J BUYS G J VAN TONDER J F BOTHA

CONVERSION OF THE **SOFTWARE** PACKAGES TRICON AND BAYES FROM PERS**ONAL** COMPUTERS TO MACHINES USING THE **UNIX OPERATING** SYSTEM

Report to the WATER RESEARCH COMMISSION by the INSTITUTE FOR GROUNDWATER STUDIES UNIVERSITY OF THE ORANGE FREE STATE

WRC Report No 566/1/95

Disclaimer

This report emanates from a project financed by the Water Research Commission (WRC) and is approved for publication. Approval does not signify that the contents necessarily reflects the views and policies of the WRC or the members of the project steering committee.

Vrywaring

Hierdie verslag spruit voort uit 'n navorsingsprojek wat deur die Waternavorsingskommissie (WNK) gefinansier is en goedgekeur is vir publikasie. Goedkeuring beteken nie noodwendig dat die inhoud die siening en beleid van die WNK of die lede van die projek-loodskomitee weerspieël nie.

1 INTRODUCTION

The invisibility of groundwater and the unique nature of aquifers make it extremely difficult to manage and control groundwater resources. One method to overcome these difficulties is to represent waterlevels in observation boreholes graphically by contour maps. This approach has the advantage that it allows one to visualize the trends in the data.

An important aspect in groundwater is the management of the resource. Mathematical models are often used for this purpose. However, to apply these models, values for variables are often needed at points where no measurements were taken, which require reliable estimation techniques.

The packages TRICON and BAYES (or TRIPOL as it is now referred to, because it includes three different interpolation methods) were originally developed for the contouring and interpolation of geohydrological data. However, there is nothing in the programs that would prevent a potential user applying them to other regional variables.

2 PURPOSE OF THE PROJECT

The packages TRICON and BAYES were developed on a personal computer as part of the project: A Comparative Study of Two- and Three-dimensional Groundwater Models, between the Water Research Commission and the Institute for Groundwater Studies, that ended in December 1991. The main properties of these packages, which are described in the reports by Buys et. al. (1992) and Van Sandwyk et. al. (1992), respectively, are briefly as follows:

To draw accurate and aesthetically acceptable contour maps of a regionalized variable - that is a variable that varies in space.

To estimate values of a regionalized variable, and its associated error, at points where no measurements are available.

Both these packages were developed on IBM-compatible personal computers under the DOS operating system, because of the widespread use of these machines in South Africa. However, towards the end of the project, it became clear that the maximum of 640 Kb memory, available on these machines under the DOS operating system, limits the application of both packages considerably (Buys et. al., 1992). A research proposal 'Conversion of the Software Packages TRICON and BAYES from Personal Computers to Machines using the UNIX operating System', was therefore put before the Water Research Commission. The purpose of this project, as stated in the terms of reference, is as follows:

(a) To convert the present research package BAYES to a commercial package, (b) to convert the two packages, TRICON and BAYES, developed for personal computers, that use the DOS operating system to machines that use the UNIX operating system and (c) to incorporate them in the GIS system, presently developed at the Institute for Groundwater Studies, with funds from the Water Research Commission.

The proposal was accepted by the Commission and work on the project began in January 1993. The present report describes the work carried out under this project, which ended in December 1993.

3 STRUCTURE OF THE REPORT

The work on this project was undertaken in different phases, which will be discussed in Sections 2 to 7 of this report. The phases were:

- (a) Conversion of program TRICON to the SUN workstation, so that it can run under the UNIX operating system.
- (b) Combine the BAYES program with the program KRIGING, developed by Prof. G.J. van Tonder at the Institute for Groundwater Studies, into a package called TRIPOL that includes three different interpolation methods: (i) the classical Distance Weighting Method, (ii) Kriging and (iii) Bayesian Estimates. A facility for the computation of semi-variograms and the fitting of a theoretical semi-variogram to the semi-variogram values, needed by the Kriging and Bayes methods, were also included.
- (c) Develop user friendly interfaces for the DOS version of TRIPOL and the UNIX and SUN versions of both TRICON and TRIPOL.
- (d) Replace the DOS graphic library, PLOT88, presently used on DOS machines, with a Postscript library.
- (e) Incorporation of TRICON into the GIS system, presently developed at the Institute for Groundwater Studies.
- (f) The User Manual for TRICON was adapted for the UNIX version and a User Manual for TRIPOL was written from scratch. The User Manuals are included in Appendix A and B of this report.

4 SUMMARY AND CONCLUSIONS

TRICON and TRIPOL have been used extensively by the geohydrology students at the Institute for Groundwater Studies, since the second half of 1993. The UNIX versions of both packages proved to be very valuable for the handling of large data sets, required by numerical models.

The rapid development of IBM compatible personal computers in terms of speed and memory, however, increased the demand for DOS versions of TRICON and TRIPOL that require more memory than the basic 640 Kb available under current DOS versions. This problem may be solved in the near future with the publication of a linker, called BLINKER, by BLINK Inc.

٠,-

CONVERSION OF THE SOFTWARE PACKAGES TRICON AND BAYES FROM PERSONAL COMPUTERS TO MACHINES USING THE UNIX OPERATING SYSTEM

1 INTRODUCTION

The packages TRICON and BAYES (or TRIPOL, so-called because it includes three different interpolation methods) were originally developed for the contouring and interpolation of geohydrological data. However, there is nothing in the programs that prevents a potential user applying them to other regional variables - that is variables that vary in space.

Regionalized variables are usually associated with very large areas. Therefore, it is practically impossible to measure them at all points of interest - least at points where their values may coincide with prescribed contour values or pre-defined nodes in a simulation problem. The variable is, consequently, mostly known at a small number of points (considerably less than needed to generate smooth contour lines or coinciding with each node of the mesh) scattered throughout the domain.

There are two methods that can be used to circumvent the discretization of arbitrary spaced points: (a) use an irregular triangular finite element mesh for contouring, and (b) interpolate or extrapolate the measured values, if values are needed at points where no measurements were taken. TRICON and TRIPOL do just that.

2 **PROGRAM TRICON**

TRICON is a graphical package that can be used to contour a regionalized variable with known discontinuities (Buys *et al*, 1992). However, it can also be used for interpolation of the variable to a regular rectangular grid, as well as to draw maps of any specified geographic information about a region and to represent groundwater velocities graphically.

TRICON uses a triangular irregular mesh, constructed between the actual data points, for contouring, interpolation and velocity computation. It constructs a Deluanay triangulation between the actual data points, but it can also be used to triangulate points on a square grid.

Contour lines, constructed by TRICON, are consistent and reflect changing roughness of the terrain. Contouring with TRICON is fast and provides piecewise linear, or smoothed, contours. The smoothing of contour lines can be controlled by the user to avoid intersecting contour lines.

Separation of the triangulating and contouring steps makes it possible to compute various sets of contour lines for the same set of data points, without reconstructing the triangulation. Using piecewise linear contours is a good way of checking for erroneous points, and to see if the expected trends are present. Contours are smoothed, using curve fitting techniques, but extensive smoothing is not done because this may lead to inconsistent contours.

TRICON incorporates discontinuities in the triangulation by partially subdividing the region

into subregions, with the discontinuities as boundaries, while the terrain around the discontinuity is still viewed as a whole. Contour lines are interrupted where they cross the discontinuity, without increasing the computer time needed to compute the contours.

3 PROGRAM TRIPOL

TRIPOL is an interpolation program that estimates values for random variables from a given set of regionalized variables, that is variables distributed in space (and/or time). Variables encountered in environmental sciences such as geohydrology, geology, weather forecasting etc., are all regionalized variables.

TRIPOL includes the following:

Computation of a semi-variogram for a given set of regionalized variables (data points);

•Fitting a mathematical function to the semi-variogram;

•Estimating values for any set of random variables from the given set of data points.

TRIPOL implements three interpolation methods, namely:

Distance Weighting;
Kriging;
Bayesian Estimates.

The interpolation procedures do not only yield an estimate of the random variable, but also the error in the estimate.

The Distance Weighting method is a classical method that is based on the assumption that the variable of interest can be represented by a smooth function, and its use is consequently limited.

The Kriging method describes the spatial variability of environmental variables by representing them with random functions. This approach has the advantage that it allows one to describe an environmental variable in statistical terms, through the Theory of Regional Variables. The best known estimation methods, based on this approach, is Ordinary Kriging, or *Kriging* as it is conventionally known and Universal Kriging.

The Bayes method is a versatile procedure for estimation of groundwater levels (Van Sandwyk et al, 1992). The method has the advantage that one can use any expert knowledge about a given regionalized variable as a qualified guess. For example, a useful qualified guess for the groundwater level is the topography. Unfortunately, difficulties can be experienced in establishing a suitable qualified guess for some regionalized variables. It is therefore recommended that this method be used only when the user can establish a suitable qualified guess for the base variable, otherwise it may be better to use Kriging.

Because of the nature of Kriging and Bayesian Kriging, a semi-variogram, computed from the regionalized variables or data points, is needed to estimate the manner in which the mean value of the variable varies over the region. The computation of a semi-variogram for a given set of regionalized variables (data points) was therefore also built into the program, as well as a facility to fit a mathematical function to the semi-variogram.

2

Drawings created by TRIPOL can be drawn on the screen or a Laser Jet printer. Alternatively, a Postscript file or HPGL (Hewlett Packard Graphic Language) file, can be created which can be imported into a word processor.

4 USER INTERFACES FOR DOS, UNIX AND OPEN WINDOWS

The SUN versions of both programs were written on a SUN SPARC station II, that uses the SUN-OS 4.1.1 operating system based on Unix, and the OPEN WINDOWS 3.1 window manager based on the X window system.

The X Window System is an industry-standard software system that allows programmers to develop portable graphical user interfaces. X Windows is available on most Unix systems, like the SUN, IBM, HP and DEC workstations. The most widely used low-level interface to X is the standard C language library known as Xlib. Xlib defines an extensive set of functions that provide complete access and control over the display, windows, and input devices linked to the computer.

Although programmers can use Xlib to build applications, most prefer to use one of the higher level toolkits designed for use with X Windows, for example, the standard X or Xview toolkits.

The standard X toolkit consists of two parts: a layer known as the Xt Intrinsics, and a set of user interface components known as widgets. Applications based on the X toolkit, can use either the widget set OPEN LOOK (also known as OLIT), developed by AT&T and Sun Microsystems, or MOTIF, developed by the Open Software Foundation. They are both written in C and are built on top of Xlib.

The graphical user interfaces (GUI's) of TRIPOL and TRICON use the OLIT toolkit (Young *et al*, 1992), since it is available on all SUN workstations. It implements user interface components like scroll bars, menus and buttons, as well as graphics for drawing maps and graphs in a graphic window. However there is today a trend to shift towards Motif. Sun has already announced that they will move to Motif. An implementation of Motif exists already for the majority of workstations (HP, IBM, DEC, ...). It may therefore be useful to transfer the GUT's of TRIPOL and TRICON to Motif later.

Both programs can, however, already be used on other workstations, since the Unix versions run in any Unix shell, but it is much more aesthetically acceptable using OPEN LOOK.

The DOS version of TRIPOL was originally developed in FORTRAN. I decided to keep it that way and to develop a user interface that uses the Microsoft FORTRAN graphic library. The Unix and SUN versions of TRIPOL were, however, successfully linked with the C and X libraries.

5 GRAPHIC LIBRARY

The PC version of TRICON was originally developed in C and uses the PLOT88 graphics library, from PLOTWORKS Inc., to create drawings. This library has the advantage that it includes a wide variety of drivers for various printers and can also create HPGL (Hewlett Packard Graphic Language) and Postscript files for importing graphs into word processors, like Word for Windows or Mac. The only disadvantage is that royalties must be paid for programs that include the PLOT88 library, when they are sold. An agreement has been reached with PLOTWORKS that only a small amount of \$10 have to be paid on each package, if TRICON is distributed at \$100 only.

Although the drawings on the Sun version can be previewed in a graphics window, the SUN and Unix versions use a Postscript Library that was assembled from public software, to create hard copies. It frees these versions from any obligations to software developers, and makes it very versatile for use on other workstations. Without this library, it would not be possible to port the programs to other Unix machines, since PLOTT88 is only available on Sun workstations.

6 GGIS

GGIS is an interface between the geographic information system ARC INFO and the HYDROCOM data base, developed for use on SUN workstations, by the Institute for Groundwater Studies.

The SUN version of TRICON was adapted to receive input directly from the GGIS system, through temporary files. TRICON is then automatically initiated from GGIS. All the facilities of TRICON can still be used to create and view drawings, whereafter the drawings can be exported to GGIS, for incorporation in the ARC INFO system.

7 COMMERCIALIZATION

The Institute for Groundwater Studies regularly receives requests for commercial versions of both programs. Since a complete user manual for both programs is now available, the software is available through the Institute for Groundwater Studies at a small administration fee. A review of the PC version of TRICON has been published in an issue of the international journal, *Geographical Systems*.

8 CONCLUSIONS

The packages TRICON and TRIPOL are particularly useful for the contouring and interpolation of any set of values, associated with a two-dimensional regionalized variable. Although the packages may not satisfy the needs of all users, experience has shown that it is very versatile and user friendly. It also allowed scientists at the Institute for Groundwater Studies and other institutions to solve problems that were previously thought to be intractable. This applies in particular to groundwater pollution studies and phenomena where accurate contours and estimations are needed.

9 RECOMMENDATIONS

The Unix and Sun version of TRICON and TRIPOL can now be used for very large data sets, but the demands for DOS versions that can utilize more memory than the basic 640 Kb memory, that can be addressed by current DOS versions, still remains. These demands are also increasing because of the fast development of IBM compatible personal computers in terms of

Appendix A **User Documentation TRICON** by J. Buys Institute for Groundwater Studies University of the Orange Free State Bloemfontein

Copyright 1993 Institute for Groundwater Studies (IGS) and the Water Research Commission.

IGS provide this manual "as is" without any warranty of any kind, either expressed or implied and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. IGS further reserves the right to alter the specifications of the program and/or the contents of the manual without obligation to notify any person or organization of these changes.

In no event shall IGS be liable for any damages whatsoever (including, without limitations, damages for loss of profits, business interruption, loss of information, or other pecuniary loss) arising out of the use of or inability to use TRICON, even if IGS has been advised of the possibility of such damages.

TRICON was developed by the Institute for Groundwater Studies with funds provided by the Water Research Commission. It can be obtained free of charge by any bona fide research organization. In all other instances, contact the IGS for conditions under which this program may be used.

Should you have any suggestions to help us better meet your needs we will welcome them. Please write to us directly at

Institute for Groundwater Studies, P.O. Box 339 Bloemfontein 9300 South-Africa,

or call (27) - 51 - 4012625 or fax (27) - 51 - 473541.

Thank you for using TRICON. We hope you enjoy using it.

J Buys Institute for Groundwater Studies, Bloemfontein. The author wants to thank:

The Water Research Commission, for the financial support given.

The Institute for Groundwater Studies, in particular:

The Director, Prof. F.D.I. Hodgson, for his encouragement during the development;

Prof. J.F. Botha for the opportunity to develop the program;

- Mr. E. Lukas (S.Eng), for his help and for developing the menu-system, without which the professional look of the program would not have been possible;
- Mr. J.P. Verwey for his valuable assistance in testing the program.

TRICON is a graphical package that is primarily developed for automatic contouring of geological data, making provision for known discontinuities in a region. Secondary, it can also be used for interpolation of a surface to a regular rectangular grid, as well as for graphical representation of fluid velocities. It can also be used as a general plot program, to draw maps of any specified information about a region.

The following is a few good reasons why you should choose TRICON for contouring:

TRICON uses a triangular irregular network, constructed between the actual data points, for contouring, interpolation and velocity computation.

"Irregular spaced data arise from many experimental and surveying sources, each of which has its own typical pattern of scattering. Practically all program packages, with a few notable exceptions, start with irregular distributed points, interpolate them to a regular grid, then compute the contour lines. This type of data processing is so frequent in computer mapping that many studies see interpolation as a component of the production of contour lines.

Once converted, the new grid has all the advantages and disadvantages of a regular grid. To obtain the same accuracy for computation of geomorphometrical parameters, one needs fourteen regular points for every irregular one (Mark, 1975). However, to make sure that no structural line is misrepresented, the ratio has to be closer to 1:287 (Peucker *et al*, 1976).

One therefore has to ask whether the computation of explicit topological relations, maintaining the irregular structure of the points, would not lead to better results. The usual way to compute these relations is by triangulation." (Peucker, 1980)

Other disadvantages of a rectangular grid, mentioned by Peucker (Peucker, 1980), is the saddle point problem, while the subdivision of the rectangles into triangles, to obtain a regular triangular grid, can influence the shape of the curve and introduce undesirable trends.

TRICON constructs a Delaunay triangulation, using an algorithm that is also capable of triangulating points on a square grid.

"A triangulation is regarded as 'good' for the purposes of interpolation if its triangles are nearly equiangular. ... It is the purpose of this note to show that there is only one locally equiangular triangulation of the convex hull of a finite set of distinct data sites, and to identify that triangulation as the Delaunay triangulation" (Sibson, 1978).

The algorithm used to compute the triangulation allows the construction of a consistent Delaunay triangulation for all sets of data, even a square grid. "This is an important feature because a rectangular grid, which is fully degenerated, can now also be triangulated with the modified algorithm" (Buys *et al*, 1990a). This algorithm was implemented in TRICON.

Contour lines constructed by TRICON are consistent and reflects changing roughness of the terrain in a time- and space- efficient way.

"The major disadvantage of the regular grid, rectangular and triangular alike, is its inability to adapt to a changing roughness of terrain. The mesh width has to be adapted to the area of highest relief changes. One can thus say that regular grids tend to be highly redundant with respect to storage needs" (Peucker, 1980).

"Unless the data points all coincide with grid nodes, it is possible for the contours so drawn to be inconsistent with the original data" (Schagen, 1982).

"When contouring a data set with known singularities or large values which occur over small regions, it is recommended that fine spacing of nodal points be used to assure that the singularities appear in the map" (Yates, 1987).

By constructing the triangulation between the actual data points, TRICON produces consistent contours, following the laws of logical contouring, representing linearly interpolated values between neighboring data points - this makes the need for fine spacing of nodal points irrelevant. Furthermore, no contours are constructed outside the region covered by data points.

Contouring with TRICON is fast, provides piecewise linear contours as well as smoothed contours, while smoothing of contour lines can be controlled to avoid smoothed contours to cross each other.

"A triangulation method with plane facets in the triangles should be provided as the quickest, cheapest way of taking a quick look at data" (Sabin, 1978).

Separation of the triangulating and contouring steps, makes it possible to compute various sets of contour lines for the same set of data points, without reconstructing the triangulation. Using plane facets, is a good way of checking for erroneous points, and for seeing if the expected trends are present. Contours are smoothed, using curve fitting techniques, but extensive smoothing is not done because this would lead to inconsistent contours.

Known discontinuities are incorporated into the contour map in a time efficient way.

"If the actual surface has singularities, such as discontinuities (cliffs) or discontinuous first derivatives (escarpments) the algorithm (using a regular grid) will smooth these out, and they will appear as regions where the contours are close together, sharply bent or otherwise untypical. If we know in advance where such discontinuities occur, the algorithm could be adapted by ignoring the contribution from the data point (x_j, y_j) to the value at the point(a,b) if the line joining these intersects the discontinuity. Thus the weight would be a function not only of the distance between two points, but the direction and location of the line joining them. As is clear from the SYMAP program, (Robertson, 1967), the computer time in such techniques can be large. A more efficient approach would be to separate the area onto subregions with the discontinuity as boundaries" (McLain, 1974).

TRICON incorporates discontinuities in the triangulation, by *partially* subdividing the region into subregions, with the discontinuities as boundaries, while the terrain around the discontinuity is still viewed as a hole. This technique does not increase the computer time needed to compute the contours. Contours are interupted where they cross the discontinuity (Buys *et al*, 1990b).

J. Buys.

Table of Contents

Copyright	(i)
Acknowledgements	(ii)
Preface	
Table of Contents	(v)

Chapter 1 General description

1.1.	Introduction	. 1
1.2.	Basic Commands	.3
1.3.	Geographic Information	.4
1.4.	TRICON Menu System	.4
1.5.	TRICON Files	.7

Chapter 2 The Mesh Construction Command

2.2.	Input File	8
2.3.	Output Files	9
2.4.	Reaction of TRICON	11

Chapter 3 Contour Computation

3.1.	The Contour Computation Command	13
3.2.	Input Files	14
3.3.	Output Files	15
3.4.	Reaction of TRICON	15

Chapter 4 Plotting

4.1.	The Plotting Command	.16
4.2.	Input PLOT File	.19
4.3.	Output	.21
4.4.	Reaction of TRICON	.21

Chapter 5 Velocity Computation

_ .

5.1.	The velocity computation command	22
5.2.	Input Files	
5.3.	Output Files	
5.4.	Reaction of TRICON.	24

Chapter 6 Interpolation

6.1. Th	he Interpolation Command	25
6.2. In	put Files	26
6.3. Or	utput Files	26
6.4. Re	eaction of TRICON.	26

Chapter 7 Change Mesh

7.1.	The Change Mesh Command	27
7.2.	Input File	28
7.3.	Output File	28
7.4.	Reaction of TRICON	28

Chapter 8 GIS Input	29
Chapter 9 Save Configuration	
Chapter 10 Restrictions	31
Chapter 9 Save Configuration	
Chapter 11 If things go wrong	
11.1. Introduction	32
11.2. Error Messages	32
Chapter 12 Examples	
12.1. Example 1	35
12.2. Example 2	
Chapter 13 Computer Configuration	43
Chapter 14 References	44

٠.

.

۰.

1. GENERAL DESCRIPTION

1.1. INTRODUCTION

Description

TRICON is an on-line, *menu driven*, program that uses a triangular irregular network to draw contour maps, gives a graphical representation of the flow direction and magnitude of groundwater velocities and estimates values for any given point in the region, defined by a set of data points. Contours, representing the difference between two sets of data values, can also be drawn.

Properties

By using a *triangular irregular network (triangulation)*, drawn between the actual data points, it is possible to eliminate errors caused by interpolation to a square grid. A facility to alter the boundary of the triangular network, makes it possible to delete oblong triangles on the boundary of the network, that can cause distortion of contour lines.

Discontinuities

Except for the geographical position of data points, it is also possible to specify the position of dams, coastlines and discontinuities that are present in the region. This information is added to the triangular irregular network, and their effect can then be reflected by the contour lines and other applications.

Hardware Requirements

PC Version

TRICON runs on a MS-DOS and PC-DOS micro computer and it is therefore limited by the amount of memory addressable - 640K bytes being the maximum. A numeric coprocessor is used to speed up execution time, but a version of TRICON without coprocessor is also available. The TRICON executable needs between 360 and 510Kb memory to run, depending on the number and kind of printer drivers loaded. The amount of data points that it can handle, are limited by the available memory, after loading the TRICON executable. TRICON can handle up to ± 600 data points on a PC with 640Kb memory, but the TRIBIG version of TRICON, that needs only 180Kb memory, can handle more than ± 1000 data points, depending on the available memory. TRIBIG can, however, not be used to produce graphical output - TRICON must be loaded afterwards for that purpose.

SUN version

The SUN version of TRICON runs on a SUN SPARC station with SunOS 4.1.1 and the OPEN WINDOWS 3.0 window manager. It can handle much larger data sets because the UNIX operating System is not confined to 640Kb memory.

UNIX version

The UNIX version can run on any UNIX machine in a Unix shell.

Supported Devices

PC Version

TRICON supports a wide variety of graphic devices on which the graphic output can be drawn.

1

The following display devices are supported:

- •IBM Colour Graphics Adapter (CGA) or equivalent
- •IBM Enhanced Graphics Adapter (EGA) or equivalent
- •IBM Video Graphics Array (VGA) or equivalent
- Herculus Graphics Card

The following dot matrix printers are supported:

- •EPSON FX-80, FX-80+, JX-0, FX-85, FX-185, FX-286
- •EPSON RX-80,RX-100
- •EPSON MX-80,MX-100
- •EPSON FX-100,FX-100+
- •EPSON LQ-1500 8" and 13.6"
- •BM Personal Computer Graphics Printer
- •IBM ProPrinter
- •Okidata ml 92/93/182/192/193
- Centronics GLP printer

The following plotters are supported:

- •HP ColorPro (7440A/7470A/7475A) Plotter
- •HP 7470A/7475A/7550A Graphic Plotter
- •HP 7580A/7585A/7586A
- •HP DraftPro (7570A) Graphic Plotter
- •HP DraftMaster I/II (7595A/7596A) Plotter
- Houston Instrument DMP-51/52/56
- •Enter Computer SP-600 Desktop Plotter in HPGL mode
- Enter Computer SP1000 Plotter
- •Enter Computer SP-600 Drafting Plotter
- •Ioline LP 3700 Large Format Plotter

The following jet printers are supported:

- •HP ThinkJet (2225A) Printer
- •HP QuietJet (2228A) Printer
- •HP QuietJet Plus (2227A) Printer
- •HP 2686A LaserJet Plus Printer

SUN version

The SUN version creates the following graphical ouput.

- Screen Display
- Postscript Files
- •Text Files

UNIX version

The Unix version creates only Postscript Files, to be printed on a Postscript printer or viewed by a Postscript viewer.

1.2. BASIC COMMANDS

TRICON consists of the following set of basic commands that operate on-line, and can be given in sequence or independently.:

- Mesh Construction
- •Contour Computation
- Velocity Computation
- •Plotting
- •Interpolation
- •Change Mesh

The Mesh Construction command is used to construct the triangular irregular network (TIN) that is used by the Contour Computation, Velocity Computation and Interpolation commands for various applications. The Plotting command is used to create the graphic representations computed by TRICON.

Mesh Construction

TRICON computes a triangular irregular network between a given set of scattered data points, that is as near as possible equiangular. The property of the triangulation is such that, for any two triangles sharing a common edge and defining a strictly convex quadrilateral, the replacement of the chosen diagonal by the alternative one, will not increase the minimum of the six angles in the two triangles making up the quadrilateral.

Contour Computation

Contour lines are computed by means of linear interpolation on the sides of the triangles. These piecewise linear contour lines are then smoothed by using a weighted least square bicubic spline approximation. When meandering of smoothed contour lines occurs, because of the degree of smoothing used, the smoothing degree can be decreased. Contour lines, representing the difference between two sets of values, can be computed by specifying both values in the input file. A *plot file* is created by this command and can be plotted under the *Plotting* command

Plotting

The *Plotting* command is used to plot the various plot files, constructed by TRICON, on any chosen output device. It is the only command that can produce graphic output. The *plot files*, constructed by other commands, are such that they can be used as input to the Plotting command. It will produce a graphic representation of the triangulation, the contour map or the position and levels of data points and velocity vectors.

Any additional geographic information that is needed on the maps, can be added to the plot files, following the prescribed format. The plotting command can also be used as an independent plot program to plot any user created plot files, as long as they satisfy the prescribed format for TRICON plot files (see Section 4.2).

Velocity Computation

This command constructs a plot file that will give a graphical representation of the flow direction and magnitude of groundwater velocities. The fluid velocities of each triangle are

calculated from Darcy's law, for given values of porosity and conductivity. The resulting velocity vector is drawn at the centroid of the triangle. The length of the vector is drawn relative to the maximum magnitude of all the vectors.

Interpolation

The triangular irregular network, constructed by TRICON, can also be used to estimate the z-values for given grid points. For each grid point, the triangle containing it must be found. Two methods are available to estimate the z-values. The first method, linear interpolation, uses a plane surface over each triangle, to approximate the z-values of points lying inside the triangulation. When sampling is sparse, the second method, gradient interpolation, can be used. This method uses both the size and the slope of the surrounding triangles to estimate the value of the point. The second method is also the method used for all grid points lying outside the triangulation. In this case, the nearest triangles are used, although the quality of these points cannot be guaranteed. Otherwise, the estimates compare well with other techniques, like Kriging and Universal Kriging.

Change Mesh

The boundary of the triangulation always forms a polygon that is strictly convex. This may cause the construction of boundary triangles, that are elongated or quite thin, which may have a negative effect on contour lines in that region. Such triangles can be avoided by specifying a boundary around the region, or they can be deleted from the triangulation, using the *Change* Mesh command. This command can also be used to exclude an area inside the region from the triangulation.

1.3. GEOGRAPHIC INFORMATION

Geographical information, like the position of discontinuities, as well as coastlines and other lines that represent a constant z-value along the whole line, can also be specified and taken into account in the various applications. A set of points is selected from these lines, by means of a segmentation algorithm, and added to the triangulation. For each set of points, representing a single value, only one value is given in the input files, which is then associated with all the points in the set.

In the case of discontinuities, two values are associated with each point, one for each side of the discontinuity. These values are estimated, using the three nearest data points on each side. The line connecting these points, forms a boundary that partially subdivides the region at this position. Contour lines that pass through this region, will now be interrupted at this line, reflecting the effect of the discontinuity in that region.

1.4. TRICON MENU SYSTEM

TRICON is a menu driven program, which makes it extremely easy to use. All commands are given on-line, while the configuration needed for a specific machine, or file names used for a specific study, can be saved in a configuration file. It is then automatically loaded when TRICON is executed.

Menus

When TRICON is executed, the following main menu appears on the screen, showing the

basic commands that can be executed.

Mesh Construction
Contour Computation
Velocity Computation
Plotting
Interpolation
Change Mesh
Save Configuration
Exit

By selecting one of these commands, a sub-menu appears on the screen, carefully leading the user through each step of the program.

The SUN version has one extra command, named GIS input, on the main menu for importing data from the geographic information system GGIS, available with ARC/INFO.

	TRICON
Mash Construction	Contour Computation
Velocity Computation	Plotting
Interpolation	Change Mesh
Save Configuration	CIS input
Quit	
Messages w	ll adpear here
djonear i era La le Maistoria	wal copest size

Selection

PC version

To execute any of the commands shown in the main menu, move the cursor to the command you want to select. This can be achieved by using either the \uparrow,\downarrow keys, or press the first letter of the command, which will automatic move the cursor to that position. Press \dashv (Enter). All selections can be made in this manner. A sub-menu will now appear on the screen, showing the input and output files, as well as the available options for this command.

A Busy window will pop up, when TRICON is processing a particular command, showing some messages that reflects the actions of the program. An *Error window* will pop up when an error or warning occurs.

SUN version

The mouse buttons are used to set the input focus or to select options and to execute commands. To popup menus, listed in the menu buttons, either the left or right mouse buttons must be used, depending on the type of button. A ∇ indicates a popup menu button - use the

right mouse button; ... indicates a popup menushell button - use the left mouse button.

The main menu contains an area were the busy massages will appear when processing is complete. No intermediate messages, as shown in the paragraphs, Reaction of Tricon, will appear in the Sun version. Just underneath this area, the error massages will appear in red.

Options

The value of the options can be altered by moving the cursor to it and pressing \square . Alter the value of the option and press \square again, to accept the new value. If the new value is incorrect, a message will appear on the screen. Press the *Esc* key and enter the correct value. The *Esc* key can always be used to cancel a selection, or to return to the previous menu.

Help

Help is available on several options in the sub-menus, by pressing the FI (help) key, after selecting the option and pressing the J key. Press Esc again to remove the help window.

PC version

On the PC version help is also available for selecting the correct file names. Move the cursor to the file name and press \bot , followed by F1. A list of all the qualifying file names will appear on the screen. Select a file name by moving the cursor to it, and accept it by pressing \bot .

TRICON	has the physical design of the second	
Mesh Construction		
Contour C		Files-
Velocity Lopat (1)	DEMO1.DA	DEMO1.DAT
Plotting Quite	YAAN HONYETIKA	DEMO2.DAT
Interpola finite els	1	
Change Me Celangula		
Save Conf		
Exit Estantened		898666

SUN version

On the SUN version help is available on all the buttons on the main menu. Position the mouse pointer on the button and press FI. An example of the help menu follows:

1.5. TRICON FILES

File Names

All necessary input files must be created in the prescribed format, before executing TRICON. File names have the form *name.extension*. You may choose any file name, but use the prescribed extension, as indicated in the sub-menus of each command. Files with a fixed extension will be referenced as * *.extension*. If the file name of the *.dat file is changed, the new file name is used as the default file in place of the initial default file name, TFEC or TRICON. All file names are automatically updated to the new file name. Note that the *.dat file is the only file that will change the default and update the other file names.

File Format

All data lines in the input files are free format, unless otherwise indicated, in which case the format will be specified next to the description of the lines. The following notations will be used, where width indicates the number of characters to be read from the input line. Leading zeros in real and integer numbers may be substituted by blank characters:

Fwidth	A real number.
Iwidth	An integer number.
Awidth	A character string.
∇	A blank character.

File Construction

Data files consist of various data lines. All data lines in the input files are line orientated (ends at the first carraige-return character), unless otherwise indicated. This means that each data line must be terminated by a carraige-return character, and that the list of data fields may be followed by comments, if required, before the carraige-return character.

Square brackets are used to indicate optional data fields. In some cases, a semicolon is used to separate data fields and comments. It is only necessary when these data fields are actually followed by comments, otherwise it is optional. It will be indicated as [;] in the line description. For example,

Field1 Field2 [;] format

Data lines that are not line orientated, are string orientated.

These lines may not be followed by comments, because they may be composed of several lines. All data fields must be separated by at least one blank space.

2. MESH CONSTRUCTION

2.1. THE MESH CONSTRUCTION COMMAND

Data Points

In order to construct the triangular irregular network, the geographical coordinates of each data point must be given as a pair (x,y). The coordinates can be given in a cartesian or surveyor coordinate system. The default coordinate system is cartesian coordinates. If the alternative system is used, it must be specified, as indicated in Section 2.2

Sub-menu

When the Mesh construction command is selected on the main menu, the following sub-menu will appear on the screen.

Mitsh Construction		
Input file name	:TRICON.DAT	
Output file names		_
Finite Element Structure	:TRICON.FEM	
Triangulation	:TRICON.TRI	
Start Mesh Construction		

Mesh Construction

It shows the names of all the necessary input and output files. One preconstructed input file is needed and two output files are constructed. Change the names of the files, if necessary, or select the file name by using FI, but remember that the extensions are fixed. Initiate the mesh construction by moving the cursor to *Start Mesh Construction* and press \mathcal{A} .

2.2. INPUT FILE

File Contents

The *.dat file is the only input file needed under this command. It must contain the coordinates of all the data points.

An optional boundary, consisting of a set of coordinates, specified counter-clockwise around the data points, can be given. This can prevent oblong triangles, formed at the boundary of the triangulation. Note that the polygon formed by these boundary points must include all data points, it must be strictly convex and the set of boundary coordinates may not include any of the data points. The default boundary used, stretches up to two times the width of the region in both x and y directions.

If a boundary is specified, it will have the same effect as when triangles are deleted from the triangulation, by using the *Change Mesh* command. However, in most cases, it will be unnecessary and can be omitted.

The coordinates of internal lines - like dams and lakes - external lines - like coastlines - as well as the position of discontinuities - like dykes - can also be specified in this file. Extra points, selected from these lines, will be added to the triangulation. Their coordinates are specified in the output files.

nb np mne [si so] [;]
Number of coordinates in boundary.
nb = 0, no default boundary.
Number of data points.
mne = 0, no lines are specified. mne > 0, space for <i>mne</i> extra points must be allocated in memory. <i>mne</i> must be large enough to accommodate all extra points.
Coordinate system of input and output coordinates. Optional, if both are cartesian coordinate systems.
Coordinate system of coordinates in the input file.
si = c, cartesian coordinate system.
si = s, surveyors coordinate system.
Required coordinate system of coordinates in plot files, produced by applications using the triangulation.
so = c , cartesian coordinate system.
so = s, surveyors coordinate system.

Data Format of *.dat

The coordinate system used in the *.fem and *.tri files, is always cartesian coordinate systems.

Line 2	x y repeat nb times
x,y	(x,y) coordinate of a boundary point.
Line 3	xy repeat np times
x,y	(x,y) coordinate of a data point.

Lines 4,5 and 6 are only required if mne>0.

Line 4	ni ne nf
ni	Number of internal lines.
ne	Number of external lines.
nf	Number of discontinuities.

Lines 5 and 6 must be repeated for each line, that is ni+ne+nf times.

Line 5	nn nc
nn	Number of coordinates in this line $(nn \ge 2)$.
nc	Minimum number of coordinates that must be chosen by the segmentation algorithm ($nn \ge 2$).

Line 6 x y repeat nn times x,y (x,y) coordinate of a point in specified lines.

2.3. OUTPUT FILES

The output files constructed under this command, are the *.tri and *.fem files.

*.tri A plot file, giving a graphic representation of the triangulation, when plotted under the

Plotting command. It will also show the corresponding numbers of the data points, as well as the triangle numbers, shown at the centroid of each triangle. The data points can also be referred to as nodes and the triangles as elements.

*.fem Contains the information about the triangulation, and is called the finite element output.

The format of the plot files is discussed in Section 2.3. For completeness, the format of the *.fem file is included, but is usually not needed by the user, because this file is automatically constructed by TRICON.

Data Format of *.fem

Line 1	xmin ymin xmax ymax [si so]		
xmin,ymin	coordinates of the extreme south-west point.		
xmax,ymax	coordinates of the extreme north-east point.		
[si so]	Coordinate system of input and output. Optional, if both are cartesian		
	coordinate systems.		
si = c	Coordinates are always in a cartesian coordinate system.		
SO	Required coordinate system for coordinates in the plot files, of applications		
	using *.fem as input file.		
	so = c, cartesian coordinate system.		
	so = s, surveyor coordinate system.		
Line 2	np ne nì		
00	Number of points (nodes).		
ne	Number of triangles (elements).		
nl	Number of specified lines.		
	· · · · · · · · · · · · · · · · · · ·		
Line 3	S ₁ S ₂ S S _i S _{n1} string orientated		
S;	Number of points selected from line i, 1 ≤ i≤nl. These values define the number		
•	of extra points that must be assosiated with each line, in chronological order,		
	$s_i < 0$ indicates that line i was specified as a discontinuity, and that for the		
	corresponding set of extra points, z-values are unknown.		
Line 4	n x y repeat no times		
n	Node number.		
x,y	(x,y) coordinate of node <i>n</i> .		
Line 5	$n n_1 n_2 n_3 m_1 m_2 m_3 ZZ$ repeat ne times		
a	Element number.		
n ₁ ,n ₂ ,n ₃	Three nodal numbers of element n.		
==1 <u>4</u>	Element next to edge n_3n_1 .		
	Element next to edge $n_1 n_2$.		
m3	Element next to edge n_2n_3 .		
22	Zone number, only if discontinuities were specified.		
Line 6	π nn c1 c ₂ c _i c _{nn} repeat np times		

n	Node number.
מת	Number of nodes linked to node n.
¢ _i	Node linked to node n.
-	$c_i = 0$, Blank node.

2.4. REACTION OF TRICON

PC version

When the mesh construction is initiated, TRICON will respond by showing a *Busy* window on the screen. The user can observe the progress of the program from the messages inside this window. If an error occurs, the *Error window* will appear in the centre of the screen, showing an error messages. Use the *Esc* key to continue.

Progress Report

The messages, indicating the progress of the program, are the following (where n is an integer):

- •Reading boundary points.
- •Reading data points.
- Adding data points.
- •n: x-coordinate y-coordinate.

When lines were specified in the data file:

- •Reading coordinates of specified lines.
- •Line n: m coordinates.
- •Selecting points from line n (please wait).
- •Adding extra points.
- •n: x-coordinate y-coordinate.
- •n points added from line m.

When discontinuities were specified in the data file:

•Area divided into n zones

When the output files are being constructed:

- •Write finite element data to file.
- •Write file to plot triangulation.

Duplicate Points

When the same coordinates are specified twice in the data file, the Busy window will give the messages:

•n: x-coordinate -y-coordinate duplicate.

The Error window will also appear on the screen, with the message:

•Duplicate point, it will be ignored.

Execution is now delayed, until the *Esc* key is pressed. TRICON will now continue adding the rest of the data points, ignoring the duplicate point. The set of data points that was added to the triangulation is listed in the output files. After adding all data points, the *Error window* appears again with the message:

•There were n duplicate points.

Press *Esc.* The execution will now continue normally, with the writing of the two output files to disk.

SUN version

When the mesh construction is complete, the following message will appear in the message area on the main menu:

•Mesh Construction complete.

If the same coordinates are specified twice in the data file, the following error massage will indicate how many duplicate points were found and ignored:

•There were n duplicate points.

Note that the corresponding z-values in the *.LEV file are not deleted and should be checked by the user to ensure that the correct z-value corresponds with each coordinate.

3. CONTOUR COMPUTATION

3.1. THE CONTOUR COMPUTATION COMMAND

The Contour Computation command uses the finite element output, defining the triangulation computed for a set of data points, to follow the contour lines through the triangles. Therefore, the Mesh Construction command must have been executed previously for this set of data points, to generate the triangulation. Secondly, the levels associated with each of these data points must be given and the contour values for which contour lines are required must be specified.

Method

A piecewise linear representation of the contour lines is computed first. These lines are then smoothed afterwards, using a weighted least square bicubic spline approximation. The lesser smoothing is applied on these lines, the more the contour lines will follow the linear representation, giving the exact position of the contour lines, as defined by this triangulation. Triangulations other than the Delaunay triangulation, will define different positions for contour lines, but these triangulations have different properties. When too much smoothing is applied to contour lines, meandering of smoothed contour lines may occur.

Sub-menu

When the Contour Computation command is selected on the main menu, the following submenu will appear on the screen.

Contour Computation			
Input Mesh File	:TRICON.FEM		
Input Level File	:TRICON.LEV		
Output Contour File	:TRICON.CON		
Output Plot File	:TRICON.PLT		
Less smoothing [0-4]			
Sharpness of bends [%]			
Mimimum line length[%]			
Line Quality			
Start Contour Computation			

Select the correct file names, change the options, if necessary, and initiate the contour computation command.

Several options are available to control the degree of smoothing. Select the set of contour lines added and specify the line quality.

Less Smoothing

Default:4

Any integer from 0 to 4. Decreasing this value when contour lines overlap each other. The amount of knots used by the bicubic spline approximation, is increased, causing the smoothed contour lines to lie closer to the piecewise linear representation. Zero indicates no smoothing - the piecewise linear segments are output to file *.con.

Sharpness of Bends

Any integer between 1 and 99. To lessen the sharpness of bends, this value can be decreased. It will decrease the amount of knots used at the bends, but, in some cases, it may cause the contour lines to overlap. When contour lines cross each other at bends, this value can be increased.

Minimum Line Length

Default:0 Any integer between 0 and 100. This option makes it possible to exclude, for aesthetic reasons, some very short contour lines from the final contour map. The minimum line length is computed as a percentage of the maximum line length. Contour lines shorter than this minimum are not added to the plot file.

Line Quality

Any integer from 0 to 4. This value can be increased/decreased to increase/decrease the line quality. Changing this value has a direct effect on the size of the *.con file, generated by this command.

3.2. INPUT FILES

File Contents

There are two input files required, the *.fem file, defining the triangulation, and the *.lev file, giving the levels and contour values. The *.fem file is constructed by TRICON under the Mesh Construction command.

One level must be specified for each data point. Only one level per line is required for each internal and external line specified for the region. To compute contour lines, representing the difference between two sets of levels, both levels associated with a point must be given in the *.lev file.

Data Format of File *.lev

Line 1	nc [par] [;]
nc	Number of contour values.
[par]	par = d or D. Compute contour lines, representing the difference between the given levels.
	For velocity computation purposes this parameter can also take other values, as specified in Section 5.2.
Line 2	c ₁ c ₂ c _i c _{nc} string orientated
c _i	Contour value of i'th contour, $1 \le i \le nc$.
Line 3	z [zz] repeat np[+ni+ne] times
Must be re specified in	epeated for each data point, and once for each internal and external line, that were not the triangulation.

- Level of corresponding data point. Z
- Second level of the corresponding data point. Differences are computed as zz-z. ZZ

Default:25

Default:2

Line 4 [Hdng] repeat 2 times

HdngHeading, maximum 80 characters per line, that will be added to the contour
map. If no heading is provided, the next default heading is added to the map:
Contour lines computed by program TRICON.
Smoothing parameters: n, m.
n and m are the values used for the options Less Smoothing and Sharpness of
bends.

3.3. OUTPUT FILES

Two output files are constructed, both of them are plot files. The format of the plot files is discussed in Section 4

- *.con Coordinates of the contour lines, together with the contour level, that will be used by *Plotting* to label each contour line.
- *.plt Coordinates and levels of each data point that were used to produce the contour map. *Plotting* uses this file to give a graphical representation of the position of all data points, each of them labelled with the level associated with it.

3.4. REACTION OF TRICON

PC version

When the contour computation command is initiated, TRICON will respond with the following messages in the Busy window:

- •Reading mesh information.
- •Compute contour level: n.
- •n contour segments.
- •Smooth segment: n

Errors that occur during the computation, will appear in the Error window.

4. PLOTTING

4.1. THE PLOTTING COMMAND

The *Plotting* command uses any file that is constructed in the prescribed format, as input file, and draws the corresponding geographical map of the region. The coordinates can be given in cartesian or surveyor coordinates. The default coordinate system is cartesian coordinates. If the alternative system is used, it must be specified, as indicated in the file format.

There are four basic types of data geographical outputs that can be drawn on the map:

- Points.
- •Lines.
- Splines.
- •Arrows.

Points

The position of a point is marked with a centered symbol, at the exact spot indicated by its (x,y) coordinates, and labelled with a given string.

Centered Symbol

Either $\Delta / + / \infty / \delta$ or no symbol.

String

Maximum 20 characters, drawn either to the right of the symbol, or above or under it. If no centered symbol is required, the string starts at the given position.

Lines

Lines connect a given set of points, specified by (x,y) coordinates, either with solid or dashed lines. Different colours can be used to draw lines on devices that allow multiple colours, and lines can be labelled.

Label

When a label is specified with the set of points, the line is interrupted at a position that is straight enough to accommodate the string. If the line is too short to contain the given string, no label is added. Leading blanks are deleted from the label. Real numbers, containing only zeros after the decimal point, are plotted as integer numbers.

Splines

A given set of coordinates is connected by a smoothed line, solid or dashed. No label is added to these lines. This facility is only available on the PC version.

Arrows

This type of output is needed to give a graphical representation of the velocity vectors, computed under the Velocity Computation command. The information needed to plot the vectors, is the angle, the magnitude in (x,y) coordinates and the starting point of the vector. An arrow is then plotted at this position. The length of the arrow is relative to the maximum

magnitude, specified in the plot file and multiplied by the representation factor, listed in the menu for scaling options. Oblong triangles can give rise to abnormal large velocity magnitudes - too long arrows - although their directions are not influenced.

Sub-menu

PC Version - The following sub menu will appear when Plotting is selected on the main menu.

Plotting	
File: TRICON.CON	
Select Colours	
Scaling Options	
Zoom Area	ĺ
Output Device	
Paper Size	
Start Plotting	

Enter the correct file name, change the options, if necessary, and initiate the plotting command. Note that the extension of this input file is not fixed. Any file name can be chosen, as long as the file contents are in the correct format.

SUN Version - The following Plotting Menu looks slightly different on a SUN workstation, although it provides for the same options. Note that when changes are made to the parameters, you should press J(Enter), before changes will take effect.

je je star star star star star star star star	Plotti	ng	
File Name: _tricon.c	on		
Select Colors			2.4
Draw Axis : 🐳	Number Si	ze: 180	
Scale Equal: 🔬	Vector SI	ze: P.10	
Scale to Fit:	Scale fact	or: 10000	
Plot Points:			
Drawlog x: D		2	
y; Ø		P	
Output Preview	Postscrij	at GIS form	at
Printmode: Landsca	ips Portra	it	
Clear	Start Plotti	ng i Quit i	

Several options are available to control the way the map is drawn. They will be discussed in this section.

Select Colours

Select this option to display contour lines in different colours. A table with two columns, for Level and Colour, will appear. A maximum of 16 colour specifications, for different contour values, can be given. Enter the value of the contour line and select a colour from the colour table. All lines with matching labels will be displayed in the selected colours.

For HP Plotters with a penstall for different coloured pens, the colours can be selected likewise. The penstall must be loaded with corresponding coloured pens.

Scaling Options

The following choices can be made from this menu:

- Size of Numbers
- Draw Axes
- •Scale to Fit
- •Scale Equally
- Scale Factor
- •Arrow Size

Size of Numbers

The size is given in millimetres. It specifies the size of all numbers and text on the map.

Draw Axes

- Y Annotate the axis with tic marks at several intervals.
- N Annotate the axis only at the extreme x and y-points. The exact minimum and maximum values, as specified in the plot file, are used as extreme boundary points.

Scale to Fit

- Y The drawing scale of the map is calculated to fit it into the specified paper size. On the Sun version only A4 is supported.
- N The value, specified in the option Scale factor, is used as the scaling factor to draw the map.

Scale Equally

- Y The x- and y-axes are scaled equally.
- N The x- and y-axes are scaled independent, to fit both axes into the specified paper size. Scale to fit must have value Y.

Scale Factor

This value can only be changed, when Scale to fit equals N. An Error message will indicate if this value is too small to fit the map into the specified paper size.

Arrow Size

This value indicates the display factor used for the length of the arrows, representing the velocity vectors. Increasing this value, will increase the length of the arrows.

Zoom Area

To display the map between other boundaries than the extreme x- and y-values specified in the plot file, a zoom area can be specified. The initial values shown in this menu, when this option is selected, are read from the plot file. When they are changed, the new values will be used to calculate the boundary of the map. All information specified on the map that falls outside this boundary, will be cut. No decimal points are allowed when specifying the zoom area from this menu. A zoom area can also be specified directly in the plot file, instead of the

Default:1.8

Default:Y

Default:0.1

Default:0

Default:Y

Default:Y

extreme x- and y-values, allowing decimals points.

Output Device

- •Screen.
- •Printer.
- •Plotter.
- •HPGL File.

The active device is highlighted. Select any of them to change the default. The various choices are displayed in the accompanying tables.

Output that was directed to a HPGL file is saved in a file with a .HPL extention and can be plotted at a later stage. Use a DOS copy command to plot the contents of the file on any HP plotter or LaserJet printer supporting HPGL. To plot the file to a LaserJet printer, not supporting HPGL, use a program like Laser Plotter, developed by Insight Development Corporation, or similar.

SUN version ---- This version supports the following:

```
•Screen Display
•Postscript File
•GIS Output
The active device is highlighted.
```

Output that was directed to GIS output is saved in two text files with a .gis and .att extention. This files are used to input map information from TRICON to GIS.

UNIX version — Only Postscript files with a .ps extension are created.

Paper Size

Only the PC version allows the selection of a paper size other than the standard A4 size. The sizes of the paper associated with the different specifications, are (width and height in millimetres):

A1	840 x 594
A2	594 x 420
A3	420 x 297
A4	297 x 210
A5	210 x 148.5

If a bigger paper size than the maximum for a printer, is specified, the print-out will be spread over several pages.

4.2. INPUT PLOT FILE

No fixed extension is required for the plot file.

Some of the data lines in this file have fixed format specifications that must be met. If the line format violates this specifications, it will produce an error.

Data Format		
Line 1 Hdng	Hdng repeat 2 times Heading of the map. A maximum of 2 lines, consisting of 80 characters each,	
	allowed.	
Line 2	xmin ymin xmax ymax [si so [pmode]] [;]	
xmin,ymin	(x,y) coordinates of the extreme south-west point.	
xmax,ymax	(x,y) coordinates of the extreme north-east point.	
[si s0]	Coordinate system of input and output. Optional, if both are cartesian coordinate systems.	
si	Coordinate system of coordinates in the input file.	
	si = c Cartesian coordinate system.	
	si = s Surveyor coordinate system.	
so	Required coordinate system for coordinates in the plot files, of applications using *.fem as input file.	
	so = c Cartesian coordinate system.	
	so = s Surveyor coordinate system.	
pmode	This is only available on the SUN and UNIX versions. It specifies the mode in	
	which the Postscript files are plotted. Either portrait or landscape mode are available.	
	pmode=p Portrait mode	
	pmode=! Landscape mode	
Line 3	np nl ns na	
np	Number of points.	
ne	Number of lines.	
nl	Number of splines.	
па	Number of arrows.	
Line 4	how where string x y format(11,11,A20,F15,F15)	
how	how = $0/4/5/6$ Mark the point <i>only</i> with the following corresponding centered symbol: $\Delta/+/x/0$.	
	how = $1/7/8/9$ Mark the point with the following corresponding centered	
	symbol, $\Delta/+/x/0$ and the given string.	
	how = 2 Mark the point with Δ , and number it with n for the n'th point.	
	how $= 3$ Write only the string at the given position.	
where	where $= 1/2/3$. Write, the string to the right, above, or under the centered symbol, respectively.	
string	Character string of 20 characters long.	
r'à	(x,y) coordinate of the position where the centered symbol or string must be placed.	

.

Data Format of plot file

Lines 5 and 6 must be repeated for each line, that is nl times.

Line 5	label type nn f	ormat(A10,∇,11,15)	
iabei	Line label, 10 characters long.		
type	Type of line connecting the points.		
	type = 0 Solid line in default colour.		
--------	---		
	type = 1 Dashed line in default colour.		
	type = 2 to 9 Solid line, using colours 1 to 8 in the colour table, for a display		
	device, or pen number 2 to 9, for a plotter devices.		
nn	Number of points in the line.		
Line 6	x y rangat nu times		

Linc V	xy repear nn tunes	
x,y	(x,y) coordinates of points	ŝ.

Lines 7 and 8 must be repeated for each spline, that is ns times.

Line 7 label type nn	label type nnformat(A10, ∇ , 11, 15)The label is ignored in this case.Line type, to connect the points.type = 0 Solid line in the default colour.type = 1 Dashed line in the default colour.Number of points in the spline.		
Line 8 x,y	x y repeat nn times (x,y) coordinates of points.		
Line 9 vmax	vmax only needed if na>0 Maximum velocity, computed as the maximum of \sqrt{x} -component ² +y-component ² for all velocity vectors.		
Line 10 angle xc,yc x,y	angle xc yc x yrepeat na timesAngle of velocity vector in radials.x and y velocity components.(x,y) coordinate, starting position of the arrow.		

4.3. OUTPUT

The output device that was chosen, must be connected and ready to plot.

4.4. REACTION OF TRICON

PC version

The name of the plot file will appear in the Busy window, when plotting is initiated. When the output is displayed on the screen, you must press \bot to continue.

When the data in the plot file violate the format specification, one of the following messages will appear in the *Error window*, followed by an indication where the error occurred:

•Data format error in Input File. •End of file reached in Input File.

5. VELOCITY COMPUTATION

5.1. THE VELOCITY COMPUTATION COMMAND

The Velocity Computation command uses the finite element output, defining the triangulation computed for a set of data points, to compute the fluid velocity for each triangle. Therefore, the Mesh Construction command must have been executed previously for this set of data points to generate the triangulation. Secondly, the levels associated with each of these data points, must be given, and values for porosity and conductivity for the region are required.

Method

The program defines a linear interpolation over each triangle; that is a plane surface is fitted through the three z-values, defined at the corners of the triangle. The gradient of this surface then gives an approximation to the actual z-gradient within each triangle. Given values of porosity and conductivity, the fluid velocities can now be computed from Darcy's law.

If the values for porosity and conductivity are entered from the screen, they must apply to the whole region. These values are then applied to all triangles. If different values apply to each data point, they can be specified together with the level associated with each data point.

Note that triangles which are elongated or quite thin, may influence the magnitude of the velocity vectors, although their directions are not influenced.

Sub-menu

When the Velocity Computation command is selected on the main menu, the following submenu will appear on the screen:

Velocity Computation				
Input Mesh File	:TRICON.FEM			
Input Level File	:TRICON.LEV			
Output Plot File	:TRICON.PLT			
Output List File	· :TRICON.LST			
Porosity	: 0.10			
Conductivity Kxx	: 1.0			
Conductivity Kyy	: 1.0			
Line Quality	: 0.0			
Start Velocity Computation				

Enter the correct file, change the options, if necessary, and initiate the velocity computation command.

Options

Values for porosity and conductivity are specified here.

Porosity

Any real number between 0 and 1.

TRICON

(K33	Клу)
Кул	Kyy∫

5.2. INPUT FILES

There are two input files required, the *.fem file, defining the triangulation, and the *.lev file, specifying the levels of each data point.

The *.fem file is constructed by TRICON under the Mesh Construction command.

Data Format of File *.lev

The data format of file *.lev, as specified in Section 3.2, can be left unchanged, if also used to compute contours. The contour values specified are ignored by this command. If no contour values are given, specify a zero for the number of contour values in line 1.

To enter different conductivity and porosity values for each data point, the following line format must be used:

Line 1	nc [par] [;]
пс	Number of contour values. This value can be zero in this case.
(par)	par = k or K Indicates that a conductivity value is specified for each data point.
	This value will be associated with both Kxx and Kyy.
	par = v or V Indicates that a porosity- and two conductivity values, for Kxx and
	Kyy, are specified for each data point.

Line 2 must be added only if nc > 0

Line 2	c ₁ c ₂ c _i c _{nc}	string orientated
c _i	Contour value of the i	'th contour, 1≤i≤nc.

Line 3 must be repeated for each data point and once for each internal and external line, specified in the triangulation.

Line 3	z [p] [kx] [ky] repeat np[+ni+ne] times			
2	Level of corresponding data point.			
	Porosity associated with the corresponding data point. Only if $par = v$.			
(kx)	Conductivity value, Kxx , for this data point, if par = k or v.			
(ky]	Conductivity value, Kyy, for this data point, if $par = v$.			

Line 4 Heading, see Section 2.2.1.

5.3. OUTPUT FILES

Two output files are constructed, the *.plt and *.lst files.

- *.plt A plot file, containing the information needed by *Plotting*, to draw the velocity vectors at the centroid of each triangle. The default heading, added to this map, can be changed before plotting this file. The heading is: *Plot of velocity vectors computed by TRICON*. *Porosity n Conductivity (Kxx, Kyy, Kxy, Kyx)*.
- *.1st A list of information computed under this command. It states the values for porosity and conductivity, used to compute the values. Then, there are five columns, giving the element number, the magnitude, the (x,y)-components and the angle of the velocity vectors, for each element in the triangulation. The magnitude is computed as \sqrt{x} -component²+y-component²

5.4. REACTION OF TRICON

PC version

When the velocity computation is initiated, TRICON will respond with the following messages in the Busy window:

«Reading mesh information.

•Compute velocities: element n.

Errors that occur during the computation will appear in the Error window.

6. INTERPOLATION

6.1. THE INTERPOLATION COMMAND

The triangulation, computed for a set of data points, can also be used to estimate z-values for any given point, like nodes on a predefined grid. The *Mesh Construction* command must be executed previously for this set of data points to generate the triangulation. Secondly, the levels associated with each of these data points, and the coordinates of the grid points must be given.

Method

For each grid point, the program searches the triangle containing this point. The z-values of the data points defining this triangle, as well as the slope of the surrounding triangles, are then used to compute the estimates. The user can choose between two methods of interpolation, either linear or gradient interpolation.

With linear interpolation, the value is simply estimated from the plane surface passing through the three defining points of the triangle. With gradient interpolation, an inverse distance weighted method is applied to the gradient planes, formed from the vector sums of cross products of the set of triangles surrounding each point. Gradients obtained in this manner reflect the aggregate effect of both the slope and the size of all the triangles, surrounding any data point. Both methods give good quality estimates.

For grid points lying outside the triangulation, gradient interpolation is used, based on the slope of the nearest triangle and the surrounding ones. However, the quality of these values cannot be guaranteed.

Sub-menu

When the Interpolation command is selected on the main menu, the following sub-menu will appear on the screen:

Interpolation		
Input Mesh File	:TRICON.FEM	
Input Level File	:TRICON.LEV	
Output Grid File	:TRICON.GRD	
Output List File	:TRICON.PLT	
Linear / Gradient [L/G]	:L	
Start Interpolation		

Enter the correct file names, change the options, if necessary, and initiate the interpolation command.

Options

The interpolation method must be chosen here.

Linear/Gradient Interpolation

- L Linear interpolation.
- G Inverse Distance Gradient interpolation.

6.2. INPUT FILES

File Contents

Three input files are required, the *.fem file, defining the triangulation, the *.lev file, specifying the levels of each data point, and the *.grd file, containing the coordinates of the grid points.

The *.fem file is constructed by TRICON under the Mesh Construction command.

The data format of the *.lev file is specified in Section 3.2 Specify a zero for the number of contour values, or leave it unchanged, if it is also used to compute contour lines. If contour values are specified, they are ignored. For each data point, one level must be given. For each internal and external line specified for the region, only one level per line is required.

The *.grd file must list the coordinates of all the grid points for which values must be estimated.

Data Format of file *.grd

Line 1 ng ng Number of grid points.

Line 2 x y repeat ng times x,y (x,y) coordinates of grid point.

6.3. OUTPUT FILES

Only one output file is constructed, the *.lst file.

*. Ist A list of the (x,y)-coordinates of the grid points and estimates computed by TRICON.

6.4. REACTION OF TRICON

PC version

When the interpolation is initiated, TRICON will respond with the following messages in the Busy window:

- •Reading mesh information.
- •Compute the gradient for each data point.
- •Linear/Gradient interpolation: element n.

Errors that occur during the computation will appear in the Error window.

7. CHANGE MESH

7.1. THE CHANGE MESH COMMAND

The triangulation, computed by TRICON, can be slightly changed to obtain a different set of boundary elements, by deleting some of the boundary elements. Inner elements can also be deleted to obtain a triangulation that excludes a certain area within the region.

The triangulation must first be created by the *Mesh Construction* command and the numbers of the triangles that have to be deleted, must be known. To get these element numbers, plot the *.tri file to get a graphic representation of the triangulation, and determine the triangle numbers of the redundant elements.

Method

Elements are deleted, by changing the information in the *.fem file, containing the finite element output created by the mesh construction command. The element map - list of elements next to the three edges of an element - of the surrounding elements is changed, by making all references to the deleted element zero, indicating a boundary element. Element numbers, of elements following the deleted element, are updated, as are all references to these elements. The set of data points always stays the same.

Note that all elements and data points are numbered, starting at 1. A graphic representation of the altered triangulation can be made, because the *.tri file is also altered.

Sub-menu

When the Change Mesh command is selected on the main menu, the following sub-menu will appear on the screen:

Change Mesh		
Input Mesh File: TRICON.FEM		
Select Elements		
Start Changing Mesh		

Enter the correct file name, enter the element numbers and initiate the change mesh command.

Options

Select Elements

Enter all element (triangle) numbers that must be deleted. To indicate a range of elements, enter only the first element number multiplied by -1, followed by the last element number in the range. For example, to delete all elements from 12 to 18, enter -12 and 18. There is no restriction on the number of elements that may be deleted, but the maximum number of elements that may be listed here are 64.

A complete range of boundary points or a window surrounding all the data points can also be specified. TRICON will then select all elements outside this boundary and use them as the list of selected elements. To accomplish this, leave the list of selected elements empty and add the

28		 TRICON			 User Documentation		
	- •	 			 		

list of boundary points or window coordinates at the end of file *.fem. The boundary points or window coordinates must be listed in order, counterclockwise around the region. When *Change Mesh* are initiated with an empty list of selected elements, TRICON will automatically try to read the list from the *.fem file. There is no restriction on the number of points in this list.

7.2. INPUT FILE

The *.fem file, constructed by TRICON under the *Mesh Construction* command, is the only input file. To specify a complete list of boundary points, add the following two lines:

Line 7 [-]nb
 Number of boundary points or window coordinates. A minus sign must be used to indicate that window coordinates are specified.
 Line 8 [b₁ b₂ ... b_i ... b_{nh}] string orientated
 b_i it boundary point/window coordinate, 1≤i≤nb, out of the complete list of boundary points/window coordinates, listed counterclockwise around the

7.3. OUTPUT FILE

The *.fem file, containing the finite element output of the initial triangulation, is used to store the finite element output of the new triangulation. The *.tri file is updated to show the new triangulation. No other output files are created.

7.4. REACTION OF TRICON

region.

When Change Mesh is initiated, TRICON will respond with the following messages in the Busy window:

- •Reading mesh information.
- •Selecting elements to be deleted.
- Changing mesh.
- •Writing mesh information to file.

Errors that occur during the computation will appear in the Error window.

8. GIS INPUT

The GIS input command is only available on the the SUN version of TRICON. This command must be executed if information were exported from GGIS. It creates the *.dat and *.lev files from the (x,y,z) information, provided by GGIS, on each data point.

Options

Interval Distance, Minimum Contour value, Maximum Contou r value

These values are used to determine the which contours must be drawn on the map. It is written on the top of the *.lev file.

Generate grid

When this option is selected, a grid is generated over the data points, and z-values are estimated from the values given by GGIS. Although this is the default option, the user should be aware that the surface is now smoothed and may therefore not be an exact representation of the data given, although it may be aesthetically more acceptable. Should a exact contour map be required, this option should be unmarked.

Smoothed

This option only have an affect a grid must be generated. If Smoothed is marked, the estimation of grid values is done by using Gradient interpolation, otherwise Linear interpolation is used. A description of the interpolation methods that are used is given in Section 6.1: The Interpolation Command.

Grid size

20

This value indicates the size of the grid that will be generated. The default size is 20x20, which means 20 intervals in the x and y directions.

9. SAVE CONFIGURATION

ł

All file names and options that were altered, while running TRICON, can be saved in the configuration file, by using this command. Use this command if your screen or printer set-up differs from the default configuration, or if you repeatedly use the same set of options. TRICON will then be initiated with the options stored in the configuration file, TRICON.cnf, when loaded.

10. RESTRICTIONS

Memory

The amount of random access memory available on your computer is the only factor restricting the size of data sets that can be handled by TRICON. The executable file, TRICON.exe (PC version) or TRICON (SUN/UNIX version), does only reserve memory for program instructions. All memory needed for storing data is allocated at run time. If there is not enough memory available for a certain data set, after loading TRICON, the following error message occurs on the screen:

Insufficient memory for ...

This message gives an indication of the data set that could not be loaded.

There are several steps that can be taken to side-step the problem on a PC, if memory becomes insufficient during the execution of TRICON.

•Exit and reload: If several commands have been executed prior to the last command giving the memory error, exit and reload TRICON and execute the last command again. This may make more memory available for executing the last command.

•Change contouring options: More memory is needed by contour lines when the line quality is increased or less smoothing is specified. By using more smoothing or decreasing the line quality, the memory requirements are decreased.

•Load TRIBIG: The executable file, TRIBIG.exe (only with the PC version), is smaller than TRICON.exe, leaving more memory for data allocation. TRIBIG can be used for executing all the TRICON commands, except the *Plotting* command. To plot files, exit TRIBIG and load TRICON again.

Path Names

No path names can be specified for TRICON input and output files. The current directory must always contain these files. Therefore, when loading TRICON from another directory than the TRICON directory, just specifying the full path name:

e.g. \path\TRICON

11. IF THINGS GO WRONG

11.1. INTRODUCTION

Error messages will appear in an *Error window* when incorrect data values in input files cause errors during the execution of TRICON. Program execution is then delayed until *Esc* is pressed. This will initiate one of two possible actions: If the error that occurred is fatal, program execution will return to the main menu. Errors that are not fatal can be regarded as warnings, and the program execution will continue normally.

If data format errors could not be trapped upon reading the input files, they may cause unexpected errors. In this case, a message will appear in the top line of the screen. The program will *Exit* directly upon pressing *Esc*, without clearing the screen. When this happens, check your input files thoroughly and make sure that the correct file names were specified. In some rare cases, it may be necessary to *re-boot* your machine (*Ctrl+Alt+Del*). If you are still unsuccessful in running TRICON with the specified files, save the files and report the error.

11.2. ERROR MESSAGES

Abnormal Exit from smoothing routine;

Change smoothing parameter.

Unexpected values in the linear contour segment caused an error during smoothing. Check your input files, or change the smoothing parameter.

Arithmetic Problem caused by lack of accuracy;

Output files may be incorrect.

The specified discontinuity caused an arithmetic error, due to lack of accuracy caused by computer limitations, while adding the crossing points to the triangulation. Try to redefine the discontinuity.

Cannot delete more then 256 elements.

A maximum of 256 elements can be deleted by Change Mesh.

Can't open HPGL File.

A DOS error occurred during opening of the HPGL file.

Can't open temporary File: file name.

A DOS error occurred during opening of the temporary file. Try again or exit and reload the program.

Data Format Error in Input File.

The program failed to read the required data values from the input file. Check your input file format.

Disk full.

There is no more disc space left for writing the output files *.fem or *.con.

Discontinuity segments not properly allocated to zones, caused by too few data points

around the discontinuity.

Problems may arise when searching element zones.

Too few data points can prevent the program from properly incorporating discontinuities. Execution will continue normally upon pressing Esc.

Duplicate point; it will be ignored.

A warning to make the user aware of a duplicate point in the input file. Execution will continue normally upon pressing Esc.

End of File reached in Input File.

TRICON failed to read the needed data values from the input file because the end of the file was reached.

Warning: Too few data points around discontinuity. Contour line may be inconsistant.

There are to few data points in the vicinity of the discontinuity, causing conflicts in the zone numbers associated with elements. The program will continue normally, but some contours may cross the discontinuity. If possible, add some data points to the set, or try to simplify the form of the discontinuity.

Insufficient memory ...

Insufficient memory available for dynamic memory allocation. Try to *Exit* and reload the program or load TRIBIG to execute the command.

Minimum exceeds maximum x or y value.

The minimum x/y value, specified in the plot file, exceeds the maximum x/y value.

mne too small; Increase maximum number of extra points.

The total number of extra points chosen from all the specified lines exceeds mne, specified in the first line of the *.dat file.

There were n duplicate points.

A warning to inform the user about the total number of duplicate points. Data points cannot be added twice to the triangulation. Therefore, if duplicate points are present in the data set, the final number of data points added to the triangulation will be less than np, specified in *.dat.

Boundary must be strictly convex and listed counter clockwise around the data points. The polygon formed by the boundary coordinates must include all data points, it must be strictly convex and the set of boundary coordinates may not include any of the data points.

Problem finding element zone, caused by too few data points around the discontinuity. Output will be incorrect.

Too few data points prevented the program from properly incorporating discontinuities. Execution will continue normally upon pressing *Esc.*

Scaling factor too small; Increase paper size.

The map, displayed in the specified scale, does not fit onto the chosen paper size. Increase the paper size or the scaling factor. If the paper size exceeds the maximum for the printer or

plotter, it will cover more than one page.

Stack too small to find elements.

Boundary elements are followed and stacked until an element containing internal points is reached, or no more adjacent elements lying outside the boundary can be found. The maximum stack size is 64. The change of a stack growing beyond this limit is very unlikely.

Too many knots; Use less smoothing.

The number of knots are more than the maximum allowed for, with respect to the number of points in the line to be smoothed. Increase the smoothing parameter.

Zone division failed - Try to swap the order of discontinuities added

Points added from discontinuities must be connected through triangles. This chain were broken when adding the next discontinuity. Swapping the discontinuities may eliminate the problem.

12. **EXAMPLES**

Each example in this Section includes a brief description, input file listings, additional input and the output drawings.

All drawings were created using a PC-AT micro computer with 640K bytes memory and a numeric 8087 coprocessor, running DOS 5.0, with output to a LaserJet printer.

The data files and output plot files are provided on the Tricon Examples disk.

12.1. EXAMPLE 1

A water level contour map, for a region where the presence of two known discontinuities dykes - influence the water levels across the dykes, are drawn. The water levels at 80 data points, as well as the position of the dykes, are given in the input files DEMO1.DAT and DEMOLLEV.

DEMO1.MAP is the final plot file used to produce the map in Figure 1. It is a combination of the output files DEMO1.PLT and DEMO1.CON, computed by TRICON. The specifications for labelling points were slightly changed to prevent labels plotted on top of each other, and the specified position of the discontinuities were also added. The altering of these files can be done by using any suitable text editor.

The triangulation computed by TRICON, using file DEMO1.DAT, was changed, using the Change Mesh command to delete elements 25, 26 and 27. Those elements were oblong boundary triangles having a negative effect on the contours in that region, as can be seen by plotting the output file DEMO1.TRI and DEMO1.CON.

Figure 2 was produced by plotting file DEMO1.MAP, specifying a zoom area between 50000 and 55000 for the latitude and between -24000 and -18000 for the longitude. The input coordinates are specified in cartesian coordinates and the output was specified to be in surveyor coordinates.

Input: Figure 1 and 2

Input listing of file DEMO1.DAT: 0 80 100

46788.2100	-16459.6300
48612.8600	-17355.7600
48688.5800	-17771.7100

(Only 3 data point coordinates are listed here. See the TRICON example disk for a complete list of all 80 coordinates).

002 5 2 51806.3780 -22608.812052193.9375 -23239.7813 53089.8872 -24676.3125 53863.6636 -25995.1250 54555.5767 -27344.3438 22 2

49400.9810	-24962.2813
50050.5288	-23933.7813
50477.6694	-23212.9688
50880.9458	-22584.3125
51037.6694	-22364.4688
51146.7666	-22230.0625
51236.9624	-22125.0000
51325.7515	-22064.8438
51399.5718	-22004.2188
51427.0786	-21987.1250
51525.2402	-21723.4688
51918.1040	-21427.1250
52164.5464	-21213.0938
52354.1079	-20997.2813
52565.6650	-20653.3125
52343.0740	-20218.4688
53140.9238	-19700.4063
53636.4683	-18804.9375
54207.6157	-17791.9688
54536.2275	-17250.8750
54987.3184	-16530.8125
55364.0181	-15985.2188

Input listing of file DEMO1.LEV: 15 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1499.3500 1477.5500 1479.6600 (Only 3 levels from the set of 80 levels are listed here. See the TRICON example disk for a complete list of all 80 levels).

Water level contours for a region influenced by

the specified discontinuities.

Output: Example 1

Output listing of file DEMOLMAP - Only lines 1 to 10 and lines 85 to 152 are listed to demonstrate the composition of this file. Plot files are automatically constructed by TRICON:

Watel-level contours for a region influenced by

the specified discontinuities.

46788.210000 -27344.343800 59110.950000 -12637.470000 cs

80 38 0 0		
11 1499	46788.2100	-16459.6300
11 1477	48612.8600	-17355.7600
11 1479	48688.5800	-17771.7100
11 1464	55163.2000	-15558.5500
11 1501	55262.8200	-13086.7200
11 1497	57666.3300	-12637.4700

Lines 85 to 152, specifying some of the lines to be plotted:

5	5
51806.3780	-22608.8120
52193.9375	-23239.7813
53089.8872	-24676.3125
53863.6636	-25995.1250
54555.5767	-27344.3438

x (x10~-3) , 1:170000

50050.5288	-23933.7813
50477.6694	-23212.9688
50880.9458	-22584.3125
51037.6694	-22364.4688
51146.7666	-22230.0625
51236.9624	-22125.0000
51325.7515	-22064.8438
51399.5718	-22004.2188
51427.0786	-21987.1250
51525.2402	-21723.4688
51918.1040	-21427.1250
52164.5464	-21213.0938
52354.1079	-20997.2813
52565.6650	-20653.3125

x (x10~-2), 1:60000

Figure 2: A part of the contour map in Figure 1, using the Zoorn facility provided by TRICON.

12.2. EXAMPLE 2

A contour map for the recharge in the water levels for the area around an infiltration pan was computed here. The values of the recharge at each data point are also plotted on the same map. The water levels on two different dates at 30 data points, as well as the water levels of the pan and the digitized outline of the pan, were given in the input files DEMO2.DAT and DEMO2.LEV. Also specified in this input file, although not necessary, is a boundary consisting of four coordinates, listed counter-clockwise around the region.

DEMO2.MAP is the final plot file used to produce the map in Figure 3. It is a combination of the output files DEMO2.PLT and DEMO2.CON, computed by TRICON. The outline of the lake was also added.

Figure 4 was computed by TRICON, specifying the second set of levels as water levels to compute the water level contours and the velocity components, using a display factor of 0.03 for plotting the arrows. Default coordinate systems were used to draw the maps. The output is in DEMO2.VEL on your TRICON example disk.

Input: Example 2

Input listing (of file D	EMO2.DAT:
4 30	100	
52000.0	-23800	0.0
50600.0	-23800	0.0
50600.0	-21000	0.0
52000.0	-21000	0.0
-51575	5.612	-22594.437
-51652	2.226	-22710.082
-51377	7.788	-22707.091
-51409	9.044	-22743.598
-51824	1.634	-22827.897
-51960).325	+22502.269
-51504	1.933	-22112.718
-51400).199	-21561.068
-51795	i. 520	-22371.980
-51344	.970	-22083.330
-51087	.130	-21670.250
-50886	5,700	-21845.990
-50836	.460	-21950.870
-50808	1.930	-21908.100
-50871	.330	-22446.280
-50837	.980	-22484.910
-50810	.590	-22558.030
-51036	i.010	-22853.330
-50953	.830	-22996.820
-51255	.391	-23314.448
-51432	.430	-22573.960
-51435	.350	-22593.950
-51519	.060	-22457.540
-51405	.470	-22846.080
-51732	.564	-22549.511
-51900	.900	-22633.830
-51059	.260	-21726.520
-50643	.830	-22098.770
-51351	.720	-22577.610

٩

-51556.490 -22447.050

100

 195
 2

 -50865.6300
 -22126.8800

 -50858.6700
 -22099.8100

 -50844.7300
 -22062.7500

(Only 3 lines of this set of 195 digitized coordinates of the outline of the pan are listed here. See the TRICON example disk for the complete list).

Input listing of file DEMO2.LEV:

5 d; Water levels on 23-03-87 and 13-08-87.

0.0 0.5	1.0	1.5	2.0
	50	64	54

52.94	54.16
51.57	52.03
54.96	55.26
53.98	54.79
48.98	49.15
49.26	49.51
53.74	54.87
53.33	53.16
51.32	51.82
55.08	57.02
55.46	55.84
57.71	58.27
58.04	58.62
58.11	58.21
56.96	57.96
56.84	57.50
56.62	57.14
55.42	55.90
55.21	55.44
53.69	53.37
54.26	56.67
54.15	56.20
53.72	55.92
53.72	54.18
51.27	52.14
49.18	49.52
55.87	57.33
58.26	58.27
54.90	56.95
52.81	54.10
57.15	59.01

Recharge contours for a region around an infiltration pan. Porosity 0.18; Conductivity (8,6;8,6;0,0;0,0).

To compute the water level contours and velocity components for the first set of levels, replace the first two lines of DEMO2.LEV with: 9 : Water levels on 23-03-87.

50 51 52 53 54 55 56 57 58

Figure 3: Recharge contours around the specified pan, for two given sets of water levels

Figure 4: Water level contours and velocity vectors around the pan (Porosity 0,18; Conductivity 8,6;8,6;0;0)

13. COMPUTER CONFIGURATION

PC version

- •IBM PC/XT, PC/AT, PS/2 compatible.
- •MS-DOS/PC-DOS Operating System.
- •512Kb Memory
- •CGA, EGA, VGA and Herculus Graphics display devices and compatible.
- •Diskette Drive
- •Serial/Parallel port for Graphic output.
- •Hard Disk required
- Numeric Coprocessor recommended

SUN version

•SUN Sparc staion

•SUN OS 4.1.1

•OPEN WINDOWS 3.0

UNIX version

•Any machine that runs under the UNIX operating system

IBM and PC-DOS are registered trademarks of the International Business Machines Corporation.

MS-DOS is a registered trademark from the Microsoft Corporation.

EPSON FX-80,FX-80+,FX-185,FX-286,RX-80,RX-100,MX-80,MX-100

FX-100,FX-100+,LX-1500 are registered trademarks of Epson America,Inc.

HP 7440A, 7470A, 7475A, 7470A, 7475A, 7550A, 7580A, 7585A, 7586A, 7570A, 7595A, 7596A are registered trademarks of Hewlett-Packard Co.

HP-GL is a registered trademark of Hewlett-Packard Co.

SPARC is a registered trademark of SPARC International Inc.

The PLOTT88 Library, by PLOTWORKS Inc, is incorporated in the TRICON PC version to produce the Graphic output.

14. **REFERENCES**

- Buys, J., Messerschmidt, H.J. and Botha, J.F. (1990). Coping with degeneracy in the Computation of Dirichlet Tessellations. SACJ/SART, 2, p17-21.
- Buys, J., Botha, J.F. and Messerschmidt, H.J. (1990). Triangular Finite Element Meshes and their Applications in Groundwater Research. In: Computational Methods in Subsurface Hydrology, edited by Gambolati, G., Rinaldo, A., Brebbia, C.A., Gray, W.G. and Pinder, G.F., Computational Mechanics Publications, Southhampton Boston, p115-121.
- Mark, D.M. (1975). Computer Analysys of Topography: A Comparison of Terrain Storage Methods. Geografiska Annaler, 57, p179-188.
- McLain, D.H. (1974). Drawing contours from arbitrary data points. Computer Journal, 17, p318-324.
- Peucker, T.K., et. al. Digital representation of Three-dimensional Surfaces by Triangulated Irregular Networks(TIN). Department of Geography, Simon Fraser, Technical Report 10. (1976).
- Peucker, T.K. (1980). The impact of different Mathematical Approaches to Contouring. Cartogaphica, 17, p73-95.
- Robertson, J.C. (1967). The symap program for computer mapping. Cartographic Journal, 4, p108.
- Sabin, M.A. (1978). Contouring A Review of methods for scattered data. In: Mathematical Methods in Computer Graphics and Design, Brodlie, K.W. (Ed), Academic Press, Inc., London, p63-85.
- Sibson, R. (1978). Locally equiangular triangulation. Computer Journal, 21, p243-245.
- Schagen, I.P. (1982). Automatic Contouring from Scattered Data Points. Computer Journal, 25(1), p7-11.
- Yates, S.R. (1987). CONTUR: A FORTRAN algorithm for two dimensional high-quality contouring. Computers-Geosciences, 13(1), p61-76.

Appendix **B**

User Documentation

• .

TRIPOL

by

J. Buys and G.J. van Tonder

Institute for Groundwater Studies University of the Orange Free State Bloemfontein

.

Copyright 1993 Institute for Groundwater Studies (IGS) and the Water Research Commission.

IGS provides this manual "as is" without any warranty of any kind, either expressed or implied and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. IGS further reserves the right to alter the specifications of the program and/or the contents of the manual without obligation to notify any person or organization of these changes.

In no event shall IGS be liable for any damages whatsoever (including, without limitations, damages for loss of profits, business interruption, loss of information, or other pecuniary loss) arising out of the use of or inability to use TRIPOL, even if IGS has been advised of the possibility of such damages.

TRIPOL was developed by the Institute for Groundwater Studies with funds provided by the Water Research Commission. It can be obtained free of charge by any bona fide research organization. In all other instances, contact the IGS for conditions under which this program may be used.

Should you have any suggestions to help us better meet your needs, we will welcome them. Please write to us directly at

Institute for Groundwater Studies, P.O. Box 339 Bloemfontein 9300 South-Africa,

or call (27) - 51 - 4012840 or fax (27) - 51 - 473541.

Thank you for using TRIPOL. We hope you enjoy it.

J Buys and G J van Tonder Institute for Groundwater Studies, Bloemfontein. The authors want to thank:

The Water Research Commission, for the financial support given.

The Institute for Groundwater Studies, in particular: The Director, Prof. F.D.I. Hodgson, for his encouragement during the development; Prof. J.F. Botha for the opportunity to develop the program; Mr. S. Staats for his valuable assistance in writing the user documentation.

Preface

TRIPOL is an interpolation program that estimates values for random variables from a given set of regionalized variables, that is variables distributed in space (and/or time). Variables encountered in environmental sciences such as geohydrology, geology, weather forecasts etc., are all regionalized variables.

TRIPOL includes the following:

- •Computation of a semi-variogram for a given set of regionalized variables (data points);
- •Fit a mathematical function to the Semi-variogram;
- •Estimate values for any set of random variables from the given set of data points.

TRIPOL implements three interpolation methods, namely:

- •Distance Weighting;
- •Kriging;
- •Bayesian Estimates.

The interpolation procedures do not only yield an estimate of the random variable, but also the error in the estimate.

The Distance Weighting method is a classical method that is based on the assumption that the variable of interest can be represented by a smooth function, and its use is therefore limited.

The Kriging method describes the spatial variability of environmental variables by representing them with random functions. This approach has the advantage that it allows one to describe an environmental variable in statistical terms, through the Theory of Regional Variables. The best known estimation method, based on this approach, is Ordinary Kriging, or *Kriging* as it is conventionally known, and Universal Kriging.

The Bayes method is a versatile estimation procedure for estimation of groundwater levels. The method has the advantage that one can use any expert knowledge about a given regionalized variable as a qualified guess. For example, the qualified guess for groundwater is the topography. Furthermore, the guess near a production field, for example, could be reduced relative to the water levels further afield. However, difficulties can be experienced to derive a suitable qualified guess for some regionalized variable. It is therefore recommended that this method is used, whenever the user can establish a suitable qualified guess, otherwise it may be better to use Kriging.

Because of the nature of Kriging and Bayesian Kriging, a semi-variogram, computed from the regionalized variables or data points, is needed to estimate the manner in which the mean values of the phenomena behave over the region, often referred to as the *drift* or *trend* of the regionalized variable. The computation of a semi-variograms for a given set of regionalized variables (data points), was therefore also built into the program, as well as a facility to fit a mathematical function to the semi-variogram,

Drawings created by TRIPOL can be sent to the screen, a Laser Jet printer, a Postscript file or a Hewlett-Packart Graphics Language (HPGL) file to be printed or imported by any program that can handle files in HPGL.

G.J. van Tonder and J. Buys.

Table of Contents

Copyright	
Acknowledgements	
Preface	
Table of Contents	(iv)

Chapter 1 Mathematical Background

1.1. Introduction	.1
1.2. Notations	.1
1.3. Semi-Variogram Computation	.2
1.4. Fitting	.3
1.5. The Distance Weighted Method	.3
1.6. Kriging	.5
1.7. Bayesian Estimates	.6

Chapter 2 Program Reference

2.1. 5	Selecting and editing	7
2.2.1	Parameters, terms and options	7
2.3.1	Program Flow	9
2.4.1	Help	6

Chapter 3 Semi-Variogram Computation

3.1.	Input File	11
3.2	Options	11
33	Outnut	12
5.5.		10

Chapter4 Fit Function to Semi-Variogram

4.1. Input File	
4.2. Options	14
4.3. Output	

Chapter 5 Interpolation

5.1. Input file			
5.2. Options			
5.3. Cutout			
- 4 -			

Chapter 6 Distance Weighting Interpolation

<u>6</u> 1	Input file	19
6.2	. Options	19
6.3	. Output	20

Chapter 7 Kriging

Input file	1
Cptions	1
Output2	2
	Input file

Chapter 8 Bayesian Estimates

8.1. Input file	
8.2. Options	
8.3. Output	
Chapter 9 Example	
9.1. Example data file: DEW.DFL	25
9.2. Example Output Files	27
Chapter 10 Computer Configuration	30
Chapter 11 References	

1. MATHEMATICAL BACKGROUND

1.1. INTRODUCTION

Environmental phenomena (e.g. rainfall and the occurrence of groundwater) cover such vast areas, that it is not always possible to measure their associated variables at all relevant points in space and time. *Interpolation* is a method to obtain values for these variables at points where no measurements were taken.

TRIPOL is an interpolation program that estimates values for random variables from a given set of regionalized variables, i.e. variables distributed in space (and/or time). Variables encountered in environmental sciences such as geohydrology, geology, weather forecasts etc., are all regionalized variables.

TRIPOL includes the following:

- •Computation of a semi-variogram for a given set of regionalized variables (data points);
- •Fitting of a mathematical function to the semi-variogram;
- •Estimation of values for any set of random variables from the given set of data points.

TRIPOL implements three interpolation methods, namely:

- •Distance Weighting;
- •Kriging;
- •Bayesian Estimates.

The interpolation procedures, Kriging and Bayes, do not only yield an estimate of the random variable, but also the error in the estimate.

1.2. NOTATIONS

Regionalized variables are variables distributed in space (and/or time). Mathematically, one can state that a regionalized variable is simply a function that describes the value of a characteristic quantity z at point x = (x,y) in space. We denote this quantity z as z(x).

A random variable is, by definition, a variable that can attain different numerical values, subject to a certain probability distribution. The random function associated with a random variable, z(x), is conventionally denoted by Z(x).

The basic estimation problem addressed by TRIPOL can now be defined as obtaining some estimate for the function Z(x) at a site x_0 , where no observations on Z(x) are available.

The estimator for a function Z(x) at a site x_0 will be denoted as $Z^*(x_0)$.

The observations available for a given set of n regionalized variables or data points are denoted as $Z(x_i)$, i=1,...,n.

1

1.3. SEMI-VARIOGRAM COMPUTATION

Because of the nature of Kriging and Bayesian Kriging, a semi-variogram, computed from the regionalized variables or data points, is needed to estimate the manner in which the mean values of the phenomena behave over the region, often referred to as the *drift* or *trend* of the regionalized variable. A mathematical function is then fitted to the semi-variogram values, to obtain certain parameters that are needed for interpolation by Kriging and Bayesian Kriging.

A semi-variogram describes the connection between two points at distance h from each other. It can be estimated by the function $\gamma(h)$ in the following equation:

$$\gamma(h) = \frac{1}{2n(h)} \sum_{i=1}^{a(h)} \left[z(\mathbf{x}_i) - z(\mathbf{x}_j) \right]^2 \text{ for all } i, j \leq n$$

such that $d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} = h$, where d_{ij} is the distance between two points x_i and x_j , $\gamma(h)$ is the semi-variogram value of lag h, n the number of observations and n(h) is the number of pairs (x_i, x_j) , such that $d_{ij} = h$.

In practice, the approximation for the semi-variogram $\gamma(h)$ is computed for fixed values of h, given by some basic lag distance, a, say, thus for $\gamma(a)$, $\gamma(2a)$, $\gamma(3a)$, and so forth, where $\gamma(a)$ is computed for all pairs (x_i, x_j) such that $a - 1 < d_{ij} \le a$. Futher, h is approximated by the mean distance between all pairs (x_i, x_j) used in the computation of $\gamma(a)$. Thus $\gamma(d) \equiv \gamma(a)$ for

1.3.1. Figure 1.1. Graph of an example semi-variogram.

Experience indicates that $\gamma(h)$ generally tends to increase with h, until it reaches a maximum value, called the *sill* at some lag a. This distance is customarily referred to as the range of $\gamma(h)$. The semi-variogram is then approximated with either one of the six model equations, given in the next section.

1.4. FITTING

Interpolation by Kriging and Bayesian Kriging requires a theoretical semi-variogram and functional terms of an assumed trend in a given neighbourhood of the input data. The neighbourhood is determined by the number of nearest points that are used for interpolation. The most commonly used theoretical semi-variograms are shown in Figures 1.2 to 1.7. The quantity, C_0 , which corresponds to $\gamma(0)$, is usually referred to as the nugget effect.

Type 1, Polynomial semi-variogram given by:

 $\gamma(h) = 0 \qquad h = 0$ $\gamma(h) = Ch^{a} + C_{0} \qquad h > 0, \quad 0 < a < 2$

Type 2, Spherical semi-variogram given by:

Figure 1.2. Graph of polynomial semivariogram.

Figure 1.3. Graph of spherical semivariogram.

1.5. THE DISTANCE WEIGHTED METHOD

Classical interpolation methods are all based on the assumption that the variable of interest can be represented by a smooth function. In the estimation of a random variable, these methods assume that the estimator, $Z^*(x_0)$, is a linear combination of the observations, $Z(x_i)$. In other words, to assume that it can be expressed in the form

$$Z^*(\mathbf{x}_o) = \sum_{i=1}^n w_i z(\mathbf{x}_i)$$

where w_i (*i*=1,...,n) is a weight function dependent on the distance *d* between the observation point $x_i = (x_i, y_i)$ and the estimation point $x_0 = (x_0, y_0)$, *d* is given by

$$d_i = \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2}$$

ア向

Cû

Type 3, Exponential semi-variogram given Type 4, Gaussian semi-variogram given by:

C+C0

95C + Cn

by:

$$\gamma(h) = 0 \qquad h = 0$$

$$\gamma(h) = C \left[1 - e^{-\left(\frac{h}{a}\right)} \right] + C_0 \qquad h > 0$$

$$\gamma(h) = C \left[1 - e^{-\left(\frac{h}{a}\right)^2} \right] + C_0 \qquad h > 0$$

Figure 1.4. Graph of exponential semivariogram,

by:

 $\gamma(h)=0$ h=0 $\gamma(h) = a \ln(h) + C_0$ h > 0

Figure 1.5. Graph of Gaussian semivariogram.

√3∎

h

Type 5, De Wijsian semi-variogram given Type 6, Bayesian (kRho of De Waal) semivariogram given by:

 $\gamma(h) = \sigma^2$ h=0 $\gamma(h) = \sigma^2 \Big[1 + k \Big(1 - \rho^{*} \Big) \Big]$ h > 0

Figure 1.6. Graph of De Wijsian semi- Figure 1.7. Graph of the univariate kp semivariogram. variogram.

Many different weight functions can be used. The following weight functions were built into TRIPOL for completeness:

Type 1:
$$w_i = \frac{1}{d_i}$$

Type 2:
$$w_i = \left(1 - \frac{d_i}{1.1 d_{\max}}\right)^2 / \left(\frac{d_i}{1.1 d_{\max}}\right)^2$$

- Type 3: $w_i = e^{-\alpha d_i}$
- Type 4: $w_i = \frac{1}{d_i^2}$
- Type 5: $w_i = e^{(-\alpha d_i^2)/(d_i^2 + \varepsilon)}$

Type 6:
$$w_i = e^{\left(\frac{-1}{d_i^2}\right)/(d_i^2+\epsilon)}$$

Type 7: Trend surface analysis where the estimation $Z^*(x_0)=g_j(x_0,y_0)$ is chosen from the set of polynomials $P_k(x_0,y_0)=x^{\mu}y^{\nu}$ for $\mu+\nu=k$.

1.6. KRIGING

The most appropriate way to describe the spatial variability of environmental variables, is to present them with random functions. This approach has the advantage that it allows one to describe an environmental variable in statistical terms, through the Theory of Regional Variables. The best known estimation method, based on this approach, is Ordinary Kriging or *Kriging*, as it is conventionally known.

Interpolation done with Kriging, where the mean value of Z(x) is unknown, is given by:

$$Z^*(\mathbf{x}_{\sigma}) = \sum_{i=1}^n w_i Z_i$$

where the weight function w_i is calculated by solving the system of linear equations

$$\sum_{j=1}^{\infty} w_j \gamma_{ij} = \gamma_{io}, \text{ with } \sum_{i=1}^{\infty} w_i = 1 \text{ where } \gamma_{ij} = \gamma(d_{ij})$$

The semi-variogram function, $\gamma(h)$, as a function of h, must be known for all values of h. This condition requires the approximations of the semi-variogram with any of the models in the previous section.

Since Kriging is a linear procedure, difficulties are experienced if the variable to be estimated contains a non-linear trend, or drift as it is called in geostatistical literature. To solve this, *Universal Kriging* was developed, but it is numerically unstable and often singular. In TRIPOL, Universal Kriging is restricted to polynomials of first and second order.

1.7. BAYESIAN ESTIMATES

There are many situations in the environmental sciences where a given variable correlates with another one. For example, groundwater levels often follow the surface topography of the aquifer. If the latter variable can be sampled more frequently than the first one, then one can use this information to improve estimates of the first variable. Bayesian Kriging is an interpolation method that uses this principle. In this approach, the classical statistical analysis of Ordinary Kriging is replaced by a Bayesian statistical analysis. The beauty of the Bayesian approach is that it allows one to express prior knowledge of the variable with a qualified guess that can be included in the estimation.

Bayesian interpolation is done with the estimator

$$Z^*(\mathbf{x}_{o}) = \sum_{i=1}^{n} \alpha_{i} [Z(\mathbf{x}_{i}) - \mu(\mathbf{x}_{i})] + \mu_{o}(\mathbf{x}_{o})$$

where $\mu(x_i)$ is the qualified guess for site x_i . The coefficients α_i , i=1,...,n can again be determined from a system of linear equations and is a function of the parameters $\sigma(\text{Sigma})$, k and $\rho(\text{Rho})$. These values can be estimated by the approximation of the semi-variogram with the theoretical kp semi-variogram in Figure 1.7.
2. PROGRAM REFERENCE

2.1. SELECTING AND EDITING

The program TRIPOL was implemented on both a PC DOS microcomputer and a SUN workstation. Although the menus look different on the PC Version and the SUN Version, their contents are basically the same. Whenever there are specific differences on the two implementations, it will be denoted as such. There is also a UNIX version of TRIPOL available that can run on any machine with a UNIX Operating System. This version operates from a Unix shell. Although it does not have the same look and feel as the PC and Sun Versions, it can do exactly the same.

PC Version

To select a field, move the highlight with the arrow keys to the appropriate field. To edit a field, select a field and press enter. You can now enter the new value followed by the enter key. Use the left and right arrow keys to move within a field while editing.

SUN Version

The mouse buttons are used to set the input focus or to select options and to execute commands. To pop up menus, listed in the menu buttons, either the left or right mouse buttons must be used, depending on the type of button. A ∇ indicates a pop-up menu button - use the right mouse button; ... indicates a pop-up menushell button - use the left mouse button.

2.2. PARAMETERS, TERMS AND OPTIONS

Compute Difference Between Values

- N The Z-value given in the input file is used as z(x).
- Y Only used for Bayesian Estimates. The observation value (z) and guess (z*) for each data point must be given in the data file. The value for z(x) is then calculated as z-z*.

Logarithmic Transform

- N The X and Y-values are used as are for computations.
- Y The X and Y-values are logarithmic transformed before any computations are done.

Basic Lag

The basic lag distance is the interval for calculations of the semi-variogram.

Number of Lags

This is the number of intervals (basic lags) that must be computed or used for calculations and fitting of the semi-variogram.

Direction

This number specifies the direction (angle) for the semi-variogram calculation (see θ in Figure 1.8).

Direction of Tolerance

This specifies the degrees or spectrum forming a circle segment to use for calculations (see $\Delta \theta$ in Figure 1.8).

Default: N

Default: N

Default: 0

Default: 360

Type of Semi-Variogram

The semi-variogram type corresponds with the types 1 to 6 in Section 1.4.

2.2.1. Figure 1.8. Classification pattern for calculation of the semi-variogram

Slope, Power and C_0

The slope and power correspond to the parameters in semi-variogram type 1, defined as $\gamma(h) = C_0 + Sn^p$, where S is used as the slope and P as the power.

Range (A)

Some lag A such that $\gamma(A)$ reaches a maximum value.

Sill, C, C_0 See Figure 1.3, where Sill = C + C₀, C = the variance and C₀ = the nugget effect.

Sigma (σ), k, Rho (ρ)

Sigma (σ), k and Rho (ρ) correspond to the parameters in semi-variogram type 6 (see Figure 1.7).

Compute Best Fit

Default: Y

- Y Specify that a *best* fit must be computed from the *initial* values specified. The best fit will be find by varying the parameters between the shown *minimum* and *maximum* values
- N Specify that the given values must be used as the parameters for the theoretical semivariogram.

Number of nearest points

The number of nearest points to use for estimating the value of a point. This is the so-called viewing window.

2.3. PROGRAM FLOW

Start the program by typing TRIPOL followed by the enter key. You are presented with the following introductory screen:

PC Version

Continue by pressing the enter key to bring you to the following Main Menu of TRIPOL.

	TRIPOL
Semi	-Variogram Computation
Fit	Function to Semi-Variogram
Inte	rpolation _
Helr	, ⁻
Exit	
	P

SUN Version

An explanation of each of the entries of the main menu follows in the following chapters.

2.4. HELP

PC Version

Selecting the Help Command on the Main Menu will bring up a Help Menu. Select any of the Subjects and press the enter key, which will show a Help Menu on the specific subject.

Whenever the F1 key is pressed, with the mouse pointer pointing to a button, a Help Menu will pop up, giving information on the parameters connected to the button, for example:

2	TRIPOL:Semi Va	riogram – input Fil	e Format Help
mi Variog	(1) Heading (2) N	A charactar string of 7 Number of data point	6 characters maximum s (Maximum is 1000)
ice	and Z* the qualif	ied guess (repeat H 1) for the Semi-Variogr	mete of the data point mes) am may be specified as
	data fila, Zero or one for each This command are as	ines directly after the more sets may be pro POL command. The pe follows:	Reading line in the sent in the sent in the data file, rameters for this
and the second			

3. SEMI-VARIOGRAM COMPUTATION

3.1. INPUT FILE

The only input file is a file that must have the extension .DFL.

Data format of file *.DFL

- 1: Hdng Heading of the map, consisting of a maximum of 76 characters.
- 2: N specifies the number of data points given.
- 3: X_i Y_i Z_i [Z*_i] for i = 1 to N
 (X_i, Y_i, Z_i) Coordinate of the actual data point i.
 Z*_i Qualified guess at point i. Only necessary if differences between Z_i and Z*_i must be computed for Bayesian estimates.

The semi-variogram parameters that must be used during computation may also be specified in this file, but it is not necessary. If specified, it must be entered as a set of four lines directly after line 1, the heading line, as follows:

- 1: S/s S indicates that semi-variogram parameters follow.
- 2: NLAG NLAG specifies the maximum number of lags that must be computed.
- 3: DLAG DLAG specifies the basic lag distance.
- 4: Blank line.

The interpolation parameters that must be used during interpolation may be specified in the *.DFL file, but it is not necessary. If specified, it must also be entered as a set of four lines directly after line 1, the heading line. Each set starts with an identifying character, which can be either in small or capital letters.

For example:	Heading
	Semi-Variogram Parameters
	Distance Weighing Parameters
	Kriging Parameters
	Bayes Parameters
	lines 2-5: Information about observations and point interpolations.

3.2. OPTIONS

PC Version

Select Semi-Variogram Computation from the Main Menu to give you a small menu consisting of two options. First edit the Input File name field to type the correct input filename. Next, select Continue Computation to edit the various computation options as

shown in the following Semi-Variogram Menu. The default values are shown as retrieved from the input file.

Lesso and the second			
See 1997 1998 20 20 20 20 20 20 20 20 20 20 20 20 20	a		
1988 A. (
			N NG55
12.3.5° 2.2.5.3° X 61998			
	er honester i a sole de l'est sa superiore		
Manual Contraction of the State		· · · · · · · · · · · · · · · · · · ·	
😹 Computed	Difference he	tucen values	e (Yender en Der er Sterne
Will some rade of me	deletiti sessentet forteedit		Construction of the second
Same land			
	2.5. 3 4		
CONTRACTOR OF A	1499		ee
and the second			
the second s	• • • • • • • • • • • • • • • • • • •		
1000 B 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CONTRACTOR OF A CONTRACTOR OF	
566 ST - 3 - 7 - 5 - 6 - 7 - 6 - 7 - 7 - 7 - 7	SPUCALLON	a an and a second and a second second	
State State State State		elete in Allia di	
Section of the second	Maria Maria Carrie Person	Contraction of the second	a second seco
Divection Start Con Divate Sent	: Tolerance mutation -Variogram		: 968.

The upper half of the menu displays the file names for input and output for this option. You can edit the values in the lower part. Select *Start Computation* to compute the semi-variogram. Select *Draw Semi-Variogram* to choose an output device from the Graph Menu. You can also alter the graph size on this menu.

*******		diverse warman			Action 000000000000000000000000000000000000
1000-1222-1000-000000000000000000000000		K S C S KY T			
	2010.000	a de la compañía de l			S CARLES
12536 3.5.5.5.6		2.28 2.27			No. Company
、教育会社でも、教会や会社	Sec. March 1990 Acres	·			
H HP La	Ser Jet			an 19 Fran	5
il and interest of the				28 - CAN - S	
	118		2 · · · · · · · · · · · · · · · · · · ·	1. 5 1. 12 12	
1					·····
NAME OF A DESCRIPTION OF A	1 - S - S - S - S - 13 - 19860 - 68	8 C 9 C 10		1. A	A
Dec. N				e se de la composition de la compositio	
il Albit P	idit i top	Sector reactions		1. Carlos (C. 10)	8 Z. C. S. R. L
SI DOA N	[
🐘 VGH J	ionitor				200
5.000 x brokening a		\$`\$K_\$K_\$K_\$K_\$K	Sec. 20	en north an fraid	Section 1
States - States - Barrow	and a second second second second		and and the second	2)2 C CONTRA	
S BOOK CARACTER	elle i si variari i Junio	1997 (A. 16) (A	~~~		
1			Sec. 20. 10. 10	S. 2002	A
a the second	aa addii ah ah ah	1.0000000000000000000000000000000000000		Colorest Constitutes	materia
The state of the second s	which a second sec				

SUN Version

The Semi-Variogram menu contans three buttons, Initialization, Start Computation and

	2400-297 ALC: 1 1 1	5255, a.S. 2. S. S. S.		
	**************************************	ariogran	Y 1000000000000000000000000000000000000	2023000
	and the second second second	2002 (Z. 1996) (C. 1996)		********
	and the second	A	1996 (Barris	64342227
anana ang ing ing ing ing ing ing ing ing ing i	68318. 65 ° MARCON	1993 - Marine Marine (* 1973) 1973 - Marine (* 1973)		2020 - C C C C C C C C
Manual Contract of the second				61 - A 44 - A
1996 - Inni:	t Date File	SS (814 (*) X /3		Ye G TRADXO
			20021000	<u>www.com</u>
			0.400 (manual and a second and a second	73334.24G)
	1. A. C.	351 St. 13 St. 19 St	CULCUS COMMAN	
Variouram R	ecuire Files			
CONTRACTOR OF THE OWNER OF THE OWNER OF	a a tes i sint	16 Sector Contractor		
		·	200.00.00.00.00.00.00.00	
	the second back as a second	فلكا آحضا معد		
	TOP FILLING:	31.1007.11		
han and a second se		and a large and the		12.01.10
Manager and the second s	WARDS BALL DO AT 1998	an a	and a second	12.5
000000000	Second Constants	199.00000000000000000000000000000000000	SV-10-10-10-10-10-10-10-10-10-10-10-10-10-	20032000
	1 4 1 X 4 4 X 4 X X X X X X X X X X X X	Sector of Sector Sector		6 NO 10 M
1988-1988 - 19 86 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1986 - 1	era e constanti da la constanta da la constant	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3369° 6. 6. 6
Deels Les	The frames and a	100000000000000000000000000000000000000	1997 W 1999 4 1999 4 1999	
	• L/ 13 LA (R. B +	and all all the second	i an	
nan ing pangangan na tanàn ang kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina	enter and reading the	004. <u></u>		Same
Contraction of the second of	4940.000°0000.0000	Q10100374040.00.00	a an	stice contraction
		andread S a Resident		200.200
			North Martin	
	a contra a constant in the sector	a de construction de la construc	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.2.2.2.2.2.
Contraction of the second s	n an	an a	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	\$4000 B
	These bides		Alter in the day	
	THE BURN	10 N	1.5.00.000	3900 N S
Constant Constant of Constant		20 .000 .000	CONTRACTOR NO.	N
	******			YN 200 M
		0.000 - 1 1110	C	$\sim \sim 10^{-1}$
usesses in 도마 속을 얻었다. 전다는	A THE PROPERTY	a ya wa		XX / XX
-		a second at the s		
a state a state to the second seco				
	0.0000000000000000000000000000000000000	AN ADDRESS STREET		78. SA
	2010/01/10122			
		197 BR 5 C	STATISTICS OF ALL OF	
	1	40.00 T (17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i anna u gana tachar	*****
· .				
En antit a la alla				
S Thomas Cloa fr	No. of the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8888 T T D AL.	يقتكم الراقات بالأشاهات
S. P. P. B.	144-44	A	A	
CONSISTENCE AND		A Street	a the second second	
				Sec. 20
	W POSTCA	1	CARLES AND DAY	3. <i>1943 - 1</i> 944
		A CONTRACTOR OF A CONTRACTOR A	1322XXXXXXXXXXX	
Contraction of the second s	the second s	the second s	Alter Burger	10.00.000
	1. State 1 . State 1	A.M		
Not a late the set of the late	N		14 . St. 19	
	2141770	принати		41119
MILIAIZALION	, JULLO	mputatio		4 1119

Drawing. The initialization command reads the appropriate parameters from the input file, if present, and initiate the parameters shown on the menu. The drawing command generates either a graphic window or a postscript file with a .ps extension, depending on the state of the *Output* button.

3.3. OUTPUT

The output files have the extension .VAR and .FIT. The format for the .FIT file is described in the next paragraph. The drawings that are created can be printed to any of the devices or files shown in the Graph Menu. A HPL file is in Hewlett-Packard Graphic Language (HPGL) format and can be printed or imported by any program that can handle HPGL files.

4. FIT FUNCTION TO SEMI-VARIOGRAM

4.1. INPUT FILE

This file has the extension .FIT and is created when the semi-variogram computation is done and must be used as input for this step. It has the following format:

Data format of file *.FIT

- 1: Hdng Heading of the map, consisting of a maximum of 76 characters.
- 2: N N specifies the number of lags (maximum 50).
- 3: D_i G_i for i = 1 to N
 D_i Average distance / lag / direction at point i.
 G_i Semi-Variogram value at point i.

4.2. OPTIONS

PC Version

Six different methods for fitting a function are displayed on the following Function-Type Menu.

	mtic	n-Type		
Polynomial				
Spherical				
- Expension-c				
CONCENSION -				
			nie -	
	1000 1000 000 000			1933) (C

Selecting any one of these options brings you to one of the following Fitting Menus: Polynomial, Spherical, Exponential, Gaussian, De Wijsian and kRho. The upper half is for information purposes only and displays various file names for input and output. You can edit the values in the lower part to suit your needs.

1			100 M	1.1.1.2	Ð. 1.	101.01	Y					. (c. 1717)			Sector
8 Q.	7.200	1 4 A. M. M.	60009800 V		***		- 6 - 5	2000	$\sqrt{2}m_{\rm e}<3$		Sec. 24.5. 14		0.000		2.X C
10000			1.100000	1.1181.224	ti i i i i i i i i i i i i i i i i i i	in an	Sec. 20	Sec. 19	<u> 100 Ma</u> ri		6.000	1.00			
30.00	**************************************	399 (19	8	Section 1		10.000 A.C.				80.2XC3	- C.	S 8. C.S.	38 X.		
10.000		5.000					9-19-14 <i>(</i>)	A	+84083	31 M A A A				- 10 A M	86 B
2 24 24 2	¥	L (1888)		Sec. 200	11 M M M	~~~~		800 V - I	- 7 KG	- A C A C A		1.		300 A A	883 B
9 9 84/2			att the second		Loonader	(*********	and some	and the second		180 A C	60 m		See		52.5
2 6 9 9 9	*******				75. IS 75.	ofor								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	683 B
10000	1. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000 Barriero (* 1960)	100 C 10 C	1312.444	10.000	vite de la construction de la construction de la construcción de la construcción de la construcción de la const	11.111.110	666 (A.B.	0.000	an a	4.4.970.00		1000	1414	24 - Ř
2 - C.C.		S.8.96.07	C. C	2000 - 1 0	1.1	1000000	10.00	68 M	CC 201	~Q 32	1	1000	5 Y W W	999 J.	200 B
14 X X	1. A. C. A. C.	199900		- Q.C. 2440	and shirts a		(1993) 1997 - Starten Barris, 1997 - Starten 1997 - Starten Barris, 1997 - Starten Ba				() ((((((((((((((((((Same	aari X	388 B
10.000			10 C. X.		Sec. 10.00	- XXC	36.536	27E	2						-20 s
88.6	368. 6. 8. 8	89 X K	6. S. 1996 (2.22.20.				Allen	1.000		X6.1.1.3	1 S. C.	10000	- 	331
3 5.72	77 (1 () () () () () () () () ()	22.00	100 C		000		10000	~~~~~	1 80.00		(j_1, j_2)		1414		esa i
3 - A A	N	S. 5 .	1. 1. 882.3	200 S S		(C) 2 2 2 2		83. d C	é 38826	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 A.		100	68c7	84 A 1
1.566		1944	63 C	XXXX X.4.X			1.1.1		2 /			1999 - S	390,0	77.GQ	22
882.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 S. K.	100.00	3000 C		11.1.	1997 -	Y 160	- A. A.	2.00	17 1 2	192.5	කරාම	1.14	10.1
20 A U	1. S.	.a w	99.000 an 2				******	-765 (di ini		XX XX 22	0.000	500 C	6. C. M.	900 M	A
11.	This is a set	10 A 10		💼 🖓			1.1	11 S - 1 S			1		75		
in the second		and the second second		The second		Section and the	an staan	a an		Calu	in in	in in the second		در ز	
1.2228	S. Summer	C 9742 -		- Z E 333	2114	1. 10 202		0.022	X	معرفين			444	X	38210
1.222	Sugar ton	S		diam'r diam	and the second			7 89 (8)		a				55/51/	- X & I
1 month	04	Con	nut a	4											2000
	Start		ւթաւա												"** I
47 T	B	0			-										. 1
S		600 M .		61. J. C.	0.M 🖓	101131208	C206-44	\$2.000.0	dise si i	تىلغۇنىڭ	viire	an a	فتحديضن	de la carte da	2.2.8
GE			*****	2000 7 00	1. S.	10.000 X 100	2.20	4.4.44				00,408,08			2.20
		YA SHEET WAY		21 A A A A A A A A A A A A A A A A A A A											

Input	file		Spherica	l. des	PIT
Reault	e fil	•) ?•\?	anoters-	deu	.sol
			in haus a	s initial	Taximus
	SILL	: 63. 	86 25	6329. 2525	-6329E+05
	GB .		88	22.98	228.8
Commenter de la			enter enter		
		S			
Start Toolog					

	176	Lanen in the A	CCC4	• • • • • • • • • • • • • • • • • • • •
	38 & I († 1888).		dew	S01
-700 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100			. (G R .	5.70 g
	· · · · · · · · · · · · · · · · · · ·	Tininum.	initia:	nax incin
S S		63.86	6329.	.6329E+85
S. Carrow Manager		and the second second		
	7. 1 (10005.00000)		949 •	
	HUGE .	95,85	85150	A STATISTICS AND A STATISTICS
	ange: CB i	95.85 .0000	3565. 22.88	.9595£+05 228.8
Humber	ANGE : CB : Of lega	95.85 .8899	9565. 22.98	.9595E+05 228.8 28
Runber	ANGE : CB : of legs	95.85 .0090	9565. 22.88	.9585E+05: 228.6 : 28
Humber Compute	ANCE CB of lags Best F	95.85 .0000 (t (y/N)	9585. 22.88	.9585E+65 228.6 28
Number Compute Start C	ANGE CB of lags Best F omputet	95.85 .0008 (t (Y/N)	9585. 22.88	.9585£+85 228.8 : 28 : 7
Number Compute Start C	ANGE CB : of lags Best F emputet: station is	95.85 .0000 (t (Y/N) (on	9585. 22.88	.9585£+85 228.8 28 28 28
Hunber Compute Start C Braw Se	ANGE CB : of lags Best F emputet: si-Variz	95.85 .0000 (£ (¥/N)) (08 -grae	9585. 22.88	.9595£+65 228.8 28 3

	<u></u>	De VI.	slan ——	
Result	s file -	••••	tev :	
		-Parasete	rs	1 Play incom
	SILL :	69.86	6329,	.6329E+05
	Ce :	95,15 	9565. 22.88	228.8
Hunber	of lag			28
	Complice	ion		· •
Draid S	cui-Uar.	Dgran		

impat file	
Read (G. 1) 18	
Riniana Infeial & Revia	
SIGMA : 2288 22.89 228.9	
2558 - 23.89 - 208.3	
Compute Sert Fit (1/N)	q 1000
Start Computation	
Bras See D-Carlogram	

Six different methods for fitting a function are displayed on the Fit Semi-Variogram Menu. The fitting parameters are labelled B1, B2 and B3. Use the FI help key to obtain information on the meaning of the parameters for every Semi-Variogram Type selected.

and the second states of the				
		t Senil_V	arlagram	
an Marin	where where the same		1997 C	
	nput Data	file: Dig	oi.fit	
Culton	n Solution	File. The	elsof 🕬	
Section of the sectio				
Polyno	mist 50	hericat ;	Exponent	at
Gaussi	29	Whilen	kitho of D	e waat i
Comput	e hest fit:	e.	- *	
M 6	oloum	initia	d May	ไสามกา
	V See C. 2022			the second se
	0.007	0.675		753
B1:	0.007 0.500 ** -	0.675	<u>, </u>	.753 000
81: 82:	0.007 0.500	0.675	• F	753 .000 8.757
81: 82:	0.007 0.500 7.000	0.875	• • • • • • • • • • • • • • • • • • •	759 000 8.757
B1: B2: Drawing	0.007 0.500 7.^_0 Size (mm	0.675 1.000 20.375 1.22 1.22 1.32 1.34 1.34		753 800 8.757 30
B1: B2: Drawing Output	0.007 0.500 7.000 Size (mm Proview	0.675 1.000 25.375 1.32 1.32 1.33 Postscrit	<u>• 8</u> • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 1	753 600 8.757 <u>30</u>
B1: B2: Drawing Output Initial	0.007 G.500 7:0 Size (mm Proview ization	0875 1.000 25.376 24 13 Postscrip Start Fitt	<u> </u>	753 600 8757 30

For the Polynomial / Spherical / Exponential / Gaussian / De Wijsian and kRho semivariograms, their meaning are as follows:

	Polynomial	Spherical, Exponential, Gaussian, De Wijsian	kRho
B1	Slope	Sill	Sigma
B2	Power	Range	K
B3	C ₀	C ₀	Rho

4.3. OUTPUT

The output file has the extension .SOL and contains the solution. The equation parameters B(1), B(2) and B(3) have the same meaning as in the table for the SUN version.

5. INTERPOLATION

5.1. INPUT FILE

The same input file that was used for *Semi Variogram Computation* can be used for any of the three types of interpolation. This file must have the extension .DFL. and has the following format:

Data format of file *.DFL

- 1: Hdng Heading of the map, consisting of a maximum of 76 characters.
- 2: N N specifies the number of data points given.
- 3: X_i Y_iZ_i [Z*_i] for i = 1 to N
 (X_i,Y_i,Z_i) Coordinate of the actual data point i.
 Z*_i Qualified guess at point i. Only necessary if differences between Z_i and Z*_i must be computed for Bayesian estimates.
- 4: NW NW specifies the number of point interpolation values to be computed.
- 5: XW_i YW_i [ZG_i] for i = 1 to NW
 (XW_i,YW_i) x- and y-coordinate of interpolation point i.
 ZG_i Qualified guess at point i. Only necessary for Bayesian estimates.

The interpolation parameters that must be used during interpolation may be specified in the *.DFL file, but it is not necessary. If specified, it must be entered as a set of four lines directly after line 1, the heading line. Each set starts with an identifying character, which can be either in small or capital letters.

For example:	Heading
	Semi-Variogram Parameters
	Distance Weighing Parameters
	Kriging Parameters
	Bayes Parameters
	lines 2-5: Information about observations and point interpolations.

5.2. OPTIONS

PC Version

Three different methods for interpolation are shown on the Interpolation Type Menu.

-	_		_		_						_											_				
j	6.5	392	No.	<. <	2/2	- 00	ŝŝ		2.5	1	Υt	43	÷Υ	×	<u>e</u>	1	\sim	- 2	,	÷.,	1000		i óx	Solde	500	5
l	٠÷,	22	ΥX:	200	58.	S)	- A.	. A.	2.14	34	s.	Ζ.		÷.	2.	6	2	S - 1	2.5		2.56	÷	×63	8. A . A	7.2	i.
j	- 86		DB		t.	۱n	ce				10	rh	ŧ.	i r	ıŭ										20	i.
l						- 200										-						~~~	~~~		27	ŧ.
l	0			Ņ,	÷,		۰. پر ۲	5		21	20.	e de la composición de la comp		10	20		2	26		201		695	- 22	22		
l		- 2	20		÷.,	3	*	κ, Ι	<u>^</u> ~	20		<u>, 1</u>	1		28) 201		2	4		S.,		5.52	× (192	-	ġ.
l	- S	, s	ىتە 1	Υ,		23	لمشكر			٦.	2		. 3	್ಷೆ	3	s :			٠	20) -	СX,	÷	÷.	1	ंध	2
		28	\sim	\$40	X	33	\sim	*	÷	- 1	\$	÷~-		÷ 5	÷.	÷.	. 7	10	ŝ÷	::2·						1
l	- Č	1	- 3.0	1.		22	- 8,	Χ.		S., .		~~~.	1	́.,	à	~	S.,	~2						<u>í</u>	1.1	
ĺ	1.5	κ	8.94Z	~v/	~~~	1.00		25	6./A	- 255		5.	ŝ	.20	27			72	÷.,	255	2020	1000	2.25	-	\$2.5	1
				. A . A	_	_		~~~~				2					_									-

18	TRIPOL	User Documentation

Selecting any one of these options brings you to the appropriate Interpolation Menu. The upper half is for information purposes only and displays various file names for input and output. You can edit the values in the lower part to suit your needs.

PC Version

Each Interpolation Menu contains two commands namely Start Error Analysis and Start Interpolation. The first command initializes the computation of the estimated error for each observation point and the root mean square error. The second command computes the estimated value for each given interpolation point in the .DFL file.

SUN Version

Each Interpolation Menu contains three buttons namely Initialization, Error Analysis and Start Interpolation. The first button initializes the parameters with the values given in the .DFL file, if any. The second button computes the estimated error for each observation point and the root mean square error. The third button computes the estimated value for each given interpolation point in the .DFL file.

5.3. OUTPUT

The following three files are created during interpolation:

- I. File *.DAT. This file contains the x- and y-coordinates of the interpolation points and the estimates values for each point. The file is ready to be used in program TRICON for computing the triangular mesh.
- 2. File *.LEV contains the estimated values for each point interpolation. The file is ready to be used in TRICON for contouring.
- 3. File *.LST contains the Error Analysis.

6. DISTANCE WEIGHTING INTERPOLATION

6.1. INPUT FILE

The distance weighting parameters that must be used during interpolation may be specified in the *.DFL file, but it is not necessary. If specified, it must be entered as a set of four lines directly after line 1, the heading line, as follows:

- 1: D/d D indicates that distance weighting parameters follow.
- 2: NUM NUM specifies the number of nearest points to be used for interpolation.
- 3: WFUNC 1/2/.../6 specifying the type of weight function to be used (Section 1.5).
- 4: DEGREE Degree of polynomial to be used for a trend surface analysis (WFUNC=6).

6.2. OPTIONS

The following Distance Weighting Menu will appear:

PC Version

000000000000000000000000000000000000000		$\mathbf{x} \in \mathbf{U} \in \mathcal{A}$				
1000 general 2						
10000044.253	399 Ber			an the second		
2000 J V 12	SKLIDI V		500 X			
	82.20		5141 (Mar 16)			
					112 (m. 1926)	
					202.7.5.1	
		\$\$\$\$\$\$\$\$				64400 M M
			adadhina allar			
😹 NumDe	er of	neare	st poi	nts	•	4 🎆
		and the second second second	a series and a series of the			
000003888.000	ed 1 = # 9 : br /	69 S < () 200 - 1	146)00		ta 1/982	X 62200 M 1
111						
Dega			tinne SR√KO-	e (1=	() 9) / =	ź
Degre	en of L Drock	anan an Angende Ng Anter		e (9-	(); 9);	1 2
Degra	en of L Erec	trend: trend: r Ana	susta- lysis	e (8-	(); 9)/ ~	1 2
Degra Starf Starf	es of L Erro L Inte	trend trend r Ana rpola	-neme suctor lus (s tion	• (1-	(): 9):	Ź

The interpolation scemes that are build into the program is defined in Section 1.5 (page 5).

6.3. OUTPUT

Three files are created during interpolation. Refer to the section on interpolation.

7. KRIGING

7.1. INPUT FILE

The Kriging parameters that must be used during interpolation may be specified in the *.DFL file, but it is not necessary. If specified, it must be entered as a set of four lines directly after line 1, the heading line, as follows:

- 1: K/k K indicates that Kriging parameters follow.
- 2: NUM TYPE LOG ORDER

NUMNumber of nearest points to be used for interpolation.TYPETheoretical semi-variogram type, 1 to 6, to use as an approximation of
the semi-variogram (see Section 1.4).1. Linear.2. Spherical.2. Spherical.3. Exponential.3. Exponential.4. Gauss.5. De Wijsian.6. Special kRho-variogram of De Waal.LOGLogarithmic transform values (0 for no, 1 for yes).

ORDER 0 for Ordinary Kriging and 1 or 2 for Universal Kriging of the first or second order.

3: SEMI-VARIOGRAM VALUES

SILL,C,C0,A for semi-variogram type 1 or 5. SILL,C0,A for semi-variogram type 2, 3 or 4.

4: Blank Line.

7.2. OPTIONS

PC Version

The Kriging Menu contains the command *Semi Variogram Parameters* which allows for changing or entering the appropriate parameters. The different Semi Variogram Menus for the different Semi Variogram Types are as follows:

	369P17753223		0.0051010120300	
	38. TS (* 11		(), (), (), (), (), (, (), (), (), (), (), (), (), (), (), ()	
	1990 Barris A.	· · · · · · · · · · · · · · · · · · ·	*****	
		CONTRACTOR OF A	States and a state	in the second
NOTION OF COMPANY OF COMPANY	· · · · · · · · · · · · · · · · · · ·		12 S	
an the second	and the second		and the second	
and the second state of th	2 (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	inci xH	Sec. Sugar	-marine
	C Distance with	\$ 10 20 10 miles	<u> </u>	S766335552
10 1		000000000000000000000000000000000000000	CONCERNMENT OF THE OWNER OF THE O	
		0.000.000.000	111100000 C	
Fror Ann Usis I	11 S. 11	DOL SL	Course and	
	200 N N 1 N 1 N 1 N 1	A7		<u> </u>
22. August March March March and Angel States				
ALL POLICE I	e 11	1000 80 55		
THESE IS I	1981 9	73 WW 478		
		00000000000000		and divine to
No. Contraction of the second s	Sec. 10.110		2.200.000/000	
DIOIC HALLS	2 1 N A &	I COLLET	CONTRACTOR OF THE	
		A.A.S. South	272000 million (Maria)	
				(A. S. 1997)
		6. A	240 Q W	
				20 al 1996
		22.20	1. A.	
	· · · · · · · · · · · · · · · · · · ·	6	an a	
	Construction of the second s second second sec second second sec second second sec			NY 0 17 000 7 007 00
Number of nearest add	05	- 6	4000 C	
Number of nearest pol	nts: 🔹	6		
Number of nearest pol	nts: 🔶	6		
Number of nearest pol	nts: 🖕	.6		
Number of nearest pol Order of Kriging (O	nts: 🖕 2): 🔎	6		
Number of nearest pol Order of Kriging (O	ntsi 😱 2): 👂	5		
Number of rearest pol Order of Kriging (o	ntsi 🧎 2): 👲	5		
Number of nearest pol Order of Kriging (O	nts: •	6		Yeel
Number of rearest pol Order of Kriging (o	ntsi 🖕 -2): 🖉 Polyn	6 omtal	59h34	Tcal
Number of rearest pol	ntsi 😱 -2): 🖉 Polyn	6 omtal	Sphar	kal
Number of rearest pol	nts: • -2): • Polyn	6 omtal	5ph3r	kal
Number of rearest pol Order of Kriging (o Semi-variogram Type:	nts: -2): P Polyn Expon	6 omiai entiai	Sphar Gauss	ical I
Number of rearest pol Order of Kriging (o Semi-veriogram Type:	ntsi 🔹 -2]: 🗜 Polyn Expon	5 omial ientiai	5ph3r Gauss	ical
Number of rearest pol Order of Kriging (o Semi-variogram Type:	nts: -2]: P Polyn Expon	6 omtal ential	Spher Gauss	kal L
Number of rearest pol Order of Kriging (o Semi-veriogram Type:	ntsi . -2): P Polyn Expon de Wi	6 omtal iential slien	Sph 3 r Gauss	kal L
Number of rearest pol Order of Kriging (o Semi-variogram Type:	nts: 2]: P Polyn Expon de Wi	6 omtal entlej sjien	Spha Gauss	kal I
Number of rearest pol Order of Kriging (o Semi-variogram Type:	nts: • -21: • Polyn Expon de Wi	6 omtal ential sjien	Spher Gauss	kal l
Number of rearest pol Order of Kriging (o Semi-variogram Type:	nts: • -2]: • Polyn Expon de wi	6 omtal ential sjien	Sph> Clauss	ical i
Number of rearest pol Order of Kriging (o Semi-variogram Type: Logiza nsform:	nts: 2: P Polyn Expon de Wi	5 omtal ientiai sjien	Spher Gauss	kal l
Number of rearest pol Order of Kriging (o Semi-variogram Type: Logtransform:	nts: • -2): <u>P</u> -2): <u>P</u> -2): • Polyn Expon de Wi	5 omial entiai sjien	Sph} Gauss	ical I
Number of nearest pol Order of Kriging (o Semi-varjogram Type: Logtransform:	nts: • -2): <u>P</u> Polyn Expon de Wi	5 omtal ientiai sjien	Sph3r Gauss	kal 1
Number of nearest pol Order of Kriging (o Semi-variogram Type: Logtransform:	nts: • -2): <u>P</u> -2): <u>P</u> -2): P -2): Polyn Expon de Wi	5 omtal ential sjien	Spher Gauss	ical I
Number of nearest pol Order of Kriging (o Semi-variogram Type: Logtransform: Sill; _ 1107.009	ntsi + -2): <u>P</u> Polyn Expon de Wi	6 omtal ential sjien 2000.0	Spher Gauss	ical
Number of rearest pol Order of Kriging (o Semi-variogram Type: Logtransform: Sill; -, 1107.000	nts: • -2): • Polyn Expon de Wi	5 omtal ential sjien 2000.1	Sphar Gauss Gauss	ical I
Number of nearest pol Order of Kriging (o Semi-variogram Type: Logtransform: Sill; 1107.009	nts: • 21: P Polyn Expon de Wi	6 omtal ential sjien 2000.0	Sohar Cause 1000	ical
Number of nearest pol Order of Kriging (o Semi-variogram Type: Logtransform: Sill; 1107.000 C 0.000	nts: • -2): • Polyn Expon de Wi -1 	5 omtal ential sjien 2000.0	Sphar Gauss 1000	ical
Number of nearest pol Order of Kriging (o Sami-variogram Type: Logtransform: Sill: 1107.009 C 0.000	nts: • 21: P Polyn Expon de Wi de Wi	5 omtal enttal sjien 2000 (0.00	Sph?« Causs 1000 0	ical
Number of nearest pol Order of Kriging (o Semi-variogram Type: Logtransform: Sill; 1107.009 C 0.000	nts: • -2): • Polyn Expon de Wi - 	6 omtal iential sjien 2000.0	Sphar Gauss 1000	[cal]
Number of nearest pol Order of Kriging (o Sami-variogram Type: Logtransform: Sill: -, 1107.009 C 0.000	nts: • 21: P Polyn Expon de Wi de Wi	5 omtal ential sjien 2000 (0.00	Sph2c Causs 1000 0	
Number of nearest pol Order of Kriging (o Semi-variogram Type: Logtransform: Sill; 1107.009 C 0.000 Initialization Error	nts: • -2): • Polyn Expon de Wi -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	6 omtal ential sjien 2000.0 0.00	Sphar Gauss 1000 0	ical ()
Number of nearest poin Order of Kriging (o Semi-variogram Type: Logtransform: Sill: , 1107.009 C 0.000 Initialization Error	nts: • 2): <u>P</u> Polyn Expon de Wi J e: • c0:	5 omtal entia) sjien 2000.0 0.00	Sph2r Causs Couss 900 0	ical J

7.3. OUTPUT

Three files are created during interpolation. Refer to the section on interpolation.

8. BAYESIAN ESTIMATES

8.1. INPUT FILE

The Bayesian parameters that must be used during interpolation may be specified in the *.DFL file, but it is not necessary. If specified, it must be entered as a set of four lines directly after line 1, the heading line, as follows:

1: **B/b** B indicates that Bayesian parameters follow.

2: NUM TYPE LOG SCALE

NUM	Number of nearest points to be used for interpolation.
TYPE	Theoretical semi-variogram type, 1 to 6, to use as an approximation of
	the semi-variogram (see Section 1.4).
	1. Linear.
	2. Spherical.
	3. Exponential.
	4. Gauss.
	5. De Wijsian.
	6. Special kRho-variogram of De Waal.
LOG	Logarithmic transform values (0 for no, 1 for yes).
SCALE	Scaling information.
	0 = No scaling (values taken as guesses).
	1 = Guesses are scaled with the mean of NUM points.
	2 = Guesses are scaled with the mean of all N values.
	3 = Guesses are scaled linear between the maximum and minimum
	height of topography (water levels are usually deeper at high topo
	elevation).

- SILL,C,C0,A for semi-variogram type 1 or 5. SILL,C0,A for semi-variogram type 2, 3 or 4. SIG,K,RHO,DLAG for semi-variogram type 6. DLAG is the basic lag distance.
- 4: <u>SEMI-VARIOGRAM VALUES</u> for Guesses Semi-Variogram.. SILL,C,CO,A for semi-variogram type 1 or 5. SILL,CO,A for semi-variogram type 2, 3 or 4. Blank line if TYPE = 6.

8.2. OPTIONS

PC Version

3:

The Bayesian Menu contains the command *Semi Variogram Parameters* which allows for changing or entering the appropriate parameters. The different Semi Variogram Menus for the different Semi Variogram Types are as follows:

8.3. OUTPUT

The same output files as in the distance weighted methods are created.

9. EXAMPLE

The program flow and capabilities can best be illustrated by means of an example. We begin with step by step instructions with an example file (with the extension .DFL), followed by the various output files.

9.1. EXAMPLE DATA FILE: tripol.dfl

Input listing of file tripol.dfl

(Note: The sets of parameters, consisting of 4 line each, starting with s, b, d and k, is optional.) Dewetsdorp data

s 20 500 0 ь 8603 67 43.6 .79 200 Û. đ 4 7 2 k 6200 1107 0 2000 a 72 -29353.00 -270367.00 1466.7 1486.0 -29330.00 -270354.00 1467.0 1486.0 542 -31154.079 -269336.220 1500 -31153.932 -269348.875 1500 -31143.754 -269366.663 1500

Step 1:

With a prepared data file as in the previous paragraph, start the program by typing TRIPOL followed with the enter key to display the introductory screen. Press the enter key to display the Main Menu.

Step 2:

Select the first option (Semi-Variogram Computation) to display the Computation Menu and edit the Input Filename entry by typing the correct input file name in this field. Select Continue Computation to display the Semi-Variogram Menu..

Step 3:

After setting the values in the Semi-Variogram Menu, select Start Computation to compute the semi-variogram. With the PC version a Message Box will be displayed below the menu to display the results. Press any key to clear the message box in order to return to the menu. The SUN version contains the message box on the main menu.

Step 4:

To draw the semi-variogram, select Draw Semi-Variogram to display the Graph Menu. Select the appropriate output device to display the semi-variogram. After viewing, press any key to return to the Semi-Variogram Menu.

Step 5:

You have now generated the *.FIT file needed for fitting a function to the semi-variogram. Press the escape key to go from the Semi-Variogram Menu to the Main Menu. Select *Fit Function to Semi-Variogram* to display the Function-Type Menu and select the appropriate method to use to fit the function.

Step 6:

After setting the options in one of the Fitting Menus, select Start Computation, clear the message box and select Draw Semi-Variogram from the Graph Menu, select the output device to view the semi-variogram and the fit (Figure 1.9).

Step 7:

The last stage of the program is to do the interpolation. Select interpolation from the Main Menu. Choose between the different interpolation schemes on the Interpolation Type Menu. After setting the various options on the Distance Weighting, Kriging and Bayesian Estimates Menus, select Start Error Analysis to compute the error in the estimate and select Start Interpolation to do the point interpolations for all interpolation points given in the data file.

9.2. EXAMPLE OUTPUT FILES

Output listing of file tripol.var

Semi-Variogram: Dewetsdorp data AVERAGE = 1511.24167 VARIANCE = .11077E+04 NUMBER OF DATA POINTS = 72

DIRECTION TOLER	ANCE = 360.0 degrees
STEP SIZE ≈	500.0 meters
DIRECTION =	0. degrees

LAG	#points	DISTANCE	1/2 VARIO
1	127	281.52	22.8757
2	212	764.59	67.1359
3	260	1250.03	162.1264
4	363	1750.46	237.2865
5	321	2230.43	464.5948
6	243	2730.78	500.7854
7	234	3252.36	1056.9241
8	158	3735.55	1579.9574
9	134	4223.17	2020.9207
10	124	4764.82	2010.7043
11	89	4760.47	2723.9197
12	107	5737.81	3056.6428
13	67	6265.79	4190.3031
14	37	6719,37	4433.7247
15	38	7215.38	4966.7630
16	15	7809.38	4951.2287
17	14	8305.41	5789.2032
18	8	8728.99	6225.0163
19	4	9224.73	5866.1300
20	1	9584.77	6305.6450

Output listing of file tripol.fit

•

(This file is used as input for the *Fitting* Command) Semi-Variogram: Dewetsdorp data

20	-
20	
281.5230	22.8757
764.5856	67.1359
1250.0290	162.1264
1750.4561	237.2865
2230.4253	- 464.5948
2730.7775	500.7854
3252.3619	1056.9241
3735.5452	1579.9574
4223.1653	2020.9207
4764.8156	2010.7043
5260.4681	2723.9197
5737.8148	3056.6428
6265.7852	4190.3031
6719.3708	4433.7247
7215.3806	4966.7630
7809.3830	4951.2287
8305.4111	5789.2032

÷

8728.9899	6225.0163
9224.7290	5866.1300
9584.7700	6305.6450

Output listing of file tripol.sol

Semi-Variogram: Dewetsdorp data					
ICON= 2 CF	fi2= 564014	2.8 ITER	ATION NO. $= 101$		
Lin: SLOPE=11	2.59 POWE	ER=1.1491	C0 =.00000		
SOLUT	IONS OF TH	E EQUATION	S		
B(1)=	112.59293				
B(2)=	1.1491051				
B(3)=	.00000000				
281.523	22.876	112.593	897172E+02		
764.586	67.136	354.913	287777E+03		
1250.029	162.126	624.380	462254E+03		
1750.456	237.287	919.356	682070E+03		
2230.425	464.595	1214.539	749945E+03		
2730.778	500.785	1532.556	103177E+04		
3252.362	1056.924	1873.475	816551E+03		
3735.545	1579.957	2196.709	616751E+03		
4223.165	2020.921	2529.307	508386E+03		
4764.816	2010.704	2905.520	894815E+03		
5260.468	2723.920	3255.445	531526E+03		
5737.815	3056.643	3597.138	540495E+03		
6265.785	4190.303	3980.029	.210274E+03		
6719.371	4433.725	4312.858	.120867E+03		
7215.381	4966.763	4680.666	.286097E+03		
7809.383	4951.229	5126.111	174883E+03		
8305.411	5789.203	5501.995	.287209E+03		
8728.990	6225.016	5825.646	.399370E+03		
9224.729	5866.130	6207.414	341284E+03		
9584.770	6305.645	6486.615	180970E+03		

Output listing of file tripol.lst

Distance Weighting	g: Dewetsdo	orp data.		
Trend Surface Co	efficients (1	≈ constant le	rm)	
6.089E+04				
-1.863E-01				
4.672E-01				
2.078E-06				
-1.110E-06				
9.364E-07				
Source of	Sum of	Degrees of	Mean	
_Variation	Squares	Freedom	Squares	F-Test
Regression	73491.86	5	14698.37	154.8423
Deviation	6265.04	66	94.92	
Total Variation	79756.89	71		
Goodness of Fit = $.9214$				
Correlation Coefficient = .9599				
Degree =	2			

.

. -

Output listing of file tripol.ist

Krij	ging: Dewet	sdorp data		
X	Y	Z	Z*	Z-2*
-29353.00	-270367.00	1466.70	1467.34	.64
-29330.00	-270354.00	1467.00	1466.34	66
-29937.00	-269726.00	1479.00	1552.06	73.06
-31031.00	-270378.00	1484.70	1478.08	-6.62
-31738.00	-269668.00	1496.00	1498.14	2.14
-31549.00	-269454.00	1495.00	1490.82	-4.18
•	1	•	•	•
-32631.00	-270907.00	1515.90	1512.17	-3.73

Average Error = 4.125E+00 Standard Error = 2.234E-01 Root Mean Square Error = 2.469E+01 Greatest Error = 1.343E+02 Mean Absolute Error = 1.108E+01

Output listing of file tripol.lst

Bayes Estima	tion : Dewets	sdorp data.				
X	Y	Ż	GUESS	Z*	Z-Z*	STD
-29353.0	-270367.0	1466.70	1481.45	1468.13	1.43	1.88
-29330.0	-270354.0	1467.00	1481.45	1467.86	.86	1.89
-29937.0	-269726.0	1479.00	1478.86	1473.52	-5.48	4.74
•	1	•	1	•	•	•

Average Error = 2.38736E-01Standard Error = 1.25158E+00Root Mean Square Error = 4.85917E+00Greatest Error = 1.82887E+01Mean Absolute Error = 3.29059E+00

Output listing of file tripol.dat

0 542 0			
-31154.07900	-269336.22000	1484.39273	1
-31153.93200	-269348.87500	1484.42341	2
+	,	•	•
•	•	•	•
-33941.88400	-275390.97100	1578.70722	542

Output listing of file tripol.lev

```
5
1466 1502 1538 1574 1610
1484.39273
1484.42341
```

1578,70722

10. COMPUTER CONFIGURATION

PC version

- •IBM PC/XT, PC/AT, PS/2 compatible.
- •MS-DOS/PC-DOS Operating System.
- •640Kb Memory.
- •CGA, EGA, VGA and Herculus Graphics display devices and compatible.
- •Diskette Drive.
- •Serial/Parallel port for Graphic output.
- •Hard Disk required.
- •Numeric Coprocessor recommended.

SUN version •SUN Sparc station •SUN OS 4.1.1 •OPEN WINDOWS 3.0

•Any machine that runs under the UNIX operating system

IBM and PC-DOS are registered trademarks of the International Business Machines Corporation.

MS-DOS is a registered trademark from the Microsoft Corporation.

EPSON FX-80,FX-80+,FX-185,FX-286,RX-80,RX-100,MX-80,MX-100

FX-100,FX-100+,LX-1500 are registered trademarks of Epson America, Inc.

HP 7440A, 7470A, 7475A, 7470A, 7475A, 7550A, 7580A, 7585A, 7586A, 7570A, 7595A, 7596A are registered trademarks of Hewlett-Packard Co.

1350A are registered trademarks of Hewlett-Packard Co.

HP-GL is a registered trademark of Hewlett-Packard Co.

SPARC is a registered trademark of SPARC International Inc.

The PLOTT88 Library, by PLOTWORKS Inc, is incorporated in the TRICON PC version to produce the graphic output.

11. REFERENCES

Van Sandwyk, L., Van Tonder, G.J., De Waal, D.J. and Botha, J.F. (1992). A Comparison of Spatial Bayesian Estimation and Classical Kriging Procedure. Vol. III of the WCR Report No.271/3/92, Institute for Groundwater Studies, U.O.F.S, Bloemfontein.