 (431)| (270) 352 (400)| (249) 299 (391)
50% (350) 403 (363) | (291) 377 (441) ] (265) 313 (427)

MIDMAR DAM : Percentiles of the m -year minimum annual inflow over a time horizon of h

years (with 90% confidence intervals)
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TABLE 9
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TABLE 10
o 90% confidence interval
T
T (years) 105 | Stedinger Bootstrap
(1983) =5 repTicates 10000 vepTicates
100 292 | 378-207 392-193 378-204
50 355 | 449-259 466-270 444-291
10 616 | 743-487 754-454 743-487

VAAL DAM : Exact and Bootstrapped 90% confidence intervals for
the T-year annual drought inflow estimated from a lognormal

mode]
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APPENDIX 1 SIX DISTRIBUTIONS

The six distributions considered in the main text are ex-
tensively discussed in the statistical literature, an ex-
cellent source being Johnson and Kotz (1970). The main
reason for repeating this material here is to provide a
convenient summary of only those properties of these dis-
tributions which are required in order to apply the methods
described in the text. 1[It is hoped that this will make the
methods more accessible to non-statisticians who will be
spared the necessity of extracting the reltevant properties
from statistical textbooks. In particular several explicit
algorithms (which are seldom given in such books) will be
given. Some of these are available as parts of packages on
larger computer systems, but not yet for microcomputers.

The algorithms described here have been implemented on an
IBM PC microcomputer.

Throughout this appendix we will use Xgs XoseonasXp to de-
note n observations which are assumed independently and
identically distributed.
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NORMAL DISTRIBUTION

Parameters

u (1ocation)
g? (dispersion)

Moments

Expectation: H
Variance: o?
Coefficient of variation: o/u
Skew: 4]

Probability density function

f(x) = /Q?Lg_e-(x-u)=/203 , o < X < o

Distribution function

b4
F(z) = J f(x) dx R % < Z € @

There is no closed expression for F(z), but one has that
- a(Z=u
F(Z) = ‘?(T) s

where ¢ is the standard normal distribution function for
which approximations are available. The approximation em-
ployed in the follewing algorithm is due to Hastings (1955);
cf. Abramowitz and Stegun (1972):



STEP 1 INPUT Z

STEP 2 SET S = 0,3989423+EXP(-0,5+Z+2)
T = 1/(1+40,2316419+ABS(2Z))
STEP 3 SET PHI S«T%(0,3193815 - T»(0,3565638
-T+(1,781478 - T»(1,821256
-T»1,330274))))

STEP 4 TEST IF Z > 0 THEN SET PHI = 1 - PHI
STEP 5 oQuTPUT  PHI

The absolute magnitude of the approximation error is less
than 1075,

Percentage points

Z(p) = F~'(p) : 0 <p<t

Again no closed expression is available, but Z(p) may be
computed using

Z(p)=¢'1(p)0+u . 0<p<1.

The following algorithm for 0~ '(p) (called INVPHI below)
is from Abramowitz and Stegun (1972):
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STEP 1 INPUT P

STEP 2 TEST IF P > 0,5 THEN SET S =1, SET T = t1-P
ELSE SET S =-1, SET T =P

STEP 3 SET U = SQR(-2+L0G(T))

STEP 4 SET v

U-(2,515517 + U»(0,802853
+U*0,010328))/(1+U~(1,432788
+U*(0,189269 + U»0,001308)))

STEP 5 SET INVPHI = S=V

STEP 6 ourpurt INVPHI

The absolute magnitude of the approximation error is less
than 4,5+107%,

Maximum likelihood estimators

N 1 en

Mo liag Xy

2 - 1 en 2 ~2
o = =} X2 - U

n &i=1 74

Generating normal deviates

It is assumed that a random number generator which gene-
rates uniformly distributed random deviates between 0 and

f is available. Several methods to generate normal

deviates (using uniform deviates) are available. For example
one can simply add a certain number (usually 10) of uniform
deviates and transform these using a suitable linear trans-
formation. A second, and more accurate method is to

generate a uniform deviate, R, and use o"(R) as normal
deviate. The algorithm described below, due to Box and
Muller (1958) is exact in the sense that the transformation
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from uniform to normal is exact.

The following algorithm can be used to generate pairs of
standard normal random deviates.

STEP 1 GENERATE two uniform random deviates Rt, R2
STEP 2 SET T = SQR(-2+LOG(R1))

STEP 3 SET X1 = T+SIN(6,283185*R2)
X2 = T+C0S(6,283185*R2)

STEP 4 o0uTPuUT X1, X2

To generate deviates with mean u and variance o2 one simply
multiplies X1 and X2 by o and adds u.
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LOGNORMAL DISTRIBUTION

Parameters

u  (location in log-space)
g2 (dispersion in log-space)

Moments
2
Expectation: ePec /2
2
Variance: e2Me% (%7 -1)

Coefficient of variation: (ecz-l)i

Skew: (eaz-i)!(e°z+2)

Probability density function

- 1 -(&n x-u)2 /202
flx) = s 5% © _ R x>0 .
Distribution function
2
F(z) = J f(x) dx . z2>0.
o

There is no closed expression for F(x) but one has

F(z) = o(fn 2oy, : z > 0,

where ¢ is the standard normal distribution for which an
approximation was given above. '

Percentage points

Z(p) = F(p) , 0<p<i ,

No closed expression is available for Z(p) but one has that
Z(p) = exp(s™!(plosn)

and an approximation for 0'1(p) was given above.
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Maximum 1ikelihood estimators

Generating lTognormal deviates

To generate a lognormal deviate, X, with parameters u and
g2 one first generates a standard normal deviate, D, and
sets

X = exp({Do+u)

An algorithm to generate standard normal deviates has
already been given above.



EXPONENTIAL DISTRIBUTION

Parameter

8 > 0 (scale)

Moments

Expectation:

Variance: g2
Coefficient of variation: 1

Skew: 2

Probability density function

F(x) = % e'X/e

Distribution function

F(z) = § - e=2/8

Percentage points

Z(p) = -8 &n(1-p)

Maximum Tikelihood estimator

~ . 1 en
6 = o Li-y Xy

Generating exponential deviates

X = -0 &€n{(R)

where R is a uniform (0,1) random deviate.

0 <p <1



WEIBULL DISTRIBUTION

Parameters

§>0 (scale)
p >0 (shape)

Moments

Expectation:

Variance:

A1-9

ST(1+1/p)
§2{T(1+2/p) =T (1+1/p)?}

Coefficient of variation: {r(1+2/p)/r(1+1/p)2-1}§

Skew

{r(t+3/p) - 3r(1+2/p)T{1+1/p)
+ 21 (1+1/0)23/{T(1+2/0) - T(1+1/p)2}3/?

Probability density function

f(x) = (")(%)p.le'(x/‘”p . x >0

g

Distribution function

Flx) = 1 - e"(x/8)°

Percentage points

Z(p) = 8[-Ln(1-p)1'/P

. 0 <p<i

Maximum likelihood estimators

The maximum likelihood estimation of p is the solution to

the equation
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ERGRERLENNIHIE RS DHERLEN:

This equation can only be solved numerically; an algorithm
to do this is given below. Once p is available one can
compute

* 1 en 0:1/p
§ = 15 Lj=y %47}

In the following algorithm to estimate p (RHO) and & (DELTA)
it is assumed that at least N = 3 observations are available.
The notation SUM [ ] denotes the sum of the term in the
brackets for I = 1,2,...,N.

STEP 1 INPUT N, X(1), X(2),...,X{(N), where the observa-
tions are arranged in increasing order of
magnitude.

STEP 2 SET I1 = INT(N/4), 12 = INT(N#3/4)
RHO = LOG(LOG(1-I2/N)/LOG(1-I1/N))/
LOG(X(I2)/(X(I1))

T = SUM [LOG(X(I))I/N
STEP 3 SET TO = SUM [X(I)*+*RHO]
T1 = SUM [LOG(X(I))*X(I)**RHO]
T2 = SUM [LOG{X{I)**2*X(I)**RKO)
T3 = RHO*(T1/T0-T) -1
T4 = (T1/T0-T) + RHO*(T2/TO-{(T1/TO)**2)
RHO = RHO - T3/T4
STEP &4 TEST IF ABS(T3) > 0,0001 THEN GO TO STEP 3

STEP 5 SET DELTA = (TO/N)+*+(1/RH0O)

STEP 6 ourpur  RHO, DELTA
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Notes:

(1) To enhance efficiency the computation of TO,T1,T2 and
T3 in STEP 3 should be carried out in a single loop.

(2) If storage is available the quantities LOG(X(I))
should be computed once only in STEP 2,rather than
repeatedly computed in the iteration.

(3) For some data sets no real maximum 1ikelihood estimate
exists. It is therefore advisable to 1imit the number
of iterations, e.g. to stop if there is no convergence
after 50 iterations.

Generating Weibullrandom deviates

X = (- en(r)]11/°

where R is a Uniform (0,1) random deviate.
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EXTREME (TYPE I) DISTRIBUTION

Parameters

£ (Tocation)

n>0 (scale)

Moments

Expectation: E+ynwm©g + 0,577216n
Variance: w2n2/6 =~ 1,644934n2
Coefficient of variation: 1,282550n/(& +0,577216n)
Skew: 1,13955

Probability density function

f(X) = % exp[_e-(X'E)/n]e-(X-E)/n , X >0

Distribution function

F(z) = exp[-e (Z7E}/n) , z >0

Percentage points

Z(p) = £ - n &n(-2n (p)) R 0 <p<1

Maximum 1ikelihood estimators

The maximum 1ikelihood estimator of n is the solution to
the equation

n= L3l xy - {Z?q X4 e-xi/a}/ {IL, e-xi/;‘}

This equation can only be solved numerically; an algorithm
to do this is given below. Once n is available one can
compute
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In the following algorithm to estimaten (ETA) and £ (XxI)
the notation SUM [ ] denotes the sum of the term in the
bracket for I = 1,2,...,N.

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

Notes:

INPUT N, X(1), X(2),...,X(N)

SET XM = SUM EX(I)I/N
XV = SUM [X(I)*X(I)I/N = XM*XM
ETA = 0,779697 *SQR(XV)

FORTI = 1 TON SET Y(I) = EXP(-X(I)/ETA)

SET TO = SuM [Y(I)]
T1 = SUM [Y(I)*X(I)]
T2 = SUM [Y(I)*X(1)*X(1)]
T3 = ETA + T{/T0 - XM
T4 = 1+ (T2*TO-T1+T1)/{TO*ETA) »*2
ETA = ETA -~ T3/T4

TEST IF ABS(T3) > 0,0001 THEN GO TO STEP 3
SET X1 = -ETA=LOG(TO/N)

ouTPUT ETA, XI

(1) To enhance efficiency, the computation STEPS 3 and 4
should be carried out in a single loop. It is then
also unnecessary to store the Y(I) values in an array.

(2) For some data sets no real maximum likelihood estimate
exists., It is therefore advisable to limit the number
of iterations, e.g. to stop after 50 jterations if
there is no convergence by then.
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Generating Extreme (Type I) deviates

X = E -n &n(-tn (R))

where R is a uniform (0,1) random deviate.
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GAMMA DISTRIBUTIGON

Parameters

a >0 (shape)

B >0 (scale)

Moments

Expectation: aB
Variance: aB?
Coefficient of variation: a}
Skew: 2/0.i

Probability density function

a=-1 _=-x/B8
f(x) = X -~ e . x>0
8°r'(a)
Distribution function
z
F(z) = I f(x) dx R z>0
o .

There is no closed expression for F{(z); one has that

F(z) = FZ/B(allf(a)

where rx(a) is the incomplete gamma function defined by

r.la) = J

X
£2°1 ot gt . x>0 .
0

Algorithms for this function, the complete gamma function,
I'(a), the digamma function, ¢(a), and the trigamma function,
¥'{a), are given at the end of this appendix. The latter
two functions are needed for maximum likelihood estimation
of the parameters.
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Percentage points

2(p) = F-l(p) . 0 <pc<1

No closed expression is available for Z{(p), nor do we know
of any accurate direct approximation. One way to solve the
problem is to solve the equation

F(Z) - p =10

for Z using an iterative method. An approximation for F
was given above. The Newton-Raphsonmethod works well in
this case, but of course one has to evaluate F a number of
times and consequently there is a good deal of computation
which needs to be carried out. This computation is never-
theless well within the capabilities of a typical micro-
computer,

In the following algorithm it is assumed that subprograms
to compute the incomplete gamma function Fx(a) and the

gamma function TI{a) are available. We use the notation
GAMINC (X,ALPHA) and GAMMA (ALPHA) for these subprograms.
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STEP 1 INPUT ALPHA, BETA, P

STEP 2 SET Z = ALPHA+BETA
G = GAMMA (ALPHA)
STEP 3 SET D = EXP(-Z/BETA)*(Z/BETA)**{ALPHA-1)/
(BETA*G)
F = (GAMINC(Z/BETA, ALPHA)/G-P)/D

STEP 4 TEST IF F > 7 THEN SET 1
ELSE SET 1

2/2, GO TO STEP 3
Z-F

STEP & TEST IF ABS(F) > 1076 THEN GO T¢ STEP 3
STEP 6 outPUT Z

Maximum 1ikelihood estimation

The maximum 1ikelihood estimators of o and 8 are the solutions to
the equations

v(a) - &n (a) + &n (% 2?31 xg) - %(2?=1 &n x;) =0
8 = 711, xj)/e

where ¢ denotes the digamma function. 1In the following
algorithm to solve these equations by iteration,it is
assumed that subprograms PSI( ) and PSID( ) to compute the
digamma and trigamma functions are available. For explicit
algorithms see the end of this appendix.
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STEP 1 INPUT N, X(1), X(2),...,X(N)

STEP 2 SET XM = SuM [X(I)I/N
XLM = SuM [LOG(X(I)) 1/N
R = LOG(XM) - XLM
ALPHA = (1 +SQR({1 + 4xR/3))/(4*R)
STEP 3 SET H = (PSI(ALPHA) - LOG{ALPHA) +R)/
(PSID(ALPHA) ~ 1/ALPHA)
ALPHA = ALPHA - H

STEP 4 TEST IF ABS(H) > 0,000f THEN GO TO STEP 3
STEP 5 SET BETA = XM/ALPHA
STEP 6 OUTPUT  ALPHA, BETA

Generating gamma deviates

Until recently no simple "exact" algorithm for generating
gamma random deviates was available except for the case
where a is an integer or half-integer. Direct solution of
the equation

R = F(X)

where R is a uniform (0,1) random deviate using the a1gori£hm
described for computing the percentage points is not re-
commended because it involves substantial computing. 1In a
typical simulation program hundreds or even thousands of
random deviates are required. The well-known Wilson-
Hilforty transformation (cf., Johnson and Kotz 1970) re-
quires less computation but is rather inaccurate for small

values of a. The following algorithm is due to Whittaker
(1973).



STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

INPUT

SET

TEST IF

GENERATE

TEST IF

GENERATE

SET

TEST IF

GENERATE
SET

SET

STEP 10 ourpurt

Notes:
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ALPHA, BETA

IA = INT(ALPHA)

FA = ALPHA-IA

X1 =0

X2 =0

IA =0 THEN GO TO STEP 5

uniform random deviates R(1), R(2),...,R(IA)
X1 = SUM [-LOG(R(I))]

FA = 0 THEN GO TO STEP 9
uniform random deviates R1, R2
S1 = R1=+(1/FA)

S2 = R2x+(1/(1-FA))

S1+S2 > 1 THEN GO TO STEP 6

a uniform random deviate R
X2 = -S$1*LOG(R)/(S1 +52)

X = (X1 +X2)*BETA

(1) It is not necessary to actually store the array R(1),
R(2),...,R(IA), above; they can be used directly and
then discarded.

(2) This algorithm employs a rejection technique, that is
unless S1 + S2 < 1 STEP 6 has to be repeated. It can
be shown that on average the number of rejections is
not large, in fact the worst case (with FA = 0,5)
involves about 21,5% rejections.



A1-20

GAMMA FUNCTION

The algorithm given below is based on an asymptotic ex-
pansion of the gamma function:

T(la) = J

T P , a 20, -1, 2,...
0

For a > 10 a 4-term Stirling approximation is used
(Abramowitz and Stegun page 257). For a < 10 the following
recurrence relationship is applied in order to increase the
arqument of the gamma function to a number greater than or
equal to 10:

T'{a+tl) = al{a) . a # 0, =1, 2,000
STEP 1 INPUT ALPHA

STEP 2 SET

=
n

ALPHA
G =1

STEP 3 TEST IF A > 10 THEN GO TO STEP 5
STEP 4 SET G = G*A
A=A+ 1
GO TO STEP 3
STEP 5 SET T = 1+(0,0833333 +(3,47222E-3
-2,681327E-3/A)/A)}/A
GAMMA = EXP(-A+ (A-0,5)*L0G(A)+0,918939)*T/G

STEP 6 OUTPUT  GAMMA
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DIGAMMA FUNCTION

The algorithm given below is based on an asymptotic ex-
pansion of the digamma function (Abramowitz and Stegun
1972 , page 258):

‘I’(G)=%‘xl(‘cu » a #0, -1, -2,...
For o < 4 the recurrence relationship

Yla+l) = yla) + 1/a , a £0, -1, -2,...

is used repeatedly until the argument is greater than or
equal to 4.

STEP 1 INPUT ALPHA

STEP 2 SET A = ALPHA
P =0

[}

STEP 3 TEST IF A >4 THEN GO TO STEP 5

STEP 4 SET P =P=-1/A
A=A+
GO TO STEP 3

STEP 5 SET T = 1/(A*A)
U= T»{8,333333E-2 - T~(8,333333E-3
- T»3,968254E-3))
DIG = P +LOG({A) -0,5/A-U

STEP 6 OQuUTPUT DIG
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TRIGAMMA FUNCTION

The algorithm given below is based on an asymptotic ex-
pansion {Abramowitz and Stegun (1972), page 260);

o' (a) = 42 ¢n I{a) . @ £ 0, -1, ~2,...

do*

For a < 4 the recurrence relationship

' (a+t1) = ¢'(a) - 1/a2

is used repeatedly until the argument is greater than or
equal to 4,

STEP 1 INPUT ALPHA

ALPHA
P =0

STEP 2 SET

STEP 3 TEST IF A >4 THEN GO TO STEP 5

STEP 4 SET P =P + 1/(A*A)
A=A+ 1 '
GO TO STEP 3

STEP 5 SET T = 1/(A*A)
U =Tx(1,666667E-1~T#(3,333333E-2
- T+2,380953E-2))
TRIG = P+ 1/A+0,5+«T + U/A

STEP 6 OUTPUT  TRIG
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INCOMPLETE GAMMA FUNCTION

The incomplete gamma function

r.(a) = J

is required for the computation of probabilities associated
with the gamma distribution. Several methods of approxi-
mating this function have been suggested, e.g. series ex-
pansions, a continued fraction representation, asymptotic
expansions, etc, While each of these representations is
suitable for approximating rx(a) within a particular range
of the parameter o and the argument x, the programmer should
beware of using any single representation for all a and x
because for certain combinations of values nonsensical
results are obtained on a digital computer,

X a1 -t
X e dt ’ a>0, x>10
0

The algorithm given below is based on a confluent hyper-
geometric representation of rx(a) and is suitable for

a < 50 and for "reasonable” x values, i.e. x values which
are such that e < I‘x(a)ll‘(u) < 1-¢ where € = 5x10~7
(approximately). In other words, it is suitable for com-
puting probabilities of the gamma distribution for x lying
between the £ and 1-e percentiles, This range easily
contains the region of interest in practical applications.
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1 INPUT ALPHA, X

2 SET T =1
S =1
L =0
3 SET T = Tw((1+L)/(1+ALPHA+L) )= (X/(L+1))
S =S+T
4 TEST IF ABS(T/S) > 10'7 THEN SET L =L +1
GO0 TO STEP 3
5 SET GAMINC = S+EXP{-X)*({X+»ALPHA)/ALPHA

6 O0UTPUT  GAMINC

S:

The order of multiplication and division at STEP 3 is
important to avoid “overflow" on the computer.

For all but certain extreme combinations of a and x
converqgence is quite rapid (less than 20 terms).

The accuracy of the above algorithm is dependent on the
type of machine used. On a typical microcomputer one
can expect 6-figure accuracy for rx(a)/r(a).
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APPENDIX 2 SELECTING AN APPROXIMATING DISTRIBUTION

The theory described in this appendix was developed in
ccllaboration with“Professor H. Linhart of the Institut
flr Statistik und Okonometrie, University of Gdttingen,
West Germany. The results of this research have subse-
quently been published in Linhart and Zucchini (1986).
For the most part this appendix contains those extracts
from the book which are relevant to applications in
hydrology.

We have included theory relating to the selection of dis-
crete distributions. Although this material is not required
for the methods described in the main text it is relevant

to the study of the occurrence of storms,as is demonstrated
in an example to follow,and can be applied to any other of
the many discrete variables which arise in the context of
hydrology.



A2-2

1. DISCREPANCIES

Suppose that the observations Xqs XpsreeesX, CaN be regarded
as realisations of n independently and identically distri-
buted random variables and that we wish to estimate their
common distribution. As a rule a number of different
models can be fitted to the data and the question arises as
to which one should be selected.

Traditionally selection has been based on naive methods com-
paring the values of certain goodness-of-fit statistics.

Cox (1961, 1962) considered the problem more systematically
from the classical point of view. A bibliography of sub-
sequent developments along these lines is given in Pereira
(1977). We use a general approach (Linhart and Zucchini,
1982a, 1982b) which differs from the above., A well-known
example which emerges in this framework is Akaike's (1974)
Information Criterion.

Briefly we suppose that the operating model has some un-
known distribution function F, and that a number of diffe-
rent (parametric) approximating families are available.
Let Fe, 8 € 0, denote the distribution function correspon-
ding to one of these approximating families.

Whichever approximating family of models is used there will
be, as a rule, a number of discrepancies between the
operating model and the model which is fitted to the data.

Each discrepancy describes some particular aspect of the
"lack of fit®. The relative importance of these discre-
pancies will differ according to the application at hand,
and consequently it is suggested that the user should decide
which discrepancy is to be minimized. 1In what follows we
suppose that this decision has been made and we will refer
to the selected discrepancy as the discrepancy.
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It is a mapping
A:MxM>R .

where M is the space of all distribution functions, and
should be such that for any F, G € M,

A(F,G) > (F,F) .
For simplicity we write
A{6) = A(8,F) = A(FB,F) .

Some examples of discrepancies are:

Kullback-Leibler: A(8) = -E¢ log fa(x)
Gauss: A(9) = Zx(f(x) - fe(x))z
Kolmogorov: A(e) = max |F(x) - Fe(x)l

X

L (fx) = fa(x))2/f(x), fl(x) £ 0

Neyman-chisquared: A(6)

[}

Pearson-chisquared: A(#9) zx(f(x) - fe(x))zlfe(x), falx) #0

Here f and f9 are the probability functions or probability
density functions corresponding to F and Fe, respectively.
In the case of continuous random variables the sums must

be replaced by integrals.

We assume that each approximating family, Fe. 8 € 0, has a

best member, Fe ., in the sense that
0

8, = arg min A(F,,F)
0 9€0 8

exists and is unique. The corresponding discrepancy



A2-4

6(90) = A(Fa »F)
0
is called the discrepancy due to approximation.

Let 8 be an estimator of 09 then Fy is the fitted model
and

A(B) = A(Fé,F) »

the overall discrepancy, is a measure of the eventual lack
of fit. It is a random variable whose distribution debends.
inter alia, on what we call the fitting procedure, namely
the approximating family and the associated method of
estimation.

In principle any method of estimation could be combined with
a given approximating family to provide a fitting procedure,
but the most natural method would seem to be minimum dis-
crepancy estimation:

If An(a) is an asymptotically unbiased estimator of A(8)
then

8. = arg min A_(8)
n - N

is a minimum discrepancy estimator.

Such estimators are also known as minimum distance estimators.
(Wolfowitz 1953.) See also the bibliography of Parr 1981.)
They are also M-estimators (see, e.g. Serfling 1980).

As a basis for model selection one can either use A(eo) or
the distribution of A(98) (perhaps some characteristic of
this distribution, typically the expectation). The latter
takes errors due to estimation into account, and indicates
how much can be achieved for the given sample size. On the
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other hand A(eo) indicates what could be achieved in
principle, not just for the given sample size.
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2. ESTIMATING THE EXPECTED DISCREPANCY

To implement the above procedure one.needs to derive the
expected {overall) discrepancy, EFA(B), and to find an
estimator for it. The derivation is often, though not
always, strafghtforward but the estimation presents diffi-
culties. In many cases it is practically impossible to
obtain a reasonable estimator with finite sample methods
and one has to resort to asymptotic methods.

Under certain regularity conditions one can prove (Linhart
and Volkers, 1984):

If en is a sequence of minimum discrepancy estimators then
EFatén) ~ a(8,) + tr algsan
where
2 = {44} = {aza(eo)/aeiaej}
and £ is the asymptotic covariance matrix of
/ﬁ[aAn(eo)/aeil, 1= 1,2,000,P,
where p = dimension (8) is the number of free parameters,
Eca (8) + tr 07 'z/n ~ EcALB)
o -1
Ega (8) + tr @ 'Z2/2n ~ A(eo) .
The approximations are obtained by replacing the covarifance
matrix of /ﬁ(en-eo) by its asymptotic covariance matrix
and by omitting an Op(lln) term. Under additional conditions

on uniform integrability of certain sequences the error in
the approximation is 0(1/n), and
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L ={Eii}=(lim EFn(aAn(ao)/aei)(aan(eo)/aej)) .
The results lead to asymptotically unbiased estimators of
Epa(8) and of A(ao), j.e. to criteria.

1 1

If tr Q7' is not known it is estimated by tr n;
nn and zn are estimators of Q and % and one uses

Zn. where

- -1
(1) a,(8) + tr Q. 'L /n
as criterion based on EFA(é) and
- -1
(11) An(e) +trQ I /2n
as criterion based on A(eol.

For some discrepancies (including the Kullback-Leibler,
Pearson-chisquared and Neyman-chisquared discrepancies) it
can be shown that if the approximating family contains the
operating model then tr a s depends only on p = dim(9)

(in the mentioned cases the trace 1s p and 2p respectively)
and so simpler criteria can be given. For the Kullback-
Leibler discrepancy for example this leads to

(1)* An(é) +p/n
(11)* 8,08) + p/2n
i.e. Akaike's (1974) Information Criterion.

There are many situations where even the asymptotic methods
outlined above lead to difficulties. Then one could use
Bootstrap estimation methods which are particularly suit-
able in this context. These give estimators of EFA(B)
directly and it is not necessary to derive this expectation
at all.
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In our context the Bootstrap method introduced by Efron
(1982) can be briefly explained as follows.

Let F be the operating distribution function and Fn the
empirical distribution function. The expected discrepancy
is in fact of the form EFA(B.F) and a natural estimator

of it is EFnA(e,Fn) = EFnAn(e). Note t?at F, and A, are
fixed now, the only random variable is 8. The essential

trick is to evaluate this last expectation by Monte Carlo
methods. One generates repeated samples of size n from the
now given and fixed dis;ribution Fre Each sample leads to
another (Bootstrap) estimate 6* (usually obtained by mini-
mizing another {(Bootstrap) A;) and a corresponding An{é:).

The average of the generated An(e*) converges to EF An(e).
n
Furthermore the observed distribution of the generated

An(e*) converges to the distribution of An(e) gnder Fn.
which is an estimate of the distribution of A(8) under F.
So by means of Bootstrap methods one can not only estimate
the expectation of the overall discrepancy but in fact

its complete distribution.

An additional advantage of the Bootstrap method is the ease
with which it is possible to switch from one discrepancy to
another without the need for tedious derivations of theore-
tical results. The discrepancy discussed in Chapter 3 is a
case fn point. It would be very difficult indeed to obtain
even approximate expressions for the expected discrepancy.
Bootstrap methods allow us to circumvent this theoretical
difficulty entirely. This is fortunate because otherwise
we would not have been able to focus attention on the part
of the distribution which is of interest, namely the lower
tail.
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3. AN EXAMPLE OF THE ASYMPTOTIC METHODS:
THE KULLBACK-LEIBLER DISCREPANCY

The main advantage which asymptotic methods enjoy over
Bootstrap methods is that they do not require much com-
putational effort. There are two purposes to this
section: firstly to illustrate how asymptotic results are
cbtained for a particular discrepancy,and secondly to give
the resuits for some of the important univariate distribu-
tions. The Kullback-Leibler discrepancy is the natural
discrepancy if one uses maximum likelihood estimation and
as such is clearly important. It {is defined by

A(e) = -E¢ log fgqlx) ,

where fe is the probability density function of the appro-
ximating family, and where the expectation is taken with
respect to the operating model. Here

. . n
Aﬂ(e) = (1/n) 2131 109 fe(xi) *
where x;, {1 =1,2,...,n, are the observations, and one has

that the minimum discrepancy estimator is the maximum
likelihood estimator.

This discrepancy was used by Akaike (1974) to develop his
Information Criterion for model selection under the assump-
tion that the operating model is a member of the approxi-
mating family. White (1982) analysed this problem rigo-
rously and in his development allows for the possibility

of misspecification,

For this discrepancy one obtains

{a} .. = -E(3% log feo(x)/aeraes}
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rs " E-{(3 Tog feo(x)/aer)(a log feO(x)/aes)}

-~

™~

st
1}

e

[

—
n

-

o}

s
]

g = (1) {2?21 (3 Tog £5(x;)/28.)(3 Tog *.(x;)/30.)} -

The criterjon is
. -1
ﬁn(en) + tr Qn Zn/n

which can be approximated by An(e) + p/n unless p, the
number of parameters, is small, say 1 or 2.

We now give some of the intermediate results in the deriva-
tion of the criterion for the lognormal distribution and
then simply Tist the criteria for a number of other impor-
tant distributions.

The lognormal distribution

Faor this distribution the logarithm of the density function
is

log fe(x) = =log x -~ (1/2) log 27 - (1/2) logx- {1/2))

(109 X;U)z ) x>0,

where, for convenience we have written X instead of the
usual ag2.

Cne has

(1723)((log x - u)2/xr-1)

3 log fe(x)/dl

(t/x)}(1og x ~u)

9 log fe(x)/du
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and the maximum likelihood estimators are ﬁ = mi and i = m,
where mﬁ and My, s h=1,2,..., are the sample moments and
sample moments about the sample mean respectively except
that in this case (i.e. lognormal distribution) they are
computed using the log x; instead of the Xyis

i
i=1,2,...,n. It follows that

{5}11 (1/4}3)(E(109-x - uo)“/l; - 2E(10g x - uo)zlxo+1)’

{2}22 = (IIA;)E(Iog X - uo)z R

{t .}y = (m4-m§)/4m§ R

{zn}12 = {Zn}21 3 m3/2m§ .

(Lo}yp = V/m, .

Also

32 log fa(x)lauz = =1/X .
32 log fo{x)/3udx = -(log x - u)/x? .

32 log fe(x)/alz = 1/2x% - (log x - u)2/A? .

The elements of -0 are the expectations of these derivatives
with respect to the operating model taken at the values

Xo and My and it follows immediately that
{nn}11 - 1/2m5 ’
kg = Bk =0

{2,y = 1/m,
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1

- _ , )
Thus tr @ "I (m4+m2)/2m§ and the criterion is

'z /n

- {?31 Tog fé(xi)/" + tr Q; n

=my o+ (1/2)(1og 2mm, + 1) + (my + m3)/2min
For the normal distribution the criterion is
(1/72)(1og 2mm, + 1) + (m4 + m%)/Zmin .

where the sample moments are computed using the originatl
data rather than their logarithms,

The criterion for the gamma distribution with density
f,(x) = x*TTe 8/ (8% (a)) x >0
is given by

1

log P(;) + &(log é +1) - (; - 1)mi[10g X] +tr n; zn/n .

where & and é are the maximum likelihood estimators of a
and B, i.e. the solutions to the equations

a8 =mg [x]
-log 8 - y(a) = -miflog x] .
Here ¢(z) = 3 log I'(z)/3z is Euler's y-function and mel )

and mh[ ] denote the sample moments of the variables in the
brackets. One also needs:
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{Z ryy = mylx] ,
{zlyp = {2}y = =my,Ix, Tog x] ,
{Z,}55 = myllog x] ’
(2.}, = milx]?/a \
(2}, = {2}y = -milx)/a,
(a,},, = ¥'(a) .

For the Poisson distribution with parameter XA it is easy

to show that tr n;‘zn = my/my and the criterion is

mi(l - log mi) + mi[]og F{x+1)] + mzlmin .
The geometric distribution with probability function

folx) = e(1-0)% X = 0,1,2,...,

has tr ﬂ;1xn = mzlmi(1+mi) and criterion given by

(1+mi) log (1+mi) - mi Tog mi + mzlmi (1+mi)n .

For the negative binomial distribution with probability
function

£o(x) = T(gex) (1-a)Pa/(R(RIT(x+1)) . x = 0,1,2,...,

the maximum 1ikelihood estimators are the solutions to
the equations

Te=y F(K)/(B+k=1) + n log (B/(B+m})) = 0

a = mj/(Bem}) :
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where F(k) is the number of observations greater or equal
to k, k = 1,2,... . It can be shown that:

mZ[xJ/&z

{zn}12 = {En}21 = m1i(xs¢(é+x)]/& ’

{£,}pp = myLu(B+x)]

(2.} = 8/a(1-a)?

(2.}, = (9 1,y = 1/{1-a)
(2.}, = ¥'(8) = myly*(Bex)]
The criterion is

-mi[log P(x+é)] -é Tog (1-&)

-mi[x] log a + mi[log r(x+1)]

+ Tog T(8) + tr 27 'z _/n

»
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4. NEYMAN'S AND PEARSON'S CHISQUARED DISCREPANCIES

If one has n independent observations on a discrete vari-
able the frequencies of the k different possible values
are multinomially distributed. The operating model is the
saturated model: the k-1 free parameters are simply the
probabilities of the possible values of the variable. The
same holds if data (on discrete or continuous variables)
are grouped into k categories.

For such situations we developed (1986) model selection
criteria which use the classical chisquared goodness of fit
statistics. The two discrepancies, empirical discrepancies
and criteria are the following.

Empirical Crite-
Discrepancy discrepancy rion
Neyman-chisq. Z;(m,-f.(8))2/n, L;lpy=fil0))2/py Xjt+2p

Pearson-chisq. Ei(ﬁi-fi(e))zlfi(e) Ef(pi'fi(e))z/fi(e) x;+2p

Here w, and fi(e) are the probabilities under the operating
and the approximating model and Neyman's (xﬁ) and Pearson's
(X;) chisquared are the empirical discrepancies at & = 6,

The estimator 5 can either be maximum likelihood or minimum
(Neyman and Pearson) chisquared estimator. As a rule one
should use the minimum discrepancy estimator in the fitting
procedure. 9 will thus usually be a minimum chisquared
estimator (Neyman or Pearson, respectively) if the Neyman-
chisquared or Pearson-chisquared discrepancy is used.

For the saturated model the criterion is for both discrepan-
cies equal to 2(k-1).
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5. A DISCREPANCY WHICH EMPHASISES THE FIT IN THE
LOWER TAIL OF A DISTRIBUTION

The discrepancy which was disqussed in Chapter 3 of the main
text is:

A(Fe,F,d) = maxlF(x)d-Fe(x)d| .
X

Now both Fe and F are distribution functions and are there-
fore non-decreasing and take on values in the interval

[0, t1]. For any distribution function, say G(x), and any d
in the interval (0, 1) one has that

K(x,d) = 6(x)9 - 6(x) = 0

and as d is decreased so this difference becomes smaller
(except for G(x) = 0 or 1). Also it is easy to show that

K(x,,d) > K(xz.d) for Xy < X .
and that for all x which are such that G(x) > 0

lima(x)? =1 .
d+o

It follows from these two properties that by selecting
d small enough

IF(x)9 - Fytx)]

in the above discrepancy will be relatively unaffected by
differences between F{x) and Fe(x) in the upper tail of

the distribution,whereas for those values of x for which
F(x) and Fe(x) are small (i.e. the lower tail) the differ-
ences between these two functions will contribute more sub-
stantially to the discrepancy.
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Aﬁ asymptotically unbiased estimator of this discrepancy,
i.e. an empirical discrepancy is

d d
A_(8,d) = max [i/(n+1)" - F.(x;)"]|.
n 1<i<n 871 |

The expected overall discrepancy, i.e. EFAn(B.d).is in-
tractable. However we can estimate it by means of Bootstrap
methods. An algorithm to do this was outlined in Chapter 3.
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6. EXAMPLES OF APPLICATION

6.1 Annual flow of the Yaal river at Standerton

The table below gives the annual flow of the Vaal river at
Standerton in the years 1905 to 1969, The flow is in
millions of cubic meters measured over "water years", i.e.
October to September,

1905 222 1927 235 1949 534
1906 1095 1928 346 1950 129
1907 452 1929 778 1951 317
1908 1298 1930 95 1952 640
1909 882 1931 111 1953 291
1910 889 1932 78 1954 1461
1911 276 1933 554 1955 611
1912 216 1934 364 1956 809
1913 103 1935 460 1957 637
1914 490 1936 1151 1958 336
1915 446 1937 286 1959 245
1916 386 1938 1401 1960 686
1917 2580 1939 651 1961 319
1918 408 1940 746 1962 365
1919 258 1941 224 1963 306
1920 606 1942 568 1964 479
1921 715 1943 1593 1965 42
1922 1539 1944 217 1966 683
1923 183 1945 496 1967 250
1924 696 1946 256 1968 324
1925 110 1947 295 1969 556
1926 193 1948 274

Annual flow [million m3®] of the Vaal river at Standerton

We consider three approximating families; the normal,
Tognormal and gamma. The fact that the normal distribution
yields a non-zero probability for the event that the flow
is negative is not of practical importance unless this
probability 1s not sufficiently small.
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For the purposes of comparing the asymptotic results given
in section 3 with the results of Bootstrap methods we will
use firstly the Kullback-Leibler discrepancy.

The c¢riteria for the three models using the results of
section 4 are:

Normal: 7,517 + 4,763/65 = 7,590
Lognormal: 7,184 + 2,110/65 = 7,216
Gamma: 7,199 + 2,227/65 = 7,233

The‘Iognorma1 distribution has the smallest value of the
criterion and is judged to be the most appropriate.

The results of 100 Bootstrap simulations yielded:

mean standard deviation
Normal 7,552 0,060
Lognormal 7,202 0,021
Gamma 7,216 0,020

With 100 simulations the given means estimate EF A(e Fo)

(which in turn estimates EFA(B F)) with a standard error
of 0,006 (normal) and 0,002 (lognormal and gamma).

These means, the Bootstrap criteria, are very close to the
values of the asymptotic criteria. The rank order is preser-
ved and the lognormal distribution is deemed to be the

most appropriate,

When the Kolmogorov discrepancy was applied in connection
with maximum 1ikelihood estimation the following Bootstrap
estimates were obtained:
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mean standard deviation
Normal 0,164 0,040
Lognormal 0,092 0,032
Gamma 0,102 0,032

The lognormal distribution emerges also here as the most
appropriate.

6.2 Annual number of storms in Pretoria

The table below gives the annual number of storms observed
in Pretoria (Station 513/404) for the 71 years 1906 to 1976,

Number of Storms 1 2 3 4 5 6 7 8
Frequency 2 2 3 4 10 8 10 6

Number of Storms 9 10 11 12 13 14 15 i6 17
Freguency 5 7 5 3 -0 2 2

Annual number of storms

For the purposes of deriving the distribution of large storms
it is of interest to hydrologists to estimate the distribu-
tion of the annual number of storms. In this context the

two approximating families of interest are the Poisson and
negative binomial.

Using the asymptotic results for the Kullback-Leibler cri-
terion one obtains the following criteria.

Poisson: 2,714 + 1,606/71 = 2,737
Negative Binomial: 2,593 + 1,937/71 = 2,620

The negative binomial distribution is preferable.
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By means of Bootstrap methods (100 replications) we obtained

mean standard deviation
Poisson 2,837 0,825
Negative Binomial 2,608 0,451

There is again good agreement between the Bootstrap means
(standard errors 0,08 and 0,05) and the criteria.

For the Pearson-chisquared discrepancy and fitting procedures
using minimum chisquared estimators the c¢riterion of section

4 gives:

Poisson: 45,5
Negative Binomial: 13,6 .

The Bootstrap results, based on 100 replications, were

mean standard deviation
Poisson 45,7 - 61,8
Negative Binomial 13,9 37,6

The standard deviation of the Bootstrap distribution is
exceptionally large. The reason is the strong dependence
of the chisquared discrepancy on the tail of the distri-
bution, The tails of repeated small samples from long-
tailed distributions vary considerably.

6.3 Annual maximum storms at Vryheid

The standard statistical method of estimating design storms
(and other design events such as floods), from observed
annual maximum storms can be described briefly as follows:
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Let F be the distribution function of annual maximum storms.

Then under the assumption that these storms are independently
and identically distributed, the distribution function of

the largest storm in h years is Fh. So the storm associated

with a design horizon of h years and risk (i.e. probability)

of occurrence r, is the solution to the equation
Fh(X) = 1‘!" '

The design storm, x, is estimated by fitting a model to F,
say Fg’ where 8 are the parameters, and then using

X = Fé"((1-r)‘/h1 .

The risk, r, is given and is seldom more than 0,20 in prac-
tice, so one is dealing with the upper tail of the distri-
bution function F. As h is increased so the design storm
becomes associated with increasingly extreme values of

this tail,

Clearly for this application it is important to select
approximating models which fit the upper tail of the distri-
bution function F well, The lower tail is not so important.
Also, in order to take account of the relevant portion of
the distribution, the discrepancy should be a function of
design horizon. Since it is FM which is finally of in-
terest (rather than F), a discrepancy which seems reasonable
and which satisfies the above desiderata is

A(FG;F; h) = max[F(x)h - Ge(x)hl .
X

This discrepancy was applied to select an approximating
model for the data given below, viz. the annual maximum one-
day storms at Vryheid.
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Year depth year depth year depth

1951 45,2 1961 52,5 1971 84,5
1952 66,5 1962 50,0 1972 74,5
1953 142,0 1963 170,0 1973 94,0
1954 83,9 1964 62,0 1974 80,0
1955 61,1 1965 43,5 1975 74,0
1956 60,6 1966 60,0 1976 64,0
1957 84,5 1967 60,0 1977 60,0
1958 80,0 1968 53,5 1978 51,5
1959 79,0 1969 58,0 1979 58,5
1960 137,5 1970 93,0 1980 88,0

Annual maximum 24-hour storm depths [mm] at
Vryheid, 1951-1980.

The following families were considered: gamma, normal,
lognormal, exponential, Weibull, Extreme (type I).

The following empirical discrepancy, based on the "Weibull
plotting position", was used:

h h
A (8) = max [(1/(n+1))" - F.(x:) .
n 1<1<n| alxy)l

Maximum likelihood estimation was used throughout.

Gamma: a = 8,97 3 = 8,44
Normal: u = 75,7 g = 28,6
Lognormal: uo= 4,27 o = 0,321
Exponential: 8 = 75,7 _
Weibull: p = 2,68 § = 85,1
Extreme {I): E = 64,1 n=17,9
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The table below gives the Bootstrap estimates of the mean
and standard deviation of the overall discrepancy.

Design Smallest
horizon. h Gamma Normal Lognorm. Expon. Weibull Extr.I mean
1 mean 0,1676 0,1922 0,1560 0,4200 0,180t 0,1545 Extr. 1
std.dev. 0,0352 0,0352 0,0349 10,0250 0,0288 0,0363
5 mean 0,313t 0,3318 0,3008 0,3829 0,3168 0,3261 Lognorm
std.dev. 0,0696 0,0657 0,0701 0,078 0,0489 0,0882
10 mean 0,4493 0,4697 0,4258 0,4569 10,4249 0,4593 Weibull

std.dev. 0,0931 0,0934 0,085 0,0727 0,0713 0,1065

Estimates of expectation and standard deviation of overall
discrepancy based on 200 Bootstrap replications.

On the basis of this criterion the extreme (type 1) distri-
bution should be used for h = 1, the lognormal for h = §

and the Weibull for h = 10. However, for h = 1 and h = 10
the lognormal distribution leads to criteria which are quite
close to those minima and consequently it would not be un-
reasonable to use the lognormal distribution for each case.

7. CONCLUDING REMARKS

The universal applicability of the Bootstrap method and the
ease with which it can be implemented makes it particularly
attractive for the purpose of selecting a univariate dis-
tribution family. Although we have not discussed this
aspect here, the method can also be applied to compare para-
metric models (such as the normal, gamma etc ..) to “"dis-
tribution-free" models (histogram-type densities) which

are frequently used by hydrologists. It has however been
our experience that for the sample sizes which are usually
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available parametric models are preferable by far. In the
terminology of section 1 they lead to significantly lower
discrepancies due to estimation; distribution-free models
may fit the observed sample better but in general they

fit the operating model, i.e., the underlying distribution,
less well.



A3-1

APPENDIX 3

APPLICATION OF THE MODEL SELECTION CRITERIA TO 67
ANNUAL INFLOW RECORDS

The model selection methods described in Appendix 2 were
applied to 67 selected reservoir annual inflow records
whose positions are indicated in Fiqure A3.1. €Each of the
six models discussed in Appendix 1 was fitted to each re-
cord and the corresponding parameter estimates are given,
as are the original data.

Three selection criteria were computed for each model based
on the discrepancy described in Chapter 3. These corres-
pond to values of d = 1,00 ; 0,50 and 0,25 (represented

on the printout by the letter H). The model leading to

the smallest value of the criterion should be selected.

For strong emphasis on the fit in the lower tail of the
distribution H = 0,25 should be used, whereas for an over-
all best fit H = 1,00 is more appropriate.

Also given are estimates of the serial correlation coeffi-
cents of lag 1 together with approximate critical points
for the null hypothesis that the population values are
equal to zero (at the 95% level of significance). This
hypothesis is rejected in only 7 out of the 67 cases.
However it should be kept in mind that at this level of
significance and with 67 independent tests, one would expect
3 out of the 67 to be rejected even if the null hypothesis
were true in all the cases. Some of the high estimates

are probably due to non-stationarity rather than "ordinary"
serial correlation {cf. Nzhele Dam).



FIGURE A3.1%

Positions of the 67 selected inflow records within
the drainage reglons of South Africa.

¢-tvY
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ALPHABETICAL LIST OF DAM INFLOWS ANALYSED IN THIS APPENDIX.
(eee..). STATION NO.; (..) MAP KEY,

Albasini (A9R01) (13) Lindley's Poort {A2R07) (6)

Allenmanskraal (CHRO1) (25) Loskop (B3R0O2) (18)
Armenia (D2rR02) (32) Luphephe/Nwanedze  (A8R02) (13)
Beervlei (L3RO1) (52) Marico-Bosveldt (A3RO1) (8)

Bellair (JIR0D2) (45) Menin (C8ROT) (31)
Bethulie (D3R0O1) (33) Mentz {N2RD1) (56)
Boskop {C2rRO1) (24) Midmar (U2RO1) (64)
Bospoort (A2R06)} (5) Nooitgedacht (X1RQO1) (67)
Bronkhorstspruit  (B2RO1) (16) Nuwe Doringpoort (B1ROY) (15)
Buffelspoort (A2R05) (4) Nzelele (A8RQ1) (12}
Calitzdorp (J2RO%) (47) Ohrigstad (B6RO1) (20)
Chelms ford (V3RO1) (65) 0li fantsnek (A2R03) (3)

Doorndraai (AGROT) (11) Oukloof (J2R03) (49)
Duiwenhok (H8RO1) (43) Paul Sauer (L8RO1) (53)
Ebenezer (88RO1} (22} Poortjfeskloof (H3RO1) (41)
Erfenis (C4R0O2) (26} Prinzrivier (JIRO1} (44)
Floriskraal (J1RO3) (46) Rietvlel (A2R04) (3)

Grassridge (Q1RO1) (58) Rooiberg (DSRO1)} (36)
Groendal (M1RO1) (53) Rooikrans {R2R02) (62)
Hartebeespoort (A2RO1) (1) Rust de Winter (B3RO1) (17)
H.F. Verwoerd (A3R02) (38) Rustfontein (C5RO3) (29)
Kalkfontein (C5R02) (28) Slagboom (NARO1) (57)
Kommanassie (J3R01) (50) Steenbras (GARO1) (39)
Keerom (H4R0O2) (42) Stettynskloof (H1RO1) (40)
Klasierie (B7R01) (21) Tierpoort (C5R01) (27)
Klein Marico (A3R02) (9) Tonteldoos (B4RO1) (19)
Kommandodri f (Q2RrR02) (60) Vaal (C1RO1) (23)
Kopples (C7RO1) (30) Vanryneveldtspas (N1RO1)} (55)
Krommellenboog (A3R03) (10) Victoria West (DERO1) (37)
Kromrivier (X9RO1) {51) Wagendri f (V7RO1) (66)
Laing (R2RO1) (61) Warmbad (A2R08) (7)

Lake Arthur (QTRO4) (59) Waterdown (S3RO1) (63)

Leeubos (D4RO1) (35) Wemmershoek (G1RO2) (38)
Leeugamka (J2R02) (48) '



1) HARTEBEESPOORT DAH. A2ROL.

DATA. (10mxg Hex3},

ol v &3 ¥/4 4/5 576 6s/7 778 as/9 /0
1900
1910
1920 66,40 270.00 95.90 72.20 121.00 141.00 152.00
1930 73.50 54.50 3z.a80 235.00 80.10 145.00 1a2.00 %28.60 155.00 113.00
1940 156,00 85.40 221.00 621.00 194.00 144.00 85.50 127.00 74.30 170.00
1950 98.50 63.90 91.30 72.90 350.00 148.00 204,00 178.00 126.00 79.20
1960 99.90 50.30 60.80 79.20 70.1¢ 43.70 342.00 az.z0 52.80 79.00
1970 177.10 166.30 89.30 152.00 418.00 475.70 - 413.40 644.80 154.40 280.00
1980 233.70 147.30
CORRELATION ANALYSIS.
LAG CONF. INT.(1) CORRELATION COHF. INT.( 2)
1 0.255 0.361 =-0.255 -
UNIVARIATE MODEL PARAMETERS.
HORMAL hu= 164, 6441 SIGMAZ® 131,084l
LCGHORMAL MU= 4.8711 SIGHA= 0.6612
GAMMA ALPHA=2 2.3021 BETA= 71.5183
HEIBULL RHO= 1.4406 DELTA= 183.5520
EXTRENME-L XI= 113.995% ETAz 74.4778
EXPOHENTIAL THETA= 164.6941
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL g.20492 0.27490 0.2751
LCG RORMAL 0.1140 0.0995 0.0966
GAMMA 0.1407 0.1365 0.1429
WEISULL 0.12392 0.1906 0.1978
EXTREME TYPE-1 0.1495 0.1385 0.1439
EXPONENTIAL 0.2279 0.3za9 0.3105



1900
1910
1920
1930
1940
19590
1940
1970
1980

0’1

7.33
17.90
7.84%
9.00
13.80

2 /3
2.79 1.49
7.97 15.10
4.65 7.37
2.79 1.27
8.70 4.90

LAG CONF. INT.(1)

1

HORMAL
LOGHORHAL
GAMMA
HEIBULL
EXTREME-1
EXPONERTIAL

HORMAL

LOG MORMAL
GAMMA

KEIBULL
EXTREHE TYPE-1
EXPONENTIAL

( 2) OLIFANTSNEK DAM. AZRO3.

DATA. (1l0w=g . Mex3),

34

23.20
57.20
2.95
2.86
7.50

45

11.00
15.70
25.10
. 3.5
16.00

L7 ]

14.70
?.99
%.98

11.30

111.90

CORRELATION ANALYSIS.

0.274

MU=
MU=
ALPHAz
RHO=
XI=
THETA=

14.5592
2.1842
l.15¢00
0.9903
8.3429

14.55%2

CORRELATION

0.094%

UNIVARIATE MODEL PARAMETERS.

SIGHA=
SIGHA=
BETA=
DELTA=
ETAS

SELECTION CRITERIA

H=1.0

0.260%
0.1005
0.1489
0.1331
0.1638
0.1521

H=0.5

0.3394%
0.0969
0.14268
0.1708
0.1756
0.17%&

6/7

16.00

5.95
13.40
62.90
24.50

CONF. IHT.t 2}

-0.274

19.2939
0.95%0
12.6598
14.4895
8.4174

Hz0.25

¢.3182
0.0e89
0.1489
0.17467
0.1856
0.1843

78

9.50
10.70
28.50

2.75
57.30

8/9

,
13,00
14.40

3.92
11.00
2.47
5.1%

/0



1900
1910
1920
1930
1940
1950
1960
197¢
1980

/1

12.10
5.12
4.97

15.4%

{ 3) RIETVLEI DAM. AZRO04.

DATA. (10%n5_ Mun3),

/2 2/3 V4 4/5 576 &/7
12.10 2.8l 14.60 le.20
6.8% 13.40 37.50 14.40 a.72 %.11
3.63 8.58 6.17 17.90 10.60 14.40
1.58 1.28 3.55 5.70 5.56 34.70
28.13 8.48 17.30 82.93 48.469 18.99
CORRELATION ANHALYSIS.
LAG CONF. INT.L(1) CORRELATICH CONF. INT.( 2)
1 0.239 0.259 -0.289
UNIVARIATE HODEL PARAMETERS.
HORMAL = 14.8709 SIGHA=  18.7862
LOGHORMAL M= 2.2481 S1GHA= 0.9125
GAMHA ALPHA= 1.2483 BETA= 11.912%
HEIBULL RHO3 1.0303 DELTA=  15.0931
EXTREME-1 XI= 8.7413 ETA= 8.2852
EXPORENTIAL THETA=  14.8709
SELECTICN CRITERIA
H=1.0 H=0.5 H=0,25
HORMAL 0.2697 0.31%90 0.2947
LOG HORMAL 0.10%6 0.1056 0.1072
GAMMA 0.1633 0.1263 0.1221
HEIBULYL 0.1567 0.1595 0.1542
EXTREME TYPE-1 0.1696 0.1479 9.1502
EXPONENTIAL 0.1759 ¢.1913 0.1801

778

1.96
6.05
.66
7.35
96.51

a/9

9.87
%.36
6.38
4.76
14.34

9/0

9.09
11.40
5.78
.97



( 4) BUFFELSPCORT DAM. AZROS.

DATA. (1Owng rinn3),

/1 1’2 2/3 ¥4 “/5 576 /7 7/8 as9 9/0
1900 .
1910
1920 .
19310 4.90 15.60 26.30 9.50 22.70 13.50
1940 17.90 9.10 21.30 51.70 18.10 156.50 a.70 16.40 ?.90 18.00
1950 13.40 ?.20 12.50 a8.80 25.10 14.70 15.20 13.00 11.20 5.70
1960 11.90 5.9 3.70 2.50 4.50 3.00 25.80 6.60 5.30 3.70
1970 13.50 12.10 a.20 19.20 19.90 27.60 26.70 25.60 6.20 13.50
1980 12.80

CORRELATION ANALYSIS.

LAG  CONF. INT.(1)  CORRELATION  CONF. INT.( 2)
1 0.286 0.253 -0,286
UNIVARIATE MODEL PARAMETERS.
HORMAL MU= 14,1936  SIGMA=  9.0027
LOGHORMAL Hu= 2.4585  SIGMA=  0.6580
GAMHA ALPHA=  2.7289  BETA= 5.2012
HEIBULL RHO= 1.7017  DELTA=  15.9832
EXTREME=1 XI= 10.3539  ETAs 6.4005
EXPONENTIAL THETA=  14.1936
SELECTION CRITERIA
H=1.0 #=0.5 #=0.25
HORMAL 0.1329 9.1712 0.1793
LOG NORMAL 0.1152 0.1115 0.1130
GAMMA 0.0945 0.0936 0.0848
WEIBULL 0.0940 0.1011 0.0998
EXTREME TYPE-1 0.0987 0.1021 0.0904
EXPONENTIAL 0.2094 0.2797

0.26465



1900
1910
1920
1930
1940
1950
1960
1970
1980

e/l

22.50
6.06
lo.20
6.40

2 2/3
7.30 31.10
6.81 3.57
0.31 0.89
2.60 1.38

LAG CONF, INT.(1)

1

HORMAL
LOGHORMAL
GAMMA
REIBULL
EXTRENE-1
EXPONENTIAL

HORMAL

LOG MORHAL
GAHHA

WEIBULL
EXTREME TYPE-1
EXPONENTIAL

(

5) BOSPOORT DAM. AZROS.

DATA. (10nm6_ Mxn3),

3/n

97.00
1.23
0.47

10.70

4/5

34.20
52.10

5.33
%.20

576

37.¢0
13.90
0.66
254,60

CORRELATION AMALYSIS.

0.302

MU= 28.0771
hu= 2.1739
ALPHA= 0.5404
RHO= 0.6552
XI= 12.250%
THETA®  28.0771

CORRELATION

0.159

UNIVARIATE HODEL PARAMETERS.

. SIGMA=
SIGHA=
BETAz
DELTA=
ETA=

SELECTION CRITERIA

H=l.0

0.2806
0.1072
0.1485
0.1117
0.2339
0.2566

H=0.5

0.3720
0.1167
0.1709
0.1180
0.2559
0.2468

6’7

. 32.50

4.19
14.50
-142.00
53.30

CONF. INT.{ 2)

=-0.302

49.0701

l.e981
51.9197
19.9877
20.7312

H=0.25

0.3335
0.i020
0.1767
0.1200
0.2481
0.214%

178

4.04
17.90
28.90

0.4%

146.00

30.20
11.10
6.21
1.01

/0

12.30
10.70
2.22
0.62



A

1900
1910
1920
1930
1940
1950
1960
1970
1500

ol

4.30
3.90
4l.20
21.90

Vg4 2/3

7.90 18.20
© 2.50 8.00
. 6.70 2.70
, 22,20 7.00

LAG CONF.

1

6) LINDLEY'S POORT DAM. A2RO7.

DATA. (10w Man3),

374

.

96.90
4.50
4.10

46.50

4/5 576
10.70 16.90
35.40 29.80

3.60 10.80
22.00 115.40

CORRELATION ANALYSIS.

INT.(1)

0.310

CORRELATION

0.054%

UNIVARIATE HODEL PARAMETERS.

NCRMAL
LOGHORMAL
GAMMA
HWEIBULL
EXTREME-1
EXPOHENTIAL

HORMAL

LCG HOCRMAL
GAMMA

HEIBULL
EXTREHE TYPE-1
EXPONENTIAL

M=
ru=
ALPHA=
RHO=
XI=
THETA=

23.3050 SIGHA=
2.4161 S1GMA=
0.8090 BETA=z
0.8301 DELTA=

11.5261 ETA=
23.3050

SELECTION CRITERIA

H=1.0

0.2475
0.15¢01
0.2023
0.1704
0.2462
0.2323

H=0.5

0.3346
2.1304
0.1789
0.1870
0.2257
0.1918

&/7

7.3¢
33.1e
115.00
41.40

COMF. INT.{ 2)

-0.310

32.235%

l.2092
28.8083
20.7344%
15.9395

H=0.25

0.3052
0.1272
0.1697
0.1766
0.2217
¢.1l438

78

6.10
26.40
8.60
117.70

8/9

9/0

2.90
6.20
4.10
0.80



L

1900
1910
1920
1930
1940
1950
1960
1970
19a0

/1

1l.30
22.00
19.30

172 /3
c.80 $.10
1.50 1.10

13.30 2.30

( 7) WARMBAD DAM. AZRO8,

OATA. (10wx4 Heel),

14 4/s
5.00 23.30
0.50 0.80

15.30 35.30

5/6 /7
0.30 2.50
13.60 4.00
0.20 15.60
38.40 10.70

CORRELATION ANALYSIS.

LAG CONF. INT.{1)

1

HIRMAL
LOGHORMAL
GAMHA :
HEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG HORHAL
GAMIA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

0.336

UNHIVARIATE MODEL PARAMETERS.

HU=
=
ALPHA=
RHO=
XI=
THETA=

SELECTION

H=1l.0

0.2393
0.1379
0.1716
0.1531
0.2250
0.2086

CORRELATION  CONF. INT.( 2)
0.403 -0.336
8.2147  SIGMAZ  9.8481
1.3496  SIGHA®  1.3568
0.7865  BETA®  10.4448
0.8372 DELTA=  7.4371
4.2685  ETAs 5.7147

8.2147

CRITERIA
H=0,5 H=0.25
6.2779 0.2566
0.1115 0.1046
0.1398 0.1168
0.1257 0.1051
0.1989 0.1884
0.1751 0.1237

78

[-N-N-N-]

as9

9/0



1%00
1910
1920
1930
1940
1950
19460
1970
1930

orl

25.60
12.00
33.70
35.60

( 8) HMARICO-BOSYELD DAM. A3RO1.

DATA. (10mnp Men3),

w2 2/3 3/4 4/5 576
92.90

19.30 52.30 160.00 35.80 61.10
5.10 10.90 13.80 45.40 27.50
16,40 8.40 15.80 4,70 19.90
38,70 12.20 30.50 45.10 95.70

LAG CONF. INT.(1}

1

HORMAL
LOGHORMAL
GAMMA
WEIBULL
EXTREME=-1
EXPONENTIAL

HORMAL

LOG HORHAL
GAHIA

HEIBULL
EXTREHME TYPE-1
EXPONENTIAL

CORRELATION ANALYSIS.

CORRELATION

3oz 0.228

M=z 30.6095
Hu= 3.0883
ALPHA= 1.6485
RHO= 1.2311
XI= 19.8184

THETA=  30.6095

UNIVARIATE MODEL PARAMETERS.

S1GHA=
SIGHA=
BETAz
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.1742
0.0990
0.1150
0.1113
0.1296
0.1658

H=0.5

0.2311
0.1071
0.1064
0.1258
0.1205
0.2239

6/7

36.10
17.00
29.00
52.80
31.80

. CONF. INT.( 2}

~0.302

29.254%

0.8293
18.5480
33.0408
15.9769

H=0.25

0.2265
0.1066
0.0984%
0.1214%
0.1141
0.2144

78

19.60
21.30
20.70
10.40

45.90
12.90
14.20
10.20

b 74

24.80
8.80
8.10
3.60



1900
1910
1920
1930
1940
1950
19¢0
1970
1930

0/

12 273
7.08 18.80
0.73 3.1
6.27 0.66
%.60 2.36

LAG CONF. INT.(1) CORRELATION CONF. INT.( 2)
1 0.295 0.545 «0.295
UNIVARIATE MODEL PARAMETERS.
HORMAL U= 11.8675 SIGMA= 16,5761
LOGHORMAL 2 1.645% SIGHA= 1.3790
GAMMA ALPHAZ 0.7262 BETA= 16.3409
HEIBULL RHO= 9.7887 DELTA=  10.2088
EXTREME-1 X1= 5.8803 ETA= 8.2664%
EXPOHENTIAL THETA=  11.6675
SELECTION CRITERIA

H=l1.0 H=0.5 H=0.25
HOPHAL 0.2427 0.3349 0.3092
LCG HORMAL 0.0951 0.0996 0.0886
GAMTWA 0.1245 0.1392 0.1492
HEIBULL - 0.l023 0.1204 0.1277
EXTREME TYPE-1 0.1823 0.2186 0.21%a
EXPONENTIAL 0.1687 0.1601 0.1216

( 9) KLEIN-MARICO DAM. A3R02.

DATA. (Ll0wwb.Hun3),

3/4

45.50
1.47
Q.74
9.87

475

14.60
16.70

0.48
19.48¢

576

9.19
40.10
1.%0
9.17
24.61

CORRELATION AHALYSIS.

/7

12.20
11.60

5.72
32.90
51.31

778

3.90
5.10
7.48
1.93
82.7¢%

?.54
1.45
2.4%
1.63
29.53

9/0



(10} KROMELLEMBOOG DAM. A3RO3.
DATA. (10m#b Haxl),

0/l 172 /3 ¥4 4/5 5/6 /7 78 8/9 9/0

1900

1910

1920

1930

1940 . -
1950 21.80 7.40 7.10 | 5.50 2.10 10.10
1960 9.20 4.80 5.80 .70 10.20 49.80 3.90 4.30 1.10 11.40
1970 5.10 3.20 9.90 19.00 94.60 39.10

1980

CORRELATION AHALYSIS.
CONF. INT.1 2)

LAG CONF. INT.(1) CORRELATION

1 0.418 0.289 -0.418

UNHIVARIATE MODEL PARAHETERS.

HORMAL
LOGNORMAL
GAMMA
WEIBULL
EXTREME=-1
EXPCHENTIAL

HORMAL

LOG HORMAL
GAMMA

WEIBULL
EXTREMHE TYFPE-)
EXPOHENTIAL

Hu=z 15.0045
Hu= 2.1236
ALPHA= 0.98a5
o= 0.9120
XI= 7.9047

THETA2 15,0045

SIGHA=
"SIGHAS
BETA=
DELTA=

ETA=

SELECTICH CRITERIA

H=1l.0

0.2961
0,1548
0.2190
0.1948
0.2435
0.2266

H=0.5

0.20826
0.1255
0.1563
0.1647
0.1743
0.1823

21.4361
1.0341
15,1789
14.2092
9.2616

H=0.25

0.2432
0.1066
0.1216
0.1417
0.1404%
0.1407



1900
1910
1920
1930
1940
1950
1960
1970
1380

/1

4.90
45,70

/2 /3
. 30.90
4.80 4.90
76.50 56.80

(11) DOORMORAAL DAM. AGROI.

DATA. (10%m§_ tinn3),

3/4 4/5
83.10 53.80
35.30 .30
29.20 19.10

576

26.80
12.00

CORRELATION AMALYSIS.

LAG CONF. INT.{1) CORRELATION
1l 0.409 0.207
UNIVARIATE MODEL PARAMETERS.
HORHAL HU= 29.3565 SIGHA=
LOGHORMAL Hyz 2.9328 SIGHMA=
GAMMA ALPHA= 1.2597 RETA=
HEIEULL RHO= 1.1723 DELTA=
EXTREME-1 XI= 18.4781 ETA=
EXPOHENTIAL THETA=  29.3565
SELECTION CRITERIA
H=1.0 H=0.5
HORHAL 0.169% 0.1554
L0G HORMAL 0.1659 0.1581
GAMMA 0.1510 0.1398
HEIBULL 0.1445 0.1441
EXTREME TYPE-1 0.1589 0.1507
EXPONENTIAL 0.1619 0.1491

6/7

10.80
11.30

CONF. INT.1 2)

-0.409

24.3930

1.0899
23.3038
31.6070
17.6311

H=0,25

6.1386
0.1621
g.1122
0.1201
0.113%
0.119¢0

/8

34.30
19.50

8.1¢
34.30

/0

67.30
1.50



1900
1910
1920
1330
1940
1950
1960
1970
1980

%.50

{12)

e /3 74 45 5/6 &/7
15,60 4.60 6.60 22.80
22.10 73.90 5.70 84.50 116.50 95.60
CORRELATION ANALYSIS.
LAG CONF. IHT.(1) CORRELATION CONF. INT.( 2)
1l 0.490 0.611 =0.4%0
UNIVARIATE MODEL PARAMETERS.
NORMAL U= 60.7625 SIGMAS 75,2655
LOGNORMAL = 3.2563 SIGHAZ 1.4597
GAMMA ALPHA= 6.7092 BETA= as.6808
WEIBULL RHO= 0.7836 DELTA=  52.5112
EXTRENE-1 X1= 30.5210 ETAz 43.9208
EXPONENTIAL THETA=  60.7625
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
NORHAL 0.23% 0.2127 0.1783
LOG KHORMAL 0.1616 0.1469 0.1184
GAMMA 0.1815 0.1448 0.1c080
HEIBULL 0.1663 0.1456 0.1121
EXTRERE TYPE=) 0.2284 0.1801 0.1298
EXPOHENTIAL 0.2203 0.2065 0.1581

NZEHELE DAM. ASROL.

DATA, (10%=6_Max3),

78

38.70
230.20

a/?

2.70
228.50

/0

17.70



1900
1910
1920
1930
1940
1950
1960
1970
1940

0/l

11.20

(13}

LUPHEPHE/HHANEDSY DAM3 (COMDINED).

CATA, {(10wng Hend),

12 273 3/4 /5 5/6 677
) 5.50 11.70 23.20
.50.40 6.40 46.60 63.70 48.00
CORRELATION ANALYSIS.
LAG  CONE. INT.11)  CORRELATION  CONF. INT.( 2}
1 0.566 0.236 -0.586
UNIVARIATE MODEL PARAMETERS.
MORMAL MU= 25,6833 SIGMA=  20.6490
LOGHORMAL MU= 2.9198  SIGMAT  0.8637
GAMMA ALPHA=  1.6808 BETA=  15.2808
HEIBULL RHO= 1.3335  DELTA=  28.0969
EXTREME-1 XI2 16.6168  ETA= 14.2102
EXPOHEHTIAL THETAz 25,6833
SELECTION CRITERIA
H21.0 H=0.5 H=0.25
NORMAL 0.2420 0.1904 0.1158
LG MORMAL 0.2118 0.1619 9.1151
GAMMA 0.2349 0.1818 0.1244
HETBULL 0.2246 0.1780 0.1274
EXTREME TYPE-1 0.2440 0.18% 0.1276
EXPONENTIAL e.2021 0.1917 0.1542

/8

8.90

1964/5 TO 1975/6.

8/9

21.30

/0

11.30



1900
1910
1920
1930
1940
1950
1960
1970
1980

o1

36.80
10.20

e /3
. 32.40
a.50 8.9¢
12.70 13.30

(14) ALBASINI DAM. A9R01.

DATA. (10%#6 Nen3),

3/4 45 576
39.80 55.70 63.70
2.40 5.70 0.80
64.90 13.70 7.10

CORRELATICN ANALYSIS.

LAG CONF. INT.11} CORRELATION
1l 0.377 0.238
UHIVARIATE MODEL PARAMETERS.
HORHAL MU= 24.21e5 SIGHMA3
LOSNORMAL M= 2.5543 SIGHMA=
GAMMA ALPHA= 0.9212 BETAz
WEIBULL RHO= 0.9437 DELTA=
EXTREME-1 XI= 13.8110 ETA=
EXPCHENTIAL THETA= 24,2185
SELECTION CRITERIA
H=1l.0 H20.5
HNORMAL 0.2257 0.2342
LOG HORMAL 0.1311 0.1615
GAMHA 0.1349 0.1086
WEIBULL 0.1268 0.1237
EXTPEHE TYPE-1 0.1925 0.1545
EXPONENTIAL 0.1507 0.1591

/7

17.50
8.60
41,00

COHF. INT.{ 2}

-0.377

25.7123

1.3438
26.2908
23.5418
15.5084

H=0.25

0.2131
0.2022
0.cca3
0.1151
0.1258
0.1492

178

109.00
7.20
6.10

a/9

44.00
0.3¢0
.00

9/0

16.10
23.50

A

-

-



N

1900
1910
1920
1939
1940
1950
1360
1979
1940

0/l

73.40
48.30

172 2/3

18,30 31.70
25,00 30.50

LAG CONF. IMT.{1)

1

HORMAL
LOGHORHAL
GAMMA
WEIBULL
EXTREME-1
EXPOMENTIAL

HORMAL

LOG HORMAL
GAFMA

HEIEBULL
EXTREME TYPE-1
EXPOHENTIAL

136.00
100.60

0.392

HUWE DOORINGPCORT DAM. B1ROL.

DATA. {10%%6 Men3),

3/4 4/5
495.00

4%.60 ¢8.80
287.30

576

398.00
5.1¢0
187.90

CORRELATION ANALYSIS.

M= 123.4880
M= 4.3939
ALPHA= 1.3260
PHO= 1.1327
X1i= 75.9820

THETA= 123.4880

CORRELATICH

0.574

UNIVARIATE MODEL PARAMETERS.

SIGHA=
SIGMA=
BETA=z

DELTA=

ETA=

SELECTION CRITERIA

H=1.0

0.2209
0.1225
0.1453
0.1404
0.1668
0.1499

H=0.5

0.2188
0.146%
0.1222
0.1372
0.1358
0.192%

&/7

256.0;
183.00
114,70

CONF. INT.( 2}
-0.392

120.8977

0.9966

93.1278
129.6934
69.7481

H=0.25

0.1981
0.1765
0.1073
0.1270
0.1051
0.1668

/8

108.00
41.30
96.90

8/9

91.80
65.30

-

Y0

122.00
57.70



(16) ERONNHORSTSPRUIT DAM. BZRO1.
DATA. (10wné Mun3),

0/l 172 /3 34 4/5 576 /7 778 8/9 /0

1900
1910
1920
1930
1940 . - 43.40
1950 6.70 13.20 15.80 64.10 58.80 73.90 38.80 80.10 18.00 33.40
1960 15.50 16.80 15.89 %6.80 10.20 85.50 32.90 15.40 46.20 69.90
1970 113.80 6.30 14.90 161.40 110.20 47.60 268.00 10.10 47.00

1980 :

CORRELATION AHALYSIS.

LAG  CONF. INT.C1)  CORRELATION  CONF. INT.{ 2)
1 0.358 -0.037 -0.358
UNIVARIATE MODEL PARAMETERS.
HORMAL MU= 52.8500  SIGMA= 54,9751
LOGHORMAL hu= 3.5401  SIGHAS  0.9531
GAMA ALPHAS  1.3116  BETA=  40.2940
WEIBULL RHO= 1.1072  DELTAz 55,1402
EXTRERE-1 XI= 32.1893 ETAs 30.5656
EXPOHENTIAL THETA=  52.8500
SELECTION CRITERIA

#21.0 H=0.5 H=0.25
NORMAL 0.2116 0.2518 0.2309
LOG HORMAL 0.1439 0.1271 0.0998
GAMHA 0.1594 0.1395 0.1173
HEIBULL 0.1442 0.1404 0.1302
EXTREME TYPE-1 0.1811 0.1652 0.1433
EXPONENTIAL 0.1394 0.1734 0.1662



1900
1910
1920
1930
1940
1950
1940
1970
1980

o/l

12.70
5.50
12.20
234.00

(17) RUST DE WINTER DAM. BIRO1.

DATA. (10w%6 Hax3),

1z /3 3% 4/5 576
.- 8.10 63.90 147.00

E5.60 144.00 15.60 46.50 a.20
13.00 18.50 61.50 206.00 99.70
8.2¢ 5.40 13.20 3.10 166,00

é6.00 26.40 138.50 110.40 80.90

CORRELATIOH ANALYSIS.,

LAG CONF., INT.(1) CORRELATICN CONF. INT.( 2)

1l 0.286 0.104

UHIVARIATE HODEL PARAMETERS.

NORMAL M= 50.706% SIGHA=
LOGHORMAL Hys 3.3576 S1GMAS
GAHMA ALPHA= 1.01348 BETA=
HEIBULL RHO= 0.9682 DELTAs
EXTRENE-1 XI= 25.325% ETA=
EXPONENTIAL THETA®  50.706%

SELECTION CRITERIA

H=1.0 Hz0.5
HORMAL 0.2187 0.2995
LOS HORMAL 0.1170 0.1036
GAMMA 0.1524 0.1409
WEIBULL 0.1336 0.1414%
EXTPEME TYPE-1 0.1915 0.1%84%

EXPOMENTIAL 0.1453 0.1457

&7

23.00
19.10
22.2¢0
38,30
95.20

-0.286

55.7597

1.1131
50,0138
49.9382
32,5167

H=0,25

0.26861
0.0857
0.1446
0.1464%
0.2050
0.1377

78

47.00
11.80
12.40
47.80

5.00

50.40
15.90
15.60
83,00
26.40

9/0

51.19
10.19
25,20
44.90
30.70



1900
1910
1920
1930
1%%0
1950
1960
1970
1980

oL

848.00
133.00
439.00
318.00

221.c0
103.00
127.¢0
339.00

(18) LOSKOP DAM. B3ROD2.

DATA. (10%wg Hux3),
12 /3 3/4 4/5 576 &/7
21.50
733.00 1334.00 227.00 674.00 211.00
300.00 339.00 1150.00 1089.00 697.00
l21.00 132.00 192.00 43.00 572.00
111.00 341.00 1143.00 680.00 2085.00
CORRELATION ANALYSIS.
LAG COHF. IHT.(1) CORRELATION CONF. INT.( 2)
1 0.302 0.30% -0.302
UNIVARIATE MOOEL PARARETERS.
HORMAL MU= 445.1310 SIGHA= 326.0901
LOGHORMAL MU= 5.7967 SIGHA= 0.8717
GAHMA ALPHA= 1.5061 BETA=  246.4629
HEIBULL PHO= l.4200 DELTAT 490.4806
EXTREME-1 XI= 302.4076 ETA= 229.7365
EXPOQHERTIAL THETA= 445.1310
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL 0.1963 0.1764 0.176%
LOG HORMAL 0.124% 0.1402 0.2047
GAHMA 0.1248 0.107¢ 0.1021
WEIBULL 0.1292 0.114¢ 0.10%
EXTREME TYPE-1 0.146% 0.118¢ 0.0916
EXPOHENRTIAL 0.1680 0.2004 0.1677

7/8

379.00
239.00
316.00
306.00
643.00

693.00
239.00
445.00
327.00

970

877.00
33%9.00
405.00
560.00



1900
1910
1920
1930
1940
1950
1960
1970
1940

ol

7.20

172 273
2.60 2.50
2.10 11.00

(19) TONTELDOOQS DAM. B4ROI.

DATA. (10n»g Mun3),

3/4

4/5

576 6/7
4.30 3.10
2.80 2.00

CORRELATION ANALYSIS.

LAG CONF. INT.(1)

1

NORMAL
LOGHORMAL
GANMMA
HEIBULL
EXTREME-1
EXPOHENTIAL

HORMAL

LOG HORMAL
GAMHA

HEIBULL
EXTREME TYPE-1
EXPCHENTIAL

0.450

UNIVARIATE MODEL PARAMETERS.,

=
H=
ALPHA=
RHO=
Xl=
THETA=

SELECTION CRITERIA

H=1.0

0.2106
0.13%4
0.159¢
0.1633
0.14693
0.1399

CORRELATION CONF. INT.{ 2)
=0.059 ~0.450
3.752¢8 SIGHA= 2,7204
1.0629 SIGHA= 0.7770
2.0779 EETA=z 1.8059
1.4957 DELTA= 4.177%
2.5096 ETA=z 1.8629

3.752¢4
H=0.5 H=0.25
0.1459 0.1322
0.1424 0.1272
0.1331 0.1031
0.1223 0.0971
0.1333 0.1020
0.2125 0.17%26

178

9/0



1%00
1910
1920
1930
1940
1950
1940
1970
1980

o/1

21.9¢
6.10

(20) OHRIGSTAD DAM. BGROL.
DATA. (10%%6.Han3),
vz 2/3 /4 576
28.40 9.70 10.80 16.10
7.30 29.90 12.00 27.50 14.60
CORRELATION AMALYSIS.
LAG CONF. INT.L1) CORRELATION
1 0.409 0.137
UNIVARIATE MODEL PARAMETERS.
NORMAL Hu= SIGHA=
LOGHORMAL tus SIGHAE
CAMMA ALPHAZ BETAs
HEJBULL RHO= DELTA=
EXTREHE-1 XI= ETA=
EXPONENTIAL THETA=
SELECTION CRITERIA
H21.0 H=0.5
NORMAL 0.1982 0.1546
LOG HORMAL 0.161% 0.1248
GAMIA 0.1761 0.1340
WEIBULL 0.1803 0.1382
EXTREME TYPE-1 0.1774 0.1355
EXPONENTIAL 0.2646 0.323¢

&/7

4.60
8.70
33.40

CONF, INT.( 2}

-0.409

8.9301

0.5753

4.7581
18,6623
6.7978

H=0.25
0.1241

0.0992 '

0.0%66
0.1051
0.0951
0.2712

7/8

9.50
15.80
23.70

a8/9

26.70
a.20
28.60

9/0

16.4¢
10.30



L~ F

1900
1910
1920
1930
1940
1950
1960
1970
1980

0/l

2 /3

16.20 17.10

(21) KLASERIE DAM. BTROL.

DATA. (10mx%é Nwe3),

/4

8.70 48.90

4/5 5/6 6/7

CORRELATIDH ANALYSIS,

LAG COHF. INT.{1)

1

HORMAL
LOGHORMAL
GAMHA
HEIBULL
EXTREHE-]
EXPONENTIAL

ROPMAL

LOG NORMAL
GAMMA
WEIBULL

EXTREHME TYPE-1

EXPONENTIAL

0.653

UNIVARIATE HODEL PARAMETERS.

Hu=
U=
ALPHA=
RHO=
XI=
THETA=

SELECTION

H=1.0

0.19%0
0.1727
0.1884%
0.1841
0.1891
0.286%

14.50 27.00

CORRELATION CONF. IHT.( 2)
=0.431 -0.653
18.98489 SIGHA®  12.7535
2.7834 SIGHA= 0.57¢68
3.2731 BETA= 5.80l%
1.7381 DELTA= 21.5211
14.0490 ETA= 7.4134

18.9889

CRITERIA
H=0.5 Hz0.25
0.1625 0.1158
0.1611 0.1206
0.1713 c.1262
0.1585 0.1156
0.1780 0.1338
0.2981

0.2208

1/8

9.60

a8/9

20.60

9/0

8.30



G

1900
1910
1920
1930
1940
1950
1560
1970
1980

0/1

26.30
86.70

(22)

/2 2/3

17.80
101.60

27.30
17.80

LAG CONF.

1

EBEMEZER DAM. BSROL.

DATA. (1Qwnf . Hwn}),

4 4/5
14.00 26.30
68.50

60.40

576

%%.70
78.00

CORRELATICON AMNALYSIS.

INT.(0)
0.438

CORRELATION

0.154

UNIVARIATE MODEL PARAMETERS.

HORHAL
LOGHORMAL
GAMHMA
WEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG HORMAL
GAMMA

WEIBULL
EXTREME TYPE-1
EXPGHENTIAL

ru= 45.4850
MU= 3.6382
ALPHA= 2.9458
RHO= 1.7904
X1= 33.0873
THETA=  45.4850

S1GHA=
SIGMA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.1863
0.1547
0.1664%
0.1637
0.1693
g.2630

H=0.5

0.1736
0,.1479
0.1519
0.15%95%
0.2561
G.3155

&/7

18.¢60
98.20

CONF. INT.( 2)
=-0.438

27.9961

0.6181
15.4406
51.5018
19.8206

H=0.25

0.1500
0.117¢9
0.1183
0.1325
0.1163
G.2760

1/8

31.30
38.70

45.60
15.50

/9

53.20
18,20



1%00
1910
1920
1930
1940
1950
1960
1970
1980

o/l

779.00
2535.00
639.00
2039.00
loca.o00
1202.00

698.00
103%.00
1167.00

962.00
1977.00

375.00

(231

YAAL DAM. CIROL.

DATA. (LO%wh Hen3),

/7

1284.00
4361.00
1117.00
5379.00
3393.00
2395.00

CONF. INT.{ 2)

-0.255

SIGHA= 1474.3916

12 2/3 374 4/5 576
765.00 4778.00 809.00
470.00 3302.00 2550.00 1689.00
3598.00 6064.00 1696.00 1278.00
1951.00 882.00 3510.00 1546.00
13146.00 1136.00 2890.00 520.00
440.00 2176.00 5727.00 4803.00
CORRELATION AMALYSIS.
LAG COHF. INT.(1) CORRELATION
1 0.255 0.118
UNIVARIATE MODEL PARAMETERS.
HORMAL = 1975.3898
LOGHORMAL = 7.3387 SIGHA=
GAMMA ALPHA= 2.1535 BETAz
WEIBULL RHO= 1.4673 DELTA=
EXTREME-1 XI= 1353.3556 ETA=
EXPONENTIAL THETA= 1975.389%8
SELECTION CRITERIA
H31.0 H=0.5
HORMAL 0.1791 0.2470
LOG HORMAL 0.0937 0.0352
GAMHA 0.1235 0.1187
WEIBULL 0.1225 0.1565
EXTREHE TYPE-1 0.1376 0.1346
EXPOHENTIAL 0.1913 0.3079

0.7143
917.2808

2201.6486

955.9212

H=0.25

0.253
0.0787
0.1319
0.1740
0.1506
0.3015

778

8631.00
11446.00
1101.00
3656.00

597.00
2367.00

1612.00
3929.00
642.00
1345.00
687.00
600.00

/0

2755.00
2178.60
1939.00
1449, 00
1173.00
1464. 00



1900
1910
1920
1930
1940
1950
1944
1970
1980

/1

54.60
69.10

172 /3
51.50 54.10
80.40 74.40

LAG COHF. INT.(1)

1

HORMAL
LOGHCRMAL
GAMHA
HEIBULL
EXTREHE=1
EXPONENTIAL

NORMAL

LOG NORHAL
GAMIA

WEIBULL
EXTREHE TYPE-1
EXPONEMTIAL

140.50

0.450

BOSKOP DAM. C2RO1.

DATA. (10m45.Men3),

34 ass
58,70 91.20
129.00

&/6

531.70
209.10

CORRELATION AMALYSIS.

M=z 77.8211
M= 4.2575
ALPHA= 5.3213
RHO= 2.0660
XI= 62.1951
THETA=  77.8211

CORRELATION

0.469

UHIVARIATE MCDEL PARAMETERS.,

SIGHA=
SIGHA=
BETA=
RELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.221%
0.1798
0.1961
0.1979
0.1934
¢.3785

H=0.5

0.2023
0.1481
0.1595
0.2052
0.1560
C.4259

&7

52.50

CONF. INT.( 2)

=-0.450

41.4201

0.4213
14.6245
88.3731
22.5083

H=0.25

0.1757
0.1149
0.1263
0.1775
0.1c082
0.3328

7/8

58.00
51.70

8/9

39.50
a3.40

/0

46.70
78.50



1900
1910
1920
1930
1940
1950
1960
1970
1940

o/l

62.60
111.00
20.50

(25)

ALLEMANSKRAAL DAM, C4RoO}.

DATA. (L0x#6 . Hwx3),

v 2/3 34 “rs
67.50 53.30 49.70 60.60
16.50  104.00  174.00 296.00

LAG CONF. INT.L1}

1 2.409

5/6

" 256.00

92.50

CORRELATIGN ANALYSIS,

CORRELATION

0.122

UNIVARIATE HOOEL PARAMETERS.

HORMAL
LOGNORMAL
GAMMA
HEIBULL
EXTRENE-1
EXPONENTIAL

HORMAL

LOG HORMAL
GAIMA

HEISULL
EXTREME TYPE-1
EXPONENTIAL

= 83.3739
HUz 4.1175
ALPHAS= 1.783%
RHO= 1.3078
X1= 54.8819
THETA=  83.3739

SIGHA=
SIGHA=
BETA®
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2013
0.1247
0.1396
0.1384
0.la87
0.1806

H=0.5

0.20648
e.1312
0.1231
0.1288
0.1299
0.2351

M T

33.10
79.50

CONF. INT.( 2)

«-0.409

72.3348

0.8012
46,7506
91.1779
42.7059%

Hz0.25

0.1861
0.1107
0.1007
0.1165
0.1065
0.2111

/8 as/9

.
52.80
44.50 28.00
19.10 18.30

/0

57.7¢0
95.40
125.00



(26) ERFENIS DAM. C4RO2,
DATA, (10wxg Men3),

7 § 1r/2 273 /s 4/5 576 /7 778 a/9 /¢

1900 :

1910 ‘

1%20

1930

1940 .

1950 : 85.50 67.50
1960 103.00 123.00 145.00 136.00 182.00 687.00 60.40 114.00 34.30 125.70
1970 1a9.90 34.10 199.00 1464.390 427.30 lol.40 227.10 20,70

1580 - -

CORRELATION ANALYSIS.
CONF. INT.L 2)

LAG CONF. INT.(1) CORRELATION

i 0.438 =0.124 -0.433

UNIVARIATE MODEL PARAMETERS.

HORMAL
LOGHORMAL
GAMZA
WEIBULL
EXTREME~)
EXPOHENTIAL

HORMAL

LOG HORHAL
GAMHA

HEIEULL
EXTREME TYPE-1
EXPONEHTIAL

Mu= 160.3500

MU=
ALPHA=
RHO=

A= 105.1988
THETA= 160.3600

SIGMA=
SIGMA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2313
0.1515
0.1587
0.1570
0.1628
0.1825

0.2012
0.1412
0.1261
9.1259
0.132%
0.1829

152.8762

0.8266

94,2512
173.7662
8l.1102

H=0.25

0.1771
0.1279
0.0992
0.1030
0.1033
0.1540



1900
1910
1920
1930
1940
1950
1960
1970
1980

0/l

11.40
6.50
3.10
%.50
3.20

¢27) TIERPCCRT DAM. CSRO1.

DATA. (10%w5 rinel3),

172 2/3 74 4/5 5/6 6/7
7.00 100.00 9.40  22.00 8.40
3.20 33.50 7.80 2.50 21.40 0.50
32.70 19.00 7.80 12.60 3.80 137.00
5.30 5.20 52.70 45,20 14.80 9.90
18.20 10.10 2.60 49.90 9.40 12.70
40.50 5.70 118.10 23.00
CORRELATION ANALYSIS.
LAG  CONF, INT.(1)  CORRELATION  CONF. INT.( 2)
1 0.269 -0.168 -0.269
UNIVARIATE MODEL PARAMETERS.
HORMAL Mz 20.4396  SIGHA= 28,2043
LOGNORMAL sz 2.3837  SIGHA*  1.119%6
GAMIA ALPHA=Z  0.9199  BETAz  22.2200
WEIBULL RHD= 0.889¢ DELTA=  19.0858
EXTREME-1 XI= 10.705¢  ETA= 13.1010
EXPONENTIAL THETA=  20.4396
SELECTION CRITERIA
Hzl.0 .Hz0.5 . H=0.25
NCRHAL 0.2641 0.3462 0.3250
LCG NORMAL 0.0966 0.1332 0.1626
GAMHA 0.1613 0.1737 0.1712
HEIBULL 0.1409 0.1949 0.1868
EXTREME TYPE-1 0.1992 0.2086 0.2145
EXPCNENTIAL 0.1704 0.1712 0.1631

7/8

a9

2.70
11.00
38.30
14.70
13.00

970

13.70
14.70
4.90
6.20
58.20



1%00
1910
1920
1930
1940
1950
1960
1970
1980

o/l

64.00
114.00
168.00

53.00

57.00
125.00

7.00

(28) XALKFONTEIN DaM. C5R02.

DATA. (10#»6 M%R3),

w2 2/3 /4 /5 576 6/7
57.00 55.00 263.00 56,00 174.00
41.00 389.00 194.00 748.00 £5.00 111.00
140.00 74.00 474.00 86.00 9.00 159,00
74.00 334.00 82.00 20.00 100.00 42,00
$5.00 67.00 101.00 335,00 152.00 97.00
105,00 237.00 21.00 52.00 - 194.00 271.00
345.00 5.00  1324.00 53.00 492,00 48,00
CORRELATION ANALYSIS.
LAG CONF. INT.{1) CORRELATION CONF. INT.( 2}
1 0.236 -0.216 ~0,236
UMIVARIATE MODEL PARAMETERS.
HORMAL - MUz 163.9710  SIGHA= 214.8925
LOGHORMAL HUa 4.4906 SICHA= 1.1506
GAMHA ALPHAZ  0.9532 BETA=  172.0302
WEIBULL RHO= 0.9188  DELTA= 156.5901
EXTREHE-1 X1= 89.4787  ETA:  102.9869
EXPONENTIAL THETA® 163.9710
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL 0.2498 0.3517 0.3403
L0G HORMAL 0.0916 0.1131 0,1303
GAIA 0.1409 0.1207 0.1320
WEIBULL 0.1216 0.1233 0.1255
EXTREME TYPE-1 0.1858 0.1998 0.2176
EXPONENTIAL 0.1465 0.1227 0.0995

1 g )

46.00
67.00
22.00
717.00
119.00
3a.00
6.00

.74

19.00
140.00
69.00
40.09
46.00
195.00
15.00

970

554.00
166.00
82.00
385.00
35.00
46.00
85.00



(29) RUSTFONTEIN DAM. CS5RO3.

DATA., {10%wg, fand),

1900
1910
1920
1930
1940
1950
1560
1970
1940

0/1

7.60
58.460

ve 3

33.30 17.80
1.20 70.70

3/4 4/5

110. 00
8.00 56.50
3.90 139.20

576

2l.40
§2.80
26.60

6/7

10.50
29.70
13.10

78

14.10
14,60
2.30

a/9

6.90
11.70
1.10

9/0

13.80
9.60

CORRELATIOH ANALYSIS.

LAG CONF. INT.L1) CORRELATION CONF. INT.( 2}
1 0.392 -0.132 ~0.392

)
UNIYARIATE MODEL PARAMETERS.

HORMAL = 29.4320 SIGMAZ  34.7765
LOGHOPHAL M= 2.7316 SIGMAZ 1.2651
GAMMA ALPHAZ 0,8989 BETA= 32.7438
WEIBULL PHO= 0.9073 DELTA=z  27.9887
EXTREME-1 XI= 16. 0498 ETAz 19.0764
EXPONENTIAL THETAZ  29.4328
* SELECTION CRITERIA

HM=1.0 H=0.5 Hz0,25
HORMAL 0.2368 0.2441 0.2191
105 HORMAL 0.1373 0.1475% 0.1479
GALMA 0.1546 0.1220 0.0913
WEIRULL 0.1418 0.1236 0.0967
EXTREME TYPE-1 0.2048 0.1602 0.1291
EXPONENTIAL 0.1582 0.1509 0.1247



1900
1910
1920
1910
1940
1959
1909
19370
1980

79 §

172.00
34.80
72.40
14.50
$9.60
84.10

212.c0
17.60
75.60
37.00
83.59
85.50

82.40
19.70
116.00
46%.00
£5.00
26.30

LAG
1

HORMAL
LOGHORMAL

GAMHA

HEIBULL
EXTREHE-1
EXPOHENTIAL

NORMAL
LOG HORMAL

GAMNMA

HEIBULL

EXTREME TYPE-1

EXPOMENTIAL

(30)

324
334
14
48

KOPPIES DAM. CTROL.
DATA, (10##6.H#n3),
3/4 4/5 5/6
47.90 284.00 22.90
~00 173.00 32.50
.00 26.80 13.70
.10 11%.00 10.90
.1 139.00 q96.60
40 126,60 90.80

76

CONF. INT.(1)
0.255

CORRELATION ANALYSIS.

= 95.0237
Hu= %.045%
ALPHAz l.1202
RHO= 1.0417
XI= 56.144%

THETA=  95.0237

CORRELATION

=0.145

UNIVARIATE HODEL PARAMETERS.

SIGHA=
SIGHMA=
BETA=
DELTA=S
ETA=

SELECTION CRITERIA

H=1.0

0.1876
0.11%4
0.1035
0.0981
0.135%
0.1018

H=0.5

0.2742
0.1156
0.0%a86
0.103%
0.1556
9.1308

6s/7

18.20
239.00
247.00
193.00
141.00

50.40

CONF. INT.( 2}

-0.255

96.1761

1.0973
84,0282
96.7011
58.0711

H=0.29

0.2754%
0.1523
0.1029
0.1097
0.1725
0.1336

/8

25.70
109.00
52.80
105.00
8.60
86.50

879

40.50
261.00
16.40
15.20
8.20
2.30

9/0

84.30
24.10
110.00
38.30
30.70



1%00
1910
1920
1930
1940
1950
1960
1970
1930

sl

[

‘O!‘OOH
.
wn oM
ol

2 2/3
1.40 .71
0.28 3.32
3.06 3.05
0.99 0.22
1.46 0.49
0.10 1.16

(31) HENIN DAH. CERO1.

DATA. (LOwwé Hun3),

¥4

HH.POQDM
MR W

“/5 5/8& /7
0.25 0.33 0.70
0.20 7.11 0.47
0.¢6 1.5 0.92
0.23 3.80 4.18
0.3 1.76 0.61
1.11 0.81 1.10

CORRELATION AMALYSIS.

LAG CONF. INT.L))

 §

HORMAL
LOGHORMAL
GAMIA
HEIBULL
EXTRERE-1
EXPONENTIAL

HORMAL

LOG NORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

0.260

UNIVARIATE HODEL PARAMETERS.

Mz ‘
MU=
ALPHA=
RHO=

XI=
THETA=

SELECTION CRITERIA

H=1.0

0.19%8
0.10%0
0.1011
0.0983
0.1259
0.105%

CORRELATION CONF, INT.{ 2)
=-0.063 -0.260
1.3547 SIGHA=Z 1.3661
-0.1806 SIGHA= 1.0745
1.1712 BETA= 1.1567
1.0683 DELTA= 1.3925
0.8174 ETA= 0.8050

1.3547
H=0.5 H=0,25
0.2816 0.2798
0.1057 0.1127
0.0990 0.1022
0.0780 0.0997
0.1534 0.1689
0.1206 0.1204

/8

1.79
l1.08
1.4%
0.82
0.26

$/0

0.18
1.13
3.02
1..18
0.15



1900
1910
1920
1930
1940
1950
1944
1970
1980

Wl

17.30
45.??

2 2/3
28,80 14.90
1.40 39.90

(32) ARMENINIA DAM. D2RO2.

DATA. (10umg Han3),
3/4% %/5 5/6 /7
- 25.80 17.70 37.80
7.30 37.10 50.50 11.40
41.70 103.00 46.40 4%.40

CORRELATION AHALYSIS.

LAG CONF. INT.(1)

1

HORMAL
LOGHORMAL
GAMMA
HWEIBULL
EXTRENE-1
EXPOHENTIAL

HORHAL

LOG HORMAL
GAHMA

HEIBULL
EXTREHE TYPE-1
EXPOHENTIAL

0.400

LNIVARIATE MOD

HU=
MU=
ALPHA=
RHO=
X1=
THETA=

SELECTION

H=1.°

0.1771
0.1541
0.149%
0.1443
0.1666
¢.1502

CORRELATICN CONF. INT.( 2}
0.230 =0.400

EL PARAMETERS.

26.6250 SIGHA=  22.9101
2.8674 SIGHA= 1.03558
1.3488 BETA= * 19.7396
1.1987 DELTA=  26.3339

16.997¢9 ETAz 15.4830

26.6250
CRITERIA

H=0.5 H=0.25
0.1761 0.1570
0.1341 0.1379
0.1133 0.0920
0.1190 0.0986
0.1403 0.1038
0.1422 0.1209

178

3.70
23.80
11.10

9/0

10.10
6.60



1900
19190
1920
1930
1940
1950
1960
1970
1%80

wva 273
3.60 1l.50
0.99 7.10
5.00 7.50
2.20 6.70
3.60 2.00

{33} BETHULIE DAHM. DIROL.

DATA. (10##§, Hnn3),

¥4

13.50
1.50
4.10
4.10

20,00

4/5

1.60
0.10
4.60
1.50
6.20

576

CORRELATICH AHALYSIS.

LAG COHF. INT.(1)

1

HORMAL
LOGHORHAL
GAMMA
HEISULL
EXTREME-1
EXPONENTIAL

NORMAL

LOG HORMAL
GAMMA

WEIBULL
EXTPEME TYPE-1
EAPOHENTIAL

0.289

CORRELATION

=-0.0561

UNIVARIATE HODEL PARAMETERS.

M=
MU=
ALPHA=
RHO=
X1=
THETA=

6.0022
1.0870
0.8368
0.8372
3.176¢
6.0022

SIGHAz
' SIGMA=
BETA=z
DELTA=

ETAz

SELECTION CRITERIA

H=1l.0

0.2548
0.1520
0.2736
0.1460
0.1695
0.1808

H=0.5

0.3238
0.1842
0.2809
0.1786
0.1640
0.1865

/7

10.60
1.70
2.30

15.60

CONF. INT.C 2)

=-0.289

11,7853
1.2427
7.1729
5.3161
3.706%

H=0.25

0.2983
0.2227
0.2695
0.1530
0.1812
0.1585

18

1.50
14.70
3.70
2.00

970

12.20
1.90
7.30
0.30
3.10



1900
1910
1%20
1930
1940
1950
1960
1970
1580

0/1

5619.00
7004.00

2 2/3
9024.00  2254.00
3598.00  2709.00

o

13455, 00

(34) HENORICK VERWOERD DAM. D3RoO2.
DATA. (LlOwwg Meu3),

374 4/5 5/6 &/7

7334.00  20372.00 10285.00

CORRELATION AMALYSIS.

LAG CONF. INT.{1) CORRELATION COHF. INT.( 2)
1 9.549% 0.074% -0.54%
UNIVARIATE HODEL PARAMETERS.
HORMAL MUz 7572.8462 SIGHA= 5025.3879
LOGHORMAL Hi= B8.7447 3IGMAZ 0.6404
GAMMA ALPHA= g.0208 BETA= 2684.6054
HEIEULL RHO= 1.46948 DELTA= 8548.6930C
EXTREHE-1 XI= £492.1870 ETA=  3311.4452
EXPONENTIAL THETAz 7572.8462
SELECTION CRITERIA

H=1.9 H=0.5 H=0.25
HOPHAL 0.1668 0.1367 0.1053
LOG HORMAL 0.l1127 0.1350 0.1128
GAHMA 0.1395 0.1338 0.1051
HEIBULL 0.137¢9 0.1157 0.08%96
EXTREME TYPE-1 0.1435 0.1405 0.1101
EXPONENTIAL 0.2317 0.2438 0.2108

/8

8197.00

8/9

$132.00

/0

3464.00



1900
1910
1920
1930
1940
1950
1960
1970
1940

o/l

/2 3
0.43 2.48
1.51 0.08

1AG CONF. IHT.(1)

1

HORMAL
LOGHORMAL
GAHMA
HEIBULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG HORMAL
GAMHA

HEIBULL
EXTREHE TYPE-1
EXPOHENTIAL

135)

0.428

LEEUBOS DAM. D4RO1.

DATA. (10%#6, [1an3),

34 4/5
3.602 5.57
1.1a 0.88

576

CORRELATION ANHALYSIS.

M= 1.4948
nu= =-0.1%40
ALPHA= 0.9715
RHO= 0.9716
XI= 0.8639
THETA= 1.4948

CORRELATION

0.176

UNIVARIATE MOOEL PARAMETERS.

SIGHA=
SIGMA=
BETA=
DELTA=
ETAz

SELECTION CRITERIA

H=1.0

0.2305
0.1504
0.1398
0.1350
0.1796
0.1581

n=0.5

0.1942
0.1562
0.1134
0.1206
0.1350
0.1525

6/7

CONF. INT.( 2)

=0.428

1.5756
1.2795
1.53a2
1.4757
¢.9310

H=0.25

0.1693
0.laco
0.0927
0.1072
0.1003
0.1235

174-)

a/9

970



(36) ROUIBERG DAM. DSRO1.

DATA. (10%=6.[twn3),

0/l /2 2/3 374 4/5 576 &/7 76 a8/9 9/0
1900
1910
1920 i
1930 . - 92.80 1.40 2.10 23.30 8.90 47.60 2.90
1940 é3.10 1.80 64.30 5.60 25.40 10.20 24.30 l.20 9.00 %.20
1950 17.00 5.70 0.30 911.00 2.00 20.90 14.10 34.00 1.20 77.00
1960 106.00 37.40 20.60 1.30 152.40 96.00 876,50
1970
1980 .

CORRELATION AMALYSIS.

LAG  CONF. INT.(1)  CORRELATION  CONF. INT.( 2)
1 0.336 -0.024 -0.336 "

UNIVARIATE MODEL PARAMETERS.

HORMAL =z 81.3028 SIGHAT 209.4879
LOGHORMAL Hu= 2.6976 SIGHMA= l.9000
GAMNA ALPHA= 0.3687 BETA=  209.1679
WEIBULL RHO= 0.5326 DELTA=  38.3184
EXTREME~-1 Xl= 26.3336 ETA= 64.8567
EXPOHENTIAL THETA2  51.3088

HORHAL

LOG HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPOQHENTIAL

SELECTION CRITERIA

H=1.0

0.3240
0.1171
0.1701
0.1233
0.2537
0.3304

H=0.5

o.3ee2
0.1160
Q.2072
0.1526
0.2779
0.3194

H=0.25

0.3343
0.1048
0.1981
0.14k6
0.2562
Q.26549



(37) VICTORIA WEST OAM. DO6ROL.

DATA. (l0#x=g . Men3),

01 e 2/3 /4 4/5 576 6’7 78 8/9 970
1900
1910
1920 . - 2.76 0.02
1930 0.11 0.77 1.68 0.2% 0.89 0.01 0.11 1.05 2.96 0.40
1940 0.42 2.50 0.98 G.65 1.19 0.09 1.43 0.71 1.41 1.00
1950 0.59 1.54 0.60 2.41 0.94 1.17 1.23 l.66 0.53 0.84%
1960 0.24 0.36 0.45 8.51 14.10 0.93 1.32 1.36 1.02 0.20
1970 0.57 0.01 0.72 0.07 0.01 0.01 0.97 2.67 3.59 3.17
1980 o -

CORRELATION AMALYSIS.

LAG COHF. INT.(1) CORRELATION CONF. INT.( 2)
1 0.272 0.004 -0.272
UNIVARIATE MOOEL PARAHETERS.
HORMAL Hy= 1.2523 SIGHAZ 2.0208
LOGHORMAL Hu= ~0.6024 SIGMAz 1.6091
GAMMA ALPHA= 0.7261 BETA= 1.7261
HEIBULL RHO= 0.8071 DELTA= 1.1047
EXTREME-1 XI= 0.6876 ETAz 0.7974%
EXPONENTIAL THETA= 1.2533
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL ¢.2297 0.3266 0.3076
L0G HORHAL ¢.1a35 0.1%901 0.2374
GAMHA 0.1240 0.1142 0.1152
HEIBULL 0.1259 0.1455 0.1479
EXTREME TYPE-1 0.1409 0.1652 0.1759
EXPONMENTIAL 0. 1464 0.1952 0.2159



(38) MEMMERSHOEK DAM. GlRO2.
DATA. (10wxp_ M=el),

o/l 2 2/3 374 45 576 6/7 1/8 879 970

1900

1910

1920

1930

1940 -

1950 80.60 70.30 46.40 65.50
1960 106.00 69.00 60.40 74.20 67.40 63.00 82.10 56.00 76.50 51.30
1970 36.50 41.40 92.00 82.60 79.00 162.20 42.10 57.70 54.80 68.90
1980 51.10

CORRELATION ANALYSIS.
CORRELATION

LAG CONF. INT.(1} COME. JINT.L 2)

1 0.392 -0.027 -0.392

UNIVARIATE MODEL PARAMETERS.

HORMAL MU= 69.44800 SIGHAz 25,4655
LOGHIRMAL nu= %.1884 " SIGMA= 0.3208
GAMMA ALPHA= 9.6557 EETAz 7.1958
HWEIBULL RHO= 2.7601 DELTAz  77.7419
EXTREME=-1 XI= 59.1839 ETAs 17.1065
EXPCHERTIAL THETA=  69.4800
SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
HORHAL 0,1619 0.1397 0.1269
LC5 HORMAL 0.1205 0.1067 0.0928
GAMMA 0.1308 0.1100 0.0%42
HEIBULL 0.1744 0.1713 0.1571
EXTREME TYPE-1 0.11&6 0.1148 0.1073
EXPONENTIAL 0.395% 0.4563 0.3648



1900
1910
1920
1930
1940
1950
1960
1970
1%80

0’1

46,30
77.00
64,70
54.20
31.50

(39) STEEHBRAS DAM. G4ROL.

DATA. (10%%6.Nxen3),

172 2/3 V4 a/5 5/6 6/7
76,10 49.60 64.20 54.20 42.60
71.80 47.50 29.40 35.30 23.80 51.70
52.10 33.40 75.50 70.60 45.70 37.50
37.00 71.70 49.30 54.80 62.60 50.90
44.50 34.40 36.30 40.10 38.80 47.20
22.00 44.90 42.40 32.40 59.60 27.20
CORRELATION ANALYSIS.
LAG  CONF. INT.(1)  CORRELATICN  CONF. INT.( 2)
1 0.257 0.212 -0.257
UNIVARIATE MODEL PARAMETERS.
HORHAL HUa 44.2726  SIGMAT  14.4179
LOGHORMAL MU= 3.7402  SIGMA=  0.3184
GAMA ALPHA=  10.1269  EETA= 4.3718
HEIBULL RHO= 3.2855  DELTA= 49,3952
EXTREME-1 s 37.6626  ETA= 11.2141
EXPONENTIAL THETAS  44.2724
SELECTION CRITERIA
Hzl.0 Hz0.5 Hz0.25
HORMAL 0.1173 0.1246 0.1406
LCS HORMAL 0.0918 0.0795 0.0726
GAMMA 0.0991 0.0866 0.0823
HEIBULL 0.1133 0.1426 0.1592
EXTREME TYPE-1 0.0935 0.0814 0.0741
EXPOHENTIAL 0.4003 0.5081 0.4380

78

26.00
37.50
32.90
54,00
29.70
36.00

a9

24.90
30.9¢
36.40
31.10
43.30
43.60

/0

28.40
42.50
32.60
35.10
20.10
43,44



1900
1910
1520
1930
1940
1950
1960
1970
1980

ol

72.20
25.40

4%.50
33.10

a5.20
73.30

(49) STETTYHSKLOOF DANM. HIRO1.

DATA. (10ww6_ Mun3),

3’4

39.20
53.80

-

475 576 or?
4l1.10 35.90 61.60
47.80 114.10 23.80

CORRELATION ANALYSIS.

LAG CONF. INT.(1)

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME~-1
EXPOHENTIAL

HORMAL

LOG HORMAL
GAHMA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

0.438

UHIVARIATE MODEL PARAMETERS.

M=
=
ALPHA=Z
RHO=
XI=
THETA=

SELECTION CRITERIA

H=1l.0

0.1837
0.1923
0.1593
C.1666
0.1488
€.3739

CORRELATION COHF. IHT.L 2)
-0.195 =0.433
47.5950 SIGMA=  21.0326
3.7875 SIGHA= 0.3831
6.8084 BETA= 6.9906
2.4115 DELTAz 53.7673
39.1095 ETA= 13.3146

47.59590
H=0.5 H=0.25
0.1548 0.1322
0.1184 0. 0897
0.1270 0.0941
0.1568 0.1348
0.12a88 0.1003
0.4232 0.3335

1/8

58.50
35.69

36.70
52.590

970

36.40
31.20



1900
1910
1920
1930
1940
1950
1960
1970
1980

/1

15.80
6.00
13.43

/2 /3
17.70 3.52
¢.40 7.10

(41) POORTJESKLOGF DaM. H3R01.

DATA. (10wn5 NMunl),

3/4 4/5 5/6
2.49 5.76 22.60
1.50 0.25 9.20

CORRELATION AHALYSIS.

6/7

LAG CONF. INT.{1}

1 0.392

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME-1
EXPOHENTIAL

HORMAL

LOS HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPOHENTIAL

CORRELATION COHF. INT.( 2)
0.026 ~0.392
UNIVARIATE MODEL PARAMETERS.
= 8.1212 SIGHA=  10.4112
U= 1.3175 SIGHA= 1.4077
ALPHA= 0.7680 BETA= 10.5748
RHO= 0.8269 DELTA= 7.28%3
XI= 4.2839 ETA= 5.5411
THETA= 8.1212
SELECTIOH CRITERIA
H=1l.0 H=0.5 H=0.2%
0.2078 0.2521 0.2258
0.1452 0.1476 0.1199
0.1419 0.1310 0.10%92
0.1361 0.1335 6.1072
0.1811 0.1672 0.149%
0.1797 0.19C6 0.1504

7/8

47.60
0.52
3.63

8/9

9/0

1.88
6.90
17.70



1900
1910
1920
1930
1940
1950
1960
1370
1380

/1

470,00
3.40

2 /3
17.10 4.70
3.60 ’

LAG CONF. INT.(1)

1

HORMAL
LOSHORMAL
GAMHA
WEIBULL
EXTREME-1
EXPONENTIAL

NORMAL

LOG HORMAL
GAMMA

HEIZULL
EXTREHE TYPE-1
EXPOHENTIAL

142) KEEROH DAM. H4RO2.

0.450

DATA. (10%%6.Hex3).
4 /5 5/6

e.32 6.81 12.10

6.63 3.07 5.17

CORRELATION AMALYSIS.

Hu= 30.8342
Hu= 1.9935
ALPHA= ¢.4500
RHO= 0.5934
X1= 7.5726
THETA=  30.8342

CORRELATICON

-0.035

UNIVARIATE MODEL PARAMETERS.

SIGHAS
SIGHA=
BETA=
PELTA=
ETA=z

SELECTION CRITERIA

H=1.0

0.3791
0.2499
0.3323
0.2764
0.3590
0.5278

H=0.5

0.3226
0.2151
0.2539
0.2911
0.2661
0.4481

&/7

COHF. INT.{ 2)

=0.450

106.4005
1.0923
68.5250
14,1369
24.7007

H=0.25

0.2614
0.1820
0.2105
0.2408
0.2160
0.3073

/8

6.16
3.78

9/0

6.09
6.30



1900
1910
1920
1930
1940
1950
1960
1970
1930

[T

19.80

1r2 /3

15.10 29.60

LAG CCHF. INT.(1}

1

HORMAL
LOGHORMAL
GAHMA
HEIBULL
EXTREME-1
EXPONENRTIAL

HORMAL

LCG HORMAL
GAMHA

HEIEULL
EXTREME TYPE-1
EXPOHENTIAL

DUINENSHOX DANM.

HERO1.

DATA. {(10wwb Hun3),

3/% 4/5
16.40 3e.20¢
18.10 28.40

576 6/7
5¢.10 21,40

42.60 21.20

CORRELATION AMALYSIS.

CORRELATION  COHF. INT.{ 2)
0.5249 -0,090 ~0.524
UNIVARIATE MODEL PARAMETERS.
MUz 26.6643  SIGHA=  11.6040
ty= 3.1968 'SIGMAz 0.4328
ALPHAZ  5,9399  BETA= 4.4890
RHO= 2.5736 DELTA=  30.1541
X1z 21.4870  ETA= 8.5907
THETAZ  26.6643
SELECTION CRITVERIA
H=1.0 H=0.5 H=0.25
0.1885 0.1430 o.1901
0.1619 0.1325 0.1038
0.1742 0.1402 0.1032
0.1503 0.1405 0.1015
0.1697 0.1405 0.1082
0.3316 0.3624 0.2793

1/8

22.5¢0

11.40

90

37.1¢%



£
p

1900
1910
1920
1930
1940
1950
19¢40
1970
1920

0/1

144) PRINSRIVIER DO/11. J1RO].

DATA. {1l0=ng Hen3),

72 23 374 4/5 576
0.43 0.18 %.9% .20 0.09
1.41 0.87 2,61 0.55 14.80
2.31 1.68 7.24 0.5¢6 2.29%
3.09 11.20 1.67 6.26 12.80
3.23 1.06 1.31 0.08 10.40
4.20

5.60 2.50 3.40 4.60

CORRELATION AMALYSIS,

LAG CONF. INT.(1) COFRELATION canr.

1l 0.249 0.002

UHIVARIATE MODEL PARAMETERS.

HORAL = 3.3510 SIGHA=
LOGHORMAL = 0.5340 SIGMA=
GAITIA ALPHA= ¢.8595 BETA=
HEIEULL PHO= 0.8747 DELTA=
EXTREME-1 Xi= 1.8491 ETA=
EXPCHENTIAL THETA= 3.3alo0

SELECTION CRITERIA

H=1.0 H=0.5
HORMAL 0.2462 0.3515
LOG MORMAL 0.1149 - 0.1320
GAPHIA 0.1172 0.0992
WEIBULL 0.1028 0.1082
EXTREME TYPE-1 0.1553 0.1832

EXPOHENTIAL 0.1342 0.1265

INT.{ 2}
=0.249

4.9391
1.3377
3.9338
3.1330
2.1151

H=0.25

0.3350
0.2316
0.1004
0.1184
0.19¢88
0.1491

i
®

. s 8 o8 4
SO LWO~NO

ooOMMNONG
QOHENDPTI™

8s9

1.25
2.5
2.14
1.29
0.79
0.81

%9

33.50

1.59
2.686
5.03
2.890
2.70



1900
1910
1920
1930
1940
1950
1960
1970
1980

ol

1z 273
0.24 0.57
0.12 0.48
1.74 4.70
5.65 2.43
6.37 1.55

(45) BDELLAIR DAM. J1RO2.

DATA. (10%nf6 Mua3},

3/h

/5

0.02
0.66
1.66
1.63
0.67

576

0.83
4%.53
2.18
0.97
4.53

CORRELATION AMALYSIS.

LAG CONF. INT.(1)

1

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME-1
EXPOHENTIAL

HORMAL

LCG NORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPONENTIAL

0.272

MU=z
4,V
ALPHA=Z
RHO=
XI=
THETA=

SELECTION

H=1.0
0.2326

CORRELATION

-0.029

2.3085
0.1452
0.8515
0.9014
1.2888
2.3085

UNIVARIATE HMODEL PARAMETERS.

SIGMA=
SIGHA=
BETA=
DELTA=
ETA=

CRITERIA

0.1224.

0.1268
0.1204
g.lace
0.1357

H=0.5

0.2778
0.1436
0.0911
0.1012
0.1735
0.1237

&/7

0.31
0.20
1.05
1.81
0.98

CONF. INT.{ 2)
-0.272

2.46467
1.4309
2.7110
2.1965
1.509a8

H=0.25

0.2734
0.2280
0.0845
0.1160
0.1355
0.144%

778

OO DD s
.

WO n

[P Y- NV R

a/9

10.10
0.69
1.28
0.82
0.18



i

1900
1910
1920
1930
1940
1950
1960
1970
1940

ol

37.70
4.50

12 2/3
20.60 17.90
6.00 34.70

(46) FLORISKRAAL DAM. J1RO3.

DATA. 1

/%

8.20
10.40 L1

CORRELATI

LAG CONF. INT.(1)

1

HORMAL
LOGHOPMAL
GAMNA
REIBULL
EXTREME-1
EXPOHENTIAL

HORMAL

LCS HORMAL
GAMHA

HEIBULL
EXTREME TYPE-1
EXPCHENTIAL

0.450

UNIVARIATE HOD

HMu=
MU=
ALPHA=
RHO=
XI=
THETA=

SELECTION

Hz1.0

0.2037
0.1502
0.1573
0.1499
0.1825
0.1602

10mw6 . Mund),

4/5 576

1.30 28.00
a.70

ON ANALYSIS.

&/7

" 16.00
9.60

CORRELATION CONF. INT.L 2)

-0.213

EL PARANETIRS.

2l.4632 SIGHA=
2.5550 SIGHA=
1.115¢ BETA=
1.0537 DELTA=

12.7125 ETA=
21.4632

CRITERIA

H=o‘5

0.1862
0.1335
0.1305
e.1282
0.1523
0.1443

~0.,450

20.6567

1.1261
19.2500
21.9363
13.3850

H=0.25

0.1626
0.1205
0.096%
0.0992
0.1111
0.1102

78

18.80
5.00

as9

3.10
3.00

9/0

54.10
70.20



_h

1%00
1910
1920
1930
1940
1950
1960
1970
1980

ol

10.30
.21
4.48

15.00

11.00
9.00

L2

11.20
19.50
2.1%
2.86
2.9%
5.00

HORHAL

2/3

15.70
9.01
5.88
7.18
7.50
1.90

LAG

1

LOGHORMAL

GAMMA

HEIBULL
EXTRENE-~1
EXPOHERTIAL

HCRHAL

LOG HORMAL

GAMHA

HEIBULL

EXTREME TYPE-1

EXFONENTIAL

€47) CALIYZOORP OAHM. J2ROL.

DATA. (10wng Hen3),

4

1.68
4.54
10.30
11.70
4.85
3.80

L 74

12.00
18.00

2.02
5.80
2.32
4.30

5/6

4.01
4.9
4.18
5.62
5.72
15.50

CORRELATION ANALYSIS.

@¢.255

CONF, INT.(1)

HJ=
MU=
ALPHA=
RHO=
XI=
THETA=

CORRELATION

=0.008

6.8193
1.701%
2.44948
1.6125
4.8087
6.8193

UHIVARIATE HOOEL PARAMETERS.

SIGHA=
SIGHA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.1889
0.1073
0.1259
c.1327
0.1316
0.2137

H=0.5

0.2299
e.1001
0.1243
0.1603
0.1334
0.3430

6/7

1.82
131.00
3.06
5.08
7.59
13.90

CONF. INT.{ 2)

-0.255

4.5546
C.6773
2.7693
T7.64659
3.18%5

Hz0.25

0.2393
0.1032
0.1339
0.1776
0.1505
0.3276

778

14.00
10.40
3.80
5.14
5.23

9/0

3.67
6.9%
10.70
3.77
1.7k
1.75



1900
1910
1920
1930
1940
1950
1960
1970
1980

/1

163.0)
9.89
22.00
69.90
24.30

12 2/3

11.30
48.00
3.00
4.50
15.00

9.60
0.70
a.90
12.10
5.20

LAG

1

HORMAL
LOGHORMAL
GAMHA
WEIBULL
EXTREME-~1
EXPOHENTIAL

HORMAL

LOS HORMAL
GAMMA
HEIBULL

(48)

CONF.

LEEUGAMXA DAM. J2ZRO2Z.

DATA. (10nn6 Muend),

374

37.80
3.30
5.60

53.40

16.00

4/5

2.20
128.00
10a8.00

0.60

31.50

5/6

¢.70
£8.140
2.60
1.“0
12.30

CORRELATION ANALYSIS.

INT.(1)

0.286

CORR

ELATION

C.04%

UNIVARIATE HODEL PARAMETERS.:

EXTREME TYPE-1

EXPONENTIAL

MU=
=
ALPHA=
Rti0=
XI=z
THETA=

30.2468
2.4797
0.6540
0.7430

14.5¢51

30.2468

SIGHA=
‘SIGHMA=
BETA=
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2992
0.1060
0.1523
0.1264
0.2189
0.2242

H=0.5

0.3340
0.095¢6
0.1512
g0.1227
0.2399
0.2013

6/7

33.00
36.20
76.20

4.30

CONF. INT.( 2)

-0.236

40.4547

1.5047
46,1066
24.8%30
22.0114%

H=0.25

0.3115
0.0876
0.1583
0.1230
0.239%6
0.1453

/6

15.70
48.40
32.40
144.00

a8/9

11.70
29.80
6,30
5.20

9/0

20.%0
3.60
1.20
2.80
9?.10



(49) OUXLOOF DAM. J2RO3.

DATA. (1l0=#6.Mend),

0/l 12 2/3 34 4/5 576 &7 178 8/9 9/0
1900
1910
1920 . - . -
1930 1.50 7.80 2.06 .29 7.57 0.56 1.84 0.21 5.18 1.97
1940 1.07 3.21 1.67 4.02 5.94% 0.86 0.68 0.85 1.78 0.97
1950 9.60 0.66 4.97 19.60 2,24 1.13 1.82 0.65 1.61 2.26
1960 9.23 1.18 5.33 2.49 l.46 4.34 13.50 7.4% 1.04 0.1%
1970 10.51 3.20 1.00 1.80 2.00 4.61 £0.44% 1.70 1.83 0.36
1980

CORRELATION ANALYSIS,

LAG CONF, INT.(1) CORRELATION CONF. INT.( 2}

1 0.277 -0.030 -0.277

UNIVARIATE MODEL PARAMETERS.

HORMAL Hu= 4.3474 SIGHA= 7.6725
LOGHORMAL Hu= 0.7523 SIGMA= 1.1690
GAMHA ALPHA= 0.8242 BETA= 5.2%47
REIBULL RHO= 0.820% CELTAS 3.8225
EXTREHE-1 Xl= 2.1882 ETA= 2.8546
EXPOHENTIAL THETA= 4.3474

SELECTION CRITERIA

H=1l.0 H=0.5 H=0.25
HORHAL 0.2800 0.3752 0.3425
LOG HORMAL 0.1106 0.0950 0.0976
GAMMA 0.2178 0.185¢6 0.1037
HEIBULL 0.1494 0.1527 0.1480
EXTREHE TYPE-1 0.2376 0.2187 0.2214%

EXPOHENTIAL 0.2135 0.1632 0.1137



1900
1910
1920
1930
1940
1950
1960
1970
1980

o/1

206.00
23.70
170.00
45.60
25.50

€50) KAMMANASIE DAM. J3ROL.

DATA. (10%=6_Ma#l),

v /3 V4 4/5 576
30.30 20.00 75.40 34.20 19.00
31.20 12.80 171.00 20.60 27.60
13.70 19.10 18.20 14.%0 16.90
33.60 16.60 23.60 14,60 26,80
20.60 27.30 8l.20 45.20 13.70
19.30 17.80

CORRELATION AMHALYSIS.
LAG CONF. INT.(1) CORRELATION
1l 0.272 -0.0%0
UNIVARIATE MODEL PARAMETERS.
HORHAL M= 38.0538 SIGMA=
LOGNORMAL MU= 3.2568 SIGHAS
GAMMA ALPHA= 1.4525 BETA=
HEIBULL PHQ= 1.1148 DELTA=
EXTREHE~1 X1= 23.3298 ETA=
EXPONENTIAL THETA=  38.0538
SELECTION CRITERIA
H=1.0 H=0.5
HORMAL 0,2891 0.3182
LOG HORMAL 0.1280 0.1219
GAMMA 0.1913% 0.1324
HEIBULL 0.1826 0.1710
EXTREME TYPE-1 0.1954 0.1419
EXPONENRTIAL 0.l88% 0.2123

/7

2.30
11.30
26.40
18.30

.60

CONF. INT.({ 2)
-g.272

42.6293

0.8347
26.1%97
39.9372
19.8628

H=0.25

0.3040
0.1369
0.1196
0.159%
0.1425
0.1%49

78

32.60
32.80
110.00
11.40
111.00

8/9

£8.20
22.50
17.70
39.50
22.80

9/0

19.50
7.40
41.80
43.10
3.60



1900
1910
1920
1930
1940
1950
1960
1970
1980

ol

66.50
24,90
48.10

rz2 3
33.70 150.c0
47.80 57.80

9.50 93.00

LAG CONF. INT.(1)

1l

HORMAL
LOGHORMAL
GAMMA
HEIBULL
EXTREME~1
EXPONEMTIAL

NORMAL

L0G HORHAL
GAMMA

HEIBULL
EXTRENE TYPE-1
EXPOHENTIAL

(51)

KROMRIVIER DANM.

K9RO1.

DATA. (10%#g Men3],

3/4 4/5
59.40 92.80
30.90 53.90
34.00 26.30

576

171.00
a7.80
79.40

CORRELATION ANALYSIS.

CORRELATION

346 -0.248

= 72.5719
M= 3.0954
ALPHAS 1.4288
RHO= 1.1515
X1= 7#5.4512
THETA=  72.5719%

UNIVARIATE MODEL PARAMETERS.

SIGHAS
SIGHA=
BETA=
DELTA=
ETA=z

SELECTION CRITERIA

H=1l.0

0.2164%
£.1186
0.1384
0.1313
0.1597
0.1601

H=0.5

0,2280
0.1150
0.1032
0.1127
0.1251
0.1708

/7

45.10
142,00
12.90

CONF. INT.( 2)
=0.346

74.3140

0.9127
50.8009
76.7607
39.9438

H=0.25

0.2125
0.11¢&4
0.0911
0.0981
0.1057
0.15¢65

/8

49.20
25.00
128.30

&9

19.60
60.40

6.90
11.30

9/0

103.00

31.80
3%0.00
17¢0.00



(52) BEERVLEI DAM. L3R01.
DATA. (10%u6 Huu3},

o/l v /3 Va4 4/5 5/6 &/? 7/8 8/9 970

1900

1910

1920

1930

1940 .
1950 - . 3.06 0.34
1960 5$.07 £3.90 16.00 21.40 15.2¢ 26,40 .11 63.70 14.70
1970 4.50 14.00 184.40 ?.20 142.00 £9.00 6.30 :

1940 T

520.00
202.10

CORRELATION AHALYSIS.

LAG CONF. INT.(1) CORRELATION CONF. INT.L 2)
1 0.438 =0.267 =-0.433
UNIVARIATE MODEL PARAMETERS.
HORMAL = 69.6690 SIGHA= 122.5073
LOGHORMAL Hu= 2.97¢64 SIGHA= 1.7912
GAMMA ALPHAS 0.5010 BETA=  139.0529
WEIBULL RHO= 0.6219 DELTA=  46.4001
EXTREME-1 xI= 28.7032 ETA= 54,1992
EXPCHENTIAL THETAZ  69.669C
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL 0.2886 0.2945 0.24%%
LCS HORMAL 0.1399 0.1394 0.13%9
GAMMA 0.1099 0.1448 0.1145
HEIBULL 0.1556 0.1272 0.1036
EXTREHE TYPE-1 0.273% 0.2113 0.1802
EXPONENTIAL 0.3154 0.2771 0.2381



(53) PAUL SAUER DAH. LORO1.

DATA. (10%m6 Hwn3),

o/l 172 /3 3/4% 4/5 5/6 6/7 /8 8/9 9/0

1900
1910
1920
1930
1940
1950
1960 -
1970 580.50
1980

194.00
124.70

172,00
108.40

79.90
161.00

218.00
38.60

154.00
272,00

90.40
115.70

2%0.900
54.60

130.00
280.60

34.00

CORRELATION ANALYSIS.

LAG CONF, INT.(1) CORRELATION CONF. INT.{ 2)
1 0.462 -0.280 ~0.462
UNIVARIATE MODEL PARAMETERS.
HORMAL MU= 172.1333 SIGHA= 128.9355
LOGHORMAL HU= 4.9165 " SIGMA= 0.7280
GAHMA ALPHA= 2.25548 BETA= 76.3078
NEIBULL RHO= 1.5003 OELTA= 192.0599
EXTREME~-1 XI= 120.703%6 ETA= 81.5017
EXPOHENTIAL THETA= 172.1333
SELECTION CRITERIA

H=1l.0 H=0.5 H=0.25
HORMAL 0.1878 0.160% 0.1384%
LO3 NORMAL 0.1221 0.1348 0.1265
GAMMA 0.1324% 0.11486 0.0957
MEIBULL 0.1337 0.1116 0,0923
EXTREME TYPE-1 6.1394 0.1231 0.0%40
EXPONENTIAL 0.1998 0.2301 0.1919



1900
1910
1920
193¢0
1940
1950
1960
1970
1580

w1l

4.580
29.30
J.2¢8
5.20

/e 273
7.30 45.70
a.70 52.00

42.70 14.10
3.490 4;.30

LAG CONF, INT.(1)

1

HORMAL
LOGHORMAL
GAMHA
HWEIBULL
EXTREME=-1
EXPORENTIAL

MORMAL

LOG HORMAL
GAHMA

WEIBYLL
EXTRENE TYPE-1
EXPOHENTIAL

(54) GROEMDAL DAM. M1RO1.

DATA. (10%wg Mund),

370 ass5
4.10 8.40
18.10 4.80
5.70 10.20
24.10 7.00

876 67

2.90 12.80
29.60 12.10
28.70 21.00
16.50 7.20

CORRELATION AHALYSIS,

CORRELATION CONF. INT.( 2}

0.31% -0.15% -0.314
UNIVARIATE HODEL PARAMETERS.
HuU= 15.9%49 SIGHA=  16.1672
M= 2.3510 SIGMA= 0.9129
ALPHAS 1.3287 BETA= 12.0377
RHO= 1.1101 BELTA= 16,7158
Xl= 9.5538 ETA=z 9.334%
THETAz 15,9949 .
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
0.2266 0.2865 0.2688
0.1527 0.1278 0.1097
0.1881 0.1657 0.162%
0.14696 0.1880 0.1881
0.2112 0.1906 0.1895
0.1585 0.2374 0.2304%

va

a8/9

%4.70
17.20
2.40
5.20

/0

5.50
23.20
%.90
72.80



L8]

1900
1910
1920
1930
1940
1950
1960
1970
1940

o/l

127.00
9.60
38.02
7.20
6.20

12 2/3

15.80 54.50

6.80 64.20
17.50 24.50
1¢7.00 10.80
13.20 330.40

LAG
1l

HORMAL
LOGNORMAL
GAMMA
HEIEBULL
EXTREME-1
EXPONENTIAL

HORMAL

LOG NORMAL
GAMMA
HEIBULL

EXTREHE TYPE-1

EXPOMHENTIAL

CONF.

(55) VYAHRYHEVELDSPAS DAM. H1ROl.

DATA. (10%wng Hwn3},

/% 4/5 576 6/7
L]

. 7.20 14.80 568.00
34.20 13.40 24.20 30.60
18.30 4.70 4.30 80.80
5.20 6.30 9.20 4.20

7.70 1.70 10.20 5.40
20.30 -

CORRELATION ANALYSIS.
INT.(1)  CORRELATION  COMF. INT.( 2)
0.277 -0.109 -0.277
UNIVARIATE MODEL PARAMETERS.

Hz 34,1580  SIGHA=  51.9672

MU= 2.875)  SIGHAS  1.1496

ALPHAz  ©.8923  BETA=  38.2827

RHO= 0.8740  DELTAZ  31.4909

XI= 18,0408  ETA= 22.0507

THETAz  34.1580

SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
0.2285 0.3401 0.3177
0.0914 0.0933 0.0952
0.1313 0.1362 0.1412
0.1088 0.2433 0.1439
0.1757 0.1991 0.2072
0.1399 0.1395 0.1235

78

26.60
44.10
9.90
1.50
12.00

8s/9

26.90
46.90
43.50

2.70
29.890

9/0

34.50
14.60C
38.7¢
117.¢9
65.80



i

1900
1910
1920
1930
1940
1950
19640
1970
1980

0/1

6190.00
320.00
202.00
a7.50
32.10

152.00
59.00
56.20

217.40
53.00

2 /3 374 4/5 - 5/6 e’7
79.60 105.00 23.30 21.30 502.00
218.00 193.00 98.40 138.00 161.00
374.00 49.50 62.40 46.90 406.00
541.00 63.40 37.%50 69.30 29.30
&5.30 39.90 15.60 41.80 52.30
733.00 22.60 234.00 £08.00 23.70
CORRELATICH ANALYSIS.
LAG COMF. INT.(1) CORRELATIDN CONF. INT.U 2)
b § 0.260 -0.229 =0.260
UNIVARIATE HODEL PARAMETERS.
HORMAL s 157.79482 SIGMAz 147.20%8
LOGHOPMAL MU= 4.5780 " SIGMA= 0.9399
GMTIA ALPHA= 1.1732 BETA=  134.5045
HEIBULL RHO= 1.0410 DELTAZ 160.7759
EXTRENE-1 XI= 91.2409 ETAz 96.0470
EXPOHENTIAL THETA= 157.7%a42
SELECTION CRITERIA
Hzl.0 H=2.5 H=0.256
HOSMAL 0.2076 0.3230 0.3114%
LOG HORMAL 0.1134 0.1183 0.12%6
GAMHA 0.1482 0.1815 0.1963%
HEIBULL 0.1299 0.2036 0.2157
EXTRERE TYPE-1 0.178% 0.2177 0.2281
EXPONENTIAL 0.1266 0.2242 0.233%

(56) HENTZ DAM. N2RO1.

DATA. (10ang Hxn3]),

/78

g92.60
232.00
48.00
43.30
19.40
191.90

as9

139.00
206.00
149.00
36.40
22.50
57.30

970

116.00

41.00
119.00
462.00
230.00



T

1900
1910
1920
1930
1940
1950
1960
197¢
1980

e/

0.31
1.80

(57) SLAGBOOM DAM. N4ROL.

DATA. (L10web . Mux3),

12 2/3 /4 /s

0.49

8.73 12.40 1.42 18.90
0.20

576

35.20
11.70

CORRELATION AHALYSIS.

LAG CONF. INT.(1)

CORRELATION

1 0.462 ~0.237

UNIVARIATE MODEL PARAHETERS.

HORMAL U= 8.079%
LOGHORMAL Hua 0.78466
GAMHA ALPHA= 0.4892
HEIBULL RHO= 0.62112
EXTREME-1 XI=z 3.5992
EXPONERTIAL THETAz 8.079%

SIGMAZ
SIGHAs
BETA=z

DELTA=

ETAz

SELECTION CRITERIA

H=1.0
HORMAL 0.2548
1L0G HORMAL 0.1463
GAHMA 0.1575
HEIBULL 0.1477
EXTREME TYPE-1 0.2384

EXPONENTIAL 0.2819

H=0.5

0.25846
0.1338
0.1354
0.1322
0.1911
0.3067

/7

CONF. INT.( 2}
-0.462

11.6829
1.9539
16.5146
5.5366
6.2551

H=0.25

0.2190
0.1148
0.1080
0.0993
0.1556
0.2589

"N -

78

L]
bk

a/9

0.06
2.96

90

0.54
38.190



1900
1910
1920
1930
1940
1950
1960
1970
1980

/1

22.60
39.80
39.40

9.40
10.30

(58) GRASSRIOGE DAM. QlRY1.

DATA. (10mip Mrnl),

ve 23 3/4 4’5 5/6
103.00 22.80
740.50 33.70 123.00 43.40 6.10
26.90 30.70 103.00 5.60 19.00
17.10 29.30 40.70 11.10 6.00
23.00 20.10 10.10 0.60 6.90
22.00 7.10 :
CORRELATION AMALYSIS.
LAG  COHF. INT.(1)  CORRELATION
1 0.260 ~0.030
UNIVARIATE HODEL PARAMETERS.
NORMAL MU= 46,2612  SIGMA=
LOGHORIAL Hus 3.0209  SIGMA=
GAMMA ALPHAZ  0.7376  BETAs
HEIBULL RHO= 0.7719  DELTA=
EXTREME-1 X1z 21.7558  ETAs
EXPONENTIAL THETA= 46,2612
SELECTION CRITERIA
H=1.0 H=0.5
HORMAL 0.2907 0.3733
LOG HORMAL 0.1047 0.1264
GAMMA 0.3178 0.3093
HEIBULL 0.1484 0.1953
EXTREHE TYPE-1 0.2191 0.2153
EXPONENTIAL 0.2091 0.1868

6/7

13.70
22.460
17.80
11.50
80.10

CONF. INT.L 2)
~0.280

107.4894%

1.1925

62.7175
37.3717
30.5340

H=0.25

0.3391
0.1646
0.3048
0.1612
0.2162
0.1568

778

27.30
14.20
50.00
13.50

5.10

-74

60.60
87.30
5.70
10.30
7.40

9/0

26.00
28.60
190.00
1.80
20.20



(59) LAKE ARTHUR DAM. Q4ROL.

DATA. {10%%G Hau3),

/1 2 2/3 3/4 4/5 5/6 /7 178 a/9 9/0
1900
1910
1920 3%.00 34.60 57.50 a1.a0 88,30 61.10
1910 151.00 67.10 224.00 98.60 44.70 64,90 40.70 143.00 99.60 &8%.00
1940 65.80 93.20 285.00 In.2e 45.40 33.30 51.20 5.40 249.00 93.1¢
1550 66.90 27.10 75.30 34.80 22.40 60.90 16.70 44.90 13.20 35.70
1960 37.30 64.00 51.40 28.80 25.20 34.20 4%4.70 %6.90 31.10 38.40
1970 47.90 33.40
19480

CORRELATION AMALYSIS.

LAG CONF, INT.(1) CORRELATION CONF. INT.f 2)

1 0.283 0.095 =-0.283

UNIVARIATE MODEL PARAMETERS.

HOPMAL
LOGNORMAL
GAHMA
HEIBULL
EXTREME=1
EXPOHENTIAL

HORMAL

LCS HORMAL
GAMMA

HEIEULL
EXTREME TYPE-1
EXPONENTIAL

Mz 67.0813
M= J3.94945
ALPHA= 2.0639
RHO= 1.3646
X1= “5.8592
THETAz  67.0813

SELECTION CRITERIA

H=l.0

0.2170
0.1166
0.1453
0.1508
0.14%94
C.2344%

H=0.5

0.2373
0.1203
0.1217
0.1597
0.1135
0.2819

57.325%8

0.7260
3z2.5020
74.0%18
31.1134

H=0.25

6.2333
0.1777
0.1139
0.434
0.0959
0.2393



N

1900
1910
1920
1930
1940
1950
1960
1970
1980

ol

34.80
35.70

110.00
15.10

/2 /3

17.9¢0
32.80

(60) KOMMANDOORIF DaM, QzRO2.

DATA. (10wwf Hun3),

3/4 4/5 576
.. §3.90
12.60 22.30 102.00

CORRELATION ANALYSIS.

LAG COHF. INT.(1)

1

HORMAL
LOGHORHAL
GANNMA
HEIBULL
EXTREME~-1
EXPONENTIAL

HORMAL

LOG HORMAL
GAMHA

HEIBULL
EXTREHME TYPE-1
EXPOHENTIAL

0.462

WHIVARIATE 10D

MU=
s
ALPHA=
RHO=
XI=
THETA=

CORRELATION

~0.288

EL PARAMETERS.

40.0333 SIGMA=
3.4q94138 SIGHMA=
2.1857 BETA=
1.509¢ DELTA=

27.7753 ETA=

40.0333

SELECTION CRITERIA

H=1l.0

0.1a858
0.2460
0.1459
0.1448
c.1538
0.2090

H=0.5

0.14%%
0.1371
0.1259
0.1187
0.1316
0.2351

6/7

21.70
?-80

CONF. INT.( 2)

=0.4562

29.2052

0.7432
18.3164
49,6855
19.3641

H=0,25

0.1271
0.1241
0.0970
0.0923
0.0973
0.1922

776

41.30
47.50

8/9 90
13.20 37.30
43.10 72.60



1500
1910
1920
1930
1940
1950
1960
1970
1950

e/l

18.60
25.10
28.10

28,90 156.00
157. 00 93.80

5,30 8%.90

(61) LAIING DAM. R2ROL.

DATA. (1Cwwd Mand),

374
16.90 15.70
7.50 18.8¢0
27.20

576

76.70
46.50

CORRELATION AHALYSIS.

LAG CONF. INT.(1)

1l

HORMAL
LOGHORHAL
GAMHA
HEIBULL
EXTREME-1
EXPOHTHTIAL

HORMAL

LOG HORMAL
GAMMA

KEIEULL
EXTRENE TYPE-1
EXPONENTIAL

0.392

= 50.64890

"=
ALPHAZ
RHO=
XI=
THETA=

CORRELATION

50.6480

-0.128

UNIVARIATE MODEL PARAMETERS.

SIGHA=
* SIGMA=
BETA=z
DELTA=
ETA=

SELECTION CRITERIA

H=1.0

0.2372
0.1552
0.1859
0.1750
0.2171
0.1672

H=0.5

0.2161
0.1224
0.13%38
0.1333
0.163%
0.1471

14.40
23.50

CONF. INT.L 2)

-0.392

51.0234

1.0361
43.0826
51.9501
30.86883

H=0.25

0.1%61
0.1078
0.0955
0.l004
0.1265
0.1212

778

83.40
4.20

13.20
181.00

%0

40.10
13.40
76.00



(62) ROOIKRANSDAH. RZRO2.

DATA. (10mnb6 . Hand),

wl re /3 374 4/5 5/6 /7 /8 a/9 9/0
1900
1810
1220
1930
1940 -. .
1950 11.30 11.60 10.50 3.40 15.50 5.20 6.80 5.80 12.20 13.5¢
1960 28.80 19.80 2.80 7.40 1¢.70 2.90 5.80 14.00 22.90 7.%0
1970 4.6 20.40 5.90 16.30 5.30 9.00 17.30 0.80 15.40 1.10
1940 0.50

CORRELATION AHALYSIS.

LAG CONF. INT.(1) CORRELATION COHF. INT.( 2)

1 0.352 =0.011 -0.352
UNIVARIATE HODEL PARAMETERS.
HORMAL HU= 10.1419 SIGHA= 6.9539
LOGHORMAL g JE] 1.9902 SIGHAZ 0.9671
GAMIA ALPHAZ 1.6783 EETA= 6.0412
WEIBULL RHO= 1.4426 DELTA=  11.1352
EXTREHE-1 XI= 6.9705 ETA= 5.4025
EXPOHENTIAL THETA=  10.1419%
SELECTION CRITERIA

H=1.0 H=0.5 H=L. 28
HORMAL 0.1315 0.1280 0.1159
LOG HORMAL 0.1578 0.1717 0.209%
GAA 0.1302 0.1357 6.133}
HEIEULL 0.l202 0.1473 0.1485
EXTREME TYPE-1 0.123% 0.1215 0.1051
EXPCHENTIAL 0.19¢% 0.1831 0.1367



(63) HATERDOIEY DAM. S3ROL.
DATA. (10%wp fienl}),

o/} 1/2 2/3 /4 4/5 5/6 6/7 /8 a9 9/0

1900

1910

1920

1930

1940 -

1950 - 13.90 77.90 126.80 £0.10
1960 30.9¢ 69.3¢ 42.50 19.40 39.50 £2.90 43.10 15.50 35.30 8s.10
1970 71.10 20.50 2r6.7¢ 31.10 166,90 83.50 33.00

1980 )

CORRELATION ANALYSIS.
LAG COHF. INT.t1)

CORRELATIOH COHF. INT.( 2}

1 0.423 -0.197 -0.428

UHIVARIATE HMCDEL PARAMETERS.

HORHAL Hu= 66,3333 SIGHA=  £1.2899
LOGHIRMAL MU= SIGHA= 0.7653
GAHNMA ALPHA=Z BETA= 35,2306
HEIBULL RHO= DELTA=  72.4350
EXTREME=-1 XI= 43.6469 ETA= 32.983%
EXPOHENTIAL THETA2  66.3333
SELECTICN CRITERIA

H=1l.0 H=0.5 H=0.25
HORMAL 0.21%0 0.2059 0.1807
LOG HORMAL 0.1303 0.1200 0.0995
GAMMA 0.15%96 0.1247 0.0970
HEIEULL 0.1562 Q.1405 0.11es
EXTREHE TYPE-1 0.1691 0.1324 0.0994%
EXPOHENTIAL 0.1989 0.2411 0.2077



1900
1910
1920
1910
1940
1950
1964
1970
1940

o/l

68.00
159.00
142.00
164.00
121.00

96.00

(6%4) HIDMAR DAf. UZRO1.

DATA. (10#%6 lnn3},

vz /3 /4 4/5 5/6 /7
44.00 110.c00
84.00 89.00 258.00 156.00 124.00 142.03
215.00 369.00 191.00 99.00 56.90 146,00
109.00 132.00 119.00 129.00 89.00 313.00
124.00 l46.00 135.00 166.00 111.00 208.00
202,00 163.00 %01.00 204.00 419.00 132.00
86.00 3a8.00 . )
CORRELATION AMALYSIS.
LAG COMF. INT.{(1) CORRELATION CONF. INT.( 2)
1l 0.257 0.159 -0.257
UNIVARIATE MODEL PARAMETERS.
HORMAL Hu= 151.46207 SIGMA=  79.8140
LOGHORMAL Hu= 4.8%02 SIGHA= 0.5076
GAMMA ALPHA=Z %.2187 BETA= 35.9403
KEIBULL Ri0= 2.0367 DELTA= 171.7742
EXTREME-1 xI= 118.0040 ETA= 56.0628
EXPORENTIAL THETA= 151.86207
SELECTICH CRITERIA
H=1.0 H=0.5 H=0.2%
HORMAL 0.1509 0.1428 0.1534
LOG HORMAL 0.1149 0.1223 0.1547
GAMHA 0.109% ¢.0980 0.1005
HEIBULL 0.1276 0.1215 0.1120
EXTREME TYPE-1 0.1012 0.0961 " 0.102%
EXPONENTIAL 0.3106 0.3559% 0.3273

778

92.00
141.00
150.00
134.00
120.00
174.00

8/9

122.00
256.00
87.00
237.00
86.00
194.00

970

146.00
179.00
130.00
74.00
153.00
36.00



kint

1%00
1910
1920
1930
1940
1950
1940
1970
1980

0/l

80.70
156.00
10,00

(63) CHELHSFORD DAN. Y3ROL.

DATA. (10%n5, Ha%3},

vz 2/3 3/4 4/5 5/6 6/7
46.50 43.10 174.00 58.00 208.00 34.20
27.50 182,90 228.10 253.90 125.60 189.50

6.20
CORRELATION ANALYSIS.
LAG  CONF. INT.(1)  CORRELATION  COMF. INT.( 2)
1 0.418 0.16% -0.418
UNIVARIATE MODEL PARAMETERS.
HORMAL = 102.9864  SIGMAZ  74.8343
LOGHORMAL MU= 4.2838  SIGHA=  0.9839
GAITIA ALPHAZ  1.5714 BETAZ  65.5376
WEIBULL RHO= 1.3666 DELTA= 112.3705
EXTREME-1 XI= 68.8247  ETAs 56,7487
EXPONENTIAL THETA= 102.9864
SELECTION CRITERIA
H=1.0 H=0.5 H=0.25
HORMAL 0.1722 0.1428 0.1193
L0G HORMAL 0.1476 0.1697 0.1a831
GAMHA 0.1382 0.1340 0.1246
NEIBULL 0.1379 0.1458 0.1370
EXTREME TYPE-1 0.1477 0.1252 0.0983
EXPONENTIAL 0.1650 0.1590 0.1267

/8

68.90
31.00

73.00
76.50

970

104.1¢
88.00



(66) MWAGENDRIFT DAH. V7ROL.
DATA. (10%*4 . Hen3},

o/l . W2 2/3 3/4 “/5 5/6 6/7 /8 8/9 9/0

1900

1910

1920

1930

1940

1950 . - . - .
1960 166.00 23¢.00 170.00 450.00 77.30 167.00 169.00 108.00
1970 179.90 143.190 395.30 -250.00 %40.00 173.80 245.80 155.30 243.30 128.50
1940 59.60

CORRELATION ANALYSIS.

LAG CONF. INT.(1) CORRELATION CONF. INT.( 2)

1 g.450 -0.115 -0.450

UNIVARIATE HODEL PARAMETERS.

HOPMAL M= 207.9947 SIGHA=® 111.3493
LOGHURMAL = 5.2085 ' SIGMA= 0.5278
GAFMA ALPHA= 4,0360 BETA= 51.5346
WEISULL RHO= 2.0541 DELTA= 235.9769
EXTRENE-1 1= 160.219% ETA= 78.3816
EXPONEATIAL THETA= 207.99%47

SELECTION CRITERIA

H=1.0 H=0.5 H=0.25
HORMAL 0.2151 0.1506 0.1074
LOG HORMAL 0.1644% 0.1453 0.1359
GAMTA 0.1779 0.13%90 0.10%%
HEIBULL 0.1886 0.1375 g.1021
EXTREME TYPE-1 0.1713 C.1401 0.1207

EXPOHENTIAL 0.3122 0.3151 0.2651



1500
1910
1920
1930
1940
1950
1960
1970
1980

o/l

64.20
18.80
56.60

/2 /3
30.10 335.0¢0
37.80 32.10
18,00

(47) HOOQITGED

DATA.

74
31.40 6
173.00 14

CORRELATI

LAG CONF. INT.L1)

[ od

HORMAL
LOGHORMAL
GAHNA
HEIEULL
EXTREME-1
EXPOMENTIAL

HORMAL

LOG HORMAL
GAMMA

HEIBULL
EXTREME TYPE-1
EXPOHENTIAL

0.413

UHIVARIATE 10D

HUs
HUs
ALPHAzZ
RHO=
XI=
THETA=

SELECTION

H=1.0

0.1675
0.1299
0.1332
0.1259
0.1436
0.1806

ACHT DAH. X1R¢1l.

10%%6.Men3),
45 S/6
1.20 9.30
9.00 165.00

ON ANALYSIS.

CORRELATION

0.365

EL PARANETERS.

61.0818 SIGMA=
3.8277 SIGMA=
1.9075 BETA=
1.4035 DELTA=

41.1177 ETA=
6l1.0818

CRITERIA

H=0.5

0.1588
0.11%0
0.1114
0.1055
0.1222
0.2091

6/7

69.90
26.20

CONF. INT.( 2}

~-0.418

47.4836

0.7976
32.0226
67.4763
31.0773

H=0.25

0.1468
0.1128
0.0861
0.0842
0.0900
0.1815

/8 8/9
78.40 g92.20
41.60 12.00

90

&5.00
59.00
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