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DERIVING REGIONAL CLIMATE CHANGE SCENARIQOS
’ FROM GENERAL CIRCULATION MODELS

BC Hewitson

University of Cape Town

EXECUTIVE SUMMARY

Background

South Africa is characterised by a relatively dry climate with a high degree of inter-annyal
and intra-seasonal variability. Coupled with the growing demand on natural resources, and
the utilisation of marginal land, the potential vulnerability to future climate change impacts is
high. At present there is a high probability that anthropogenically induced global climate
change will have significant impacts on the regional climate dynamics, perhaps most
noticeably through the impact on water resources. This is a perspective largely accepted by

the scientific community and supported by the high degree of consensus.

Regional climate change thus poses animportant threat, and current scenarios of potential
change are severely limited due to problemsin obtaining accurate regional climate information
from the General Circulation Models (GCMs), especially with regard to precipitation. As
GCMs are the only really viable means of generating future climate scenarios there is a critical
need to use the capabilities of GCMs to their best advantage in developing viable scenarios
in order to plan for the future. Downscaling, whereby one uses the larger scale circulation
dynamics to infer local climate, is one widely recognized methodological approach for dealing
with GCM inadequacies in developing regional scale climate change scenarios, and is

considered the most viable for the South African context.

Muiltiple approaches to downscaling are available, although some have significant
infrastructural constraints or problematic assumptions which underly their procedures. The
methodological option of direct downscaling, in which direct Quantitative transfer functions
between atmospheric forcing énd local climate response are used, offers perhaps the most

viable approach for South Africa, Early developments in this regard were undertaken in an




earlier Water Research Commission study, and made significant advances. An evaluation of
the initial methodology against three other downscaling approaches has shown that the
downscaling approach adopted is able to capture important aspects of regional climates not
managed by other techniques. However, problems were also identified in the comparative
study, and this project seeks to address these, and provide a more stable and extensible

methodological procedure,

Project Objectives
The initial objectives of the project were:

* Application of methodologies to multiple GCMs.
* Analysis of scenarios in terms of temporal characteristics.
* Transfer of scenarios for use in hydrological applications,

* Disaggregation of regional scenarios of catchment basin and station scales.

These objectives have been addressed, although the application of the methodologies
to multiple GCMs was, in the second year, suspended in favour of focusing_ further on the

methodology and temporal characteristics with one GCM.

Downscaling

Of all empirical downscaling techniques, the direct transfer function approach is arguably
the method with the least problematic assumptions, and provides a tractable procedure for
developing regional scenarios from long term GCM simulations, and for use with multiple
GCM data sets. In this approach transfer functions are derived using observed atmospheric
and local climate data. After validation, the functions are applied to atmospheric data from
GCM stmulations of fiture climates, and used to derive the local climate response, and hence
climate change scenarios. The means adopted for deriving the functions is that of Artificial
Neural Nets {ANNs), a non-linear procedure analogous to multiple regression.

In determining the local climate response three primary sources of forcing need to be
accounted for:



1. Atmospheric circulation dynamics. This determines the transport characteristics of
the air mass, and'the dynamics determining vertical motion, and hence condensation,
cloud formation, and the precipitation processes.

2. Atmospheric water vapour content. This attribute, neglected by many other studies,
is of critical importance in the context of global warming. The water vapour content
determines the precipitable water from the atmosphere, and under global warming it
is probable that atmospheric water vapour will increase due to increase evapo-
transpiration from land and ocean surfaces.

3. Local sources. These refer to variance from features such as the particular trajectory
taken by a precipitating convective cell. This source of variance is important if
analysis of future climates is to be done with daily resolution data from the GCM, as
opposed to seasonal means. As this source of variance ig relatively insensitive to the
climate change signal, it can be treated mathematically as a stochastic process.

The three sources of forcing on the local climate are incorporated into a downscaling
methodology based on ANN empirical transfer functions using observational data. Validation
of the ANN techniques has shown the procedure to be viable and effective in capturing the
primary forcing over a wide range of climate regimes and seasonal variation, Using
geopotential height fields representing circulation dynamics, and atmospheric humidity as an
indicator of precipitable water, the ANN procedure is able to effectively capture the spatial
and seasonal attributes of precipitation over South Africa.

The role of atmospheric humidity is evaluated in two downscaling experiments, and is
shown to be a critical variable in terms of the local climate response to global change. The
precipitation parameterization in GCM:s is largely based on values of relative humidity, and
with increases in temperature under future climate is potentially misleading with regard to the
total moisture availability for precipitation events. Thus the inclusion or exclusion of specific
humidity (a measure of'total water vapour content) in the procedure can influence the results
to such an extent that over certain regions the sign of the climate change may change, let
alone the magnitude. Consequently downscaling without cognizance of the role of
atmospheric humidity leads to scenarios that only représent climate response to circulation
dynamics, which, while informative, may be substantially different from actual climate
response.

Similarly, the role of the local forcing is evaluated by downscaling both with and without
the local forcing component included. The addition of this source of variance is shown to
substantially improve the daily characteristics of the downscaled climates and allows scenarios
to be constructed in terms of the daily behavior of the downscaled climate.




In the context of a GCM’s skill in simulating the larger scale atmospheric dynamics, and
given the limitations of alternative regional scenario schemes, the downscaled procedure
represents a viable, justifiable, and pragmatic solution for meeting the immediate and near
future climate change impact research needs.

Assessment of Products and Applications

The primary product has been the development of a sophisticated methodology and stable
software package. This has been applied to GCM data to generate climate projections for
South Africa. In addition the project has involved two MSc. post-graduate students and one
PhD student. These have all graduated, and two are continuing with a climatology career.
A number of journal papers have appeared which utilize the results developed in this project,
and further journal papers are in preparation or under review. In light of the above, the
project has addressed the initially stated objectives, although not applied to muitiple GCM
data sets.

The WRC project has also resulted in 2 number of ongoing research thrusts. Most
importantly, the methodologies have been adopted by the South African national climate
change assessment team to provide climate projections. Furthermore, the same methodology
has been used in projects in the USA to investigate climate change over the USA, Mexico,
and Bulgaria. The methodologies are now forming a basis of the new USA national climate
change assessment. Finally, the software now forms a basic tool in ongoing research at UCT,
and has been adopted by three research groups internationally.

Future directions and recommendations

While this project does produce a preliminary set of climate change scenarios, the primary
focus is the suite of software tools for ANN-based downscaling. The software has been
packaged into a (relatively) user-friendly package and is already in use by other researchers.
The software package will be made available to relevant researchers on request, with
collaboration encouraged.

However, within the South African context the primary need is to apply the procedure
to as wide a range of recent generation GCM experiments as possible. In the light of the
variable nature of the South African climate system, and the high degree of vulnerability to
climate change, a clear view of possible future impacts is needed, with rational interpretation
and associated levels of confidence in the climate projections, The only tractable means of
developing such a broad base of scenarios within the next few years 1s through analysis of



ensembles of current-generation long-term (100 year+) regional climate-change projections
derived from GCMs with empirical downscaling. In ensemble simulations the GCM is
repeatedly run using nominally different starting conditions, resulting in time series that
generate arange of possible climate projections. Such ensembles are becoming available, and
through the application of downscaling it is possible to generate a suite of regional climate
projections that span the possible range of outcomes.

Thus, follow-on work focused on accessing suitable GCM simulation data sets and using
these for downscaling, is highly encouraged. Inaddition, such work should take place in close
collaboration with scientists in other disciplines to ensure valid interpretation of the potential
climate change impacts within South Africa. Furthermore, given the trans-national nature of
the climate system, such work should also take cognizance of the southern African nations
to the north of South Africa. This should be not only in terms of benefiting their
understanding of climate change impacts, but also in terms of interactions of the climate

system over the broader region.
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1. Intmductiun

South Africa is characterised by a relatively dry climate, a high degree of inter-
annual and intra-seasonal variability, and consequently a high degree of vulnerability to
changes in the climate system, At present there a high probability that anthropogenically
induced global climate change will impact in a significant manner on society — a
perspective largely accepted by the scientific communities and readily apparent from the
extensive investment by nations into climate change research, It is also generally
accepted that climate change, if not already detectable above the ambient variance of the
climate system, is nonetheless probably already occurring. In addition there is a high
degree of consensus among the scientific community that current research points
emphatically to global climate change being probable, and that this is a problem of global
importance (see [PCC, 1995a,b,c). '

In order to respond effectively to possible impacts on society, it is imperative that
scientists within South Africa mvestigate the regional consequences of global change in
terms of the sensitivities of the physical system, the vulnerabilities on a regional basis,
and the possible adaptations that can be made. Across disciplines this has already begun
to take place in individual projects, and has recently received valuable support after South
Africa’s ratification of the Framework Convention on Climate Change (FCCC) treaty in
1997. Subsequent to this a broad spectrum of work has been funded on relevant aspects
of climate change in both the social and physical sciences.

However, fundamental to any such work is the requirement for plausible and
justifiable scenarios of potential change within the climate system on the regional scale.
Without ‘such scenarios any impacts work becomes little more than educated thought
experiments. As a result there has been 2 growing demand, magnified by the FCCC
work, for climate change scenarios at the regional scale to be used in a range of
disciplinary studies. It was in fesponse to such needs that the work presented here was
initiated (see Hewitson, 1997), and was a similar incentive for a number of other research
‘projects around the world. The aims of this project were thus set out as:

¢ The application of downscaling methodologies to multiple GCMs, ~

* The analysis of downscaled climate projections in terms of temporal
characteristics.

® To transfer of scenarios for use in hydrological applications.

¢ The disaggregation of regional scenarios of catchment basin and station scales.




In general the only viable approach to evaluating future climate conditions is through
the use of General Circulation Models (GCMs), and GCMs thus initially formed the basis
of information for developing regional scenarios (e.g. Schulze et. al., 1993). However, it
was quickly recognised that while GCMs are able to simulate the synoptic scale
atmospherics dynamics over South Africa quite well (e.g. Hudson, 1997, Hudson and
Hewitson, 1997), they are particularly poor at representing regional climate, and are
especially problematic when representing precipitation. In this respect the GCMs are at
odds with end-user needs; while the skill of the GCM increases with greater
spatial/temporal aggregation, the needs of the impacts researcher are conversely greatest
at high spatial and temporal resolutions.

The difficulty in the development of regional scenarios directly from GCM:s has thus
lead to the development of a range of alternative techniques for deriving regional and sub-
grid-scale climate information (e.g. Hewitson, 1996; Crane and Hewitson, 1997), and is
an accepted area of research methodology now commouly termed downscaling,

The pragmatic demands on downscaling are, however, more than simply the
derivation of sub-grid-scale information from GCMs, and additionally include the need
for a range of climate change scenarios from multiple GCM simulations. This is required
in order to evaluate consensus among GCMs as a means of attaching confidence levels to
the scenarios, and in order to span a reasonable range of future climate possibilities. Thus
any downscaling methodology should, from the perspective of impacts research, focus on
the spatial and temporal needs of the end-user, and present a tractable means for handling
multiple scenarios from different GCM sources.

2. Downscaling Options

In all cases the basis for downscaling is the implicit assumption that local climates
are dominantly a response to larger scale atmospheric forcing — an assumption that, as
will be shown, is largely true but has a number of important caveats. Downscaling uses
those atmospheric variables indicative of (primarily) the synoptic scale circulation and
dynamics in order to determine the local climate response, and then uses these variables
from the GCM to derive the local climate change scenarios, The premise in this case is
that GCMs are able to simulate adequately the larger scale dynamics of the climate
system, in contrast to the poor “skill level” (von Storch et. al., 1992) at the regional scale.

Figure 1 outlines the two downscaling approaches available to the researcher. The
one approach is nested modeling of the regional scale dynamics using physics-based
models, and an alternative, empirical downscaling. A third option is to combine both



options, but this will not be discussed here ag this is still in the early stages of
development,

The nested modelling approach typically drives a limited area dynamics-based model
with boundary fields derived from the GCM in order fo resolve a regional climate
solution consistent with the given set of boundary conditions. In the long term this
approach is likely to provide the most stable and interpretable means for deriving regional
scenarios. However, at present, and for the near future (the next 5 years or more), the
nested model approach is unlikely to form the primary methodology for South African
research activities, or for analyses based on multiple GCMs. This is mostly due to the
computationally intensive nature of nested modelling, where the computational
requirements are as great as those needed for running a GCM. In addition, the process of
coupling a regional and global model in some Iespects remains problematic, and this
should be viewed as a methodology under development. The above constraints with
nested modelling means that for long term GCM simulations (100 years or more), and for
using multiple GCMs, it is computationally impractical to use nested modelling in an
African context for developing a broad base of climate change scenarios. South Africa is
not alone in this situation, and many of the leading research organisations in the world
still sit with the same computational constraint, albeit to a lesser degree.

Empirical downscaling, on the other hand, is computationally efficient, and can
easily be applied to multiple GCM simulations over muliiple regions. The empirical
approach is founded on the premise that the local climate is dominantly a response to the
larger scale atmospheric forcing. This is largely true, as the results bear out, and may be
seen even on a simple qualitative level, whereby the local climate is seen as a response to
synoplic systems (e.g. cold fronts), air mass characteristics (e.g. humidity), and air mass
trajectory and source regions. Even convective activity or orographic rainfall, nominally
local scale features, are nonetheless dependent on the larger scale synoptic conditions.

However, while the above premise may be accepted, the synoptic controls are never
the complete determinant of the local climate, and two important alternative aspects needs
to be recognised. Firstly, and of critical importance in the context of global warming, is
the atmospheric water vapour content, and secondly, the role of local forcing.
Nonetheless, while these two factors are tmportant, they are largely secondary to the role
played by the synoptic forcing, and will thus be discussed later as refinements of the
downscaling.

The primary principle in empirical downscaling is to use observational data (training
data) in order to derive a relationship between variables representative of the larger scale
circulation and the local climate response of interest, for example, precipitation. The
derived relationship is then applied to the same atmospheric variables from the GCM
simulations in order to derive the sub-grid-scale response and develop climate change
scenarios.




As discussed earlier the downscaling approach assumes that the local and regional
climates are primarily a function of synoptic scale forcing which determines the dynamics
controlling such attributes as precipitation or cloud cover, as well as the air mass
characteristics of humidity and temperature, and source regions. In addition, and perhaps
less apparent, is that the procedure assumes that the GCM atmospheric circulation events
fall within the span of events in the training data which is used to derive the relationships.
If this were not the case, then the methodology requires that the derived relationships are
stable enough to extrapolate beyond the bounds of the data on which the relationship is
based. This implied attribute is obviously potentially problematic, however, in general
the changes in the GCM output-data are affected through changes in frequency, intensity,
persistence, and the recurrence period of synoptic events. Hence the GCM data do fall
within the span of the observational training, with the exception of very few events
denoting rare weather occurrences, and thus the assumption of not using the relationship
to extrapolate can be made safely,

Empirical downscaling methodologies have appeared in multiple forms in the
literature, and fall within three categories (Figure 1); stochastic (weather generators
calibrated to the large scale circulation fields), indirect relationships (a traditional
synoptic climatology approach using circulation typing), or direct relationships (using
direct quantitative functions to relate circulation to local climate). While each approach
demonstrates relative advantages and disadvantages, a common theme in their application
has been to use atmospheric predictor variables which describe the circulation dynamics
(e.g. geopotential height fields, or vorticity), and occasionally include other variables
such as atmospheric temperature.

Stochastic weather generators, perhaps the most common methodology, suffer from
the fact that the procedure is “tuned” to the frequency distribution of present day
conditions, and hence presents a problem if future climates change in terms of the
frequency distribution of events. More traditional synoptic climatology techniques, while
avoiding the difficulty with stochastic techniques, afford only a very coarse incremental
resolution over the range of the local climate response. Direct relationships attempt to
derive quantitative equations in the form of a transfer function between the atmospheric
forcing and the local climate response. As such, the direct relationship method, in theory,
will provide local climate data to the maximum spatial and temporal resolution afforded
by the training data, and to the degree that the local climate is a response to larger scale
atmospheric forcing,

3. Empirical transfer function downscaling

The empirical downscaling approach used in this study is a development of initial
work undertaken by Hewitson (1996, 1997). The initial study was based around the use
of Artificial Neural Nets (ANNSs) to derive non-linear relationships between atmospheric
circulation (represented by Principal Components Analysis (PCA) of sea level pressure



and 500hPa geopotential heights) and local precipitation and temperature, The procedure
was shown to demonstrate significant skill in generating the local climate Iesponse on a
5-day smoothed temporal scale,

In essence, the ANN methodology works in a manner analogous to multiple
regression whereby a function between an independent set of variables (the PCA of
atmospheric circulation) and the local climate (temperature and precipitation) is derived.
The ANNs, however, provide significant advantages over regression in that they are able
to capture arbitrary non-linearities within the data and hence represent, theoretically, the
fullest expression of the relationship between the independent and dependent variables.
Full details of the ANN approach and how to use ANNs may be found in Hewitson
(1997) and Hewitson and Crane (1994), and a short summary of the basic attributes of the
ANN are presented here (adapted from the appendix in Wilby e. al., 1998).

ANN fundamentals

ANN downscaling represents a form of direct scale translation, whereby a
quantitative function is derived which directly relates two data sets (e.g. atmospheric
circulation variables and target local climate). In this regard, ANNs are analogous to
multiple regression, although mathematically dissimilar. In the same way that multiple
regression develops a quantitative function, so does an ANN, although with no
supposition on the form of the function or degree of non-linearity. In theory, an ANN is
capable of representing any arbitrary non-linear relationship.

An ANN is composed of multiple simple processing nodes, each of which receives
inputs from other nodes, and outputs values to further nodes. The resultant “net” of nodes
will have some nodes dedicated (o receiving inputs, and some to providing outputs from
the overall net. Each node is connected to others via weighted links, and calculates a sum
of the weighted inputs. This sum is then transformed with some function, typically a
linear or step function, or a bounded differentiable non-linear function (e.g. a sigmoid),
which becomes the node output value.

Nodes are generally arranged in layers, with an input layer connected to a “hidden”
layer that is in turn connected to an output layer. Figure 2 shows a typical ANN
construction.  Given this structure, a useful analogy of how the ANN represents a
complex function is that of inverse Fourjer transforms. Tn the same way that inverse
Fourier transforms combine simple sine and cosine waves to create a complex wave, so
ANNSs combine simple non-linear functions to create a complex function,

In downscaling applications the ANN ig typically configured with only one output
node to provide the downscaled information for the target location, and an input layer of
nodes and one hidden layer. Development of the actual function represented by the ANN




is accomplished through a training procedure. Multiple alternatives are available for
training, but all, in some form or other, represent a minimization procedure. Initially the
weights in the ANN are set to small random values. The ANN is then presented with
input data for which known target output values are available. The full set of input
samples is sequentially presented to the ANN, and the error between the ANN output and
desired output values noted. The training procedure then adjusts the weights in an
attempt to minimize the error, and the training data are again presented to the ANN. In
this manner the training algorithm iteratively performs a minimization procedure of the
error surface to find the global minimum, or at least a local minimum close to the global
minimum,

In this downscaling application, the training algorithm used is back-propagation,
whereby the error after each pass of the data is “back-propagated” through the net from
the output node to the input nodes, with proportional error assigned to each node. The
weights connecting each node are then adjusted in a direction to minimize the error. In
the simplest form this represents a gradient descent algorithm. However, the form
utilized here makes some assumptions about the shape of the error surface local to each
node in order to speed up the convergence, and avoid becoming trapped in a local
minimum.

A potential pitfall in the ANN training procedure is that of overtraining. Due to the
ability of the ANN to represent highly complex relationships, it is possible for the ANN
to start “learning” to relate the noise or unrelated variance in the input and target output
data. To avoid this, a random portion of the tratning data is usually removed from the
training process and retained for testing purposes. During the training procedure, the
ANN is then repeatedly evaluated against the independent test data until the performance
of the ANN on the test data no longer improves. Once the training of the ANN is
completed, the ANN function may be applied to further input data with the assumption
that the new data falls within the dimensional span of the training data.

Limitations and refinements:

Through experience in the initial downscaling project, and in subsequent comparative
methodology studies, it was noted that the ANN procedure as configured contained some
limitations that would benefit from further refinements. In particular, the procedure
required a potentially problematic step of matching PCA results between observed and
GCM data, and had difficulty in generating daily resolution data. As a result, the
procedure was restructured in this project, retaining the ANN as the core means of
generating the relationship, using alternative means of forming the input atmospheric
variables, and including a technique to incorporate the local forcing component,



Fundarentally, the changes to the ANN downscaling procedure are:

* Replacement of the PCA data with the raw assimilation atmospheric data and
the inclusion of an index of SYnoptic state as a predictor,

¢ Inclusion of atmospheric water vapour content as a predictor, -

¢ Addition of procedures to include local climate variance due to local forcing
not represented by the larger scale atmospheric forcing.

Each of the above improvements is discussed separately in the sections below.

4. Using raw atmospheric data as predictors

In the simplest of forms the downscaling needs to incorporate the atmospheric
circulation as the primary forcing/predictor of the regional climate. Within this data set
the need is to represent the atmospheric dynamics in the lower and upper troposphere, and
some indication of the time-dependent development of the synoptic state. In the initial
study the circulation was represented by lagged PCA component scores on the
presumption that this would provide a dimensionally reduced version: of the data
representing the primary processes. However, the added complexity of PCA along with
the related assumptions introduced appears to add little benefit to the procedure over
simply using the raw data values. While the use of raw data does increase the number of
predictor variables over that of the PCA version, this only minimally increases the
computational requirements.

The indicators of tropospheric dynamics chosen are thus the 500hPa and 700hPa
geopotential height fields, while the time-dependant development is included through
lagging of the height observations. The geopotential height fields implicitly include the
altributes of the dynamics such as vorticity, or divergence, and the subsequent impact on
vertical velocity, as well as geostrophic wind speeds and direction. While other derived
fields could be used as well, the selection of the circulation variables is constrained in this
application to geopotential heights as, if climate change scenarios are to be developed,
then there is the added requirement that the fields be valid in the GCM as well,

In theory the above information should not need further manipulation prior to use as
predictors with the ANN, However, while the ANN is capable of generating transfer
functions of arbitrary complexity, in practice it appears beneficial to provide the predictor
information in a form whereby the coarse state of the atmosphere is also represented, and
then the ANN can better identify the actual response, The simplest way of representing




the basic state of the atmosphere is through some means of synoptic indexing. In this
application the synoptic indexing is done with the use of Self-Organising Maps (SOMs).
SOM:s provide a 2-dimensional non-linear integer index of the state of the atmosphere at a
user selectable resolution. In this manner an additional 2-part index of the synoptic state
may be added as a predictor. Details of the SOM are further outlined below.

5. Self Organising Maps and “typing” synoptic states.

If one considers the atmospheric data to be samples of a continuum, then ideally a
synoptic indexing method should identify the preferential “modes” of state along the
continuum. Thus, as samples of the continuous behavior of the atmosphere one would
like to identify states along the continuum which represent modes of the atmosphere of
primary importance (at least in terms of frequency of occurrence). These “modes” in turn
may be non-linearly positioned within the continuum, and thus no supposition in this
regard should be made by the method used. While traditional synoptic typing techniques
exist, these are linear in nature, assume the data variables to be orthogonal, and work
from the presumption that the data represents groups rather than a continuum.
Furthermore, it is problematic to quantitatively express the relation of one cluster group to
another.

Conversely, a tool that avoids these difficulties, and is particularly suited to the
conceptual objective outlined above, is the Kohonen Map, or Self Organizing Map
(SOM). A suitable analogy for a SOM is that of an optical camera. In a manner similar
to the way that an optical camera projects 3-dimensional space onto a 2-dimensional
plane, so a SOM projects N-dimensional data onto a 2-dimensional plane. In the case of
the SOM, the 2-dimensional plane is made of a matrix of nodes, and the data is projected
onto one of the nodes, Taking the camera analogy a step further, using the SOM is a
matter of “focusing” the SOM lens to correctly project the data onto the plane of nodes,
The result is that data samples may be mapped to one of N-nodes, where similar data
samples will map to adjacent nodes, and hence represent the N-dimensional continuum
across a 2-dimensional plane,

Thus, the SOM can be viewed as expressing the continyum of samples non-linearly
across a 2-dimensional plane. In short, an explicit definition of the SOM procedure is that
the SOM defines a 'nonlinear projection' of the probability density function of the high-
dimensional input data onto a two-dimensional display. Full details of SOM procedures,
complete reference lists, and details of implementation may be best found with the
software package SOM PAK, freely available at ftp://cochlea.hut.fi. Figure 3 provides a
conceptual schematic of how the SOM is “focused”, or trained.



'The SOM is essentially a single layer competitive ANN where each node has a set of
weights equal in number to the number of data inputs. As with training the downscaling
ANN, training data samples are presented sequentially to the SOM. With each
presentation, the outputs of each node are determined and the node with the largest output
value is deemed the “winning” node. The weights of this node are then incrementally
updated such that the values of the weights approach that of the data sample,
Additionally, the weights of the surrounding nodes are updated in a similar manner but to
a lesser degree. With greater distance from the “winning” node, the weights are updated
to a lesser and lesser degree.

In this manner, similar data samples are “focused” to the same node, and marginally
less similar data samples to adjacent nodes, and so on. The data are repeatedly presented
to the SOM until each node’s weights closely represent the modal value of all samples
mapped to that location. After training, any data sample may be presented to the SOM
and the node to which it maps identified by the X and Y coordinate of the node matrix,
analogous to a cluster group in regular cluster analysis. Smaller matrices of nodes
generalize the input data, while larger matrices provide more detail—in the same manner
as cluster analysis where few clusters generalize the data clustered, and many clusters
provides more detail, The SOM, however, has an additional advantage in that the

“clustering” may be easily visualized, as each node in the SOM matrix is related to the -

adjacent nodes, and the weights on each node represent a point on the continuum of the
higher dimensional input-space.

In the downscaling application, the same input data used in training the ANN are
used to train the SOM. A SOM of 15 nodes was created as a matrix of 3 by 5 nodes,
After training the SOM each node on the SOM matrix represents a state in the circulation
input space.

6. ANN basic downscaling procedures.

Figure 4 indicates a typical downscating procedure, and demonstrates how the SOM
indexing becomes a further procedural step and provides the additional inputs for the
ANN. The flow diagram indicates how observational data are initially used to create a
transfer function J between the atmosphere and some given local climate variable. The
function is then subsequently applied to independent observational data and later GCM
data to generate local climate variables as a function of the atmospheric forcing,

At this stage of development, the downscaling represents only the atmospheric
component in determining the local climate, Nonetheless, under the assumption that the
synoptic dynamics are the dominant control thep it is anticipated that this would provide
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the fundamental local climate response from the ANN. The ANN was tested following
this procedure and demonstrated that this expectation held true.

In this first test the atmospheric observational data used are from the GSFC' 4-D data
assimilation experiment which spanned the years 1980 to 1993, The geopotential height
fields for 700hPa and 500hPa are selected to describe the circulation dynamics, and
inherently account for information such as geostrophic wind speed, vorticity, and
divergence. The data are twice daily (0Z and 12Z) on a 2° latitude by 2.5° longitude grid.
The observational daily precipitation data used as the local climate variable of interest are
area averaged station data obtained from the South African Computing Centre for Water
Research (CCWR?), and provide gridded precipitation on a 0,5° grid. Grid cell averages
derived from less than 3 stations are not used, The ANN downscaling procedure is then
applied for each of the December-January-February (DJF) and June-July-August (JJA)
seasons.

For each target local climate grid cell (0.5° area-averaged precipitation) the 700hPa
and 500hPa geopotential heights from the co-located GSFC grid cell, plus the 8§
surrounding cells are selected. A moving 48 hour window is then used to incorporate the
antecedent conditions, and used as inputs to the ANN and SOM. Initially a SOM
classification is performed to obtain the additional indices to use as inputs to the ANN.,
For both the SOM and ANN training the data are first subset on a random basis into two
groups of 75% and 25% of the days. The 75% set is used in training and the 25% set
used as independent data to evaluate the training, and determining the point at which to
halt training and prevent the ANN from learning to relate noise between the input and
output data sets.

A separate downscaling is performed for each target 0.5° grid cell, The best transfer
function for a grid cell is determined at the point in training where, when applying the
ANN function to the independent 25% test data, no improvement in the match between
the ANN derived precipitation and the observed target precipitation is seen, Finally, the
ANN predicted daily precipitation produced by the ANN with the independent test data is
evaluated against the actual observed precipitation to validate the downscaling functions,

Figures 5 and 6 show the observed DIJF and JJA seasonal mean precipitation based
on the observational daily precipitation data, and the daily precipitation predicted by the
ANN as a function of the atmospheric forcing, As can be seen, the ANN derived
precipitation field demonstrates an accurate representation of the spatial pattern, as well
as magnitude, of the precipitation, although with a slight tendency to be too wet. Thus, at
least in terms of the aggregated seasonal means from the daily downscaled precipitation,

' Goddard Space Flight Center (GSFC) reanalysis project at http://dao.gsfe.nasa.gov/
z http:/fwww.aqua.ccwr.ac.za/
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the ANN functions may be deemed valid and further applied to GCM simulation data in
order to generate climate change scenarios.

7. The relative importance of atmospheric humidity,

As identified earlier, in terms of the controls on regional climate the atmospheric
water vapour content plays an important role, particularly in the context of global climate
change where global warming would alter global evapo-transpiration. However, in nearly
all cases of downscaling in the literature, the absolute atmospheric humidity levels (as
opposed to, say, relative humidity) have been left out of the downscaling function, and it
is argued that this represents a significant problem,

A study that particularly highlighted the potential significance (albeit negatively) was
undertaken as a team project in 1996/7 where 4 downscaling research groups participated
to evaluate the respective methodological strengths and weaknesses (Wilby et. al., 1998).
Using only circulation data and no atmospheric variable indicative of humidity, four
independent downscalings were carried out focused on the USA and using the identical
source data, In all cases the climate change scenarios developed showed, contrary to
expectations, minimal change in precipitation, Conversely, another study (Crane and
Hewitson, 1997), although using different GCM data, included atmospheric humidity and
noted a significant climate change signal over similar domains in the USA.

In terms of climate change scenarios one needs to consider seriously the potential
consequences of the above approach, As noted earlier, climate change is likely to be
primarily manifest at the regional scale in terms of changes in frequency, intensity, and
persistence of synoptic events, coupled with a background increase in the direct radiative
forcing. However, in addition to this, atmospheric humidity levels are also expected to
change significantly as a function of warmer oceans with greater evaporation, and warmer
land temperatures driving greater cvapo-transpiration. The consequent changes in
absolute. humidity levels leads to changes in the precipitable water, and would seem, even
on a purely conceptual level, to be critical for determining precipitation rates. Thus,
when considering regional climate change scenarios and the impacts on precipitation,
which is perhaps the variable with the greatest potential to impact society, it would seem
vital to include some measure of atmospheric humidity in the downscaling functions.

To evaluate the significance of this aspect, an empirical downscaling is performed
where atmospheric humidity is firstly included, and then excluded, from the downscaling
function. Regional climate change scenarios are then derived from a GCM simulation,
and the response evaluated in the light of the inclusion or exclusion of humidity fields.
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An important question related to this is how to represent humidity — a question that
has been the subject of some debate. The common variable used is Relative Humidity
(RH). However, RH is probably the least useful measure to use in this case, as it is not a
measure of the absolute water content, and strongly dependant on temperature — a
variable likely to change under global warming. An alternative quantity representative of
the absolute water content of the atmosphere would be specific humidity.

As specific humidity is the mass of water vapour per unit mass of moist air, if we
warm the air column (in a global warming scenario), volume and pressure change, but
specific humidity at any particular level does not change (unless evaporation changes).
That is, there are still the same number of water molecules in a Kg of air. On the other
hand, RH will change, as it is the ratio of water molecules in a parcel of air to the number
of molecules vou would have in a saturated sample of the same volume, at the same
temperature.

So, if one ignores for the moment increased evaporation and considers what happens
if the air simply warms, then specific humidity does not change but RH decreases. In this
case a downscaling transfer function using RH as a predictor is likely to produce less rain.
In reality, we assume that the processes that produce uplift and cooling cannot change
(i.e.: the fundamental physics of the atmosphere remains the same), and so a synoptic
situation that produces uplift, condensation, and precipitation under present conditions
will do so in the future, What is important in determining the magnitude of the rainfall
event is thus not the process that brings the air to saturation, but how much water vapour
is present (again assuming that cloud condensation nuclei (CCN) do not change). Thus in
this situation, specific humidity is a far better measure of atmospheric water content than
RH.

To evaluate the role of atmospheric water content two downscaling experiments were
conducted; the first with no atmospheric humidity predictors, and the second using
specific humidity as a predictor. In the case including humidity the specific humidity
values co-located with the target grid cell at the surface (2m ~ indicative of boundary
layer humidity), 700hPa (lower troposphere), and 500hPa (mid to upper troposphere)
levels were included as predictors. Thus the full predictor set represents the column
humidity over the target location, and the tropospheric circulation dynamics over the
surrounding region. As before, the ANNSs are trained, and now in addition applied to the
GCM simulation data, as it is in this context that humidity is of primary importance.

For use with GCM data, 5 years of twice daily fields were extracted from each of the
control and doubled atmospheric CO;, simulations of the GENESIS v2.01 GCM. These
simulations are not transient runs as are most current generation experiments configured.
Nonetheless, they serve well in the current context, and the GENESIS GCM has been
validated in terms of circulation over southern Africa (Hudson, 1997). Full details of the
GENESIS GCM may be found in Pollard and Thompson (1995) and Thompson and
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Pollard (1995). The GCM has 18 vertical levels and T31 horizontal resolution, and uses a
mixed layer ocean. The data have the same temporal resolution as the GSFC data, and are
spatially interpolated to match the GSEC grid.

Figure 7 and 8 show the DJF and JTA (2xCO, ~ control) seasonal mean precipitation
anomalies derived from downscaling without the humidity data, and the same mean fields
derived from downscaling including humidity as a predictor, While the specifics of the
regional climate change implications are of ultimate interest, the point to be made here is
that the presence or absence of atmospheric humidity in the downscaling function has a

the change may be reversed.

The results indicate that the regional climate change scenarios need to be considered
as more than a response to synoptic forcing, and that the additional factor of atmospheric
humidity can play as important a role. For example, in interpreting this scenario the
indication is that the changes in synoptic forcing are conducive to a drying in the summer
rainfall regions (downscaling without atmospheric humidity), whereas the change in
atmospheric humidity (from atmospheric warming and increased evaporation) appears to
counter the drying trend. As such, the validity of the scenario needs to be evaluated in the
light of not only the GCMs synoptic circulation performance, but also in terms of the
humidity changes in a doubled CO;, world.

The numerous downscaling applications presently in the literature thus potentially
tepresent only the climate change forcing in terms of the synoptic forcing, unless the
methodology has explicitly accounted for absolute humidity levels in the atmosphere.
While the response to synoptic forcing alone is important information for understanding
the potential changes to the climate system, the scenarios need to be considered in the
light of whether the role of changing atmospheric humidity has been accounted for, or
not.

8. Stochastic addition of local forcing,

Thus far the downscaling has focused on the local climate response in the context of
the larger atmospheric forcing. However, as noted earlier, atmospheric factors alone are
not perfect predictors, and there will always remain a residual variance unaccounted for
by the atmospheric predictors. The net effect of not including the variance from local
forcing is for the downscaling to generate far too many trace precipitation days, and to
under-predict the peak events. ‘
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This effect is due primarily to the downscaling relationships generalising a local
climate response for a given atmospheric state. For example, in the training data, very
similar atmospheric states have associated with them a (finite) range of local climate
responses, and the downscaling relationship provides some generalised value of this range
of response. With the ANN, the generalised local response tends toward the mode of the
individual responses in the training data for days with a similar atmospheric state - or in
other words the ANN response tends toward the most frequent response in the target data
for the given atmospheric state. For much of the range of local climate variation this does
not present a problem, but does become a significant factor at the tails of the distribution.

For example, consider the dry and wet ends of a precipitation distribution. On the
dry side, in order for the ANN to differentiate between zero rainfall and trace rainfall, the
atmospheric predictors need to incorporate some distinguishing forcing factor. However,
with atmospheric circulation the means of distinguishing between a dry day and a trace
precipitation day is often not possible, and is rather a function of some other feature, such
as antecedent soil moisture, or the particular trajectory of a convective cell. Hence,
during training the ANN is presented with days that from an atmospheric standpoint look
very similar, yet have local responses of both zero and low precipitation amounts, The
ANN generalised response is to converge to the median of these, which in this case
becomes a trace rainfall event,

At the extreme wet end of the spectrum the situation arises where the atmospheric
distinction between a high rainfall event and a very high rainfall event may be fairly
subtle. This is compounded by the fact that there may be very few samples in the data
from which to infer the relationship. As with the trace rainfall situation, for the
atmospheric forcing of a given set of high rainfall events, the ANN will converge on a
median value for this atmospheric state which will be somewhat less than the peak values
of the data.

The net effect of the above is that the ANN produces a reduced range of local climate
responses characterised by too many wet days — which is the representation of the local
climate purely as a function of atmospheric state, While in one sense the residual
variance not captured may be considered noise, it is in fact due to local processes for
which information is not contained within the predictors used. Fortunately, the local
forcing on local climate, unlike the synoptic circulation forcing, is likely to be largely
independent of a climate change signal, for example the “random” sources of variance
such as the particular trajectory taken by a convective cell over the landscape. These are
not truly random in that there are definite physical processes governing the behaviour of
such features, yet in the downscaling context they may be considered as an unpredictable
component with some distribution of behaviour not responsive to a climate change signal.

The importance of incorporating this source of variance lies in the fact that for many
sectors of impacts research there is a strong need for daily temporal-scale scenario
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information. Seasonal means, as have been shown so far, are informative only so far as to
indicate the general climate response. If one is to assess effectively the consequence on
society and infrastructure, then the information about the distribution of daily events, such
as extremes, median, sequencing, etc., become as important. Without the variance from
the local forcing, the climate change scenarios dependant only on the atmospheric forcing
are not sufficient for the effective prediction of impacts.

As the local sources of variance are largely non-responsive to a climate change signal
it should be possible to treat them stochastically, although the stochastic attributes are
likely to be a function of the synoptic scale circulation mode or state at any given time.
Given this, it would seem reasonable that a downscaling procedure which included the
synoptic scale-circulation forcing and atmospheric humidity, and which models the local
forcing stochastically, should be able to replicate empirically the overall local climate
response, and hence generate viable regional climate change scenarios. This is, however,
always assuming that GCMs can reasonably simulate the synoptic circulation and
humidity fields.

- Thus, in general the locally forced variance component on the local climate signal
can be considered as a stochastic factor with a given distribution, and importantly, as a
function of synoptic mode. For example, while some stochastic downscaling techniques
do try to incorporate this distribution (e.g. Wilby et. al., 1998) (although they do not
account for atmospheric humidity), they treat the distribution of local variance as a
constant across all synoptic situations,

A constant distribution curve, however, is unlikely to be the case. One can easily
envisage synoptic situations which may dominate the local climate response (e.g. frontal
activity} and hence lead to very small input from local factors, Alternatively, where the
synoptic forcing is very weak (e.g. weak pressure fields with convective activity, where
the synoptic state merely inhibits or enhances the general local climate dynamics), the
degree of local forcing is likely to be large. This may be found, for example, in the
dependence of the rainfall response on the particular trajectory of a convective cell.

The basic distribution for the stochastic model may be derived from the distribution
of residuals (from the circulation + humidity downscaling) of the ANN training, ij.e.
when training the ANN, the ANN predicts a precipitation time series which will
imperfectly match the target observed precipitation due to the local forcing not
incorporated in the predictors. These residuals then represent the variance due to local
forcing, and the distribution of residuals can then be used to add a random factor
representative of local forcing back into the downscaled data derived from circulation and
humidity alone.
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First, however, the residuals from the ANN training need to be evaluated as a
function of synoptic state in order to determine the distribution pattern. For this the SOM
classification used earlier in the downscaling procedure provides a convenient means to
develop the distribution of residuals as a function of the synoptic mode. The different
modes of the daily synoptic and humidity input fields to the ANN have already been
identified, and the residuals can be subset accordingly. Subsequently, for any given day
downscaled, the synoptic mode may be identified, and a random value to incorporate in
the downscaled data selected from the appropriate distribution of residuals.

Figure 9 outlines the modifications to the basic downscaling to include the stochastic
local forcing. After training the SOM with the composite circulation-humidity data, each
node on the SOM matrix represents a state in the circulation-humidity input space. The
SOM nodes to which each input sample is mapped is then identified, and the residuals
from the ANN training data collated for each SOM node. The selection of residuals for
each SOM node (synoptic state) then represents the variance of the local climate signal
that cannot be accounted for by the synoptic circulation and humidity predictors in the
downscaling,

The distribution of residuals on each SOM node are themselves very illuminating,
Figure 10 shows the histogram of a selected three of the SOM nodes and illustrates this
point. Of the 3 distributions, one demonstrates a narrow distribution centered on rainfall
category 5, indicating that under this synoptic state the atmospheric predictors are the
dominant forcing. On the other hand, one distribution is nearly flat indicating that under
these conditions the synoptic forcing is a poor predictor, and that other forcing factors are
significant. The third distribution indicates a situation somewhere between these two
states.

9. Downscaling with atmospheric circulation and humidity sources of forcing.

The SOM may now be used with the downscaled data to incorporate the variance due
to local forcing. For each downscaling data sample the SOM identifies one of N (in this
case 15) nodes, each associated with a distribution of residuals. Using a random number
generator a value is randomly selected from the distribution and added to the downscaled
value. In order to evaluate the effectiveness of the stochastic addition of local variance, a
number of measures of daily precipitation are used to represent comprehensively
attributes of the precipitation behavior.
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Validation of Downscaling

Figures 11 to 16 shows selected parameters of the DJF and JJA conditional wet day
probability, standard deviation, and mean wet spell length. For each of the parameters the
observational data, the downscaled data from observed circulation with no stochastic
local forcing, and the downscaled data from observed circulation with stochastically
modelled local forcing are shown for the DJE and JJA -seasons. As can be seen the
downscaling from circulation and humidity alone is characterized by far too many wet
days. However, with the addition of the local forcing derived from the stochastic
procedure, the results again are a close match to the observed data.

Although only a sub-sample of statistics is presented here, some generalization
attributes are consistent across a wide range of measure of daily temporal behavior. By
noting the range of the shading bar on the plots it is apparent that the stochastic procedure
brings the variance of the downscaled fields back to values that are comparable to the
observed data. However, in statistics that are a measure of the span of precipitation
events, the stochastic procedure benefits the data set, but still falls short of raising the
variance back to levels on a par with the observed data. This is primarily due to the peak
downscaled events still having a magnitude lower than the observed peak events, and may
be due to the relatively short period of training data used in developing the downscaling
functions. Purther work is underway with a 40 year period of observed data to evaluate
this. The relatively short training data initially used may also impact on the residuals
used in developing the distributions, and here again the new longer data set will allow
evaluation of this.

Overall the stochastic procedures bring the downscaled precipitation into close
approxitmation with the temporal and spatial characteristics of the observed data.

Climate change scenarios

The climate change scenarios presented here are not intended as definitive
projections for the future, especially as the scenarios represent a climate projection from
an older generation experiment. This is not to say the GCM derived scenario has no
credibility, but rather that the scenarios presented here need to be considered in the
correct context. Pertinent caveats are that the GCM represents a short time period (5
years), uses only a mixed later ocean, and is a quasi-equilibrium solution after an
instantaneous doubling of the atmospheric CO,.

Having said that, the scenarios do indicate interesting characteristics. The seasonal
mean scenario has already beem shown in Figures 7 and 8. Figures 17 to 20 show
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additional scenario attributes in terms of the daily statistics that reflect characteristics of
the temporal behavior. The primary point to be made here is the impact on the scenario
when humidity is included as a predictor. As was indicated earlier when evaluating the
role of humidity with seasonal averages, it can be seen that the regional scenarios in terms
of daily statistics can change substantially when the humidity factor is included.

Overall the scenarios indicate a summer situation where changes in synoptic
circulation are conducive to drier conditions and decreased variability in the north-east (as
seen in the downscaling excluding humidity), but which are offset by the increased
atmospheric humidity (downscaling with humidity). The reverse is seen over the central,
southern, and western regions. In JJA the winter rainfall regions appear to receive a
nominal increase in rainfall, with a fairly marked decrease in variability over the south-
western Cape.

10. Summary.

Regional climate change poses an important threat to the already variable and
drought and flood-prone climates of South Africa. Current scenarios of potential change
are severcly limited in spatial and temporal resolution, especially with regard to
precipitation, and are in critical need of alternatives in order to plan for the future.
Downscaling is one widely recognized methodological approach for dealing with GCM
inadequacies in developing regional scale climate change scenarios, and is considered the
most viable for the South African context.

Multiple approaches to downscaling are available, although many have significant
infrastructural constraints or problematic assumptions which underlie their procedures.
The approach adopted in this work has thus focused on the empirical downscaling option,
and the variant of empirical solutions has been to directly relate atmospheric forcing to
local climate through the application of ANNs. This represents further development of
earlier methodological work undertaken for the WRC. An early formal evaluation of the
initial methodology against 3 other downscaling approaches has shown that the ANN
approach is able to capture important aspects of regional climates not managed by other
techniques. Problems identified in the comparative study have also greatly assisted in
refining the new work undertaken here,

Of all empirical downscaling techniques, the ANN approach is arguably the method
with the least problematic assumptions, and provides a tractable procedure for developing
regional scenarios from long term GCM simulations, and for use with multiple GCM data
sets. Validation of the ANN techniques has shown the procedure to be viable and
effective in capturing the primary forcing over a wide range of climate regimes and
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seasonal variation. Using geopotential height fields representing circulation dynamics,
and atmospheric humidity as an indicator of precipitable water, the ANN procedure is
able to effectively capture the spatial and seasonal attributes of precipitation over South
Africa.

It is in recognizing the important role played by atmospheric humidity that the
methodology has been further refined in comparison to work carried out by other research
groups in recognition of. Atmospheric humidity has been shown to be a critical variable
in terms of the local climate response to global change. In particular the inclusion or
exclusion of humidity in the procedure can influence the results to such an extent that
over certain regions the sign of the climate change may alter, let alone the magnitude.
Consequently it is argued that downscaling without cognizance of the role of atmospheric
humidity leads to scenarios that only represent climate response to circulation dynamics,
which, while informative, may be substantially different from actual climate response.

Similarly, as much of the potential climate impact within different components of the
physical system may be sensitive to the daily temporal characteristics of climate, it is
important that the downscaled climate reasonably reflects daily variance. Since the
downscaling cannot include local forcing factors, and since these are largely insensitive to
the global climate change signal, the methodology incorporates this source of variance
through stochastic modeling. The addition of this source of variance substantially
improves the daily characteristics of the downscaled climates and allows scenarios to be
constructed in terms of the daily behavior of the downscaled climate.

The remaining errors in the downscaled climate are manifest primarily as a tendency
toward nominally wetter than observed conditions, However, in the context of GCM
skill, and given the level of accuracy of alternative sources of climate change scenarios,
the downscaled procedure and subsequent climate projections represent a viable,
justifiable, and pragmatic solution for the immediate and rear future climate change
impact research needs.

11 Products, Recommendations, and Future directions,

In addition to a preliminary set of climate change scenarios, the primary product of
the project is the suite of software tools to perform ANN-based downscaling. The
software has been packaged into a (relatively) user-friendly package running on UNIX
based computer systems. Two other research groups in the USA have already used
preliminary versions of the softwarc package, and two new projects within the USA have
also adopted the software package, and are working in collaboration with UCT in this
regard. In addition, the procedure has been adopted as a major component of the scenario
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development for the South African FCCC (Framework Convention on Climate Change)
assessment project. The software package will be made available to relevant researchers
on request, with collaboration encouraged.

However, within the South African context the primary need is to now apply the
procedure to as wide a range of recent generation GCM experiments as possible, In
response to this, data has already been collected from two GCM transient coupled ocean
runs and will form the basis of the FCCC scenario development work currently underway.
This activity needs to be extended.

A number of GCM experiments arc currently underway at overseas institutions
focused on the next IPCC (Intergovernmental Panel on climate Change) report, and will
be completed over the remainder of this year. Contact has already been made with the
relevant scientists in this regard about access to the data, and it is recommended that
further work be undertaken to develop a full suite of scenarios and apply further analysis
of the potential impacts, and investigate the level of consensus between scenarios.

This last point must not be underemphasized. In light of the variable nature of the
South African climate system, and the high degree of vulnerability to climate change, a
clear view of possible future impacts is needed, with rational interpretation and associated
levels of confidence in the scenarios. The only tractable means of approaching this
objective within the next few years is through analysis of ensembles of current generation
long term (100 year+) GCM derived data sets through empirical downscaling.
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(bottom), precipitation downscaled from observed circulation and humidity excluding
local forcing (middle), then with stochastically modeled locai forcing (top).
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Figure 12: DJF mean wet spell length (in days) of daily precipitation. Observed
precipitation {bottom), precipitation downscaled from observed circulation and
humidity excluding local forcing (middie), then with stochastically modeled local
forcing (top).
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~ local forcing (middle), then with stochastically modeled local forcing (top).
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Yigure 15: JJA mean wet spell length (in days) of daily precipitation. Observed
precipitation (bottom), precipitation downscaled from observed circulation and
humidity excluding local forcing (middle), then with stochastically modeled local
forcing (top). '
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Figure 17: DJF climate change scenario of conditional wet-day probability. Derived
from downscaling without humidity as a predicior (top), and then including humidity
(bottom).
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Figure 18: DJF climate change scenario of standard deviation of daily precipitation,
Derived from downscaling without humidity as a predictor (top), and then including

humidity (bottom),
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Figare 19: JJA climate change scenario of conditional wet-déy probability. Derived
from downscaling without humidity as a predictor (top), and then including humidity
(bottom).
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Figure 20: JJA climate change scenario of standard deviation of daily precipitation,
Derived from downscaling without humidity as a predictor (top), and then including
humidity (bottom).
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