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PREFACE

This report 1s part of a larger study on the occurrence
and severity of drought In South Africa. As various
aspects of this study may be of Interest to researchers
and practitioners who are not specifically concerned with
drought. It was decided to separate the results of the .
research Into three self-contained reports, this being the
main one. Naturally this has led to some repetition but
it Is hoped that this disadvantage is outweighed by making
the methods and results more accessible to a wider audience
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1. INTRODUCTION

Drought and mismanagement of available water resources
are major factors which reduce production of many water
related enterprises to below potential. It is not sur-
prising therefore that an abundance of drought studies
are reported in the literature. Palmer and Denny (1971)
list no less than 3150 selected references on the subject.
These investigations vary from the purely descriptive to
mathematical modelling and simulation. Definitions of
drought and classifications of drought severity abound,
as do attempts to forecast the occurrence of future droughts.
On the other hand,methodology to tackle the problem of
assessing drought risk in a manner which is sufficiently
-general to be universally applicable and simultaneously
simple enough to be suitable for implementation on a large
scale is not available. It was with the object of develop-
ing such methodology that the research described in this
report was initiated. During the course of the project,
and as the complexity of the problem came to be appreciated,
it became increasingly evident that in order to make pro-
gress we would have to restrict our attention to some
selected aspects of the problem. Much more research needs
to be carried out on the subject.

Droughts are usually classified, as either meteorological, agricul-
tural or hydrological, depending on the variables under
investigation. The important variables in meteorological
drought are rainfall, snowfal1, wind speed, wind direction,

humidity and temperature. In agricultural drought
soil moisture content and evapotranspiration are the major
variables. Hydrological drought analyses are mostly con-
cerned with water in rivers, lakes, reservoirs and
underground water storage spaces.
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The variables which indicate the presence and severity of
agricultural and hydrological drought derive from those
associated with meteorological drought, or at least are
directly influenced by them. The single most important
of theser particularly in South Africa,is rainfall. It
often correlates quite well with humidity and temperature as
well as wind speed and direction, but
the availability of rainfall data which have been collected
in more places and for longer periods than data for any of the
other variables is a more important factor. It is therefore not
surprising that rainfall forms the basis of most drought investigatio

Underlying our notion of drought is the assumption that :

the water-related activities in a region should be in harmony
with the amount of water which is "normally" available for
those specific activities. Any significant deviation from
normal conditions is usually harmful, and should the de-
viation be to the deficit side then a drought occurs. In many
situations "normal" 1s taken to be the mean amount of water available.
This notion of drought is, however,rather inadequate. In
reality some activities require less water than the mean
amount available, and some require more.It is the occurrence of
negative deviations from the required levels rather than
from the mean which constitute droughts. In other words
a drought occurs when there is less water available than
is needed, and not when there is less than is expected.

In any specific drought investigation it is therefore 1m-
portant to identify the water-related variable (or vari-
ables) which is relevant to the activity under consider-
ation and to establish the water requirements, which we
will call the desired level, for the activity to function
effectively. Deviations of the available variables from
the desired level can then be traced. The deviations
below the desired level are characterised by their
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duration, depth (or intensity) and time of origin. In
addition the drought-affected region usually needs to be
identified.

Ideally all four properties of the drought, i.e. its
timing, duration, intensity and areal extent should be
studied simultaneously. Furthermore one should take
account of the fact that the drought process and the de-
sired level of water are both dynamic processes which
usually follow the seasonal cycle and are stochastic rather
than deterministic in nature. To adequately describe all
these facets of drought in a single model is extremely
difficult. For example no applicable model to describe
the process of daily rainfall at several locations simul-
taneously has yet been proposed. It is therefore necessary
to make simplifying assumptions or alternatively to study
the different properties separately. The first simplifi-
cation is usually to limit the description of drought to
a single measure, for example the drought duration at a
point. As there is a strong correlation between drought
duration and severity (Hully 1980) this scheme is less
restrictive than it may appear superficially. In other
studies the complicationsdue to seasonality are avoided by
selecting as time unit either the year or the growing
season of the crop under investigation.

The most widely applied classification system is the Palmer
drought index which is a function of accumulated weighted
differences between actual and required precipitation;
the latter being determined by evapotranspiration, mois-
ture recharge, runoff and antecedent rainfall conditions.
It is intended primarily as a measure of wetness/dryness
in agriculture and is a good illustration of the large
number of variables and of the complexity of their inter-
relationships which need to be taken into account even if one



wishes to describe just agricultural drought in de-
tail. Simpler classification systems have been proposed,
but unless adequately long historical records of the variables
which make up the index are available.it is not possible
to meaningfully assess the risk of future drought events
as measured by the index in question. Consequently most
drought studies stop after classifying droughts into
severity classes at various points in a region and then
drawing contour lines of equal severity to assess the areal
extent of a particular drought.

Herbst et al (1966) define a general drought model based
on rainfall. This method*which may provide a viable
alternative to the Palmer drought index for identifying •
and comparing droughts, is attractive because only rainfall
data are required to classify a drought. It takes into
consideration the average requirements which must be met

each month before a drought condition is deemed to exist
However this methodology appears too general to have opera-
tional" value. (The results of this report do not exclude
the application of such drought models; in fact these
results can be used to construct such models quite easily.

- We have emphasised that drought Investigations should be
specific to the water-related activity. Once we know the
water requirements associated with a particular activity

i

there is no difficulty in defining a drought. If suffi-
cient historical data are available at the point where the
activity takes place then we can also begin to construct
models to assess the risk of drought. In any case it is
clear the search for any single all-embracing definition
of drought is futile. Different water users have differ-
ent needs and what may be a drought for one user need not
be a drought for another. On the other hand it is ob-
viously unrealistic in a single study to develop a separate
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methodology for each conceivable application and therefore
some compromise 1s necessary.

At theinitial stages of this project we decided that a
reasonable way to solve this dilemma was to study families
of drought indices rather than a single drought index.

The family of drought models was to be based on daily rain-
fall (weekly, monthly or even annual rainfall can be
used) because this is the only relevant variable for which
historical records of sufficient length and at sufficiently
many places are available for a large-scale study of
drought based on statistical models.

A suitable family was identified and it was our intention
that each user would make use of that index within the
family which came closest to meeting, his specific require-
ments. The family we chose is quite simple and is charac-
terised by a single parameter, namely the half-life of an
exponentially decaying function. This function is then
used to describe the decay in the "benefit" associated with
a unit quantity of rainfall as the time from the rainfall
event increases. For example the "benefit" associated with
20 mm of rainfall does not vanish the moment that it stops
raining. One would wait at least a day or two before de-
claring a state of drought. In other words the effects of
rainfall persist after the event and our family of models
assume that these effects decrease txpontntially with time.
The rate at which this decrease takes place will depend on
the effect In question and we therefore allow the user to
decide which rate may be most appropriate for his purpose.
In most agricultural applications (with the possible ex-
ception of sugar cultivation) it is important that rain
should occur quite frequently, particularly at the flower-
ing stage of the plant. Here the benefits associated with
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any single rainfall event decay quite rapidly. On the
other hand,for those who are concerned with reservoir
levels, the precise timing of rainfall is less important
and the benefits associated with a rainfall event persist
for a longer period. For such applications a model with
a long half-life (slow rate of decay) would be suitable.

Having decided on a family of drought indices we then set
about looking for suitable statistical models to describe
them. This task turned out to be more difficult than we
had hoped. It is easy enough to construct a model for a
fixed member of the family of drought indices, but we were
unable to find any single model which could satisfactorily
cover an adequate range of drought indices even for a given
rainfall record. A further complication is that different
models are sometimes required for different regions. It
would therefore be necessary to fit a number of models,
some of which are necessarily complex, to each historical
record individually. The final product of this research
would then consist of a list of models and their estimated
parameters for each rainfall station. Since it was one of
the main objectives of the project to provide methods which
were simple enough to be attractive to practitioners (and
not only to statisticians), such an approach was considered
unsatisfactory. On the other hand any further simplifi-
cation in the definition of the family of drought indices
was out of the question. The only reasonable solution to
this problem was to model the rainfall process itself and
thereby indirectly provide a means of modelling the com-
plete family of drought indices.

With the advantage of hindsight it is now clear to us that
this is what we should have done in the first place rather
than concentrating on definitions of drought. Had we
persisted with our original approach users would have been
obliged to use out drought indices, even if they were free
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to select the half-life. By providing a model for the
rainfall process, users are now entirely free to select any
rainfall-based index whatsoever. The model provides a
means to assess the risk of drought as defined by any such
Index, including the family discussed above.

There is a good deal of useful literature on the construction
of daily rainfall models, but two problems required further
research. The first concerned the question of model selec-
tion, in particular selecting the number of parameters
which should be used. The second, which apparently only
arises in arid and semi-arid regions, involved the search
for alternative estimation procedures for one of the two ,^
components of the basic model. After a number of false
starts the solution to this problem turned out to be both
^simple and satisfying - one must estimate the logits
(transformed probabilities) rather than the probabilities
themselves. In a recent paper "A Model fitting Analysis
of Daily Rainfall Data" read before the Royal Statistical
Society and published In the Society Journal, Stern •
and Coe (1984) proposed the same approach, together with
one extension. This paper is followed by a comprehensive
discussion by 14 prominent British statisticians and was
favourably received.

The model' was validated using six rainfall stations selected
from different climatic regions of the country and was
found to fit remarkably well. It was then fitted to 2550
stations selected on the basis of the length and quality
of their historical records and also in such a way as to
provide an adequate coverage of the country as a whole.
The estimated parameters for these stations are given in
the report.

An entire spectrum of properties of the daily rainfall
process at any of these stations 1s condensed into a
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relatively small number of parameters and with the aid of
a micro-computer one can unlock a wealth of Information
relating to occurrence of rainfall. For example, all the
monthly and annual properties of rainfall including means,
variances and in fact the complete probabil1ty distribu-
tions, can be computed. The probability of dry spells of
any particular length and starting at any particular time
are easy to compute. The distribution of wet and dry days
for any period, the probabilities of getting any desired
amount of rainfall over any desired period, the time of the
year when most rainy days occur, and so orw can all be com-
puted using the model. A number of maps which illustrate
the variation of some of the characteristics over the
country are given.

As mentioned above to apply the model one needs to use a
computer - chiefly because most of the properties outlined
above cannot be usefully derived analytically from the
parameters. In fact one uses the computer to "generate"
artificial rainfall sequences and keeps a record of how
many times a condition under investigation is successfully
met. As the length of the artificial record increases
(and this can be Increased to any desired Vength) so the
proportion of successes converges to the probability of
the condition being met. It would naturally be preferable
to derive such results by more direct means but this does
not seem feasible except in a few rather special cases.
For example the few "analytic results" relating to applica-
tion of the model which are discussed in Stern and Coe
(1984) appear to require no less computation, and are much more
complex and therefore prone to errors. Furthermore each
new application would require the derivation of new results
and the development of corresponding computer programs.
In this respect, and therefore In terms of general applica-
bility, the simulation approach is vastly superior. One
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uses the same rainfall "generator" in all applications
and simply keeps a record of whatever aspect of the
artificial record is of interest, no.matter how complex
this aspect may be. In this way any properties of any
rainfall-based drought model can be established for any
of the 2550 stations considered.

A problem which we have not been able to solve is the area!
description of drought. No satisfactory methodology exists
to tackle this problem on a-seasonal basis. A study of
streamflow deficits, which provide a measure of the inte-
grated effect of drought over a catchment, was (at least
in part) carried out with the object of providing a means
of assessing drought risk over a region rather than at a
point. The results of this research, which was also in-
tended to cover a second important variable associated
with drought, namely streamflow, wil1 be discussed in a
separate report: "Assessing the Risk of Streamflow
Deficiencies".

Another aspect of area! droughts investigated was the dis-
tribution of past annual rainfall deficits. A simple model
was fitted to the annual totals of 500 selected stations
and the percentile points associated with each of the
Weather Bureau water years (October-September) from 1920/21
to 1979/80 were represented on maps, one for each year.
This sequence of 60 maps provides a history of areal droughts
for the Republic as a whole.

In the course of this project a number of other topics re-
lating to drought were also examined. In particular we
investigated the possibility of using tree-ring indices
to significantly augment the length of rainfall records.
The available rainfall and streamflow data are too short
to allow one to accurately assess the risk of exceptionally
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severe droughts, such as that recently experienced. Tree-
ring indices may be suitable for this purpose - they are
correlated with annual rainfall and have much longer re-
cords, sometimes going back several hundred years. There
is presently only one site in South Africa for which suit-
able tree-ring indices have been compiled, namely Die Bos
in the Cedar Mountains. These records extend back to
1564. We were able to find a significant correlation be-
tween tree-ring indices and annual rainfall at a neigh-
bouring rainfall station but the relationship was not close
enough to meet the required degree of accuracy. This re-
search was published in Water S A , the Water Research
Commission Journal, and is therefore not repeated here.
As we were only able to examine one site it is difficult
for us to come to any conclusion as to whether such a study
would be more fruitful elsewhere, but we believe that this
matter is worth further investigation.

Methods for estimating missing values in rainfall records
were also developed. In order to apply the results re-
lating to the family of drought models mentioned earlier
it was necessary to have complete data records. Most of
the South African Weather Bureau records, however, have
gaps and it was therefore necessary to find a systematic
way of filling these. When it was subsequently decided to
fit the rainfall process directly it was no longer necess-
ary to fill these gaps because the relevant estimators
could equally well be applied using incomplete data.
Although this research on filling in gaps is now something
of a by-product of the project it may nevertheless be of
use in other contexts and so we have presented it in a
separate report : "Estimating the Missing Values in Rain-
fall Records".

A second by-product is the theory which is also described
in a separate report : "Augmenting Hydrological Records".
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This describes methods to significantly extend hydrolo-
gical records (as opposed to estimating relatively few
missing values) using related records. The problem here
is that standard regression techniques introduce a syste-
matic bias in the variance of the augmented record.
Alternative methods were developed.

This particular report is set out as follows:

Chapters 2 to 6 are about the rainfall model. The theory
behind the model is derived in Chapters 2 and 3 and algo-
rithms to implement the theory is given in Chapter 4.
Chapter 5 contains material on the validation of the model
at six test stations which are representative of most of the major
climatic regions of the country. Chapter 6 contains some
selected examples of application of the model.

Chapter 7 discusses the family of drought indices charac-
terised by an exponential response function to rainfall
events. Examples of application are then considered in
Chapter 8.

The more technical aspects of the report are discussed
in appendices. Appendix 6 contains the estimates of the
rainfall model parameters for the 2550 stations.
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2. A MODEL TO DESCRIBE THE OCCURRENCE OF WET AND DRY
SEQUENCES OF DAYS

By the term "process of daily precipitation" we will mean
the sequence of random quantities comprising the precipi-
tation depths on consecutive days. This process exhibits
a number of distinctive features:

(i) The distribution of daily precipitation 1s partly
discrete and partly continuous.

On any given day of the year there is a positive pro-
bability that there will be zero precipitation (dis-
crete part). On the other hand when precipitation
does occur it is convenient to consider its depth as
having a continuous distribution.

Naturally it Is only possible to measure precipitation
depths to a certain degree of accuracy and therefore
the measured depths are in fact discrete* e.g. there
is a positive probability that the measured depth will
be exactly 10 mm. However the probability that the
"true" precipitation depth will be exactly 10 mm is
zero. In other words the distribution of precipita-
tion depths on wet days is continuous.

These considerations aside, it is simply more conven-
ient to model the precipitation depths on wet days by
means of continuous distributions.

(ii) The distribution of daily precipitation depths is
seasonal.

It Is common knowledge that the process of daily pre-
cipitation Is not stationary but follows a cyclical
pattern with a period of one year.
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(iii) The precipitation depths on consecutive days are not
independently distributed.

In most regions the probability that a wet day will
follow a wet day is higher than the probability that
a wet day will follow a dry day. Consequently the
conditional distribution of precipitation depth on a
given day depends on the state of precipitation on
the previous day.

The above features must be reflected in any reasonable model
for the process of precipitation. In the recent literature
this process is described by means of a model comprising two
components: The first, a first-order Markov chain, describes
the occurrence of wet or dry days. The second, some uni-
variate distribution, describes the amount of precipitation
on wet days. The parameters of the model are allowed to vary
seasonally. Particular models of this type have been dis-
cussed by Gabriel and Neumann(1962), a number of subsequent
authors (see Richardson (1981) for references) and more
recently by Roldan and Woolhiser (1982). This chapter is
about the first of these two components.

We will firstly state the assumptions which are implied when
one uses a first-order Markov chain to describe the process
of wet or dry sequences. It is then pointed out that a
naive description of such a model leads to estimation diffi-
culties because it contains too many parameters. The method
of fitting a truncated Fourier series as applied for example
by Woolhiser and Pegram (1979) is outlined and a new
criterion for model selection is derived for this type of
model. We then propose a new method of fitting first-order
Markov chains to such data. This method overcomes the
problem which is frequently encountered in arid and semi-
arid regions, namely that of obtaining inadmissible estimates
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of the parameters, A model selection procedure for this new
method of fitting is also derived. Finally, an example of
application is given.

2.1 FIRST-ORDER MARKOV CHAIN ASSUMPTION

The seasonal nature of the precipitation process is such as
to tend to cluster wet days (and dry days). But in many
regions there is also a short-term persistence in the sequ-
ence of wet days which operates over and above that due to
seasonality. In other words whether it is wet or dry on
day t depends not only on t, the day of the year, but also
on the state on previous days, t-1, t-2, etc ... . The
number of previous days which are relevant in this respect
is often referred to as the'memory" of the process. In our
context the memory is certainly finite and, for practical
purposes, of short duration.

If, apart from the seasonal fluctuations, the precipitation
process is stationary, i.e. exhibits no systematic changes,
then it can be described in terms of a (seasonal) Markov
chain. In using a ilnit-oKdzK chain one uses the approxima-
tion that the memory of the process has a duration of 1 day.
In other words one assumes that, for the purposes of pre-
dicting whether day t will be wet or dry, knowing the state
on day t-1 is equivalent to knowing the state on all days
preceding t.

This does not Imply that one is assuming the state on day t
is distributed independently of that on say day t-2 or any other
day. A first-order Markov chain has the property that the
state on day t is not distributed independently of that on
day t-2, t-3, etc ... .

Whether or not the sequence of wet or dry days really does
conform to a first-order Markov chain is not possible to
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establish with certainty. But, to our knowledge, there have
been no reports of situations where such a model was found
to be inadequate. In fact the model has proved itself to be
a good approximation for the purpose in a wide variety of
regions. (Gabriel and Neumann 1962 , Caskey 1963 , Weiss
1964 , Hopkins and Robillard 1964 , Haan et al 1976 ,

Woolhiser and Pegram 1979 , Richardson 1981 , Roldan and
Woolhiser 198? .)

In cases of doubt it is of course possible to increase the
order of the Markov chain, but this has to be done atthe cost
of increasing the complexity and number of parameters in the
model. A method on which to base the decision of whether
to increase the order or not is given in Tong (1975). However
this method would have to be extended to apply to

6&a&onal Markov chains.

2.2 NOTATION AND PRELIMINARIES

In the above discussion we have used the day as the basic
time unit. The methods given below can be applied if pentads,
weeks, months or some other time unit is used. Suppose in
fact that the year is divided into NT equal intervals or
"times" which we denote by T » 1,2 NT.

We will use the following notation. For T = 1,2,...,NT

N(T) is the number of observations made in period T,
NR(T) is the number of times it was wet in period T,
NR(T) is the number of times it was dry in period T,
NDW(T) is the number of times it was dry in period T-1

and wet in period T,
NDD(T) is the number of times it was dry in period T-1

and dry in period T,
NWW(T) is the number of times it was wet in period T-1

and wet in period T,
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NWD(T) is the number of times it was wet in period T-1
and dry in period T,

ND(T) * NDW(T) + NDD(T),
NW(T) - NWW(T) • NWO(T).

From the above it can be seen that ND(T) is the number of
times that it was dry in period T-1 and there was an observa
tion (either wet or dry) in period T. Similarly NW(t) is
the number of times that it was wet in period T-1 and there
was an observation (either wet or dry) in period T.

Note that in the above for T = 1 the period T-1 is NT. For
example the day preceding day T = 1 (1 January) is day
T = 365 (31 December of the previous year).

Our object is to estimate the following probabilities which
specify the Karkov chain model:

TrR(T) the probability that period T is wet,

K the probability that period T is dry,

7fw/M(T) the probability that period T is wet glvzn that
period T-1 is wet,

7rn,M(T) the probability that period T is dry given that
period T-1 is wet,

M / D
7 T M / D ( T ) the probability that period'T is wet givtn that

period T-1 is dry,
the probability that period T is dry givtn that
period T-1 is dry.

These probabilities need to be estimated for each
•T = 1 , 2 . . . . . N T .
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The above functions satisfy the following relationships (which
are obvious if one reflects on the above definitions):

T) + * D / W U ) « 1
TT W / D (T ) + T T D / D ( T ) = 1 , T * 1,2 NT

So i n f a c t o n e r e a l l y o n l y n e e d s t o e s t i m a t e * D ( T ) , •

/ D (

are then automatically available from the above relationships
and T I W / D ( T ) - the estimates for T T ^ ( T ) , * D / W ( T ) and T T D / D ( T )

It follows from elementary probability theory that for a
given number of observations N{T) and a probability 7tR(T) of
period T being wet,the number of wet days NR(T) is a random
variable having a binomial distribution. Using the standard
notation this is written as:
NR(T) % B ( N ( T ) , T T R ( T ) )

NWW(T) % B(NH(T), n M / w(T))
NDW(T) * B(ND{T), * H / D ( T ) ) . T -.1,2 NT .

So the problem of fitting a model to the occurrence of wet
and dry sequences is reduced to that of estimating the
parameters T T R ( T ) , *y/y(T) and *y/[)(T) ffom the given obser-
vations.

The remaining sections concern methods of estimating the
above three functions.

2.3 NAIVE ESTIMATORS

The obvious estimator for T T « ( T ) , the probability that
period T is wet is

« R(T) - NR(T)/N(T) , T * 1,2 NT

that is the proportion of times it was wet in period T in
the historical record. This is in fact the estimator one
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o b t a i n s using the method of maximum likelihood for the b i -
nomial d i s t r i b u t i o n . S i m i l a r l y the maximum likelihood esti
m a t o r s of ^ y / y t T ) and n

W/[)(T) are given by

* W / W(T) * NWW(T)/NW(T)
{ )*W/D { T ) a NDW(T)/ND(T) V T - 1,2,....NT .

If these estimators were satisfactory then the problem of
fitting a model to the wet and dry sequences would be solved.

The above, eitimatoih an.e not suitable ioK the. historical
necoxdh which axe. available.

Unless a very long historical record (in the order of hundreds

to thousands of years is available) these estimators yield very poor es-
tima'tes of the required probabilities. In particular if
frR(T) is plotted against T (period) one finds that the esti-
mates are highly scattered. One may find for example that
the estimated probabilities of wet days on 1, 2 and 3
January are respectively 0,4 0,0 and 0,6 which obviously
does not make sense. There are good reasons to believe that
the probability that 1 January is a wet day should be very
close to the probabilities for 2 and 3 January. In other
words we know that * D ( T ) is a Smooth {anction of T whereas
the estimates we obtain are not.

The same difficulties arise in the estimation of ^u/ufT) and
T T W / D ( T ) .

Furthermore if some of the N(T), NW(T) or ND(T) are zero
then the corresponding probabilities for these periods can-
not be estimated by this method. (For most records it is
unlikely that N(T) will ever be zero, but as a rule several
of the NW(T) and ND(T) aie. zero for a number of periods.)
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In statistical terms the above difficulties arise because one
is attempting to estimate too many parameters. In the case
of daily records one is attempting to estimate 365 parameters
for each of the functions T T R ( T ) , * W / W ( T ) and * M # p ( T ) , i«e.
1095 of them!

None of the available historical records is sufficiently
long to justify the estimation of so many parameters and it
is therefore necessary to somehow find a way of reducing
this number. This can be done in several differ-
ent ways and essentially they all involve making use of
apxloii information (or assumptions) about the behaviour of
the functions TTn(T), ^u/yfT) and iry.p(T). As already men-
tioned we know (or at least believe) that these are smooth
functions of T, i.e. we expect the properties of precipita-
tion on consecutive days to be very similar. Secondly it is
well-known that these functions should" be periodic (with a
period NT, i.e. one year) and that they are approximately
sinusoidal in shape. This information is used in the con-
struction of the remaining methods of estimation which we
consider.

2A APPROXIMATIONS BASED ON THE FOURIER SERIES
REPRESENTATION

The functions irg(T)t ^u/ufT) and ify/p^T) are all estimated
using the lamz method but with diilnznt data. To simplify
the notation we will use TT(T) as the generic name representing
any one of these three functions. We will also use generic
names for the other quantities involved as follows:

Let M(T) ^ B(MM(T), T T ( T ) ) , T = 1,2,..- .NT.

In the case where we are dealing with
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(1) * R(T) we have that M(T) = NR(T) and MM(T) * N(T),

(11) * W / H(T) we have that M(T) * NWW(T) and MM(T) - NW(T)»

(111) * H / D(T) we have that M(T) = NDW(T) and MM(T) « ND(T),

We repeat that the methods given below can be applied In each
of the above three cases. One simply uses the appropriate
M(T) and MM(T)f T * 1,2, .NT.

The properties which we would expect TT(T) to have were dis-
cussed at the end of the previous section. These properties
(smoothness, periodicity and approximately sinusoidal shape)
make it reasonable for us to suppose that TT(T) can be quite
accurately approximated by the tf-cta-t £ew £e.*m6 o£ Ith Foui-tei
A.zpi~c.&tntation. This approximation has been used by a number
of authors, e.g. Woolhiser and Pegram (1979).

The exact Fourier representation of n(T) is of the form
NT

*(T) = I 6, * . (T) T * 1,2,....NT
1 = 1 1 1

where
( 1 i * 1

\ 2rj(r-lJCOS
r-lJ\
T7N

- i n / i - 1 2-TTCT-I ) \ . i e -J c 7
S i n I m • rpp j 1 e J , 0 , / , . . .

NT
6 P I T » . / Y I { — 1 9 IIT

Now define TI(T,L) to be the function which is given by the
sum of the first L terms of the Fourier representation of
•n (T), i.e.

L
TT(T.L) - J Q. ^ ( T ) , T = 1,2 NT,

1=1 L < NT .
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Note that TT(T,NT) = ir(T). The approximation which we make is
that for some L < NT

TT(T.L) « TT(T) , T * 1,2,....NT .

Recall that TT(T) is in fact unknown, i.e. there are NT quan-
tities which we need to estimate, viz TT(1), TT(2) ,... ,TT(NT) .
Using the full Fourier representation there are still NT
quantities which are unknown, viz P., 62»...,8 N T. However
under the above approximation we need use only L quantities
to represent TI(T), viz 9 p 6 2,...,9 L. It turns out that
for nearly all situations the approximation is sufficiently
accurate for 6mall values of L (usually L < 11 for daily
rainfall sequences). Consequently the number of parameters
which need to be estimated is greatly reduced.

In statistical terms the above considerations can be described
as follows: Whatever method is used to fit a statistical
model to data there will in general be a discrepancy between
the "true" or operating model and the model which one
actually fits to the data. This discrepancy stems from two
sources. The first, called the dlttnzpancy due. to approxi-
mation, occurs when one approximates the function of interest
using some other function. In our case we want to approxi-
mate ir(T) using T T ( T , L ) . This discrepancy can be reduced by
increasing the number of terms in the approximation, i.e.
the number of parameters, L. In fact by setting L = NT this
discrepancy is reduced to zero.

In contrast the discrepancy due to estimation arises because
we do not know the exact values of the parameters.- they
have to be estimated from the historical rpcord. This dis-
crepancy tends to increase if the number of parameters, L,
is increased.

In other words one has two sources of discrepancy which act

in opposition. By adjusting the number of parameters to
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decrease the one type of discrepancy one necessarily Increases
the other type of discrepancy. By using the naive estimators
discussed in the previous section we were implicitly selecting
a model with zero discrepancy due to approximation but the
la\qist possible discrepancy due to estimation. It turns out
that by decreasing the number of parameters one can achieve
a substantial reduction in the discrepancy due to estimation
for a relatively small increase in the discrepancy due to
approximation.

Objective methods to select L in such a way as to minimise
the estimated overall discrepancy are discussed in the next
section. The remainder of this section describes a method
of estimating the parameters B p fl.M..(e, for a given L.

Thz numbe* o£ paKamztti* L <* always taktn to bi an odd
intzQZK. This restriction 1s made partly for programming
convenience and partly for the following reason: The
truncated Fourier representation of 7T(T) which we called
TT(T,L) can be rewritten as a sum of shifted cosine terms:

*(T.L) f Q IaQ • I aj cos(^(T-1-B.)) , if L is odd

if L is even

where the relationship between the parameters 6. and the
new parameters a n 8^ Is given by

ao s 61
a i s < e 2 1 + e 2 1 + 1 ) J f o r i * 1 t 2 P

Bi = jl~ Arctan (^2i + 1 / e 2 i ' f o r 1 * 1 . 2 , . . . »P

and P i s the in teger part of ( L - D / 2 .
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In this representation the parameters a. and B* are called
respectively the amplitude and phase of the ith harmonic.
This representation is equivalent to our previous represent-
ation of 11(1,0 but is expressed in terms of different
parameters.

Note that if L is even then the highest harmonic (the last
cosine term) does not contain a phase parameter- This leads
to the undesirable property that a shift in the time origin
(e.g. from 1 January to 1 October) results in changes in the
parameters a- and &-. It also results in a change in the
discrepancy due to approximation (unless L * N T ) . In other
words if L is taken to be an even integer then the quality of
the fit which we obtain after estimating the parameters will
dzpznd on the. time, origin 6zlccte.d. If, on the other hand.L
is taken to be an odd integer then a shift in the time origin
leads to a simple translation in the phase parameters S. but
no change in thz amplitude, patamc-tetA, a*. Consequently by
restricting L to be an odd integer we obtain the same degree
of approximation for all time origins.

We have used the Fourier representation of n(T) as the basis
for obtaining approximations. Other representations are also
feasible, e.g. polynomials or rational functions. There are
several reasons for selecting the Fourier representation
rather than other possibilities. Firstly 7T(T) is known to be
approximately sinusoidal in shape and consequently we can
expect that even for small values of L the approximation
TT(T,L) » ir(T) will be reasonably accurate. Secondly TT(T,L)

is periodic, which is a property that TT(T) is known to have.
Thirdly the individual components in the representation are
orthogonal, which is a convenient mathematical property.



2.5 ESTIMATION

We now consider the problem of estimating the L coefficients

6j» 6 2 » " " » 9 L wn*cn w*^ 9* v e us estimates

L .
*(T) « I 6, *,{T) T = 1,2,...,NT

1 1

This problem can be formulated as follows: Suppose that, for
T * 1,2,...,NT, HM(T) Independent Bernoulli trials are per-
formed and that at each trial there is a probability TT(T,L)

of a "success", where
L

*(T,l) = I e. *.(T)
iO 1 n

and suppose that M(T) "successes" were observed. How can one
estimate the parameters 8-, B J M . M U

(In the case of *(T) = 7rR(T), this independence assumption is
not met because of the first-order dependence structure of wet
and.dry days. Therefore the estimates of nR(T) (i.e. When
MM(T) = N(T), M(T) = NR(T)J obtained using the estimation tech-
nique which follows, will only be approximately correct.)

The likelihood of the observed values as a function of these
parameters is given by

L(6lt 62t...,eL ; M(T), T = 1,2,....NT)

- V (MM<T>U(T,L)M<T> (1-.(T.L))MHfTJ-M^).
T=1 v M ( T ) /

For simplicity we denote the likelihood by L ( 9 ) . Now

log L(6) • I l o g f H M ( T ) ) + I M(T) log n(T,L)
T=1 V M ( T ) / T=1

NT
+ I (MM(T)-M(T))log t I - T T ( T . L ) ) .

T 1

The maximum likelihood estimators of 9-, 6 - I . . . I 6 ) ^re those
values of these parameters which maximise the likelihood, or
equivalently the log-likelihood. They are therefore the
solutions to the system of equations given by
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3 109 L(0) = n 1 = 1 2 1

It is straightforward to show that this system of equations

is given by

NT

T=1 TtlT.LJU-nn.LJJ * i ( T • ° • 1 * 1.2.....t

where TT(T,L) is the function expressed in terms of the

parameters 6^, O - i . . . , ^ given above.

This system of equations cannot be solved for the 9. analy-
tically; it has to be solved using an iterative method. As
the log-likelihood is a concave function of the parameters,
and as good starting values for the iteration can be given
(see below), the Newton-Raphson method can be expected to
perform well. This was indeed found to be the case and con-
vergence is rapid.

To apply the Newton-Raphson method the matrix of second deri-
vatives is required. This is given by

d'log L(6) , . NrT M(T)[1-*(T,L)1* + [MM(T)-M (T)]ir(T.L)»
3 6 i 3 6 j T = t TT{T,L)*[l-*(TtL)]*

 i

This LxL matrix, when evaluated at the solutions to the
system of maximum likelihood equations, also provides an
estimator for the variance-covariance matrix of the maximum like-
lihood estimates.

To start the iteration one needs suitable starting values

6 °', 00° • " • » Q L of the P a r a m e t e r s - Tne ordinary least
squares estimates of the parameters provide excellent starting
values. These are given by:
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HH(T)/O

where
NT

K(i) = 1/ I *AD2 . 1 * 1.2 L
T=1 1

MH(T)/O

In cases where only a few of the MH(T) are equal to zero the
approximation K(i) • NT is adequate.

We now give an outline of the Newton-Raphson algorithm to
estimate the parameters. We use the notation;

k') to denote the (column) vector of the L functions
3 log L(9)/39< evaluated at the point 6 ( k ), and F(6*k')

- 1 (k)
the LxL matrix 3*log L(0)/30i30j evaluated at 6* ', where
6 ^ ' is the vector of estimates of the L parameters obtained
after k iterations. 6• ' is a vector of L entries defined
in the algorithm below.

ALGORITHM

Stzp J Obtain an initial estimate, 8* o j, and set k = 0.

Step 2 Compute f(6(k') and F( 6 ( k ) ) .

Step 3 Compute 6*k't the solution to the linear system of
equations given by

F ( e < k > )

step 4 set e < k + 1 > « e < k ) - « (k)

Stzp 5 Check for convergence, i.e. If the entries of
are sufficiently close to zero. If convergence has
occurred then stop, otherwise increment k by 1 and
return to step 2.
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The vector f and the matrix F above enjoy several special
features which can be used to reduce the computational effort.
Although we will not discuss these here the interested reader
is referred to the algorithm which is discussed in section.
2.9, for which a detailed algorithm is given in chapter 4. It
is a fairly simple matter to modify the detailed algorithm to
deal with the case described above.

2.6 MODEL SELECTION

We now discuss the question of how. to select L, the number
of parameters to be fitted. The general theory on which
this selection is derived in Linhart and Zucchini
(1982a, 1982b, 1986). In this section we will only give
an outline of this theory and simply state the results
without giving details.

Recall that there are two sources of discrepancy involved
when a model is fitted to data, viz the discrepancy due to
approximation and the discrepancy due to estimation, and
that reducing either one of these one necessarily in-
creases the other. Recall also that the levels of these
two component discrepancies are control led (for a given
historical record) by the number of parameters, L.

The idea behind the method of model selection which we will
describe is to select L in such a way as to minimise the
combined effect arising from these two discrepancies, viz
the overall discrepancy.
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The natural measure of discrepancy when one uses the method
of maximum likelihood for estimation is the Kullback-Leibler
discrepancy. In our application this is given by

NT
A(8) = Constant - Y TI(T)MM(T) log TT(T.L)

T=1
NT

- I (1-n(T))MM(T) log ( 1 - T T ( T , L ) ) .
T«1

A constant estimator of this discrepancy, called an empirical
discrepancy ,is given by

An(6j « - log Lie)

where L(9) is the likelihood function given in section 2.5.

It can be shown that if one is trying to select the number of
parameters, L, which leads to the smallest expected discre-
pancy (for a given historical record) then a criterion for
selection is

A n(6) + tr n"
1 I

where Z is an L-*L matrix having entry (i,j) given by

V M(T)[1-H(T)/HM(T)J
T 1 ( T L ) * [1f(T

MM(T)/0

and n is an L^L matrix having entries (i,j) given by

where

L
6.
1
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and the 9, are the maximum likelihood estimators of the para-
meters 9. when L parameters are.fitted.

Note that fl 1s simply minus the matrix of second derivatives
required 1n the Newton-Raphsonalgorithm evaluated at the
maximum likelihood estimates. Consequently n Is available
at no extra computational cost. Similarly Z is available at
only marginal additional computational cost because it is
closely related to the vector of first derivatives evaluated in
the estimation algorithm.

To implement the model selection method one estimates the
parameters of the model for increasing values of L and in
each case computes the value of the above criterion.
Initially the value of the criterion will decrease (as L is
increased) but after a certain point will begin to increase.
The number of parameters which is estimated to be optimal is
that which leads to the 6malle.it value of the criterion.

It can be shown that tunder the assumption that for some L
one has that ir(T) * n(T tL ) , i.e. that *(T) can be zxactty
represented by L < NT parameters, then the theory on which
the above method of selection is based leads to the well-
known Akaike Information Criterion (AIC):

AIC « fin(6) + L.

In practice it turns out that the AIC leads to very similar
results (unless L is very small) to those obtained using the
method of discrepancies, even if the mentioned assumption is
only approximately true. The Akaike criterion involves less
computation and is therefore to be recommended except per-
haps in cases where very little data are available and con-
sequently a small value of L is likely to be selected.
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Other methods of model selection are available; in particular
methods based on statistical tests of hypotheses based on
the likelihood ratio are widely employed. Using such
a method an increase in L is only made if there is strong
evidence that the current L is not large enough. However it
is our opinion that methods based on such tests are inappro-
priate in this context. Here it is not the object to pKovz
whether TT(T) may or may not be exactly represented by a cer-
tain number of parameters. Rather we are trying to find an
appropriately simple representation which approximates TT(T)
quite well but which does not contain more parameters than
can be reasonably estimated.

2.7 INADMISSIBLE ESTIMATES

A problem which often arises in applying the above methods in
regions with a marked dry season is that one obtains inad-
missible estimates for TT(T), i.e. one often obtains
*(T) < 0. (The other type of inadmissible estimate it(T) > 1
does not occur in South Africa.) If this problem only
occurred in isolated cases, or for only a few time points, T,
then it would not be unreasonable to simply replace the
offending estimates by'zero, or some suitably small quantity.
Unfortunately in South Africa this phenomenon occurs for a
good many stations and furthermore the estimates can be
negative for a period of several months.

There are ways to deal with this problem. Woolhiser and
Pegram (1979) employ what amounts to constrained maximum like-
lihood estimation of the parameters, i.e. they maximise the
likelihood subject to the constraint 0 < TT(T,L) < 1 for
each L.

This method involves a substantial computing effort and fairly
sophisticated optimisation software. Although the method
could be Implemented on some of the larger micro-computers, the
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task of programing it would daunt many potential users. A
further objection to the method is that the statistical
theory which normally provides the properties of the esti-
mators, e.g. the variance-covariance matrix of the estimates,
applies to maximum likelihood estimation - not to constrained
maximum likelihood estimators. It is not known to what extent
the properties of maximum likelihood estimators hold for the
constrained case. The same objection can be made when model
selection using constrained maximum likelihood is used -
again the theory has not been derived for this case.

The effort involved in computing constrained maximum likeli-
hood estimates can be considerably reduced by using the
_theory of semi-infinite programing, see e.g. Flachs and
Martin (1982). This method does however suffer from the dis-
advantage (in this context) that it is sensitive to certain
starting values required in the iteration. Unless starting
values are given which are very close to the solution then
the iteration often does not converge. It may well be
possible to overcome this difficulty by refining the method
of iteration but the objections to constrained maximum like-
lihood still remain.

A quite different approach, suggested by Or. T. Stewart, which
entirely circumvents the problem of having to deal with con-
straints is to use a different representation for the pro-
babilities •n(T). This method is the subject of the remainder
of the chapter.

2.8 APPROXIMATIONS BASED ON THE FOURIER REPRESENTATION
OF THE LOGITS

The problem which we discussed in section 2.7 arises because
we are estimating probabilities which necessarily must lie
in the interval [0,1] and the estimates we obtained some-
times fell outside this interval. Clearly this problem does
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not arise w h e n we are es t i m a t i n g q u a n t i t i e s w h i c h do not have
to lie in any bounded i n t e r v a l . Now a p r o b a b i l i t y -n can be
tr a n s f o r m e d , using the logistic t r a n s f o r m a t i o n , to a s o - c a l l e d
togit, A, wh i c h is given by

X « log (TT/( 1 -TT) ) f i.e.

TT

From the above relationships it can be seen that there is a

one-to-one correspondence between probabilities and logits,

e.g. a probability of $ corresponds to a logit of zero,

probabilities less than } correspond to negative logits and

those greater than } to positive logits. For our purposes

the attractive feature of logits is that unlike -probabilities

they are entirely uncon&tiainzd. This property can be used

to circumvent the problem of obtaining inadmissible estimates

for ir(T).

In&ttad o£ approximating TT(T) by a truncated &onm o£ it*
Fouritr rzprzhtntation, we makz thli typt o£ approximation
£01 tht conut*ponding togiti, X(T). The Fourier represent-
ation of X(T) is given by

NT
X(T) • £ • Y, •i

1 = 1 1 1

where, as before,
O.(T) = 1

S1 nr p •—TTW 1 1 - J,D,/,...

and Y p Y 2.... t are the Fourier coefficients.

We now define
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L
X(T,L) * I Y* < M T > , T * 1,2 NT; L < NT.

1=1 1 1

We use an approximation which is entirely analogous to
that in section 2.4:

X(T.L) « X(T) T = 1,2 NT .

The justification for making this approximation is the same
as that for the original model. Again L is taken to be an
odd inttgo.1.

We note that this representation has all the desirable pro-
perties (smoothness, periodicity and approximate sinusoidal
shape), of the previous representation. It has the additional
desirable property that the parameters YJ a*c uncon*t\ainzd.

It was also found that in all the cases where both this logit
representation and the probability representation were fitted
the former had a better fit to the data. For this reason
alonethe logit representation is preferable to the original
probability representation.

2.9 ESTIMATION

We now discuss a method of estimating the L coefficients
Y p Y Z , . . . , Y , which will give us estimates

L
*(T) = I Yi titT) T = 1 2 NT

and hence estimates

7t(T) = e X ( T ) / ( 1 * e X ( T ) ) , T = 1,2 NT.

Here the problem is formulated analogously to that in section
2,5, i.e.: Suppose that, for T = 1,2,....NT, MM(T) indepen-
dent Bernoulli trials are performed and that at each trial
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there is a logit X(T,L) of a "success" where

L
X(T,L) = I yi •i(.T) , T = 1,2 NT; L < NT

and suppose that M(T) "successes" were observed. How can

one estimate the parameters Yjt Y g f - t Y i ?

The likelihood of the observed values as a function of these

parameters is given by

L(Y 1,Y 2»...J L; M{T),'T = 1,2 NT)

For Simplicity we denote this likelihood by L ( Y ) - N O W it

follows that

NT NT

log L(Y) • I log (Hjj[Jj) + I «(T) X(T.L)

- Y MH(T) log ( i + e X ( T t L ) ^
T=1 ^ /

The maximum likelihood estimators of y.» Y j * * * * ^ ! a»"e those

values of these parameters which maximise the log-likelihood.

They are given by the solutions to the system of equations:

3 l09 - O , i = I.2..:..L .
3 Y,-

Differentiating the log-likelihood with respect t o y , ,

i = 1,2,...,L, it is straightforward to show that this system

of equations is given by

H ( T ) -n"vl Tt . • * 4 < T ) • 0 f 1 . 1,2 L ,
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where X(T,L) is the function expressed in terms of the para-
meters "Vp Y * f •••>•• given above.

As in the previous case the maximum likelihood equations can-
not be solved analytically - they have to be solved using an
iterative method. Also as in the previous case the log-
likelihood is a concave function of the parameters and again
good starting values can be given (see b e l o w ) . Consequently
the Newton-Raphson iteration technique performs well and
convergence is rapid.

To apply the Newton-Raphson method one requires the matrix of
second derivatives which is given by

I ' ^ g k l ^ • - J ^ I I I I L M *i ( T ) *j<T> • 1.J-'.2 L

The L*L matrix when evaluated at the solutions to the system
of maximum likelihood equations, also provides an estimate of
the variance-covariance matrix of the maximum likelihood
parameter estimates.

The following starting values, based on ordinary least-squares
estimation, can be used to begin the iteration:

MM(T)/0
where

NT
^ ^ < T ) > , 1 , t,2 L
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We now give an outline of the Newton-Raphson algorithm used
to estimate the parameters. He use the notation

it, \
g(Y ') to denote the column vector of the L functions
3 log L ( Y ) / 3 Y^ evaluated at the point Y » and G ( v k ' ) to
denote the L*L matrix 3* log L ( Y ) / 3 Y< 3 Y V evaluated at
[L] tlr) ' J

Y , where Y is the vector of estimates of the L para-
de 1

meters obtained after k iterations. 5V ' is a vector of L

entries defined in the algorithm below.

ALGORITHM

Stzp 1 Obtain an initial estimate, Y » and set k = 0,

Stzp 2 Compute g(Y ( k*) and G(Y*k')

• • Ik)
Stzp 3 Compute Y » the solution to the linear system of

equations given by

G(r(k)) <(k) = W k ) >

Step 5 Check for convergence* i.e, if the entries of
g(Y )are sufficiently close to zero. If con-
vergence has occurred then stop, otherwise increment
k by 1 and return to step 2.

Complete details of the above algorithm are given in section
4.3.

2.10 MODEL SELECTION

The selection of L for the logit representation model can be
carried out along similar lines as that for the probability
representation m o d e l . The Kullback-Leibler discrepancy is
given by:
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A ( Y ) * Constant
NT

- I i-CT)HH(T) log [ e X < T ' L > / ( i + e X < T ' L > ) ]

- I ( I - T T ( T ) J M M ( T ) log [ i / ( i 4 e X ( T « L ) ) j

An empirical discrepancy (i.e. a consistent estimator of the
discrepancy) is given by

A n(Y) = - log L ( Y )

where log L ( Y ) is the log-likelihood defined in section 2.9.

It can be shown that if one is trying to select the number of
parameters, L, which leads to the smallest expected discre-
pancy (for a given historical record) then a criterion for
selection is

A n(f) + tr ft"
1 z

where here Z is an LxL matrix whose entry (i,j) is given by
NT

HH(T)/0

and n is also an LxL matrix whose entry (i,j) is given by

NT M M/ T, aMT,L)= i n m 0 (T) . (T) 1 j . t 2 Li n m 0 (T)
T-1 WT M » ' J

where
L

MT.L) • I Y, tAT) , T - 1,2,... ,NT ,
i1 ' 1

and the y. are the maximum likelihood estimates of the para-

meters y. when L parameters are fitted.
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In order to select L using this criterion one has to fit the
model for different values of L and then choose that L which
leads to the smallest value of the criterion. It usually turns
out that the optimal L is quite small (less than 11 for daily
data) and so it is recommended that one begin with L « 1 and
then increase L in steps of 2 - because L should always be
odd - until the criterion begins to increase in value. The
criterion can sometimes increase and then decrease again, i.e.
it can have a number of local minima. However this seldom
happens in the vicinity of the global minimum which is almost
without exception the first local minimum. In other words,
for practical purposes, it is sufficient to increase L until
the first minimum of the criterion is found.

It can be shown that under the assumption that if for some
integer LQ: X(T) = X(T,L ) , i.e. that X(T) can be zxactly
represented using L < NT parameters, then the above method
leads to the Akaike Information Criterion rather than the
criterion given above where

AIC * A n( Y) • L .

It again turns out that unless L is small (i.e. if L < 5)
then the AIC criterion leads to almost identical results to
those obtained using the method of discrepancies. The AIC
criterion is simpler to compute and is therefore preferable
in most cases. The exception to this is if only very little
data is available and consequently a small value of L is
likely to be selected.

2.11 THE AMPLITUDE-PHASE REPRESENTATION

In the above we have used the representation
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L
X(T,L) * I y, *,(T) T - 1,2 NT; L < NT

1 1 1 1

where L is an odd integer.

This representation is particularly convenient for computation
because the values *j(T), i = 1.2, — ,L; T = 1,2.....NT,
need only be computed once. We have that

) 1 1 11

, /i-1 2 T T ( T - 1 ) \ . _ , , 7

The computation of sine and cosine functions is relatively
slow and as the terms $.j(T) are required very frequently in
the computation of the estimators it is particularly advan-
tageous to compute the *^{T) once only at the beginning of
the program and to store the values in an array.feg.For daily
data this array would be 21x365, if 21 is regarded as
the largest probable value of L.) An efficient algorithm to
compute this array is given in section 4.3.

Although the above representation is convenient for computing,
it is less convenient for interpreting the parameters and
comparing the parameters for different stations. An amptl-
tu.dz-pha.6e. \e.pfit6C.ntation is much easier to interpret and
to use for interpolation on a map. Using this representation
we have:

X(T.L) « a + I a» cosl-rrp(T-1-S^) )

where a - y, and

a1 = t'J, • Y 2 i + 1 ) ' . 1 - 1.2 P •

HIT

I /& ) i = 1 2 P
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This representation of the logits is entirely equivalent to
that involving the parameters Yjt i * 1 ,2 L. Further-
more the estimates of the o , a-,,..,a., S-, B2»...tB,
which are obtained by first estimating Y « » Y O \ and then
transforming them as above are the maximum likelihood esti-
mates, i.e. the values we would have obtained if we had used
the amplitude-phase representation in the first place and
then estimated the parameters using the method of maximum
likelihood. This is particularly convenient because it is
computationally easier to estimate the Y ^ » i = 1.2,....L.

In order to obtain phases which are always between 0 and NT
we use the following convention to compute the Bj»
1 *"* I |h | • • • |T •

If Ygi * ° then I i f "^i+i* ° then ei
f Y 2 i + 1> 0 then B1 = CA

If Y 2 i = 0 then f i f Y2i+1< 0 then Bi • C[ 3TT/2] ,

Mf Y2i+i> 0 then 6 i = t tn /2]

If Y2i * ° then

where C • NT/(2ir*i) and A • Arctantt^^/Yji) and the range

of Arctanis defined to be in the interval (-ir/2, IT/2 ] .

With this convention we in fact have that the phases

Bt e (0, NT/iJ , i * 1,2, . . . ,L. This makes comparison

between stations part icular ly convenient.

2 . 1 2 SUMMARY

We have described a model for the occurrence of wet and dry
sequences of days using a first order Markov chain which has
seasonal parameters. It was argued that the naive estimators
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of these parameters yield unsatisfactory estimates and an
alternative method was described based on truncated Fourier
representations of the model parameter functions. This
alternative, which has been considered in the literature,
was found to be unsuitable for stations in arid and semi-
arid regions because it leads to inadmissible estimates of
the parameters. An alternative method was then presented
which is based on truncated Fourier representations of the
logit functions in the model. Methods of estimation were
derived and the question of model selection was discussed.
We derived an objective criterion to decide which model is
the most appropriate for a given station having a given
length of record.

To select the best model requires roughly seven times as
'much computation on average than is needed to fit a model
with a fixed number of parameters. The computing cost of
fitting the 2550 selected data records is considerable but
that of carrying out individual selections for each record
is prohibitive. It was therefore necessary for us to find
a cheaper method for deciding how many parameters should be
used for each record. In order to investigate the varia-
tion in the optimum number of parameters, L*, the full
model selection procedure was applied to 100 test stations;
the results are illustrated in Figures 2.11.1 to 2.11.3.

The values of L* for the probability of a wet day (Figure
2.11.1) ranged between 1 and 11, the average was 7,6 and
the mode, which accounted for almost 50% of the cases, was
L* = 7. This was one of the reasons why we eventually
elected to use 7 parameters for the complete set of 2550
records. A detailed examination of the computed values of
the criterion, C(L), as a function of the number of para-
meters, L, revealed that C(L) is very close to C(L*) for
L = 7 and L * 9. In other words, for those cases where
L* ^ 7, wery little accuracy is lost by using 7 parameters.
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The same is true if one uses 9 parameters. Keeping in mind
that the method of model selection employed here is less
stringent than methods based on conventional tests of hypo-
theses (and which therefore generally lead to a smaller
number of parameters being selected), we decided that 7
parameters would be preferable to 9. An additional factor
to be considered is that it requires 30* more computing
time to fit the 9 parameter model. Finally it is simply
more convenient to have fewer parameters because there are
then fewer numbers which must be entered into the subse-
quent programs required to implement the model.

The length of the historical record plays a role in determi
ning L* and it would not have been unreasonable to allow
the final number of parameters used for each station to
depend on the length of its record, e.g. to use 9 para-
meters whenever at least 50 years of data are available.
The potential gain 1n accuracy resulting from such a pro-
cedure is rather small and in some cases it even leads to
slightly lower accuracy, viz. whenever L* < 9^ This re-
finement was therefore not adopted.

The values of L* for the probability of a wet day given
that the preceding day was wet (Figure 2.11.2) and given
that the preceding day was dry (Figure 2.11.3) ranged be-
tween 1 and 9 and between 3 and 9 respectively. The
averages were 4,0 and 6,1 and the modes 3 and 7 although
5 came very near to being the mode in both cases. Follow-
ing arguments similar to those which led us to choose 7
parameters for the probability of a wet day we decided that
5 parameters should be used for each of two cases con-
sidered here. We note that it is net inconsistent to have
selected 7 parameters for the one model and 5 each for the
other two because the effective sample size is smaller 1n
the latter two cases.
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FIGURE 2.11.1

Optimum number of parameters to estimate the probability
of a wet day for each of 100 test stations.

FIGURE 2.11.2

Optimum number of parameters to estimate the probability
of a wet day given that the preceding day was wet for
each of 100 test stations.
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FIGURE 2.11.3

Optimum number of parameters to estimate the probability
of a wet day given that the preceding day was dry for
each of 100 test stations.
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3. THE DISTRIBUTION OF RAINFALL ON DAYS WHEN RAIN OCCURS

This chapter concerns the second component of the rainfall
model, namely the'distribution of rainfall depths on those
days when rain occurs. Rainfall depths are generally re-
corded to the nearest tenth of a millimeter in South Africa
and so the smallest non-zero reading is given as 0,1 mm.
This provides a convenient cut-off to distinguish wet and
dry days and in what follows we will define a wet day as
one in which at least 0,1 mm was recorded. We note that
this definition affects both components of the rainfall
model and it is therefore necessary to be consistent should
one wish to change this boundary. Furthermore the models

•which are usually fitted to rainfall depths (when rain
occurs) have a lower bound of zero and so if the selected
boundary is much larger than 0,1 mm, say 2 mm or more, it
will be necessary to model the differences between the ob-
served depths and the boundary value rather than the ob-
served depths themselves.

The distribution of rainfall depths on days when rain occurs
exhibits the same type of seasonal behaviour as say the
probability of having a wet day! For example the average
rainfall amount (taken over wet days only) on 19 February
is different, in general, to the average on 13 April. The
same holds for the variance and many other aspects of this
distribution except perhaps the coefficient of variation
which seems to be approximately constant over the year.
One has to use a different distribution for each day of the
year and the simplest way of doing this is by fitting a
single family of distributions and then allowing the para-
meters to change over the year. It is known that the dis-
tribution for each day is positively skewed but there is
otherwise very little known to help one decide which par-
ticular family would be appropriate. Obvious candidates
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are the lognormal, gamma., extreme (type 1) and W e i b u l l . An
interesting possibility (Woolhiser and Pegram 1979) is to
use a mixture of two exponential d i s t r i b u t i o n s .

The selection of a suitable family presents a number of ex

tra difficulties when one is dealing with a large number
of r e c o r d s , as we were attempting to do. We began by
fitting the lognormal family because the maximum likeli-
hood estimators of its (seasonal) parameters were the easiest
to derive and, more significantly, require much less com-
putation to implement. This model appeared to fit a number
of rainfall records reasonably well and so was applied to
a further 100 test stations, partly in order to decide on
how many parameters should be used in the model when it was
fitted to the full set of 2550 r e c o r d s . On validating the
model for these 100 stations it was found that in some
cases it simply did not fit the data and so we were forced
to discard it. The Weibull was later found to provide better
f i t s , but as a result of our experience with the lognormal

( we decided that it would be unwise to settle for any one
particular model for all 2550 records because if it later

, were to turn out that the model did not fit a particular
» station then our estimates would be useless for the purpose

of fitting an alternative model. On the other hand model
selection and validation are time consuming and costly
e x e r c i s e s , particularly in this a p p l i c a t i o n , and we could
not afford to handle each station separately. One possible
solution is to deal with the problem on a regional basis,
i.e. identify the regions where each of the models is ex-
pected to fit, but with this approach too a large number
of records would have to be analysed in order to determine
the regional boundaries accurately. The simplest solution
(and probably the safest in the long run) is to initially
not fit any model at all, but rather to fit the first two
moment functions of the distribution. These can then be
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used to estimate the parameters (by the method of moments)
to any desired two-parameter model. As mentioned above.we
have found that the Weibull distribution provides a good
fit for the records which we tested. Should it happen, however,
that some other two-parameter family is found to fit the
data better, perhaps for some particular cluster of stations,
then the results given in this report can equally easily be
used to estimate the parameters of the alternative family.
It is also possible to fit different families to a single
record, say one for the rainy season and a second for the
dry season.

As we eventually did not make use of the lognormal distri-
bution the material relating to it has been relegated to
.an appendix. We have not left this out of the report alto-
gether because it provides an illustration of how to go
about fitting a seasonal model by the method of maximum
likelihood, and a discussion on the question of how many
terms should be used to fit the parameter functions of the
model. Corresponding results for the gamma, W e i b u l l ,
extreme (type I ) , normal and mixture of two exponential
distributions can be derived along similar lines and will
not be given here. We note that estimation based on
maximum likelihood requires more computation than that based
on the method of moments. For the lognormal family the
difference is not large but it is very large for the Weibull
family because no suitable sufficient statistics can be
given (cf. the sufficient statistics m(T) and s(T) for the
lognormal case in Appendix 1 ) . Consequently even if we
had been certain that the Weibull family w a s s u i t a b l e for
all 2550 stations we would nevertheless have been forced to
estimate its parameters by the method of moments because
the alternative of using maximum likelihood is too ex-
pensive.
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3.1 ESTIMATING THE MEAN AND COEFFICIENT OF VARIATION

Suppose that the year is divided into NT -intervals (e.g.
52 weeks, 365 days, etc. ...) denoted by T « 1,2,....NT.
Let M(T) represent the number of times that it rained in
period T and R(I,T), I « 1,2,...,M(T), the rainfall depth
on the Ith year that it rained in period T. (To be consis-
tent with the notation in Chapter 2 we should really use
NR(T) instead of M(T), but the latter is briefer and is un-
likely to lead to any confusion.) Let p(T) represent the
mean rainfall per rainy day in period T - 1,2,...,M(T) and
let C denote the coefficient of variation which we assume
to be constant for all T (see section 3.2 for justifica-
tions for this assumption).

It is undesirable to estimate y(T) separately for each T
for the reasons that were outlined in Chapter 2 when we
were discussing estimators for TT(T). Instead we will again
make 4jse of the Fourier Series representation:

P(T) * y ^ P 1 *.(T) , T = 1.2,....NT .

where •<i(T) is defined in section 2.4 and u^, Ugt • •• fUu-rt
are the Fourier coefficients of u(T). Truncating the series
to L terms we define

u(T,L) = y^ = 1 vi ^ ( T ) , T * 1,2 NT ,

' . L < NT .

The approximation we then make is

u(T,L) « u(T) > T = 1,2 NT .

The effects of varying L are analogous to those given in
section 2.4 and so will not be discussed in detail here.
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Briefly, L must be large enough for the above approxi-
mation to be accurate but as small as possible in order
to minimise the uncertainties associated with sampling
variation. We suppose for the moment that L is fixed.

The simplest way to estimate p^, P 2 » - - « »
I J L *S t0 apply tne

method of ordinary least squares on the observed means for
each period:

n(T) « jrrxy J ^ { J R(I.T) , T = 1,2 NT,
M(TJ > 0 (1)

where m(T) is not defined if H(T) = 0, i.e. it never rained
in period T. If none of the M(T) are zero then the minimum
of

Ijl, (m(T) - u(T,L))« (2)

is achieved using

where K(1) - 1/NT and K(i) = 2/NT for 1 = 2,3,...,L.

The solution is less simple if some of the M(T) are equal
to zero, a situation that frequently occurs in arid regions,
Approximations to the least squares estimators are given by

M(T)>0

where

K(i) = J ^ t ^f(T)« , 1 -'1.2 L
H(T)>0
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This method of estimating u(T) is attractive in so far as
it requires relatively little computation, but unfortuna-
tely (1) is not a satisfactory criterion on which to base
estimation. Each m(T), T * 1,2,,..fNT, in (1) is given
equal weight irrespective as to whether it represents the
average of 1 or 100 observations and consequently those
periods T which experience relatively little rainfall have
a disproportionately large influence in final estimatesof
y(T). The estimators given in (3) do however supply useful
initial estimates for the two methods which follow.

To overcome the difficulty associated with (2) one can con-
sider the following criterion:

111} S11 1 CRCI.T) - u(T.L))* (4)

This must be minimised with respect to the y^, 1 * 1,2,,..,L.

Here the sum of the squares of all the individual deviations
is considered and not only the deviations from the sample
means, A further refinement is to use the method of weighted
least squares, i.e. base estimation on the criterion given
by

rNT rM(T)/R(I,T)-u(TfLU» ...

*T=1 M - 1 I Cu(T,L) / ib>

where C is the (constant) coefficient of variation. It does
not require much more computation to minimise (5) with re-
spect to U ] , v2t*-*tVi than it does to minimise (4) and
iterative methods have to be used in both cases. Although
(5) may be preferable to (4), in theory we would hesitate to
recommend it in our application because it is more sensi-
tive to outliers in the observations when y(T) is small.
A single storm event in the dry season, for example, can
substantially influence the estimates which are based on
(4), but even more so those based on (5). It is well-known that outliers
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("unusual" observations) are especially problematic when
least squares estimators are used, and
although so-called "robust" techniques have been proposed
(see e.g. Huber 1977) they. Involve rather more computa-
tion, particularly in our application. Estimation based on
(4) Is more robust than that based on (5) and consequently
we recommend the former criterion.

We now show how one can compute the values of \i. ,u2,... ,u.
which minimise (4). The problem of minimising (5) can be
solved along similar lines and will not be discussed
further. We will denote the sum of squares given in (4) by
S(u), where y * I V . ^ - I . - M V I ) denotes the vector of para-
meters. It is straightforward to show that

jli H ( T )< m ( T> " U(T,L))2 (6)

where m(T) is defined in (1) for M(T) / 0, and in what
follows we define it to be zero if H(T) = 0; and

Z?I1 iJiV (R (I.TJ - «(T))« .

To minimise (6) we set its partial derivatives with respect
to the parameters equal to zero:

TTT^- e -2I?Ii H(T)(m(T) - u(T,L)) *,(T) = 0, i - 1.2.....L.

These L equations can be solved using the Newton-Raphson
iteration method for which the second partial derivatives
are required. These can also be used to estimate the
standard error of the estimates. One has

-,.. .̂. * 2> T_, MIT) <J>,IT) $ , U ) t 1tJ s 1,Z»..-»L .

We now give an outline of an algorithm to carry out the
estimation. Let the ith element of the (column) vector fv '
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and the (i,j)th element of the matrix F - ' be defined by

. i - 1.2 L (7)

Fij ) ' E?-1 "lT) •itT>*jlT) • ^J " 1.2 L (8)

where

P l k )lT,L) = llU] u j k ) ^ ( T ) , T = 1f2f...,NT (9)

(k) (k) (k)
and My .p^ •••••IJL

 are the est*mates of the parameters

at the kth iteration.

ALGORITHM

STEP 1 Obtain initial estimates pi 0*,..•,pj 0' using (3)
and compute pv ;(T,L) using (9). Set k * 0,

STB? 2 Compute f(k* using (7) and F t k ) using (8).

(k)
STEP 3 Compute the vector 6V ' which is the solution to

the system of L linear equations given by

F(k)6(k) = f(k)

STEP 4 Set p ( k + 1 ) = y ( k ) - 6(k*.

STEP 5 Test for convergence, for example test if the elements
of f ' are sufficiently close to zero. If the
convergence criterion is met then stop, otherwise
increase k by 1 and go to Step 2.

To speed up the algorithm one should make use of the fact
f k)that the matrix F* ' is symmetric, i.e. it is only necessary

to compute the entries of the upper triangle of
the matrix. Subroutines to solve linear equations directly
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are generally more efficient than those which compute the in
verse of a matrix, and it is therefore recommended that the
equations in Step 3 be solved directly rather than by pre-

f k ) I V \
multiplying fv ' by the inverse of F1 '.

Having estimated p(T) it is quite easy to estimate the co-
efficient of variation, C. We note that

M(T)u(T)«

An estimator of C is obtained by replacing y(T) by u(T)
and omitting the expectation, i.e.

The variance of C is a function of up to the 4th order
moment functions of the R(I,T) and is rather complicated.
To estimate the standard error of C using such an expression
would require one to decide how many Fourier terms should
be fitted to the 3rd and 4th order moment functions. Boot-
strap methods (cf. "Assessing the Risk of Deficiencies in
Streamflow") would seem to be the only viable (though costly)
alternative.

3.2 SELECTING THE NUMBER OF PARAMETERS

In theory the methods described in Linhart and Zucchini
(1986) could be used to
select L, the number of terms in the approximation of u(T).
For example
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A(L) - I ^ t (y(T) - Eu(T.L))* , L « 1,3,5,...,

would be a suitable discrepancy on which to base selection.
A complicating feature of our application is that M(T) can
be zero for some of the periods and so in practice only
approximately unbiased estimators are available to con-
struct the corresponding criterion. For most stations in
the arid and semi-arid regions there are several days with
M(T) = 0, i.e. days of the year which have been dry over
the whole period of observation. We cannot determine how
reliable the criterion would be in such situations. On the
other hand it is rather difficult to derive a criterion
which takes this complicating feature into account and, even
if this could be done, it is likely that the result would be
cumbersome and not easy to compute.

If one is prepared to make distributional assumptions then
selection criteria are relatively easy to derive, for
example those based on the Kullback-Leibier discrepancy.

A reasonable procedure is to select L for a parametric
family of models and then use the same L in the estimation
of u(T). We fitted 100 test stations using the lognormal
distribution and found L = 5 to be a suitable value for the
mean of the logs and L • 1 for the standard deviation of the
logs (cf. Appendix 1). These results together with an
analysis of the values of criterion (4) for different L led
us to decide that a 5-term approximation for u(T) would be
the most appropriate.

The fact that L = 1 turned out to be the best choice for estimating
the standard deviation of the logs of the observations is
strong evidence in favour of the assumption that the co-
efficient of variation is constant. This point is dis-
cussed in Appendix 1 and supports the findings of Stern and
Coe (1984) and Yevjevich and Dyer (1983).
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3.3 FITTING THE WEIBULL FAMILY

Having estimated the mean value function, p(T), and the
coefficient of variation, C, one can apply the method of
moments to estimate the parameter functions of the Weibull
distribution. We denote the scale parameter by a(T),
T = 1,2,....NT and the shape parameter by 8. The latter
does not depend on T because" it is a function of C but not
of u(T):

C = {r(1+2/B)/r(1+1/B)*-t}5

We require B as a function of C and as no closed expression
of this function is available we have derived a rational
function approximation (cf. Appendix 2 ) . To estimate B
given C one uses

* u 339,5410 + 148,4445C • 192.7492C2 + 22,4401C» ,
1 + 257.1162C + 287.8362C* + 157.2230C1

Having estimated B one makes use of the relationship

W(T) = a(T)r(1 + 1/B) t T * 1,2 NT

to obtain the estimator

a(T) = y(T)/r(1+1/B) , T = 1,2,...,NT .

An algorithm to compute an approximation to the gamma
function is given in Appendix 1 of the separate report
"Assessing the Risk of Deficiencies in Streamflow".
Clearly one should only compute the above gamma function
once and not for each T.

It is quite easy to use the same approach in order to esti-
mate the parameter functions of any other 2-parameter
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family, e.g. lognormai, gamma, etc ... and so we will not
discuss these here.
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. ALGORITHMS

This chapter describes the algorithms to implement the
theory discussed 1n the previous two chapters. Except for
one or two references to the algorithms in Appendix 2 and
Appendix 3(the chapter is designed to be self-contained,
i.e. it should be unnecessary to have to refer back to
the theory 1n order to code the required computer programs.
The algorithms described here are well within the capabi-
lities of a typical desk-top microcomputer. They have all
been implemented on an IBM PC microcomputer.

This chapter does not follow the standard prose style but
has been written in "note form" for the convenience of
the user.

There are four-groups of algorithms which are given in
sections 4.1 to 4.4. They relate to

4.1 the generating of artificial rainfall sequences for a

given set of model parameters,

4.2 preparing historical records for parameter estimation,

4.3 estimating the parameters of the probability of the
wet/dry sequences model,

4.4 estimating the mean value function of the rainfall

depths on wet days and the coefficient of variation.

The parameters of 2550 stations have already been estimated
(cf. Appendix 6) so for any of these stations it 1s only
necessary to carry out the algorithm given in 4.1. Note that
the parameter estimates given in Appendix 6 are for rainfall
measured in units of one-tenth of a millimetre.
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M.I GENERATING ARTIFICIAL RAINFALL SEQUENCES

This section describes the algorithm to generate arbi-
trarily long artificial daily rainfall sequences for a
station whose model parameters have been estimated. For
stations not covered in Appendix 6 it is necessaryto first

estimate the model parameters using the algorithms
described in the following three sections.

We will give the notation and then refer to an example to

illustrate it:

AMWW(I) is the Ith amplitude for the probability that a
wet day follows a wet day, I = 0,1,2,

PHWW(I) is the Ith phase for this probability, I « 1,2,

AHDW(I) is the Ith amplitude for the probability that a
wet day follows a dry day, I « 0,1,2,

PHDW(I) is the Ith phase for this probability, I * 1,2,

AMM(I) is the Ith amplitude for the mean rainfall on
wet days, 1 = 0 , 1 , 2 ,

PHM(I) is the Ith phase for this mean, I = 1,2,

C is the coefficient of variation.

For example the first station given in Appendix 6 is

PETERS GATE (2069) and has

AMWW(O) = -0,5516 AMWW(1) * 0,4532 AMWW(2) = 0,1241
PHWW(1) - 194,88 PHWW(2) = 133,80

AHDW{0) - -1,6836 AMDW(1) » 0,3345 AMDW(2) = 0,1050

PHDW(I) * 184,03 PHDW(2) - 82,03

AMM(0) = 68,18 AMM(t) = 23,98 AMM(2) « 4,51
PHH(1) = 198,20 PHM(2) • 132,57

C » 1,2533
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Notes:

(a) The first seven numbers given for each station in
Appendix 6 (which are estimates of the parameters of
the probability of a wet day)are not required here and
should be ignored.

(b) Should one decide to use more than the above number
of estimates for the amplitudes and phases, e.g. to
also use AMWW(3) and PHWW(3) then the algorithms given
below will have to be modified in the obvious way. In
order to increase the number of amplitudes and phases
one would of course have to estimate them first.

-The following arrays are required:

PWW(T) contains the probability that day T is wet given
that it is wet on day f-1, T = 1,2,...,365,

PDW(T) contains the probability that day T is wet given

that it is dry on day T-1, T = 1,2,...,365,

M(T) contains the scale parameter of the Weibull dis-

tribution, T - 1,2,...,365,

GR(N,T) contains the generated rainfall depths for year
N, day T ; T = 1,2 365, N = 1,2t...,NG
in units of 1/10 mm.

where NG is the required number of years of generated record.

The lower case letters in brackets on the right margin of
the algorithm refer to notes following the algorithm.
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ALGORITHM 4.1

STEP ? IMPUT AMUW(I), AMDW(I), AMM(I), I * 0,1,2
PHWW(l), PHDW{I), PHM(I), I « 1,2
and C.

STEP 2 COMPUTE B (a)

STEP 3 COMPUTE G (b)

STEP 4 SET GI * 1/G
BI = 1/B

STEP 5 COMPUTE PWW(T), PDW(T), M(T), T * 1,2 365 (c)

STEP 6 SET P = PDW(365)/(1-PWW(365) + PDW(365))

STEP 7 IF RND < P THEM SET IND = 1 (d)

ELSE SET INO * 0

STEP t LOOP OVER yEARS : N = 1,2,...,NG

STEP 9 LOOP OVER PAyS : T = 1,2,...,365STEP 10 IF IND = 1 THEM GO TO STEP 11
ELSE CO TO STEP 12

STEP 11 IF RND < PWW(T) THEM SET IND « 1 (d)
ELSE SET IND = 0

GO TO STEP 13

STEP 12 IF RND < PDW(T) THEM SET IND = 1
ELSE SET IND = 0

STEP 13 IF IND = 1 THEM SET GR(N.T) = M(T)*

(-LOG(RND))**BI (d)
ELSE SET GR(N.T) = 0
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STEP U END OF T LOOP

STEP 15 END OF N IO0P

STEP 16 OUTPUT ARRAV GR.

Notes:

(a) the shape parameter of the Weibull distribution, B, is
computed from the coefficient of variation, C, using
the algorithm given in Appendix 2.

(b) G = r(1+1/B) where r denotes the gamma function and is
"available as a standard subprogram on most large com-
puters. An algorithm to compute it is given in
Appendix 1 of the report "Assessing the Risk of Defi-
ciencies in Streamflow".

(c) The-following steps are required to compute PWW(T),
T = 1,2 365:

STEP 5.J SET W - 0,01721421
STEP 5.2 LOOP OVER DAYS : T = 1,2,...,365
STEP 5.3 SET L0GIT= AHWW(O)

• AMWU(1)*C0S(W*(T-1-PHWWU)))
• AMWW(2)*C0S(2*W*(M-PHWW(1))

STEP S.4 SET PWW(T) = EXP(L0GIT)/(1+EXP(L0GIT))

STEP 5.5 END OF T LOOP

By using its corresponding phases and amplitudes the array
PDW(T), T = 1,2....,365 is computed in the same way.

To compute M(T) one replaces Step 5.3 and 5.4 by
M(T) « (AMH(O))

+ AMM{1)*C0S(W*{T-1-PHM(1)))
• AMM(2)*C0S(2*W*(T-1-PHM(2)))*GI
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(d) RND denotes a uniformly distributed random deviate in
the Interval (0,1) and is available on practically
all computers. Note that at each stage in algorithm
4.1 where RND appears a fresh random deviate should
be generated.

4.2 PREPARING THE DATA FOR PARAMETER ESTIMATION

In this section we describe an algorithm to extract from
historical rainfall data the information required by the
parameter estimation algorithms. It is assumed that the
rainfall record is available in an array:

-. DEPTH(J,T), where T * 1,2,....NT represents the period
(e.g. day) in the year and J * 1,2,...,NY represents the
year.

•The dally rainfall records as supplied by the Department
of Transport Weather Bureau are not in this form and so if
data is obtained from this source then it will be necessary
to reorganise It into an array as specified above.

Remarks about NT and NY

(a) For daily data NT = 365,
pentad data ' NT = 73,
weekly data NT = 52,
monthly data NT = 12.

(b) To overcome the irregularity arising during leap years
one can add the precipitation for 29 February to
that for 1 March, or some other day.

(c) For weekly data one of the "weeks" will have to consist
of eight days and a second "week" will also have to
consist of eight days on leap years. The table below
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gives the recommended dates for the start and end of
the 52 "weeks" of the year. This arrangement has the
advantage that both 1 January and 1 October (the first
day of the "water year") occur at the start of a week.

DATES FOR THE RECOMMENDED "WEEK" BEGINNINGS

WEEK BEGIN WEEK BEGIN

1
2
3
4
5
6
7
8
91

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
8
15
22
29
5

12
19
26
5
12
19
•26
2
9
16
23
-30
7
14
21
28
4
11
18
25

Jan
Jan
Jan
Jan
Jan
Feb
Feb
Feb
Feb
Mar
Mar
Mar
Mar
Apr'
Apr
Apr
Apr
Apr
May
May
May
May
Jun
Jun
Jun
Jun

27
28
29
30
31
32 !

33
34 ,
35 '
36
37
38 '
39
40*

• 4 1 '

42
43
44 !

45
46
47
48
49
50
51
52"

2
9
16
23
30
6
13
20
27
3
10
17
24
1
9
16
23
30
6
13
20
27
4
11
18
25

Jul
Jul
Jul
Jul
Jul
Aug
Aug
Aug
Aug
Sep
Sep
Sep
Sep
Oct
Oct
Oct
Oct
Oct
Nov
Nov
Nov
Nov
Dec
Dec
Dec
Dec

1 8 days on leap years

* 8 days
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(d) For monthly data the number of days in each month
varies and this variation often results 1n an un-
necessary Increase in the number of parameters fitted
to the model. It is therefore recommended that Instead
of using monthly totals the average daily precipitation
is used for each month. That is, the January totals
for each divided by 31, the February totals by 28
(or 29 on leap years) etc.

Gaps in the historical record

GAPS IN THE RECORD MUST BE INDICATED BY "-1" OR SOME
OTHER NEGATIVE NUMBER.

The majority of rainfall records In South Africa contain
gaps.* The methods described here have been designed to
automatically deal with incomplete data (within limits).
If the historical record is very short (less than 5 years)
and a high proportion (50X or more) of the data is missing
then Itvis not unlikely that the algorithms for parameter
estimation will not converge. This will however depend on
where the gaps occur in the data record, e.g. If they
always occur over one part of the year then the estimation
algorithm will usually not converge. But except for such
extreme cases gaps will not lead to any problems in the
estimation algorithm nor to any systematic bias in the
estimates.

It Is also possible to fill in gaps in the historical re-
cord by making use of records from neighbouring stations.
Methods to do this are discussed In Part II of Report 3:
"Estimating the missing values in rainfall records".

The start and end of the historical record

RECORDS SHOULD BEGIN IN PERIOD 1 AND END IN PERIOD NT.
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For example if the calendar year is used then daily records
should begin on 1 January and end on 31 December, and
monthly records should begin in January and end in December.
This restriction simplifies the algorithm and the program.
It is NOT necessary to waste data in order to meet this re-
quirement. For example if the original available daily
record starts on 1.10.1920 and ends on 31.3.1964 then one
should not discard the 3 months of 1920 record and 3
months of 1964 record, but instead code the days 1.1.1920-
30.9.1920 and 1.4.1964-31.12.1964 as missing, i.e. set the
values to H - 1 M . The record is then regarded as starting
on 1.1.1920 and ending on 31.12.1964.

Arrays required for parameter estimation

The following information is required for the parameter
estimation programs and must be computed from the historical
record:

NT - the number of periods in the year (e.g. 365 for
daily data) t

NY the number of years of data (including the
missing values),

For each T = 1,2,... ,NT:

N(T) the number of observations made in period T,
(missing values are not counted),

NR(T) the number of times it was wet (non-zero rain)
in period T.

NW(T) the number of times it was wet in period T-l AND
there was an observation in period T (i.e. there
was not a gap on period T ) .
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NWW(I) the number of times it was wet in period T-1 AND
wet in period T.

ND(T) the number of times it was dry (zero rain) in
period T-1 AND there was an observation In period T

NDW(T) the number of times it was dry in period T-1 AND
wet in period T.

R(I,T) the Ith non-zero rainfall depth in period T,
I = 1.2 NR(T); T = 1,2 NT.

Notes:

(a) The period which precedes period 1 is NT. So for
example with daily data NWW(1) is the number of times
it was wet on day 365 of the preceding year and wet
on day 1 of the current year.

(b) Note that NR(T) and NW(T+1) can be different particu-
larly (but not exclusively) when there are gaps in
the record. Clearly NW(T+1) < NR(T). Also

ND(T+1) * NW(T+1) < N(T).

The above arrays are required by the estimation algorithms

as follows:

(1) NW( ) and NWW( ) are required to estimate the para-
meters for the probability that a wet period follows
a wet period.

(ii) ND( ) and NDW( ) are required to estimate the para-
meters for the probability that a wet period follows
a dry period.
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(1ii) N( ) and DEPTH( , ) are required to fit the para-
meters of the mean rainfall depth in a wet period
and the coefficient of variation.

Although this is not required 1n order to generate arti-
ficial rainfall sequences one may also wish to compute the
probability that period T is wet. For this one needs

(iv) N( ) and NR( ) .

Computing the required arrays

Computation of the arrays N( ) , NR( ) , NW( ), NWW( ) , ND( ) .
NDW( ) and R( , ) is straightforward particularly if one
is prepared to compute them one at a time. However such
a. procedure requires one to pass over the record several
times and is therefore computationally inefficient. The
following algorithm requires only one pass over the data.

An .indicator, IND, is used to indicate the state on the
previous period:

-1 indicates that the previous observation is missing
IND = | 0 indicates that the previous period was dry

1 indicates that the previous period was wet.
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ALGORITHM 4.2

STEP 1 IWPUT NT, NY, DEPTH (I tT), I • 1,2,...VNY: T « 1,2,..,NT

STEP 2 SET N( ), NR( ), NW( ), NMW( ), ND( ), NDW( ) to zero

IND « -1

STEP 3 LOO? OVER yEARS: I = 1,2, ,NY

STEP 4 LOO? OVER PERIODS: T = 1,2 NT
STEP 5 I F OEPTH( I .T ) = 0 GO TO STEP 6

> 0 GO TO STEP 7

< 0 GO TO STEP 8

STEP 6 SET N(T) = N(T)+1

IF IND

GO TO STEP 9

' 0 THEN SET ND(T) « ND(T)+1

1 THEN SET NW(T) - NW(T)+1 ANP SET IND = 0

-1 THEN SET IND = 0

STEP 7 SET NR(T) = NR(T)+1

R(NR(T) V T) - DEPTH( I .T )

IF IND

GO TO STEP 9

' 0 THEN SET NDW(T) * NDW(T)+1 ANV SET IND =

1 THEN SET NWW(T) = NWW(T)+1

- 1 THEN SET IND = 1

STEP S SET IND = - 1

GO TO STEP 9

STEP 9 END OF T LOOP

STEP 10 END OF I LOOP
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STE? II LOO? OVER PERIOPS: T = 1,2,....NT

STEP 12 SET N(T) * N(T) • NR(T)
ND(T) .« NO(T) + NDW(T)
NW(T) « NW(T) + NWW(T)

STEP 13 ENt? Of T LOO?

STEP 14 0UT?UT ARRAVS N, NR, NW, ND, NWW, NDW, R
«

Notes:

(a) When deciding how the output to this algorithm should
be stored we recommend that (i) to (iv) above be kept
in mind.

(b) For efficient use of computer storage and to reduce
computing time the arrays in this algorithm (including

/DEPTH and R) should be defined as INTEGER rather than
REAL arrays in the program.
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ESTIMATING THE PROBABILITIES OF WET AND DRY SEQUENCES

The algorithm described here can be used to estimate the
probabilities associated with (1), (ii) and (iv) in section
4.2 One uses the same algorithm but with different input
data. We will use the generic notation MM(T) and M(T),
T * 1,2,...,NT to represent the relevant arrays as follows:

(i)* When we are estimating the probability that a wet
period follows a wet period then
HM(T) = NW(T) and M(T) = NWW(T), T = 1,2 NT.

(ii)* When we are estimating the probability that a wet
period follows a dry period then
MM(T) = ND(T) and M(T) = NDW(T), T = 1,2,...,NT.

(iv)* When we are estimating the probability that period
T is wet then
MM(T) = N{T) and M(T) = NR(T), T = 1,2,....NT.

Algorithm 4.3 deals with the problem of estimating a
fixed number of parameters and Algorithm 4.3A with that of
selecting the best number of parameters to use.

The following variables and arrays are used in Algorithm

4.3:

L number of parameters to be fitted (odd integer)
PAR{I), I « 1,2,...,L; vector of parameters
AH(I), I = 0,1,....K; corresponding amplitudes, K = (L-D/2
PH(I), I • 1,2 K; corresponding phases

P(T) , T «= 1,2,...,NT; current estimates of probabilities
L(T), T = 1,2,...,NT; current estimates of logits

*cf. (i), (ii) and (iv), pages 66-67.
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B(I) , I * 1,2,...,L: vector of f i r s t partial derivatives
A(I,J)V I,J = 1,2,...,L; matrix of second partial derivatives
D(I), I • 1,2,...,L; vector of solutions to linear equations

ITER
DELTA

T0J1 .T2JAJB

current iteration
convergence criterion

temporary variables

PHI ( I J ) , I = 1,2 L» T * 1,2 NT matrix of Fourier terms.

ALGORITHM 4.3

STEP 1 IUPUT L , N T , H H ( T ) t M ( T ) ; T = 1 , 2 NT

STEP 2 COMPUTE P H I ( I . T ) ; I - 1 , 2 t . . . , L ; T = 1 , 2 , . . . . N T

STEP 3 COMPUTE P ( T ) , L ( f ) ; T = 1 , 2 , . . . , N T

STEP 4 COMPUTE PAR(I) , I - 1 , 2 , . . . , L

STEP 5 SET ITER = 0

STEP 6 COMPUTE A(I,J), B(I): I,J * 1,2,...,L, DELTA

STEP 7 SOLVE AD = B (for D)

STEP I SET PAR(I) = PAR(I)-D(I), I = 1.2 L

STEP 9 SET ITER « ITER+1

STEP 10 IF DELTA > 0,00005 THEM GO TO STEP 6

STEP U COMPUTE AM(I); I = 0,1 K, PH(I): I * 1,2 K

STEP U OUTPUT AM(I); I = 0,1,2 K, PH(I); I = 1,2,...,K
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Details

STEP 2 An algorithm to compute PHI is given in Appendix 3.

STEP 3 Here we need to compute initial estimates of the
probabilities and logits:

STEP 3.7 LOOP OVER T = 1,2 NT
STEP 3.Z IF HM(T) > 0 THEM SET P(T) = M(T)/MM(T)

ELSE SET P(T) = -1 GO TO STEP 3.4
STEP 3.3 IF M(T) = 0 THEM SET L(T) = -5

= MM(T) THEN SET L(T) = 5
/ 0, t HM(T) THEM SET L(T) = LOG(P(T)/(1-P(T) ))

STEP 3.4 EUV OF T LOO?

STEP 4 The initial estimates of the parameter vector are
computed here:

STEP 4.1 LOOP OVER I = 1,2,,..,L
STEP 4*2 SET TO « 0, Tl = 0
STEP 4.1 LOOP OVER T * 1,2 NT
STEP 4.4 IF HM(T) = 0 THEM GO TO STEP 4,7
STEP 4.5 SET TO = TO + L(T)*PHI(I,T)
STEP 4.6 SET T1 * Tl • PHI(I,T)*PHI(I,T)
STEP 4.7 EUV OT T LOOP
STEP 4.8 SET PAR(I) = T0/T1
STEP 4.9 EWP OF I LOOP

STEP 6 We compute the first and second partial derivatives*
and the sum of squares of-absolute differences be-
tween the current and preceding values of the
probabi1ities:

STEP 6.1 SET B(I), A(I,J) = 0; I = 1,2. .L. J = 1,2 1
DELTA = 0

STEP 6.1 LOOP OVER T • 1,2 365
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STEP 6.3 SET LOGIT * PAR(1)
STEP 6.4 LOOP QVEK I * 2,3,...,L
STEP 6.5 SET LOGIT = LOGIT + PAR(I)*PHI(I,T)
STEP 6.6 END OF I LOOP
STEP 6.7 SET TO « EXP(LOGIT)

PROB * T0/O+T0)
T1 * M(T)-MH(T)*PROB
T2 « MM(T)*PROB/(1+T0)
DELTA = DELTA + ABSfP(T)-PROB)
P(T) = PROB

STEP 6A LOOP OVER I = 1,2,....L
STEP 6.9 SET B(I) = B(I) + T1*PHI(I,T)
STEP 6.10L00P OUER J = 1,2,...,I
STEP 6.HSET A(I.J) = T2*PHI (I ,T)*PHI (0 ,T)
.STEP 6.It END OF J LOOP
STEP 6.13 EhiV OF I LOOP
STEP 6.U EUV OF T LOOP
STEP6.15SET A(I.J) = A(J,I); I * 1,2 L; J * 1 + 1,1 + 2,... tL

STEP 7 Unless a subprogram to solve a system of L«L linear
equations is available, it will be necessary to
write one. The Gauss reduction method is suitable
here.

STEP 9 It is recommended that the number of iterations
(ITER) be limited to 50. Normally convergence
occurs within about 7 iterations.

STEP H The notation ATN( ) is used to represent the
principal value of the arctangent function (in the
interval -TI/2 to n / 2 ) . SQR{ ) denotes the square
root. To transform the parameters to their
amplitude and phase representations one proceeds
as follows:
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STEP II.I SET PI * 3,141593

A M O ) - PAR(1)
K « (L-D/2

STEP II.I 100? OVER I - 1,2 K
STEP M . 3 SET TA » PAR(2*l)

TB = PAR(2*I+1)
AM(I) = SQR(TA*TA*TB*TB)

STEP 11.4 IF TA < 0 THEM SET PH(I) = ATN(TB/TA) * PI
STEP II.5 GO TO STEP 11.10
STEP II.6 IF TA = 0 THEM GO TO STEP 11.9
STB? II.7 IF TB > 0 THEM SET PH(I) = ATN(TB/TA)

ELSE SET PH(I) = ATN(TB/TA) + 2*PI
STEP II.$ GO TO STEP 11.10
STEP II.9 IF TB > 0 THEN SET PH(I ) = 0,5*PI

ELSE SET PH(I) = 1,5*PI
STEP 11.10 SET PH(I) = PH(I)*NT/(2*PI*K)
STEP 11.11 EWP OF I 100P

Model "Selection

To decide on how many parameters should be used in the
model one can proceed as follows:
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ALGORITHM J.3A

STEP I INPUT LMAX

STEP 2 SET CRITO » 10**50

STEP 3 LOOP OVER L = 1,3,....LMAX

STEP 4 APPiy ALGORITHM 4.3 TO COMPUTE P(T), T = 1.2.....NT

STEP 5 COMPUTE CRIT = -LLK+L

STEP 6 IF CRIT < CRITO THEW SET LO = L

AND SET CRITO * CRIT

STEP 7 END Of I LOOP

STEP & OUTPUT LO

Details

STEP T LMAX must be an odd integer and need be no greater
than 25 unless the historical record is except-
ionally long.

STEP 3 Note that the values of L are incremented by 2.

i

STEP 4 The final v a l u e s of P ( T ) , T = 1,2 NT are
required, i.'e. those which were computed on the
last iteration in Algorithm 4.3

STEPS The following steps are required to compute LLK:
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STEP 5. 1 Stt U K - 0
STEP 5.2 LOOP OVER T « 1,2 NT
STEP 5.3 IF MM(T) » 0 THEN GO TO STEP 5.5
STEP 5.4 SET LLK - LLK • M(T)*LOG(P(T)) + (MM(T)-M(THOG(I-P(T))
STEP 5.5 ZUV OF T LOOP

STEP 6 Normally the criterion decreases with L, reaches
a minimum and then increases again. It is there-
fore not necessary to continue with the L loop
once the criterion has begun to increase.

To avoid unnecessary computation the values of
AM(I), I •• 0,1,2,...,K and PH(I), I = 1,2 K
which correspond to the current minimum criterion
CRITO, should be stored. In this way one avoids
having to re-estimate them once L0 has been found
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ESTIMATING THE MEAN RAINFALL IN WET PERIODS

In this section we describe an algorithm to compute the
mean rainfall in wet periods, where NT represents the
number of periods in the year, e.g. 365 days, 52 weeks
etc ... .

The following information.is required in order to carry
out the estimation:

NR(T); T = 1,2,....NT
R(I.T); I = 1,2, NR(T); T = 1,2 NT
and the number of parameters to be fitted, L, which must
be an odd integer. See section 4.2 for the definition of
NR(T) and R(I,T).

Most of the arrays and variables used in Algorithm 4.4 are
analogous to those used in Algorithm 4.3 We will only
list the additional ones used here:

Q(T); T * 1,2,....NT Average observed rainfall in each period
F(T); T = 1,2,...,NT Current estimate of the mean

To compute the parameters one proceeds as follows:
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ALGORITHM 4.4

STEP I INPUT LfNT,NR(T),R(I,T); I * 1 .2,.. .NR(T)J - 1,2 NT

STEP 2 COMPUTE PHI(I.T); I « 1,2,...,L, T - 1,2,....NT

STEP 3 COMPUTE Q(T); T * 1,2,....NT

STEP 4 COMPUTE PAR(I); I = 1,2 L

STEP 5 SET ITER = 0

STEP 6 COMPUTE B(I), A(I,J); I,J = 1,2,...,L

STEV 7 SOLVE AD = B (for D)

STEP T SET PAR(I) = PAR(I)-D(I); I = 1,2,...,L

STEP 9 SET ITER * ITER+1

STEP 10 COMPUTE DELTA

STEP M IF DELTA > 0,0001 THEM GO TO STEP 6

STEP;? COMPUTE AM(D; I = 0,1,...,K, PH(I); I - 1,2 K

STEP U OUTPUT A M ( I ) ; I = 0,1.....K, PH(I); I = 1,2,.-..,K
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Details

STEP 2 This is the same as STEP 2 in Algorithm 4.3

STEP 3 In this step the initial estimates for the mean
are computed:

STEP 3.1 LOOP OVER T = 1,2,....NT
STEP 3.2 IF NR(T) < 0 THEM GO TO STEP 3.8
STEP 3.3 SET TO = 0
STEP 3.4 LOOP OVER I = 1,2 NR(T)
STEP 3.5 SET TO = TO + R(I,T) •
STEP 3.6 EWP OF I LOOP
STEP 3.7 SET Q(T) = TO/NR(T)
STEP 3.«- EUV Of T LOOP

STEP 4 This is the same as STEP 4 of Algorithm 4.3 with
NR(T) replacing MM(T) and
Q(T) replacing L(T)

STEP 6 The first and second partial derivatives are
computed as follows:

STEP 6.1 SET B(I),A(I,J) = 0; I - 1,2,...,L; J = 1.2 1
STEP 6.2 LOOP OVEK T = 1,2,...,NT
STEP 6.3 SET TO - PAR(1)
STEP 6.4 LOOP OVER I = 1,2,...,L
STEP 6.5 SET TO * TO + PAR(I)*PHI(I ,T)
STEP 6.6 EUV OF I LOOP
STEP 6.7 SET F(T) = TO
S T E P 6.t EUV OT T LOOP

STEP 6 . 9 LOOP OVER T = 1 , 2 , . . . . N T
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STEP 6 . 1 0 I F N R ( T ) < 0 THEN GO T O S T E P 6 . 1 7

STEP 6 . 1 1 LOOP O l / E R I « 1 , 2 L

STEP 6 . 1 2 SET B ( I ) = B ( I ) - N R ( T ) • ( Q ( T ) - F ( T ) ) * P H I ( I , T )

STEP 6.13 LOOP OVER J = 1,2 1
STEP 6.14 SET A{I,J) « A(I,J) • NR(T)*PHI(I,T)*PHI(J,T)
STEP 6.15-EHV OF J LOOP
STEP 6.16 END OF I LOOP
STEP 6.17 EHV OF T LOOP
STEP 6.IS SET A(I.J) = A(J,I); I - 1,2 L; J=I + 1,I+2 L
STEP 7 See the remark made for STEP 7 of Algorithm 4.3.

STEP 10 The convergence criterion here is computed using
DELTA = ABS(B(1)) + ABS(B(2)) + ..,+ABS(B(L ))

STEP 11 This is computed in the same way as STEP 11 of
Algorithm 4.3.

To compute the coefficient of variation, C, one simply
uses^

c -

where F(T) is the final value of this array after executing
Algorithm 4.4.

No methodology to decide which is the best value of L is
available. In general we would recommend that L should
be set to 5 or 7. By examining the reduction in the
average residual variance one can usually detect when
nothing more is to be gained by increasing L. This variance
is given by
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V = T- 7
N *-T=1 "i

NT

where N * J NR(T) is the total number of rainy days.
Usually -thl value of V decreases sharply as L goes from
1 to 3 and then to 5, After that the decrease becomes
slower. One must then decide after which L the decrease
becomes small enough.
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5. RAINFALL MODEL VALIDATION

Model validation is a retrospective view of the model where
we evaluate its performance in order to assess its accuracy.
In fact we are assessing to what extentthe rationale of model struc-
ture and parameter estimation is successful in preserving
the properties of the process in which we are interested.
These properties of the historical process have a sampling
variance of their own and our aim is to establish that the
model preserves these within reasonable limits such that
any simulated sequence is representative of an alternative,
but equally likely historical sequence.

For a daily rainfall model we need to establish that the
properties of the daily rainfalls and thzii 6um6 are pre-
served. In order to be viewed successfully the model must
6imultane.oti&ly preserve:

(a) The.annual mean and variance and the distribution of
annual totals and sums of annual totals.

(b) The monthly means and variances.

(c) The expected number of wet days as it varies seasonally. •

(d) The runs characteristics of daily rainfalls as they vary
seasonally.

(e) The distribution of n-day extreme rainfalls.

For a two-tier model such as we have here, with a Markovian
structure for the probability of wetness and a univariate
model for the distribution of wet day rainfall totals, each
of the examinations proposed above emphasises a different
aspect of the model. For example, the runs characteristics
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of daily rainfalls assesses the validity of the model's
Markovian structure, whilst the distribution of n-day
extremes emphasises the performance of the univariate model
chosen for rainfall depths and in particular the estimators
of mean and variance. Six rainfall gauges which broadly re-
present the various ranifall/climate regions of South Africa
were chosen for study. Table 5.1 lists them with their
official Weather Bureau number, and their positions within
the country are shown in Figure 5.1. The position of all
2550 stations to which the model is eventually fitted is
shown in Figure A6.1.

Table 5.1

Station Weather Bureau Index Number

Pretoria 513/404
Durban 240/891

Kakamas • 282/166
Pietersburg 677/839
Stellenbosch 21/655
Middelburg (CP) 144/900

In each case the historical rainfall statistics of interest
were compared with those estimated from 1000 years of simu-
lated daily data.

Validation of annual properties

Table 5.2 shows a comparison of historical and simulated
annual means and standard deviations. Both statistics are
adequately preserved by the model. There would appear to
be a slight underestimation of the annual standard devia-
tion. Upon examination this was revealed to be due, when it
occurred, to the model's inability to preserve the frequency
of extreme n-day storm rainfalls in cases where these are
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FIGURE 5.1 Locations of the six stations used for model validation.
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associated w i th weather-generating processes that are
d i s t i n c t from those that generate the bulk of the r a i n f a l l .
This point is deal t wi th when we consider model performance
wi th regard to extremes.

TABLE 5.2 Comparison of historical and simulated annual means
and standard deviations (mm)

Station
Simulation

Period of Mean Standard Mean Standard
historical record Deviation Deviation

Pretoria

Durban
Stellenbosch

Kakamas
Middelburg (CP)
Pietersburg

1905-1980
1871-1980
1895-1980

1936-1980-

1917-1972
1905-1952

714

997
716

138

302
461

168
230
147

76

105
112

728
994
710

122
317

475

157
209
133
67

91
124 •

Figure 5.2 shows the histograms of historical annual rainfall
totals and their simulated distribution functions. As can
be seen the overall shape of the distribution of annual
totals Is well preserved by the model.

In order to more closely examine the performance of the model
in preserving the behaviour of low annual totals (i.e.
the left tail of the distribution function) and in preser-
ving runs of deficient annual rainfalIs, the following
strategy was adopted:

(a) Fit the gamma distribution with scale parameter.6 and

shape parameter a by maximum likelihood to the histo-

rical annual totals. A univariate model selection cri-

terion (cf. Appendix 2-of the "Assessing the'risk of de-

ficiencies in streamflow") showed the gamma model to be

appropriate.
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FIGURE 5.2 Histograms and simulated density functions of annual
rainfal l data.
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(b) The reproductive property of the gamma model implies
that the sum of n independently gamma distributed
random variables with parameters a and 8 is also dis-
tributed as gamma and has parameters na and B. Thus
the two-year sums are distributed as 2a,8; the three-
year sums as 3a,S etc.

(cj Compute the distribution of the annual totals and their
sums in this way and compare these with the distribu-
tions of 1000 simulated replicates of n-year totals,
as obtained from the model. Such a comparison is given
in Table 5.3. The results show a remarkable similarity
even at the \1 level and imply that the model is at
least as good as directly fitting an appropriate uni-
variate model to the annual totals in order to in-
vestigate the distribution of annual run sums.

Validation of monthly properties

In many practical applications monthly rainfall sequences
are required and it is important that the basic statistics
of monthly rainfall are preserved by the model, in parti-
cular the means and standard deviations. Figures 5.3 and
,5.4 show that these statistics are well preserved and
Figure 5,5 shows that the mean number of wet days to be
expected in each month is also maintained.

Validation of daily properties

A visual assessment of the fit of the truncated Fourier
series to the various components of the model is available
from Figures 5.6.1 to 5.10.2. The fits are generally ex-
cellent although the seasonal standard deviation for
Stellenbosch, which was found to be an exception, is some-
what low.
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TABLE 5.3 Distribution of n-year deficient rainfall totals estimated
by fitting a gamma model to the historical data and by
simulation

—

1

YEAR

2

YEAR

•

3

YEARS

4

YEARS .

5

YEARS

m>x)

.99

.98

.95

.90

.80

.50

.99

.98

.95

.90

.60

.50

.99

.96

.95

.90

.80

.50

.99

.96

.95

.90

.60

.50

•99

• 98

•95

.90

.80

.53

PRETORIA

CAK.HA

342

373

423

471

534

669

856

907

987

1061

1156

1353

1411

1476

1579

1673

' 1793

'2036

1965

2064

2185

2297

2437

2722

2573

2662

2801

2928

3087

3406

SIM

386

412

477

526

571

675

921

969

1026

1146

1192

1377

1450

1569

1684

1772

1861

2069

2116

2182

2311

2406

2523

2769

2612

2809

2957

3056

3221

3462

STELLENnOSCH

GAKHA

425

452

496

537

569

698

999

1042

1106

1170

1247

1405

1603

'1658

1743

1820

1917

2112

2224

2289

2369

2450

2593

2819

2855

2929

3042

3145

3273

3526

SIM

4 20

466

507

529

606

722

1021

1089

1145

1221

1293

1460

1588

1711

1797

1874

2006

2309

2306

2367

2424

2519

2634

2900

2962

3016

3100

3227

3331

3595

M'R

GAM:IA

601

641

705

764

841

1003

1420

1483

1581

1672

1786

2019

2285

2365

2490

2604

2748

3036

3173

3269

3416

3550

3718

4052

4077

4166

4353

4505

l*o?

5069

DAN

SIM

642

688

740

786

815

* 986

1486

1522

1616

1702

1799

2202

2224

2366

2511

2592

2723

3020

3156

3227

3424

3620

3681

4191

4266

4319

4401

4500

4«2?

4954

KM.,

CAMMA

24

31

42

55

73

119

91

104

126

149

179

248

171

190

221

251

291

378

259

283

321

357

405

508

353

380

425

467

* ̂ *

637

MAS

SIM

29

34

43

51

62

93

84

96

122

141

166

238

166

195

219

242

279

351

266

279

319

350

391

487

360

388

434

475

111

An*

M1DDEUHIRC
<CP>

CAKKA

100

116

143

171

210

299

296

326

374

420

481

613

520

560

624

684

762

927

759

807

864

956

1048

1241

1006

1062

1150

1233

123c

1556

SIM

110

126

156

170

202

279

318

349

390

434

489

596

517

530

660

713

788

954

619

680

943

1007

Mil

1292

1144

1207

1269

1326

1419

Jf 12

PIETERSDMRC

CVKA

242.

264

299

332

375

460

604

639

694

745

811

946

994

1039

1109

1174

1257

1425

1397

1451

1534

1611

1708

1903

1809

1870

1966

2053

2162

2381

SIM

-240

270

318

363

397

483

642

671

720

779

832

996

1002

1060

1100

1196

1280

1445

1311

1396

1492

1570

1682

1999

1800

1699

2006

2111

2216

24M
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FIGURE 5.3 Simulated ( ) and historical (—) monthly mean rainfall.
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FIGURE 5.4 Simulated ) and historical ( ) monthly standard
deviations.
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FIGURE 5.5 Simulated (- ) and historical (—) mean number of wet
days per month.
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FIGURES 5.6.1 and 5.6.2

Empirical probabilities and estimates based on a 7-parameter model
for the probability of having a wet day in Pretoria and Stellenbosch
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FIGURES 5.7.1 and 5.7.2
Empirical probabilities and estimates based on a 5-parameter model
for the probability of a wet day given a wet preceding day for
Pretoria and Stellenbosch
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FIGURES 5.8.1 and 5.8.2
Empirical probabilities and estimates based on a 5-parameter model
for the probability of a wet day given a dry preceding day for
Pretoria and Stellenbosch
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FIGURES 5.9.1 and 5.9.2

Dally averages and mean fitted by a 5-term Fourier series for
Pretoria and Stellenbosch
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FIGURES 5.10.1 and 5.10.2
Standard deviations computed on a daily basis and those computed
using a constant coefficient of variation and a 5-term Fourier
series for the mean; Pretoria and Stellenbosch
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Two aspects of daily rainfall require investigation with
respect to model performance. Firstly that the distribu-
tion of daily totals is adequately represented under the
assumption that they are distributed as Weibull; and secondly
that the MaXcovian structure of the model preserves the
frequency and seasonal variability of runs of wet and runs
of dry days.

In order to establish that the Weibull model adequately pre-
serves the distribution of daily rainfalls we proceed as
follows:

(a) Take a 5-day period at random during each of the wet
and dry seasons and draw the frequency histogram of
the events that occurred during this particular pentad
over the period of historical record. A 5-day period
was chosen for this exercise because during the "dry"
periods in particular not enough observations would
have been forthcoming from any shorter period for the

x assessment to be made. Thus period 1 would reflect the
rainfall depths over the period from 1 to 5 January,
period 2 for 6 to 10 January etc ... .

(b) For these historical samples compute the maximum like-
lihood estimates of the Weibull model and draw the
density function on the histogram in standard form.

(c) Using the constant estimate of the coefficient of
variation as given by the model compute the shape para-
meter of the Weibull model using the functional appro-
ximation given earlier. Compute the scale parameter
using the periodic estimator of the mean and draw the
computed standard density function on the histogram.

Figure 5.11 illustrates the results of this exercise and
shows that this aspect of the model works quite well. For
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FIGURE 5.11 Histogram of h is tor ica l ra in fa l l depths over pentads
with maximum l ikel ihood (—) and model ( )
estimators of the i r density (standardised).
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Pretoria (period 30) and Pietersburg (period 31), which re-
present the dry season, the model results may at first
sight appear poor but during these periods we have few ob-
servations in the first place and in the second the fit of
the truncated Fourier series to the means will give less
weight to such periods individually.

Two properties of the run characteristics of daily rainfall
require investigation. Firstly that the seasonal distri-
bution of clusters of wet days is preserved by the mcdtt
and secondly that the seasonal characteristics of runs of
dry days is preserved. Figure 5.12 shows the distribution
by month of clusters of wet days and may be interpreted as
follows: in Pretoria in October 60* of wet days are iso-
lated, 22% occur in clusters of two, 9% in clusters of
three and 4X in clusters of 4. We note that during the
dry months the relative distribution of the clustering
changes with a higher incidence of isolated wet days, as one
would expect.

We note that the Markovian structure proposed for the model
is particularly successful with regard to this particular
aspect of daily rainfalls.

Figures 5.13.1 to 5.13.4 show the seasonal distribution of
dry day run lengths for Durban, Pretoria, Kakamas and
Stellenbosch. As expected the relative proportion of shorter
runs is high in the wet season and as the dry season be-
comes established the distribution changes to provide a
greater proportion of longer runs. There exist cases where
the probability that the whole month is dry is higher than
that of, for example, a run of exactly 25 dry days (e.g.
Pretoria, June). This is obvious since the frequency that
the whole month is dry is higher than a dry day run of
25 days as the latter case would imply a wet day at the very
beginning or end of the dry season month. Such an occurrence
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FIGURE 5.12 Seasonal distribution of clusters of wet days:
(—) historical; ( ) simulated.
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FIGURE 5.13.1 Histograms and simulated frequency distributions of
run lengths of dry days by month : Durban.
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FIGURE 5.13.2 Histograms and simulated frequency distributions of
run lengths of dry days by month : Pretoria
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FIGURE 5.13.3 Histograms and simulated frequency distributions of
run lengths of dry days by month : Kakamas

20-

2O

O

2O

IO

K>

20-

K>

JANUARY

1111 111 11 11 i 11 1 11 11i • it i i l T i i

FEBRUARY

MARCH

5 D 6 20 25 20

APRIL

MAT

I I i l l l l l i l l l I I I 1 I I t I I 1 I I I I I I I I

juur

AUGUST

I I If FT I i I 1 I I I I I I I

SEPTEMBER

3 D . D 20 25 30

OCTOBER



104.

FIGURE 5.13.4 Histograms and simulated frequency distributions of
run lengths of dry days by month : Steilenbosch
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would be relatively rare.

A relatively severe test of model performance is to assess
its fidelity In preserving the distribution of annual maxi-
mal n-day rainfalls. This assessment is severe 1n the sense
that one would, in order to preserve such extremes, apply
considerable emphasis to the seasonal periodicity of the
variance and the selection of a univariate model of daily
rainfall depths. The model as it stands is not tied to
any particular univariate model in so far as one could from
the moments estimate the parameters of any number of likely
models, e.g. the gamma or extreme type I. The Weibull, as it
happens,appears to perform well so far.

From the historical data we sample the n-day annual maxima
and plot them in the usual way according to the Ueibull
plotting position (rank/(N+1)). We then simulate their
distribution and consider the 1, 2, 3 and 7 day events.
Figures 5.14.1 to 5.14.6 show the results for the six sta-
tions. Generally the results are good,given the approach
used to model the periodicity of the variance of daily rain-
falls and the assumption of a constant coefficient of vari-
ation over the year. As can be seen for Durban and Pretoria
1n particular,the model cannot preserve the distribution of
extremes which are obviously drawn from a mixture of synoptic
generating processes. That this is so is manifested in the
decided break in the frequency curve which at Durban for
example would be associated with the incidence of intense
storms related to the rare influx of cyclones over the
coastal regions. In order to accommodate this characteristic
of extremes in some areas of the country a more complex
approach to the modelling of the seasonal variance of daily
rainfalls would be required . Also the univariate model fitted
to the depths would need be of the mixed distribution type
as proposed by Woolhiser and Pegram (1979).
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FIGURE 5.U.1 Sample points and simulated distribution function of
annual maximum n-day rainfalls : Stellenbosch

200

200

200

EXCEEDANCE PROBABILITY (%)

300

200-

100-

50 4O 30 20 D

STELLENBOSCH



107.

FIGURE 5.14.2 Sample points and simulated distribution function of
annual maximum n-day rainfalls : Middelburg
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FIGURE 5.14.3
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Sample points and simulated distribution function of
annual maximum n-day rainfalls : Pietersburg
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FIGURE 5.14.4
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Sample points and simulated distribution function of
annual maximum n-day rainfalls : Pretoria
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FIGURE 5.14.5 Sample points and simulated distribution function of
annual maximum n-day rainfalls : Kakamas
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FIGURE 5.14.6
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Sample points and simulated distribution function of
annual maximum n-day rainfalls : Durban
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Conclusions

The results of the model validation reveal that the assump-
tions initially made about the structure of daily rainfall
data, the rationale of model structure and the parameter
estimation techniques have been particularly successful in
providing a model that can faithfully reproduce the pro-
perties of daily rainfall sequences. A higher order Markov
model combined with a more complex univariate model for
rainfall depths may have led to even better results but its
contribution to the practical application of the model would
probably not justify such additional complexity; The cri-
terion for adopting a model depends as much on the use to
which it is to be put as on statistical tests of
its validity (Gabriel 1984) and significance. The pro-
posed model may be seen to provide rainfall sequences that
are suitably accurate for a vast number of applications.
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6. APPLICATIONS OF THE DAILY RAINFALL MODEL

Statistical models provide a concise summary of data sets
which 1n themselves may be unavailable to the m a j o r i t y of
potential users. This is particularly true of daily rain-
fall which requires very large data bases for e f f i c i e n t
storage. In order to be made manageable the rainfall se-
quences are usually summed to form monthly or annual
series which are then used to portray point or regional
rainfall c h a r a c t e r i s t i c s , such as mean monthly or annual
rainfall. Alternatively they may provide the input to
models of streamflow or soil moisture. But a good statis-
tical model does more than just summarise the data - it

provides insight into the underlying process of which

the observed data set is only one m a n i f e s t a t i o n .

The advantage of the present model, as of any p a r s i m o n i o u s
model of a stochastic process, is that all the properties
of the process, in this case daily rainfall, are e n c a p s u -
lated in a relatively small number of p a r a m e t e r s . The
probability distribution of events of importance thereby
become accessible to users who have access only to modest
computing facilities and at very little cost or incon-
venience. The parameters themselves can be mapped to pro-
vide insight into the properties of daily rainfall c h a r a c -
teristics of a region; stochastic sequences of d a i l y ,
weekly, monthly or annual rainfall can be simulated to
compute the distribution of some characteristic of the
point rainfall process. We can simulate annual t o t a l s , for
example, and estimate their probability distribution or we
can simulate the probability of runs of dry days within
the period of critical growth for a commercial c r o p .

A daily rainfall model as presented here and as fitted on
the scale of 2550 locations throughout South Africa is of
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great value and has a very broad range of potential appli-
cations: from the assessment of the geography of the rain-
fall climate of the country from a daily to an n-annual
time period, to the generation of stochastic

realizations of the process as input to further models.
From this stochastic input we can compute the distribution
of some event in the output such as that of a run of de-
ficient flows over some discrete interval using a rainfall-
runoff model.

Before proceeding to the consideration of a model of point
drought and its applications in conjunction with the daily

rainfall model,we use the latter pet ic: firstly to paint
a* picture of the spatial characteristics of the South African
rainfall climate;and secondly to illustrate several types of
results of Interest in agricultural planning where the sea-
sonal distribution of daily rainfall amounts is of consi-
derable importance. We concentrate on deficiencies in
rainfall in these examples.

There are three methods of obtaining results from the model.
The first is analytic, in which a formula is derived to
give the required result in terms of the parameters of the
m o d e l . Todorovic and Woolhiser (1975) give such a formula
for the total rainfall in a period, using a very simple
m o d e l , with a single constant probability of rain and ex-
ponentially distributed rainfall amounts. However, even
for such a simple model,the equations are complex and not
feasible for more realistic models. We can, however, as
a second method, derive results directly from the proposed
model by using its Markovian structure. A very simple ex*
ample would be that the estimate of the mean annual number
of wet days is simply the sum of the 365 probabilities of
a wet day. Recurrence relations (Stern 1980, 1981, 1982,
Stern and Coe 1984) can be derived which use numerical procedures to
solve a set of equations, one set for each day,to build up
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r e s ults over a period of i n t e r e s t . The m e t h o d can be used
to provide results on the total rainfall in a g i v e n p e r i o d ,
the p r o b a b i l i t y of long dry spells and the d i s t r i b u t i o n of
the start of the rainy s e a s o n . This a p p r o a c h r a p i d l y leads
to m a t h e m a t i c a l c o m p l i c a t i o n s if some of the m o r e s u b t l e
p r o p e r t i e s of the rainfall process are i n v e s t i g a t e d .

The third and most c o n v e n i e n t method of o b t a i n i n g r e s u l t s
from the model is s i m u l a t i o n . S u f f i c i e n t l y long r e c o r d s
are generated so that a smooth a p p r o x i m a t i o n to the d i s t r i -
bution function of the event of interest is o b t a i n e d . The
g e n e r a t i o n of s e q u e n c e s of wet and dry days from a M a r k o v
chain is s t r a i g h t f o r w a r d w h i l s t the g e n e r a t i o n of random
v a r i a b l e s d i s t r i b u t e d as Weibull is perfectly e c o n o m i c in
terms of computer t i m e . It is quite easy to p r e p a r e a com-
p u t e r program which a c c e p t s the p a r a m e t e r s of the rainfall
process as input and then generates an a r t i f i c i a l rainfall
s e q u e n c e of any desired length - an a l g o r i t h m to do this
is given in Chapter 4 . Once one has this p r o g r a m it can
be used as the basis for simulating any desired p r o p e r t y of
the rainfall p r o c e s s .

The rainfall regime of South Africa

South Africa d i s p l a y s a large variety of regional c l i m a t i c
c h a r a c t e r i s t i c s and t r a n s i t i o n s . The element most c r i -
tical in its effects on land use and economic d e v e l o p m e n t
is rainfall and by a s s o c i a t i o n , s t r e a m f l o w and the a v a i l -
ability of w a t e r . T h e r e have in c o n s e q u e n c e been n u m e r o u s
studies toward the i d e n t i f i c a t i o n of the m a j o r c l i m a t i c
and agricultural regions of South Africa largely based on
the areal d i s t r i b u t i o n and s e a s o n a l i t y of p r e c i p i t a t i o n .
T h e s e c l a s s i f i c a t i o n s have generally been based on a rela-
tively simple view of seasonality and mean annual p r e c i p i -
tation with m o n t h l y m e a n s c o n s t i t u t i n g the basic unit of
a n a l y s i s (Dove 1888 , Schumann and Thompson 1934 ,
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Schumann and Hofmeyr 1938 , S c h u U e 1947 t 1958 ,
Jackson 1951 , Wellington 1955 ) . These regional delimi-
tations were systematically reviewed and adopted by the
South African Weather Bureau (1954-1963) to produce a system
of maps for regional climatic classifications.

These traditional means of portraying precipitation clima-
tology can hardly achieve more than a qualitative descrip-
tion of core regions of different precipitation regimes.
McGee and Hastenrath (1966) considered the spatial contin-
uity of precipitation characteristics and their gradual
transition over South Africa using the results of a har-
monic analysis of mean monthly rainfalls at 513 locations.
Amplitudes, phases and the variances attributable to the
various harmonics were mapped and the seasonal march of
the rainfall climate across the country well illustrated.
Welding and Havenga (1974) considered the spatial correlation of
monthly rainfall sequences and, using a hierarchial classi-
fication technique, delimited regions wherein the correla-
tion' between stations was above a critical value. This
allowed for the detailed identification of precipitation
regions which share a significant level of temporal
association.

We can then view the rainfall climatology of South Africa
either as a spatial continuum where gradual zones of
transition are clearly identi f iable, or as a system of
discrete regions within which selected characteristics of
the time series of monthly or annual rainfalls vary within
some acceptable bounds.

A model of daily rainfalls at 2550 locations provides the
potential for a particularly detailed study of the rain-
fall climate o f South Africa. The strictures imposed by
the need to analyse hundreds of data sets are removed and
replaced by parameter sets and a simple generating model
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from which any statistic of interest and its distribution
can be estimated by simulation. The possibilities for
mapping the march of the precipitation climate across South
Africa are legion. In order to estimate the probability of
the summer rainfall season beginning by a certain date we
may simulate the distribution of say 25 mm or more rain in
5 days or less over pentads starting on 1 October. We may
be particularly interested in the "storminess" of the
climate in the form of the mean percentage of seasonal rain-
fall attributable to days on which the rainfall exceeds
25 mm. We may be interested in the frequency of dry-day
runs exceeding some critical length during the wet season.
Such detail is possible in addition to the more familiar
monthly and annual statistics that we may wish to investi-
gate.

Figures 6.1.1 to 6.1.4 show a sequence of mappings of annual
rainfall percentiles computed at 540 sites over the country
The distribution functions were estimated from a simulation
of. 500 years of daily data summed to provide annual totals
at each point. The maps contain far more information than
the usual presentation of mean annual rainfall which, par-
ticularly in arid and semi-arid regions given the high
variability of the annual regime, conveys a minimum of in-
formation. The continuity of the decline in annual rain-
falls from the coastal regions towards the subcontinental
interior is quite clear and the maps provide a useful
spatial presentation of the distribution of annual rain-
fall totals.

Simulation may be used for the agrncliniatie classification
of a region according to some or other aspect of rainfall.
Such classifications' can be quite complex since in dry
land agriculture edaphic (soil) factors play a role in the
modification of regional rainfall characteristics. Figure 6.2
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FIGURES 6.1.1 and 6.1.2

Contours of equal probability (expressed as percentages) for
the event that the annual rainfall total is less than 200 mm
(top map) and less than 400 mm (bottom map).
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FIGURES 6.1.3 and 6.1.4

Contours of equal probability (expressed as percentages) for
the event that the annual rainfall total is less than 600 mm
(top map) and less than 800 mm (bottom map).
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shows a very simplistic classification of South Africa into
arid, semi-arid, sub-humid and humid regions. It is based
on the median (50* percentile) of annual rainfall and the
actual figures chosen to discriminate between the regions '
are very largely arbitrary. The classification does, how-
ever, delimit the major maize producing areas of the Trans-
vaal, Orange Free State and Northern Natal which account
for 952 of national production (Gillooly and Dyer 1982)
and as encompassed by the 500 mm isohyet. Outside this
area the frequency of moisture stress conditions during the
growing season reduces yields quite considerably. Regions
of South Africa that may, according to this scheme, be
classified as humid, are confined to the Central Natal
coastal belt and the South Western Cape Peninsula.

The inherent variability of annual rainfalls is of obvious
importance in many applications from agriculture to water
resources planning and is usually mapped as the coefficient
of variation of the annual rainfalls. Five hundred years
of data were simulated at five hundred sites over South
Africa and the coefficient of variation computed and mapped.
The result is shown in Figure 6.3 with, as expected, the
higher variability associated with the more arid regions.

The seasonality of precipitation is the tendency for a
place to have more rainfall in certain months or seasons
than in others and a rather efficient way of mapping the
tendency is given by Markham (1970). The assumption is
made that the mean monthly rainfall values are vector
quantities with both direction and magnitude, magnitude
being the amount and direction being the month of the year
expressed in units of arc. Vector direction for mean
monthly rainfall is thus 015° for January, 044° for Feb-
ruary, 074° for March etc. The next step is to add the
twelve monthly vectors. The vector resultant is a measure
of the seasonality of precipitation, its magnitude re-
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FIGURE 6.2

Classification of South Africa in terms of the median annual
rainfal l to ta l .
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FIGURE 6.3

Coefficient of variation of the annual rainfall total
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FIGURES 6.4.1 and 6.4.2

Construction of the seasonality indices for Stellenbosch
and Kakamas, following Markham (1970).
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FIGURE 6.5

Contours of equal seasonality index.
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presenting the degree of seasonal ity, and its direction
the period of seasonal concentration. The ratio between
the magnitude of the resultant and the total mean annual
precipitation, expressed as a percentage, is called the
Seasonality Index. The maximum possible value is 1002 and
would occur if all the precipitation came in a single
month. The minimum value is 0%, occuring if precipitation
is evenly distributed throughout the year. Two graphical
examples of the construction of the index are shown for
Kakamas and Stellenbosch. (Figures 6.4.1 and 6.4.2.) A
map of South Africa is presented using the 500 sets of
simulated data used above (Figure 6 . 5 ) . Clearly high
seasonality indices are associated with the more arid re-
gions, reaching a maximum of 60%. The lowest values (<10*)
are confined to the Southern Cape coastal region where
rainfall can be expected all year round.

The direction of the vector could have been mapped to show
the period within the year over which most rainfall can
be expected. However, since we are attempting to portray
the value of a simulation model of daily rainfalls,we can
show this aspect of the rainfall climate in more detail.
The truncated Fourier series as fitted to the 365 proba-
bilities of a wet day and the 365 mean rainfalls allows us
to estimate very simply (at each of the 2550 locations at
which the model was fitted) that period when the proba-
bility of a wet day reaches a maximum and that period
when the mean daily rainfall reaches a maximum. The two
would not of necessity coincide and the shift may be of
interest. Figures 6.6 and 6.7 show such mappings based
on all 2550 points. We see, for example, that in Pretoria
more wet days are expected in December but more rainfall
in January, for Cape Town June would be expected to pro-
duce a greater amount of precipitation but August a
greater number of wet days. The approach allows such
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FIGURE.6.6

Period of the year when the probability of a rain day is maximum.
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FIGURE 6.7

Period of the year when the mean daily rainfall 1s maximum
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detail to be derived from daily rainfall histories that
within the Karoo regionalizations based on the period of
maximum probability of a wet day could be made as small
as 2 weeks. The distinction between the summer and winter
rainfall regions is quite clear from such maps.

As already pointed out,the potential of the model in the
assessment of regional rainfall regimes is very wide In-
deed. The criteria that may.be proposed for regional
discrimination can be tailored to suit the needs of a
particular investigation with emphasis on agriculture,
streamflow or some distinct aspect of the daily rainfall
from the frequency of drought runs to the seasonality of
storm rainfalls.

Some illustrative applications of the model to point
rainfall characteristics

In many parts of the world the occurrence of long dry
spells during the growing season of a crop is a major
agricultural hazard (Stern and Coe 1982). Using the pro-
posed model the probability of such periods of any arbi-
trary length can be simulated. Figures 6.8.1 and 6,8.2
show the seasonal probability of a dry run of 30 days
starting on each day of the year from 1 September. 1000
years of simulated daily data were used to compute the re-
sult at each station. It can be seen that at Durban the
probability of such a dry spell is comparatively low and
confined to the period between April and July. The other
results portray the distinct seasonality of the rainfall
regime. Complementary to such a result would be one show-
ing the probability of receiving more than x mm of rain-
fall over the next 30 days. We may be in just such a dry
run and it would be useful to be able to estimate the pro-
bability that it will break over some future period of
days. Figure 6.9 shows a simulation result for Pretoria and
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FIGURES 6.8.1 and 6.8.2

Probability of a dry run of 30 days from a given starting
date (abscissa).
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FIGURE 6.9

Probability of receiving more than 100, 80, 60, 40 and 20 nra • -
rainfall over a 30 day period from a given starting date (abscissa)
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the probability of receiving more than 100, 8 0 , 6 0 , 40 and

20 mm over the next 30 days starting on any given day of

the y e a r .

The yield of a crop is obviously related to the amount of
precipitation that falls during some critical period of
g r o w t h . Late-maturing cereal c u l t i v a r s usually have the
highest yield p o t e n t i a l , but this is often not realized
because of moisture stress during the g r a i n f i l l i n g period,
resulting in poor grain size or a high p r o p o r t i o n of
shrivelled grains (Dennet et al 1 9 8 3 ) . G r a i n f i l l i n g in
maize takes approximately 30 days and the p r o b a b i l i t i e s
of receiving less than 50 mm during this period are shown
in Figure 6.10 for crops maturing at any date at four
locations within the major m a i z e - p r o d u c i n g region of South
A f r i c a . The time axis shows p l a n t i n g date and the p r o b a -
bilities refer to the 30 day period between the 70th and
100th day after planting. We see that for L i c h t e n b u r g in
the Western Transvaal, "optimal" planting dates are reached
as early as O c t o b e r whilst for the N o r t h e r n Cape as repre-
sented by Edenburg, planting dates should be confined to
December when the probability of g r a i n f i l l i n g rains even
so is significantly lower than those to be found in and
near the Northern Orange Free State ( P o t c h e f s t r o o m ) and
Western Transvaal ( L i c h t e n b u r g ) .

In the Eastern Orange Free State w i n t e r wheat is an impor-
tant winter c r o p , the success of w h i c h depends on two
factors: firstly that the soil m o i s t u r e c o n t e n t is suffi-
cient to last the crop through the dry w i n t e r months, and
secondly that early spring rains will boost yields sub-
sequent to the exhaustion of soil m o i s t u r e usually by the
end of July. " O p t i m a l " planting dates will in c o n s e q u e n c e
depend upon the timing of the end of the summer rains and
the likelihood of early spring r a i n s . Figure 6.11 shows the
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FIGURE 6.10

Probability of receiving more than 50 run rainfall between 70 and
100 days (inclusive) following the given starting dates (abscissa)
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FIGURE 6.11

Probability of a dry run of 30 days : Vrede and Ficksburg,
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FIGURE 6.12

Probability of receiving more than 25 mm in 5 days or less
Vrede and ficksburg.
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probability o.f the summer rains ending early at two loca-
tions in the Eastern Orange Free State as defined by a
dry run of 30 days starting on 1 January. Such a dry run
late in the summer season heralding an early start to the
winter season would indicate a deficiency of soil moisture
for the winter wheat crop. Figure 6.12 shows the proba-
bility of receiving more than 25 mm in 5 days or less
starting on 1 August and for the same two stations. Such
a rainfall is generally considered to announce the beginning
of the summer rainfall season. From the two graphs it can
be seen that the "dry season" starts 2 to 3 weeks earlier
at Vrede than at Ficksburg whilst spring rains can be ex-
pected less than a week later at the latter with the same
probability.

A most important aspect of drought is the magnitude of storm
event that effectively "breaks" the rainfall deficiency.
For reservoirs suffering from low storage levels only a
flood-producing sequence of rainfalls over a period of
several days is likely to contribute towards an effective
recovery of storage levels. The recipe for such an event
is quite clear, being several days of soaking rains over
the catchment to provide antecedent conditions for a sub-
sequent sequence of storm events that will generate the
best possible level of surface runoff. The antecedent rain-
fall will saturate the soil moisture profile such that the
later storms will provide considerable volumes of stream-
flow rather than be absorbed into soil moisture storages.
Such events generally "broke" the drought of the early
thirties over the Vaal catchment in early October 1933.
At Val, near Standerton, 63 mm was recorded in a 10-day
period followed by 140 mm during the subsequent ten d a y s .
Given Vaal Dam to be in a deficient state of storage it is
of interest to know the probability of receiving such a
storm sequence over a forecast period of interest, say the
next three seasons. Figure 6.13 shows the results of such
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FIGURE 6.13

Probabilities of three specific storm sequences starting
from 1 October. . .._
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a simulation and reveals that the thirties drought was in-
deed broken by a particularly rare sequence of storm
events. Although the antecedent condition would almost
certainly occur before the end of the first season, its^
combination with a subsequent storm period yielding 140 mm
In ten days is unlikely, being only 20* after three seasons.

The drought history of South Africa

In order to review the recent chronology of drought in

South Africa and to place historical and current events in
*

perspective/two approaches were made. The first illustrates

a simple application of simulation results from the model, and

the second looks at the spatial history of drought using

. the historical data.

For each of the six stations upon which we have been con-
centrating so far for Illustrative purposes, namely Pre-
toria, Durban, Stellenbosch, Kakamas, Middelburg and
Pietersburg, 1000 years of data were simulated and the

' distribution functions of n-year totals from 1 to 5 years
plotted. On each plot the two worst n-year runs are shown
(Figures 6.14.1 to 6.14.6). Three periods dominate, namely
the present drought (1978-1983), the mid-forties and the
early nineteen thirties. With the exception of Stellen-
bosch which being in the winter rainfall region is un-
affected by the present drought, the last five-year period
(1978-1983) Is seen to contain the majority of the driest
runs recorded. A characteristic of the current drought is
its duration and although there have been more severe one-
and two-year periods; it does represent one of the worst
periods as viewed in:probabilistic terms. An interesting
comparison is that between 1885-1890 and 1978-1983 at
Durban. In the North Western Cape as represented by
Kakamas, the last five-year run is by far more deficient
from a rainfall point of view than anything recorded
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FIGURES 6.14.1 and 6.14.2

The most severe h istor ical n-year droughts and the i r estimated'
probabil i ty of exceedance.
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FIGURES 6.14.3 and 6.14.4

The most severe historical n-year droughts and their estimated
probability of exceedance.
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FIGURES 6.14.5 and 6.14.6

The most severe historical n-year droughts and their estimated
probability of exceedance
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historically. At Middelburg (Cape Province) the late
nineteen fifties represents the driest period on record,
whilst at Pretoria although 1978-1979 represents the
driest single year on record, the period from 1978-1983 Is
only equally as bad as that from 1961-1966. In the Nort-
hern Transvaal (Pietersburg) the period from 1931-1936 was
in fact drier than the severe drought being experienced in
the area at present.

Such a view of drought at a point, useful as it is, fails
to give any indication of the spatial nature of the defi-
ciency, and an attempt to do just this is now made. Five
hundred and fifty locations were chosen at regular inter-
vals over South Africa and the history of spatial droughtwas
mapped on an annual basis (October-September) from 1920-
"1921 to 1979-1980. In order to overcome distributional
problems a different approach was used in which percentile
values were computed and the annual rainfalls classified
as being above or below these selected percentiles. The
univariate model selected for the study is the Gamma which
has found wide application in the study of precipitation
totals (Barger and Thorn 1949 , Gupta and Panchapakesan

1980 , Mooley and Crutcher 1968 , Neymannand -Scott 1967 t

Shenton and Bowmann 1973 ) and was separately validated
within the present study. The mean

length of record used was 54 years with a minimum length
of 37 years. The reliability of precipitation probabi-
lities estimated from the Gamma distribution for such
sample sizes is quite high (Bridges and Haan 1972) and the
risk of considerable error greatly reduced. For each
sample of annual rainfall the Gamma parameters were esti-
mated by maximum likelihood and the historical record then
screened year by year. Yearly totals that fell below the
50£, 20* and 5% percentiles were noted and the areas suf-
fering such a level of drought mapped, one map for each
year. Simplistically we can view these percentiles as
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representing the 1 in 2, 1 in 5 and 1 in 20 year annual
rainfall deficiency. The sequence of maps so obtained
is shown in Appendix 5. It became apparent during the mapping
exercise that the method of approach was reasonably successful

with juxtaposed stations showing very similar per-
centile levels. When this did not happen the historical
record was examined, generally to reveal a short intense
cluster of rainfall days which boosted the annual total:
That this should occur and be quite localized is to be ex-
pected in a region where summer rainfall is largely a con-
sequence of local instability and convection and the
associated thunderstorms. Thus regional drought is not
necessarily broken by one or a few recording stations re-
porting relatively high annual figures since these almost
certainly would be the result of a very limited number of
storms, the generating mechanisms of which were quite
localised.

In viewing the sequence of sixty maps a number of physio-
graphic controls are apparent in their influence on the
areal extent of rainfall deficiency, the most obvious
being the Eastern Transvaal and Natal escarpments. Another
is the Outeniqua mountains of the Southern Cape coastal
belt. The maps bear close scrutiny in conjunction with
the work of Harrison (1983) who, using principal components
analysis, proposed a generalised classification of South
African- rain-bearing synoptic systems. These systems con-
trol the regional rainfall and it is qualitatively apparent
that areas with one dominant rain-bearing mechanism generally
coincide with areas where historically rainfall deficien-
cies have tended to be centred, A major feature of the
maps is the dominance of deficiency along a north-south
axis over the centre of the country. It is attractive to
associate this feature with the major rain-bearing dis-
turbance which normally occurs over the centre of South
Africa and is the major contributor to summer rainfall over
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the interior. This is a system of cloud bands which con-
nect the tropical circulations with mid-latitude cyclones
and which satellite imagery has generally shown to be weak
or absent during drier periods (Harrison 1983 ) . The
deficiency of particular rainbearing systems such as cyclonic
disturbances over Natal no doubt accounts for serious drought
confined to this particular region.

The major value of the maps is that they provide a view of
the extent, severity and frequency of sub-continental
drought from 1920. The first period of such deficiency
begins in 1925-1926 with severe shortfalls in annual preci-
pitation over most of the central interior with the excep-
tion of the Eastern Transvaal highveld and lowveld. We
note that Natal and the South Western Cape show no defici-
e n c y during 1925-1926, confirming the fact that over these
regions the rainfall generating mechanism is distinct from
that over the major part of the country. The drought
tended to linger over the southern Cape interior during
1926-1927. During 1927-1928 the severe drought that affected
the-South Western Cape (cf. Figure 6.14.1 for Stellen-
bosch) is apparent with the central "interior of Natal and
Transvaal also suffering shortfalls.

The drought of the early nineteen thirties reached maximum
development during the 1932-1933 season, with vast areas of
the country severely affected whilst large areas were simi-
larly affected during the 1948-1949 season. An interesting
period Is that from 1963-1964 to 1965-1966 where the in-
fluence of the Eastern Transvaal escarpment is clearly
apparent. Over the Northern Transvaal in particular these
years represent scsr.e cf the driest experienced.

The worst drought in the South Western Cape from a water re-
sources point of view occurred during the 1972-1973 season.
The event was very largely confined to the coastal regions
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and the southern interior with serious shortfalls in dam
levels. Over most of the interior the early and mid
seventies were particularly wet with serious flooding
during the 1974-1975 season. The present drought is seen
to have developed over the Northern Transvaal during

1978-1979 and over Natal during 1979-1980.

The maps illustrate the spatial nature of interannual rain-
fall variability over South Africa and show that drought
is an inherent part of the climate. The search for a
source for such variability has attracted considerable
attention given the seriousness of the current drought.
Much research in South Africa and elsewhere has given sup-
port to the results of Arkin (1982), Pan and Oort (1982)
and" Winston (1982) which found that the aperiodic warmings of the
equatorial tropical sea surface temperatures can have a
dramatic impact on the planetary scale circulations.
Rasmussen and Carpenter (1982) have shown that these warm-
Ings may take 12-18 months to develop from outset to matu-
rity to their final disappearance, with the area of the
ocean which is warmer than normal of the order of 5-102
of the earth's surface. That these aperiodic sea surface
temperature anomalies have a predictable quasi-periodicity,
and therefore may be useful in the prediction of the out-
set of perennial periods of droughttis an attractive field
of research -particularly as streamflow and annual rain-
falls from Indonesia to India to South Africa have an
apparent quasi-periodicity (Quinn zt at 1978 , Angell

1981 , Tyson and Dyer 1978 ) . From a purely statistical
viewpoint such quasi-periodicity is rarely apparent from
the correlogram of the annual time series of interest;
filters, usually in the form of moving averages.are re-
sorted to.

The process of filtering introduces serial correlation in
the resulting time series (even if the original series
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is serially uncorrelated) and in consequence this manipu-
lation alone often leads to the creation of pseudo-cycles.
This fact constitutes one of the main obstacles in estab-
lishing the existence of true cycles.

In order to investigate the possible existence of drought
cycles from a somewhat novel point of view the total areas
covered by each of the three severity categories were
determined by means of a planimeter for each of the 60 maps
given in Appendix 5. Table 1 gives the areas, represented
as a percentage of the total land area of South Africa,
corresponding to the 50Z, 2 0 % and 5% percentiles respect-
ively. The serial correlation coefficients were estimated
for lags 1 to 20 and are given in Table 2. The critical
values (95% significance level) for the null hypothesis
that a particular (population) serial correlation coeffi-
cient is zero are approximately - 2//ETJ and 2 / / M (see
Box and Jenkins 1 9 7 0 ) , i.e. -0,26 and 0,26. The only
estimate which falls in the critical region is that of lag
19, for the 2 0 % percentile series; a few others are quite
close to the critical values. Unfortunately this does not
really establish that the serial correlation for this lag
is significantly different from zero. It would have done
so if we had specified that lag 19 was the (single) lag
under consideration a priioKi. What we actually did, how-
ever, was to compute all the serial correlations from lags
1 to 20 and then we looked around for the largest one.
Now the distribution of laxgzAt estimated serial correla-
tion coefficient under the null hypothesis is quite differ-
ent from that of any of the individual ones and leads to
quite different critical points. Only very coarse
approximations based on Bonferroni bounds are available
and it can be established for example that the upper cri-
tical point is lower than (approximately) 0 t 4 5 * .

*We wish to thank Professor C.G. Troskie, Department of Mathematical
Statistics, University of Cape Town for carrying out this computation.
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But whatever the exact critical value may be, it is certain
that it will be a good deal larger than the observed value
of 0,27. We have therefore insufficient evidence to
establish the existence of a 19-year or any other cycle.
Interestingly enough Thompson (1981) postulates a 19,2
cycle based on data from 18 meteorological stations between
Margate in the south and Hluhluwe in the north and as far
Inland as Greytown.

A somewhat puzzling feature of the data in Table 1 and
which we are not able to explain is that the means for the
three series are 41,172, 11,68% and 2,23%. We would have
expected these to be closer to 50%, 20% and 5%. A test of
the hypothesis that the observed averages differ signifi-
cantly from these values is difficult to construct in this
case because there is a great number of complicating
factors on which the distribution of a suitable test stat-
istic would depend, e.g. the crosscorrelation coefficient
between each of the stations considered, the relative
"coverage" of each station, and so on. It is therefore
difficult to gauge precisely how unlikely these averages
are.
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Year 502 20% SX Year 50% 20S

1920/21
1921/22
1922/23
1923/24
1924/25
1925/26
1926/27
1927/28
1928/29
1929/30
1930/31
1931/32
1932/33
1933/34
1934/35
1935/36
1936/37
1937/38
.1938/39
1939/40
1940/41
1941/42
1942/43
1943/44
1944/45
1945/46
1946/47
1947/48
1948/49
1949/50

26,46
53,30
42,59
32,83
10,64
81,14
79,80
33,91
24,62
64,48
70,93
72,89
91,67
33,41
41,74
65,82
44,66
46,58
13,48
27,65
39,29
63,10
16,40
21,66
90,32
60,22
76,46
23,50
91,74
19,97

4,30
17,13
4,49
9,60
2,46
36,33
20,31
11,98

• 5,38
12,56
15,86
15,40
60,56
4,38
12,48
17,97
5,57
8,91
2,65
4,69
8,03
18,09
1,46
3,46
27,23
15,67
19,47
3,88

36,18
2,69

0,19
2,69
0,00
1,19
0,50
15,48
3,92
2,73
0,61
0,65
2,73
1,57
18,86
0,08
0,31
0,69
0,54
1,23
0,12
0,81
0,88
2,88
0,04
0,00
4,95
3,76
4,11
0,35
13,44
0,15

1950/51
1951/52
1952/53
1953/54
1954/55
1955/56
1956/57
1957/58
1958/59
1959/60
1960/61
1961/62
1962/63
1963/64
1964/65
1965/66
1966/67
1967/68
1968/69
1969/70
1970/71
1971/72
1972/73
1973/74
1974/75
1975/76
1976/77
1977/78
1978/79
1979/80

61,64
69,66
39,98
26,11
29,99
26,34
23,66
38,59
32,41
47,89
15,32
37,14
25,19
53,30
34,98
6,34
20,24
46,16
45,55
59,41
28,80
28,57
41,05
7,83
9,87
5,07
6,76
31,68
64,32
45,12

8,84
28,07
.7,87.
5,80
5,68
2,92
1,38

12,25
4,03
17,13
1,23
11,83
3,57
15,51
8,60

32,10
1,80

16,28
15,02
15,17
5,38
5,65
14,02
0,77
1,69
0,42
1.19
6,30
20,31
21,12

1,08
3.11
0,77
0,92
0,51
0,23
0,00
1.27
0,65
2,00
0,50
1,61
0,00
2,11
0,77
12,25
0,00
4,76
1,84
2,96
0,88
0,00
3,38
0,00
0,00
0,00
0,00
1,34
1,69
3,49

Percentage (by area) of South Africa with total annual rainfall
below the 50%, 20% and 5% percentiles of the local annual total
distribution.



148.

TABLE 2

lag SOX 20%

1
2
3
4
5
6
7

8
9

10

11
12" .

13
14 '

15
16

17
18
19
20

19
8
3

21
10
2

- 4

-18
10

5
8

-10
3

6
17

10

. - 7
11
24
2

- 8
10
2
2

-11
-18

9
-24

- 5

-16
- 5

- 8
6

11
2

20
4

- 3
27
3

-10
7

- 9
- 2
- 7
- 7

25
-17

; . g

-19
-10
- 5
- 2

4
- 6
23

,0
0

- 5
16
2

Estimated serial correlation coefficients
(times 100) for the three time series
given in Table 1.
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7. A FAMILY OF DROUGHT INDICES

Fundamentally drought 1s a deficiency of rainfall relative
to water requirements. This shortfall manifests Itself
in many different ways from crop failure to deficiencies in
reservoir levels. Its impact is directly related to its
duration and severity as well as its temporal nature. For
example a three-week dry run during the active growing
season of a commerical crop may constitute a particular
agricultural drought whereas for a system of reservoirs such
a shortfall may be insignificant. This implies that any
single universal definition of drought would be inappro-
priate for all but a few water consumers.

Ideally the definition of drought is user specific but even
at this level the problem is complex. For example, a parti-
cular farmer may grow two different crops each of which
demandsdifferent water usage, at different times of the year;
an"industry may consume water for different purposes, for
example for cooling and for the dilution of effluent. It
is not feasible in a single study to analyse, the specific
requirements associated with each of the different water-
related activities, but on the other hand It is clear that
a single notion of drought is inadequate. We need a simple
working tool which is sufficiently flexible to accommodate
a range of situations. We propose a family of drought in-
dices as a minimal requirement. The particular family we
consider is one of many that are possible but it enjoys the
kind of properties that are associated with the commonly
accepted image of the drought process. Furthermore the
indices have analogies in nature, for example streamflow,
soil moisture, etc ... .

Essentially a drought Index is some measure of wetness/
dryness at each point in time which simultaneously takes

A
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account of the antecedent conditions. Mathematically such
an index is constructed by passing the primary rainfall
process through a suitable filter. In the next section we
will discuss a particular type of filter for constructing
a general measure of wetness/dryness. Examples of appli-
cation are discussed in Chapter 8.

7.1 LINEAR FILTERS; THE EXPONENTIAL FAMILY OF DROUGHT
INDICES

An Ideal way to measure drought severity would be by proxy
where although rainfall is the driving mechanism the impact
is expressed in terns of crop yield, reservoir storage,
soi.l moisture storage, water table level, streamflow, etc ,. .
In practice, however, historical records are either un-
available or too short for assessing the risk associated
with a particular drought event and until such records be-
come available one will be obliged to work with rainfall
data. ^By suitable selection of a filter applied to the
primary driving process, i.e. rainfall, we can imitate in
part at least the secondary or tertiary process of interest.
The precise way in which a process such as water table level
is related to rainfall is complex and is a function of
climatic, physiographic and geological factors as well as
soil conservation practice and other human activities.
The expense of accurately determining the precise nature of

such relationships, many of which we do not yet clearly under-
stand and all of which differ from place to place, is considerable.I.t is more

appropriate (at least as far as the assessment of drought
risk is concerned) to employ some simple approximating re-
lationships which preserve the general character
of the process of interest. In this respect the filter des-
cribed below is well suited to a wide range of practical
situations.

In what follows the basic unit of time is taken to be one
day. This is done for convenience; any other unit of time
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would also do. By the "response" to a particular rainfall
event we mean the contribution, over time, due to that
event to the level of the process. The term process here
is used to represent the level over time of some variable
of interest, such as streamflow, soil moisture and so on.

In constructing a measure for one of the processes men-
tioned above it has to be kept in mind that the response to
a rainfall event continues after the event. For example,
streams continue to flow, soil continues to contain water
after it has stopped raining. In other words, the level of
the process on a given day depends not only on the amount
of rain which falls on that day but also on the amounts
which fell on preceding days. It is also quite obvious

. that the level of the process on a given day does not depend
•on rainfall events which occur on subsequent days, that is,
the response function is zero for such events. This obser-
vation may appear trivial but this condition is not satis-
fied for ordinary moving averaging, a common index for the
state of wetness/dryness particularly in studies relating
to drought cycles. A further property of the response
function is that 1t decays with time. The time taken for
it to reach zero (or some negligible quantity) can be as
short as a few hours for a process such as overland flow
or it can be as long as several months for soil moisture
or base flow.

The model whtch we construct is based on three further con-
• ditions. Strictly speaking these are not met by the pro- .
cesses under consideration which are in fact much more com-
plex than is implied by the conditions. The model must
therefore be regarded as an approximation. Its accuracy
will, for each process, depend on the degree to which the
following conditions are met:
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(a) LINEARITY: This requires that the level of the pro-
cess on a given day be the sum of the individual con-
tributions due to rainfall events up to and including
that day and that these contributions do not them-
selves depend on the level of the process.

(b) PROPORTIONALITY: The contribution to the level of the
process due to a particular rainfall event is proport-
ional to the rainfall depth.

(c) STATIONARITY: The contribution to the level of the
process on day t due to rainfall on day j depends only
on the interval (t-j) and not on the particular times
t and j. (We note that this does not mean we are

_ assuming that the process must be stationary, but only
that the response function does not depend on the time
of the year.)

Processes which meet condition (a) are called linearly
filtered processes. Conditions (b) and (c) define parti-
cularly simple types of such processes. We denote the
rainfall depth by R(t) and the level of the filtered pro-
cess by F(t) where t denotes the day starting from some
arbitrary origin. It can be shown that filtered processes
which satisfy the above conditions can be represented in
the form

where r(x) is the response function which we have assumed
to have the properties

r(x) « 0 for x < 0, (2a)

lim r(x) = 0 . 12b)
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Strictly speaking we must also require that X x B 0 1
r ( x ) I

is finite. For the types of processes which we consider
this requirement is always met.

The response function, r(x), describes the contribution to
the level of the process which arises from a unit of rain-
fall x days after the rainfall occurs. For example the
response function associated with streamflow is the well-
known unit hydrograph, for soil moisture there are different
response functions depending on the depth and type of soil.
Near the surface the response decays exponentially; deeper
down the decay is generally not exponential. If the re-
sponse function were known then it would be possible to
calculate F(t) from rainfall records using equation (1).
In many situations r(x) is not known but,given some direct
measurements on the process F(t), it can be estimated. For
example if soil moisture measurements over even a short
period of time are available and a long rainfall record is
also available then one can use the concurrent records to
estimate r(x) and thereby make use of (1) to estimate F(t)
over the whole period for which rainfall data are available
A suitable estimation procedure is given In Appendix 4.

It is not necessary to associate a particular physical pro-
cess to models of the type given in (1); they can also be
used as general measures of the state of wetness/dryness.
Naturally the properties of each measure depends on the
particular response function (or filter) which is used.
For example a simple filter is r(OJ = r(1 ) * . . . = r(L-1Js1/L
and r(x) = 0 for x > L. This is called a rectangular
filter and is illustrated in Figure 7.1. Equation (1)
then reduces to

F(t) = I l\'ml R(t-i) . t = L.L+1,...
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FIGURE 7.1 Rectangular filter
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that is, the quantity F(t) describes the average rainfall
over days t to t-L-1 (inclusive). The so-called "band-
width", L, can be selected to suit one's specific purpose.

Any general index of the state of wetness/dryness is essen-
tially arbitrary and one is free to select whatever may be
convenient. However, a linearly filtered process with
exponential response function enjoys a number of useful
properties both theoretical and practical. It is defined
by

f(x) = p x . x * 0,1,2,..., (3)

0 < p < 1 ,

where the parameter p determines the rate of decay of the
response. If p is close to zero then the decay is rapid
whereas If it is close to one the decay is slow. This is
illustrated in Figures 7.2.1 and 7.2.2.

The main advantage of the exponential filter is that many
of the physical processes which we have mentioned happen
to have response functions which are at least approxi-
mately of this form. In other words an exponentially
filtered process can be used as an approximate model for
processes such as streamflow, run-off, soil moisture,
etc ... . It also conforms quite well to our generally
accepted notions of how an index of wetness/dryness should
behave.

Ordinary moving averages, i.e. rectangular filters, are
quite often used as measures of wetness/dryness but they
are not, in our opinion, suitable for the purpose. By
using this index one is implicitly making the assumption
that at on a given day, say t, x units of rainfall on day t
are equivalent to having had x units of rainfall on day t-1,
or on day t-2, and so on back to day t-L+1. In practice
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20 mm of rain which fell say one week ago is not equivalent
to 20 mm of rain today. Morevoer it is assumed that L days
after the event the "effect" of the rainfall suddenly
vanishes. Natural processes simply do not behave in this
way; their response functions do not remain constant for
several days, and they decay gradually over time, not
abruptly.

A second useful property of the exponential filter is that
it is determined (except for a scaling factor which may be
necessary in some applications) by a single parameter, p.
.This not only keeps matters simple but as every parameter
in a model has to be estimated or guessed it is obviously
•important to have as few of them as possible. This para-
meter has a simple interpretation, it describes the rate of
decay of the response. In cases where no observations what-
soever are available on the process of interest one can
guess the value of p by guessing another quantity which de-
termines p, namely the hati-H&e., h, of the filter. This
is related to p by the following equations;

p = expUn(i)/h) (4a)

h - ln{i)/tn(p). (4b)

The half-Life is the time required for the response to a
rainfall event to decay to exactly half of its original
value, see Figure 7,3. Here response can be taken to
stand for "benefit", "effect", "level" or whatever may be
appropriate for the problem at hand. Experienced hydro-
logists usually have a fairly good idea of what the half-
life of the response function of a process should be.
This can then be used to determine p by means of (4a).

A further convenient property of the exponential filter
leads to a wetness/dryness index which has a simple
structure. Equation (1) reduces to
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F(t) =pF(t-1) + R(t) , t « 2,3,... (5a)

where only the case t = 1 has to be computed separately:

'I! oi R(1-i) (5b)

and L is selected so that p x is negligibly small for x > L.

This recurrence formula is convenient to compute F(t) which
(except for F ( U ) is only a function of R(t), p and F(t-1)
and is consequently convenient to update as fresh rainfall
data become available. As an index,F(t) is also easy to
interpret: the state of wetness/dryness on a given day is
a fraction p of the state on the preceding day plus the
current rainfall depth.

i

Once the constant p (or equivalent^ the half-life, h) has
been specified the distributional properties of F(t) are
completely determinedby those of the rainfall process. In
other words once a model for the rainfall process is avail-
able one can answer any question relating to the behaviour
of the filtered process. So for example one can define a
drought as being a time when F(t) falls below some required
level which need not be constant over the year. Suppose
that at time t a level D(t) is required for the effective
operation of some water related activity, t = 1,2,... .
Then the process of negative deviations from D(t) provide
an appropriate index of drought:

D_(t) = min(0, D(t)-F(t)) , t = 1,2

The duration of a drought is then the time which D_(t)
remains below zero. Alternatively it may be convenient to
associate a cost function with deviations of F(t) from
D(t) :

A
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C(t) « f(D(t)-F(t)) f t . 1,2,...

and so on. The rainfall model described earlier in this
chapter can be used to derive the quantities of interest
relating to D _ ( t ) , C(t) or any other such process. For ex-
ample one could compute the probability that a drought
begins at a particular time, that it will be broken within
a certain time, the distribution of the average drought
severity per year, the average cost attributable to short-
age of rainfall and so on.

The filtered process described above can be used as a
general-purpose measure of wetness/dryness. It is flexible
because the user is free to select the half-life to meet
his -specific needs. A short half-life would be suitable
In situations where regularity of rainfall is important,
for example in many agricultural applications; a long half-
life where the amount rather than the regularity of rain-
fall 1s Important, for example in applications relating to
reservoir storage levels.

In the Initial stages of this project it was our intention
to find stochastic models to describe the exponential
filtered process directly (rather than as by-products of
the rainfall m o d e l ) . In particular we considered the follow
ing types of "standardised" drought indices:

I(t) = {F(t)-EF(t)}/S.D.(F(t)) (6a)

J(t) = F(t)/EF(t) , t * 1,2,... (6b)

where E denotes expectation and S.D. the standard deviation.

It was established that the severity of droughts as measured
in terms of such indices was very strongly correlated to
its duration. This confirmed the findings of Hulley (1980)
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and it was therefore reasonable to describe droughts in
terms of only one of these two variables. We then attempted
to find probability distributions to describe the durations.
The Sichel distribution (Sichel 1971) was found to be
suitable for a number of stations and for half-lives in the
range one to six weeks, approximately (Zucchini 1974).
For many records, particularly those associated with highly
seasonal rainfall no suitable distribution could be found.
The problem is that in some areas there is an appreciable
probability that it will not rain at all during the dry
season and in the event of drought one has to wait until the
following rainy season before the drought can be broken.
Consequently the probability distribution of drought dura-
tion is quasi-periodic in spite of the standardisations
(6a) or (6b). It would perhaps have been possible to pos-
tulate new probability distributions but these would be
inevitably quite complex and furthermore their parameters
would have to vary seasonally.

A second and equally troublesome drawback of standardised
indices in regions with a marked dry season 1s that rain-
fall events in the dry season are disproportionately in-
flated by such indices. So, for example, a relatively in-
significant amount of rainfall in the dry season can
"break" a drought according to the index. One could of
course restrict attention to the rainy season but this
would involve one in arbitrary definitions of what con-
stitutes this season. Moreover storms in the dry season
can significantly contribute to reservoir storage levels,
i.e. break certain types of drought,and so it would be un-
satisfactory to ignore dry seasons altogether.

The whole question of what might be the best way of con-
structing a general drought index becomes rather unim-
portant once a model for the rainfall process is available,
because the properties of any rainfall-based index can be
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derived with relative ease. The family of indices pro-
posed in this chapter is one of many possibilities. As
was pointed out, it has a number of desirable features and
if a "general purpose" family of indices is required we
would recommend that it be used, but in its untransformed
form, i.e. as given in (5a) and (5b). Applications of
this index are discussed in the next chapter.
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8. APPLICATIONS'OF THE EXPONENTIAL FAMILY OF
DROUGHT INDICES

For the illustration of and in order to assess the utility
of the proposed drought model a considerable number of
applications are given. The primary intention is to show
that such a modelling scheme provides us with a very wide
spectrum of potential applications from the retrospective
assessment of historical droughts to the ability to fore-
cast the likelihood of recovery over a particular horizon
from any given or current state of rainfall deficiency. We
can view the history or future of a drought either as a
process of shortfalls from day to day or as a sum of short-

"falls over some discrete time interval, for example a
month or a year. Except where otherwise stated the half-
life considered is ten days, which is largely arbitrary
although having some physical justification in that the
average life of a hydrograph in the Vaal River at Standerton
1s~*ten days whilst at intermediate depths many of the more
common soil types found in South Africa "dry out" at a rate
of this order of magnitude, (see e.g. Beukes and Weber 1981 ).

We are obviously in a position to change the half-life and
therefore the rate of decay of the filtered process at will,
given some knowledge of the particular physical system that
we are attempting to imitate. Figure 8.1 portrays the
operation of the model given a one-year sequence of daily
rainfalls at a station in Johannesburg. Even at this pri-
mary level of application the treatment of rainfall in
such a*way is of considerable value.

A visual inspection of the daily rainfalls as measured re-
veals the obvious features of surpluses in October, late
January/early February and early March. But to what degree
Is the three-month run from November to January deficient,
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FIGURE 8.1 An illustration of the level of the filtered process
and its expectation over a single year at Johannesburg
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since no daily rainfall during this period exceeded 20 mm?
That it is a deficit run is clear from B and C with the
difference between expectation and historical rainfall
reaching a shortfall of 20 to 40 mm. We would accumulate
the sum of deficits over the period and thus accord the
event a run sum,thereby having information on the duration
in days, the total deficit and maximum deficit of this
drought.

The obvious next step would be to associate a probability
of occurrence with the event either as an entity in itself
or by way of evaluating the risk of being x mm in deficit
on each of these particular days of the year. Figure 8.2
shows the daily percentiles of surplus and deficit for

"Pretoria and Stellenbosch estimated from 1000 years of
simulated data. For Pretoria on 1 February there is an
equal chance of being more than 48 mm in deficit or 80 mm
in surplus with the median position of this day being a
slight deficit. Even though computed from a relatively
large number of simulations the percentile estimates are
far from smooth and illustrate a wide sampling variation
from day to day, particularly at .the extremes, as expected.
However, if one is satisfied that the estimates are reasonable it is
straightforward to fit a smooth periodic function through
each percentile from day 1 to 365. Other points that are
noteworthy are the skewed nature of the distribution of
surplus/deficit on any particular day and the seasonality
of the percentiles over the year. During the wet season
our expectations of rainfall are higher with the conse-
quence that any unseasonal run of dry days would be re-
sponsible for larger deficits whilst the possibility of
larger surpluses is naturally greater than in the dry
season.

Given these percentiles of surplus/deficit it is of interest
to examine historical years during which drought was ex-
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FIGURE 8.2 Percentiies of surplus and deficit computed on a daily
basis from 1000 years of simulated data
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perienced and establish the level of the filtered rainfall
from day to day. Figure 8.3 shows just such an analysis,
with the percentiles now smooth after fitting a harmonic
function through those shown 1n Figure 8.2. In both ex-
amples, the status of the index of surplus/deficit is
plotted for the last day of each month and shows for Pre-
toria that by the end of January 1933 it had almost reached
the 1* level whilst on the same day in 1966 some consider*
able recovery was evident due to good rains over the pre-
vious 60 days. Most analyses so far (cf. Figure 6.14.4)
have shown 1927/8 to be the driest year on record at
Stellenbosch and the severity of the situation can clearly
be seen. During 1972/3, the second driest year, some un-
seasonal rainfalls gave a slight surplus but the earlier
winter rains are seen to be particularly deficient. On
•both occasions maximum deficit was reached at the end of
June.

The model can be further employed to forecast the surplus/
deficit situation over a horizon of any given length from
days to years and from any given initial condition. Con-
sider a hypothetical surplus of 10 mm at Stellenbosch on
1 January. We see from Figure 8.2 that the probability of
being'In such a state on this day is 10S or less. From
Figure 8.4, where the state is forecast over the next 365
days and given at the end of each week, we see that the
probability of improving on this surplus is very small for
the next six weeks and that there 1s a 90S chance of being
in deficit within two weeks. By mid-year (week 26) there
is an equal chance of being more than 45 mm in deficit
and 70 mm in surplus. By the end of the year the chance
of still being in surplus is slightly less than 50* and
that of ending the year as it began, with a 10 mm surplus,
1s about 10*.

Having explored some initial applications of the drought
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FIGURE 8.3 Historical levels of surplus/deficit (plotted for the
last day of each month) with their associated daily
percentiles
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FIGURE 8.4 Forecast of surplus/deficit over a 365-day horizon given
a surplus of 10 mm on 1 January at Stellenbosch. Selected
percentiles are shown
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model by example, it is pertinent at this point to examine
how the various aspects of deficit (run length, run sum
and maximum run deficit) are affected by the selection of
a half-life for the filtered rainfall. It is conceivable
that we may have some idea of these properties of the
physical process that we are attempting to imitate. For
example, the data from lysimeter studies may reveal some
information on the distribution of drought runs or run
sums for a particular plant/soil system under conditions
of natural rainfall. It would be useful to be able to
choose a half-life in advance in the knowledge that the
distribution of these aspects of the lysimeter study are
preserved. Choosing Pretoria as an example Figure 8.5
shows that an increase in half-life will increase the run
length at a particular probability level and similarly
affect the run sum and maximum deficit within a run. A
longer half-life will, in consequence, produce more severe
droughts of longer duration with the implication that only
considerable rainfall over a period will lead to recovery.
A physical analogy would be the performance of a water
table over an extended (perhaps n-year) period of rainfall
deficit. Ground water levels, having fallen to some un- •
commonly low level may require an extended period of
surplus prior to any recovery to levels that would be con-
sidered normal.

So far we have considered the level of the p*oceA-a of sur-
plus/deficit which would be pertinent to the imitation of
a soil moisture regime, for example. In considering river
flow and, in particular, reservoir storages it is perhaps
more relevant to emphasise run sums. We could accumulate
the daily surplus/deficit over each year of a historical
record and so identify periods of drought. Two such ex-
amples are given in Figures 8.6 and 8.7 and an estimate of
the percentiles of surplus/deficit obtained by simulation
(1000 replicates) adds further to the utility of the
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FIGURE 8.5 Effect of choice of hal f - l i fe on the distr ibution of
various aspects of drought runs
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FIGURE 8.6 Annual sums of surplus/deficit accumulated on a dally
basis with associated percentiles.
A: 1 life * 10 days; B: 5 life « 30 days
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FIGURE 8.7 Annual sums of surplus/deficit accumulated on a
basis with associated percentiles.
A: J l i f e * 10 days; B: J l i f e * 30 days
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presentation. Durban (mean annual precipitation : 1000 mm)
and Steinkopf (mean annual precipitation : 140 mm) portray
extremes of rainfall regimes within South Africa but both .
illustrate drought as an integral part of the precipita-
tion climate. The debit or credit is accumulated on a daily
basis and the total annual position computed in this way
would not necessarily correspond with some classification
of years based simply on total annual rainfall. If there
was only one wet day in a particular year on which 1J times
the annual mean rainfall occurred then the year would nor-
mally be considered wet. Such an occurrence could happen
in an extremely arid environment. However, within the
scheme presented here such a year would show a deficit
since with a short half-life, say ten days, the surplus
gained from such an event would soon decay. Similarly,
unseasonal rainfall, given the failure of the seasonal
rains, may amount to the annual mean and thus the classifica-
tion of the year as normal. However, the accumulated de-
ficit due to the failure of the seasonal rains would, in
terms of our model, be so large as to negate the surplus
gained unseasonally and thus the year would show a deficit.
In other words a deficit occurs not only as a consequence
of an overall lack of rainfall but additionally because
the rainfall occurs at an unexpected time or is attributed
to unusually few rain days. Such rainfall is generally
less effective for the generation of streamflow and there-
fore of reservoir storage. A considerable volume of such
events would be taken up in filling depleted soil moisture
storage prior to the generation of surface runoff.

It is true to say that the^e aspects of drought have largely
been ignored in favour of a relatively simplistic view of
credit and debit assessed relative to a mean or some
familiar view of the total expected rainfall account over
the year. Paradoxically, we subjectively view a year dif-
ferently in expecting certain times to be wet and any
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deviations or unseasonaiity in daily rainfalls is seen as
a shortfall whatever the end of the year account may re-
veal. The model behaves in precisely the same way.

That the level of the annual sum of surplus/deficit is not
simply related to the corresponding number of wet days that
occurred is shown in Figures 8.8 and 8.9. The correlation
improves significantly as the definition of a wet day is
changed from one upon which more than 0 mm fell to one
which might be considered to be a storm day (more than 20
or 40 mm at Durban; more than 10 mm at Steinkopf). This
implies that deficits are more significantly related to a
lack of storms rather than to a lack ,of wet days pe-t ae.

•For periods shorter than one year we can either consider
the process or the sum of the process, depending upon the
field of interest. Figure 8.10 shows the level of the index
at Durban on the last day of each month from October 1871
to September 1927. Although periods of surplus are easily
seen, periods of deficit are less apparent and if it is
our intention to view the monthly history of surplus/
deficit then its monthly sum would be more revealing. The
driest five year period at Durban prior to 1980 was that
from October 1885 to September 1890 (cf. Figure 6.14.1)
and the sum of the daily index for each of these 60 months
is shown in Figure 8.11. The period involved the overall
failure of the summer rainfall in all years with the
possible exception of 1888/9. A characteristic of the
drought was that the last year in the run (1889/90) was by
far the worst which, following upon four unusually dry
years, would make the event unusually severe. A second ex-
ample, the nine-year sequence from October 1925 to September
1934; is characterised by a lack of surplus in any month
from June 1927 to March 1929.

The monthly sums of the index are now used to portray the



174.

FIGURE 8.8 Relationship between annual frequency of various types
of wet day and total annual deficit/surplus
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FIGURE 8.9 Relationship between annual frequency of various types
of wet day and total annual deficit/surplus
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FIGURE 8.10 Index of surplus/deficit on the last day of each month
at Durban from October 1871 to September 1927, with
associated 5%and 95* percentiies
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FIGURE 8.11 Monthly sum of surplus/deficit at Durban for two
drought periods with associated 51 and 95X percent!les
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history of what is generally seen as the most severe
drought over the summer rainfall region to have occurred
prior to 1978. The impact of the event of the early nine-
teen thirties was made all the more memorable combined as
it was with severe economic depression. It is particularly
significant in that until recently (1980) it provided the
critical inflow period for reservoir design and operation
upon which much official planning was based. The "assured
yield" of water schemes was almost totally founded on
their ability to survive a drought of the same magnitude.
Figures 8.12, 8.13 and 8.14 illustrate the monthly history
of the drought from October 1929 to September 1935 at
eight stations selected from various parts of the summer
rainfall region. A number of points emerge. The drought
generally began in early 1930 with a serious deficiency in
the seasonal rainfall, that is with the exception of
Logaging, near Mafeking in the North Western Transvaal, where
no surplus at all had been recorded from September 1929.
The worst period of deficit was from October 1931 to
September 1933 when during the two seasons the monthly de-
ficiencies reached extreme levels. With the exception of
the North Western Transvaal, the drought broke simultan-
eously over the region with exceptional surpluses during
the summer of 1933/4.

In the South Western Cape (winter rainfall region) the
worst drought, at least from a water resources point of
view, occurred during the 1972/3 season. Figures 8.15 and
8.16 show the monthly history of the event at four stations
and illustrate that the deficiency effectively lasted for
three years starting in the winter of 1970. The drought
broke with considerable late winter rainfalls providing
exceptional surpluses during 1974.

We can look at such historical droughts in a way'that em-
phasises their risk of occurrence rather than their
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Monthly sum of surplus/deficit for the period October
1929 to September 1935 for selected stations and with
associated 5*and 95% percent!les.
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FIGURE 8.13 Monthly sum of surplus/deficit for the period October
1929 to September 1935 for selected stations and with
associated Sand 95* percent!les
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FIGURE 8.14 Monthly sum of surplus/deficit for the period October
1929 to September 1935 for selected stations and with
associated 5Iand 951 percentUes
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FIGURE 8 . 1 5 Monthly sum of surplus/deficit for the period October
1970 to September 1974 at Cape Town and Stellenbosch
with associated 5Xand 95* percentiles
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FIGURE 8.16 Monthly sum of surplus/deficit for the period October
1970 to September 1974 at Worcester and Paarl with
associated 5Sand 951 percentiles
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chronology. By proposing a starting and ending date for
the 1930/1 to 1933/4 event at Pretoria according to some
criterion,we can simulate the distribution of surplus/
deficit over the particular period of months. For example,
we might choose 1 October 1930 as the starting date when
serious deficits began to develop and 31 January 1934 as
the ending date when the sum of daily surpluses over the
previous 31 days exceeded the 5% level. We then simulated
this period (1000 times) starting at the historical posi-
tion of the process on 30 September 1930 and computed the
distribution of the sum of surplus/deficit over this 40-
month period. Such a result is shown in Figure 8.17
which reveals that the historical deficit was indeed an
extreme event. A similar result for Worcester for the
event from 1/4/72 to 31/7/74 is shown in Figure 8.18,

Yet another way of viewing historical droughts is to con-
sider the month-by-month development of the accumulated
deficit over the critical period. Given the position at
the end, of September 1930, we simulate the distribution
of the accumulated process of surplus/deficit at the end
of each month over a 36 month period and then plot the
history of cumulative deficit. The results of the exer-
cise for the period October 1930 to September 1933 are
shown in Figures 8.19 and 8.20 respectively.

As a final application of the drought model we may wish
to forecast the development of cumulative surplus/deficit
on a weekly basis over some time horizon of interest.
Figures 8.21 and 8.22 show two such results for Pretoria
starting in surplus and deficit. The starting points re-
late the sum of the index for September and would indicate
the occurrence of early spring rains (surplus) or their
non-occurrence (deficit).



FIGURE 8.17

185

Simulated distribution of surplus/deficit over a 40-month
period at Pretoria starting on 1 October. The exceedance
probability of the deficit that occured from 1/10/30 to
to 31/1/34 is shown.
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FIGURE 8.18
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Simulated distribution of surplus/deficit over a 28-month
period at Worcester starting on 1 April. The exceedance
probability of the deficit from 1/4/72 to 31/7/74 is shown
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FIGURE 8.19 Simulated percentiles of the distribution of cumulative
surplus/deficit over a 36-month period at Pretoria
with the event of October 1930 to September 1934 ( )
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FIGURE 8.20 Simulated percentHes of the distribution of cumulative
surplus/deficit over a 36-month period at Parys with
the event of October 1930 to September 1934 ( )
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FIGURE 8.21 Estimates of cumulative weekly surplus/deficit over
52 weeks starting 1 October with a deficit of 200 mm
at Pretoria.
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FIGURE 8.22 Estimates of cumulative weekly surplus/deficit over
52 weeks starting 1 October with a surplus of 600 m
at Pretoria.
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The above applications of the drought model are mainly
intended to be illustrative. There are many more which
may be tailored to meet the requirements of almost any
investigation of surplus/deficit -with regard to the rain-
fall process. We have shown that the model can be
successfully applied on a daily to annual basis, that it
can be used to investigate the ii6k of events over days,
weeks, months or years or the chronology of historical
events on any time scale. It can be used to make assess-
ments from any arbitrary starting point and can imitate a
variety of physical processes of interest from soil
moisture to streamflow. Above all the model provides a
contribution towards the long-standing problems of drought
research. When does a drought begin and end? What is its
definition in terms of run length, run-sum and maximum
deficit? What is its risk of occurrence? How long before
recovery from a state of deficit occurs and with what risk
will the drought last another season? The proposed model is
capable of a considerable contribution to the answers to
all of these questions and more.
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APPENDIX 1

A SEASONAL LOGNORMAL MODEL

In this appendix we derive the maximum likelihood esti-
mates for fitting a lognormal model to seasonal data. The
same basic approach can be used to fit any other model to
such data. The question of how many parameters should be
included in the model is also discussed.

Suppose that the year :is divided into NT intervals, e.g.
52 weeks, 365 days, etc .... denoted by T * 1,2,...fNT.
Let N(T) represent the number of times that it rained at
tim'ev T and R(I,T), I = 1,2 N(T), the rainfall depth on
the Ith year that it rained at time T. Let p(T) and o(T)
represent the parameters of the lognormal distribution at
time T = 1,2,....NT.

For precisely the same reasons which were given in Chapter
2 it is undesirable to estimate u(T) a n d o ( T ) separately
for each T. Instead we will again make .use of the approxi-
mation obtained by truncating their respective Fourier
Series which are of the form

y(T)

o(T) * l^ o. ^ ( T ) T = 1,2,. ...NT

where <^(T) is defined in Section 2.4 and u- ,u-,... ,u N T

o., o 2 o N T are the Fourier coefficients of p(T) and
o(T) respectively.
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Truncating the series to L(u) and L{o) terms respectively
we define

V{T.L(U)> > \[f

o(T.L(o)) « jj ^ ̂  9

L ( u ) , L(o) < NT.

The approximation which we make is

p(T.L(u)) « u(T)

o(T,L(o)) « o(T) , T = 1,2 NT .

The effects of varying L(u) and L(o) are analogous to those
of varying L in section 2.4 and so will not be repeated in
detail here. Briefly L(u) must be large enough for the
above approximation to be accurate but as small as possible
In order to keep the uncertainties associated with sampling
variation to a minimum. The same applies to L ( c ) . We
suppose for the moment that both L(u) and L(a) are fixed
and derive the equations whose solutions give the maximum
likelihood estimates of the parameters, viz

U p U 2 * * * * i UL(u) an^ °1 * °29 * *" > oL(o) *

For convenience we use the notation

X(I.T) - In R(I.T) , I - 1,2 N ( T ) ,
T > 1.2....,NT .

Since we are only dealing with wet days the rainfall depths
are necessarily positive and so the above logarithms are
always defined. As L(u) and L(o) are for the moment taken
to be fixed we will use the briefer notation u*(T) and
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o*(T) to represent u(T,L(u)) and o(T,L(o)) respectively in
the derivation to follow.

Under the assumption that the rainfall depths are indepen-
dently distributed the log likelihood function is given by

In L (Pj. i e 1,2,...,L(u); Oj, i = 1 ,2 ,... ,L(o);

X(I,T), I = 1,2 N(T).T - 1,2 NT)]

"J I?I, N(T) In 2* - j } ^ N( T) ̂ n °*<T)

It can be shown that

»T)-u*(T))2 = s(T) + N(T)(m(T) -p*

where

s(T) * iJij'tXd.T) - m(T))'

m(T) = TrrVr I?-!* X(I.T) , for N(T) > 0

The maximum likelihood estimates are those values, of the
u^ and o- which maximise *n L (U t O ) , i.e. they are the
solutions to the L(u) + L(o) "normal equations", obtained
by setting its partial derivatives equal to zero:

3L(u,o) NT
e Zyl^NtDdntD-w*^))/©*^)'} *8(T).

a = 1,2,...,L(u) .
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' "(T)/o*(T)} * a(T),

a = 1,2, •..,L(o)

This system of equations cannot be solved analytically and
so numerical methods have to be used- For the Newton-
Raphson iteration method (and also for the purpose of esti-
mating standard errors for the estimates) the second par-
tial derivatives are required. These are given by:

32L(u,o) NT

^ t n M T ) ' } *a(T) *b(T) ,

a.b, » 1,2 l{g)

(n>(T)-u*(T))/o*(T)3)

a - 1,2,...,L(u) ,
b = 1,2 L(o) t

l° I ? I ( ) ( ) - 3k(T)/o*(T)M • (T)
a b

a,b = 1,2,...,L(o) .

The following initial estimates which are based on the
method of least squares can be used to start the iteration

i£0) - Ijll m(T) *a ( T ) / ITII *a(T)

N(T)>0 N(T)>0

o[0) - I^ t {s(T)/N(T))Ua(T)/ yfj,
1 N(T)>t

a = 1,2,...,L(o) .
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Problems can arise in the iteration routine if c*(T) be-

comes negative at any stage. This seldom occurs, and if

it does, it can usually be remedied by experimenting a

little with the starting values. Should the problem per-

sist then one must increase either L{u), L(o) or both."

We now give an outline of the algorithm to carry out the es

timation. We will denote the arrays of first and second

iteration bypartial derivatives of £nL(UfO*) at t n e

f*k* and F*k' respectively, i.e. P k ' is a (column)

vector with entries

fi
(k) -

The (ij)th entry of the matrix

r(k) .
F1j "

i • 1.2 L(u)

= L(g) + 1 L(u)+L(o)

is given by

**Zn L

3««n L

1.2 L(y)

1,2 L(u)

j = L{u)+1.....L(u)*L(o)

= 1,2 L(o)
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(k) (k)
where u and ax ' are vectors representing the estimates
of p 2 ' " | l J L(u) r at the

kth iteration. One substitutes these values into the
formulae for the derivatives given earlier in this appendix
and hence obtains f*k* and *'

ALGORITHM

STEP ) Obtain initial estimates,
set k = 0.

and o*0', and

STEP 1 Compute f ( k ) and F ( k )

(k)STEP 3 Compute the vector 61*', the solution to the

system of L(v) + L(o) linear equations given by

F(k) 6(k) n f(k)

STEP 4 Set l\i - 6(k)

STEP 5 Test for convergence, for example 1f the entries
(k)of f* ' are sufficiently close to zero. If the

convergence criterion is met then stop, other-
wise increase k by 1 and go to Step 2.

To speed up the algorithm one should make use of the fact
(k)

that the matrix Fv is symmetric, i.e. it is only
necessary to actually compute the entries of the upper
triangle of the matrix. Subroutines to solve linear equa-
tions directly are generally more efficient than those to
compute the inverse of a matrix and it is therefore re-
commended that the equations in Step 2 be solved directly
rather than by premultiplying the fl ' with the inverse of
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Selection criteria

To select L(u) and L(o), the number of terms in the
approximations to u(T) and o(T)ithe methods described in
Linhart and Zucchini (1986) could be used, but 1n this
case we recommend that the Akaike Information Criterion (AIC) be used
instead. As we are estimating the parameters of the model
by tbe method of maximum likelihood, the natural discre-
pancy on which to base model selection is the Kullback-
Leibler discrepancy (cf. Appendix 2 in the report "Assess-
ing the Risk of Deficiencies in Streamflow"). For this
discrepancy and for the values of L(u) and L(o) usually
required, the two methods are practically equivalent ex-
cept that the AIC is easier to compute. It is given by

\ AIC - - In L (u,o) + L(p) + L(o).

To apply the method one begins by setting L(u) = L(o) = 1,
fits the model and then computes the value of AIC associated
with this set of estimates. Keeping in mind that both
L(u) and L(o) should be odd numbers, these are then syste-
matically increased and at each stage the AIC is computed
for the corresponding models. The values of t(u) and L(o)
which minimise AIC are selected as being the most appro-
priate.

This procedure was applied to 100 test stations in South
Africa. The optimal values of L(u) and L(o) which were
obtained are illustrated in Figures Al .1 and A1.2.

It can be seen that for most stations the best L{u) was
equal to either 3 or 5. {There are twelve cases where 1
was best and a single case where 7 was best). There seems
to be no clear systematic pattern in the distribution of
these numbers. It should be noted that length of record
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] plays a major role in determining which L(u) is estimated
I to be best. Were one to use a single L(u) for all the

stations in the country (because to select L(u) for each
j. of a very large number of stations is costly), L(u) = 5

would be the obvious choice.' Although this would increase
the discrepancy due to estimation for several of the
stations, we are fitting so few parameters that this in-
crease is quite small. The alternative of using L(u) = 3
is not very safe because it 1s not possible to assume that
the increase in the discrepancy of approximation will, be
small if this number of terms 1s used for those stations
where L(u) = 5 is estimated to be best.

The results for L(o) are much more consistent. In 86 out
of the 100 cases,L(o) = 1 was found to be best. By ex-
amining the records for which L(o) = 3 was selected one can
detect that many of these occur at stations where except-
ionally long records are available. It is mainly this in-
fluence which gives rise to the additional parameters
being selected rather than any marked seasonal variation
in o(T), and so there is little danger of any large increase
in the discrepancy of approximation if L(o) = 1 is used
for all the stations.

An important conclusion can be drawn from the fact that
L(o) - 1 is estimated to be the best choice: this is that
the coefficient of variation for the untransformed rain-
fall totals must be very nearly constant. If one keeps in
mind that this type of model selection criterion can be
(roughly) compared with a statistical test using a 50X re-
jection level, then it follows that the hypothesis of con-
stant coefficient of variation could certainly not be re-
jected using a more conventional significance level, of
say 10%, for any of the cases with L(o) s 1, and
probably not for any of those with L(o) * 3 either.
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To demonstrate that the coefficient of variation of the
untransformed data is a constant if o(T) is constant is
very easy. This coefficient is not a function of u(T),
but only of o(T); it is given by

C(T) = (e

Clearly, if o(T) is constant for all T then so is C(T).



A1-10

FIGURE A1.1 i
i

Optimum L(u) for each of lOO test stations.

FIGURE A1.2

Optimum L(o) for each of 100 test stations
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APPENDIX 2

A RATIONAL FUNCTION APPROXIMATION TO COMPUTE THE SHAPE
PARAMETER OF THE WEIBULL DISTRIBUTION FROM THE
COEFFICIENT OF VARIATION

The distribution function of the 2-parameter Ueibull dis-
tribution is given by

F(x) * 1 - exp{-(x/a)B) f x > 0, (1)

where a is the scale parameter and B the shape parameter.
The expectation (E), variance (V) and coefficient of
variation (C) are given by

E * a r(1 + 1/B) . (2)

V = a*{r(1 + 2/B) - H I + 1/B)2} (3)

r

Note that the coefficient of variation is a function of the
shape parameter but does not depend on the scale parameter.

Estimates of Et V and C can be computed from the observed

sample x., x?'*****!! using the usual formulae:

C - V}/E .
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The method of moments to estimate the parameters a and 0
consists of replacing E and C in equations (2) and (4) by
E and C, and then solving these two equations to obtain
estimates a and 8. Equation (4) is solved first to obtain
6 which can then be used in equation (2) to obtain

a = E/ri1 + 1/B) (8)

The only difficulty which arises in this estimation algo-
rithm 1s that of solving equation (4). It is not possible
to give a closed expression for 0 in terms of C.

There are several ways to solve the equation numerically.
For example Table 1 below gives pairs (6, C) for
8 = 0,20(0,01)2,54. This table covers the range which is
likely to occur in practice. Linear or quadratic inter-
polation can be used to estimate B for a value of C which
falls between the values given. Note that C is a monoto-
nically decreasing function of 6 and so no problems of
multiple values arise. Fig.A2.1 has been drawn on the basis
of Table 1. This can be used to estimate B directly.

Whereas the above method is convenient for hand computation,
a more accurate, more convenient and less space-consuming
method is available for use on digital computers. The method
consists of approximating the inverse function of (4) by
means of a rational function approximation over the interval
of interest, viz. Be[0»2 ; 2,5]. We approximate B using

a + a.C + a9C* + ... + atC
5 ! 1 * • (9)

+ ... + b kC*

To compute the coefficients a Q, a ^ . , . , 3 . , b^ t

for a given value of k one proceeds as follows:
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Select (2k+1) distinct points Bj, B 2,...,B 2 k + 1 in the
range [0,2 ; 2,5J. These points should be approximately
equally spaced and should cover the whole range. For
each of these points compute the corresponding values of
C. One thenhas (2k+1) pairs of points (Bj.C.), (BotC-),

*• ••'62k+1 tC2k+i'' The r e ( l u 1 r e d coefficients are then the
solutions to the tinza.fi system of equations:

t. k

i = 1,2,...,2k+1 ,

that is

i = 1.2 2k+1 (10)

There are 2k+1 linear equations in 2k+1 unknowns, viz
b., b?,...,b,, a , a-»...,ak. These are computed and sub-
stituted into equation (9).

In theory this approximation increases in accuracy as the
number of coefficients (2k+1) is increased. In practice
if k is too large the accuracy actually decreases due to
rounding errors on the computer. For the approximation
considered here k » 3 (7 coefficients) is appropriate.
The corresponding coefficients are given in Table 2 and
the error involved using this approximation can be gauged
from the values given in Table 3. From this table it can
be deduced that the absolute error is less than 0,0027.
This is accurate enough for most purposes, but if greater
accuracy is required then iterative methods are available,
in particular the Newton-Raphsonmethod. The above
rational function approximation can be used as a starting
value for the iteration.



TABLE

6

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.65
0.90
0.95
1.00
I.C3
1.10
I.IS
1.20
1.25
1.30
1.25
1.40
.45

1.50
.55
.to
.45
.70
.75
.80
.85
.90
.95

2.00
2.03
2. JO
2.15
2.20
2.25
2.30
2.:5
2.40
2.45
2.30

1

C

15.B430
8.3066
5.4077
3.1721
3.140?
2.6064
2.2361
1.9630
.7581

I.5?4B
.4624

1.332?
.2405
.IBIS
.1130
.0530
.0000

0.9527
0.9102
0.8718
0.834?
0.8050
0.7757
0.7487
0.7238
0.7004

o.wo
0.6388
0.6399
0.4222
0.6055
0.5897
0.574? 1
0.3609
0.5473 1
0.3348 1
0.3227 3
0.3112 3
0.5003 J
O.4B9B 2
0.4799 2
0.4703 2
0.4411 2
0.4523 2
0.4438 2
0.4357 2
0.427? 2

B

0.21
0.26
0.31
0.36
0.41
0.46
0.51
0.36
O.&l
0.&&
0.71
0.74
0.81
0.86
8.91
0.96
1.01
1.06
1.11
1.16
.21
.26
.31
.36
.41
.46
.51
.56
.61
.66
.71
.76
.11
.86
.91
.96
.01
.06
.11
.16
.21
.26
.31
.36
.41
.46
.51

C

13.5794
7.5236
3.0421
3.7714
3.0159
2.5219
2.1753
1.9193
.7224

1.5441
.438?
.3332
.2437
.1670
.1004
.0419

0.9901
0.9438
0.9022
0.8646
O.B303
0.7?B?
0.7701
0.7436
0.7190
0.6961
0.674B
0.6549
0.6363
0.6188
0.6023
0.5B67
0.5720 1
0.5581
0.5449 1
0.5323 1
0.5204 3
0.5090 3
0.4982 2
0.4878 2
0.4779 2
0.4664 2
0.4593 2
0.4506 2
0.4422 2
0.4341 2
0.4264 2

P

0.J2
0.27
0.32
0.37
0.42
0.47
0.32
0.57
0.62
0.67
0.72
0.77
0.B2
0.87
0.92
0.97
1.02
1.07
1.12
1.17
1.22
(.27
.32

(.37
.42

1.47
.32
.37
.62
.67
.72
.77
.82
.87
.92
.97
.02
.07
.12
.17
.22
.27
.32
,37
.4:
.47
,32

C

11.8066

4

t

k.8646
1.7267
J.3904
1.9011
1.4431
M182
.8739
.6883
.5386
.4162
.3141
.2275
.1330
.0861
.0311

0.9804
0.9352
0.8944
0.6575
0.6238
0.7930
0.7647
0.7385
0.7143
0.6917
0.6707 '
0.6511
0.6327
0.6134
0.3991 1
0.5837
0.5691 1
0.5354 1
0.5423 1
0.5299 1
0.3181 3
0.5068 3
0.4960 2
0.4858 1
0.4760 2
0.4&65 2
0.4575 2
0.4489 2
0.44&6 2
0.4326 2
0.4249 2

P

0.23
0.28
0.33
0.38
0.43
0.4B
0.33
0.38
0.63
0.68
0.73
0.78
9.83
D.B8
D.93
0.99
1.03
1.08
.13

1.18
.23
.28
.33
.38
.43
.48
•53
.58
.63
.68
.73
.78
.63
.89
.93
.98
.03
.08
.13
.19
.23
.28
.33
.38
.43
.48
.53

C

10.3930
6.3043
4.4455
3.4264
2.7952
2.36?5
2.0642
1.8347
1.4319
1.3122
1.3944
1.2957
1.2117
1.1393
1.0761
1.0205
0.9710
0.9267
0.BS67
0.8505
0.8174
0.7871
0.7593
0.7335
0.7096
0.6874
0.6667
0.6473
0.6291
0.6120
0.5939
0.5807
0.5663
0.5327
0.5398
0.5273
0.3159 ;
0.5046 ;
0.4940 3
0.4838 3
0.4740 3
0.4647 3
0.4558 I
0.4472 3
0.4ZB9 2
0.4310 2
0.4234 2

F

9.24
9.29
9.34
9.39
9.44
9.4?
9.54
9.5?
9.64
D.6?
9.74
0.7?
ft. 64
D.6?
ft. 94
9.99
1.04
1.09
1.14
1.19
.24
.29
.34
.39
.44

1.49
.54
.5?
.64
.6?
.74
.7?
.64
.8?
.?4
.?9
.04
.0?
.14
.1?
.24
.29
.34
.39
M
.49
.34

C

9.2477
3.8236
4.1955
3.2771
2.6972
2.3007
2.0133

.7935

.6246

.4869

.3733

.2778

.1964

.1260

.0644

.0101
0.9618
0.9164
0.8792
0.8436
0.6112
0.7814
0.7340
0.72B6
0.7051
0.6832
0.6627
0.6436
0.6256
0.60B7
0.5928
0.5778
0.5636
0.5501
0.3373
0.3251
0.3135
0.5024
0.491?
0.4818
0.4721
0.462?
0.4540
0.4455
0.4173
O.42?4
0.471?

The coefficient of variation, C, for the Weibull distribution
corresponding to selected values of the shape parameter, 2 .
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FIGURE

The shape parameter, 6, of the Weibull distribution
as a function of the coefficient of variation, C.
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TABLE 2

1

J a. 339,5410 148,4445 192,7492 22,4401

j

6. (1,0000). 257,1162 287,8362 157,2230

Coefficients in the rational approximation for 6 as a
function of C for the Weibull distribution.
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TABLE 3

C B(exact) S(approx) difference

0.40
0.60
1.20
1.60
2.00
2.40
7. BO
3.21
3.62
4.03
4.44
4.e&
5.27
5.69
6.11
6.53
6.96
7.38
7.80
8.22
8.63
9.05
9.46
9.87

10.28
10.69
11.09
11.49

. 11.89
12.28
12.67
13.05
13.43
13.81
14.18
14.55
14.91
15.27
15.63
15.98

2.6956
1.2582
0.8376
0.6462
0.3427
0.4756
0.4291
0.3949
0.3665
0.3474
0.3302
0.3158
0.3035
0.2930
0.2638
0.2737
0.2665
0.2631
0.2563
0.2311
0.2463
0.2420
0.2380
0.2343
0.2309
0.2277
0.2248
0.2221
0.2195
0.2171
0.2149
0.2127
0.2108
0.2089
0.2071
0.2054
0.2036
0.2023
O.2008
0.1993

2.6936
1.2582
0.8376
0.6482
0.5426
0.4755
0.4288
0.3942
0.3675
0.3461
0.3286
0.3139
0.3015
0.2907
0.2814
0.2732
0.2659
0.2595
0.2537
0.2484
0.2437
0.2394
0.2355
0.2319
0.2286
0.2256
0.2228
0.2202
0.2178
0.2155
0.2134
0.2115
0.2097
0.2079
0.2063
0.2048
0.2034
0.5020
0.2007
0.1995

0.0000
•0.0000
-0.0000
0.0000

-0.0000
-0.0002
-0.0004
-0.0007
-0.0010
-0.0013
-0.0016
-0.0018
-0.0021
-0.0023
-0.0024
-0.0025
-0.0026
-0.0026
-0.0026
-6.0026
-0.0026
-0.0025
-0.0025
-0.0024
-0.0023
-0.0021

' -0.0020
-0.0019
-0.0017
-0.0016
-0.0014
-0.0013
-0.0011
-0.0009
-0.0008
-0.0006
-0.0004
-0.0003
-0.000!
0.0001

The shape parameter, 8, for the Weibuil distribution computed
for selected values of the coefficient of variation, C, using
the rational approximation compared with the exact value of 8
for each C.
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APPENDIX 3

1 AN EFFICIENT METHOD TO COMPUTE THE SINE AND COSINE
1 TERMS IN FOURIER EXPANSIONS

In order to fit the rainfall model described in Chapters 2
and 3, to carry out the algorithms for model selection and
to apply the model for generating artificial rainfall
sequences, one has to make repeated use of Fourier series
representations. This involves the computation of a large
number of sine and cosine terms, especially when one is
dealing with daily rainfall series. The evaluation of sine
and cosine functions is slow on a computer and it is there-
fore of some importance that such computations be carried
out efficiently.

For daily data we need to compute the terms

cos (w(T-1)
sin (w(T-1)(1-f)/2) . 1 = 3,5,....L ,

T * 1,2 365 ,

where u> * 2ir/365 and L represents the number of terms in
the expansion vfiich in our application is always taken to be
odd. $«(T) is simply equal to 1.

Where storage requirements allow it, it is strongly re-
commended that these computations be carried out only once
for the maximum L which may be required (typically L is
less than 25 for applications involving model selection)
and that the results be stored in an array which we will
call PHI(I,T) in the algorithm given below. To compute
$Al) efficiently one makes use of the following re-
currence relation:
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^ ( T ) * ai01(T-1) - •i(T-2) , T « 3.4,5,

where

fli/2 i * 2,4 L
sin (u(1-1)/2) , i • 3,5,...fL

cos (toi/2) i = 2,4,...,L-1

This relationship follows from well-known properties of
the sine and cosine functions (see e.g. Abramowitz and
Stegun 1972). The following algorithm can be used to
compute PHI(I.T).
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ALGORITHM

STEP 1 INPUT L (an odd integer)

STEP Z SET W = 0,0t721421
K « (L-D/2
PHI(1,T) « 1, T - 1,2 365

STEP 3 LOOP FOR J * 1,2,...;K

SET J1 - 2*J
J2 = J1+1
THETA = W*J
A = 2*C0S(THETA)
PHI(01,1) = 1

• PHI(J1,2) = A/2
PHI(J2,1) = 0
PHI(J2B2) = SIN(THETA)

LOOP FOR T « 3v4t...,365

SET PHI(JI.T) = A*PHI(J1,T-1)
PHKJ2.T) - A*PHI(J2,T-1)

PHI(J1,T-2)
PHKJ2.T-2)

EUV or T LOOP

EUV Of 0 LOOP

STEP 4 OUTPUT ARRAY PHI
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APPENDIX t\

ESTIMATING THE RESPONSE FUNCTION OF A LINEARLY
FILTERED PROCESS

This appendix describes a procedure to estimate the re-
sponse function of a process which satisfies the condi-

I - tions given in section 7.1. We suppose that a rainfall
record R(t), t = 1,2,...,n is available and that a shorter

j record of observations on the filtered process F(t),
' t = n«, n.+1,...,n, where 1 < n. < n is also available.

We assume here that the concurrent portion occurs at the
end of the rainfall record because this is what would

- generally happen in practice, but the methods outlined be-
' low can be applied in situations where the concurrent part
occurs in the middle of the rainfall record. Our object
here is to estimate the response function r(x) and then to
use the estimate to reconstruct the values of F(t) over
the non-concurrent part of the rainfall record. Having
done this it is then possible to define a drought index
directly in terms of F(t), the process of interest, and one
has enough data to construct models for this process in
order to assess drought risk.

As the smallest unit of time considered is one day it is
sufficient to estimate.r(x) for x = 0,1,2 We have

also assumed that r(x) decays with time; suppose that
r(x) is effectively zero for x > L and that
L < min(n«» n-n-).

From (1) of section 7.1 it is assumed that F(t) and R(t)
are related by
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R(t-i) t s n.,n*+1»... fn

which we have now assumed can be approximated by

F(t) * It*n r*^' ^(^"^' • ^ s n-,n«+1,.•.tn .

In practice this relationship will not be exact because of
measurement errors and random disturbances. What we have in
in fact is of the form

e(t)

where e(t) represents the combined effect of these de-
viations from the model on day t.

We will use the following notation:

F -

F(n,)

R = fR(n) R(n-t)
R(n-2)

. R(n-L)

. R(n-l-L)

e » and r *
r(1)

In terms of the model the observations can be now repre
sented in the form

F • Rr + e t

which is a linear model of the type encountered in re-
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gression analysis or the analysis of variance. The standard
method of estimating the unknown parameters, i.e.
r(0),r(1),..,r(L-l) is that of ordinary least squares. One
obtains

r = (RTR)"1RTF .

This not only provides us with an estimator of the response
function but also a means of assessing the accuracy of the
model. By examining the residuals

e ( t ) = F(t) - l\ll r ( i ) R { t - i ) , t = n 1 + 1 , n t + 2 n ,

one can clarify a number of issues. For example their
standard deviation provides a measure of the accuracy of the
model; a small value indicates a high accuracy whereas if
the standard deviation is large then the model may have to
be discarded. Individual values of e(t) may be large,
thereby indicating anomalies on the corresponding days.
Explanations for such anomalies can be sought and may pro-
vide important Insights which further our understanding of
the process. The presence of serial correlation in the
residual series may also indicate lack of fit or perhaps
some other feature of the process. The techniques to carry
out these analyses are well documented in the statistical
literature (see e.g. Draper and Smith 1966 , Box and
Jenkins 1970 ), and so will not be repeated here. Having
estimated the response function and assuming that the model
h'as been proved to provide an acceptable fit, one can then
estimate the missing F(t) by using

F(t) = l\l]0 r(i) R(t-i) , t = L ,Ut,... ,n,-1 .

These, together with the directly observed values of the
process, can then provide the basis of an analysis of
drought risk on the process of interest.
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APPENDIX 5

A SPATIAL HISTORY OF DROUGHT OVER SOUTH AFRICA

This appendix contains the sequence of drought maps des-
cribed in Chapter 6. The chronological sequence is shown
in water years starting on 1 October and ending on 30
September. The key to the shading of the maps is as
follows:

Annual rainfall less than 50% percentile

Annual rainfall less than 20* percentile

Annual rainfall less than 5* percentile
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