THE DEVELOPMENT OF PROGRAMMES TO COMBAT DIFFUSE SOURCES OF WATER POLLUTION IN RESIDENTIAL AREAS OF DEVELOPING COMMUNITIES

By

GERALDINE SCHOEMAN

of

Afrosearch-Index P O Box 13540 HATFIELD 0028

FINAL REPORT

to the

WATER RESEARCH COMMISSION

WRC Report No. 519/1/97 ISBN 1 86845 306 5 ISBN SET 1 86845 308 1

ACKNOWLEDGEMENTS

The research in this report emanated from a project funded by the Water Research Commission and is entitled:

The development of programmes to combat diffuse sources of water pollution in residential areas of developing communities.

The Steering Committee responsible for this project consisted of the following persons:

Mr H C Chapman	WRC
Mr D S van der Merwe	WRC
Mr B Jackson	DBSA
Mr M L Liebenberg	HSRC
Dr H R van Vliet	DWAF
Mr F C van Zyl	DWAF
Mr C Warren	CSIR
Mr A Wright	CSIR

The financing of the project by the Water Research Commission and the pertinent advice and direction from the Project Steering Committee is acknowledged with gratitude.

This report is the product of participation of a large number of role players from a variety of settings and situations. The assistance and co-operation of the following persons and organisations in particular, without which the project could not have been completed is gratefully acknowledged:

Mr Charles Chapman for his enthusiasm, tremendous patience and support.

Kgosi Mbuyane, Me. Elsie Motubatsi, Mr Patrick Kgapola, Mr Michael Nyalunga, all the water committees, the various community members (too many to list) who contributed so freely of their time and energy in the provision of information and feedback.

Me Marchelle De Bruyn, Mr S de Beer, Dr David de Waal and Mr Kay-Uwe Brugge of Afrosearch-Index for their assistance, hard work and perseverance.

EXECUTIVE SUMMARY

THE DEVELOPMENT OF PROGRAMMES TO COMBAT DIFFUSE SOURCES OF WATER POLLUTION IN RESIDENTIAL AREAS OF DEVELOPING COMMUNITIES

by

Geraldine Schoeman

Afrosearch-Index PO Box 13540 HATFIELD, 0028

Supplementary to the WRC Report No K5/519 which is the full report to the Water Research Commission on the Project "The Development of Programmes to Combat Diffuse Sources of Water Pollution in Residential Areas of Developing Communities"

EXECUTIVE SUMMARY

South Africa's limited ground water resources have been heavily compromised in certain areas of the country. Increasing levels of development, rapid urbanisation and industrialisation are bound to compound this problem. In view of the absence of a formal groundwater management strategy, the Department of Water Affairs and Forestry (DWAF) is presently engaged in the development of strategic objectives and a functional strategy to put such management into place.

While systems for the management of surface water quality have been in place for some years, there is mounting concern about pollution and contamination of this natural resource. Such pollution and contamination result from agricultural practices, industrial activities, urbanisation and, most notably, the impact from the rapid growth in the numbers and size of developing communities in South Africa.

In part, this negative impact has resulted from non-point or diffuse sources of water pollution. This may be directly attributed to activities that have relatively low site-specific impact if seen as isolated pollution incidents (e.g. lack of effective sanitation). However, settlement-wide and cumulative pollution brought about by population growth and the commensurate increase in dense settlements (without effective water, waste and sanitation facilities) is set to produce severe negative environmental and water quality impacts.

Whilst a range of measures is being developed to address point-source contamination, there is international acceptance that diffuse sources of water pollution, by the nature thereof, makes the regulated control thereof virtually impossible. Moreover, there is an increasing realisation that effective mechanisms will need to be developed for involving communities directly in measures to address this problem. This necessitates the promotion of sustainable water resource management programmes at community level, within a framework of integrated regional catchment management.

This report puts forward proposals for the development of programmes to combat diffuse sources of water pollution in developing communities. It draws on recommendations contained in a Human Sciences Research Council (HSRC) report on the social aspects of water provision, use and preservation.

The following specific objectives had been set for this research project:

- To undertake a national and international overview of multi-disciplinary issues in developing communities related to the development of community-based programmes to combat diffuse sources of water pollution;
- To develop appropriate and sustainable preventive programmes to combat diffuse sources of water pollution in three prototype communities;
- To undertake an in-depth evaluation of the success of the prototype studies;
- To formulate an educational model for the development of programmes to combat diffuse sources of water pollution in developing communities at regional and/or national levels (as long-term goal, based on the results of this project).

A number of distinct areas of focus were identified and incorporated into Action Research phases. These included:

- Data-gathering on a multi-disciplinary, pan-sectoral basis from relevant national and international literature and documented case studies;
- Interviews with persons and organisations with specific expertise and experience of the multi-disciplinary issues related to the development of community-based development programmes;
- Interviews with individuals and groups in developing communities aimed at exploring experiential aspects related to pollution and to determine their understanding of the problem;
- Site-specific investigations in selected areas and communities to identify specific problems and practices that precipitate diffuse sources of water pollution;

Investigations aimed at identifying specific ameliorative actions that could be utilised to combat diffuse sources of water pollution.

From the literature and interview survey it has become evident that there is disagreement about the exact definition of diffuse sources of water pollution. Two broad approaches to defining the problem have been identified. The first approach, subscribed to by the Department of Environmental Affairs and Tourism, relates to a system whereby any pollution that cannot be traced to (or controlled at) a single pollution point-source is regarded as diffuse. In terms of the second approach, the existence of a single identifiable authority, institution or individual (who can accept responsibility for the pollution) is a central element in determining whether or not pollution will be defined as a point source or diffuse source problem.

Sources of diffuse pollution in developing communities generally result from a lack of adequate infrastructure, management and/or maintenance of water use practices, sanitation, refuse and land-use practices, including agriculture, deforestation and devegetation. Air to water, land to water and water to water pollution paths serve as conduits for diffuse pollution.

The report shows that interventions aimed at containing sources of water pollution in developing communities can be launched by focusing on the promotion of effective, community-based water supply, sanitation and waste management and, where appropriate, environmentally sustainable agricultural practices. It must be noted that, notwithstanding their acceptance of the role of crop production, animal husbandry and other related land use practices in the precipitation of diffuse sources of water pollution, such factors have been excluded from this study by the Water Research Commission. This has been to allow a more focused approach to the project. The decision does not, however, serve to negate the importance of such factors or the fact that land use management should form an essential part of integrated development initiatives in developing communities.

An analysis of seminal work undertaken by a number of national and international organisations, institutions and individuals points to a range of **key substantive issues** that should form the cornerstone for any participative development programme aimed at addressing diffuse sources of water pollution in developing communities. Whilst these key issues are addressed in detail in the report, a few core considerations are noted here. One of these relates to the importance of rooting participative programmes on pollution in interventions to address priority need areas of developing communities (ie. health, crop production, animal husbandry and sustainable environmental utilisation) and to devise processes aimed at assisting communities to extend development planning to address these needs. This approach essentially cautions against attempts to isolate a specific funded development project from broader development considerations that may exist within in a community in the interests of "getting the job done". Acceptable, integrated management strategies are required that incorporate the underlying values, norms and needs of the community.

Another important consideration is that management designs need to be mindful of environmental problems within the context of developing communities. An analysis of causes of diffuse water pollution in developing communities has shown that pollution is related to basic (first order) development needs and an attempt to address the problem by means of a first-world "Green Agenda" aimed at promoting environmental stewardship is patently illogical and inappropriate. In keeping with the "Brown Agenda", the implementation of sustainable development programmes aimed at meeting human needs on a basis that promotes ecological sustainability is proposed.

It is clear that a programme focusing on the promotion of environmental awareness and a conservation ethos (in the first world sense) is bound to be unsuccessful in combating pollution in developing communities if it ignores this basic needs context. This calls for the implementation of a Primary Environmental Care (PEC) approach by which local communities organise themselves and strengthen, enrich and apply their means and capacities for the care of the environment while simultaneously satisfying their needs. A PEC programme design would need to allow for the inclusion of sanitation and waste management practices with water management. It would need to provide for the informed selection of cost-effective and technically appropriate options for the provision of basic services that promote environmental protection. In addition, it would require the incorporation of operational procedures for promoting maximum community empowerment and community participation in programme planning and implementation.

Other key substantive issues relate to the transfer of technical and nontechnical information to the community and the ability of programmes to demonstrate short-, medium- and long-term benefits to obtain and sustain community participation. A learning process approach; capacity building programmes; the utilisation of indigenous skills and resources; the maximisation of the involvement of woman; the introduction of appropriate technologies and the balancing of top-down and bottom-up initiatives should be regarded as key issues.

In addition to the above substantive issues, a number of process-related factors have emerged that play a key role in determining the success or failure of projects. It is deemed essential for these factors be incorporated as guidelines for project implementation. These include a drive towards:

- finding acceptable solutions which can achieve "goodness of fit" between the problem situation (at whatever level) and the intervention;
- devising a framework for programme application that is situationally relevant and capable of adapting to changes in level of intervention on a local, regional or national basis.
- providing appropriate intervention strategies that are developed on the basis of contextual validity, and are appropriate to the level at which the problem manifests itself without losing sight of the interdependence of and interaction between levels.
- devising co-ordinated and integrated multi-disciplinary and multisectoral interventions on vertical and horizontal levels to foster an empowerment agenda (i.e. institutional capacity building and participation).

To avoid a situation whereby this study would become a purely academic exercise, the researchers, in consultation with the Water Research Commission (WRC) decided that the initial aim of formulating a conceptual framework should be extended to include the development of guidelines for practical implementation. To this end, a Field Guide was compiled to serve as a step-by-step practical guide for research and programme development.

A conceptual framework based on the qualitatively analysed information obtained during the various stages of the project was developed. This served as basis for formulating the development approach and implementation strategy for the in-situ implementation, evaluation and adjustment of a comprehensive participative community-based development programme aimed at combating diffuse sources of water pollution.

The proposed approach for the design of the Field Guide (based on the conceptual framework) comprised four basic phases (including strategic objectives) which related to (i) Rapid Assessment and Consultation; (ii) the Development of Sustainable Water, Waste and Sanitation Management Strategies (WWSMS); (iii) the Development of a Community Based Resource Management Plan and (iv) Implementation, Monitoring and Evaluation with a Feedback Approach for adjustment and reorientation.

The Field Guide (based on the conceptual framework) was developed and submitted for extensive peer review. This was used to guide the implementation of prototype programmes for participative water, waste and sanitation interventions in developing communities. Communities willing to act as foci for testing were identified and participative community-based programmes were initiated in each in accordance with the methodology set out in the Field Guide. The Field Guide has been evaluated and adjusted on the basis of the results of these pilot or case studies.

The Field Guide embraces the principle of process oriented research and development aimed at the promotion of **Participatory Appraisal and Training** and **Participative Development Management**. Participation, in terms of the former strives to promote independent community ability to identify, analyse and solve problems and to participate in decision-making, project development and project implementation, thereby enhancing human capacity building. Participative or learner-centred training combines learning about project related matters with capacity building that will initiate and sustain processes of change and empowerment in developing communities. Participative Development Management on the other hand is

a development process that aims to ensure community based co-ordination and integration of planning, implementation, monitoring and evaluation as well as maintenance and control activities relative to existing and future development projects. It is therefore a pro-active, controlled and strategically managed real development process.

It is believed that the Guide, in its current format, is suitable for use by community and project developers and serves to describe the milestones that need to be achieved or incorporated to allow participative project development. However, it should be noted that both the development paradigm and the resultant processes suggested for the Field Guide focus on the building of competencies, the enablement and empowerment of people and the strengthening of community action. General capacity building (including education and training) and information dissemination form an essential component of an empowerment agenda. It is suggested that training in respect of water, waste and sanitation management within communities is structured on pan-sectoral and sector-specific levels. Pansectoral training refers to skills that need to be acquired within the context of water-related projects but that are generic in nature. Sector-specific skills tend to be more technical in orientation and are specifically related to the water, waste or sanitation sector. Potential focus-areas for training within the pan-sectoral and sector-specific realms aimed at effective promotion of participative community based water, waste and sanitation project have been set-out in the report.

The pilot projects that had been launched to test the validity of the Field Guide served to evaluate the adequacy of linking the largely pan-sectoral and land-use management training that had been offered by Afrosearch-Index up until that stage, with the technical skills training required to implement effective water, waste and sanitation management (detailed case studies of three of the pilot projects are included in Appendix A). The pilot projects were implemented in different habitats (as per the UN Centre for Human Settlement classification) and included Rural Settlements Upgrading; Rural Growth-Centre Development; Urban Slum Upgrading, Site and Services Schemes and New Urban Community Development.

A range of specific problems were identified in respect of the implementation of the pilot projects:

- In communities with an absence of development initiatives and existing structures, an extensive period of **capacity building** and the promotion of participation needed to be undertaken prior to commencing with large-scale projects such as the provision of community-wide sanitation. Where this has required, small-scale projects (that had a good chance of succeeding despite the immediate lack of capacity) were undertaken to initiate community-based activities;
- While effective participation is a core component of successful programmes, project funding for the promotion of this project component is notably absent from funding budgets. Here, for example, the White Paper on Water Supply and Sanitation makes provision for grant funding in respect of training and capacity building of water committees <u>after</u> they have been established and registered! This approach flies in the face of broad-based participatory approaches and promotes a lack of commitment from the members of the committee as well as the communities which they purport to serve. It will favour development in communities were strong community infrastructure and capacity already exists, further marginalising severely disadvantaged communities;
- Traditional authority structures provide leadership in non-urban communities on a continuum that ranges from totalitarian to laissez faire. Irrespective of the type of leadership provided, initial entry into such communities will always need to take cognisance of these and other formal structures. Because participative development is based on an empowerment agenda, great care needs to be taken to maximally integrate traditional institutions with the development process without entrenching authoritarian structures or causing division in the community. Ironically, whilst the local elections have promoted democratic governance, they have served to bedevil attempts to find this balance in many communities;
- A review period is imperative in order to allow the community to be given enough time and information to allow them to review whether or not they want the project to be initiated. Attempts to force the proposed development are guaranteed to reduce participation in future stages of the process;

- The implementation of project-based action plans usually requires extensive involvement of the developer to ensure that the process remains participative at this stage. The danger exists that dynamic or impatient community members may want to move faster than the participative process can allow. This may result in a decline in participation or, alternatively, confrontation between community members during one of the most crucial stages of the project;
- An equitable and generally applicable golden rule regarding the payment of community members and other participants has not been identified. However, the most successful means of handling this dilemma has been to assist communities to cost the inputs of strategic workers and to make provision for these expenses within the project budget.

Although none of the above problems have been so serious as to derail the development process totally, more lessons were gleaned from the mistakes then from the successes. Fortunately, the mistakes were made in communities where a climate of trust, mutual respect and mutual learning have served as a buffer to the communities as well as to developers.

A number of conclusions have been drawn from the study and specific recommendations formulated in respect of each. These relate to the following:

Education, training and broad-based capacity building

The need for effective education, training and broad-based capacity building in all aspects the development of water, waste and sanitation programmes is an essential prerequisite for sustainable development.

Collaboration and consultation between stakeholders

There is a dire need for the initiation of a process of consultation and the promotion of closer collaboration and co-ordination of activities between all participants and stakeholders on all levels of water, waste and sanitation research, development and programme delivery.

Communication

The promotion of ongoing effective communication between

government, communities, developers and funders is fundamental to project success.

□ Participation

Participation is a key requirement for the development of sustainable programmes at community level. Participation takes time, concerted effort and dedication from developers and communities alike. Funding budgets should reflect this factor.

Community organisational structures

Strong, accountable community organisational structures that build on existing capacity (without duplication) need to be developed as a virtual first step in the development process. There is no other way of ensuring the sustainability of projects without fostering a dependence on external developers.

Local skills and resources

Identification and mobilisation of local skills and resources should be seen as an integral part of the development process. This will increase the multiplier effect of any development actions, promote "buy-in" from the community and serve to maximise development benefits to the community.

Water quality management

There are, at present, no effective guidelines for the implementation of "best management practices" in the context of developing communities. It is necessary that a system be developed whereby the risk of groundwater pollution can be calculated effectively on the basis of what is referred to as "aquifer pollution vulnerability". Notably within restricted project budgets a system that indicates or "flags" areas that have high "aquifer pollution vulnerability" can save time and money and promote "best management practices".

Structure of the report

The report has been structured in the following manner:

Chapter 1: This Chapter provides a brief problem statement as background to the project. The specific project objectives as well as a description of the process that was used to obtain and evaluate data for the project are provided. **Chapter 2 :** The results of the literature and interview studies are presented in Chapter 2. These summarised results are provided under two separate headings:

The first section contains an explanation of the concept of diffuse sources of water pollution and the project-related definition. An overview of factors that have been identified as playing a role in the generation of diffuse sources of water pollution in developing communities as well as the pollution paths are described.

The second section provides information on the key issues that require attention in the development of a model or framework that is designed to promote effective water resource management at community level. In essence, these issues represent a crystallisation of factors that need to be considered in the analysis of and proposed solutions to the problem of diffuse sources of water pollution in developing communities.

Chapter 3 : Chapter 3 sets out the conceptual guidelines for the development of a programme to address diffuse sources of water pollution in developing communities based on the key issues and core elements identified and set out in Chapter 2.

It provides a brief overview of the concepts "participative development management" and "participatory appraisal" which form the basis of the approach deemed necessary for programme implementation and sets out criteria (or process milestones) that need to be included in the Field Guide.

Although the Field Guide itself is included with the report as a separate Appendix B, a brief outline of its contents is provided as part of this Chapter.

Chapter 4 : Chapter 4 addresses the broad-based capacity building and information requirements within the context of water, waste and sanitation promotion at community level.

Current realities in South Africa are discussed. An analysis of the project based capacity building and information transfer objectives and a number of specific objectives for the development of appropriate training are provided. In addition, suggestions are made regarding training courses for the promotion of participative community based water, waste and sanitation projects.

Chapter 5 : Chapter 5 provides a functional background in respect of the pilot projects that were launched as part of the project. It sets out the focus of the pilot projects, and provides a habitat classification for the projects undertaken by Afrosearch-Index. A brief overview and evaluation of specific problems encountered during the study is also supplied.

Chapter 6 : Chapter 6 sets out the conclusions drawn from the study and specific recommendations based thereon.

APPENDICES

Appendix A:

Appendix A provides an overview of three case studies. These case studies are briefly described and the core problem areas, as well as successes indicated. These case studies do not focus on the "success stories" of the project. They have been chosen to provide an overview of mistakes that have been made and illustrate the different orientations that may be found in various communities. They also serve to indicate the core importance of participation and institutional capacity building in any project that is initiated.

Appendix B:

Appendix B comprises the complete Field Guide developed during the community based process. This guide evolved over time and in its final format provides a step-by-step guide on a suggested process to mobilise communities to implement integrated, community-based water and sanitation projects, within the larger ambit of community development.

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 BACKGROUND	
1.2 SPECIFIC OBJECTIVES OF THE RESEARCH PROJECT	
1.3 PROJECT PROCESS	
2. RESULTS OF THE LITERATURE AND INTERVIEW SURVEY	7
2.1 INTRODUCTION	7
2.1.1 Approach	7
2.1.2 Definition	7
2.2 SPECIFIC CAUSES OF DIFFUSE SOURCES OF WATER POLLUTION IN DEVELOPING COMMUN	ITIES9
2.2.1 Introduction	9
2.2.2 Pollution Paths	9
2.2.3 Containment of Diffuse Sources of Water Pollution	10
2.3 KEY ISSUES TO BE CONSIDERED IN THE DEVELOPMENT OF A PROGRAMME TO ADDRESS	
DIFFUSE SOURCES OF WATER POLLUTION IN DEVELOPING COMMUNITIES	10
2.3.1 Integrated Management Strategies	11
2.3.2 Appropriate Alternative Management Strategies	12
2.3.3 Sustainable Development (or a "Brown" vs. a "Green" Agenda)	12
2.3.4 Informed Decision-Making	14
2.3.5 Immediate and Ongoing Benefits	15
2.3.6 Adequate Baseline Data	15
2.3.7 Best Management Practices	15
2.3.8 Willingness to Pay	16
2.3.9 Learning Process Approach	16
2.3.10 Training and Capacity Building	16
2.3.11 The Role of Women	17
2.3.12 The Role of Children	17
2.3.13 Appropriate Technology	18
2.3.14 Reactive and Proactive Pollution Control	18
2.3.15 Conservatism vs. Apathy	18
2.3.16 Balancing Top-Down and Bottom-Up Initiatives	19
2.3.17 Indigenous Skills and Resources	19
2.3.18 Problem-solving approach	19
2.3.19 Integrated Environmental Management (IEM) Framework	20
2.4 CORE ELEMENTS OF A PARTICIPATIVE PROGRAMME TO ADDRESS DIFFUSE SOURCES OF	
WATER POLLUTION	21
2.4.1 Acceptability	

2.4.2 Accessibility	21
2.4.3 Adaptability	22
2.4.4 Appropriateness	22
2.4.5 Co-ordination	23
2.4.6 Empowerment	23
2.4.7 Equity	24
2.4.8 Indigenous Knowledge and Local Skills	
2.4.9 Multi-Dimensional	
2.4.10 Participation	
2.4.11 Relevant	
3. CONCEPTUAL FRAMEWORK FOR PROGRAMME DEVELOPMENT	27
3.1 INTRODUCTION	
3.2 DEVELOPMENT APPROACH TO THE FIELD GUIDE	29
3.2.1 Participatory Appraisal and Training	30
3.2.2 Participatory Development Management	32
3.3 DESIGN OF THE FIELD GUIDE	34
3.3.1 Phase One - Rapid Assessment and Consultation	
3.3.2 Phase Two - The Development of Sustainable Water, Waste and Sanitation Management Strategies	
(WWSMS)	35
3.3.3 Phase Three - The Development of a Community-Based Resource Management Plan	36
3.3.4 Phase Four - Implementation, Monitoring and Evaluation with a Feedback Approach for Adjustme	nt and
Reorientation	37
3.4 USE OF THE FIELD GUIDE	38
4. CAPACITY BUILDING AND INFORMATION REQUIREMENTS	
4.1 INTRODUCTION	39
4.2 OBJECTIVES OF EDUCATION, TRAINING, CAPACITY BUILDING AND INFORMATION TRAN	NSFER
BASED ON THIS PROJECT	40
4.3 STRUCTURING OF COURSES FOR WATER, WASTE AND SANITATION RELATED TRAINING	3 42
4.4 POTENTIAL TRAINING COURSES FOR THE EFFECTIVE PROMOTION OF PARTICIPATIVE	
COMMUNITY BASED WATER, WASTE AND SANITATION PROJECTS	43
4.4.1 Pan-sectoral Training	43
4.4.2 Sector-specific Training Modules	43
5. PILOT PROJECTS	45
5.1 INTRODUCTION	45
5.2 FOCUS OF THE PILOT PROJECTS	46
5.2.1 Developing Communities	
5.2.2 Habitat Classification	46
5.3 PROCESS UTILISED FOR DEVELOPMENT	
5.4 SPECIFIC PROBLEMS ENCOUNTERED	50

5.4.1 Community Capacity	50
5.4.1 Community Capacity 5.4.2 Participation	
5.4.3 Traditional Authority Structures	52
5.4.4 Importance of the Review Period	52
5.4.5 Implementation of Action Plans	52
5.4.6 Payment of Committee Members and Participants	53
5.5 EVALUATION	
6. CONCLUSIONS AND RECOMMENDATIONS	55
6.1 EDUCATION, TRAINING AND CAPACITY BUILDING	55
6.2 COLLABORATION AND CONSULTATION BETWEEN STAKEHOLDERS	
6.3 COMMUNICATION	
6.4 PARTICIPATION	
6.5 COMMUNITY ORGANISATIONAL STRUCTURES	
6.6 WATER QUALITY MANAGEMENT	
7. READING LIST OF ALL SOURCES QUOTED IN THE MAIN REPORT	

THE DEVELOPMENT OF PROGRAMMES TO COMBAT DIFFUSE SOURCES OF WATER POLLUTION IN RESIDENTIAL AREAS OF DEVELOPING COMMUNITIES

1. INTRODUCTION

1.1 BACKGROUND

South Africa has limited ground water resources that have been heavily compromised by over-abstraction and contamination in certain areas of the country. Increasing levels of development, rapid urbanisation (and inadequate waste disposal) and industrialisation are bound to compound this problem. While no formal strategy for the management of groundwater quality exists, the Department of Water Affairs and Forestry (DWAF) is presently engaged in the development of strategic objectives and a functional strategy to put such management into place.

Systems for the management of surface water quality, on the other hand, have been well established for a number of years. This includes the relatively recent introduction of measures aimed at pollution control of non-hazardous substances by means of 'Receiving Water Quality Objectives' and the 'Pollution Prevention' approach for the control of hazardous substances. Despite this, pollution and contamination from agricultural practices, industrial activities, urbanisation and, probably most significantly, the impact from the rapid growth in the numbers and size of developing communities in South Africa has had a profoundly negative impact on surface water quality over the past ten to fifteen years.

In part, this negative impact has resulted from non-point or diffuse sources of water pollution, directly related to activities that have relatively low sitespecific impact if seen as isolated pollution incidents (e.g. lack of effective sanitation). However, the settlement-wide cumulative nature of such activities produce severe negative environmental and water quality impacts. It is anticipated that population growth and the commensurate increase in dense settlements that do not have effective water, waste and sanitation facilities will prove to be one of the biggest threats to surface water quality in the next few decades.

It is evident that both ground and surface water quality are being placed under increasing threat from pollution. While statutory and non-statutory measures are being developed to address point-source contamination, it is accepted internationally that diffuse sources of water pollution, by the nature thereof, make the regulation and control thereof virtually impossible. It is further accepted that effective mechanisms will need to be developed for involving communities directly in measures to address this problem. The nature of the problem demands the promotion of sustainable water resource management at community level, within a framework of integrated regional catchment management.

On the basis of the above, the Water Research Commission requested the members of Afrosearch to submit a proposal for the development of a programme to combat diffuse sources of water pollution in developing communities during 1992.

It was further requested that recommendations contained in the report by the Human Sciences Research Council (HSRC) entitled **Social Aspects of** *Water Provision, Use and Preservation : A Feasibility Study* be used as a point of departure for further research. The following recommendations appear in the HSRC Report:

- A human-orientated approach is necessary to solve water and sanitation problems;
- There is a need for contextualising a holistic approach on social issues related to water and sanitation problems;
- Target differentiation, communication and negotiation should take place in respect of planning. This implies that the people for whom

the services are intended should be consulted;

- A great need exists for improved communication about water and sanitation;
- Community participation in programmes is regarded as essential;
- A need is expressed for research that is regional and community specific but will, at the same time, lead to an understanding of this complex problem on a national basis;
- Emphasis is placed on the practical and sustainable implementation of research results and the co-ordination thereof;
- □ A plea is made for inter- and multi-disciplinary research;
- research related to water and sanitation programmes should be seen in the framework of community development in general.

A research project, based on this proposal, was initiated during 1993 and serves as the topic of this report.

1.2 SPECIFIC OBJECTIVES OF THE RESEARCH PROJECT

The following specific objectives had been set for this research project:

- To undertake a national and international overview of multi-disciplinary issues in developing communities related to the development of community-based programmes to combat diffuse sources of water pollution. This objective is addressed in Chapter Two of this report.
- To develop appropriate and sustainable preventive programmes to combat diffuse sources of water pollution in three prototype communities. This objective is addressed in Chapter Three of this report.
- To undertake an in-depth evaluation of the success of the prototype studies. This objective has been addressed in Chapter Five of this report as well as Appendix A.

To develop an educational model for the development of programmes to combat diffuse sources of water pollution in developing communities at regional and/or national levels (as long-term goal, based on the results of this project). This objective has been addressed in part in Chapter Four of this report and the Field Guide that serves as Appendix B.

1.3 **PROJECT PROCESS**

A number of distinct areas of focus were identified for the research project and incorporated into phases of the Action Research model. These areas were:

- Data-gathering from national and international literature as well as from documented case studies, project descriptions and project evaluations related to point and diffuse sources of water pollution on the one hand and water, waste and sanitation-related issues in developing communities on the other hand;
- Data-gathering about pollution (with a focus on diffuse sources of water pollution) and about water, waste and sanitation in developing communities on a multi-disciplinary, pan-sectoral basis from experts and individuals working in the field who could, potentially, provide information relevant to the project;
- Interviews with persons and organisations with specific expertise and experience of the multi-disciplinary issues related to the development of community-based development programmes;
- Interviews with individuals and groups in developing communities to explore experiential aspects related to pollution (including an evaluation of their understanding of the problem) and related to water, waste and sanitation in such communities and to obtain information pertinent to the development of a programme to combat diffuse sources of water pollution;
- **D** Site visits to selected areas and communities to investigate specific

problems that have been experienced and practices that have been identified as precipitators of diffuse sources of water pollution;

- The investigation of specific ameliorative actions that could be utilised to combat diffuse sources of water pollution;
- The development of a conceptual framework (based on the cumulative information obtained during the various stages of the project) to serve as guidelines for the in-situ implementation, evaluation and adjustment of
 - a participative community-based development programme to combat diffuse sources of water pollution
 - requirements for supportive education, training and capacity building;
- The dissemination of the conceptual framework to a large number of role players in order to test the assumptions and conclusions contained therein;
- The development of a Field Guide (a practical implementation manual) based on the conceptual framework that could guide the implementation of prototype programmes for the implementation of effective participative water, waste and sanitation programmes in developing communities;
- Peer review of the Field Guide;
- The development of specific education, training and capacity-building modules that would be required to support effective programme implementation;
- The identification of communities willing to act as development foci for the testing of the participative community-based programme;
- □ The initiation of participative community-based programmes, in accordance with the process as set out in the Field Guide, aimed at the implementation of the programme in a number of communities;
- □ The evaluation of the education, training and capacity-building

modules;

ŝ

- The evaluation and adjustment of the Field Guide based on the case studies;
- □ The formulation of recommendations.

2. RESULTS OF THE LITERATURE AND INTERVIEW SURVEY

2.1 INTRODUCTION

2.1.1 APPROACH

The literature and interview survey was aimed at obtaining insight into the specific causes of diffuse sources of water pollution in developing communities on the one hand, and the identification of key issues and core elements that would need to be taken into consideration in the development of a programme to address such pollution on the other hand.

Data analysis in respect of the project was based on qualitative techniques. Interviews were conducted on a semi-structured basis and recorded on tape and transcribed or directly recorded in writing. Literature and interview material was read through intensively in order to obtain a general overview of the information contained therein. Thereafter a content analysis was undertaken in respect of each interview and literature source in order to identify and discriminate differing meaning units or categories of response.

The issues identified in this manner were noted, as well as the attitudes expressed in respect of such issues. Finally, the meaning units across all information sources, identified by the content analysis, were synthesised to obtain an integrated statement in respect of each. These served as the basis for identifying 'critical success factors' that needed to be included as part of the conceptual framework and the subsequent development of the Field Guide.

2.1.2 DEFINITION

From interviews and literature it is apparent that there is disagreement about the exact definition of diffuse sources of water pollution. Two broad approaches to defining the problem can be identified. The first, subscribed to by the Department of Environment Affairs, relates to a system whereby any pollution that cannot be traced to, or controlled at, a single pollution point-source is regarded as diffuse. In accordance with this definition, seepage from certain categories of mining and agricultural activities or from a leaking sewer system may, for example, be classified as diffuse pollution.

In accordance with this point of departure, the following definition of diffuse or non-point source of pollution has been set by the Department of Environment Affairs (1990:5):

Such a source is not located at a specific point and the result is that pollution occurs over a broad area such as over a whole urban or a rural area. Waste and sewage is therefore being generated over a broad area, from where it finds its way to the water environment. It is not possible to measure and handle the effluent of a diffuse source at one point.

The second approach places the existence of a single identifiable authority, institution or individual - who can accept responsibility for the pollution - as a central element in determining whether or not pollution will be defined as a point source or diffuse source problem. On this basis, seepage from mining activities, agriculture as well as sewer leaks can be traced back to a single responsible institution or individual and must, therefore, be regarded as point source pollution.

The following definition has been set for diffuse sources of water pollution for the purpose of this study:

Diffuse sources of water pollution may result from a wide diversity of human actions and activities. Pollutants are generated or deposited at a specific site <u>or</u> spread diffusely but individual accountability cannot be apportioned and no authority or institution acts as source of control. While the effects of diffuse sources of water pollution may not necessarily be major at each point of generation, the cumulative impact thereof may be extensive and severely deleterious to water systems. pollution that result from a wide diversity of human actions and activities

2.2 SPECIFIC CAUSES OF DIFFUSE SOURCES OF WATER POLLUTION IN DEVELOPING COMMUNITIES

2.2.1 INTRODUCTION

Within the context of developing communities, diffuse pollution generally results from a lack of adequate infrastructure, management and/or maintenance of the following:

- □ Water use practices.
- \square Sanitation.
- Refuse.
- Land-use practices, including crop production, deforestation devegetation and animal husbandry.

2.2.2 POLLUTION PATHS

The following pollution paths may be identified:

2.2.2.1 Air to water

Air to water pollution paths include:

- □ Fuel burning.
- 'Slash and burn' agricultural practices.
- Vehicular emissions.

2.2.2.2 Land to water

Land to water pollution paths include:

- Pesticides and fertilisers used for agricultural purposes.
- Erosion from land use practices, including devegetation and deforestation.
- **D** Run-off pollution from precipitated vehicular emissions.

- □ ineffective waste disposal.
- □ inadequate sanitation or an absence of sanitation.
- Animal wastes.

2.2.2.3 Water to water

Water to water pollution paths include:

- Utilisation of rivers and streams for personal ablution and washing of clothes.
- □ Livestock impact.
- □ Utilisation of dirty containers to collect water.
- Inadequately treated sewage effluent flows.

2.2.3 CONTAINMENT OF DIFFUSE SOURCES OF WATER POLLUTION

From the above it may be seen that significant progress could be made towards the containment of diffuse sources of water pollution in developing communities by focusing on the promotion of effective, community-based water supply, sanitation and waste management and, where appropriate, environmentally sustainable agricultural practices.

While agricultural, animal husbandry and other related land use practices have been identified as specific causative factor in the precipitation of diffuse sources of water pollution, the Water Research Commission requested that the researchers exclude such factors from this study. This does not serve to negate the importance of such factors. Neither does it negate the fact that land use management should form an essential part of integrated development initiatives in developing communities.

2.3 KEY ISSUES TO BE CONSIDERED IN THE DEVELOPMENT OF A PROGRAMME TO ADDRESS DIFFUSE SOURCES OF WATER POLLUTION IN DEVELOPING COMMUNITIES

A large number of national and international organisations, institutions and

individuals have undertaken seminal participative development work in the field of water, waste, sanitation and land use management in developing communities.

On international level, the work of UNEP and its EMINWA programme, USAID and its WASH programme, the UNCHS (HABITAT), the Ross Institute of Tropical Hygiene, the World Resources Institute, the International Institute for Environment and Development, the World Bank Water and Sanitation Programme and its International Training Network for Water and Waste Management (ITN) component and the WHO present an extensive information and experience base, inter alia.

In South Africa the work of the DBSA, Umgeni Water, various university departments and institutes, private organisations, such as the Palmer Development Group, government, non-government and quasi non-governmental organisations, such as the IDT and Mvula Trust, have contributed much knowledge and experience towards the development of expertise regarding the South African situation. A study such as this one must, perforce, draw on the national and international lessons learnt and information and experience gained through the successes as well as failures in this field.

An analysis of the work that has already been undertaken has indicated that any model or framework that is designed to promote effective water resource management at community level should address or incorporate the following key issues:

2.3.1 INTEGRATED MANAGEMENT STRATEGIES

Effective management of water as resource at community level requires, inter alia, the introduction of integrated water, waste, sanitation and land use management strategies. It is, however, vital to realise that, while the provision of adequate water, sanitation and waste services have proved to be a major identified need in most developing communities, addressing such need will not negate or diminish the importance of other major areas of need in such communities. Neglecting this truism will make it impossible to develop the integrated approaches required to address the inter-linked

problems of people in developing communities.

For truly effective development to take place, communities may require assistance in determining how development planning may be extended to address other areas of need such as, inter alia, health, crop production, animal husbandry and sustainable environmental utilisation. They may also require measures to empower them to address such areas of need.

This point of departure offers a dilemma to funding or donor agents as well as to developers. It is always tempting to attempt to isolate a specific funded development project from the surrounding or broader development context and environment that exists in communities in the interests of "getting the job done". In the long run, however, this (virtually inevitable) approach merely serves to compound the difficulties of integrating externally funded projects into the broad development processes of the community. Because of this, long-term community commitment as well as the potential multiplier effect of projects are significantly diminished.

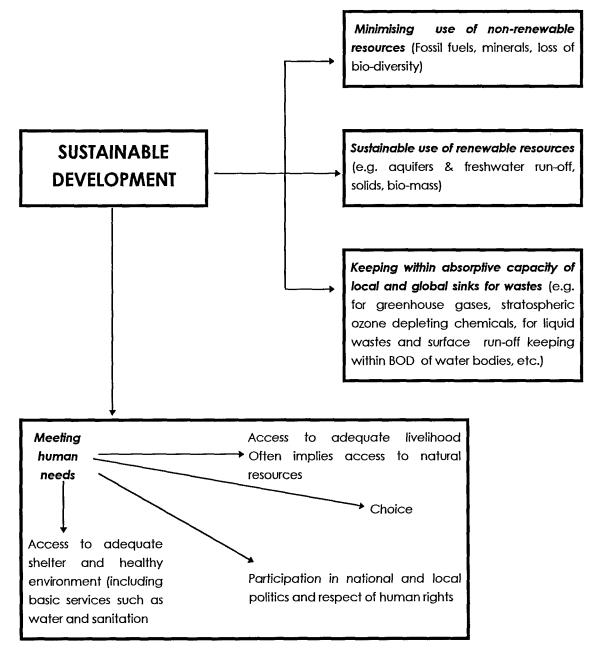
2.3.2 APPROPRIATE ALTERNATIVE MANAGEMENT STRATEGIES

The scope of planning for sustainable resource management on a community participatory basis cannot be addressed effectively by orthodox planning and the utilisation of First World norms and standards. It must be expanded to involve the formulation of alternative, <u>acceptable</u> management options as well as the examination, analysis and express incorporation of the underlying values and norms and needs of the community.

Evaluation clearly demonstrates that many of the problems encountered during implementation and subsequently in terms of project survival and viability, could be avoided through improved participative preparation and appraisal, greater flexibility in design that incorporates situation-specific requirements and timely participative adjustment when short-comings are identified.

2.3.3 SUSTAINABLE DEVELOPMENT (OR A "BROWN" VS. A "GREEN" AGENDA)

Although neither simplistic nor easy, the promotion of the effective and sustainable management of water as resource at community level is


possible if designed to address specific multi-disciplinary and multi-sectoral issues and circumstances.

Management designs need to incorporate a focus on what Leitmann, Bartone and Bernstein (1992:132) refer to as the "Brown Agenda" of environmental problems. Issues included as part of this agenda are lack of safe water, inadequate waste and sanitation management, pollution control and land degradation.

The analysis of causes of diffuse water pollution in developing communities shows that such pollution is related to basic or first order development needs. Trying to address the problem by means of a first-world "Green Agenda" that seeks the promotion of environmental stewardship and conservation is patently illogical and inappropriate.

On this basis, the "Brown Agenda" proposes the implementation of sustainable development programmes that integrate the promotion of development aimed at meeting human needs on a basis that promotes ecological sustainability. In terms of a programme to address diffuse sources of water pollution, this approach would imply that the implementation of effective water, waste and sanitation projects at community level would be an essential prerequisite for the management of the problem. In addition, ecological sustainability would need to be promoted as part of the implementation framework.

The following figure provided by Hardoy, Mitlin & Satterthewaite (1992:181) serves to illustrate this concept:

2.3.4 INFORMED DECISION-MAKING

Participative processes will need to place strong emphasis on the transfer of technical and non-technical information to the community. This will need to be supported by an underlying development philosophy that implicitly accepts the principles of:

- □ the community's 'right to know'
- □ the right to be provided with **choices** about available alternatives, the

cost implications (to themselves as well as external funding agents) as well as the ongoing operations, maintenance and management implications of each. Information on situation specific technological options for problem solving and decision-making is required in a format that allows easy interpretation. Here, for example, algorithms allow information on cost-effective and sustainable options that combine community specific situations and requirements with acceptable planning and implementation guidelines.

the right to be allowed to make informed decisions about available alternatives.

2.3.5 IMMEDIATE AND ONGOING BENEFITS

Short-, medium- and long-term initiatives for obtaining and maintaining community participation must be incorporated in the planning, implementation and monitoring phases of projects. Development planning should be based on a phased approach and make provision for interim goals that can be reached within short periods of time. The community must perceive that the project will provide immediate as well as ongoing benefits;

2.3.6 ADEQUATE BASELINE DATA

Effective strategies require the establishment of baseline data regarding:

- relevant aspects of the water, sanitation, waste and environmental management and utilisation practices and needs within the community
- relevant socio-cultural aspects of community life. This would need to include information on community health, past and present community participation in projects, social readiness for change, historical cultural traditions, existing institutional, development and social structures within the community, the role and status of women within the broader cultural and narrower community context, etc.

2.3.7 BEST MANAGEMENT PRACTICES

Sustainable national management of water resources to reduce the negative impact of developing communities prevent diffuse sources of

water pollution requires the urgent development of guidelines for the practical implementation of the "Best Management Practices". Such guidelines should serve to provide a point of departure in assessing the balance between the potential for degradation of scarce water resources and the need of communities to have reasonable access to adequate, unpolluted water supplies on the one hand and situation-specific requirements for the implementation of acceptable waste and sanitation systems and practices within developing communities on the other hand.

2.3.8 WILLINGNESS TO PAY

The sustainability of any development project is essentially dependent on an assessment of the realistic costs of possible development options, the costbenefit ratios and cost-effectiveness of options that are presented for evaluation, the capacity of the recipient community to afford, understand and meet initial and recurrent costs associated with the project and their willingness to pay such costs. In this regard, unrealistic assessments of recurrent costs and maintenance requirements remain a major problem.

2.3.9 LEARNING PROCESS APPROACH

The formulation of any development framework, such as the one proposed in this document, must be regarded as the initiation of a learning process. As such, processes of implementation based on this framework, must be seen as an initial point of departure. These must make provision for ongoing monitoring during implementation as well as feedback into the project to allow relevant and necessary adjustments where and when necessary. Besides process evaluation, it is necessary for the learning process to be extended to include an ongoing evaluation of the conceptual framework on which development actions are based.

2.3.10 TRAINING AND CAPACITY BUILDING

Effective community-based water, waste and sanitation development programmes and the management thereof are totally dependent on the provision and implementation of capacity building and skills training to community members. Depending on the needs of any specific community, long-term sustainability through training and education should be aimed at the provision of knowledge and skills to ensure, inter alia, institution building, basic understanding and competence regarding the technical and technological issues at stake, the requirements of effective operations and maintenance, effective practical utilisation and the provision of ongoing information and communication systems. Education and training should not simply be viewed as supportive adjuncts of development programmes but should be viewed as an integral part of programmes. While this may involve additional expenditure at the start of the project, it should be regarded as part of capital expenditure that will ensure the long-term sustainability of the project.

2.3.11 THE ROLE OF WOMEN

It is essential that initial research as well as subsequent programme development should focus on the traditional and existing roles of women within the community and seek to maximise their involvement in all aspects of the development process as well as the benefits that will accrue from the project. Care and sensitivity is, however, required at all stages to avoid the introduction of processes that could lead to conflict within the community. An evaluation of the potential for such conflict can not be based on external appraisal. It can best be grounded in the concrete realities of every-day life through the participation of women in all aspects of planning, implementation, utilisation and maintenance of any development programme.

2.3.12 THE ROLE OF CHILDREN

While it has become widely accepted that water is a 'women's issue' no reference is made in the literature (or in practice) to the fact that water is a 'children's issue' in all communities where water supply is not situated in or close to the home. In the majority of instances, children provide the labour for fetching water at source and hauling it home. It would appear that duties such as these are performed irrespective of the need for school-attendance and, at times, take place to the detriment of school attendance. Based on this, the researcher believes that the long-term 'costs' of ineffective or inadequate water supply to children and society as a whole is vastly under-rated. The potential multiplier effect of promoting adequate water provision to developing communities may be significant in

terms of this factor.

2.3.13 APPROPRIATE TECHNOLOGY

The introduction of any new technology or the extension of existing technology should be evaluated to ensure that it is appropriate to the situation and circumstances in which the community finds itself and to ensure that it is acceptable and affordable to the people within the community. As far as possible indigenous traditional methods, knowledge, resources and skills should be used or incorporated into development.

Unfortunately, while the choice of technology constitutes an important element in the structuring of projects, progress in this area has been slow.

2.3.14 REACTIVE AND PROACTIVE POLLUTION CONTROL

Combating diffuse sources of water pollution at the level of developing communities will require the incorporation of reactive as well as proactive measures into a management framework. Such reactive and proactive measures are necessary in the areas of broad-based production orientated, consumption orientated and organisation orientated intervention to ensure integrated community development.

2.3.15 CONSERVATISM VS. APATHY

Development experts frequently note difficulties encountered in motivating apathetic communities to 'become involved in and take responsibility for projects' initiated by developers. It is unfortunate that this approach, in and of itself, indicates a gross lack of understanding of the structures and processes that could promote and facilitate community enablement.

The conservatism towards innovations and strategies often found amongst socio-economically deprived developing communities must not be confused with or regarded as apathy or an inherent lack of motivation. Such conservatism is an expression of a lifestyle that is centred around the day-to-day struggle to meet the essential and basic needs of existence. As such, any development innovation or strategy must prove that it will make a significant contribution to the improvement of life on a daily basis. Motivation is based on a process of interaction between intrinsic and extrinsic factors. Sustained motivation requires the facilitation of processes that do not create dissonance regarding either of these two dimensions of functioning. Thus, providing conditions that will foster individual and group commitment and participation require combining an enabling environment with a development ideology that the community can fully identify with.

2.3.16 BALANCING TOP-DOWN AND BOTTOM-UP INITIATIVES

The initiation of any development programme must be a direct result of the expressed needs of the community and any initiatives launched should be as a direct result of this. This approach implies a 'bottom-up' or grassroots development orientation where external or 'top-down' involvement serves a facilitating and enabling ancillary role. On this basis, ongoing sustainability of programmes and the continued involvement of communities in development is seen as dependent on obtaining a careful balance between the enabling atmosphere of a 'bottom-up' approach and the guiding (yet potentially restrictive and dependence promoting) atmosphere of a 'top-down' development approach.

2.3.17 INDIGENOUS SKILLS AND RESOURCES

Each community has a variety of individual and collective resources that can and should be mobilised in the planning and execution of development programmes. It is important that survey, interview and scoping procedures allow for the identification of resources, as well as constraints to such resources, at the outset.

2.3.18 PROBLEM-SOLVING APPROACH

Programme implementation will need to take cognisance of the fact that community needs should be met by means of an approach that has a problem-solving orientation. Specific problems may, if viewed creatively, offer solutions to other problems or needs. An example of this approach is found in the harvesting and utilisation of waste as resource.

There are numerous examples of initiatives aimed at addressing the need without solving the problem. These include the extensive use of water-trucks for supply where other alternatives are readily available or the utilisation of chemical toilets where neither health factors nor contamination potential mandates such use.

2.3.19 INTEGRATED ENVIRONMENTAL MANAGEMENT (IEM) FRAMEWORK

Programmes for sustainable management of water in developing communities need to be formulated within a framework of Integrated Environmental Management (IEM) to allow informed decision-making about the potential impact and consequences of proposed development actions. The following principles serve as the basis of IEM in accordance with the Integrated Environmental Management procedure suggested by the Department of Environment Affairs (1992:5):

- "informed decision-making;
- □ accountability for information on which decisions are taken;
- accountability for decisions taken;
- a broad meaning given to the term environment (i.e. one that includes physical, biological, social, economic, cultural, historical and political components);
- □ an open, participatory approach in the planning of proposals;
- consultation with interested and affected parties;
- analysis of alternative options;
- an attempt to mitigate negative affects and enhance positive aspects of proposals;
- an attempt to ensure that the 'social costs' of development proposals (those borne by society, rather than the developers) be outweighed by the 'social benefits' (benefits to society as a result of the actions of the developers);
- □ democratic regard for individual rights and obligations;
- $\hfill\square$ compliance with these principles during all stages of the planning,

implementation and decommissioning of proposals (i.e. from 'cradle to grave'); and

the opportunity for public and specialist input in the decision-making process."

2.4 CORE ELEMENTS OF A PARTICIPATIVE PROGRAMME TO ADDRESS DIFFUSE SOURCES OF WATER POLLUTION

In an analysis of the above issues, a number of process-related¹ factors emerge that appear to play a critical or key role in determining the success or failure of projects. On the basis of this it is deemed essential that the guidelines (Field Guide) for project implementation would need to incorporate these core elements as an essential part of the programme process.

2.4.1 ACCEPTABILITY

The drive towards finding acceptable solutions to the problem of pollution (both in terms of the situation and the communities involved) may be seen as one of the major reasons for the development of programmes such as this. The success of interventions are dependent on the extent to which recipients and/or participants can identify with the strategies and processes of such intervention techniques. In essence, the level of acceptability is determined by the extent to which there is a perceived 'goodness of fit' between the problem situation (at whatever level) and the intervention.

2.4.2 ACCESSIBILITY

In this context, accessibility is defined on three levels.

The first relates to the degree and extent to which people may gain access or derive benefit from interventions. The promotion of accessibility to previously marginalised individuals and groups is

¹ Process-related factors, as set out here, reflect a value system that determines the approach and process to be followed in programme development and implementation.

especially important.

- The participative focus of this project requires that intervention strategies should provide ready access to people on participatory as well as decision-making levels.
- The third aspect of accessibility relates to the drive to promote informed decision-making and participation of individuals and communities. On this basis, access to information and knowledge are seen as key components in promoting the empowerment of people.

2.4.3 ADAPTABILITY

Adaptability forms an essential component of change management, based on the interaction and interdependence that exists between individuals from a community and their environment. As this is a dynamic process, the framework within which any programme is applied needs to be situationally relevant and capable of adapting to changes in level of intervention on a local, regional or national basis.

2.4.4 APPROPRIATENESS

The quest for the provision of appropriate intervention strategies manifests itself on a number of levels

- the inter-relatedness and interaction between the community and the environment is regarded as the point of departure for intervention. On this basis, intervention strategies are deemed appropriate if they are developed on the basis of contextual validity.
- Societies consist of a number of levels of social organisation that ranges from the individual through to the community. The level of intervention should be appropriate to the level at which the problem manifests itself without losing sight of the interdependence of, and interaction between, levels.
- Research may identify specific interactions of, or relationships between, variables or behaviour characteristics at one level of social organisation. Care should be taken that generalisations of such

findings to other levels of social organisation should be appropriate² and relevant.

2.4.5 CO-ORDINATION

Problems experienced with the development of successful programmes have placed an emphasises on multi-factorial causality and the interrelatedness of systems and settings. As such, interventions require coordinated and integrated multi-disciplinary and multi-sectoral interventions on vertical and horizontal levels. Due to the dynamic and complex nature of this approach, co-ordination forms an essential requisite for the effective implementation of development-focused programmes.

2.4.6 EMPOWERMENT

Development programmes, such as that proposed for this project are essentially based on an empowerment agenda. To be committed to, and consistent with such an agenda in the approach to the programme is to be

> ... committed to identifying, facilitating, or creating contexts in which heretofore silent and isolated people, those who are "outsiders" in various settings, organisations and communities, gain understanding of, voice, and influence over decisions that affect their lives. Empowerment is by definition concerned with many who are (or have been) excluded by the 'majority' society on the basis of their demographic characteristics or other difficulties, experienced either in the past or the present. Such people are often allotted a low ascribed status, and are afforded little opportunity to attain achieved status. (Sarbin, 1970: 52)

On the basis of this empowerment approach, the proposed programme will need to focus on three essential aspects of empowerment. These are

² Borgatta & Jackson (In Heller et al, 1984: 63) refer to this as the "fallacy of the wrong level" or the "ecological fallacy'.

- institutional capacity building
- participation
- □ the promotion of the formal recognition (legal or otherwise) of the status of the participants as well as the structures they establish.

2.4.7 EQUITY

The requirement that any programme that is developed should promote equity comprises a natural and logical component of the empowerment agenda. The principle of equity is accepted as basis for the promotion of social justice and the mobilisation of disadvantaged individuals and groups to participate in, and gain access to, development in accordance with their needs.

2.4.8 INDIGENOUS KNOWLEDGE AND LOCAL SKILLS

The programme will need to offer a shift away from a "blaming-centred" orientation to an emphasis that acknowledges and promotes competencies, skills and strengths. Indigenous knowledge and skills have, for a long time, been ignored or marginally considered in human resource programmes and development initiatives. There are two problems inherent in an approach that does not acknowledge the inherent value of indigenous knowledge and skills. The first serves to reduce the capacity building and empowerment potential that development initiatives may offer. The second is that the negation of basic strengths and capabilities increases an individual's belief that he is powerless and actively serves to reduce independence and coping skills.

2.4.9 MULTI-DIMENSIONAL

The approach that is being proposed, paradoxically, offers opportunities for oversimplification of problems as well as opportunities for focusing on and escalating their complexities. Both offer the potential for serious errors in inference and intervention. Research and intervention should, at all times, be bedded in an understanding of the multi-dimensional nature of the problem. This approach forces an inevitable realisation that research in this field, as well as the interventions based thereon, can never be regarded as offering the final answer or the ultimate solution.

For this reason any programme that is developed should strive, at all times, to implement change processes that will enable individuals to responsibly manage their own lives in accordance with their own circumstances and needs. Part of this process must, however, promote individuality and empowerment that respects and accepts the rights and needs of others.

2.4.10 PARTICIPATION

A multiplicity of conceptual as well as operational definitions exist for Participation. The majority of these (even where they state the contrary) are synonymous with consultation. In addition, there is frequently a direct contradiction between the conceptual and operational definitions that are set for participation in terms of programme implementation. To be effective, the programme should seek participation on three distinct levels. These levels are

- The active participation and involvement of individuals in the promotion of their own well-being and problem-solving behaviour. On this basis, development is seen as part of individual responsibility and offers a contrast to the usual way of implementing projects where the developer is the active helper and the community the dependent recipient.
- Individual and system-wide (e.g. community) participation and involvement in decision-making processes about the type of broadbased services and programmes that are required in a community. Two specific and essential aims are served by obtaining participation on this level. The first aim relates to the promotion of the accountability and relevance of any institutional structures that are formed within a community. This would, usually, include the establishment (or strengthening) of community-based structures such as development or water committees to promote ongoing involvement and participation. The second aim relates to the involvement and participation of the community in the planning and monitoring of existing services/facilities and the extension or alteration

of such services/facilities.

The final level of participation seeks the active mobilisation of community resources (human and natural) for the promotion of project objectives. Examples of such 'contributory' participation is the development of community-based appraisal and monitoring teams, the establishment of supportive networks and linkages in the community or any other on-going participative actions deemed necessary by the community.

2.4.11 RELEVANT

The contextual understanding of individuals, circumstances and settings should form a central and overarching component of any programme that is developed in order to provide relevance to interventions. In this regard Tolan et al (1990: 213) state that

The concept of empowerment, for example, is potentially mischievous if not embedded in the specific goals, values, processes, and definitions of power that have local relevance. Unless grounded in local conditions, empowerment efforts could become another exercise in development imperialism or the imposing of external and potentially alien ideology.

3. CONCEPTUAL FRAMEWORK FOR PROGRAMME DEVELOPMENT

3.1 INTRODUCTION

From the information obtained from the literature overview, project evaluations and interviews as set out in Chapter Two it is clear that the development of community-based programmes to combat diffuse sources of water pollution have a number of distinct but inter-linking areas of focus, all of which serve to underscore the multiple basic needs of poorer groups or communities. Programmes focusing on the promotion of environmental awareness and a conservation ethos (in the first world sense) are bound to be unsuccessful in combating pollution in developing communities if it ignores this basic needs context. The aim should be to develop a programme that could promote effective resource management at community level in a manner that satisfies basic development needs as well.

Based on national and international experience in the field of participatory community development in general, and water resource management in developing communities in particular, every indication is provided that no standard development blueprint can effectively be drawn up to address water resource management identically in every community. Not only would such an approach ignore every development caveat that exists but will, in addition, negate the heterogeneous quality of communities, terrains and situations in South Africa.

Despite the above, it is essential that water resource management is addressed in a consistent manner on policy, institutional and user levels and presupposes, at the very least, a conceptual framework that strives to integrate and reconcile social, health, technical, economic and environmental objectives and realities.

The implementation of community-based participative initiatives to satisfy basic needs and promote sustainable environmental practices in accordance with the such objectives and realities has, fairly recently, come to be known as Primary Environmental Care (Pretty & Guijt, 1992). The IUCN (1994:17) provides the following definition of this approach:

Primary Environmental Care (PEC) is a process by which local communities organise themselves and strengthen, enrich and apply their means and capacities for the care of the environment while simultaneously satisfying their needs.

On the basis of a PEC approach programme design would, firstly, need to allow for the inclusion of sanitation and waste management practices with that of water management. It would, secondly, need to make provision for the informed selection of cost-effective and technically appropriate options for the provision of such basic services in a manner that enhanced environmental protection. It would, in the third instance, require that programme planning and implementation should incorporate operational procedures for promoting maximum community empowerment and community participation.

The researchers believe that the overview of multi-disciplinary issues and the principles of IEM and PEC, discussed above, provide a constructive point conceptual framework to address diffuse sources of water pollution in developing communities on a participative basis.

It was initially intended that these objectives would be met by means of the provision of conceptual guidelines for the development of a programme to address diffuse sources of water pollution, utilising an Action Research Process Approach. The information generated by the study showed that fulfilling these aims, without addressing the practical realities encountered in the field, could result in the study becoming a purely academic exercise.

It became increasingly apparent that a set of <u>practical guidelines was</u> <u>needed that could direct activities aimed at implementing preventive</u> <u>programmes in developing communities.</u> As a result of this the researchers, <u>in consultation with the WRC, decided that the initial aim of formulating a</u> <u>conceptual framework should be extended.</u> The additional tasks comprised <u>the development of guidelines for practical project implementation and the</u> <u>undertaking of pilot projects to test the assumptions of the guidelines</u>. In order to execute this extended aim, the researchers compiled and tested a Field Guide to serve as a step-by-step practical guide for research and programme development. It is hoped that the Guide will provide developers with the necessary "tools" to develop sustainable, situation specific programmes to address sources of, and problems related to, diffuse sources of water pollution at grassroots level. The balance of this section serves to provide an overview of the approach that serves as basis for the Field Guide.

3.2 DEVELOPMENT APPROACH TO THE FIELD GUIDE

Issues identified have served to indicate that the development approach for the compilation of the Field Guide will need to allow the integration of aims that, at times, appear to be contradictory and mutually exclusive. According to these aims the Field Guide should make provision for:

- The development of community-specific, situationally-relevant and applicable programmes;
- Replication under divergent conditions and in different communities;
- □ Methods that are simple and adaptable;
- Ensuring a goal-directed approach to allow the reaching of projectrelated targets and objectives (acceptable to communities, developers and funders);
- Provision for an open-ended participatory approach on as broad a basis as possible;
- Promotion of institutional capacity building as part of the process. This is necessary to ensure viable ongoing operations and maintenance of the systems that have been put in place on the one hand and allow the community greater competency to manage their own future development on the other hand;
- □ Ensuring an ongoing learning-process approach.

This proposed approach for programme development and implementation is not unique or untried. Rather, it provides a strategic basis for integrating knowledge and experience in the field (while attempting to avoid the pitfalls inherent in bringing together the multiplicity of issues that have an impact on effective programme development) with a process oriented approach for research and programme development.

The researchers have been fortunate in that they have been able to draw on the vast practical experience of organisations and individuals and the approaches that they have developed and submitted to extensive testing in developing communities. These include the SARAR approach used by the UNDP-World Bank Water and Sanitation Program for the Promotion of the Role of Women in Water and Environmental Sanitation Services (PROWWESS) as well as the work on Participative Rural Appraisal and Rapid Rural Appraisal by Robert Chambers. The approaches they promote have formed an invaluable basis for the development work that the researchers have been involved in the past number of years. In addition, these approaches have served as tried and tested basis for the development of a Field Guide that incorporates the principles of ongoing Participatory Appraisal and Training (such as those ascribed to by Chambers and PROWWESS workers) and extending these to include the promotion of Participative Development Management (as ascribed to by community developers such as Afrosearch-Index).

As these two principles form the basis for the Field Guide, the following section of the report provides a working description in respect of each of the approaches.

3.2.1 PARTICIPATORY APPRAISAL AND TRAINING

Participatory appraisal and training involves a process that stresses the vital importance of promoting maximum participation of communities at grass-roots level in all aspects of project development. This ranges from the initial discussions and analysis through to the implementation of projects. It is ".. a growing family of approaches and methods to enable local people to share, enhance and analyse their knowledge of life and conditions, to plan and to act." (Chambers, 1993:5)

Participation, in terms of this context, actively strives to promote independent community ability to identify, analyse and solve problems and to participate in decision-making, project development and project implementation. Such participation seeks to maximise human capacity building (as part of the project development process) in order to provide the basis for sustainable present and future development. Participative training (learner-centred training) combines learning about project related matters (such as the functioning of a development or water committee or how to ensure ongoing operations and maintenance of systems) with capacity building that will initiate and sustain processes of change and empowerment in developing communities.

It has become obvious that large numbers of project developers view participation either cynically or dismissively. Large numbers of projects that are implemented address the promotion of community participation on a perfunctory basis if at all or equate consultation with participation. While it is not seen as a panacea, it is firmly believed that effective (and therefore capacity-building and empowering) participation is an essential requisite for project success on an ongoing basis. In this regard, WASH reporting on the results of studies in Indonesia and Togo state that:

The community participation process used in developing water supply and sanitation projects has potential benefits extending far beyond those projects. The skills that are transferred, the capability that is developed, and the confidence that results from managing community affairs combine to increase the community's ability to take on other projects and other issues that affect its well-being.

The best evidence to date showing the effectiveness of community involvement in water supply projects on participation in subsequent health care activities resulted from a study of 60 villages. Using DPT (diphtheria, pertussis, tetanus) series completion rate as indicator, the WASH study found that, ... where participatory water supply projects had been carried out .. series completion was consistently higher (55 to 60 percent) than in the communities where only non-participatory projects (with facilities developed by external agencies) had been carried out. The indication is, then, that participation in a water supply project - not just the existence of a project - is the key to the stimulus effect on other health care activities. (1993:9)

While participative appraisal and training are invaluable for the promotion of community capacity-building and empowerment it is not, in and of itself, automatically synonymous with development.

The techniques of Participative Appraisal and Training allow for "before the fact" and "during the fact" involvement of communities in their own development. While this process does serve to strengthen the capacity of communities and serves to stimulate greater autonomous activity after project implementation, it does not put structures in place for "after the fact" involvement in the management of development.

Because of this, it was believed essential that the Field Guide should incorporate community development measures that will promote on-going development.

3.2.2 PARTICIPATORY DEVELOPMENT MANAGEMENT

Participative development Management may be defined as a development process that aims at ensuring co-ordination and integration of planning, implementation, monitoring and evaluation as well as maintenance and control activities relative to existing and future development projects by a community for the community.

Whereas Participatory Appraisal and Training allow for involvement in planning and project-related change, Participatory Development Management seeks to build the capacity of the community to the extent where the members of the community can engage in change management on an ongoing basis.

The key components of such a development model include the following:

- □ an integrated multi-level, multi-task approach to development;
- capacity building to a management level;

- Ongoing grass-roots participation in planning, decision-making, implementation and control;
- Strong integration and co-ordination of local development within the broader district and regional context;
- Responsible budgeting and financial management of projects devolved to district and local levels;
- Ad hoc application of experts on a cost-effective and issue-related basis;
- Development committees and action groups utilised in a specialised manner to identify, qualify and quantify development issues and proposed solutions.

Participative Development Management may be seen as a pro-active, controlled and strategically managed real development process. This implies that it seeks to enhance the capacity of the people in a community to manage their own development process. The ultimate aim of this process is to ensure that the capacity of the under-developed areas is increased in a manner that will enhance and sustain the development process.

This does not, in any way, imply a desire to shrug off the wider society's responsibility to under-developed communities. It does, however, serve to decrease the dependency of communities on expensive (and frequently inappropriate and ineffectual) external development aid offered by "development tourists³". It also serves to assist in increasing their capacity to control their environment and circumstances, in the process not only improving their living standards but also their self-esteem, independence and ultimately, their quality of life.

³ A phrase coined by Chambers (1983:10) and amply illustrated by a member of a community in the following statement: "Those white men in their big white cars and black bags were here again. They come here twice a year, spend half an hour looking around and then say that they understand our problems and know all the answers - all the way from out there!"

3.3 DESIGN OF THE FIELD GUIDE

The approach that is, therefore, proposed for the design of the Field Guide, comprises four basic phases:

3.3.1 PHASE ONE - RAPID ASSESSMENT AND CONSULTATION

Community participation is promoted as first step. A rapid assessment of the key problems relating to water, waste and sanitation within the community is done, based on existing information. Basic data are assembled and analysed, information gaps identified, and a profile of the community is prepared in respect of water, waste as well as sanitation. These profiles are based on information obtained from qualitative data-gathering within the community, quantitative data for the Baseline Data reports and the projections of options derived from decision trees for choosing appropriate technical options (Algorithms).

The strategic objectives of this phase are:

- □ Provide an acceptable access to the target community.
- An assessment of status within the community regarding each of the fields of water, waste and sanitation;
- The identification of areas of further study should these be found to be necessary;
- The commencement of an increased awareness about water, waste and sanitation across all levels of the community;
- A broad-based "political" commitment amongst all role-players to move forward with the planning process in the form of a project agreement.
- A process of institutional development that ensures capacity building and empowerment of the local participants.

3.3.2 Phase Two - The Development of Sustainable Water, Waste and Sanitation Management Strategies (WWSMS)

The water, waste and sanitation management strategies are aimed at establishing sustainable short-, medium- and long-term development goals in a manner that addresses the needs of the community without unduly compromising the environment, and indicates the path to follow in order to reach the goals.

Information gaps identified during the rapid assessment are filled by means of more detailed data collection and analysis, should this be necessary. A detailed diagnosis is made of present WWS (water, waste and sanitation) infrastructure and services, existing development and sector plans, of related environmental risks and impacts, and of possible interventions.

An institutional audit is also done, including policies, regulations and organisations. Using a cost-benefit framework obtained from the first phase, first order estimates are made of the costs of interventions and corresponding impact reductions.

Based on this analysis strategies are formulated, in co-operation with the community, for the development and management of WWS in the community. This analysis process involves one or more strategic planning workshops with the community to provide information about issues such as cost-benefit analysis and intervention alternatives, as well as prioritising development goals and tasks.

The strategic objectives of this phase are:

- Developing appropriate project related baseline data.
- The development of a clear understanding of the core information needs of the Participatory Development Management Process.
- □ The integration and analysis of data results.
- Ranking of identified issues in order of priority to serve as the basis for developing a Community Resource Management Plan.

□ Linking of key project needs with the existing resource base.

3.3.3 PHASE THREE - THE DEVELOPMENT OF A COMMUNITY-BASED RESOURCE MANAGEMENT PLAN

A separate action plan is developed for each of the water, waste and sanitation sectors, with the WWSMS providing the framework for integration and co-ordination to ensure consistency across sectoral strategies. The preparation of each action plan starts with the formulation of the best possible project management options, including preventive and curative measures. Specific action or goal tasks are set within a framework of contributions (including costs and financing) which will be required from the community and external institutions to meet such goals, within the framework of budget constraints and local implementation capacity.

The goal-setting functions of this stage, therefore, result in strategic plans wherein ways of attaining the objectives of the normative model are used to formulate goals that can be achieved given the range of feasible alternatives involved and the optimum allocation of available resources.

In deep rural communities it is envisaged that external institutions will play a facilitating role in providing support in decision-making, implementation and the co-development or selection of appropriate technology as it becomes available. In addition, such institutions will have to undertake a specific education and extension role in organisational and institution building in order to attenuate community knowledge and implementation capacity on a sustainable basis.

Within areas that have a stronger urban link such external involvement may need to make provision for a greater degree of active service delivery to communities depending on viable and sustainable cost-benefit decisions made by the communities involved.

The strategic objectives of this phase are:

 To develop water, waste and sanitation management strategies and commensurate development goals that are socially acceptable to, and affordable for the community;

- The identification and phasing of priority sectoral tasks and actions to reach the goals that have been set;
- The development of needed policies, instruments and institutional development including capacity building components required for management and utilisation.
- A breakdown and allocation of duties (both within the community and in respect of external organisations) based upon goal tasks;
- A breakdown of costs based on goal tasks in respect of each of the sectors of water, waste and sanitation;
- The finalisation of an action plan supported by all role-players to facilitate the scheduling of duties, the execution thereof, report-back procedures and monitoring of progress within a "learning process" approach.

3.3.4 PHASE FOUR - IMPLEMENTATION, MONITORING AND EVALUATION WITH A FEEDBACK APPROACH FOR ADJUSTMENT AND REORIENTATION

This stage involves the implementation of the specific action plans in respect of water, waste and sanitation on a basis that makes provision for two levels of ongoing monitoring and evaluation. The first is related to the feasibility and sustainability of the specific tasks that have been set. The second relates back to the initial rationale for undertaking this study, **viz.**, **the management of the incidence and extent of diffuse sources of water pollution**.

The strategic objectives of this phase are:

- The implementation of the specific action plans that have been developed;
- Ongoing monitoring of actions;
- Action plan adjustment by means of participative decision-making, where necessary, based on the results of the monitoring process;
- □ The introduction of specific extension or support activities, where

necessary, to promote the autonomous functioning of the community in respect of the various projects.

The tasks for the four programme development stages set out above have been used as basis to design a Field Guide that incorporates the aims of Participatory Appraisal and Training and Participative Development Management.

3.4 USE OF THE FIELD GUIDE

The Field Guide, in its current format, is believed suitable for use by community and project developers. Some understanding and experience of the development process required to implement water, sanitation or waste projects is required as well as a desire to 'add value' to communities. It provides a solid basis for the implementation of broad-based participative project development in general without pressuming to prescribe "recipes". As such, it serves to describe the milestones that need to be achieved or incorporated to allow participative project development.

It is not suggested that the Field Guide is exhaustive or that it should be regarded as a development 'bible'. The intention is that it should be used in conjunction with the numerous books and manuals on various aspects of Participative Appraisal and Training, development management within underdeveloped contexts as well as guides and manuals on the technical provision of water, waste and sanitation services.

4. CAPACITY BUILDING AND INFORMATION REQUIREMENTS

4.1 INTRODUCTION

The present situation, as well as the effects of past practices and policies, must be taken into consideration in an evaluation of the capacity building (educational and training) and information needs within the context of water, waste and sanitation at community level.

Marginalisation has left the majority of the population of South Africa with a lack of integrated formal education and training opportunities. This has led to the following realities, amongst others:

- A large percentage of people in South Africa are, at present, either totally or functionally illiterate;
- A large proportion of these people will not be able to access existing formal or vocational (non-formal) education and skills training opportunities;
- At present technical and technological knowledge and training focuses on the promotion of advanced technological initiatives. Although this process is necessary, the emphasis fails to promote a technology that is relevant, appropriate, accessible, affordable and sustainable to meet the basic infrastructural and human needs of our broader society;
- In instances where development projects are initiated, most members of recipient communities lack the necessary skills to participate in the implementation and management thereof and imported expertise is utilised. The applicable skills to promote sustainable utilisation and management are frequently not transferred to these communities, leaving them as disempowered as before the process started.

The restructuring of the existing education and training systems to address issues, such as those set out above, is of the utmost importance. Significant

progress has been made in respect of aligning vocational training into a National Qualifications Framework. However, much remains to be done in the water and sanitation sector. In accordance with this proposed process, it will be necessary to promote training programmes aimed at promoting the establishment of infrastructure that will serve as useful public assets in a manner that would involve the community as a whole and have a marked multiplier effect on the economy. Such programmes would need to be sustainable, include labour-intensive components, promote income generation for the lower socio-economic group, support local enterprise and allowed accredited skills training.

4.2 OBJECTIVES OF EDUCATION, TRAINING, CAPACITY BUILDING AND INFORMATION TRANSFER BASED ON THIS PROJECT

Both the development paradigm and the resultant processes suggested for the Field Guide focus on the building of competencies, the enablement and empowerment of people and the strengthening of community action. Based on this point of departure capacity building, including the provision of adult education and training and information dissemination form an essential component of an empowerment agenda.

While the role and value of primary, secondary and tertiary formal education is acknowledged and stressed, it is believed that appropriate training outside the formal system requires urgent attention. Within this context, training is seen as vocational (functional) learning and skills development that form part of the so-called informal and non-formal education system. It sees learning as a life-long process that seeks to impart motivation and skills that will allow the individual a competency base to raise his general standard of living, to improve his quality of life and to find gainful employment.

On this basis, a number of specific objectives are believed to be relevant for the development of appropriate training within the context of water, waste and sanitation related projects. These are:

Promotion of access to Adult Basic Education and Training (ABET), encompassing skills such as literacy, numeracy and basic life skills to form the basis for further skills development;

- Development of the necessary accredited training to establish and maintain a viable infrastructure for development projects;
- □ Ensuring the long-term viability of community development initiatives;
- Structuring training in a manner that will allow wider application in the employment market, thus assisting in addressing unemployment and poverty and promoting the quality of life of individuals and communities;
- Providing training for development managers that will enable them to manage development within their communities in an efficient manner;
- Promoting the transfer of information and informed decision-making at all levels;
- Focusing on courses that can be integrated within a national accreditation system whereby qualifications obtained could, on a cumulative basis, provide access to formal education;
- Actively promoting the development of management and technical support skills on a project or non-project related basis;
- Promoting training that will allow members of the community to fulfil key technical and managerial roles within the community, presently occupied by outside experts;
- Providing education and skills training based on project-related employment requirements;
- Making adequate provision for the training of Trainers;
- Utilising existing, under-utilised educational and training structures and human resources from within the recipient community for the presentation of courses.

4.3 STRUCTURING OF COURSES FOR WATER, WASTE AND SANITATION RELATED TRAINING

It is suggested that training in respect of water, waste and sanitation management within communities is structured on two levels, viz., pansectoral and sector-specific levels.

Pan-sectoral training refers to skills that need to be acquired within the context of water-related projects but that are generic in nature. These skills include, inter alia, financial management, accounting, communication and management of development and tendering procedures.

Sector-specific skills, on the other hand, tend to be more technical in orientation and are particularly related to the water, waste or sanitation sector. These skills include, inter alia, selection and management of sanitation schemes, design implications of water delivery systems and the proper handling of waste to minimise health risks.

In an analysis and comparison of training on offer as set out by Pearson, Rivett-Carnac & Alcock (1994) on the one hand and Ernst & Greeff (1992) on the other hand, it may be seen that far greater attention has been paid to the development of pan-sectoral skills training courses than to the development of sector specific training on an **appropriate** level.

Available technical training tends to focus on a first world working scenario (e.g. watercare operators and operations managers) rather than on the provision of "enough" skills to ensure effective functioning in a developing community context. Examples of such courses would be the operation and maintenance of different types of water pumps, the building of **effective** soak-aways, etc. This training would need to provide for an in-depth as opposed to a broad-based working knowledge of systems.

In addition to the above, training courses appear to be largely aimed at equipping members of water committees with a broad-based knowledge of the sector on the (mistaken) assumption that committee members will always be the persons responsible for operation and maintenance of infrastructure after project implementation. More frequently, this aspect of functioning will need to be undertaken by a person who has received specific training in "Community-based Water or Sanitation Operations and Maintenance and who is accountable to the water committee and the community in the first instance and the local authority in the second instance.

4.4 POTENTIAL TRAINING COURSES FOR THE EFFECTIVE PROMOTION OF PARTICIPATIVE COMMUNITY BASED WATER, WASTE AND SANITATION PROJECTS

4.4.1 PAN-SECTORAL TRAINING

- Institutional (Local Government) Development
- Development management training (including training for participation)
- Portfolio training (aspects related to the effective functioning of committees).
- Formation and implications of legal structures in the community (trusts, companies, voluntary groups, etc.)
- □ Facilitation and conflict management and resolution skills
- Development of personal skills
- General project management
- □ Financial planning, budgeting, etc.

4.4.2 SECTOR-SPECIFIC TRAINING MODULES

- Development and management of water supply systems, including appropriate technology selection
- Development and management of sanitation systems, including appropriate technology selection
- □ Technical maintenance and support of water supply systems

- Development of a Community Water Plan
- Development of a Community Sanitation Plan
- Construction of sanitation systems
- Technical maintenance and support of sanitation systems
- Health aspects of water supply and sanitation, hygiene education, water quality monitoring
- Rainwater harvesting and storage
- Waste management, treatment and resource recovery, including appropriate technology for waste collection
- Water, Waste and Sanitation programme monitoring

The above course suggestions are not exhaustive, but serve to provide guidelines on the potential focus and subject-matter of courses.

In accordance with the final aim set for this project, Afrosearch-Index has developed a number of training courses that have been submitted for accreditation. All courses submitted have been extensively tested in the field as part of the development work undertaken by this Organisation.

5. PILOT PROJECTS

5.1 INTRODUCTION

A number of pilot projects were launched to test the validity of the Field Guide on the one hand and to establish the adequacy of linking the predominantly pan-sectoral and land-use management training that had been offered by Afrosearch-Index up until that stage, with the technical skills training required to implement effective water, waste and sanitation management.

Detailed case studies of three of the pilot projects are offered as separate Appendices to this report. While it was originally intended that only three communities be used, an increasing number of communities have approached Afrosearch-Index over the past two to three years and requested assistance with the implementation of water and sanitation projects specifically. In most instances the communities have requested that these development programmes be linked with agriculture and, where feasible, the establishment of community-based income-generating projects. All communities in which development facilitation in respect of water, waste and sanitation is taking place are however listed in the section of this Chapter dealing with habitat classification. This includes communities where Afrosearch-Index has been contracted by engineering consultants to assist with specific aspects of project development related to the promotion of participative development, training and capacity building,

The balance of this Chapter provides details of the process followed for project implementation as well as a brief overview of the system used for habitat classification. In conclusion, some of the most important problems related to the implementation of the pilot projects and the ongoing maintenance thereof are provided.

5.2 FOCUS OF THE PILOT PROJECTS

5.2.1 DEVELOPING COMMUNITIES

The focus for all the pilot projects were African developing communities in South Africa and Botswana. Within the literature, developing communities are often referred to as Third World, marginalised or under-developed communities. A large number and variety of definitions have been posited, based on the point of departure or discipline to which the person formulating the definition belongs. All definitions, however, serve to underscore the presence of the following characteristics, inter alia:

- □ Low socio-economic status;
- □ Low levels of education;
- □ Absent or inadequate infrastructure;
- □ A lack of essential basic services and support structures;
- □ A high ratio of children under the age of 16;
- □ Inadequate housing and/or high room densities;
- □ High levels of unemployment.

For the purpose of this study communities were classified as "developing" if they answered to all seven characteristics set out above.

5.2.2 HABITAT CLASSIFICATION

It was initially intended that pilot projects be implemented in different habitats on the basis of an urban, peri-urban and rural habitat continuum. On this basis the following classification of each of these habitats was accepted:

Urban areas

Urban areas may vary from small to massive agglomerations. On this basis, the United Nations has standardised its data by recognising that all settlements that have more than 20 000 people are 'urban'. 'Cities'

have more than 100 000 people and 'big cities' have more than 5 million people. The arbitrary basis on which these definitions have been set have, however, seldom been adhered to in global tabulations and have been the focus of severe criticism.

As a broad base of departure, an urban area is regarded as any area that has been designated a town or urban area in terms of any proclamation, whether or not such proclamation has subsequently been repealed or replaced. In addition, some form of official local bureaucratic authority exists.

Peri-urban areas

Peri-urban areas are any areas not actually proclaimed as urban/town areas, but found directly adjacent to proclaimed areas. These areas are diversely referred to as 'high population chieftain areas', 'high density areas', 'informal squatter areas', 'peri-urban areas', 'kapteinsgebiede', 'digbewoonde stamgebiede', etc. within the literature. Such areas may, or may not, depending on manner of formation have some sort of official local bureaucratic authority apart from or in addition to the tribal or community authority.

Rural areas

A rural area refers to any area, other than the areas designated urban and peri-urban, as set out above. No official local bureaucratic authority is seen to exist. Authority is vested in the tribal or community authority.

As in other countries with a developing community component, great diversity of circumstances, levels of services, infrastructure and population profiles are found in the vast majority of settlement areas in South Africa, irrespective of whether or not these have been designated as Urban, Periurban and Rural.

Because of this reality, the United Nations Centre for Human Settlement (HABITAT) has introduced a classification system for human settlements that seeks to avoid the usual (and often inappropriate) disagreement and lack of consistency in setting adequate definitions regarding 'rural', 'peri-urban', 'urban' and 'urban' parameters. Final classification of projects was based on the classification proposed by the UNCHS. It was believed that this would allow an evaluation of different factors that could influence programme development on an integrated basis.

The following habitat categories may be identified (in each case the settlements selected in terms of such classification is listed below the specific type of habitat):

- Rural Settlements Upgrading:
 - Dinkie 1 and Elandsfontein Bourke's Luck (Inactive)
 - Middelplaas A Shongwe
 - Middleplaas Bongani Shongwe
 - Dinkwanyane Ohrigstad
 - Retabile Lewelemagodi
 - Banareng Lewelemagodi
 - Phiring Lewelemagodi
 - Moraba Lewelemagodi
 - Mapareng Lewelemagodi
 - Malaeneng Lewelemagodi
 - Makoule Lewelemagodi
 - Rutseng Lewelemagodi
 - Nkoane Lewelemagodi
 - Mabelane Lewelemagodi
 - Matshekweng Lewelemagodi

- Makopung Lewelemagodi
- Makgalane Lewelemagodi
- Mokotung Lewelemagodi
- Tswenyane Lewelemagodi
- Majeje Phalaborwa
- Mabunda Phalaborwa
- Mahumani Phalaborwa
- Mathefila Phalaborwa
- **D** Rural Growth Centre Development:
 - Lehroro Bourke's Luck
 - Ngodini Dam Clau Clau (Also spelt Hlau-hlau)
 - Spelanayne Clau Clau
 - Clau Clau A Clau Clau
 - Clau Clau B Clau Clau
 - Clau Clau C Clau Clau
 - Clau Clau F Clau Clau
 - Buyelani Clau Clau
 - Nkohlakalo Clau Clau
 - Dwaleni Clau Clau
- Urban Slum Upgrading:
 - Setsing North West
 - Vukuzakhi South Eastern Transvaal (abandoned)

- eSizameleni South Eastern Transvaal (abandoned but negotiations for resumption are taking place)
- □ Site and Services Schemes:
 - Old Naledi Gaberone
 - Setsing North West
 - Mabolela Eastern Free State
- □ New Urban Community Development:
 - Atteridgeville Gauteng

5.3 PROCESS UTILISED FOR DEVELOPMENT

The Field Guide was used as basis for the approach followed in each of the communities were participative community-based programmes needed to be established.

In some communities, such as Old Naledi, development training for community-based waste managers was done, using the development process as set out in the Field Guide.

5.4 SPECIFIC PROBLEMS ENCOUNTERED

5.4.1 COMMUNITY CAPACITY

It has been found that, in communities with an absence of development initiatives and existing structures, an extensive period of capacity building and the promotion of participation needed to be undertaken prior to undertaking large-scale projects such as the provision of water supplies or community-wide sanitation. Where this has happened, small-scale projects (that had a good chance of succeeding despite the immediate lack of capacity) were undertaken to initiate community-based activities. Examples of such projects include the promotion of effective agricultural and land use practices or participative management in respect of immediate water supply problems (such as spring protection). While this has, inevitably, served to slow down the initial process of developing effective community-based water, waste and sanitation programmes it has been demonstrated that this initial "go-slow" has been worth the time, effort and energy in terms of longterm gains and progress.

5.4.2 PARTICIPATION

While effective participation has been demonstrated to be the single most important component of successful programmes, project funding for the promotion of this project component is notably absent from funding budgets. Here, for example, the White Paper on Water Supply and Sanitation makes provision for grant funding in respect of training and capacity building of water committees after they have been established and registered! This approach will, inevitably, lead to one of the following two scenarios.

Developers will do the initial training and after the establishment of a legitimate committee will submit an application to funding agents such as the Department of Water Affairs and Forestry requesting funding for training to be undertaken despite the fact that this has already taken place. This provides committees with a perfect example of how to "bend" the rules despite training that should have inculcated a ruthlessly honest approach to financial matters.

The alternative is that developers will resort to putting an "instant" token committee in place that has not been elected on the basis of a participative process and has received very little if any training. Most frequently, such committees will merely serve as a reflection of the elite and serve to further empower the powerful. This approach negates broadbased participation and promotes a lack of commitment from the members of the committee as well as the communities which they purport to serve.

From the above it may be seen that the process will favour development in communities were strong community infrastructure and capacity already exists, further marginalising severely disadvantaged communities.

In an evaluation of the need to build in funding for the development of participative processes, WASH's

... work on evaluating five specific A.I.D. - funded projects revealed a general correlation between the amount of money spent for community development and project success in terms of long-term sustainability. This evaluation found that a highly successful project in Togo, for example, had spent about 25 percent of project resources on community participation activities, including health education and training. While no firm percentage can be recommended, it is clear that expenditures for community participation should be substantially more than the frequently cited 1 to 5 percent. (1993:3)

5.4.3 TRADITIONAL AUTHORITY STRUCTURES

Traditional authority structures provide leadership in non-urban communities on a continuum that ranges from totalitarian to laissez faire. Irrespective of the type of leadership provided, initial entry into such communities will always need to be via these formal structures.

Because participative development is based on an empowerment agenda, great care needs to be taken to maximally integrate traditional structures with the development process without entrenching authoritarian structures or causing division in the community.

The coming local elections presently serve to bedevil attempts to find this balance. Traditional authority structures (correctly) foresee that their powerbase will be eroded extensively by this process. As such, tribal authorities in a large number of communities are reluctant to promote or support initiatives that may serve to wrest power away from them.

5.4.4 IMPORTANCE OF THE REVIEW PERIOD

It is vitally important that the community be given enough time **and** information to allow them to review whether or not they want the project to be initiated. Attempts to bulldoze the community into accepting the proposed development are guaranteed to reduce participation in future stages of the process.

5.4.5 IMPLEMENTATION OF ACTION PLANS

The implementation of project action plans usually requires extensive

involvement of the developer to ensure that the process remains participative at this stage. The danger exists that dynamic or impatient community members may want to move faster than the participative process can allow. This can result in a fall-off in participation or confrontation between community members during one of the most crucial stages of the project.

5.4.6 PAYMENT OF COMMITTEE MEMBERS AND PARTICIPANTS

The researchers have not found an equitable golden rule that can be applied in making decisions as to whether or not committee members and other participants should be paid for their services in a project.

The most successful means of handling this dilemma has been to assist communities to cost the inputs of strategic workers and to make provision for these expenses within the project budget. There should, however, be an explicit agreement that where necessary, ongoing funding would need to come from the community once project funding ceases. The mechanisms of ongoing funding must be decided on a community-wide basis and adhered to unless there is agreement from all concerned that payment should not or can not be sustained.

5.5 EVALUATION

None of the problems that have been encountered have been so serious that they have served to derail the development process totally. There have been frequent "close shaves", severe slowing down of the process, retracing of steps innumerable times and too many mistakes to try and enumerate. We have learnt more from our mistakes than our successes. We have been fortunate to have made them in communities where a climate of trust, mutual respect and mutual learning have served as buffer to the communities as well as to the developers.

A community member described this process of participation and learning as follows:

There are days that we feel that nothing that we can do will make a difference but we know that you believe in us and because of this we

start to believe in ourselves. There have been many times that we have seen that you have carried us and this is good. Because there have been days and there will be more days were we will carry you.

And for everything that we do wrong we do two or more things right and we learn this way. Just like a child who walks for the first time falls down often but then can run and nobody will catch him he is so fast.

6. CONCLUSIONS AND RECOMMENDATIONS

This report has highlighted the fact that sustainable management of diffuse sources of water pollution will need to take place within a context that addresses basic water supply and sanitation needs. Current estimates of the number of people without adequate water supply services are in the region of 12 million, while approximately 22 million lack proper sanitation services. These are spread in some 17 000 communities around the country, the majority being located in the Eastern Cape Province, KwaZulu/Natal, Mpumalanga and the Northern Province.

The Department of Water Affairs and Forestry has prepared comprehensive policies to address this backlog. These have been set out in the White Paper on Community Water Supply and Sanitation Policy and published for comment in November 1994 as well as the Draft White Paper on Sanitation Policy published for comment in 1996. No revisions have yet been made to either White Paper and these must be taken as the definitive documents.

Due to earlier policy inadequacies, an enormous backlog in the delivery of basic water and sanitation services to underprivileged South Africans has built up over the years. This backlog extends to the capacity of the people to control and manage the services they need on a sustainable basis. Based on the research undertaken for this study the following specific conclusions are drawn and recommendations made.

6.1 EDUCATION, TRAINING AND CAPACITY BUILDING

The White Paper on Community Water Supply and Sanitation Policy as well as the Draft White Paper on Sanitation Policy regard capacity building (including training) as one of the critical factors that will determine whether or not the Government will succeed in their objectives related to the implementation of reconstruction and development. This is particularly so in the case of water supply and sanitation. Communities will need to be empowered to undertake their own development. This is not possible if the basic skills, which can only be supplied through capacity building and project-related experience are lacking.

The need for effective capacity building (including education and training) in all aspects of the promotion of water, waste and sanitation programmes is an essential prerequisite for sustainable development. Particular attention will need to be paid to the goals of capacity building. These need to encompass not only the technical skills, but also the development of an understanding of social dynamics. Specific attention should be given to ensure that issues of equity are addressed.

The capacity building that is envisaged covers not only the requirements at community level. Skilled personnel are needed across a broad spectrum. Capacity building categories include:

- general community awareness on water and sanitation including the provision of information packs and teaching aids to schools';
- general community awareness of Primary Health Care (PHC) as related to the fields of water and sanitation;
- general awareness and training about the impact of water and sanitation related issues on the environment in terms of Primary Environmental Care (PEC);
- training of local authorities and local water committees in the principles of democratic governance and public office, a basic understanding of water and public health, administrative skills and necessary technical skills;
- training of community support personnel. Creative solutions are required to produce a cadre of development support workers who are equipped with a balanced set of both community skills and appropriate technical skills; and
- training of specialised water care technicians as well as professional and managerial staff.

Education and training as part of capacity building are seen as fundamental to the process of service provision. The nature of the training and the accreditation of the training are matters of concern if the skills that are obtained are to be transportable and create wider opportunities for the individuals concerned. A comprehensive plan for the provision of such services needs to be formulated that will promote education and training that:

- Is context-bound and responsive to the needs of the given community in which it is to be implemented;
- Targets Local Government structures as well as existing community organisations at local level in order to facilitate a process of swift implementation;
- □ Will help instil a sense of responsibility and accountability;
- Has tangible and achievable objectives and is directly linked to an implementation plan (i.e. upgrading of water supply infrastructure, implementation of a tariff structure);
- Provides the necessary financial back-up for the established structures to function effectively and efficiently;
- Takes cognisance of the roles and responsibilities of legitimate local government which have been vested in it by the electorate;
- □ Is cautious of creating parallel structures⁴ to local government.
- □ Includes a focus on managerial training.

DWAF is perceived as a supporting agent in the provision of capacity building. Clarity will need to be obtained about the integrated role to be played by itself and, inter alia, the Departments of Constitutional Affairs, Health, Housing and Local Government and Environment and Tourism.

⁴ Without accountability.

6.2 COLLABORATION AND CONSULTATION BETWEEN STAKEHOLDERS

The existing institutional framework within which water management policy planning, design and implementation, legislation and law enforcement, political and constitutional visions and strategies as well as operational matters is functioning, is characterised by complexity, diversity of purpose and varying quality of execution. This characterisation can, in turn, be related primarily to historical political and constitutional approaches and inadequacies in integrated planning, design and implementation.

The statutory requirements directed at, relating to or implying water quality control, are distributed over a wide range of laws, regulations, ordinances and by-laws within a plethora of Government departments, Provincial departments, local/regional authorities and statutory bodies. This creates complexity of functional responsibility at the authority level as well as confusion at all levels of service delivery and water management.

There is a dire need for the initiation of a process of consultation and the promotion of closer collaboration and co-ordination of activities between all participants and stakeholders on all levels of water, waste and sanitation research, development and implementation.

Two factors in particular (as related to this study) appear to negate efficient collaboration and consultation between stakeholders in the promotion of co-ordinated service delivery. These relate to policy issues (and resultant strategies) on the one hand and practical implementation of programmes for research, development and implementation in the second instance.

A number of Departments have released one or more policy statements and White Papers. Considerable discrepancy may be found between policy statements issued within the same Department as well as those issued by different Departments. Such inconsistencies allow for deliberate as well as circumstantial misinterpretation as well as significant diffusion of responsibilities. It is urged that the Department of Water Affairs and Forestry peruse its own policies and:

address apparent discrepancies found within its own policies;

 address apparent discrepancies between its own policy statements and those of other departments.

At practical implementation level, The existence of functional, competent local government is a key factor in the management of unauthorised connections and in terms of sustainable water supply. Aspects that will need to be addressed include:

- □ Clear "terms of reference";
- Competence (political as well as operational);
- □ Administrative capacity;
- □ Accountability;
- □ Infrastructure (e.g. communication links, etc.);
- □ Capacity (Ability to manage).

Care will need to be taken that institutional structures do not duplicate functions (Water Boards, Local Government, Water Committees). Functional responsibilities will need to be spelt out clearly. It will be vital to define the roles and responsibilities of community institutions in a manner that will contribute towards long-term sustainability by maximising community involvement and promoting user contributions.

DWAF must assist in programming and implementing the "hand-over" process, and by providing knowledge, guidelines and standards for a sustainable process while also assisting in gaining access to finances for the implementation of the programmes.

6.3 COMMUNICATION

The promotion of ongoing effective communication between authorities, communities, developers and funders is fundamental to project success.

Progress is being made with the development of channels for efficient communication at central and provincial level. A large number of local, regional and national fora further support processes for communication. However, despite this there is still significant lack of relevant information at Local Government and community level. Communication that targets Local Government as well as communities **down to individual household level** will be vital to promote "informed decision making".

6.4 PARTICIPATION

Both the RDP and Department of Water Affairs and Forestry have highlighted the role of civil society in the development process. Structures such as Reconstruction and Development Committees (RDC's), and Community Development Forums (CDF's) etc. are expected to harness civil society developmental activity and form a communication conduit with local government.

The above and related structures seem to be evolving in most communities that have been surveyed. Although willing and committed to participate in water management issues, it is evident that these structures have very little capacity and are entangled in endless wrangles regarding legitimacy of representation, resulting in precious little real delivery to constituents.

Participation is a key issue for the development of sustainable programmes at community level. Such participation is not a spontaneous process and takes time, concerted effort and dedication from developers and communities alike. Funding budgets should reflect this factor.

Communities will need to be assisted in the identification of their needs as well as in the development of plans to meet such needs. Local government will need to be built into an effective, efficient and responsive service provider in the meeting of local needs. This approach would be directly in line with, and indeed aid government in putting the "community first - to ensure transfer control to the local level.." (White Paper on Water Supply and Sanitation, 1994: 13).

Identification and mobilisation of local skills and resources should be seen as an integral part of this participative development process. This will increase the multiplier effect of any development actions, promote "buy-in" from the community and serve to maximise development benefits to the community.

6.5 COMMUNITY ORGANISATIONAL STRUCTURES

Strong, accountable community organisational structures need to be developed as a vital first step in the development process. There is no other way of ensuring the sustainability of projects without fostering a dependence on external developers.

The Role and function of Water Committees will need to be clarified. Discussions with role-players appear to support an orientation that promotes a specific role and function for Water Committees. In accordance with this, a Water Committee could:

- Be a non-statutory, voluntary body that represents the interests of the community and serves as communication conduit between individual households within the community and the responsible Local Government;
- Be integrated into the larger RDP community-based structures and/or forums;
- Co-ordinate and integrate issues within the community;
- Accept responsibility for the identification of issues and problems related to operations and maintenance and reporting back to Local Government on these;
- □ Accept responsibility for monitoring water quality;
- Assist with local level maintenance on a paid agency basis, should it have sufficient skills and resources to do so, under guidance of and with support from Local Government;
- Support and promote capacity building initiatives within the community;
- not be sole implementing and maintenance arm but could perform some of these functions on a basis agreed upon between the specific Local Government structure and the individual community (on a

contractual basis);

In accordance with this point of departure, Water Committees would act as a **representative arm** of Local Government and could function as implementing agent on behalf of Local Government.

6.6 WATER QUALITY MANAGEMENT

There are, at present, no effective guidelines for the implementation of "best management practices" in the context of developing communities. It is necessary that a system be developed whereby the risk of groundwater pollution can be calculated effectively on the basis of what Foster refers to as "aquifer pollution vulnerability" (1985:120).

The current debate about groundwater pollution sees pragmatists (pollution may be allowed) and purists (no pollution may be allowed) defending their points of view with equal lucidity and logic. Unfortunately this does not provide the uninitiated with generalised guidelines as to how to assess (even if only by approximation) when and where diffuse sources of water pollution will pose a serious threat to ground water quality.

It is not suggested that such guidelines be used as substitute for site specific risk assessment. Within restricted project budgets a system that indicates or "flags" areas that have high "aquifer pollution vulnerability" can save time and money and promote "best management practices".

7. READING LIST OF ALL SOURCES QUOTED IN THE MAIN REPORT.

African National Congress. (1994). A National health plan for South Africa.

- Agency For International Development. (1980). Development communication in an urban setting. Agency for Communication Report No 31.
- Alcock, P.G. (1984). A water supply strategy for the Inadi ward, Vulindlela District, KwaZulu. UNISA.
- Alcock, P. (1990). An assessment of household rainwater collection systems in a peri-urban/rural ward of KwaZulu. Development Southern Africa.
- Anderson, I. (1986). Rural water supply development in the context of economic crisis and structural adjustment. Waterlines **8**(3), 20-23.
- Arthur, R A J. (1994). The price to pay for scarcity. Water & Environment.
- AWWA. (1990). Water for people. AWWA Mainstream, July 1990.
- Azevedo Netto, J M. (1992). Innovative and low cost technologies utilized in sewerage. Environmental Health Program.
- **Basaako, K.** (1983). Handbook for district sanitation co-ordinators. TAG Technical Report No. 9.
- **Bembridge, T J.** 1988. A proposed institutional framework for successful rural development in less developed areas of Southern Africa. Development Southern Africa, **5**(2).
- **Bembridge, T J.** (1988). Considerations in technology transfer in less developed areas of Southern Africa. Development Southern Africa, **5**(2).
- Beyer, M.G. 1984. Water quality for children, mothers and others. WQB, 9(2), 102-105.
- **Bomba, W G.** (1980). The role of health education in sanitation programmes. Geneva, World health organisation.
- Boot, M T. (1984). "Making the Links" Guidelines for hygiene education in

community water supply and sanitation with particular emphasis on public standpost water supplies. IRC Occasional paper series no. 5.

- Bradly, R M & Karunadasa, H I. (1989). Community participation in the water supply sector in Sri Lanka. JRSHDS, **109**(4), 131-135.
- **Briscoe**, J. (1993). When the cup is half full: Improving water and sanitation services in the Developing World. Environment, **35(**4).
- Briscoe, J & De Ferranti, D. (1988). Water for rural communities. World Bank.
- Byford-Jones, C. (1992). Cheap toilet solution. Farmers Weekly, August 28.
- Cairncross, S. (1992). Sanitation & water supply: Practical lessons from the decade. DP No. 9.
- Central Bureau Report, (1983). More water from the river. Farmer's Weekly, January 14, 1983.
- **Cernea, M M.** (1985). Putting people first. Sociological variables in rural development.
- **Chambers, R.** (1983) Rural Development: Putting the last first. London: Longman.
- Chibi, M C & Mogane, S B. (1990). A socio-technical approach to community water supply for a village in KwaZulu: A case study.
- Christmas, J & De Rooy, C. (1991). The decade and beyond: at a glance. IWRA.
- **Churchill, A A.** (1987). Rural water supply and sanitation: Time for a change. World Bank Discussion Papers.
- Clark, C P. (1988). Communication methods for health workers to use when teaching in the Third World. New York.
- **Common Interest Research Study.** (1991). Manual for the repair and maintenance of water distribution and trunk mains.
- **Community Life Projects.** (1994). Interim report on data accessed for rural sanitation education programme to be developed by Community Life

Projects on behalf of Umgeni Water.

- **Cogho, V E et al.** (1992). The development of techniques for the evaluation and effective management of surface and ground-water contamination in the Orange Free State Goldfields. WRC Report No. k5/224.
- **DBSA.** (1993). Socio-economic enhancement of development projects. Construction and development Series. Number 1.
- **DBSA.** (1994). Water supply and sanitation in South Africa 25 year vision and costs. Report 1: Key issues informing a long-term vision of the domestic water and sanitation sector.
- **DBSA.** (1994). Water supply and sanitation in South Africa 25 year vision and costs. Report 3: Analysis of financial viability of water and sanitation agencies in selected urban areas.
- Dept of Environmental Affairs. (1992). Integrated Environment Management Guideline Series. Document 6: Glossary of terms used in Integrated Environmental Management.
- Dept of Environmental Affairs. (1992). Integrated Environment Management Guideline Series. Document 1: The Integrated Environmental Management procedure
- **Dept of Environmental Affairs.** (1992). Integrated Environment Management Guideline Series. Document 2: Guidelines for scoping.
- **Dept of Environmental Affairs.** (1992). Integrated Environment Management Guideline Series. Document 3: Guidelines for report requirements.
- **Dept of Environmental Affairs.** (1992). Integrated Environment Management Guideline Series. Document 4: Guidelines for review.
- **Dept of Environmental Affairs.** (1992). Integrated Environment Management Guideline Series. Document 5: Checklist of Environmental Characteristics.
- **Dept of Environmental Affairs.** (1990). Pollution of inland water in South Africa. Pamphlet 426.
- Di Bernardo, L. (1991). Water-supply problems and treatment technologies in

developing countries in South America. Water Short Report-Aqua 40(3).

- **DWAF.** (1994). Water supply and sanitation policy: White Paper: Water an indivisible national asset.
- **DWAF.** (1994). Moretele 1 water supply scheme, RDP Presidential project, Project business plan, Preliminary draft 1.
- **DWAF.** (1991). Draft policy: Water supply and sanitation for developing communities.
- DWAF. (1991). Water quality management policies and strategies in the RSA.
- **Edwards, D B.** (1990). Strategy for developing a training capability in a water and sanitation institution: A guideline. WASH Task No. 042.
- **Eichhorn, H.** Health and development: The "Growing the Cape" initiative. CERSA.
- **Ernst, E A & Greeff, A.** (1992). The education and training needs of watercare operations and operations managers in the RSA. WRC Report No KV 35/92.
- Feachem, R & Cairncross. (1978). Small excreta disposal systems. ROSS Bulletin 8.
- Foster S S D (1985). Groundwater pollution protection in developing countries, International Contribution to Hydrogeology, Vol. 6 1985.
- Gascoigne, N. (1991). Help that the community can afford. Water Bulletin 470, August 1991.
- **Görgens, A H M & Rooseboom, A**. (1990). Potential impacts of rainfall stimulation in South Africa: A research planning study. NSI Report No. 1665/5028.
- Grieveson, MB. (1984). Assessing water supply and sanitation projects.
- **Grover, B.** (1983). Water supply and sanitation project preparation handbook. Volume 1: Guidelines. World Bank Technical Paper No. 12.
- Grover, B, Burnett, N & McGarry, M. (1983). Water supply and sanitation project preparation handbook. Volume 3: Case study, Feasibility report for Port

City. World Bank Technical Paper No 14.

- Guoth-Gumberger, M. (1987). Small project's training manual. Vol 2: Water Supply.
- Haldorsen, O. (1989). Hand pump corrosion in deep boreholes a case study on implementation of groundwater supplies in a developing country.
- Hallowes, D. (1993). Hidden faces: Environment, development, justice: South Africa and the Global Context. Earthlife Africa.
- Hardoy, J E, Matlin, D & Satterthwaite, D. (1992). Environmental problems in Third world cities. Earthscan.
- Hart, R H, Belsey, M A & Tarimo, E. (1990). Integrating maternal and child health services with primary health care: Practical considerations.
- Hébert, P.V; Yniquez, C. (1986). Sensitivity of water distribution costs to design and service standards: A Philippine case study. UNDP Technical Note No.16.
- Heller, K, Price R.H., Reinharz, S. et al. (1984) Psychology and Community Change - Challenges for the future. Dorsey Press; USA.
- Hurry, L. (1993). Participatory operational and development strategies for community based environmental management. Paper presented at the National open space conference, Pretoria.
- IAWPRC. (1987). Nitrates: A question of time? WQI.
- International drinking water supply and sanitation decade. (1987). Water supply and sanitation for developing countries: An international sourcelist of audio-visual materials.
- International drinking water supply and sanitation decade ITWSSD. (1989). Report on IDWSSD activities in technical information exchange.
- **IRC.** (1988). Community self-empowerment in water supply and sanitation. Training series 5.
- **Isely, R B.** (1983). Development and field testing of a methodology for assessing community readiness for self-help in the installation, maintenance and

repair of Water supply and sanitation facilities.

- IUCN. (1994) IUCN Bulletin, Number 2.
- **IWTC.** Women organizing: A collection of IWTC newsletters on women's organizing and networking strategies.
- Jackson, B M. Appropriate water supply and sanitation in developing urban areas. S.A Institution of Civil Engineers.
- Kakto, TS. (1991). Reselling and vending water.
- Kalbermatter, J. M. (1980). Appropriate technology for water supply and sanitation: A planner's guide.
- Koch-Weser, D. (1988) Water Supply and sanitation and the quality of life. American Journal of Public Health **78**(11).
- **Kruger, R A.** An approach to enhance the socio-economic impact of waste management projects. DBSA.
- Laburn, R.J. (1993). Water and the environment. Journal for Water Short Report-Aqua 42(6).
- Lawrence, J E S & Tomaro, J B. (1988). Human resource development planning: guidelines for the water supply and sanitation sector. Wash Technical Report No. 20.
- Ledwaba, G. (1991). Sephiri se otollogile "The secret is out": A case study in rural primary health care. EDA Field Reports no 4.
- Leitmann, J. (1992). Rapid Urban Environmental Assessment: Toward Environmental Management in cities of the developing World. Impact Assessment.
- Lister, H et al. (1984). Pit latrines in impermeable soil the Maseru experience.
- Little, T. (1994). Economics and water management: Booklet on the application of economic principles to water management, Institute of Natural Resources.
- Lund, F J. (1987). The community based approach to development: A

description and analysis of three rural community health projects. University of Natal.

- Mara, D. (1982). Appropriate Technology for water supply and sanitation. Sanitation alternative for low-income communities: A brief introduction. World Bank.
- Mara, D D. (1990). The design of Pour-Flush latrines. TAG Technical Note No. 15.
- McGarry, M. G. (1991). Water supply and sanitation in the 1990s. Water International, 16.
- **Mvula Trust.** (1995). Rural sanitation review. Final report: A review of rural sanitation in South Africa. WRC.
- **Mvula Trust.** (1994). Review of rural sanitation in South Africa: Review of social circumstances. Module 3.
- **Mvula Trust**. (1994). Review of rural sanitation in South Africa: Case Studies: Paper 2: Acornhoek, Eastern Transvaal. Module 4.
- **Mvula Trust.** (1994). Review of rural sanitation in South Africa. Review of international experience. Module 5.
- **Mvula Trust.** (1994). Review of rural sanitation in South Africa. Technical options for rural sanitation in South Africa. Module 6.
- Mvula Trust. (1994). Rural sanitation review: Priority and demand. Module 2.
- Mvula Trust. (1994). Rural sanitation review: Review of current status. Module 1.
- Mvula Trust. (1994). Rural sanitation review: Summary Report. Module 8.
- **Mvula Trust.** (1994). Rural sanitation review: Programme and project implementation arrangements. Module 7.
- **Mvula Trust.** (1994). Specific policies for water and sanitation project development. WRC.
- **National Economic Forum.** (1994). A framework for implementation of a national public works programme adopted by the NEF. Final report.

- National Public Works Programme. (1994). Report of the training and capacitybuilding focus group: Pre-investment investigation.
- NBRI. (1984). Chemical Toilets. CSIR.
- NBRI. (1984). Sanitation systems. CSIR.
- **Ofosu-Amaah, V.** (1983). National experience in the use of community health workers: A review of current issues and problems.
- Organisation for Economic Co-operation and Development. (1991). Managing technological change in less advanced developing countries. OECD Paris, France
- Otis, R J & Mara, DD. (1981). The design of small bore sewer systems. TAG Technical Note No. 14.
- Paimer Development Group. (1994). Water & sanitation handbook: for community leaders: urban & peri-urban areas. WRC.
- **Pansegrouw, P.** (1995). The black community's precarious living conditions in townships in South Africa. DWAF.
- **Pearson, I A.** Informal settlements: Basic infrastructure social and health implications.
- **Pearson, I.A.; Rivett-Carnac, J.L.; Alcock, P.** (1994) Development of training programme for the transfer of technology on community water supply management to village water committees. Report to the WRC.
- **Perrett, H.** (1990). Planning of communication support (Information, Motivation and Education) in sanitation projects and programs. United Nations Development Programme.
- **Pretty, J.N & Guijt, I.** (1992) Primary Environmental Care: An alternative paradigm for development assistance. Environment and Urbanisation 4(1).

Primary Health Care. (1992). Strategy for primary health care in South Africa.

Richards, WN. Water quality degradation in Southern Africa: The view point of

Umgeni Water.

Roberts, B. Land care manual. New South Wales University Press.

- Roberts, B & Searle, B. (1991). Effective Rural groups: continuing education. Study Book.
- **Roberts, P.** Information management for community water supply and sanitation. DWAF.
- Sadzik, P.M. (1984). Safe rural water supply and waste disposal: Literature survey in rural water supply. Progress report 1.
- Sandhu, R & Sandler, J. (1986). The tech and tools book: a guide to technologies women are using worldwide. IRC.
- **Rogers, D.**, (1992) Mapping boreholes that serve KwaZulu communities. South Africa Sugar Journal, November 1992.
- Schertenleib, R. (1993). The water supply situation in developing countries. Journal for Water Short Report - Aqua, **42**(5).
- Schur, M A. Water supply policy, coverage and costs in rural South Africa. University of Witwatersrand.
- **Simpson-Hebert, M.** (1981). Methods for gathering socio-cultural data for Water supply and sanitation projects. TAG Technical Note No 1.
- Sowman, M. 7 Gawith, M. (1994). Participation of disadvantaged communities in project planning and decision-making: A case-study of Hout Bay. Development Southern Africa, 11(4).
- **Srinivasan, L.** (1993). Tools for community participation: A manual for training trainers in participatory techniques. UNDP.
- **Srinivasan, L.** (1992). Options for Educators: A monograph for decision makers on alternative participatory strategies. PACT/CDS.
- Srivastava, J.C. (1991). Women as handpump caretakers in rural water systems. Wwi, August 1991.

Stewart, T J, Scott, L & Iloni, K. (1993). _Scenario based multicriteria policy

planning for water management in South Africa. WRC Report No 296/1/93

- **Strauss, M.** (1988). Human wastes: Health aspects of their use in agriculture and aquaculture. IRCWD.
- **Tessendorf, H.** (1992) Safe water for all needs global environmental protection. Water Short Report - Aqua **41**(3).
- Tolan, P. Keys, C., Chertok, F., Jason, L. (1990). Researching Community Psychology. American Psychological Association: USA
- **Tredoux, G.** (1993). A preliminary investigation of the nitrate content of groundwater and limitation of the nitrate input. WRC Report No. 368/1/93.
- Umgeni Water. (1993). Rural water & sanitation supply: Progress report.
- **UNCHS.** (1981). Review of the provision of infrastructure in slums and squatter areas and rural settlements. United Nations Centre for Human Settlements (Habitat)
- **UNDP.** The people's water and sanitation program. Janta Ko Khane Pani Ra Safai Karyakram (JAKPAS).
- **UNDP-World Bank.** Information and training for low-cost water supply and sanitation. Project preparation and implementation. Participants' Notes.
- UNICEF. (1991). Getting together... and just doing it!
- **United Nations.** (1991). Criteria for and approaches to water quality management in developing countries. Natural Resources Water Series No. 26.
- **United Nations.** (1981). Sensitivity of water distribution costs to design and service standards: A Philippine case study. Technical Note No. 16.
- **United Nations Centre for Human Settlements.** Urbanisation and sustainable development in the third world: An unrecognised global issue.
- **United Nations Centre for Human Settlements.** (1987). Shelter, infrastructure and service for the poor in developing countries: Some policy options.

- **United Nations Centre for Human Settlements.** (1987). Water-supply and wastedisposal management: Impact-evaluation guidelines.
- Van Nostrand, J & Wilson, J G. (1983). The ventilated improved double-pit latrine: A construction manual for Botswana. TAG Technical Report No 3.
- Van Vliet, H R. Water supply: Performance standards. Institute for water quality studies. DWAF.
- **VWL.** (1991). Transfer stations: East Rand regional services council: evaluation report.
- **VWL.** (1991). Strategy for solid waste management. Volume 1B: Transfer, processing and transportation methodology and scope.
- **VWL.** (1991). Strategy for solid waste management. Volume 2B: Environmental analysis.
- VWL. (1991). Strategy for solid waste management. Volume 3B: Resource analysis.
- **WASH**. (1988). Human Resources development in the Swaziland water supply sector. WASH Field Report No. 238.
- Water & Sanitation 2000. Strategies for water supply and sanitation provision. DBSA.
- Watson, V. (1994). Rural housing problem: Summary statement. Report to working group 5. National Housing Forum.
- **Westaway, M S.** (1994). The availability of water and sanitation in relation to utilisation and health benefits. MRC.
- Wilhelm, S R et al. (1994). Biogeochemical evolution of domestic waste water in septic systems: 1. Conceptual model.

Wilkens, M. (1992). Quick as a flush. Water Bulletin 521.

Williams, PG. Chlorination of small water supplies. CSIR.

Winblad, U & Kilama, W. (1985). Sanitation without water. Macmillan.

Wiseman, R. (1993). Institutional reform heads South Africa's priorities.

- World Health Organisation. (1991). Water supply, sanitation and health in rural areas. Report of the second consultation of the WHO Working Group on Water, Sanitation and Health, Geneva, 9-11 April 1991.
- World Health Organisation. (1986). Intersectoral Action for Health: The role of intersectoral cooperation in National strategies for health for all. Technical Report Series.
- **World Health Organisation** (1983) New Approaches to health Education in Primary Health Care. Technical report series 690.
- World Health Organisation. (1983). Rural water supply. Operation and maintenance: 8 questions to ask.
- WQI. (1987). Nitrates: A question of time? Feature. Wqi No. 1.
- **WRC.** A guide to: Groundwater use and conservation for communities and water supply maintenance officers. CSIR.
- **WRC.** Septic tank systems. Based on a research report of the National Institute for WRC of the CSIR.
- **WRC.** (1995). Planning and implementation of water and sanitation services to urban communities in South Africa: Guidelines for developers. First draft.
- **WRC.** (1994). Evaluation of water supply to developing urban communities: Summary report. Draft 1.
- WRC. (1994). Water supply and sanitation for developing communities: Research, development and technology transfer issues. Proceedings of a workshop.
- **WRC.** (1994). Water supply and sanitation for developing communities: research, development and technology transfer issues.
- **WRC.** (1994). Guidelines for provision of low flow on-site sanitation systems (LOFLOS). First draft.
- WRC. (1993). Evaluation of water supply to developing urban communities in

South Africa. Phase 1 - Overview.

- **WRC.** (1993). Guidelines on the cost effectiveness of rural water supply and sanitation projects. WRC Report No. 231/1/93.
- **WRC**. (1993). Urban sanitation evaluation. Sanitation working papers. Paper A4. Technology option for sanitation provision to developing communities.
- **WRC.** (1993). Urban sanitation evaluation. Sanitation working papers. Paper A1. Access to sanitation in South Africa - summary.
- WRC. (1993). Urban sanitation evaluation. Sanitation working papers. Paper B4. Bucket collection: A case study.
- **WRC.** (1993). Urban sanitation evaluation. Sanitation working papers. Paper B6. Cost comparison of sanitation systems.
- **WRC.** (1993). Urban sanitation evaluation. Sanitation working papers. Paper B2. Evaluation of 2 VIP programmes in Natal.
- **WRC**. (1993). Urban sanitation evaluation. Sanitation working papers. Paper B3.2. Social survey of user's views on the use of low-flush on-site sanitation systems.
- WRC. (1993). Urban sanitation evaluation. Sanitation working papers. Document
 B3.4. Sub-surface impact of low flush on-site anaerobic digesters in Ivory
 Park.
- **WRC.** (1993). Domestic water supply in the PWV and the adjacent areas of Kwandebele and Bophuthatswana: An overview. Region H.
- **WRC.** (1991). Social aspects of water provision, use and preservation: A feasibility study. HSRC.
- **WRC.** (1990). Increasing awareness in South Africa of the need for water conservation: A desk study.
- Wright, A. (1994). Septic tank systems: A source of groundwater contamination. A summary note.

NAVORSING OOR BOORGATE BINNE DIE MUNISIPALE GEBIED VAN PORT ELIZABETH

DIE EIENAAR/HUURDER

LEES ASSEBLIEF HIERDIE PAMFLET INDIEN DAAR 'N SOORGAT OP U EIENDOM IS

Die onlangse langdurige droogte in Oos-Kaapland het tot 'n groot teename in die getal boorgate in Port Elizabeth gelei met 'n ooreenstemmende teename in grondwateronttrekking. Tensy die situasie professioneel geëvalueer word, kan die vodrtgesette beskikbaarheid van die grondwater nie gewaarborg word nie.

Die Port Elizabethse Munisipaliteit het tesame met Steffen, Robertson en Kirsten Ing. 'n navorsingsprojek oor grondwateronttrekking van stapel gestuur. Die projek sal oor twee jaar strek en deur die Waternavorsingskommissie gefinansier word. Die navorsing **sej** hoofsaaklik die volgende aspekte dek:

* Bepaling van die aantal boorgate in die munisipale gebied;

. . .

- * Evaluering van die volume grondwater wat onttrek is;
- * Monitering van die grondwatergehalte en evaluering van die moontlikheid dat die grondwater deur seewaterindringing en die wegdoening van afvloeistowwe op die oppervlak besmet kan word.

Ten einde inligting oor boorgate in te samel, is 'n sensusvorm hieronder gedruk. Indien daar 'n boorgat op u eiendom'ls, word u vriendelik versoek om die vorm in te vul en dit saam met die betaling van u maandelikse rekening vir munisipale didnste oan die Departement van die Stadstesourier te stuur of aan die Stadsingenieur, Posbus 7, Port Elizabeth 6000 te pos.

'n Boorgat verteenwoordig 'n aansienlike belegging. Dit is in u eie belang om u samewerking in d/é verband te verleen sodat die langtermynbeskikbaarheid van grondwater vir alle verbruikers verseker kan word. Skakel asseblief onderstaande teleio anommers indien u enige navrae oor die aangeleentheid het.

Departement van die Stadsingenieur
Wetenskaplikediensteafdeling
(041) 5062333
Navrae: Mnr G Devey

LICCING

	Steffen Robertson on Kirs	tan	ing.
-	(041) 323/05		
	Navrae: Mnr C Langton		

2

BOORGATSENSUSVORM

EIGGING		
EIENAAR/HUURDER:		
STRAATADRES:	POSADRES:	
VOORSTAD:	VOORSTAD:	
KODE:	KODE:	• •••••
TELEFOONNOMMERS:		i
HUIS. KANTOOR:	ERFNO.: ERFGROCTTE	(m²)
BESONDERHEDE VAN BOORGAT		
DATUM GEBOOR:	KONTRAKTEUR:	
BOORDIEPTE: (m) LENGTE VAN VOERING:		
VOERING GEPERFOREER: VAN: (m) TOT:	(m) RUSWATERVLAK: (m) BOOR	SATVLOEI:
IS DIE-VLOEI VERKRY		· ·
VAN: (a) BOORRESULTATE?: JA 🛄 NEE 🗋	OF (b) BEPAAL UIT TOETSPOMPRESULTATE?	JA D NEE
	TOETSPOMPKONTRAKTEUR:	
BESONDERHEDE VAN POMP		
TIPE POMP: DOMPELPOMP: S	TRAAL: ANDER:	
POMPTEMPO: GEF	RAAMDE DAAGLIKSE VERBRUIK:	·····
IS 'N VLOEIMETER IN U BOORGAT SE TOEVOERPYP GEINSTALLI	EER?	JA 🗌 NEE 🚺
SAL U INSTEM DAT 'N METER VIR DIE DUUR VAN DIE NAVORSINGSI	PROJEK KOSTELOOS GEINSTALLEER WORD?	JA. 🔲 NEE 🗖
GRONDWATERGEHALTE		
IS 'N MONSTER VAN († BOORGATWATER VOORGELE VIR:		
	SE ONTLEDING: JA	
MONSTER(S) ONTLEED DEUR:		
ALGEMEEN		
IS U BEREID OM VIR DIE DUUR VAN DIE PROJEK TOEGANG TOT	U EIENDOM OP 'N BEHEERDE GRONDSLAG TOF TEL	AAT SODAT DIE BOORGAT
GEMONITOR KAN WORD?		

JA 🗍 NEE 🗍

RESEARCH INTO BOREHOLES IN THE PORT ELIZABETH MUNICIPAL AREA

THE OWNER/OCCUPIER

PLEASE READ THIS PAMPHLET IF THERE IS A BOREHOLE ON YOUR PROPERTY

The recent extended drought in the Eastern Cape has resulted in a proliferation of boreholes in Port Elizabeth with a corresponding increase in groundwater abstraction. Unless the situation is professionally assessed, the future integrity of the groundwater resource cannot be guaranteed.

Research into groundwater abstraction in Port Elizabeth has been initiated jointly by the Port Elizabeth Municipality and Steffen, Robertson and Kirsten Inc. in a two year project funded by the Water Research Commission. The research will focus on the following main aspects:

* Determination of the number of boreholes in the municipal area;

- * Assessment of the volumes of groundwater abstracted;
- * Monitoring of groundwater quality and assessment of the potential for contamination of the groundwater by sea-water intrusion and the disposal of effluents on the surface.

In order to gather information on boreholes a census form has been printed below this letter and, if you have a borehole on your premises, you are kindly requested to complete the form and return it to the City Treasurer's Department with your monthly municipal services payment or to the City Engineer, P.O. Box 7, Port Elizabeth 6000.

A borehole represents a considerable investment. Your co-operation will be in your best interests to ensure that the groundwater resource can be protected in the long term for all users. Any enquiries that you may have in this regard should be directed to the telephone numbers given below.

City Engineer's Department
Scientific Services Division
(041) 5062333
Enquiries: Mr G Devey

OWNER/OCCUPIED.

Steffen Robertson and Kirsten Inc. (041) 323706 Enquiries: Mr C Langton

BOREHOLE CENSUS FORM

LOCALITY

STREET ADDRESS:	POSTAL ADDRESS:	
SUBURB:	SUBURB:	
CODE:	CODE:	
TELEPHONE NUMBERS:		
RESIDENCE: BUSINESS:	ERF NO.: ERF SIZE:	(m²)
BOREHOLE DETAILS		
DATE DRILLED: / /	CONTRACTOR:	
DRILLED DEPTH: (m) LENGTH OF CASING: (m) TYPE OF CASING: PVC: STEEL:	ВОТН:
CASING PERFORATED: FROM: (m) TO: ((m) REST WATER LEVEL: (m) BOREHOL	E YIELD:
WAS THE YIELD OBTAINED		
FROM: (a) DRILLING RESULTS?: YES NO	OR (b) DETERMINED FROM TEST PUMPING?:	YES 🗌 NO 🗌
	TEST PUMPING CONTRACTOR:	
PUMPING DETAILS		
PUMP TYPE: SUBMERSIBLE:	T: OTHER:	
PUMPING RATE:	ESTIMATED DAILY USAGE:	
DO YOU HAVE A FLOW METER INSTALLED ON YOUR BOREHOLE	ELIVERY LINE?	YES 🗌 NO 🗌
WOULD YOU BE PREPARED TO HAVE A METER INSTALLED AT NO COS	TO YOU FOR THE DURATION OF THE RESEARCH?	YES 🗌 NO 🗌
GROUNDWATER QUALITY		
HAS A SAMPLE OF YOUR BOREHOLE WATER BEEN SUBMITTED FO	DR:	
CHEMICAL ANALYSIS: YES NO MICROBIOLOGICAL	ANALYSIS: YES 🔲 NO 🛄	
SAMPLES ANALYSED BY:		
GENERAL		

ARE YOU PREPARED TO PERMIT ACCESS TO YOUR PROPERTY ON A CONTROLLED BASIS FOR BOREHOLE MONITORING DURING THE PROJECT?

STEFFEN, ROBERTSON AND KIRSTEN Consulting Engineers and Scientists 402 Douglas Murray House Rua Vasco da Gama Foreshore, Cape Town

Box/Bus 6824 Roggebaai, 8012 South Africa

Tel: +27 (21) 21-7182 Fax:+27 (21) 25-4648

191472/4

19 - 20

28 November 1996

Water Research Commission PO Box 824 **Pretoria** 0001

15/510 WATERNAVORSINGSKOMMISSIE TEL. 330-0340 **POSBUS 824** DDD 1996 -12 - 0 3 SION WATERS P.O. BOX 824 15L, 339-0340 PRETORIA

Dear Sir

REPORT: RESEARCH INTO GROUNDWATER ABSTRACTION IN THE PORT ELIZABETH MUNICIPAL AREA

Steffen Robertson and Kirsten are pleased to submit a hard copy and disk copy of the above report, as well as 200 copies of the maps.

We trust that the findings are to your satisfaction and, should you have any queries, please contact us at the above number or Chris Lomberg in Port Elizabeth, at (041)511 911. Thank you.

082 566 3769

Yours faithfully

1 072

P N ROSEWARNE Pr Sci Nat Steffen Robertson & Kirsten

Directors

Professional Engineers: Dr IJA Brackley*, AJ Barrett, SA Dorman, Dr GC Howell, Dr GA Jones, Dr HAD Kirsten, PR Labrum, GP Murray, BJ Middleton, MP Slabbert, CR Speers, Dr TR Stacey, Dr OKH Steffen, HG Waldeck, DA Williams* Professional Scientists: IS Cameron-Clarke, JAC Cowan,

JH de Beer, SJ Posnik, PN Rosewarne*, PJ Terbrugge, DW Warwick Professional Technologist: RJ Stuart*

Financial Director: PE Schmidt CA (SA) *British

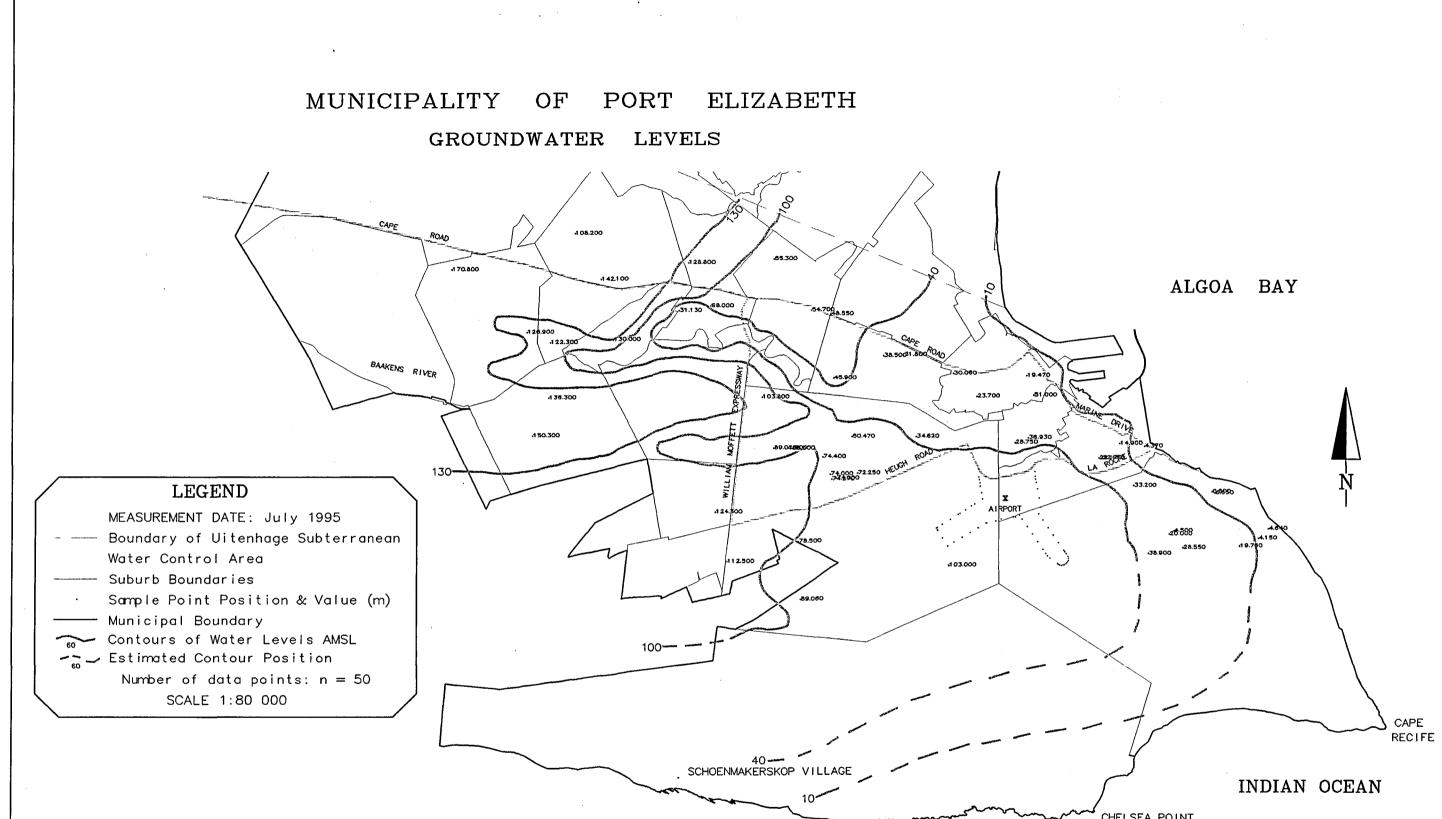
Consultants

DG Krige, PrEng DSc Ding DH Laubscher, CEng PhD H Marker, PrEng DSc Techn KR Müller, DChem GDCh WD Ortlepp PrEng MEng RP Plasket, PrEng MSc(Chem Tech)

Steffen, Robertson and Kirsten Consulting Engineers (Pty) Ltd Reg No 95.12890.07

Branches

Cape Town	(021)	21-7182
Durban	(031)	23-1355
Johannesburg	(011)	441-1111
Pietermaritzburg	(0331)	45-6311
Port Elizabeth	(041)	55-6822

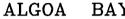

ć		k Z

,			vyy, 3 na mai i niithingoy salamada of Los III oʻlan Altzahad Si
	9 × 1	a she a she a she a she she she she	
		na i nadoni norihi nimin na nama data kata mini mana na ilinin di fana ta magada da na na	L. QE-QD

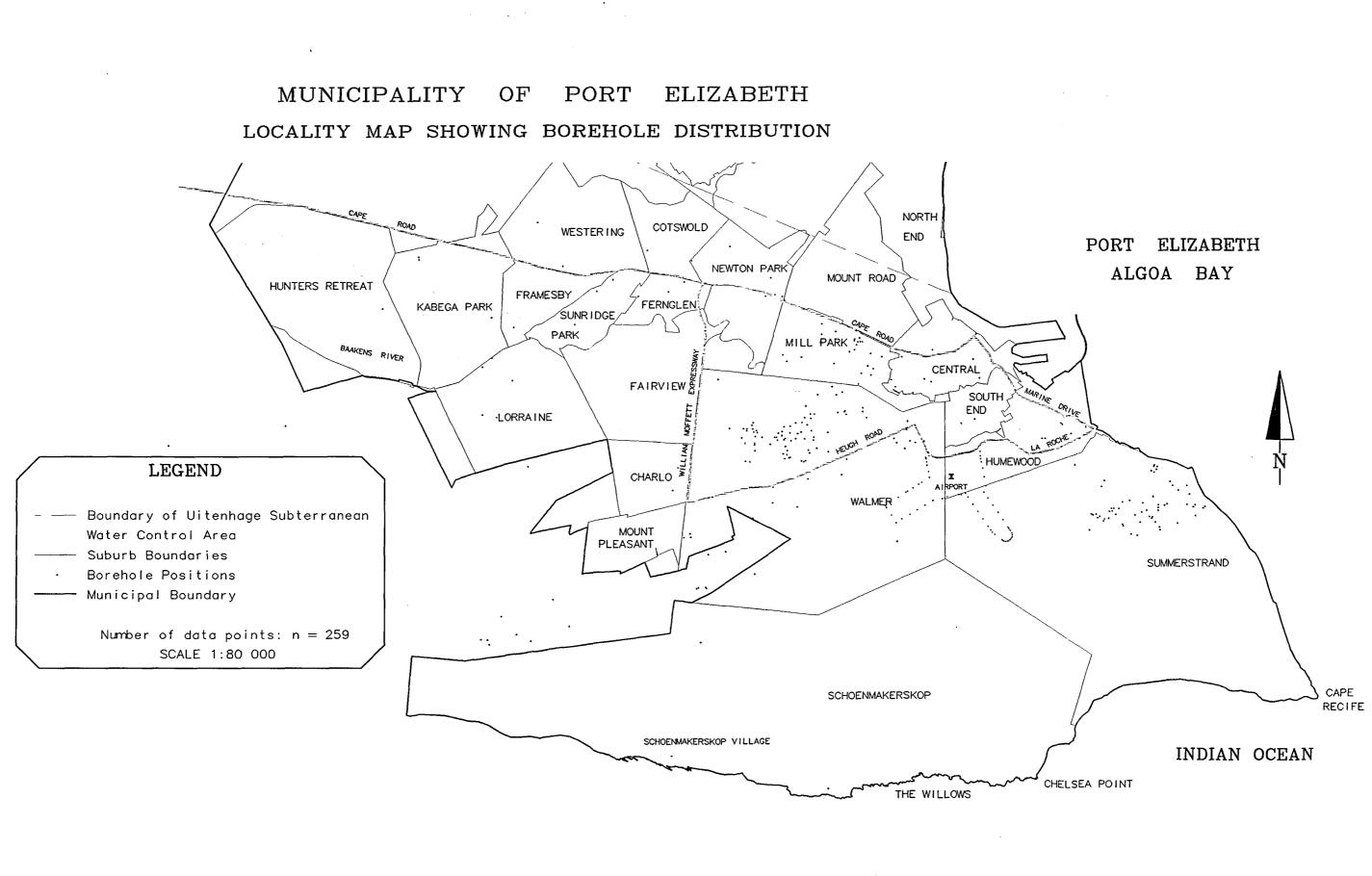
			na da antina da ang katalang katang kata Katang katang
		n fan unterneten en man a son of 2 transformers werk en fan i son of the son werk and the son of the son of the	
			:
a second second second	4 · · · •		
			Reynder
: u: :	1	A STANDARD CONTRACT	oT releA
k			Vervice Ma

•

SELON/SELON


•

THE WILLOWS


33

2

CHELSEA POINT

FIG NO 7

 V_{2}^{*}

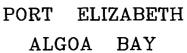
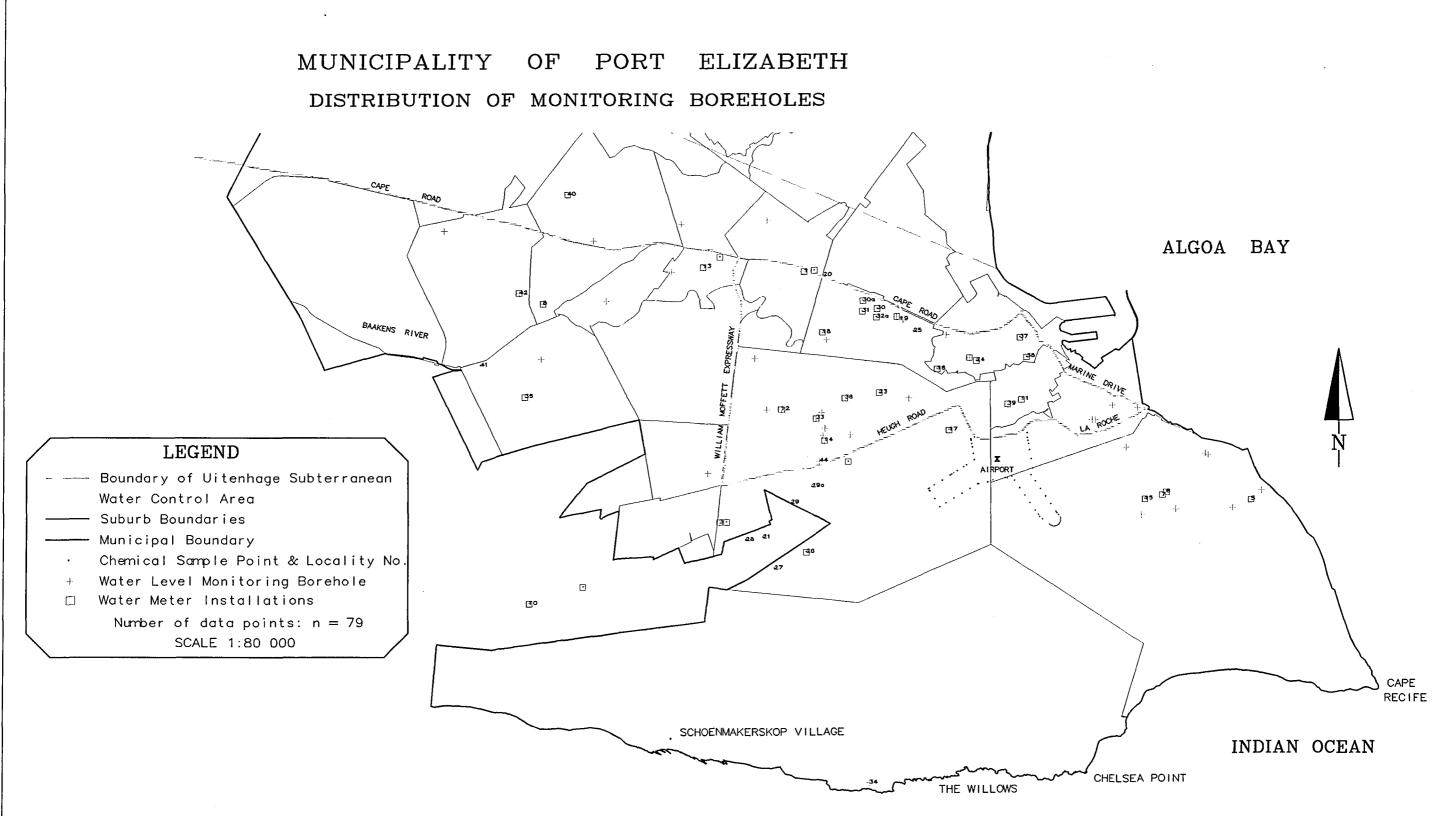
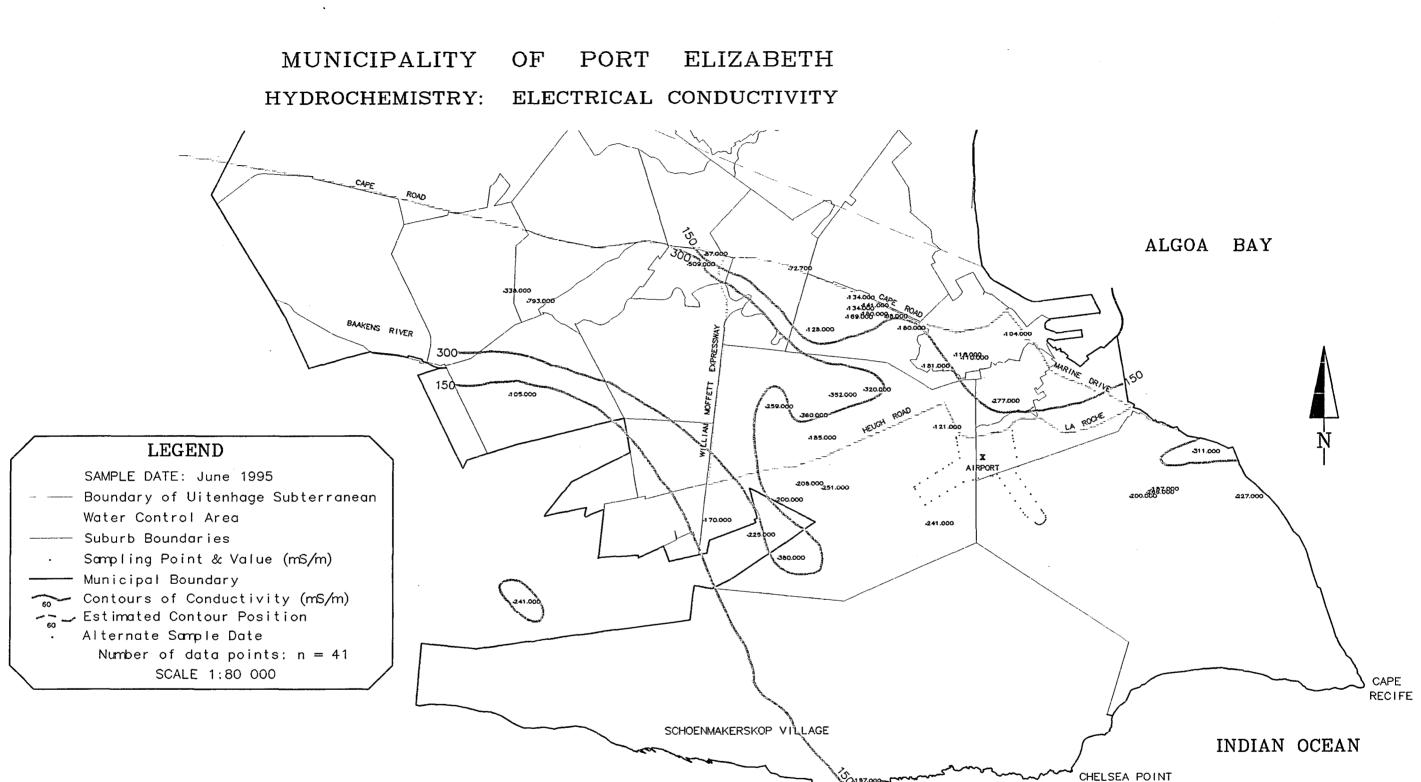



FIG NO

.

•

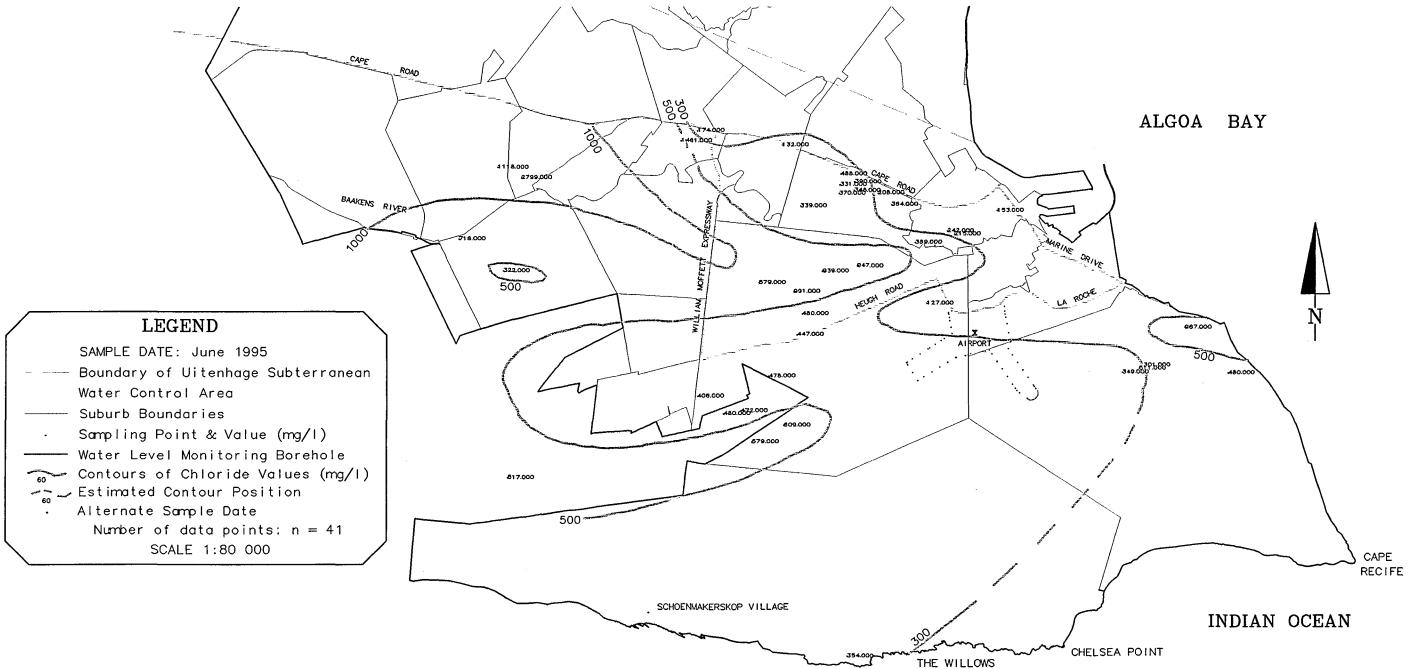

;;

.

.

THE WILLOWS

2-1

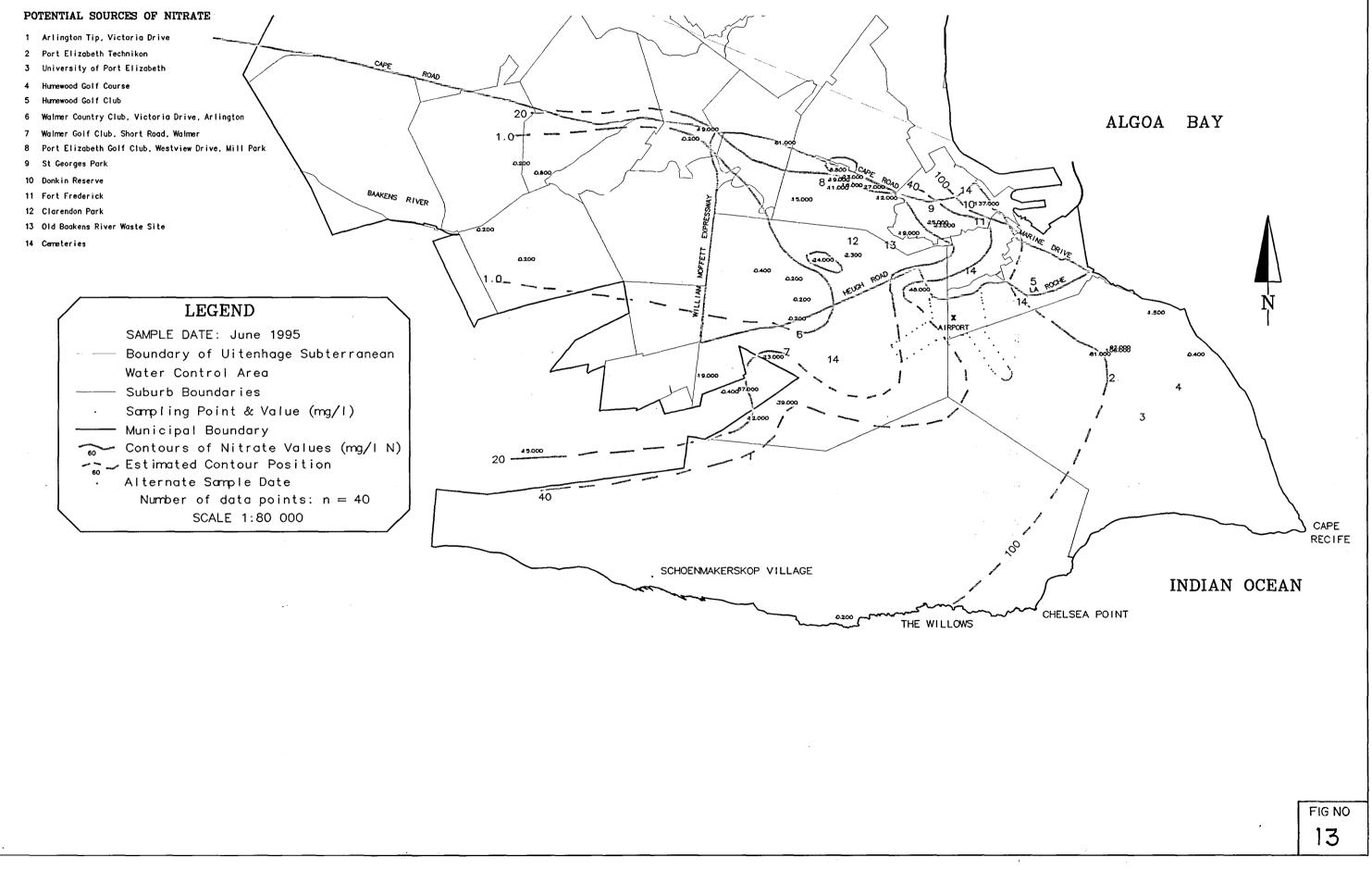


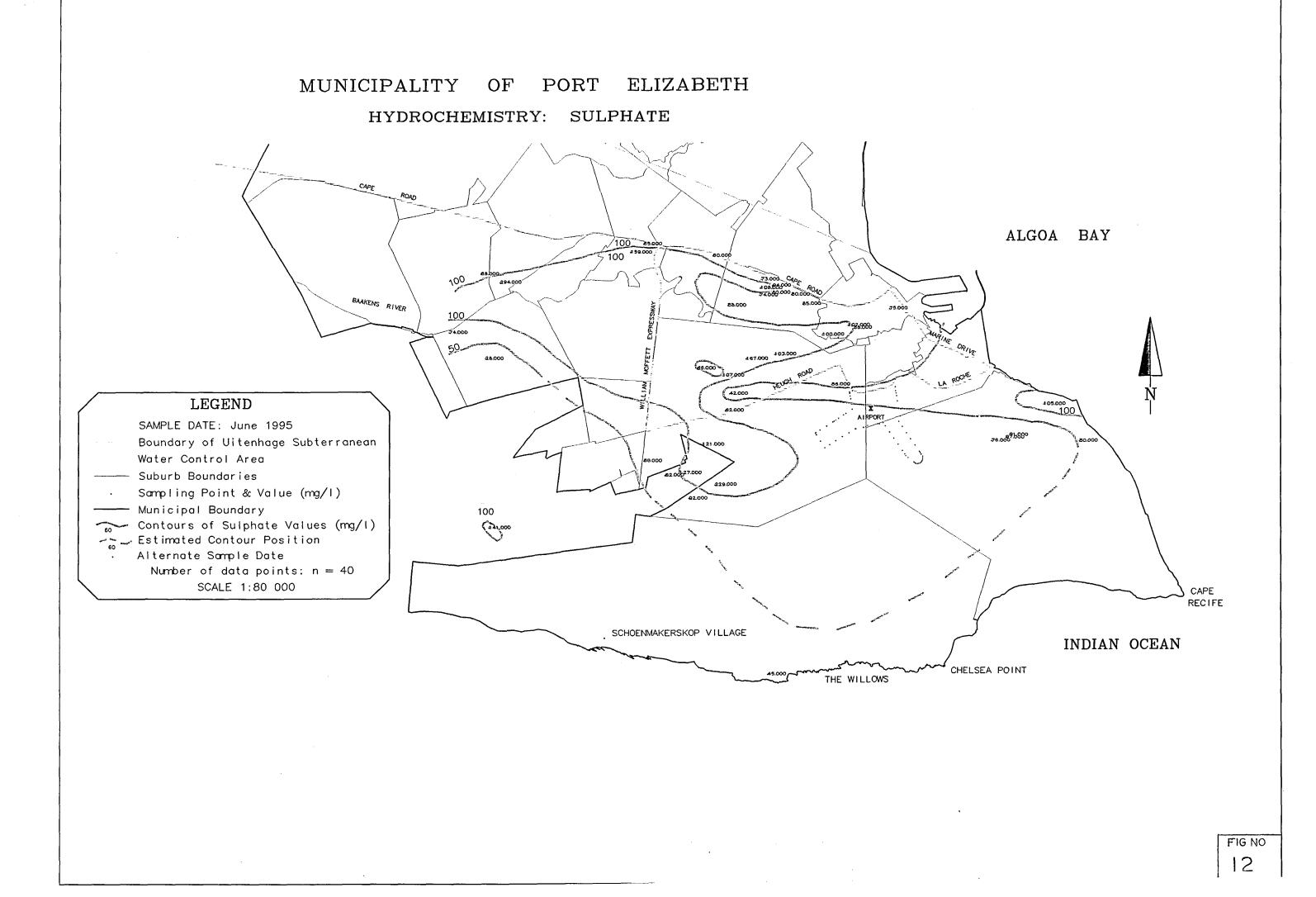
MUNICIPALITY OF PORT ELIZABETH

•

11 2

HYDROCHEMISTRY: CHLORIDE





PORT ELIZABETH MUNICIPALITY OF

43

HYDROCHEMISTRY: NITRATE

The hydrochemical monitoring points were planned to cover as large an area as possible with at least four boreholes in each suburb. Unfortunately, borehole distribution is heavily skewed by socio-economic factors, resulting in a clustered distribution across the city. Forty seven boreholes were finally selected for sampling on a regular basis, with the ratio between private, low usage, and "corporate" boreholes designed to be about 50/50 (Figure 2). In addition, borehole drilling and pump installation companies have submitted groundwater samples to the Scientific Services Laboratories for many years and chemical analyses from these samples have been stored in the database maintained by them.

2.3 Monitoring programme

Monitoring data to be collected included water consumption (abstraction), water levels and samples for chemical and bacteriological analysis.

Water meters were installed from April 1993 by the Water Installation Workshop of the Port Elizabeth City Engineer's Department. Three sizes of water meter were fitted depending on pump capacity and delivery volume. Due to abnormally high workloads, the PEM staff could only complete the installation programme in August 1993.

Once the water meter installation programme was completed, meters were read on a monthly basis along with water levels where possible. In total, some 700 meter readings were taken from 37 boreholes. During the monitoring period, seven boreholes became non-functional for various reasons and this incidence of borehole failure was taken into account when formulating an estimate of annual abstraction volumes from the aquifer.

Seven hundred and forty four borehole water samples were analysed from the 47 boreholes monitored. To spread the workload on the Scientific Services Division Laboratories, analyses were rotated over a cycle of three months. The aim was to get as many "full" analyses as possible during the project period, with partial indicator analyses in between, and the following schedule was established :

 Month 1 - Full physical and chemical analysis for the following determinands : Physical parameters: pH, conductivity, colour, turbidity; Macro determinands: Total Alkalinity, Total Hardness, Total Dissolved Solids; Cations: calcium, magnesium, sodium, potassium; Anions:chloride, bicarbonate, sulphate, nitrate, fluoride;Trace elements:iron, manganese, copper, lead, zinc;Organics:total organic carbon.

Month 2 - Partial analysis covering pH, conductivity, Total Dissolved Solids, chloride, sulphate and nitrate.

 Month 3 - Partial analysis and bacteriological analysis for: Total coliforms;
 Faecal coliforms;
 <u>E. coli I;</u>
 Total bacterial count.

2.4 Database

A data base was developed using DBASE IV which was designed to accommodate information from the census forms. PEM City Engineer's Department maintained a database on Quattro Pro into which monitoring data on borehole water levels and abstraction rates, as well as records of corresponding municipal consumption, were entered. The Scientific Services Division of PEM entered all the results of the hydrochemical analyses on Excel spreadsheets.

The research team was offered a specialised groundwater programme and database, HYDROCOM, which could serve to amalgamate the physical and hydrochemical databases and has the facility to plot relationships between parameters such as water levels, abstraction volumes, rainfall, hydrochemistry and time. Piper and Durov plots can be easily produced to evaluate hydrochemical trends. Because of the amount of data that would have to be re-entered and the incompatibility with other spreadsheets, the research team decided against this option. Instead, all the databases were transformed to the Quattro Pro format which allows easy maintenance, updating, access and manipulation of the data-set for a wide range of interested parties.

13

The database is maintained in two files:

- File 1: This is a physical database which contains 238 entries and lists erf numbers, names and addresses of owners, co-ordinates and information as to borehole depth, yield, abstraction volumes and rates, and water levels. Twenty one other boreholes are recorded but fall outside the perimeter of the study area.
- File 2: This is a hydrochemical database with the results of all the analyses for each borehole over the study period. This can be expanded to include the results of all analyses of borehole water ever conducted by the Scientific Services Division.

At the request of PEM, the two parts of the database are correlated by erf numbers.

PEM undertook to perform the plotting and contouring of hydrogeological data on the Genesis GIS system. Borehole positions are plotted according to the erf number, and not co-ordinates, which creates problems when more than one borehole is present on an erf, the erf size is very large or the borehole does not fall on a municipal erf. As a result not all monitoring points could be plotted by the programme. The distribution of data points is clustered but groups are dispersed and large areas have no boreholes. The software was unable to grid and contour the data set and the maps were contoured manually. The extreme variation in hydrochemical values over short distances precluded a standard contour interval being used and contour values were selected to illustrate regional trends.

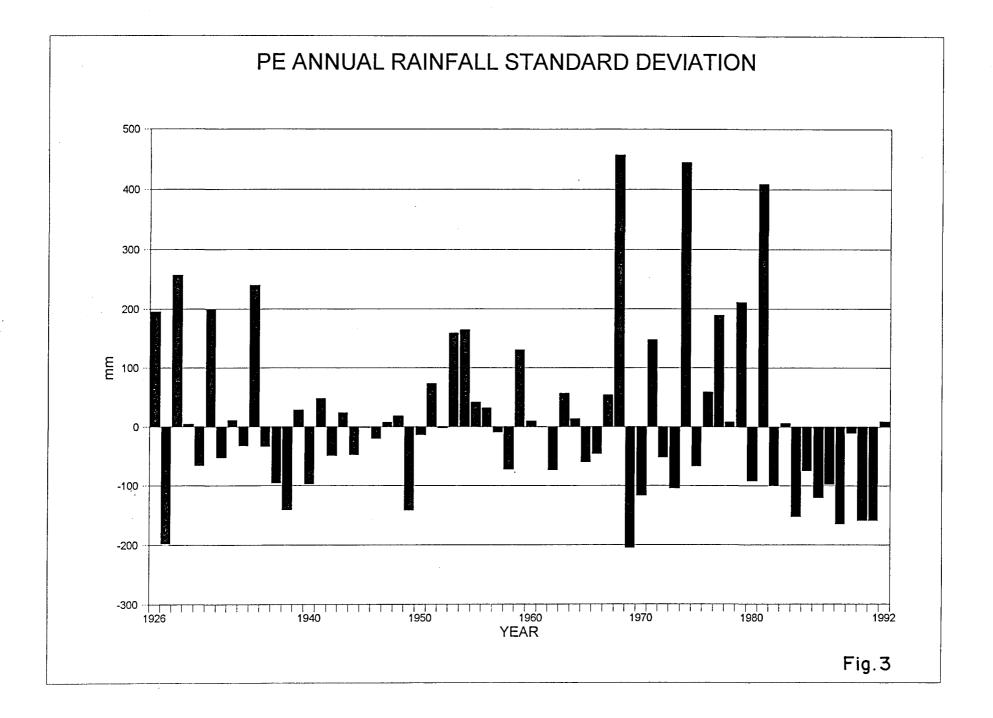
The complete database in Quattro Pro can be saved in a variety of compatible formats and distributed on 3.5" diskette on request.

3 RAINFALL

The rugged mountainous topography resulting from erosion of the resistant TMGS has a strong orographic influence on the rainfall patterns in the Cape Province and particularly the SE Cape coast. Some of the highest annual precipitation in South Africa occurs on these mountain ranges, with up to 2 400 mm/pa on mountain peaks. This rainfall and extensive outcrop ensures a ready supply of recharge in all but the driest years. However, Port Elizabeth's rainfall tends

to be atypical and highly erratic, and references to "drought" years are frequent. The definition of "drought" varies, but is generally accepted a period in which rainfall is half the annual average over any 12 months. More specifically, drought in the Eastern Cape has been defined as rainfall below -0.5 times the standard deviation for more than nine consecutive months over a catchment area (Jury and Levey, 1993). A plot of the standard deviation from the mean monthly rainfall averages (Figure 3) shows that references to monthly and annual averages are less meaningful than the "likelihood of occurrence". The table below shows that over the last 10 years, exceptionally low rainfall has reduced the mean annual average, calculated from the records dating back to 1926, from 672mm to 611mm.

YEAR **RAINFALL** mm/a 1926 - 1982 672 Average 1926 - 1992 611.2 Minimum 1969 406.3 Maximum 1968 1068.9 **Standard Deviation** 1926 - 1992 139.9

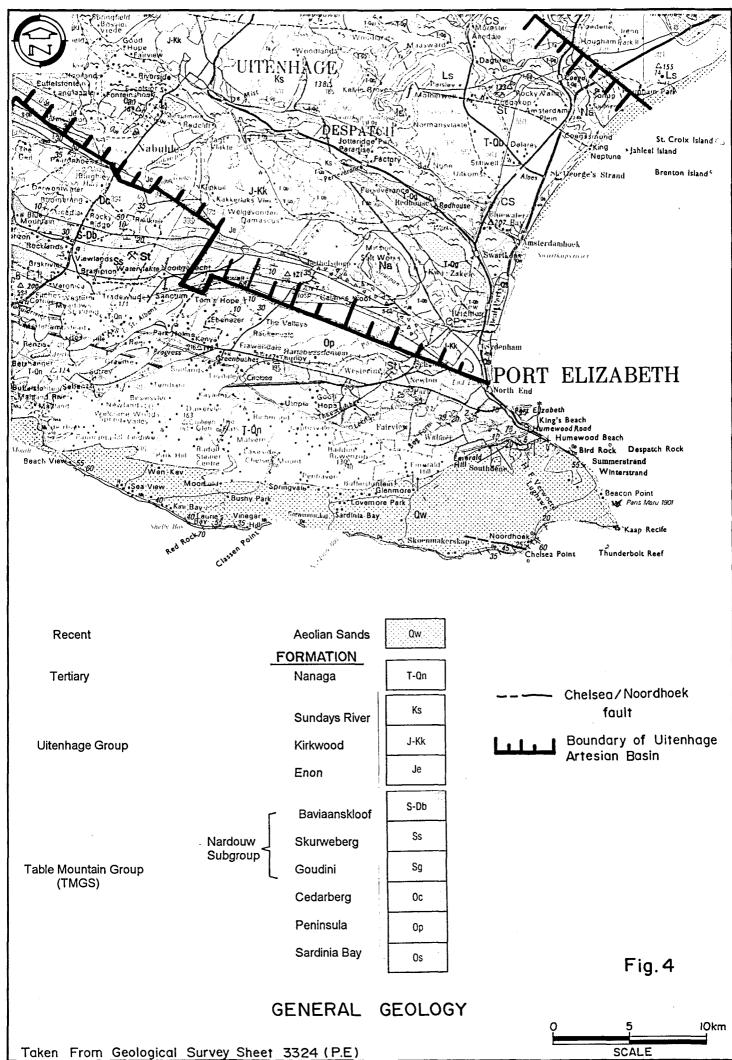

TABLE 2: SUMMARY OF PORT ELIZABETH RAINFALL STATISTICS

4 **GEOLOGY**

The geological succession in the Port Elizabeth area comprises the following:

Tertiary to Recent {	Aeolian sand Nanaga Formation
Uitenhage Group {	Sundays River Formation Kirkwood Formation Enon Formation
Table Mountain Group	Nardouw Subgroup Peninsula Formation Sardinia Bay Formation

The Sardinia Bay Formation is a predominantly arenaceous sequence of rocks comprising thin to medium bedded quartzitic sandstone with interbedded shale. The formation outcrops along the coast from west of Skoenmakerskop to about 1.5 km west of the Willows and has a total


thickness of about 950 m in this area. The boundary with the overlying Peninsula Sandstone Formation is gradational, being taken where shale becomes subordinate in the sequence.

The Peninsula Sandstone Formation (PSF) is aerially, stratigraphically and topographically the most prominent member of the Table Mountain Group (TMG) and consists of medium to coarse grained, generally massive, quartzitic sandstones. The formation is exposed along the coast from the Willows to Cape Recife and in the central and northern areas of Port Elizabeth. In the Willows - Chelsea Point area the sandstones strike in a northwest-southeast direction, dipping at 25° to 45° to the north-east.

The Nardouw Subgroup comprises three sandstone formations which are limited to the northern part of the study area. Along the northern boundary of the study area the resistant sandstones form an escarpment where they dip under Cretaceous formations of the Algoa Basin, while to the south, the sandstones form an elevated wave-cut platform.

The Uitenhage Group rocks consist of mudstones, conglomerates and subordinate sandstones and outcrop to the north of the study area.

Port Elizabeth is situated at the eastern extremity of outcrop of the TMGS on a northwestsoutheast trending anticlinal structure, which forms part of the southern limb of the Cape Fold Belt (Figure 4). Booth and Shone (1992) have identified two major fault zones in the TMGS, the Chelsea-Noordhoek Fault in the south and Moregrove Fault in the north. Between these faults they postulate a recumbent fold with numerous thrust planes in a graben structure to account for the excessive thickness of the PSF in the area. The inland extension and trend of the Chelsea-Noordhoek fault, as postulated by Booth and Shone, is based on field observations along the coastal outcrop. A photo-lineament trending west-northwest from the coast, which can be traced for 2 km inland, may be associated with this fault zone (SRK 1993). The Cedarberg Shale Formation, which is normally present between the PSF and Nardouw Subgroup, is absent, probably due to pinching out as a result of thrusting and folding (Shone *op cit*).

Much of the southern part of the wave-cut platform that forms the Cape Recife headland is covered by a mantle of Tertiary to Recent age deposits. The Nanaga Formation is a consolidated aeolian sand or dune rock, which is calcareous due to the presence of numerous shell fragments. The formation is relatively resistant to weathering and forms topographic highs, e.g. Lovemore and Walmer Heights. Recent unconsolidated aeolian sand forms longitudinal sand dunes with crests trending east-northeast, west-southwest. Calcrete layers are commonly developed within the sand.

5 HYDROGEOLOGY

5.1 Aquifer definition

The rocks and sediments described above can be classified into two broad aquifer types. The TMGS form secondary aquifers in which groundwater flows and is stored within fractures such as joints, bedding planes and faults. The Tertiary to Recent sands are primary aquifers in which groundwater flows and is stored in interstices within the constituent sand grains. Rocks of the Uitenhage Group are not classed as aquifers within the study area due to their generally low permeability and poor water quality.

Primary Aquifer

The area covered by the Tertiary to Recent deposits is large, but little is known about their thickness or aquifer potential. At St Francis Bay, which is in an equivalent hydrogeological setting, sand thickness varies widely due to the sub-outcrop of more resistant TMGS. Softer formations have been denuded by wave action and the sand cover varies from zero to over 40 m in thickness. Shallow pit profiles at Arlington revealed a soil profile to 3.3m of medium grained aeolian sand with widespread calcrete development. No seepage was observed within these pits.

The coastal sands underlying Summerstrand and Humewood are more recent in age and contain a greater element of shelly beach sand. With a greater coarse grained sand fraction, less calcretisation and compaction, they are likely to have higher aquifer potential. The Recent sands have high infiltration potential and internal drainage of rainfall takes precedence over surface runoff, thus reducing losses due to evaporation and enhancing recharge volumes. Most of the sand covered area is free of residential development, although the dunes have been stabilised by alien vegetation such as Rooikranz and Port Jackson, increasing losses due to evapotranspiration.

None of the boreholes recorded in the database pump water from the sands in the Walmer, Arlington and Kragga Kamma areas. Reasons for this might be that the sands are unsaturated or it is easier and cheaper to construct a borehole in the TMGS and rely on the upper sands to store groundwater and recharge the fractured rock.

Secondary Aquifer

There are a number of features that contribute to the TMGS being a major aquifer within the context of the generally limited potential of the secondary 'hard rock' aquifers in South Africa. These indicators are:

- Large areal extent and great thickness;
- Extensive fracture development;
- High rainfall and therefore recharge potential;
- Good quality groundwater.

The TMGS outcrop over a large part of the Cape Province and attain great thicknesses, e.g. Peninsula Sandstone Formation 1 550 m, and Nardouw Subgroup 500 m. The TMGS form one of the major secondary aquifers occurring in South Africa and the local towns of Uitenhage, Humansdorp, Jeffrey's Bay and St Francis Bay all use groundwater from this aquifer for domestic purposes, as do other towns such as Ceres, Calitzdorp, Citrusdal and Albertinia. In the Port Elizabeth area these rocks have been intensely folded to form a series of NW-SE trending synclines and anticlines, and associated thrusting has resulted in an increased thickness of the PSF. Consequently, the rock mass is highly bedded and fractured resulting in the development of a network of secondary structural discontinuities. The secondary fractures form the conduits through which groundwater flows and is stored and give the otherwise impermeable rock its favourable aquifer characteristics.

Groundwater contained in the TMGS is usually among the best in quality in South Africa in terms of dissolved salts, as the sandstones mainly comprise silica and contain little in way of soluble salts. Problems can arise with the low pH and unbuffered water corroding steel and concrete, and deposition of iron compounds in pipes.

While groundwater is not a source of municipal water supply to Port Elizabeth at the moment, the TMGS within the surface water supply catchments of Port Elizabeth, which stretch beyond the Humansdorp area, are a strategic regional resource which should be incorporated into the City's water supply planning in the future. It has been proposed to the Municipality that boreholes drilled into TMGS aquifers, where traversed by existing surface water supply pipelines, could prove a cost effective way of augmenting the municipal water supply. Estimates of sustainable delivery of such a system range between 200 and 600 ℓ /sec. Groundwater protection within this area is therefore an important factor in land-use planning.

5.2 Present distribution of boreholes

There are two primary controls on the distribution of boreholes, the most important of which appears to be socio-economic status, while geological and hydrogeological factors are of secondary consideration. Although not all boreholes within the study area were located in the census, the borehole distribution and density recorded is considered to be representative of borehole occurrence in the area. Beyond the municipal reticulation network, in areas such as Sardinia Bay, Kragga Kamma Road and Theescombe, rainwater tanks and groundwater are the only supply options. Several boreholes are found in these areas, some of which have been included in the database. Table 3 gives a breakdown of the number of boreholes in the database by suburb.

Walmer and Summerstrand show the highest concentration of boreholes. Together these suburbs account for 65% of boreholes and the distribution drops off dramatically moving away from these areas.

It is apparent from driller's records that new boreholes are sunk primarily in response to drought conditions. Between 1983 and 1992 properties with larger gardens were suffering under both drought conditions and municipal water restrictions and there was a dramatic

increase in the number of private boreholes in PE. With a depressed economic climate and escalating costs of drilling and pumping equipment, it was only the upper socio-economic groups who could afford the installation of a borehole.

SUBURB	TOTAL BOREHOLES	PERCENTAGE
Central	13	5
Fernglen	3	1
Humewood	8	4
Kabega	3	1
Lorraine	5	2
Mill Park	25	11
Newton Park	7	3
Summerstrand	60	25
Sunridge Park	3	1
Walmer	96	41
Sub Total	223	94
Others	15	6
TOTAL	238	100
Boreholes outside Municipal area	21	

TABLE 3 - BOREHOLE DISTRIBUTION BY SUBURB

(Only suburbs with \geq 3 boreholes are listed.)

Borehole water use is still considered secondary to municipal water use, which is reflected in the number of out of commission or unused boreholes. Expense on maintenance is considered unnecessary until the next drought threat materialises. In many cases, groundwater quality is so poor that people have a negative attitude to groundwater use and the ownership of boreholes is not considered desirable.

Almost all the boreholes in the study area have been drilled by two or three local contractors. However, none are dependent on local work as the demand is neither reliable nor steady. Enquiries with these contractors reveal they have not drilled a private borehole in the municipal area since 1993.

5.3 **Borehole characteristics**

Construction

Borehole construction is usually simple, with casing through the upper sands and weathered rock, and the competent TMGS left uncased. Drilling conditions in steeply dipping TMGS can be very difficult and deep boreholes (>100m) can take weeks to complete. In many boreholes, the casing installed was insufficient resulting in collapse and loss of the borehole and pumping equipment within two years. In others, collapse has resulted from weathering of the wall rock during cycles of oxidation and saturation induced by pumping. The result is that an unacceptably high number of successful boreholes are redundant because of poor construction and collapse.

Depth

Average drilling depths in all areas except Summerstrand tend to be between 60 and 120 m, implying fairly deep water strikes in the fractured rock aquifer. The depth of these water strikes indicates that the boreholes are not supplied from saturated upper sands. The majority of boreholes in the Walmer and western suburbs of the study area record a water level less than 15 m below ground level. In the Summerstrand and Humewood coastal belt, drilling between 30 and 60 m in depth results in average yields of between 1 and 5 m³/h. Figure 5 shows the yield versus depth relationship for 91 boreholes. The minimum drilling depth of a borehole on record along the coastal belt is 20 m and the maximum, is 90 m. Borehole yield characteristics indicate a typical fractured rock distribution despite the mantle of permeable sands.

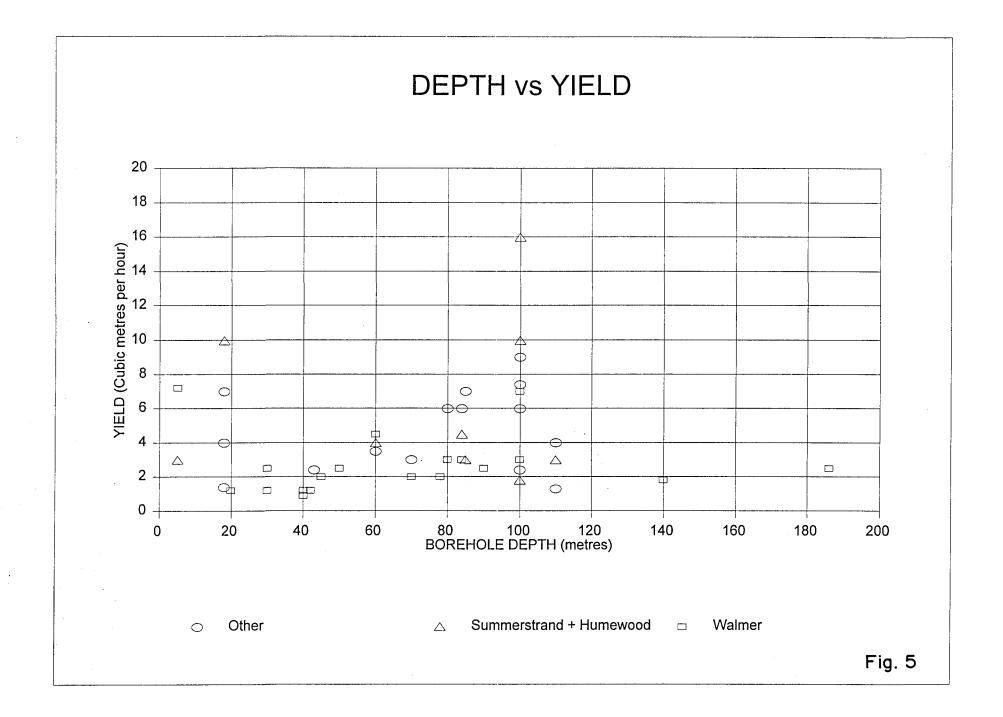
Yields

In the context of water requirements for garden irrigation and other domestic uses, the success rate of boreholes drilled is high. The high density of functional boreholes in Walmer and Summerstrand indicates that, even without the benefit of geophysical borehole siting techniques, success is guaranteed. Table 4 shows individual borehole yields rarely exceed 12 m³/h and yields of between 1 and 5 m³/h are normal. Continuous sustainable yields have been proven up to 8 m³/h at the PE Golf Club.

Yield range (m ³ /h)	<1	1 to 5	5 to 10	> 10
Frequency	1	60	27	3

TABLE 4 :FREQUENCY OF BOREHOLE YIELDS

More than half the boreholes on the depth vs yield plot (Figure 5) are deeper than 80m. The chances of a yield above 5 m³/h are greatest between 80 and 120 m, although the majority of boreholes only yield between 1 and 4 m³/h. "Dry" boreholes have been reported. To the north-west outside the study area, the incidence of unsuccessful boreholes increases, as do the chances of yields in excess of $10m^3/h$.


The data indicate that the TMGS aquifer in the PEM area is relatively low yielding when compared to TMGS aquifers elsewhere. Boreholes in the adjacent USWCA, which tap the TMGS at depth below the Uitenhage Formation, deliver exceptional yields in the order of 20 to $100m^3/h$. Yields at St Francis Bay, Jeffreys Bay and Humansdorp are in the range 7 to 50 m³/h from depths of 60 to 90 m, while at Ceres, yields range from 20 to 45 m³/h, from depths of 120 to 150 m. In the latter two examples, the boreholes are tapping the Nardouw Subgroup sandstones, which appear to be more productive than the PSF.

Pumping equipment

Almost all boreholes are equipped with submersible pumps and electric motors. These installations are favoured in urban areas because they can be concealed, make no noise, are entirely automated and are the cheapest to buy, install and run. They require little maintenance but are subject to excessive wear by sand or particulate matter in the water. The relatively high incidence of pump failure is unusual and attests to the indifferent attitude of borehole owners to their groundwater resources.

5.4 Groundwater abstraction and use

Much of the groundwater demand is socio-economically controlled, with the water being used for maintaining gardens and other activities where potability is not a criteria. A minor quantity is used for human consumption and only in those areas where municipal water is not available. As a result, abstraction volumes peak in dry weather and particularly when restrictions are imposed by means of tariff penalties for "excessive" municipal consumption.

•.

Water restrictions were first introduced on 22 February 1989. Due to good rains in the catchment areas of the supply dams in November 1989 restrictions were lifted on 22 November 1989. However, the drought continued and restrictions were again introduced on 29 April 1991. High rainfall in October and November resulted in all restrictions being lifted on 2 December 1992. It should be noted that, for this project, the rainfall figures used are those of the gauging station at Port Elizabeth airport and are not the rainfall figures of the catchment areas of the supply dams. It was the available storage capacity in the dams that determined the level of water restrictions which were implemented in stages. An analysis of the situation conducted by consultants after the drought established that it was a one in a two hundred year drought return and was one of the most severe in history.

In the majority of average and above average rainfall months, abstraction is minimal as groundwater quality is considered generally inferior and municipal water relatively cheap. Records show that, for the majority of borehole owners, groundwater is used and considered as an emergency supply source only.

The proliferation of boreholes tapping the aquifer between 1989 and 1992 does not necessarily represent higher sustained abstraction rates but rather the potential for high demand pulses to be imposed on the aquifer. The ability of the TMGS aquifer to cater for this type of demand pattern has been proven, within reason, in the coastal resort towns along the south-west Cape coast, which rely on groundwater for their water supply. Many of these towns specifically manage their groundwater resources to accommodate the skewed water demand imposed by the influx of tourists over the summer season.

• Private boreholes

Of the 238 boreholes in the database, 216 are located on private property. Twenty five boreholes were initially metered, but only 20 can be used to assess the representative volume of groundwater abstracted. Table 5 gives a breakdown of abstraction over the study period.

From the 20 boreholes an annual volume of 20486 $m^3/annum$ is abstracted. With the 216 private boreholes recorded estimated to represent 85% of private boreholes in the study area, the total volume abstracted annually from private boreholes is calculated by simple proportion as:

$$\frac{216}{0.85 \text{ x } 20} \quad \text{x } 20 \text{ 486 m}^3 = 260 \text{ 292 m}^3/\text{annum}$$

Location	Total Abstraction (m ³)	Period (days)	Total Annual Abstraction (m ³)	Erf Size m ³
98 Verdun Road	5 547	660	3068	16184
78 Kabega Road	26	707	13	1907
5 Norland Close	155	790	72	1849
308 Kragga Kamma Road	data unreliable	· · · · · · · · · · · · · · · · · · ·		3684
12 West Street	2 358	790	1089	1606
47 Wychwood Road	2 475	790	1144	1190
8 Hallack road	4 752	783	2215	4214
8 Mill Park Road	3 372	781	1575	2078
14 Thames Road	1 126	780	527	1218
3 Whitney Street	1 095	790	506	2201
12 11th Avenue	1 684	408	1506	2146
6 Club Road	1 295	761	621	1983
64 Short Road	794	765	379	3780
10 4th Avenue	502	780	235	1707
10 Idlewylde Cresent	5 519	788	2556	5788
12 Newcombe Avenue	4 156	790	1920	14182
*Sardinia Bay (Stone)	8 333	769	*3955	.
*Sardinia Bay (Danoher)	30 658	829	*13498	-
21 Admirality Way	220	765	105	1740
10 Bullbring Road	1 066	776	501	1104
68 Winchester Road	2 193	776	1031	1620
5 Kolbe Cresent	2 334	739	1153	1700
74 River Road	not operable			2911
15 Cosmos Street	111	150	270	1685
17 Victoria Park Drive	not operable			765
20 Boreholes	40780 m ³		20 486m ³	

TABLE 5 : METERED ABSTRACTION FROM PRIVATE BOREHOLES

* Denotes boreholes not considered for abstraction calculations

Including the percentage of boreholes that became inoperable as being representative of the general incidence of failure in the area, this total is modified as follows:

$$\frac{216}{0,85 \times 22} \times 20 \ 486 \ m^3 = 236 \ 629 \ m^3/annum$$

Corporate boreholes

Ten percent of boreholes in the PEM area are classified as corporate. These include business premises, schools, parks, golf courses and the like. Twenty three were identified in the database of which 13 were monitored. Of these, one collapsed, one pump failed and one is disused. This incidence of failure is higher than for private boreholes and is attributed to the lack of a responsible person in charge of borehole maintenance. The sample size is relatively small and 15% is considered to be a more representative figure for incidence of failure. Table 6 overleaf, gives details of groundwater abstraction from corporate boreholes.

From Table 6 it can be seen that an average annual volume of 60 884 m³ was abstracted from the 10 boreholes during the study period. The calculated average abstraction at PE Golf Course is conservative as metering has shown they use about 75 000 m³ per year. Taking this into account, the volume abstracted from the metered boreholes is 92 582 m³. If the total volume abstracted annually from corporate boreholes in the study area is calculated by simple proportion as with the private boreholes, a figure of 213 650 m³ is obtained. This is heavily skewed as, with the exception of PE Golf Club, Telkom, Victoria Park and Crusader Club, the corporate use of groundwater is negligible. Allowing for the two other major corporate users in the area ie. Walmer CC and Arlington Race Course, an order of magnitude figure of total corporate abstraction is estimated to be no more than 150 000 m³/annum.

29

Location	Total Abstraction (m ³)	Period (days)	Annual Abstraction (m ³)
PE Golf Club			
No 1	38 400	763	18370
No 2	35 167	762	6845
No 3	16 907	763	8087
No 4	borehole collapsed		
Telkom	1 475	722	746
Clarendon Park School	337	748	165
Victoria Park	24 766	746	12 085
Fort Frederick	9	760	4
Donkin Reserve	15	736	7.5
St George's Park	borehole not working		
Crusaders Club	6 197	753	3004
King Edward Park	borehole not required		
Fedlife Building	241	56	1571
10 boreholes	123 514	680,9	60884

 TABLE 6:
 METERED ABSTRACTION FROM CORPORATE BOREHOLES

Combining figures for corporate and private abstraction, total annual groundwater abstraction in the PE municipal area is estimated to be of the order of 387 000m³.

• Impact on municipal water use

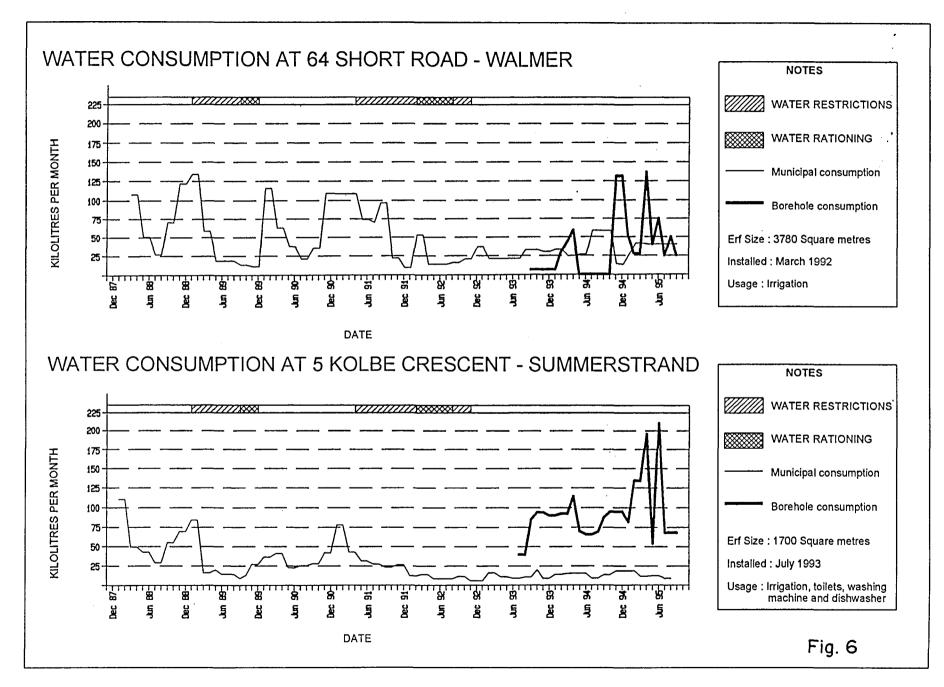
From the estimates given above, the annual volume of groundwater that is abstracted is approximately $387\ 000m^3$. Table 7 below shows that this volume forms less than 1% of total municipal consumption since recent incorporation of black residential areas.

Source	1992/93	1993/94	*1994/95
Municipal (Ml)	28 915	32 336	50 114
Groundwater (Ml)	370	370	370
Percent	1.3	1.1	0.74

TABLE 7: ANNUAL WATER CONSUMPTION

* Includes incorporation of the former Ibhayi, Motherwell, Kwadwesi and Kwamagxaki areas.

This low percentage is due mainly to the small proportion of properties with boreholes compared to those served by municipal reticulation. The percentage of groundwater to municipal water use where a borehole is present appears to be high from the two sites where both sets of data are available. These results are presented in graphical form in Figure 6.


At 5 Kolbe Crescent, Summerstrand, borehole water is used for irrigation and household appliances such as the dishwasher, washing machine and toilet cisterns. Once the borehole was installed in July 1993, municipal consumption dropped dramatically and has remained consistently low, on average only between 10 and 20% of total monthly consumption. A rough calculation indicates a reduction of about R2 000 per annum for this user, excluding borehole installation and running costs.

At 64 Short Road Walmer, groundwater is used solely for garden irrigation, partly due to a high iron content making it unsuitable for any household application. As a result, groundwater demand is seasonally driven with typical abstraction peaks in summer. At these times groundwater accounts for up to 75% of total consumption but typically more than 50%. The saving to this user is about R1 200 per annum at current rates but is significantly more during dry years and times of rationing.

Because the borehole distribution is socio-economically controlled, the more affluent people who have the highest per capita daily water demand have the opportunity to make the greatest savings on their water account.

Abstraction volumes have increased since the beginning of the drought in 1983 and peaked in 1992. After the drought and during the monitoring period when "normal" rainfall resumed, many borehole owners allowed their boreholes to fall into disrepair or stopped using them, as the water quality was poor and they are not solely dependent on groundwater. However, many owners do use groundwater as an ongoing part of their consumption, particularly for garden irrigation purposes.

During dry periods additional borehole owners resume abstraction principally to save money. This results in a saving of municipal water which becomes available to other users during times of drought. In this way, boreholes within PEM boundaries that are privately owned are, to a degree, an extension of PEM water resources.

Of interest is the effect of municipal water restrictions and water rationing on the user. The Kolbe Crescent site shows that after the lifting of restrictions and rationing, and prior to the installation of a borehole, municipal consumption remained well below the previous average monthly consumption. As soon as the borehole was installed, the total consumption levels increased beyond those previously recorded outside of restriction periods. This indicates that people adapt to conservative water use when restrictions are initially imposed, but as soon as the water is perceived as "free" or strategically unimportant, consumption volumes are unimportant.

The potential impact on municipal water sales can best be illustrated by a large groundwater consumer like PE Golf Club. An annual consumption of 75 000 m^3 of groundwater for irrigation replaced a similar volume bought from the municipality. At current rates this saves the golf club about R135 000 per annum but costs approximately R11 000 to pump.

The total cost of groundwater use to the municipality in terms of lost revenue, based on an annual abstraction of 390 000 m³ at R1.80 per m³, is therefore R702 000 at July 1995 prices.

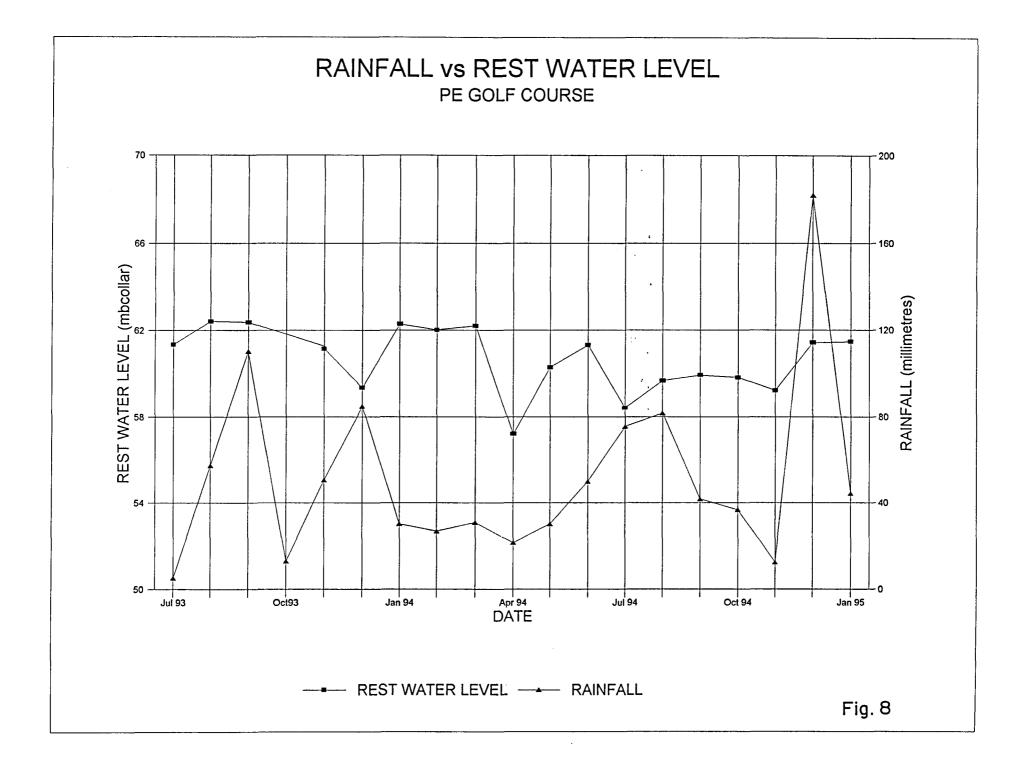
5.5 Groundwater levels

A groundwater contour map has been drawn-up from the water levels measured in July 1995 (Figure 7). The contours indicate a natural hydraulic gradient along geological strike from north-west to south-east, towards and across the study area. This reflects the enhanced permeability along strike, with bedding and thrust planes being the principal flow conduits. Exceptionally steep groundwater gradients are maintained across geological strike. This is typical of the TMGS aquifer and mirrors conditions at St Francis Bay and in the Hex River Valley.

The contours indicate that the Baakens River intercepts and drains water from the aquifer and may play an important role in limiting the spread of high conductivity groundwater from the north-west into the Humewood and Summerstrand areas. To the north of the study area, the TMGS is covered by a thick sequence of Tertiary and Cretaceous mudstones. This has generated artesian conditions in the Uitenhage Basin and the groundwater contours indicate that the hydraulic head in this basin pushes groundwater to the south-east and south.

Groundwater levels monitored over the study period show that no significant regional fluctuations of the water table have occurred besides localised drawdown due to pumping. There is no meaningful correlation with rainfall due to the latter's erratic pattern. In general, levels have remained remarkably stable, and without accurate water level data from 1991 and 1992, it is not possible to ascertain the effect of the 'drought' years and increased abstraction on water levels.

The largest monitored user of groundwater is PE Golf Club which uses groundwater for all its irrigation requirements. Three of the four boreholes have been pumped consistently over the last three years. Water levels monitored in the non- pumping borehole indicate that pumping water levels have reached equilibrium at around 58 m below collar and the cone of drawdown is relatively stable. Figure 8 shows water level fluctuations compared to rainfall and abstraction over the study period. Water level measurements were complicated by automated pumping systems and *ad hoc* pumping by major users, which made planning for monitoring difficult.


The presence of the overlying primary aquifer is thought to buffer the effects of both rainfall and pumping on groundwater levels. This is a result of the ability to store and release large volumes of water per unit rise or fall in the water table.

5.6 **Groundwater chemistry**

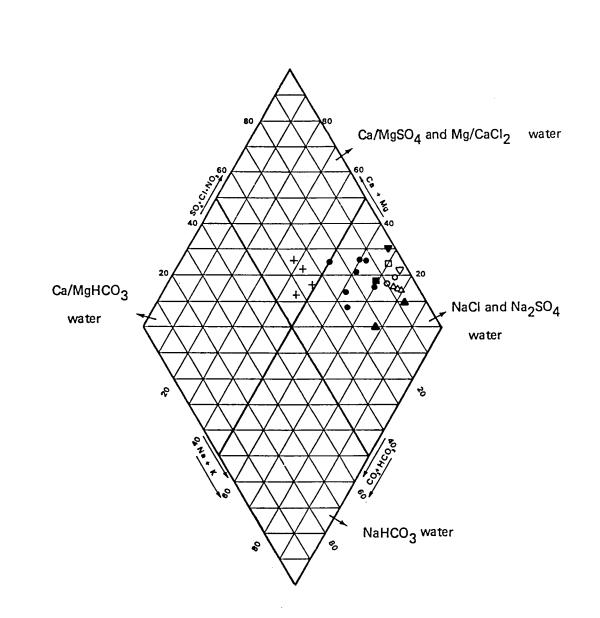
Groundwater chemistry is firstly discussed in terms of general water types followed by sections on contamination and seawater intrusion.

5.7 Overview of groundwater quality

The database contains over 700 chemical analyses presented in Appendix B. To simplify matters, the average analytical values for each constituent over the entire monitoring period have been used for general discussion on water quality characteristics. The average analyses from 47 boreholes representing all suburbs have been plotted on a Piper Diagram, to enable classification of groundwater types and determine evolution patterns, if any.

With reference to the Piper Diagram (Figure 9) it can be seen that groundwater from the central and inland suburbs is all of a sodium chloride type, particularly north of the Baakens River. Groundwater from the Summerstrand area has a greater $Ca/Mg HCO_3$ component, which is due to the influence of the lime rich coastal sands. This could indicate that boreholes are tapping the primary aquifer directly or that a component of the secondary aquifer groundwater is derived by leakage or direct rainfall percolation from/through the sand.

Although water types are consistently within the above two categories, there is a large spatial range in electrical conductivity and individual constituents within the sodium chloride type. This is discussed further in Section 5.7.2.


There are also significant time variations in water quality within individual boreholes, as shown by the high values of standard deviation for many constituents, although some are skewed by one analysis, which in many cases was the first of the monitoring period.

The time variations do not appear to be seasonally related, with each borehole having its own pattern. Fluctuations also appear to be above and below a fairly constant level, with concentrations at the start and end of the monitoring period not being significantly different. One exception is the Fedlife borehole, which has shown a continual increase in chloride concentration from 100 mg/ ℓ in June 1993 to 500 mg/ ℓ in February 1994, although this is based on a small number of samples.

The groundwater generally complies with SABS 241-1984 upper limits for domestic water use, with some exceptions, including chloride, nitrate and iron.

5.8 Groundwater contamination

Groundwater from TMGS aquifers in undeveloped mountain catchments ranks among the lowest in electrical conductivity in South Africa. In these recharge areas, conductivity of the "young" groundwater is generally <20 mS/m. Examples include the Ceres and Hex Valleys, and the Citrusdal area. In a recent drilling programme at Ceres, groundwater conductivity was <4 mS/m . Further along the flow path "older" groundwater quality is influenced by catchment land-use and longer contact with the host rock or rocks, and conductivity tends to

Borehole localities

- + Summerstrand / Schoenmakerskop
- Walmer
- △ Mill Park
- Newton Park
- Fernglen
- □ Framesby
- ♥ Kabega
- Westering
- Lorraine

MODIFIED PIPER DIAGRAM

Fig, 9

increase. Examples include St Francis Bay and Gansbaai, both coastal aquifers with similar physiographic and geological features to Port Elizabeth. In the latter aquifers, conductivity ranges between 80 to 150 mS/m. Plots of conductivity and chloride concentration in the St Francis area showed a clear increase in both parameters along the groundwater flow path (SRK 1989), ie towards the coast.

In the study area, however, this chemical evolution of the groundwater is not seen and, in the context of expected TMGS groundwater chemistry, the Port Elizabeth aquifer is atypical. For example, the range in conductivity is 50 to 819 mS/m, and in chloride, 100 to 2 799 mg/ ℓ . Furthermore, contour plots of these parameters and sulphate (Figures 10, 11 and 12) appear to indicate that they are decreasing in concentration along the groundwater flow path to the south of the Baakens River. Chemical reactions such as adsorption, precipitation and base exchange can cause natural attenuation and alteration of groundwater chemistry but, in the case of chloride, this explanation is not satisfactory as chloride is a conservative ion. Two quotes from the literature illustrate this fact. Mckee and Wolfe (1963) state that "the chloride ion is probably the best tracer of groundwater flow as it is least affected by absorption-desorption lag or by other physical or chemical phenomena". Hem (1985) states "that chloride ions do not significantly enter into oxidation or reduction reactions, form no important solute complexes with other ions unless the chloride concentration is extremely high, do not form salts of low solubility, are not adsorbed on mineral surfaces and play few vital biochemical roles".

If it is thus accepted that chloride is not being lost from the aquifer system along the flow path, then the only feasible explanation is that it is being diluted. The explanation put forward is that expanding urbanisation in the PEM area (along the outcrop of the TMGS aquifer) has resulted in partial replacement of diffuse recharge through the soil profile by the development of numerous point sources of contamination such as old waste tips, leaking sewers and water mains, septic tanks, fertilizer application and stormwater runoff. For example, Walmer only converted to water-borne sewage in 1968.

This would explain the frequent occurrence of groundwater with radically different chemistry from boreholes a few streets apart. Examples of such conductivity/chloride contrasts are 475mS/m - 1463mg/l and 151mS/m - 390mg/l in Walmer, and 247mS/m - 559mg/l and 652mS/m - 1591mg/l in Walmer Heights. A contributory factor here could be the discrete

nature of the secondary aquifer due to poor hydraulic connection across geological strike. The trend for lower conductivity and concentration of some ions to develop along the flow path is thus a reflection of dilution of contaminated groundwater and its tendency to approximate to background chemistry with time and distance. The main threat to groundwater quality could therefore be from inland sources rather than from seawater intrusion. The reports of 'brackish' water in the Walmer area in the 1920's could also indicate a natural level of salts in the aquifer.

Nitrate concentrations show an opposite trend to chloride in that concentrations increase along the flow path towards the coastal suburbs. The low iron concentrations in these areas may indicate an increase in redox potentials and a decrease in denitrification potential within the aquifer. This could have long-term implications for groundwater quality, with a continuing build-up of nitrates, given the practice of irrigation with treated sewage effluent in many coastal areas and fertilizer application to gardens, sports fields and parks. Figure 13 shows a trend for a general increase in nitrates in the peripheral coastal areas, which possibly supports the above contention.

In a study of the impacts of urban development on groundwater quality in a coastal aquifer near Perth, Australia (Appleyard 1995), it was concluded that significant changes had occurred. These were mainly manifested in increases in nitrate and sulphate. Chloride did not appear to be affected to the same degree.

Potential souces of contaminants into the aquifer are listed below and shown on Figure 13.

- I) Waste disposal sites
 Arlington, Victoria Drive
 Historical sites at Walmer and Baakens River Valley and elsewhere.
- ii) Sites irrigated with reclaimed sewage effluent
 Port Elizabeth Technikon
 University of Port Elizabeth
 Humewood Golf Course
- iii) Golf courses where nitrogenous fertilizers are used Humewood Golf Club
 Walmer Country Club
 Walmer Golf Club
 Port Elizabeth Golf Club, Mill Park

iv) Other sites where nitrogenous and other fertilizers are used Port Elizabeth Municipal Parks
St Georges Park
Donkin Reserve
Fort Frederick
Clarendon Park
Settler's Park
Private and corporate sports clubs

For the purpose of assessment of contamination, the major ground water quality indicators considered were, chlorides, nitrates, iron, total organic carbon and bacteria. These five contaminants are discussed separately as far as the monitoring boreholes are concerned.

• Chloride

Most of the boreholes in the Port Elizabeth area have relatively high chloride concentrations, predominantly in the form of sodium chloride. Of the 47 boreholes monitored, 37 had average chloride levels of >250 mg/l; 28 with >400 mg/l and 11 with >600 mg/l. The majority of the borehole waters fall into the medium and medium/high chloride category, i.e., 250 to 600 mg/l.

On the basis of information available, there are not many boreholes in Port Elizabeth where the water is used for domestic/potable purposes, other than for the flushing of toilets, washing down floors and other general uses. The high chlorides have a considerable effect on the use of these waters for irrigation purposes, and in many cases special practices have to be used when irrigating plants. Many of the waters are unsuitable for spray irrigation of plants because of problems resulting from salt build-up on leaves. Certain of the boreholes are virtually unusable for irrigation purposes because of the very high total salt content. None of the very highly saline boreholes are close to the sea.

Nitrate

Out of the 47 borehole waters analysed, 21 have nitrate levels >4,0 mg/ ℓ as N, with 11 being >10,0 mg/ ℓ . The high nitrate boreholes are contained in a triangle from

Newton Park towards the sea, with Central and Summerstrand being the outer corners of the triangle.

In a study by Tredoux (1993) on nitrates in groundwater in South Africa, it was found that out of a data base of 18827 complete analyses, the median nitrate value (as N) was 4,5 mg/l. The majority of this sample base was representative of inland aquifers, with few coastal aquifers apart from the west coast. In this context, nitrate values in the study area are not excessive, although in the context of TMGS aquifers, they are excessive.

Sources of nitrate include areas irrigated with treated sewage effluent eg PE Technikon, UPE and Humewood Golf Course, irrigated parks and golf clubs where nitrogenous fertilizers are used, eg Walmer Country Club, Walmer and PE Golf Clubs, municipal parks.

Nitrate contamination is not seen as being a serious problem with the Port Elizabeth boreholes as the water is used for irrigation purposes rather than drinking water.

Iron

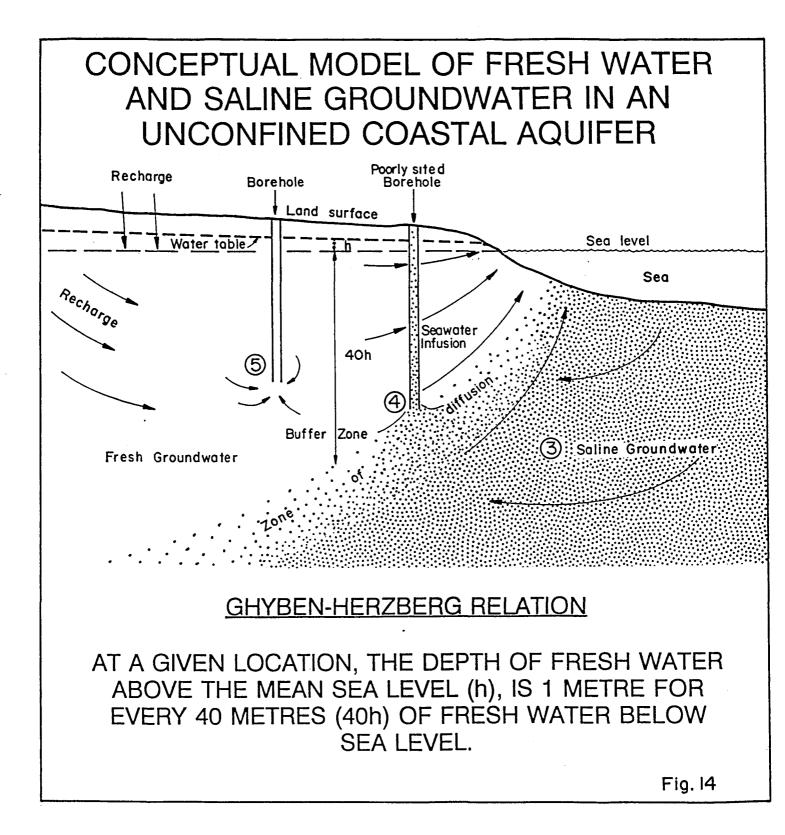
Iron has only been found in significant levels, i.e., >1 mg/ ℓ , at 10 sites, of which four were >5,0 mg/ ℓ . The Walmer/Walmer Heights area seems to have a particular iron problem and this also applies to the Framesby, Lorraine and Kragga Kamma areas. Very high iron levels of >20 mg/ ℓ were found on occasions, particularly in Walmer. High iron concentrations are typical of TMGS groundwater, being derived from oxidation of pyrite, but levels > 5 mg/ ℓ are probably more indicative of borehole condition, ie casing corrosion.

Organics

The Total Organic Carbon test was used to evaluate the possible organic pollution of borehole waters. Only in seven out of the 47 boreholes monitored were the levels of organic carbon considered significant, i.e., >6,0 mg/ ℓ as C. Of these sites, three are situated in the Arlington area and three in Summerstrand, but others in the same areas did not have significant organic carbon levels. There may be some possible connection between the boreholes and the situation of the City's largest domestic waste disposal site at Arlington, but this cannot be proved from the relatively few boreholes studied in the

area.

Bacteria


Some samples recorded faecal bacteria during the period of study, but most of these can be attributed to bad sampling. One site had significant <u>E. coli</u> I counts on several occasions. This borehole is situated on a smallholding and there are several labourer's cottages with "toilets" in the vicinity of the borehole, and this is the likely cause of the contamination. After due modifications to the facilities the problem was resolved. One borehole in Walmer also had faecal contamination on the several occasions that it was sampled, but these were not significant.

On the basis of this study bacterial contamination of borehole water is not a problem in the Port Elizabeth area. Even the situation of a low income suburb with informal housing in part of Walmer does not appear to result in pollution of the groundwater, as yet.

5.9 Sea water intrusion

The main area of concern with regard to sea water intrusion is the suburb of Summerstrand and, to a lesser extent, Humewood. The other coastal areas are either undeveloped or bordered by office or industrial areas. Inspection of the results from the four monitoring boreholes in Summerstrand shows no sign of any problem relating to sea water intrusion. Of all the boreholes investigated for this project, the Summerstrand boreholes were some of the most consistent in terms of water quality. Water levels are about 4 mamsl within 100m of the sea. This positive hydraulic head will maintain the current fresh/sea water interface position. On the basis of these results sea water intrusion would not be seen as a problem. However, the drought ended shortly before the commencement of this project, and the boreholes have not been used as much as they would during drought conditions.

Recent information has come to light on boreholes in Summerstrand, very close to the sea, which change from fresh water to saline water very quickly during pumping. The owners report that when the borehole is next pumped, fresh water is again obtained initially. These boreholes are within 200 m of the beach, whereas the four monitoring boreholes are at least 400 m from the fresh/salt water interface. A diagram illustrating the mechanics of pulsed sea water intrusion in a secondary aquifer is shown in Figure 14.

Under drought conditions, with all boreholes being used on a regular basis, there is a risk that this transient, short-lived intrusion of saline water could be drawn further into the aquifer at Summerstrand. This is especially true under the likely scenario of borehole use, with pumping frequently taking place at relatively high rates for short periods of time. Turbulence in fractures is a prime cause of expansion of the brackish water diffusion zone between fresh and sea water. With the NW-SE structural trend of the TMGS, there is potential for direct connection between the aquifer and the sea. Ideally, boreholes close to the sea should be pumped continuously at a relatively low rate to minimize turbulence.

5.10 **Overview of aquifer potential**

On the basis of the yield and water quality characteristics described in the preceeding sections, it can be concluded that the TMGS aquifer in the PEM area does not have potential for municipal water supply, unless more productive aquifers exist at depths greater than those exploited so far. The economics of a network of low yielding boreholes delivering variable but generally poor quality water into the system are not feasible.

It is possible that many boreholes are not being used to full capacity and the yields are generally underestimated. It appears that some areas, like Port Elizabeth Golf Club, are more favourable and the aquifer can support fairly high sustained yields of suitable quality groundwater in these areas.

The clustering of boreholes in selected areas means large parts of the aquifer remain unassessed. The extreme variability in groundwater quality is consistent over the sample areas and on this basis further reduces the aquifer potential for larger scale exploitation.

On a more regional scale, the aquifer beyond the western boundary of the study area improves in both water quality and yield potential. Boreholes forming part of the AEC/WRC investigation and drilled in the Bushy Park area on a large fault, yield between 18 and $55n^3/h$ of potable quality water. Smallholdings in the Kragga Kamma area use groundwater for all domestic purposes, as do the landowners stretching back toward the Lady Slipper and Van Stadens area.

The linear TMGS aquifers formed by the E - W trending folds of the Cape Fold Belt extend for hundreds of kilometers into the Western Cape. Large outcrops form the mountains of the West and South East Cape and high rainfall over the area ensures significant recharge to the aquifer. Three major parallel aquifer systems traverse the catchment feeding Port Elizabeth's water supply dams. These aquifers are being exploited on a small scale locally, but show high potential for further development for regional objectives.

Within this regional hydrogeological framework, the portion of the aquifer forming the Port Elizabeth Peninsula is atypical in terms of both groundwater quality and yield.

It appears from water level data that recharge exceeds abstraction and there is little doubt the aquifer can cope with greater abstraction volumes if they are spread over a wider area. The aquifer is suitable for the type and nature of the demand it currently fulfills and has the ability to cope with the pulses of increased abstraction in dry years.

6 LEGAL ASPECTS

6.1 **The international situation**

Broadly speaking, international water law can be classified into two main systems, which are often referred to as the common law and civil law systems. The common law system is the body of law built up by the courts through successive judgments, whereas civil law is codified law developed by Parliament or its equivalent in the country concerned.

Both systems had their origin in Roman Water Law, the common law system developing into the riparian system primarily found in England and in countries across the world with historical ties to England. The civil law system is found in European countries where the Napoleonic Code of 1804 applied and in other countries in Africa and the East with historical ties to the European states of France, Germany, Belgium and others.

In the United States of America, most of the eastern states have accepted the riparian system while in the more arid western states the appropriation system developed, which at the same time protects the rights of people who had prior rights to water. A common factor in the national systems of most countries is a tendency towards greater State control. Even in regions where water availability is not the primary issue, State intervention in order to safeguard the quality of water resources appears to be the order of the day. Some examples of the international situation are:

- Botswana: Water is publicly owned and anyone who drills a borehole must apply for

a water abstraction right. All boreholes have to be registered and such registration can be refused if the information supplied is inadequate;

- Germany: Water belongs to the community of citizens of a state, who are represented by a government which is responsible for protection and fair distribution of the resource. Some of the basic tenets of the German Federal Water Balance Act are, no water use without a permit, which is limited in time and quantity, and protection of wells and springs for public water supply;

- **Russia**: Water is an exclusive state property and is made available only for use. It is neither bought nor sold and cannot be separated from the state property.

With the above summary of international water law as a background, section 7.1 focuses on the situation within South Africa.

6.2 South African Water Law

South Africa's water law is contained primarily in the Water Act of 1956 but is also scattered in 33 other Acts. Most of the legislation is based on the legal system of the countries from which the European settlers came from.

The Roman-Dutch Law was introduced by the first Dutch settlers in the Cape in 1652 and it was soon found to be necessary to control the use of water from rivers near the original settlement. As the Cape settlement was extended and more water was used for irrigation, disputes arose which were dealt with by the "Landdrost en Heemraden" until their abolition in 1827. These bodies, when dealing with water disputes, in effect performed the State's traditional role of regulating water use and resolving disputes. The abolition left a vacuum which could only be filled by the Cape Supreme Court. By the end of the 19th Century, however, it became clear that laws were needed to regulate competing demands on water resources and consuquently laws were developed in the Cape Colony, Natal and the Transvaal. After Union in 1910, water law was rationalised under a single Act - the Irrigation and Conservation of Waters Act, 1912. This Act largely contained the existing common law position as developed by the Courts. Because the courts dealt mainly with irrigation disputes, the Act was largely aimed at compiling these irrigation rules. After the Second World War, when industrial development was on the increase, it became necessary to update the law, which

resulted in the substitution of the 1912 Act with the Water Act, 1956.

South Africa is one of the few countries in the world that has no legal way to restrict the use of groundwater, save through emergency regulation by the minister of Water Affairs. The Water Act of 1956 vests in the owner of land the exclusive right to use groundwater occurring on his land, with only some prohibitions on transfer of such water across boundaries of the land. The declaration of Subterranean Government Water Control Areas (SGWCA's) is the only way within the present Act (Section 26) to regulate development and use of groundwater. As of 1993, only 13 SGWCA's have been declared, covering a total area of about 5000 km², including the Uitenhage Artesian Basin.

The Water Act distinguishes between two types of groundwater, namely *subterranean water* and *underground water*. The former is defined by the Act as ,"such water naturally existing underground...as is contained within the areas proclaimed by the State President to be subterranean water control areas". It is presumed to exist or flow in defined channels. The latter category of water is not defined in the Act but it can be assumed to refer to water that also exists naturally underground but is not included in a subterranean water control area (Visser 1987).

On 17 January 1986 a proposed Water Amendment Bill was published in the *Government Gazette*, the main purpose of the bill being to, vest in the minister the powers to control and exploit water in subterranean sources in certain areas in the public interest." The bill does not alter the existing state of groundwater law and only confers wider powers concerning public management and use of subterranean water found in a SGWCA. The best policy, however drastic, would be to define all groundwater as public water and to deal with such water as is presently proposed for water found inside a SGWCA.

South Africa's water legislation is unsuited to an essentially dry country and is being reviewed. It is based on Roman law which was developed in a totally different climate where water shortages were not of major concern. The shortfalls in current SA water law with regard to groundwater are recognised by the DWA&F and a draft white paper is being drawn-up in consultation with experts from the private sector, and there seems little doubt but that the status of groundwater will change from private to public water in the near future.

In this respect, the Department of Water Affairs and Forestry has published a booklet "You and Your Water Rights - South African Water Law Review - a call for public response". The following is an extract from the section of the booklet dealing with the process of reviewing South Africa's water law and the call for public response:

"It is planned to undertake the review in three phases:

- The first phase will be to make sure that as wide a cross-section of South African society as possible has the opportunity to comment on the law and express what is important to their community. The objective is to avoid the "tyranny of the articulate". Workshops will be encouraged throughout the country, particularly in rural and poor communities.
- * The second phase will be the consideration of the public's response by a monitoring team to be set up by the Minister of Water Affairs and Forestry. This committee will consist of experts in various fields disciplines to the water field, including community representatives, who will recommend to the Minister the principles that should provide the basis for a new legal structure. These principles will then be published in a White Paper giving further opportunity for public involvement.
- * After the Government has made a decision in principle, the third phase will be the actual drafting of new legislation under the supervision of a second monitoring committee consisting of legal experts, whereupon once again draft legislation will be widely published for comment.

Contributions, comments, recommendations and submissions concerning the review of any aspect of the present water law were invited from individuals and interested parties, to be submitted by 19 May 1995."

From the above it can be assumed that far reaching changes can be expected in South African water law in the near future.

6.3 Municipal by-law formulation

The current legal framework for local government in South Africa comprises National Statutes, provincial ordinances and municipal by-laws. Municipal by-laws are generally in accordance with the provisions of the relevant provincial ordinance. The PEM Water Supply by-laws were promulgated in The Province of the Cape of Good Hope Gazette No. 4672, November 1990, and contain the following clauses on water installations that can be related to borehole use;

• Chapter I - Section 13

The clause provides for the right of entry to premises to request information regarding the water installation, or to inspect, examine or operate any water fitting of the water installation on the premises.

• Chapter IV - Section 52: "Persons permitted to do installation and other work".

This clause states that only plumbers registered with the Council may carry out work on pipes and fittings on any premises.

• Chapter VI - Section 68: "Use of pipes and water fittings to be authorised by Engineer".

Only pipes and fittings included in the Schedule of Accepted Pipes and Water Fittings, shall be installed. The schedule is drawn up by JASWIC, the Joint Acceptance Scheme for Water Installation components whose members are representatives from the municipalities of Port Elizabeth, Cape Town, Durban, Johannesburg, Pretoria, East London and Kimberley as well as the Water Research Commission and the South African Bureau of Standards.

Chapter VI - Section 74(8): "Installation of pipes".

The Engineer may require that different water installations on premises bear an acceptable means of identification such as colour coding.

• Chapter VIII - Section 99(4)(b): "Protection of water installation".

The owner is to ensure that no cross connection is made between the municipal supply and an alternative supply, for example, a borehole.

• Chapter IX - Section 102: "Use of water from sources other than the water supply system".

No person shall use an alternative source of water for domestic, industrial or commercial purposes unless the water quality conforms to the specifications of SABS 241-1984: Water for Domestic Supplies. Also, if borehole water used on a premises is discharged to the municipal sewerage system, the Engineer may install a water meter at the source of the borehole supply.

• Chapter IX - Section 103: "Notification of boreholes".

The Engineer may, by public notice, require that owners with boreholes on their premises notify the Engineer of the boreholes and that owners intending to sink boreholes advise the Engineer of their intentions.

The owner of a premises within a municipal area is obliged to comply with the promulgated by-laws of that authority (in this case PEM). The municipality can, by enforcing by-laws and publishing of public notices, regulate the use of groundwater in terms of installation standards, health aspects related to water quality, discharge of effluent groundwater and the registration of existing and future boreholes.

In terms of the existing Water Act and the by-laws outlined in the previous section, PEM cannot regulate the volumes of groundwater pumped from the aquifer and thereby assess the impact of abstraction on the resource in terms of available storage and groundwater quality. This highlights the need for public awarness through education as well as a need for self control.

Further potential problems that may occur and ultimately involve the municipality, include the following:

- <u>Well interference</u> this can occur when a cone of drawdown formed during pumping from one borehole extends to other boreholes situated nearby. The water levels in surrounding boreholes can decline to the extent that the neighbouring boreholes cannot be used simultaneously;
- <u>Over-pumping from an aquifer</u> which will occur if the total volume of water pumped from an aquifer exceeds the rate of recharge to the aquifer, resulting in a nett decrease in storage and a consequent decline in water levels;
- <u>Groundwater pollution</u> Indiscriminate disposal of effluents on surface areas and the application of fertilizers can, in time, result in pollution of an aquifer and degradation of groundwater supplies in areas adjacent to the source of the contamination;
- <u>Sea water intrusion</u> Port Elizabeth occupies a peninsula bounded by the ocean to the east and south. Summerstrand is a suburb situated on the coastal plain and a major proportion of the boreholes identified in Port Elizabeth are concentrated in this area. A potential exists for saline intrusion to occur if pumping in the area exceeds recharge. This potential will be aggravated by high rate, short duration, pumping and in times of drought, when recharge is diminished;
- <u>Sub-standard borehole construction</u> During the drought, some owners in the city sought quick solutions and did not specify borehole construction to the drilling contractor with the result that, in some instances, borehole owners have paid dearly for remedial work to boreholes that were poorly constructed.

Other municipalities with known private groundwater use were contacted to obtain further insight into the *status quo* in respect of legislation. Most have no provision for control or even notification of groundwater use, eg. Somerset West, Hermanus and Graaff Reinet. Beaufort West has no general by-law concerning groundwater/boreholes but further drilling is prohibited in one particular suburb because of the large number of existing boreholes. The most detailed examples of a by-law that the researchers came across is that of Johannesburg, relevant sections of which are as follows:

Wells and excavations:

33.(1) Every well or excavation shall be and be kept adequately covered or fenced and everything shall be done which is necessary to prevent its being in any way dangerous to life or limb.

Construction of wells and boreholes:

35.(1) No well, tube well or borehole may be sunk or constructed, nor shall any person cause, permit or suffer it to be sunk or constructed, unless fourteen clear days' notice has first been given to the Council of the intention to carry out such work, which notice shall also state the proposed position and nature of the work and the purpose for which the water to be derived therefrom is to be used.

The Council may, in any case in which the medical officer of health deems it necessary for the protection or otherwise in the interests of the public health, to do so, by notice in writing to the owner of the premises -

- (a) prohibit the use of any well, tube well or borehole permanently or for such period as he may specify in the notice;
- (b) require modifications of or alterations to, including a change in the position of any well, tube well or borehole and prohibit the use thereof until such modifications or alterations have been completed and approved by the medical officer of health;
- (c) prohibit the carrying out of any work the subject of a notice given to it in terms of sub-section (1) or give such directions as the medical officer of health may deem necessary with regard to the carrying out of such work.

Water supply:

No person shall use or cause, permit or suffer to be used the water from any well, tube well, borehole, spring, dam, river or other source, not being the Council's water main, for human consumption or for any other domestic purpose or for the preparation or manufacture of food or drink for human consumption or in the cleansing of vessels, utensils or appliances used in the preparation or manufacture of the aforesaid unless and until the Council's Medical Officer of Health has given a certificate under his hand stating that such water is suitable for the use which is to be made of it.

Aspects that should be addressed in any by-law promulgated by PEM include:

• Compulsory employment of drilling contractors affiliated to the Borehole Water Association to assist the borehole owner to achieve a satisfactory standard of construction;

- Compulsory submission of copies of borehole completion certificates to the municipality by the owners;
- Right of access for inspection of borehole installations, groundwater sampling, installation of flow metres and measurement of water levels;
- Compulsory submission of one water sample per year for chemical and bacterial analysis;
- The imposition of restrictions on groundwater use should declining water levels become evident or changing water chemistry indicate pollution, sea water intrusion or should well interference be proven and a dispute between borehole owners arise;
- Possible ban on borehole use within an exclusion zone adjacent to the sea;
- Provision for restriction of use of groundwater unfit for domestic consumption;
- Education and self controll.

The aim of PEM should not be just to regulate groundwater use and possibly alienate borehole owners, but also to generate an interest, awareness and self control in the public of the need to protect the resource. In parts of the USA, signposts inform the public that they are entering a protected aquifer area. Such signs placed at strategic points along main thoroughfares would create an awareness among the public and possibly generate interest and enquires.

In the light of the fairly limited use of groundwater as a percentage of municipal consumption, the low yields and moderate to poor water quality, the need for a by-law containing all of the above provisions may need to be reconsidered. It may also be prudent to wait for indications from the DWA&F as to the status of groundwater in the new water laws soon to be formulated.

7. CONCLUSIONS AND RECOMMENDATIONS

The main conclusions to be drawn from this study are listed below and follow the same order as the research objectives:

- Number and distribution of boreholes;
 There are an estimated 300 boreholes in the PEM area, of which 241 have been located on the ground;
- Volume of groundwater abstracted;
- Annual groundwater abstraction is estimated at 370 000 m³;
- Legal aspects;

There are very few municipalities who have promulgated by-laws to control private groundwater use. Aspects that should be included in a by-law for PEM are:

- employment of an affiliated drilling contractor;
- submission of borehole completion certificates;
- right of access for inspection and monitoring;
- regular submission of water samples for quality analysis;
- restrictions on groundwater use in areas with declining water levels or quality, or where mutual interference occurs;
- restriction on groundwater use in an exclusion zone adjacent to the sea;
- create public awareness on groundwater issues.
- Groundwater Quality

Over most of the study area the groundwater is a sodium chloride type. The only exception is Summerstrand where the groundwater has a greater $Ca/Mg HCO_3$ component;

Groundwater quality in the PEM area is generally atypical of TMGS aquifers elsewhere in the Eastern and Western Cape;

There is extreme spatial variation in groundwater quality, often over very short distances in the same suburb;

Seasonal variation in groundwater quality is not seen as the rainfall patterns are so irregular. There is no 'winter' or 'summer' period of high or low rainfall as in Cape Town, for example;

• Sea water intrusion

There is sporadic and short-lived intrusion of sea water in boreholes closest to the sea in the Summerstrand area. This is a local and non-permanent phenomenon at the moment but there is potential for a deeper incursion of saline water into the aquifer under higher pumping stress should drought conditions return;

• Groundwater pollution

There is evidence of groundwater contamination in many areas on the basis of conductivity, chloride and nitrate levels, especially in the context of groundwater quality in TMGS aquifers elsewhere. The contamination is attributed to urbanisation and specifically waste dumps, fertilizer application, leaking sewers and stormwater runoff;

• Effect of groundwater use

Groundwater use has had a negligible effect on municipal consumption in respect of homeowners but in the case of the main corporate user, PE Golf Club,

75 000 m³/annum of groundwater is used. This costs the municipality about R135 000 per annum in lost revenue from sales;

• Groundwater potential

In terms of yield and water quality, the TMGS aquifer in the PEM area is not a potential source of municipal supply, unless untapped aquifers exist at greater depths than so far exploited.

The following recommendations are made for further attention:

- The database should be maintained, expanded and constantly updated to include all boreholes drilled into the Port Elizabeth TMGS aquifers as far as Van Stadens River;
- A reduced monitoring borehole network should be maintained in representative areas of the aquifer. These include upgradient (Kabega Park), central (Arlington), northern (Newton Park) and coastal (Summerstrand) areas. This would equate to about six boreholes, including Arlington waste site, which will be monitored as part of a separate project;
- A more detailed study of the boreholes within the coastal rim of

Summerstrand/Humewood, where sea water intrusion has been periodically reported, should be made to quantify the threat or occurrence of sea water intrusion;

- There is a vast amount of chemical data in the database which has only been qualitatively assessed in this study. More rigorous statistical and graphical analysis should be carried out to provide further insight into the atypical hydrogeochemistry of the TMGS aquifer in Port Elizabeth;
- The upgradient limits of the poor quality groundwater should be delineated to ensure that the potential groundwater resources in the TMGS to the west of Port Elizabeth remain unpolluted.

8 **REFERENCES**

Booth, P.W.K and Shone, R.W. (1992). Structure of the Table Mountain Group in the Port Elizabeth area. South African J. Geol, 95 (1/2) p 29-33.

Braune, E. An Overall Strategy for Groundwater Management in South Africa

Bush, R.A. (1986). Hydrogeological Assessment of the Uitenhage - Kruis River Area.

Davies, A.W. (1986). <u>The difficulties of the Regulatory Authorities in the Protection</u> of Underground Water, December 1986.

Department of Water Affairs and Forestry (1995). South Africa - you and your water Rights - Water Law Review : A call for public response. Information and discussion document.

Government Gazette - Department of Water Affairs and Forestry. January 1993 Vol 331 : No. 145507.

Hall on Water Rights in South Africa : Control and Use of Subterranean Water and Water Found Underground. Juta and Co 1974.

Hem, J.D., (1985). Study and interpretation of the Chemical characteristics of natural water. US Geol Sun Water Supply Paper 2254, 3rd edition.

Kulikov, G.V., Kurennoi, V.V., Yazvin, L.S., (1983). Legal and economic aspects of groundwater use. <u>Proceedings of International Association of Hydrological Sciences</u> on Groundwater in Water Resources Planning, 1983, Vol 1, pp 257-264.

Langton, C.W., and Raymer D.A., (1994). Private Boreholes and the Municipality. Paper presented at the IMESA conference in Cape Town.

McKee, J.E., and Wolfe, H.W., (1963). Water quality criteria. California State Water Quality Control Board Publications 3-A.

Mountain, E.D., (1928). Underground water supply of Port Elizabeth. Annexure B to the Mayors report.

The Province of the Cape of Good Hope Gazette, No. 4672, No. 4672, November 1990.

Sekwale, M., (1984)., Geological Survey Dept. (Hydrogeology Division) Lobatse, Botswana <u>Hydrogeological data</u> (Proceedings of the Harare Symposium July 1984).

Simpson, G.C., (1990). Research into groundwater abstraction in residential areas. Water Research Commission Report No. 211/1/90.

Steffen, Robertson and Kirsten (1989). Proposal to develop emergency groundwater supplies for Port Elizabeth. Report 17122/1 for Port Elizabeth Municipality.

Steffen, Robertson and Kirsten (1990) <u>Wellfield development at St Francis-On-Sea</u>-Summary report 171719/6.

Steffen, Robertson and Kirsten (1993) <u>Hydrogeological Investigation of Arlington</u> <u>Waste Disposal Site, Port Elizabeth - Phase I.</u> Rep 189350/1.

Tredoux, G., (). <u>Preliminary investigation of the nitrate content of groundwater and</u> <u>limitation of the nitrate input</u>.

Vos, W.J., (1978). <u>Underground Water - Principles of South African Water Law</u> : Juta &Co.

Visser, F., (1987). Groundwater Law in South Africa. <u>Tydskrif vir die Hedendaagse</u> <u>Romeins-Hollands Reg, November 1987, Vol 50, pp 412-427</u>.

Woodford, A.C.K, (1993). Aspects of the development and management of groundwater resources for urban supply. <u>Municipal Engineer, September 1993, pp 48-50</u>.

RESEARCH INTO BOREHOLES IN THE PORT ELIZABETH MUNICIPAL AREA

THE OWNER/OCCUPIER

PLEASE READ THIS PAMPHLET IF THERE IS A BOREHOLE ON YOUR PROPERTY

The recent extended drought in the Eastern Cape has resulted in a proliferation of boreholes in Port Elizabeth with a corresponding increase in groundwater abstraction. Unless the situation is professionally assessed, the future integrity of the groundwater resource cannot be guaranteed.

Research into groundwater abstraction in Port Elizabeth has been initiated jointly by the Port Elizabeth Municipality and Steffen, Robertson and Kirsten Inc. in a two year project funded by the Water Research Commission. The research will focus on the following main aspects:

- * Determination of the number of boreholes in the municipal area;
- * Assessment of the volumes of groundwater abstracted;
- * Monitoring of groundwater quality and assessment of the potential for contamination of the groundwater by sea-water intrusion and the disposal of effluents on the surface.

In order to gather information on boreholes a census form has been printed below this letter and, if you have a borehole on your premises, you are kindly requested to complete the form and return it to the City Treasurer's Department with your monthly municipal services payment or to the City Engineer, P.O. Box 7, Port Elizabeth 6000.

A borehole represents a considerable investment. Your co-operation will be in your best interests to ensure that the groundwater resource can be protected in the long term for all users. Any enquiries that you may have in this regard should be directed to the telephone numbers given below.

City Engineer's Department Scientific Services Division (041) 5062333 Enquiries: Mr G Devey

Steffen Robertson and Kirsten Inc. (041) 323706 Enquiries: Mr C Langton

BOREHOLE CENSUS FORM

LOCALITY

OWNER/OCCUPIER:			
STREET ADDRESS:	POSTAL ADDRESS:		•••••
SUBURB:	SUBURB:		
CODE:	CODE:	••••••	•••••
TELEPHONE NUMBERS:			
RESIDENCE: BUSINESS:	ERF NO.: ERF SIZE:		(m²)
BOREHOLE DETAILS			
DATE DRILLED: / / /19	CONTRACTOR:		•••••
DRILLED DEPTH: (m) LENGTH OF CASING: (m) TYPE OF CASING: PVC: STEEL:	BOTH: .	
CASING PERFORATED: FROM: (m) TO: (m) REST WATER LEVEL: (m) BOREHOLE	YIELD:	
WAS THE YIELD OBTAINED			
FROM: (a) DRILLING RESULTS?: YES NO O	R (b) DETERMINED FROM TEST PUMPING?:	YES	NO 🗌
т	EST PUMPING CONTRACTOR:	••••••	•••••
PUMPING DETAILS			
PUMP TYPE: SUBMERSIBLE: JET	: OTHER:	••••••	•••••
PUMPING RATE: Es	STIMATED DAILY USAGE:		•••••
DO YOU HAVE A FLOW METER INSTALLED ON YOUR BOREHOLE DE	LIVERY LINE?	YES 🗌	NO 🗌
WOULD YOU BE PREPARED TO HAVE A METER INSTALLED AT NO COST	TO YOU FOR THE DURATION OF THE RESEARCH?	YES 🔲	№ 🗆
GROUNDWATER QUALITY			
HAS A SAMPLE OF YOUR BOREHOLE WATER BEEN SUBMITTED FOR	R:		
CHEMICAL ANALYSIS: YES NO MICROBIOLOGICAL AN	VALYSIS: YES 🔂 NO 🗍		
SAMPLES ANALYSED BY:			•••••

GENERAL

ARE YOU PREPARED TO PERMIT ACCESS TO YOUR PROPERTY ON A CONTROLLED BASIS FOR BOREHOLE MONITORING DURING THE PROJECT? YES IN NO

NAVORSING OOR BOORGATE BINNE DIE MUNISIPALE GEBIED VAN PORT ELIZABETH

DIE EIENAAR/HUURDER

LEES ASSEBLIEF HIERDIE PAMFLET INDIEN DAAR 'N BOORGAT OP U EIENDOM IS

Die onlangse langdurige droogte in Oos-Kaapland het tot 'n groot toename in die getal boorgate in Port Elizabeth gelei, met 'n ooreenstemmende toename in grondwateronttrekking. Tensy die situasie professioneel geëvalueer word, kan die voortgesette beskikbaarheid van die grondwater nie gewaarborg word nie.

Die Port Elizabethse Munisipaliteit het tesame met Steffen, Robertson en Kirsten Ing. 'n navorsingsprojek oor grondwateronttrekking van stapel gestuur. Dié projek sal oor twee jaar strek en deur die Waternavorsingskommissie gefinansier word. Die navorsing sal hoofsaaklik die volgende aspekte dek:

- * Bepaling van die aantal boorgate in die munisipale gebied;
- * Evaluering van die volume grondwater wat onttrek is;
- * Monitering van die grondwatergehalte en evaluering van die moontlikheid dat die grondwater deur seewaterindringing en die wegdoening van afvloeistowwe op die oppervlak besmet kan word.

Ten einde inligting oor boorgate in te samel, is 'n sensusvorm hieronder gedruk. Indien daar 'n boorgat op u eiendom is, word u vriendelik versoek om die vorm in te vul en dit saam met die betaling van u maandelikse rekening vir munisipale dienste aan die Departement van die Stadstesourier te stuur of aan die Stadsingenieur, Posbus 7, Port Elizabeth 6000 te pos.

'n Boorgat verteenwoordig 'n aansienlike belegging. Dit is in u eie belang om u samewerking in dié verband te verleen sodat die langtermynbeskikbaarheid van grondwater vir alle verbruikers verseker kan word. Skakel asseblief onderstaande telefoonnommers indien u enige navrae oor die aangeleentheid het.

Departement van die Stadsingenieur
Wetenskaplikediensteafdeling
(041) 5062333
Navrae: Mnr G Devey

Steffen Robertson en Kirsten Ing. (041) 323706 Navrae: Mnr C Langton

BOORGATSENSUSVORM

LIGGING

EIENAAR/HUURDER:					
STRAATADRES:	F	'OSADRES:			
VOORSTAD:	v	OORSTAD:	••••••		
KODE:	к	(ODE:			
TELEFOONNOMMERS:					
HUIS: KANTOOR:	ERFN	10.:	ERFGRCCTTE:		(m²)
BESONDERHEDE VAN BOORGAT					
DATUM GEBOOR: /	/19 ዞ	ONTRAKTEUR:	•••••	••••••••	
BOORDIEPTE: (m) LENGTE VAN VOE	RING: (m)	TIPE VOERING: PVC:	STAAL:	BEIDE: .	
VOERING GEPERFOREER: VAN: (m	ı) TOT:	(m) RUSWATERVLAK:	(m) BOORGA	TVLOEI:	
IS DIE VLOEI VERKRY					
VAN: (a) BOORRESULTATE?: JA		(b) BEPAAL UIT TOETSPON	IPRESULTATE?:	JA 🗌	NEE 🗌
	TOE	TSPOMPKONTRAKTEUR:			
BESONDERHEDE VAN POMP					
TIPE POMP: DOMPELPOMP:	STRAAL	:	ANDER:	•••••	
РОМРТЕМРО:	GERAAMD	E DAAGLIKSE VERBRUIK:			
IS 'N VLOEIMETER IN U BOORGAT SE TOEVOERF	PYP GEINSTALLEER?			ja 🗖	NEE 🗌
SAL U INSTEM DAT 'N METER VIR DIE DUUR VAN D	IE NAVORSINGSPROJE	K KOSTELOOS GEINSTALLE	ER WORD?	JA 🗌	NEE 🗌
GRONDWATERGEHALTE					
IS 'N MONSTER VAN U BOORGATWATER VOORG	ELÊ VIR:				
CHEMIESE ONTLEDING: JA	MIKROBIOLOGIESE ON	TLEDING: JA 🗍 NEE			
MONSTER(S) ONTLEED DEUR:	•••••••••••••••••••••••••••••••••••••••				·····

ALGEMEEN

IS U BEREID OM VIR DIE DUUR VAN DIE PROJEK TOEGANG TOT U EIENDOM OP 'N BEHEERDE GRONDSLAG TOE TE LAAT SODAT DIE BOORGAT GEMONITOR KAN WORD?

JA 🗌 NEE 🗌

ERFNO	NAME OF OWNER	STREET ADDRESS	SUBURB	-Y CO-ORD	X CO-ORD
14001480000	PE GOLF CLUB NO.1	WESTVIEW DRIVE	MILL PARK	54285.000	3758980.000
14001480000	PE GOLF CLUB NO. 2	WESTVIEW DRIVE	MILL PARK	53965.000	3759040.000
14001480000	PE GOLF CLUB NO.3	WESTVIEW DRIVE	MILL PARK	53995.000	3758865.000
14001480000	PE GOLF CLUB NO.4	WESTVIEW DRIVE	MILL PARK	54000.000	3758635.000
17030090000	METROPOLITAN LIFE LTD	281 CAPE ROAD	NEWTON PARK	52965.350	3757956.920
04031820000	PEMUNICIPALITY	CRUSADERS CLUB	CENTRAL	56380.000	3759900.000
32019350000	PE MUNICIPALITY	KING EDWARD PARK	WALMER	53690.810	3762029.400
32019480000	TELKOM CLUB	VICTORIA DRIVE	WALMER	52540.000	3764120.000
32000470000	CLARENDON PARK SCHOOL	50 SEVENTH AVENUE	WALMER	54350.000	3760570.000
22005270000	VICTORIA PARK SCHOOL	VICTORIA PARK DRIVE	CENTRAL	57035.000	3760815.000
04035960000	PEMUNICIPALITY	FORT FREDERICK	CENTRAL	57435.000	3759820.000
04019000000	PE MUNICIPALITY	DONKIN	CENTRAL	57290.000	3759405.000
04031820000	PEMUNICIPALITY	ST GEORGES PARK	CENTRAL	56240.000	3759375.000
22006240000	BUYS, ISC	17 VICTORIA PARK DRIVE	SOUTH END	57326.570	3760716.770
32026390000	KEMP, ES	10 4TH AVENUE	WALMER	55800.000	3761360.000
32001790000	EXLEY, FR	12 11TH AVENUE	WALMER	53190.000	3761589.000
32025500000	VAN DER WALT, A	74 RIVER ROAD	WALMER	53623.000	3760684.000
32004980000	CORNISH, C	64SHORT ROAD	WALMER	53010.000	3761117.000
32028810000	MILLER, P	6 CLUB ROAD	WALMER	52288.000	3760925.000
14002420000	DEWAR, BN	8 MILL PARK ROAD	MILL PARK	54785.000	3759026.000
04034050000	DASHWOOD, HA	8 HALLACK ROAD	CENTRAL	55569.000	3760077.000
14009890000	LAPINER	47 WYCHWOOD AVENUE	MILL PARK	53145.000	3759304.000
17016790000	LANDMAN	12 WEST STREET	NEWTON PARK	52765.000	3758016.000
06000560000	ENGELBRECHT	3 WHITNEY STREET	FERNGLEN	50952.464	3757754.59
36000930000	DU TOIT, LM	98 VERDUN ROAD	LORRAINE	46923.000	3760663.000
06002980000	LOFTIE-EATON, GA	14 THAMES ROAD	FERNGLEN	50660.000	3757926.000
12000720000	MICHEALS	78 KABEGA ROAD	KABEGA	46808.230	3758480.000
32019810000	HARTY, JP	12 NEWCOMBE AVENUE	WALMER	50109.560	3763293.540
07008590000	LANGER	5 NORLAND CLOSE	FRAMESBY	47300.000	3758698.000
27006880000	PEINKE	15 COSMOS STREET	WESTERING	47812.790	3756403.070
32040170000	PEDERSEN, C	10 IDYLWYLDE CRESCENT	WALMER HEIGHTS		3763310.000
99003510000	DANHOER	SCOTSAM	LOVEMORE PARK	47018.087	3765034.779
99007400000	STONE, TC	STONE'S THROW	LOVEMORE PARK	48140.731	3764679.926
23006160000	GRAHAM, RC	21 ADMIRALTY WAY	SUMMERSTRAND	62141.000	3762843.000
23014100000	CHURCH, KA	5 KOLBE CRESCENT	SUMMERSTRAND	60364.000	3762682.000
23017360000	BOSCH, JK	68 WINCHESTER ROAD	SUMMERSTRAND	60270.000	3762750.000
23016930000	VAN RENSBERG	10 BULBRING ROAD	SUMMERSTRAND	59912.000	3762833.000

-

APPENDIX B

PHYSICAL DATA BASE

CHEMICAL DATA BASE

No. REPROC NAME STREET ADDRESS SUBURES Y CO-CPU X	(WLAMSL(m)
2 045000000 PE MINICPAULY OWNR CENTRAL 5728 000 37580000 15.00 - - 6653 1 040350000 PE MINICPAULY OWNR CENTRAL 65480000 75580000 72.500 100.0 6.0 - 6653 1 0403210000 PE MINICPAULY OWNR CENTRAL 6574 000 756900 72.600 10.0 - - 6452 1 0403210000 PE MINICPAULY OWNR CENTRAL 6574 000 77.600 72.000 7.0 -	28.75
3) 042830000 PE MUNICPALITY OVAL ITÄOK CENTRAL 6441.0000 375871.000 15.00 0.0 46.65 3) 04238120000 PE MUNICPALITY OT GEORGES PARKA CENTRAL 6547.000 375871.000 1500 6.0 55.44 3) 04238120000 PE MUNICPALITY OT FARK AND CENTRAL 5574.000 375613.000 14.000 75.000 1.0 55.44 3) 0439430000 DALLACKS RD.3 CENTRAL 5567.000 376013.000 75.000 1.0 1.0 10 0439430000 DALLACKS RD.3 CENTRAL 5587.000 37600 1.0 <t< td=""><td>19.47</td></t<>	19.47
4 0401120000 PE MUNICPALITY ST GEORGES PARK CENTRAL 5624.0000 77.500 11.500 0.0 5 04021120000 NALAVECTH HOUSALTACK ND 10 PARK_LARE CENTRAL 55746.000 77.500 1100.0 7.4 53.44 6 0402120000 NALAVECTH HOUSALTACK ND 14 NALACK ROAD CENTRAL 5564.000 7500 100.0 7.4 53.44 9 040340000 PAUKACK NDA 6 NALACK ROAD CENTRAL 5569.000 75.000 1.000.0 7.23.3 10 0403400000 VALAVECK NDA 6 NALACK ROAD CENTRAL 5569.000 75.000 1.000.0 0 27.7 10 0403400000 VALAVECK RA 1.000.0 1.000.0 0 27.7 10 0403400000 VALAVECK RA 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.0	
5 0401220000 PF MULICPALITY CRUSADERS CLUB CENTRAL 6538.000 72.500 100.0 6.0 7 0402210000 TRULERE OF MALLACK ROAD CENTRAL 6567.000 790358.000 8.000 1.00 7.4 5544 7 040420000 TRUERER OF MALLACK ROAD CENTRAL 5667.000 770358.000 7600 - - 10 040420000 DASHWOOD, HA I+ALLACK ROAD CENTRAL 5569.000 770558.000 75000 - - - 10 040420000 VAN DER SPUY.S 114AN CLOSE CENTRAL 5569.000 770558.000 75000 150.0 - - 10 040420000 FARCHARA CONTRAL CENTRAL 5569.000 770508.000 750.00 150.0 160.0	26.35
6 0032120000 NAZARETH HOUSE 10 FARK, LARE CFH IRAL 5742.000 3760135.000 34.000 174 5394 1 0435420000 DALLAYCCHA, E 41 ALLACK ROAD CENTRAL 5697.000 3760135.000 72.000 1 1 1 0435420000 DALLAYCCHA, E 41 ALLACK ROAD CENTRAL 5569.000 376007.000 72.000 1 1 23.3 11 0435430000 VAN DER SPLY, S 1 BRAN CLOSE CENTRAL 5560.00 376007.000 75.00 1<	
7 043020000 TRUSTES OF HALLACK ROAD CENTRAL 55679000 3790115.000 72.000 Image: Control 1000 8 043020000 POUROULUS, A. 0 FALLACK ROAD CENTRAL 55671000 3790115.000 76.000 Image: Control 1000 62.3 10 043020000 POUROULUS, A. 0 FALLACK ROAD CENTRAL 55621000 7768150 1mage: Control 1000 62.3 10 0430220000 GREYING, JGB 11 <hallack road<="" td=""> CENTRAL 5562000 7768150 100 6 2.7 10 0430250000 FERRERA TIR FER</hallack>	30.06
8 045300000 DALLAVECCHA.E 4 HALLACK ROAD CENTRAL 55641000 776116.000 76.000 — — — 52.3 10 045300000 DARMOVOD, RA 8 HALLACK ROAD CENTRAL 55661000 776001.000 Feb.000 — 52.3 10 045300000 DARMOVDD, RA 8 HALLACK ROAD CENTRAL 55661000 776.000 — — 52.3 10 045300000 PE MUNICIPALITY FORT FREDREY INC. CENTRAL 573650000 776.000 100 8 27.7 10 04500000000 FEMERIAR, TIR ELEVERKESTRAT COTSWOLD 57165000 110.00 10.0 6.3 64.7 10 04500270000 STREALER, PL STREALER, PL<	
9 04040000 POUROULUS, A. 0 HALLACK ROAD CENTRAL 55607000 770000 Image: Central Centra Central Central Centra Central Cen	
10 BASAMSODD, RA 8 HALLACK ROAD CENTRAL 5569 200 376007 1000 76.000 I 5000 11 BOGUSTODO VAN DER SPUTUR, GB 11 HALLACK ROAD CENTRAL 5569 200 376005 000 76.000 100 6 27.7 12 BOGUSTODO FREMINIC/PLUIT FORT FREEDERICK CENTRAL 5569 200 376003 000 76.000 100 6 27.7 13 BOGUSTODO FREEDERICH 10 VITTER FREEDERICK CENTRAL 5569 200 175000 100 0 6 27.7 10 BOGUSTODO ENTRECKER SYSTELAL ADNO FREENER 5000 175000 175000 100.0 1.0 1.3 45 10 BOGUSTODO LARGER SNORLAND THENERER 17500000 37600000 1750000 15.000 1.0 1.3 45 10 BOGUSTODO VARDER SPUTUR 15 CENTRAL 5000 37600000 17600000 15000 1.0 1.3 45 1.4 <	
11 10 063300000 VAN DER SPUY, S 1 BRUAN CLOSE CENTRAL 5562000 756807.000 75.800 10 0 0 27.7 13 063580000 PE MUNICIPALITY FORT FRECERIC, GENTRAL 5745800 776000 10.00 6 27.7 13 063580000 PE MUNICIPALITY FORT FRECERIC, GENTRAL 5745800 776000 10.00 6 0 27.7 13 0605220000 STRECKER, H 32 STELLALONDT DIVE FERRICEN 69993.000 375082.000 110.00 6.0 6.8 6.0 10 0700590000 LOTHLE-ATCO, AG 14 HAMLES ROAD FERRICEN 69993.000 375889.000 152.000 110.0 1.3 4.2 2.7 10 06000750000 LARGER FERRICEN 69993.000 376180.001 45.000 4.0 2.4 7.3 10 0700590000 LARDER VIVER FERRICEN 69993.000 376181.000 3.000 4.0 1.4 1.3 1.2	23.7
12 Ideal/astronom OFFENAL 55000 000 780003 000 78.000 T T 12 Ideal/astronom FEM.NIC/PALITY FORT FREERICK CENTRAL 57455 000 377093 000 78.000 100 6 2.7 13 Ideal/astronom FEM.REIRA, TIR BLEVERKESTRAAT COTSWOLD 6519 000 377015 000 15.000	
13 0033660000 PE MUNICIPALITY FORT FREE/ERAAT COTWOLD 6718000 3750200 197.000 100 6 277 18 605040000 FRREKERA, TITR B LEWERKISTRAAT COTWOLD 50180.000 375701000 110.00 5.0 22 18 605027000 ENRECKER, H 32 STIELLANDID TOMME FERNGLEN 605027000 110.00 1.0 6.0 6.8 19 605027000 CATTERCATCR, H 32 STIELLANDIC TOMME FERNGLEN 605027000 3757825.000 1310.00 110.0 1.0 4.5 19 605027000 VAN DEX YWER 15 CLANDIV CRESCENT HUMEWOOD 65928.000 3764809.00 23.600 - 2.4 - 2.2 20 6001770000 DE BEERRAS 15 <kllanry koad<="" td=""> HUMEWOOD 65928.000 3764809.00 23.600 - - - - - 2.2 2.0 2.0 - - - - - - 2.2 <</kllanry>	
14 BOD400000 FERREIRA, TIR B LEVERNIESTRAAT COTSWOLD 6018 0000 137000 5.0 2.2 16 BOD0050000 RNGELBRCHT 3.WHITNEY STREET FENROLEN 69582.464 3757754.500 116.000 10.0 1.3 4.6 17 BOD0050000 STRECKER, H 32 STELLA LOND TORKE FENROLEN 49582.000 375625.000 116.000 110.0 1.3 4.5 18 OF005840000 LARKER S NORLAND CLOSE FERNOLEN 49582.000 375683.000 112.000 110.0 1.3 4.5 18 OF005840000 LARKER S NORLANDE VRESCEN HALMENEY NORL 375683.000 375681.000 120.000 E.2 2.7 3.3 21 9901170000 DE BERAS IS KLLANEY NORL VRESCEN HUMEWOOD 5923.600 3756841.000 2.000 1.5 2.0 3.0 1.5 2.0 3.0 1.5 2.0 3.0 1.4 1.2 2.2 3.0 1.000 1.000 1.000	51
10 ENGLEARECHT 3 WHINRY STREET FERNGLEN 60922000 118.000 100.00 6.0 5.8 10 6600220000 LOFTICE CATON, GA 14 THAMES ROAD FERNGLEN 65060 00 375762 000 113.000 10.0 1.3 45 10 000055000 LAWER S NORLAND CLOSE FERNGLEN 65060 000 37578500 113.000 10.0 1.3 45 10 0000575000 LAWER S NORLAND CLOSE FERNGLEN 65265.000 37678500 35.600 84.0 2.4 21.33 10 0000175000 LEWINTHAL IS NLLAPREY CRESCENT HUMEWOOD 55295.000 3768175.000 43.000 1.6 20.35 21 0000170000 HUMEWOOD 55429.000 3768175.000 43.000 1.6 20.35 21 000170000 HUMEWOOD 56917.300 3768195.000 40.000 1.4 1.2 21 000270000 FERNCLEN HUMEWOOD 56917.300 3761695.000 40.000 1.4<	128.8
10 COD2720000 STRECKER, H 32 STELLA LONDT DRIVE FERNOLEN 4999000 7569220001 118.000 110.0 1.3 45 10 FORD220000 LARDER 5 NORLAND CLOSE FRAMESBY 4750000 3756828.000 135.000 110.0 1.3 45 10 ORD00570000 LARDER YVWER 15 GLENGARY CRESCENT 10000170000 58795.000 376098.000 23.600 44.0 2.4 21.33 20 05001760000 LEWITFAL 13 GLENGARY CRESCENT 100040000 5895000 376098.000 350.000 15 20.35 20 05001760000 MIKHEIGR E 14 GLENGARY CRESCENT HUMEWOOD 5895000 376195.000 350.00 1.0 1.3 23 20 6001750000 MIKHEIGR E 14 ALENCAR FORDA HUMEWOOD 58951000 376195.000 350.00 1.0 1.4 23 23 23007 1.4 23 230772000 60.0 3.0 1.4 23 24 20072000 20.00 <t< td=""><td></td></t<>	
Tr Decision Decision Lot Title EATON, GA 14 THAMES ROAD FERNCLEN 50000 375722.000 110.0 1.3 45 18 070050000 LANDER S NORLAND CLOSE FRAMESBY 47500.000 375722.000 48.0 2.7 18 0000750000 LEXINTHAL 13 KILLARKEY ROAD HUMEWOOD 55926.000 376150.000 22.000 1.5 23.35 21 0000170000 DE BEERAS 15 KILLARKEY ROAD HUMEWOOD 5524.000 376084.000 22.000 1.5 23.35 21 0000170000 DE BEERAS 15 KILLARKEY ROAD HUMEWOOD 5591.000 376084.000 24.000 3.0 1.5 23.35 20 000130000 CROSS, JH 31 AROCHE DRIVE HUMEWOOD 5971.000 760858.000 3600.0 1.0 1.4 1.4 28 0901250000 PE MUNICIPALITY HABEGA ROAD KABEGA ROAD 50.00 1.0 1.4 1.4 28 1200520000 PE MUNICIPALITY, GA 10 KLENEMENDO ND STREET HUMEWOOD 59716000 176080.00 1.0	31.13
10 CODESSOUD LANGER 5 NORLAND CLOSE FRAMESBY 4730000 378688.000 125.000 L 2.7 10 0000075000 VAN DER YWRER 15 GLENARRY CRESSENT MUMEWOOD 59785.000 376185.000 43.500 84.0 2.4 21.33 20 0000176000 DE EEERAS 15 KLLARNEY ROAD HUMEWOOD 59234.000 3766115.000 43.000 80.0 1.5 2.3 21 0000176000 DRITO, MARCHEIBER, E 14 GLENARRY CRESCENT HUMEWOOD 5942.000 3766136.000 60.0 1.5 2.3 21 0000176000 DRITO, MARCHEIBER, E 14 GLENARRY CRESCENT HUMEWOOD 5947.500 376848.000 36.00 1.4 21 0000170000 PROSS, MARY TARKSARCAD HUMEWOOD 5971.500 376848.000 36.00 1.4 21 2000270000 COLIGHTY, GA 10 KLENERDAD TREET HUMEWOOD 375848.000 375848.000 174.000 1.6 3.1 21<200270000	68
19 090075000 VAN DER VYWER 15 GLENGARRY CRESCENT HUMEWOOD 5726 000 3761150.00 43.500 84.0 2.4 21.33 20 0900116000 DE BEERAS 15 KILLARNEY ROAD HUMEWOOD 55208.000 376083.000 22.000	122.3
20 00007160000 LEVINTHAL 13 KILLARNEY ROAD HUMEWOOD 5920.000 23.000 = = 22 20 0000170000 DE BEERAS 15 KILLARNEY ROAD HUMEWOOD 5923.000 3760841.000 82.000 80.00 1.5 22.35 20 00001750000 BRITO, MKHEIBER, E 14 GLENGARRY CRESCENT HUMEWOOD 5942.000 3570185.000 55.000 43.0 1.4 - 21 00001750000 GRITO, MKHEIBER, E 14 ALROAD HUMEWOOD 5971.00 3760841.000 43.0 1.4 - 24 0000320000 GRITO, MALTY 14 LA ROCHE DRIVE HUMEWOOD 5971.00 3769185.000 15.00 43.0 1.4 - 20 12009220000 MCMERIAS 78 KABEGA ROAD KABEGA 4592.00 3776845.000 150.000 - 5.1 21 12009220001 MCMERIAS 12014450000 977516.000 152.000 - 62.31 21 1001460000 PE GOLF CLUB NO.1 WESTVIEW DRIVE	22.17
21 Deci170000 DE BEERAS 15 KILLARNEY ROAD HUMEWOOD 5324.000 3769115.000 48.000 48.00 49.0 49.0 53.0 50.0 40.00 50.0 50	-+
22 09001760000 MUKHEIBER, E. 14 GLENGARRY CRESCENT HUMEWOOD 58895.000 3766115.000 43.000 80.0 1.5 20.35 23 09001760000 RNTO, MM 27 MARSHALL ROAD HUMEWOOD 59751.000 3760195.000 35.000 60.0 3.0 4.13 24 09001750000 RENTO, MM 31 EACH ROAD HUMEWOOD 59751.000 3760195.000 40.000 4.0 1.4 1.4 25 090012500000 CROSS, J.H B LA ROCHE DRIVE HUMEWOOD 59405.000 376195.000 40.000 4.0 1.4 1.4 28 10002470000 OCULGHTY, GA 19 KLEIBEMOND STREET KABEGA 4520.600 375714.070 1.000 1.5 2.2 21 10002470000 DEGOLF CLUB NO.1 WESTVIEW DRIVE MILL PARK 59865.000 3758480.000 1500 7.0 62.31 21 14001460000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 59865.000 3758860.000 95.000 150 7.0 62.95 21 14001460000 PE GOLF CLUB NO.3 WESTVIEW DRIVE M	14.9
23 09007780000 RETO, MM 27 MARSHALL ROAD HUMEWOOD 65428.000 3761039.000 Stoop L L 26 0900320000 HOKEWOOD 577103.000 3761050.000 43.0 1.4 L 26 0900250000 FCMINICPAILTY HAPEYALEY HUMEWOOD 59617.300 3761160.000 14.0 L 27 10020470000 COLIGHTLY, GA 10 KLEINEMOND STREET HUMEWOOD 59405.000 160.000 L 5.1 27 10200720000 COLIGHTLY, GA 10 KLEINEMOND STREET KABEGA 44220.400 3757160.000 174.000 L 5.1 28 12000720000 STRYDOM 18 TULBACH STREET KABEGA 45220.460 3757160.000 174.000 L C 2.3 21 14001480000 PE GOLF CLUB NO.2 WESTVIEW DRIVE MILL PARK 53985.000 35000 15.00 7.0 62.95 21 14001480000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 54300.000 <	22.65
24 5903922000 HUMEWOOD HOTEL 33 BEACH ROAD HUMEWOOD 5971.000 3760986.000 8.500 60.0 3.0 4.13 25 0900480000 CROSS, J.H 8 LARCCHE DRIVE HUMEWOOD 5941560.000 14.000 14.000 25 09012560000 FE MUNICIPALITY HAPPY VALLEY HUMEWOOD 59405.000 3761982.000 150.000 14.000 28 12003720000 MICHEALS 78 KABEGA ROAD KABEGA 4420.00 3758480.000 152.000 15.1 28 12003820000 ISTRYDOM 18 TULBACH STREET KABEGA 4422.060 3758480.000 130.00 43.0 1.4 20 12003820000 ISTRYDOM 18 TULBACH STREET KABEGA 4422.4 640 3758480.000 33.000 150.0 7.0 62.31 21 14001490000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 54980.000 376985.000 37000 COLLAPSED 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	
25 05004830000 CROSS, JH 8 LA ROCHE DRIVE HUMEWOOD 56617390 3761160.000 41.0 1.4 27 10020476000 COLIGHTLY, GA 10 KLEINEMOND STREET HUNTERS RETREAT 44480.000 3755285.000 160.000 - - 28 10200720000 MCHEALS 78 KABEGA ROAD KABEGA 44820.000 3755285.000 170.000 - <	4.37
26 09012560000 PE MUNICIPALITY HAPPY VALLEY HUMEWOOD 54045.000 3761685.000 40.000 C F 28 12002720000 GOLGHTY, GA 10 KLIERALS 78 KABEGA ROAD KABEGA 45808.203 3758480.000 132.000 Imode Section 5.1 28 12009520000 ICURENS 21 TULBACH STREET KABEGA 4522.460 375714.200 Imode Section 3.2 20 12009520000 PE GOLF CLUB NO.1 WESTVIEW ORIVE MILL PARK 55980.000 3500 1500 7.0 62.95 21 14001460000 PE GOLF CLUB NO.1 WESTVIEW ORIVE MILL PARK 55495.000 3758895.000 9758895.000 17500 7.0 62.95 21 14001460000 PE GOLF CLUB NO.4 WESTVIEW ORIVE MILL PARK 55490.000 3758895.000 975890.000 1500 1.0 4.5 1.0 21 14001480000 PE GOLF CLUB NO.4 WESTVIEW ORIVE MILL PARK 54490.000 3758893.000 190.00 1.00.0 1.0 <td></td>	
27 10020470000 ICOLIGHTLY, GA 10 KLEINEMOND STREET HUNTERS RETREAT 44428.000 3758480.000 122.0000 ICOLIGNES 21 12.0072000 ICOLIGNES 21 11.001 12.0012000 ICOLIGNES 21 11.0014500.00 12.0012000 12.00	
128 12000720000 MICHEALS 78 KABEGA ROAD KABEGA 46808.230 375480.000 192.000 5.1 12009520000 LOURENS 21 TULBACH STREET KABEGA 4522.0 660 3757160.000 6.2 375490.000 6.2 3757160.000 6.2 3757160.000 6.2 3757160.000 6.2 3757160.000 6.2 3757160.000 95.000 1.4 6.2 3757160.000 95.000 1.6 6.2 375 375895.000 375895.000 375895.000 375895.000 375895.000 95.000 6.2 375 375895.000 375895.000 95.000 375895.000 37	+
129 12009620000 ICUURENS 21 TULBACH STREET KABEGA 45224 660 3757160.000 174 000 32 31 1400140000 PE GOLF CLUB NO.2 WESTVIEW DRIVE MILL PARK 539640.000 95.000 150 7.0 62.31 32 1400140000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 5395000 3758865.000 95.000 160 7.0 62.95 33 1400148000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 54905.000 3758850.000 95.000 100 4.5 34 1400148000 PE GOLF CLUB NO.5 WESTVIEW DRIVE MILL PARK 54900.000 3758850.000 98.000 110.0 4.5 35 1400148000 PE GOLF CLUB NO.5 WESTVIEW DRIVE MILL PARK 5400.000 3758850.000 98.000 110.0 4.5 36 1400148000 PE GOLF CLUB NO.5 WESTVIEW DRIVE MILL PARK 54705.000 3758891.000 98.000 110.0 4.5 37 14002310000	126.9
301 12009920000 STRYDOM 16 TULBACH STREET KABEGAA 45224.640 3757214.270 171.000 62.31 31 14001480000 PE GOLF CLUB NO.1 WESTVIEW DRIVE MILL PARK 53965.000 3758980.000 93.000 150 7.0 62.31 32 14001480000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 54985.000 3758985.000 93.000 160 7.0 62.31 31 14001480000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 54000.000 3758985.000 99.000 -	170.8
31 14001460000 PE GOLF CLUB NO.2 WESTVIEW DRIVE MILL PARK 53965.000 3759040.000 95.000 160 7.0 62.31 33 14001460000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 53995.000 3758980.000 95.000 COLLAPSED - 34 14001460000 PE GOLF CLUB NO.4 WESTVIEW DRIVE MILL PARK 54900.000 3758936.000 95.000 COLLAPSED - - 35 14001480000 PE GOLF CLUB NO.5 WESTVIEW DRIVE MILL PARK 54400.000 3758930.000 99.000 - <	
32 14001480000 PE GOLF CLUB NO.1 WESTVIEW DRIVE MILL PARK 54285.000 3758980.000 93.000 150 7.0 62.95 34 14001480000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 55995.000 3758855.000 97.000 COLLAPSED 35 14001480000 PE GOLF CLUB NO.4 WESTVIEW DRIVE MILL PARK 54900.000 3758850.000 98.000 36 14002310000 REVELWS NG.KA 25 MILL PARK ROAD MILL PARK 544602.000 3758981.000 80.000 110.0 4.5 37 14002310000 MEYBURG, JM 11 MILL PARK ROAD MILL PARK 54705.000 3758981.000 91.600 60.2 38 14002310000 MCORCROFT, CF 9 MILL PARK ROAD MILL PARK 54850.00 3758981.000 91.600 60.2 31 14002450000 DROKAR, BN 3 MCLEAN ROAD MILL PARK 54840.000 3758973.000 90.000 62	35.69
13 14001480000 PE GOLF CLUB NO.3 WESTVIEW DRIVE MILL PARK 53995.000 3758865.000 95.000 COLLAPSED 34 14001480000 PE GOLF CLUB NO.4 WESTVIEW DRIVE MILL PARK 54400.000 3758805.000 98.000 COLLAPSED 35 14001480000 PE GOLF CLUB NO.5 WESTVIEW DRIVE MILL PARK 54400.000 3758805.000 88.000 110.0 4.5 36 14002240000 SIMPSON, KA 25 MILL PARK ROAD MILL PARK 54470.000 3758981.000 90.600 110.0 4.5 31 14002320000 MOCRCROFT, CF 9 MILL PARK ROAD MILL PARK 54471.000 3758940.000 91.600 60.2 31 14002400000 ALAN CRCHARD FAMILY TRUST 5 MC LEAN ROAD MILL PARK 54851.000 3759020.000 90.000 65 41 14002400000 DEWAR, BN 8 MILL PARK 54787.000 3759025.000 91.000 110.0 4.0 41 140024500000 JONES, IA	35.05
14 14001480000 PE GOLF CLUB NO.4 WESTVIEW DRIVE MILL PARK 5400.000 3758835.000 97.000 COLLAPSED 35 14001480000 PE GOLF CLUB NO.5 WESTVIEW DRIVE MILL PARK 54300.000 3758803.000 88.000 110.0 4.5 36 14002310000 MEYBURG, JM 11 MILL PARK ROAD MILL PARK 54705.000 3758931.000 80.000 110.0 4.5 37 14002310000 MCRCROFT, CF 9 MILL PARK ROAD MILL PARK 54705.000 3758930.000 81.000 104.0 9.0 60.2 38 14002320000 MORCROFT, CF 9 MILL PARK ROAD MILL PARK 54851.000 3758923.000 80.000 14.0 9.0 65.2 41 14002400000 CRCHARD FAMILY TRUST IS MC LEAN ROAD MILL PARK 54850.000 375902.000 96.0 3.5 42 14002400000 ORCHARD, NA 3 MCLEAN ROAD MILL PARK 54757.000 3759077.000 91.000 10.0 4.0 41	
35 44001480000 PE COLF CLUB NO.5 WESTVIEW DRIVE MILL PARK 54602.000 3758800.000 86.000 110.0 4.5 36 140022310000 MEYBURG, JM 11 MILL PARK ROAD MILL PARK 54602.000 3758931.000 96.000 110.0 4.5 37 14002310000 MEYBURG, JM 11 MILL PARK ROAD MILL PARK 54717.000 3758993.000 91.500 104.0 9.0 38 1400230000 MACRCHARD FAMILY TRUST 5 MC LEAN ROAD MILL PARK 54421.000 3758923.000 91.500 60.2 40 14002400000 ALAN ORCHARD FAMILY TRUST 5 MC LEAN ROAD MILL PARK 54481.000 3759023.000 90.000 65 41 14002400000 ORCHARD, NA 3 MILL PARK ROAD MILL PARK 54485.000 3759023.000 90.000 65 41 14002400000 UARN, BN 8 MILL PARK ROAD MILL PARK 54485.000 3759027.000 90.000 40 4002560000 JA000	-
36 14002240000 SIMPSON, KA 25 MILL PARK ROAD MILL PARK 54602.000 3759238.000 88.000 110.0 4.5 37 14002310000 MEYBURG, JM 11 MILL PARK ROAD MILL PARK 54705.000 3758938.000 90.600 104.0 9.0 38 14002320000 MOORCROFT, CF 9 MILL PARK ROAD MILL PARK 54717.000 3758940.000 91.600 60.2 39 14002320000 RUN AN ORCHARD FAMILY TRUST IS MC LEAN ROAD MILL PARK 54821.000 3758923.000 90.000 65 41 14002400000 ORCHARD FAMILY TRUST IS MC LEAN ROAD MILL PARK 54855.000 3759020.000 90.500 96.0 3.5 42 14002450000 JONES, IA 10 MILL PARK ROAD MILL PARK 54757.000 3759027.000 91.000 110.0 4.0 41 14002450000 JONES, IA 10 MILL PARK ROAD MILL PARK 54757.000 3759975.000 86.000 125.0 6.0 45 14002560000 UONES, IA 10 MILL PARK ROAD MILL PARK 55197.000 375997.500 86.00 <	
37 14002310000 MEYBURG, JM 11 MILL PARK ROAD MILL PARK 54705,000 375891.000 90.600 104.0 9.0 38 14002320000 MOORCROFT, CF 9 MILL PARK ROAD MILL PARK 54717.000 3758963.000 91.600 60.2 39 14002320000 ALAN ORCHARD FAMILY TRUST 5 MC LEAN ROAD MILL PARK 54821.000 3758902.000 90.000 - 65 41 14002420000 ALAN ORCHARD, NA 3 MCLEAN ROAD MILL PARK 54840.000 375902.000 90.000 - 65 42 14002420000 DEWAR, BN 8 MILL PARK ROAD MILL PARK 54785.000 375902.000 90.000 - - - 43 14002420000 JEVAR, BN 8 MILL PARK ROAD MILL PARK 54785.000 375902.000 90.000 -<	
38 14002320000 MORCROFT, CF 9 MILL PARK ROAD MILL PARK 54717.000 3758963.000 91.600 60.2 39 14002370000 ROUX,VJ 2 MILL PARK ROAD MILL PARK 54821.000 3758940.000 91.600 65. 41 14002400000 ORCHARD FAMILY TRUST 5 MC LEAN ROAD MILL PARK 54825.000 3759023.000 90.000 65. 41 14002400000 ORCHARD NA 3 MCLEAN ROAD MILL PARK 54840.000 3759026.000 91.000 10.0 4.0 41 1400240000 DEWAR, BN 8 MILL PARK ROAD MILL PARK 54785.000 3759026.000 91.000 11.0.0 4.0 41 14002500000 VAN ZYL RUDD & ASS, PTY,LTD 18 MILL PARK ROAD MILL PARK 54785.000 37599275.000 86.000 125.0 6.0 45 14002500000 EDUCATIONAL TRUSTEES GREY HIGH SCHOOL MILL PARK 55127.000 3759947.000 110.0 3.0 125.0 6.0 6.0 47 14003560000 HCCALL, I 10 SALISBURY AVENUE MILL PARK 55128.000 3759947.000	
19 14002370000 ROUX,VJ 2 MILL PARK ROAD MILL PARK 54821.000 3758940.000 91.600 65 40 14002400000 ALAN ORCHARD FAMILY TRUST 5 MC LEAN ROAD MILL PARK 54855.000 3759020.000 90.000 65 41 14002400000 DEWAR, BN 3 MCLEAN ROAD MILL PARK 54840.000 3759020.000 90.000 42 14002400000 DEWAR, BN 8 MILL PARK ROAD MILL PARK 54765.000 3759020.000 91.000	31.3
40 14002400000 ALAN ORCHARD FAMILY TRUST 5 MC LEAN ROAD MILL PARK 54850.00 3759023.000 90.000 96.0 3.5 41 14002400000 ORCHARD, NA 3 MCLEAN ROAD MILL PARK 54840.000 3759020.000 90.500 96.0 3.5 42 14002400000 DEWAR, BN 8 MILL PARK ROAD MILL PARK 54785.000 3759028.000 91.000 10.00 4.0 43 14002600000 VAN ZYL RUDD & ASS, PTY,LTD 18 MILL PARK ROAD MILL PARK 54767.000 3759087.000 91.000 110.0 4.0 44 14002600000 VAN ZYL RUDD & ASS, PTY,LTD 18 MILL PARK ROAD MILL PARK 55477.000 375917.000 86.000 125.0 6.0 45 14002600000 MCCALL, I 10 SALISBURY AVENUE MILL PARK 5512.790 3759343.680 81.000 110.0 3.0 - - 47 14003690000 HCPEWELL, EC 5 WAVERLEY DRIVE MILL PARK 54797.000 3759947.000 70.000 - - - 48 14004410000 FORSDICK, AE 1 YOUNG LANE <	
41 14002400000 ORCHARD, NA 3 MCLEAN ROAD MILL PARK 54840.000 3759020.000 90.500 96.0 3.5 42 14002420000 DEWAR, BN 8 MILL PARK ROAD MILL PARK 54785.000 3759026.000 91.000 10.0 4.0 43 14002600000 JONES, IA 10 MILL PARK ROAD MILL PARK 54767.000 3759087.000 91.000 110.0 4.0 44 14002600000 VAN ZYL RUDD & ASS, PTY,LTD 18 MILL PARK ROAD MILL PARK 55476.000 3759191.000 90.000	25.5
42 14002420000 DEWAR, BN 8 MILL PARK ROAD MILL PARK 54785.000 3759026.000 91.000 10.00 4.0 43 14002450000 JONES, IA 10 MILL PARK ROAD MILL PARK 54757.000 3759026.000 91.000 110.0 4.0 44 14002650000 VAN ZYL RUDD & ASS, PTY, LTD 18 MILL PARK ROAD MILL PARK 54757.000 3759037.000 91.000 10.0 4.0 45 14002650000 VAN ZYL RUDD & ASS, PTY, LTD 18 MILL PARK 55080.000 3759275.000 86.000 125.0 6.0 46 140036500000 MCCALL, I 10 SALISBURY AVENUE MILL PARK 5512.790 3759343.680 81.000 110.0 3.0 47 14003690000 FORSDICK, AE 1 YOUNG LANE MILL PARK 5512.800 375974.000 70.00 100.0 3.0 48 1400410000 FORSDICK, AE 1 YOUNG LANE MILL PARK 54797.000 375975.000 80.00 100.0 3.0 50 140056200000 GEWYENSTEI	
43 14002450000 JONES, IA 10 MILL PARK ROAD MILL PARK 54757.000 3759087.000 91.000 110.0 4.0 44 14002600000 VAN ZYL RUDD & ASS, PTY,LTD 18 MILL PARK ROAD MILL PARK 54716.000 3759191.000 90.000 L L L 45 14002600000 WCAN ZYL RUDD & ASS, PTY,LTD 18 MILL PARK ROAD MILL PARK 5508.000 3759343.680 81.000 110.0 6.0 46 14003560000 MCCALL, I 10 SALISBURY AVENUE MILL PARK 5512.790 3759343.680 81.000 110.0 3.0 47 14003690000 HOPEWELL, EC 5 WAVERLEY DRIVE MILL PARK 5512.700 3759347.000 76.000 80.0 2.4 48 1400410000 FORSDICK, AE 1 YOUNG LANE MILL PARK 54797.000 3759571.500 80.00 100.0 3.0 51 14005610000 GOWAR, GB 11 REITZ ROAD MILL PARK 5509.000 3759552.000 78.00 100.0 3.0 51 14005610000 GREYVENSTEIN PRIMARY TRUS 2 WOODVILLE ROAD MILL PARK 5509.000 <t< td=""><td>-</td></t<>	-
44 14002600000 VAN ZYL RUDD & ASS, PTY,LTD 18 MILL PARK ROAD MILL PARK 54716.000 3759191.000 90.000 125.0 6.0 45 14002650000 EDUCATIONAL TRUSTEES GREY HIGH SCHOOL MILL PARK 55080.000 3759275.000 86.000 125.0 6.0 46 14003560000 MCCALL, I 10 SALISBURY AVENUE MILL PARK 5512.790 3759343.680 81.000 110.0 3.0 47 1400360000 HOPEWELL, EC 5 WAVERLEY DRIVE MILL PARK 55128.000 3759699.000 76.000 80.0 2.4 48 1400410000 FORSDICK, AE 1 YOUNG LANE MILL PARK 54797.000 3759947.000 70.000 49 14005300000 GOWAR, GB 11 REITZ ROAD MILL PARK 54862.000 3759750.000 80.000 100.0 3.0 50 14005810000 OLVETO 1 LINTON ROAD MILL PARK 5509.000 3759550.000 78.000 100.0 4.5 51 14009680000 VIANELLO 10 FAIRFORD AVENUE MILL PARK 55079.000 37599520.000 8	
45 14002650000 EDUCATIONAL TRUSTEES GREY HIGH SCHOOL MILL PARK 55080.000 3759275.000 86.000 125.0 6.0 46 14003560000 MCCALL, I 10 SALISBURY AVENUE MILL PARK 55312.790 3759343.680 81.000 110.0 3.0 47 14003690000 HOPEWELL, EC 5 WAVERLEY DRIVE MILL PARK 55128.000 375969.000 76.000 80.0 2.4 - 48 1400410000 FORSDICK, AE 1 YOUNG LANE MILL PARK 5477.000 70.000 - - - 49 14005300000 GOWAR, GB 11 REITZ ROAD MILL PARK 5509.000 3759715.000 80.00 100.0 3.0 50 14005610000 OLIVETO 1 LINTON ROAD MILL PARK 5509.000 3759750.000 78.000 -<	
46 14003560000 MCCALL, I 10 SALISBURY AVENUE MILL PARK 55312.790 3759343.680 81.000 110.0 3.0 47 14003690000 HOPEWELL, EC 5 WAVERLEY DRIVE MILL PARK 55128.000 3759609.000 76.000 80.0 2.4 48 14004410000 FORSDICK, AE 1 YOUNG LANE MILL PARK 54797.000 3759947.000 70.000 0.0 0.0 0.0 49 14005300000 GOWAR, GB 11 REITZ ROAD MILL PARK 54862.000 3759755.000 100.0 3.0 0.0 50 14006200000 GREYVENSTEIN PRIMARY TRUS 2 WOODVILLE ROAD MILL PARK 55009.000 3759552.000 78.000 0.0 0.0 0.0 0.0 51 14006200000 GREYVENSTEIN PRIMARY TRUS 2 WOODVILLE ROAD MILL PARK 55079.000 375952.000 78.000 0.00 0.0 </td <td></td>	
47 14003690000 HOPEWELL, EC 5 WAVERLEY DRIVE MILL PARK 55128.000 3759609.000 76.000 80.0 2.4 48 14004410000 FORSDICK, AE 1 YOUNG LANE MILL PARK 54797.000 3759947.000 70.000 100.0 3.0 49 14005300000 GOWAR, GB 11 REITZ ROAD MILL PARK 54862.000 3759715.000 80.00 100.0 3.0 50 14005610000 OLIVETO 1 LINTON ROAD MILL PARK 55009.000 3759552.000 78.000 100.0 3.0 51 14006200000 GREYVENSTEIN PRIMARY TRUS 2 WOODVILLE ROAD MILL PARK 55079.000 3759520.000 78.000 100.0 4.5 51 14009880000 VIANELLO 10 FAIRFORD AVENUE MILL PARK 55079.000 3759520.000 80.000 60.0 2.2 53 14009880000 LAPINER 47 WYCHWOOD AVENUE MILL PARK 53145.000 3759304.000 87.000 100.0 4.5 54 1401030000 MCRIS, DH 21 WYCHWOOD AVENUE MILL PARK 53145.000 3759354.000 92.000	
48 1400441000 FORSDICK, AE 1 YOUNG LANE MILL PARK 54797.000 3759947.000 70.000 100.0 3.0 49 14005300000 GOWAR, GB 11 REITZ ROAD MILL PARK 54862.000 3759715.000 80.000 100.0 3.0 50 14005610000 OLIVETO 1 LINTON ROAD MILL PARK 55009.000 3759755.000 79.000 100.0 3.0 51 14006200000 GREYVENSTEIN PRIMARY TRUS 2 WOODVILLE ROAD MILL PARK 55079.000 3759750.000 79.000 100.0 4.5 52 14009880000 LAPINER 47 WYCHWOOD AVENUE MILL PARK 53145.000 3759304.000 87.000 100.0 4.5 54 1401030000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 53145.000 3759304.000 87.000 100.0 4.5 54 1401030000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 53145.000 3759362.000 87.000 100.0 4.5 54 1401030000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 53249.000 3759352.000 87.000	-1
49 14005300000 GOWAR, GB 11 REITZ ROAD MILL PARK 54862.000 3759715.000 80.000 100.0 3.0 50 14005610000 OLIVETO 1 LINTON ROAD MILL PARK 55009.000 3759750.000 78.000 100.0 3.0 51 14006200000 GREYVENSTEIN PRIMARY TRUS 2 WOODVILLE ROAD MILL PARK 55079.000 3759750.000 79.000 100.0 4.0 52 14009880000 VIANELLO 10 FAIRFORD AVENUE MILL PARK 54250.000 3759520.000 80.000 60.0 2.2 53 14009880000 LAPINER 47 WYCHWOOD AVENUE MILL PARK 53145.000 3759356.000 92.000 100.0 4.5 54 14010030000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 53549.000 3759356.000 92.000 6.0 6.0 55 14010260000 MERYER, G 4 CAMDEN ROAD MILL PARK 53240.000 3759356.000 92.000 6.0 6.0 56 17001500000 MARIS 52 KING EDWARD STREET NEWTON PARK 53230.000 3759356.000 80.0 2.0 </td <td>1</td>	1
50 14005610000 OLIVETO 1 LINTON ROAD MILL PARK 55009.000 3759552.000 78.000 Image: Constraint of the cons	
51 1400620000 GREYVENSTEIN PRIMARY TRUS 2 WOODVILLE ROAD MILL PARK 55079.000 3759750.000 79.000 60.0 2.2 52 14009680000 VIANELLO 10 FAIRFORD AVENUE MILL PARK 54250.000 3759520.000 80.000 60.0 2.2 53 14009880000 LAPINER 47 WYCHWOOD AVENUE MILL PARK 53145.000 375936.000 92.000 100.0 4.5 54 14010030000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 53145.000 375936.000 92.000 6.0 2.2 55 14010260000 MEYER, G 4 CAMDEN ROAD MILL PARK 53230.000 3759356.000 92.000 6.0 2.6 34.1 56 17002640000 MEXER, G 4 CAMDEN ROAD MILL PARK 53230.000 3759352.000 80.00 2.6 34.1 56 17001500000 MARAIS 52 KING EDWARD STREET NEWTON PARK 51991.000 3759375.000 106.000 80.0 2.0 50.7 57 17002840000 ERASMUS, LB 92 PICKERING STREET NEWTON PARK 51165.910 3757250	1
52 14009680000 VIANELLO 10 FAIRFORD AVENUE MILL PARK 54250.000 3759520.000 80.000 60.0 2.2 53 14009880000 LAPINER 47 WYCHWOOD AVENUE MILL PARK 53145.000 3759304.000 87.000 100.0 4.5 54 1401003000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 533459.000 3759356.000 92.000 6.0 6.0 55 14010260000 MEYER, G 4 CAMDEN ROAD MILL PARK 53230.000 3759452.000 80.000 2.6 34.1 56 17001500000 MARAIS 52 KING EDWARD STREET NEWTON PARK 51991.000 375937.000 106.000 80.0 2.0 50.7 57 170028400000 ERASMUS, LB 92 PICKERING STREET NEWTON PARK 51165.910 3757250.193 122.000 70.0	1
53 14009890000 LAPINER 47 WYCHWOOD AVENUE MILL PARK 53145.000 3759304.000 87.000 100.0 4.5 54 14010030000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 53549.000 3759356.000 92.000 6.0 6.0 55 14010260000 MEYER, G 4 CAMDEN ROAD MILL PARK 53230.000 3759452.000 80.000 2.6 34.1 56 17001500000 MARAIS 52 KING EDWARD STREET NEWTON PARK 51991.000 375937.000 106.000 80.0 2.0 50.7 57 170028400000 ERASMUS, LB 92 PICKERING STREET NEWTON PARK 51165.910 3757250.193 122.000 70.0 70.0 58 17008720000 FEDLIFE GREENACRES NEWTON PARK 53170.000 3758100.000 106.000 140.0 7.4 57.45	1
54 14010030000 MORIS, DH 21 WYCHWOOD AVENUE MILL PARK 53549.000 3759356.000 92.000 6.0 55 14010260000 MEYER, G 4 CAMDEN ROAD MILL PARK 53230.000 3759452.000 80.000 2.6 34.1 56 17001500000 MARAIS 52 KING EDWARD STREET NEWTON PARK 51991.000 3756937.000 106.000 80.0 2.0 50.7 57 17002840000 ERASMUS, LB 92 PICKERING STREET NEWTON PARK 51165.910 3757250.193 122.000 70.0 106.000 140.0 7.4 57.45	1
55 14010260000 MEYER, G 4 CAMDEN ROAD MILL PARK 53230.000 3759452.000 80.000 2.6 34.1 56 17001500000 MARAIS 52 KING EDWARD STREET NEWTON PARK 51991.000 3756937.000 106.000 80.0 2.0 50.7 57 17002840000 ERASMUS, LB 92 PICKERING STREET NEWTON PARK 51165.910 3757250.193 122.000 70.0 106.000 140.0 7.4 57.45	1
56 1700150000 MARAIS 52 KING EDWARD STREET NEWTON PARK 51991.000 3756937.000 106.000 80.0 2.0 50.7 57 17002840000 ERASMUS, LB 92 PICKERING STREET NEWTON PARK 51165.910 3757250.193 122.000 70.0 106.000 140.0 7.4 57.45	45.9
57 17002840000 ERASMUS, LB 92 PICKERING STREET NEWTON PARK 51165.910 3757250.193 122.000 70.0 58 17008720000 FEDLIFE GREENACRES NEWTON PARK 53170.000 3758100.000 106.000 140.0 7.4 57.45	55.3
58 17008720000 FEDLIFE GREENACRES NEWTON PARK 53170.000 3758100.000 106.000 140.0 7.4 57.45	+
	48.55
59 17016790000 LANDMAN 12 WEST STREET NEWTON PARK 52765.000 3758016.000 108.000 126.0 3.0 56.48	54.7

No.	ERFNO	NAME	STREET ADDRESS	SUBURB	-Y CO-ORD	TX CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WI MBGI (m)	WLAMSL(m)
		BRERETON, DN	20 MANGOLD STREET		52880.000	3757619.000		100.0	2.4	1	
		METROPOLITAN LIFE LTD	281 CAPE ROAD	NEWTON PARK	52965.350	3757956.920	107.000	1.0000			
		OLD MUTUAL	GREENACRES		53130.000	3758030.000		1	3.0	1	
		SHEPHERD, SB	108 MARINE DRIVE	SCHOENMAKERSKOP		3768115.000			1	<u> </u>	
		ALGOA REGIONAL SERVICES		SCHOENMAKERSKOP		3768830.000		30.0	1.8	4.6	6.4
		BUYS, ISC			57326.570	3760716.770			1	22.07	36.93
	23000250000		8 BRIGHTON DRIVE		61229.000	3761888.000					00.00
		MOOLMAN, CH	1 3RD AVENUE		61242.000	3761731.000				1.85	4.15
		BLUMBERG, JM	3 3RD AVENUE		61233.000	3761757.000			1		1.10
		ZONIA PROPERTY TRUST	4 3RD AVENUE		61306.000	3761763.000					
			8 3RD AVENUE		61285.000	3761826.000	7.000	30.0	10.0	·	
			8 2ND AVENUE		61170.000	3761857.000			10.0	3.4	6.6
		ALBERTYN, ML	7 BRIGHTON DRIVE		61229.470	3761888.090		13.0	10.0	2.35	6.65
		VAN HEERDEN, PS	34 BRIGHTON DRIVE		61637.000	3762184.000		45.0	4.0		0.00
		ROTHERAY, B	7 9TH AVENUE		61953.000	3762182.000			1.0	·	
		HUISAMEN, GG	2 BOGNOR STREET		61767.000	3762285.000					
		KRUGER, M	17 SCARBOROUGH STREET		62015.000	3762370.000		40.0	1	i	
		SPIES, AJ	70 BRIGHTON DRIVE		62139.000	3762602.000		1	1	<u> </u>	
		DEMAY, JRC	77 BRIGHTON DRIVE		62096.000	3762648.000			1	†	
		LONGWORTHY, T	5 ADMIRALITY WAY		62356.000	3762640.000	5.300	16.0	4.0	0.66	4.64
	23002530000		9 ADMIRALTY ROAD		62314.000	3762675.000		20.0	3.0		
		FOURIE. AB	22 BOGNOR ROAD		61468.000	3762614.000		40.0	3.0	1	<u> </u>
		EDWARDS, JP	18 BOGNOR STREET		61520.000	3762584.000		1	1	<u> </u>	
		KOORTS, EM	19 NOBBS STREET		61328.110	3762723.210					
					61326.000	3762660.000		26.0			
					61332.000	3762602.000					
		PLACKETT, CK			61964.000	3762597.000					· · · ·
			21 BRADLEY ROAD		61749.000	3763009.000		32.0	4.5	2.04	19.76
					62141.000	3762843.000					
			8 ERASMUS AVENUE		61353.000	3763092.000				<u> </u>	1
			4 ERASMUS AVENUE		61368.000	3763154.000				· · · · · · · · · · · · · · · · · · ·	
	23007650000				61213.000	3762422.000		30.0	7.0		1
	23007840000				61072.000	3762723.000		43.0			
		TRUSTEES OF MARCLA TRUST			60957.000	3762768.000					1
		MICHAEL, H		SUMMERSTRAND	61000.000	3762555.000	27.000				
		PELLE, PJW	13 AVONMOUTH CRESCENT	SUMMERSTRAND	60704.000	3762512.000	30.000	t		·	1
96	23008840000	CHERRY HT	30 AVONMOUTH CRESCENT	SUMMERSTRAND	60555.000	3762544.000	30.000			<u> </u>	1
		GOUDBERG, VE	11 7TH AVENUE	SUMMERSTRAND	61575.630	3762095.170	8.000	30.0			1
98	23014100000	CHURCH, KA			60364.000	3762682.000	32.000		1	27.5	4.5
		SCHNETLER, ES	17 KOLBE CRESCENT	SUMMERSTRAND	60403.000	3762815.000		50.0	16.0		
		BRADSHAW, JH	64 WINCHESTER WAY	SUMMERSTRAND	60310.000	3762684.000	38.000	32.0	8.0		
		SCEMMER, F		SUMMERSTRAND	60474.000	3762683.000	32.000				
		GROBLER, LC	14 LOUIS BOTHA CRESCEN	SUMMERSTRAND	60817.000	3762831.000	30.000				
103	23014660000	DELPORT, HJ	1 BURGER STREET	SUMMERSTRAND	61200.000	3762861.000	26.000	40.0	3.0		
104	23014670000	HOLANI, AP		SUMMERSTRAND	61180.000	3762897.000	26.500	40.0	3.0		1
		HATTINGH, DJH	34 LOUIS BOTHA CRESCEN	SUMMERSTRAND	61131.000	3762864.000					
		BLUMBERG, AV	44 LOUIS BOTHA CRESCEN	SUMMERSTRAND	61260.000	3762983.000	28.000				
107	23015000000	TUTTON, CW			60553.000	3763040.000				5.45	28.55
	23015010000			SUMMERSTRAND	60567.000	3763075.000		78.0	16.0		
109	23015100000	DIPPENAAR, MJ			60735.420	3763254.540					
110	23015190000	MARSHALL, A			60867.000	3763276.000		30.0	4.8		
111	23015680000	SNYDERS, PJ			60925.000	3762988.000					
112	23016570000				60252.000	3762902.000					
	23016760000	KRIGE, IA	11 VIGNE ROAD	SUMMERSTRAND	59975.000	3762815.000	40.000	50.0	10.0		
113		UCNODIN DRODCOTICS CC	19 VIGNE ROAD	SUMMERSTRAND	60055.000	3762860.000	37.000				
		HENDRIN PROPERTIES CC									
114	23016800000				60012.000	3762890.000	40.000				1
114 115	23016800000 23016880000	DORFLING, NJ	20 BULBRING ROAD	SUMMERSTRAND SUMMERSTRAND	59912.000	3762890.000		70.0		6.58	32.42
114 115 116	23016800000 23016880000 23016930000	DORFLING, NJ VAN RENSBERG	20 BULBRING ROAD 10 BULBRING ROAD	SUMMERSTRAND SUMMERSTRAND			38.500	70.0 42.0	/ ···.	6.58	32.42

		NAME	STREET ADDRESS	SUBURB	-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
119	23016970000	SCHULTZ, SP	27 VIGNE AVENUE	SUMMERSTRAND	60163.510	3762922.490	40.000	60.0			
120	23017170000	TEMPLER, BM	30 BULBRING ROAD	SUMMERSTRAND	60140.000	3762962.000	41.000	42.0	3.0	1	1
121	23017360000	BOSCH, JK	68 WINCHESTER ROAD	SUMMERSTRAND	60270.000	3762750.000	33.000	60.0	3.0	13	20
122	23019050000	WIESE, TG	9 KOLBE CRESCENT	SUMMERSTRAND	60329.800	3762739.370	34.000	40.0	10.0	1	
123	23021100000	PIENAAR, DR	24 HARVEY STREET	SUMMERSTRAND	59832.000	3763164.000	46.000			7.1	38.9
		CROSS, MA	5 SOLOMON CLOSE	SUMMERSTRAND	60160.380	3762072.150		96.0	T	1	
125	23021830000	HART, EE	4 MILLER STREET	SUMMERSTRAND	60095.000	3762201.000	33,000	90.0	6.0	1	
		MILLER, IJW	18 CAMELIA CRESCENT	SUNDRIDGE PARK	49097.000	3757911.000		50.0	4.0		+
		BUWALDA, CM	58 HONEYSUCKLE AVENUE		48618.000	3758639.000		60.0	4.5		+
		CROUSE, E	7 SUNRIDGEPARK AVENUE		49448,000	3757651.000					
		WILLIAMS, A	4 BOSHOFF STREET	WESTERING	48358.000	3757368.000				0.9	142.1
		PEINKE	15 COSMOS STREET	WESTERING	47812.790	3756403.070		105.0	2.0	108.28	31.72
· · · · · · · · · · · · · · · · · · ·		SCHEEPERS, G	2 FILIPPUS	THEESCOMBE	45646.970		3.000	100.0	2.0	100.20	
		HOUZE, AAP	87/89 9TH AVENUE	WALMER	53600.000	3760460.000					
		PEARSON. NP	20 ALCOCK ROAD	WALMER	54316.000	3760188.000	64.000	100.0	1.2		
100			50 SEVENTH AVENUE		54350.000	3760570.000					
		CLARENDON PARK SCHOOL		WALMER				100.0	7.2		
	32000570000		29 SHORT ROAD	WALMER	53304.000	3760872.000		100.0	1.2		+
	32000620000		197 CHURCH ROAD	WALMER	52256.000	3761129.000		100.0	3.0		
	32001060000		132 CHURCH ROAD	WALMER	53425.000	3761147.000				l	
		DIX-PEEK, BM	27 11TH AVENUE	WALMER	53199.000	3761323.000				11	6.4
	32001790000		12 11TH AVENUE	WALMER	53190.000	3761589.000		93.0	10.0	5.73	74.27
	32002890000		56 ALBERT ROAD	WALMER	56044.000	3761235.000	59.000	45.0		ļ	
		MOLYNEAUX, JA	20 THOMAS ROAD	WALMER	54220.000	3760005.000					
		SNIJMAN, CJA	69 9TH AVENUE	WALMER	53743.050	3760706.600		90.0	6.0		
143	32004730000	ROGERS, AC	9 SHORT ROAD	WALMER	53565.000	3760790.000					
144	32004820000	RAYNER, HM	110 RIVER ROAD	WALMER	53172.000	3760888.000	81.000	110.0	1.2		
145	32004870000	LANE, BA	98 SHORT ROAD	WALMER	52550.000	3761098.000	86.000				
146	32004960000	ADLER, AJ	68 SHORT ROAD	WALMER	52968.000	3761118.000	79.000	110.0	2.0		1
	32004980000		64SHORT ROAD	WALMER	53010.000	3761117.000	79.000	102.0	3.0	4.3	74.4
148	32005700000	TWL INVESTMENT TRUST	6 SHORT ROAD	WALMER	53676.000	3760839.000	74.000				
	32006560000		104 CHURCH ROAD	WALMER	53763.000	3760991.910			1	1	
	32006640000		160 CHURCH ROAD	WALMER	53174.000	3761256.000		110.0	2.5	1	
		LUWMI TRUST	230 CHURCH ROAD	WALMER	52325.000	3761247.000					+
	32007270000		236 WATER ROAD	WALMER	52539.000	3761410.000		100.0	3.0		
		SCHECKTER, SB	17 11TH AVENUE	WALMER	53237.170	3761498.260		110.0	2.5	·	<u>+</u>
	32007990000		112 WATER ROAD	WALMER	53817.000	3761184.000		1110.0	12.0		
		BOOYSEN FAMILY TRUST	110 WATER ROAD	WALMER	53827.740	3761129.050			+	1	
		BENNETT, AC	41 MAIN ROAD	WALMER	54981.150	3760682.440			+	35.38	34.62
			192 MAIN ROAD	WALMER	53312.000	3761559.000		+		35.36	34.02
	32010100000							100.0		E	
	32010120000		194 MAIN ROAD	WALMER	53286.000	3761568.000		100.0	+	5	74
	32010740000		287 VILLIERS ROAD	WALMER	52336.000	3761645.000		<u> </u>	+		· · · · · · · · · · · · · · · · · · ·
	32010770000		281 VILLIERS ROAD	WALMER	52430.000	3761654.000			+		
		ROBERTSON, HBD	158 PROSPECT ROAD	WALMER	53556.730	3761637.390		70.0		ļ	<u> </u>
	32010840000		227 VILLIERS ROAD	WALMER	53606.000	3761654.000		70.0	2.0		
	32011070000		185 FORDYCE ROAD	WALMER	54142.000	3761436.000		109.0		ļ	·
		VAN STADEN, PJ	52 FORDYCE ROAD	WALMER	55876.000	3760762.000			 	l	
		VAN DER MERWE, AG	95 HEUGH ROAD	WALMER	55580.370	3761152.590		103,0	8.0		
		FERREIRA, SG	74 VILLIERS ROAD	WALMER	55850.000	3760951.000					
167	32017500000	CADLE, B	67 ALBERT ROAD	WALMER	55931.000	3761198.000		110.0			
168	32017630000	ELLIS,SS	94 HEUGH ROAD	WALMER	55641.000	3761234.000		75.0	8.0		
		COLESKE, WJ	5 3RD AVENUE	WALMER	56232.000	3761201.000	59.000	86.0			
		PE MUNICIPALITY	EIGHTH AVENUE	WALMER	54130.640	3761045.190				1	1
			KING EDWARD PARK	WALMER	53690.810	3762029.400	90.000	58	10	11.5	82
		WALMER COUNTRY CLUB NO.1		WALMER	52495.000	3762895.000		T	†	12.5	78.5
		WALMER COUNTRY CLUB NO.2		WALMER	52925.000	3762555.000			<u>+</u>	+	+
		WALMER COUNTRY CLUB NO.3		WALMER	53460.000	3762645.000					+
		WALMER COUNTRY CLUB NO.4		WALMER	52932.000	3762216.000					
			VICTORIA DRIVE	WALMER	55654.200	3763403.950		50.0	3.0	<u> -</u>	+
10	32019480000	PE NEININEL GLUD	VICTORIA DRIVE	MUNIVIER	100004.200	13703403.950	103.000	100.0	12.0	<u> </u>	

No. ERFNO	NAME	STREET ADDRESS	SUBURB	I-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
177 32019480000	TELKOM CLUB	VICTORIA DRIVE	WALMER	52540.000	3764120.000					<u>/</u>
178 32019810000	HARTY, JP	12 NEWCOMBE AVENUE	WALMER	50109.560	3763293.540	144.000			31.5	112.5
179 32019820000		10 IDYLWYDE CRESCENT	WALMER	51139.000	3763234.000	140.000				
180 32020080000	SOFOKLEOUS, V	187 HEUGH ROAD	WALMER	54548.000	3761598.000	62.200				
181 32020350000	REPTON, PJ	132 PROSPECT ROAD	WALMER	53644.000	3761632.000	78.000				
	GRAHAM, SJ	15 ST JOHNS AVENUE	WALMER	53841.000	3760607.000			· · · · · · · · · · · · · · · · · · ·		
	VAN DER WALT, A	74 RIVER ROAD	WALMER	53623.000	3760684.000				19.53	50.47
	MALHERBE, AL	231 WATER ROAD	WALMER	53202.000	3761314.000		72.0	3.0	10.00	00.17
	MATTHEWS, PD	113 WATER ROAD	WALMER	53600.450	3761161.060		1	10.0		· · ·· · · · · · · · · · · · · · · · ·
186 32026390000	KEMP, ES	10 4TH AVENUE	WALMER	55800.000	3761360.000		60.0			
187 32026450000		125 CHURCH ROAD	WALMER	53197.000	3761143.000		100.0	3.0	· · · ·	
	CHURCH, SM	186 CHURCH ROAD	WALMER	52871.000	3761272.000		90.0	3.0		
	BEYLEVELD, HJJ	34 SHORT ROAD	WALMER	53301.000	3761021.400		100.0	2.0		
	HOFMEYER, ALC	99 CHURCH ROAD	WALMER	53470.000	3761035.000		140.0	1.2		
	CONNELLAN, PM	54 THOMAS ROAD	WALMER	53908.000	3760186.000		100.0	1.8		· ·····
191 32027230000		159 PROSPECT ROAD	WALMER	53730.000	3761460.000		100.0	1.0	5.75	72.25
							19.0	12.0	5.75	12.20
193 32028030000		30 12TH AVENUE	WALMER	53752.000 53752.000	3760600.000		18.0	12.0		
	KOHLER, LE		WALMER				108.0	7.0		
195 32028230000		41 10TH AVENUE		53510.000	3761020.000		112.0	9.0		
	PERROTT, JR	49 SHORT ROAD	WALMER	53130.000	3761000.000		38.0			
197 32028600000	BLUMBERG, SA	12 DORMY PLACE	WALMER	51982.000	3760923.000			<u> </u>	1	89
198 32028810000		6 CLUB ROAD	WALMER	52288.000	3760925.000				2.73	77.27
	RUDMAN, LV	32 GOLF ROAD	WALMER	52508.000	3760794.000		80.0	1.2		
	STRYDOM, CJ	10 CLUB ROAD	WALMER	52470.000	3760849.000					
201 32029000000		1 CLUB ROAD	WALMER	52359.000	3760974.000		110.0			
202 32029010000		3 CLUB ROAD	WALMER	52363.000	3760931.000		72.0	2.5	1.5	86.5
203 32029050000		140 RIVER ROAD	WALMER	52491.000	3760932.000		30.0	<u> </u>		
204 32029070000		77 SHORT ROAD	WALMER	52515.000	3760998.000		85.0	2.5		
205 32030330000	VAN AARDE, FJ	10 ALCOCK ROAD	WALMER	54439.000	3760128.000					
206 32030480000	BALL, BS	15 WATER ROAD	WALMER	54896.000	3760549.000					
207 32030630000	SCOTT, PA	5 HILLBROW PLACE	WALMER	54900.000	3760471.000	69.000				
208 32033330000	DU PLESSIS, YS	16 11TH AVENUE	WALMER	53158.000	3761483.000	77.000	114.0	3.6	3	74
209 32036260000	SKINNER, DHG	166 WATER ROAD	WALMER	53243.000	3761410.000	73,000				
210 32036490000		146 CHURCH ROAD	WALMER	53327.000	3761195.000	70.000				
211 32038800000		17 13TH AVENUE	WALMER	52535.000	3761281.000		100.0	4.5		
212 32038810000		214 CHURCH ROAD	WALMER	52537.000	3761248.000					
213 32038820000		38 CHURCH ROAD	WALMER	54540.000	3760606.950		110.0	3.0		
214 32039640000		152 PROSPECT ROAD	WALMER	53620.000	3761610.000					
	MILLWOOD CORNER BODY	162 MAIN ROAD	WALMER	53703.000	3761398.000		· · · · · ·			
216 32040170000		10 IDYLWYLDE CRESCENT	WALMER HEIGHTS	51150.000	3763310.000		69.0	2.0	29.7	110.3
	GAIL TAVERNER TRUST	86 SHORT ROAD	WALMER	52699.000	3761111.000		00.0	2.0	20.1	110.0
218 32040370000		135 CHURCH ROAD	WALMER	53042.240	3761146.060			+		
219 32040730000		6 LIONEL ROAD	WALMER	51737.000	3759846.000		ł		1.2	103.8
220 32040730000		75 SHORT ROAD	WALMER	52591.000	3761012.000			<u> </u>	1·· <u>~</u>	
		75 SHORT ROAD	WALMER	52571.370	3760967.330		100.0	3.0		
221 32041370000			WALMER				100.0	<u> </u>		
222 32041510000				54430.000	3761940.000			<u> </u>		
223 32041520000	BRICKNELL, NW	141 PROSPECT ROAD		53892.870	3761400.880		20.0			
224 32041730000	SUNDE, HP	53 SHORT ROAD	WALMER	53033.060	3761030.000		30.0	0.9	·	
225 32041990000	ADLER, VJ	49 10TH AVENUE	WALMER	53427.000	3760801.000			<u> </u>		
226 32048010000		52 SHORT ROAD	WALMER	53101.860	3761069.680			<u> </u>	 _	
227 32050150000		43 CHURCH ROAD	WALMER	54500.440	3760530.980					
228 32050160000	DATMAN	39 CHURCH ROAD	WALMER	54790.281	3761103.062			ļ	33.2	38.8
229 33000760000	COOK, RA	19 KITCHING ROAD	CHARLO	50752.000	3762275.000				<u> </u>	
230 33014730000		14 MARTIN ROAD	CHARLO	50869.250	3761780.502	118.000	85.0	7.0		
231 360 0000	DOUGLAS-JONES, AJ	12 WOODLANDS AVE	LORRAINE				80	2.5	12	116
232 36000850000	VAN DER MERWE, SD	66 VERDUN ROAD	LORRAINE	46612.000	3760608.000	156.000				
233 36000930000	DU TOIT, LM	98 VERDUN ROAD	LORRAINE	46923.000	3760663.000	156.000	70.0		5.7	150.3
	SEAMAN, D	262 KRAGGA KAMMA ROAD	LORRAINE	46615.760	3759561.900		100.0	1	1.5	1
234 36017550000 235 36019180000										

No. ERFNO	NAME	STREET ADDRESS	SUBURB	-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
236 36054090000	PARKER, AH	ASCOT STUD	THEESCOMBE	47611.956	3761750.750	94.500	68		58	36.5
237 99002980000	MACKAY	MELLOWMEAD	LOVEMORE PARK	46745.593	3765654.594	53.000			7	46
238 99002860000	MAHLERT	ALTMARK	LOVEMORE PARK	46724.533	3765554.660	58.200			33.6	24.6

Boreholes outside of the PE municipal area

239 990 0000		GLENDORE ROAD			3746261.871			_	10	104
240 990 0000	WADE T.	GLENDORE ROAD	THEESCOMBE	51424.922	3746443.627				11	114
241 99000180000	CILLIE, H	KRAGGA KAMMA ROAD	THEESCOMBE	42312.792	3760845.005				1.7	178.3
242 99000460000	THEOPHILUS, AJ	GREENBUSHES	THEESCOMBE	39775.920	3 <u>761278.5</u> 50		186.0	4.0	29.7	113.3
243 99002850000	ELIOT		LOVEMORE PARK	46382.658	3765575.162				23.7	26.6
244 99002860000	FUGARD		LOVEMORE PARK	46582.937	3765546.567	56.100			5.65	50.45
245 99003050000	PUFFETT, R	843 SARDINIA BAY ROAD	LOVEMORE PARK	48491.871	3765262.214	91.000	94		10.45	80.55
246 99003410000	NICKELSON	OVER-THE-MOON	LOVEMORE PARK	47674.276	3765583.432				7.6	68.5
247 99003450000	BARTLETT		LOVEMORE PARK	47354.776	3765439.476	72.900			43	29.9
248 99003510000	DANHOER	SCOTSAM	LOVEMORE PARK	47018.087	3765034.779	81.900	220		9.17	72.73
249 99003510000	LONG, S	SCOTSAM	LOVEMORE PARK				220		9.2	70.8
250 99004090000	PUFFETT, R	843 SARDINIA BAY ROAD	LOVEMORE PARK							
251 99007400000	STONE, TC		LOVEMORE PARK	48140.731	3764679.926				10.7	84.3
252 99007780000	ONVLEE, C	250 KRAGGA KAMMA ROAD	KRAGGA KAMMA	46815.000	3759360.000	127.000				
253 99019350000		ARLINGTON R. COURSE NO.	ARLINGTON	51535.000	3763685.000		18	7	20	94
254 99019480000	ROVER MOTORCROSS		THEESCOMBE		3765620.000					
255 99019520000	WELLS J.	GLENDORE ROAD NO2	THEESCOMBE	51330.000	3764420.000					
256 99019520000	WELLS J.			51500.000	3764436.000			_		
257 99019520000	WELLS J.		THEESCOMBE	51480.000	3764410.000					
258 99019520000	WELLS J.	GLENDORE ROAD NO1	THEESCOMBE		3764440.000					
259 99040340000	PE TURF CLUB	ARLINGTON R. COURSE NO.	ARLINGTON	51915.000	3763632.000	110.000		7	4	106

z		115.092	137.225	6/2.843	32.7568	37.5261 1.77064	1.28371	41.1674	39.3967	28 7729	31.4289	37.1834	0.61972	33.6422 38 £114	34,0848	30.1009	38.5114	137.225 30 E43E	30 0862	7.96788	29.2156	23.461	25.2316	10 477	1	15.9358	15.9358	15.4931	12.3945	00000	19.477	21.6903	18.1491	19.0344	22.5757	21.6903	19.0344 22 133	20.805	22.133	17.7064	19.9197	19.0344	42 938	45 594	57.9885	17.2637	13.2798	0.0399 7.96788	7.52522	5.19724	8.41054	8.27774	10.1812
L.				0.19	0.17							0.11			0.21			0.1	T	0.09				0 10		ſ	0.12	1	0.12		1 1	0.35		0.05			12.0	0.05		0.05	1 1				0.23	Ιł	.	E.0	0.05		Ť	0.05	
NO3-N		26.0	31.0	152.0	7.4	8.0 40	0.3	9.3	8.9 7 F	0.0 9	7.1	8.4	0.1	/.6 8.7	7.7	6.8	8.7	31.0	0.0	1.8	6.6	5.3	5.7		ţ	3.6	3.6	3.5	2.8	2	4.4	4.9	4	4 4 0 8	5.1	4.9	4 4 2 C	4.7	5.0	0 4 0	4.5	4.3	07	10.3	13.1	3.9	0. 0. 1.	0. 10 10 10 10	1.7	1.4		1.9	2.3
S04		73	75	263	102	74	64		65	84	89	69	73	38	95	107	81	136		12	78	88	102	22 735	3	67	73	140	90	3	80	85	85	36	83	86	92	916	97	8	80	8	-	85	88	60	8	40	38	4	53	45	47
×				345.0	7.0			11.0	0	0.0	5.0	3.0			12.0			45.0		6.0				2	2		5.0		0.4	2		8.0		40	2		9.0	8.0		8.0					5.0	3.0	-	4.U	1.6	6.0	T	4.0	
Na	1			186	176			162	167	101	151	142			177			167		153				286	3		291	-	254	5		316		318	2		2/0	273		278					<u>1</u>	105		<u>2</u>	134	156	T	158	
Fe(t)			11	0.15	0.06	T			200	- 	0.0	0.11			10.0			0.04	T	0.05				600	70.0		0.44	-	10.0			0.01	1	0.36	2222		0.26	0.01	-	0.02					0.25	0.08	000	50-0	0.02			0.03	
	112	132	153	266	216	193	178	242	181 186	221	181	197	180	219	239	269	212	216	238	181	201	215	242	43/ 511	490	483	462	356	490	į–	462	460	490	501	422	465	4/2 316	419	446	432	428	389	92	50	114	152	199	241	230	256	151	245	226
Mg	caco3			233	94	_		76	75	2	69	59			101			106		75			-	120	2		141		121	2		161		124			131	131		123					76	48			58	73	+-	68	
Ca	caco3			0 20 20	စ္တ			37	ţ	7	30	22			62		1	125	T	33				75	2	-	85		200	3		104		78	2		22	82		75					62	23	ļ	43	29	36	+-	46	
	Cactos		001	283	133			113	117		66	8		T	163			231	T	108				105	3	ľ	226		190	3		265	-	202			213	213		198			- -		138	71	4		87	109		114	
NCH	caco3		0,0	017	48			69	02	2	45	29		Ť	61			148	T	46				147			185	4,1	148 105	2		224		153	2		156	168		152					22	45		51	71	85	+	97	
	CacO3 1		010	3/3	85			4	17	Ŧ	54	52			102			8	T	62				av	2		41	ę	42			41		49			2	45		46					116	26		- - 	16	24	Ť	17	
BCA	CacO3		010	3/9	85			44	53	Ť	54	52			102			83		62				84	2		41	ļ	42	F	43	4	4	49	2		21	45		46				66	116	26	-	-	16	24	69	17	15
TA	CaCO3		010	3/9	85			44	53	Ŧ	54	52			102			83		62				87	2	1-	41	-	42	F	43	41	41	49	2		2	45		46				66	116	26	-		16	24	- 69	17	15
TDS			694	2122	666			-	544	122	562	546	644	(10	869	812	600	1076		646	696	778	746	1056	3		1012	-	982			976	966	1014	1010	1044	1150	1110	986	1028	1012	972		508	620	422		020	488			488	490
Turb.				4. V.	2.1			0.7	0.6	70	0.2	0.4			20			6.0		0.7				ç	2		2.5	0	0.7 7 U		0.8	0.0	0.3	03	2		2.5	0.4		1.7				45.0	19.0	1.5		F	0.5	0.9	4.6	0.6	0.4
EC	91	91	104	135	118	10	103	92	6	112	95	94	102	111	123	127	94	149	122	67	109	110	116	180	38	174	177	17	164		181	183	173	185	182	181	183	184	183	181	182	181.9	11	<u></u>	85	75	87	89 G	93 93	100	80	36	8
-X-Co-ord	05.000	02.000	05.000	3759900.000	3759900.000	000.000	3759900.000	3759900.000	000.000	3759900 000	000.000	000.000	3759900.000	000.000		000.000	000.000	3759900.000		000.000	000.000	000.000	000.000	000.6/1	000 22	77.000	3760077.000	3760077.000	1000.77	3760077.000	77.000	77.000	3760077.000	000.77	000.77	000.77	000.77	3760077.000	3760077.000	000.77	77.000	3760077.000	20.000		3759820.000	754.59	754.59	/54.59	3757754.59	754.59	754.59	3757754.59	754.59
$\left + \right $	1.																												- 1																		-	_	-	1-1-			
-Y-Co-ord	7290.000	57290.000	57290.000	56380.000	56380.000	6380.000	6380.000	56380.000	56380.000	6380 000	6380.000	56380.000	6380.000	56380.000	6380 000	6380.000	6380.000	56380.000		56380.000	6380.000	6380.000	6380.000	56240.000	5569 000	5569.000	55569.000	5569.000	55569.000	5569.000	5569.000	5569.000	5569.000	55569 000	5569.000	5569.000	5569.000	55569.000	5569.000	55569.000	55569.000	5569.000	57435.000	57435 000	57435.000	0952.464	0952.464	50952.464 50952.464	50952.464	0952.464	0952.464 0952.464	50952.464	0952.464
	╈	\uparrow		+	$^{++}$	+	П			\uparrow	┢				╈	1		1	T	\uparrow	\uparrow		-	-		$^{+}$	Π			Ť			1	╈	†.			1			\top			╈	╈		1	+			+-		
Address	kin Reser	Donkin Reserve	Donkin Reserve	Crusaders Club Crusaders Club	Crusaders Club	saders Cli	saders Clt	Crusaders Club	Crusaders Club	saders Cli	saders Cl	Crusaders Club	Crusaders Club	Crusaders Club	saders Cli	saders Cli	saders Cli	Crusaders Club	IC and and a	saders Cli	saders Cl	Crusaders Club	Crusaders Club	PEM St.Georges Park		allack Ros	8 Hallack Road	allack Ro	allack Ro	allack Ros	8 Hallack Road	allack Roa	allack Ro	allack Kos	8 Hallack Road	8 Hallack Road	allack Ros	8 Hallack Road	8 Hallack Road	8 Hallack Road	8 Hallack Road	attack Roa	Fort Frederick	Fort Frederick	Fort Frederick	nitney Stre	nitney Stre	3 Whitney Street	3 Whitney Street	nitney Stre	oitney Stre	3 Whitney Street	nitney Str
	Do	Don	Don		11			Ö	Ö					4	_	1	CLI	_		_	_					E E	8 8	Я 8	Ш : СО С				_	Ξİ					Ϊ: ∞		_					ЗŴ	Э З	8 8 8	а М С	3 W	2 M M M M		
Date	21-Jul-93	10-Aug-93	12-Jun-95	18-Jun-93 17-Jul-93	10-Aug-93	25-00-93 20-Nnv-93	14-Dec-93	24-Feb-94	17-Mar-94	21-Apr-94	21-Jun-94	07-Jul-94	31-Aug-94	21-Sep-94	12-0-t-04	10-Nov-94	08-Dec-94	05-Jan-95	10-Mar 90	05-Mav-95	09-May-95	01-Jun-95	12-Jun-95	17-Nov-93	17. hill 03	10-Aug-93	14-Sep-93	16-Nov-93	12-Jan-94	10-Feb-94	09-Mar-94	14-Apr-94	09-May-94	09-Jun-94	10-Aug-94	14-Sep-94	12-Oct-94	10-Jan-95	09-Feb-95	10-Mar-95	09-May-95	12-Jun-95	21-Jul-93	10-May-04	14-Jul-94	03-Jun-93	10-Aug-93	14-Sep-93	12-Jan-94	08-Feb-94	10-Feb-94 09-Mar-94	14-Apr-94	09-May-94
Bh.No.	37	37		24	24	╈				╧	t	11	H	Ť	1	ſ	П	1	T	1	ſ	Н		╈	t	19	$\left \cdot \right $	-	╉	╉	19	11	16	+	t	Ħ	1	16	Ħ	1-	┢	11	1	o S R	\uparrow	2	2	20	10	2	~~~	T	T.
Erf. No.	04019000000	0401900000	04019000000	04031820000	04031820000	04031820000	04031820000	04031820000	04031820000	04031820000	04031820000	04031820000	04031820000	04031820000	31820000	04031820000	04031820000	04031820000	3102000	31820000	04031820000	04031820000	31820000	04031820000	3405000	04034050000	04034050000	34050000	34050000	34050000	34050000	34050000	34050000	04034050000	34050000	04034050000	04034050000	04034050000	04034050000	04034050000	04034050000	34050000	3596000	04035960000	04035960000	06000560000	06000560000	06000560000	06000560000	06000560000	06000560000	06000560000	00560000
ш	040	88	040		80		80	8 Š	040		80	80	8 80	640 040		88	80	80			040	040	040 040	80			040	040	80	Ϋ́́	88	8	80		80	80	8	500	8 8 0 70		80	80	80 040		88	090	090 0			090 0			090 90

Normalization Provide product Provide prod	Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb.	TDS	TA	BCA	СН	NCH	TH	Са	Mg	CI	Fe(t)	Na	ĸ	SO4	NO3-N	F	N
Definition J General Sector J/S General Sector J/S J										CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3					1			
Dec:Decourd 9 13 15 Contraction 175 1.0 1.0																								
Discrete 2 Tubues Consider Co.b. 558.000 39900000 301 4 200 70															(
DATE Description State Description State Description State Description State Description State Description State Description Description <thdescription< th=""> Description Descript</thdescription<>								10		- 170		070			050									
Deck Deck <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.9</td><td>2210</td><td>3/9</td><td>3/9</td><td>_3/9_</td><td>210</td><td>589</td><td></td><td>233</td><td></td><td>0.15</td><td>186</td><td>345.0</td><td>263</td><td>152.0</td><td>0.19</td><td>672.843</td></th<>								4.9	2210	3/9	3/9	_3/9_	210	589		233		0.15	186	345.0	263	152.0	0.19	672.843
Text: Text: <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>21</td><td>666</td><td>85</td><td>85</td><td>85</td><td>48</td><td>122</td><td>30</td><td>04</td><td></td><td>0.06</td><td>176</td><td>70</td><td>-100</td><td>7.4</td><td>0.47</td><td>22 75 60</td></th<>								21	666	85	85	85	48	122	30	04		0.06	176	70	-100	7.4	0.47	22 75 60
Calibration 24 20 Moreal Consistent Lub Sisten 00 112 Moreal 113 1 113 1 113 1 113 1 113 1 113 1 113 1 113 1								2.1				- 03	40	133				0.00	1/0	1.0			0.17	
Decision 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td></td>										<u> </u>	<u> </u>													
Construction At t At At								· · · · ·											<u> </u>					
Construction 14 171 Marcel I Consider Club 5980.000 1999.000 99 0.6 43 53 - - - 161 - - 65<								0.7		44	44	44	69	113	37	76			162	110				
Def3132000 24 21Arg.eSt Counsert CLA SSSE000 37500000 14 0.2 54.0 47 70 117 42 75 116 6.0 167 6.0 167 6.0 167 6.0 167 6.0 167 6.0 167 6.0 167 6.0 167 6.0 167 177 420 170 6.0 167 177 177 420 170 6.0 6.0 167 17																				11.0	65			
De01350000 24 7000 mpG4 Cuasaser Lub 5580000 37900000 71 0.4 65 71 0.1 65 72 73 1.4 0001150000 24 71.4, mp4 Cuasaser Lub 6580000 37900000 70 0.0 71 0.0								0.2	544			47	70	117	42	75		0.05	167	6.0			0.10	
Description 24 25.0.mP4 Counser Cub 6383000 3790000 95 0.2 95 84 96 93 90 91 10.0 162 10.0 11 71.0 12 137.0		24	20-May-94		56380.000	3759900.000	112	0.4	654															
Calcingscool 24 31:Aug-94 Changer Chu 5555000 375900 000 192 644 1 1 100 110 100 <th< td=""><td>04031820000</td><td>24</td><td>21-Jun-94</td><td>Crusaders Club</td><td>56380.000</td><td>3759900.000</td><td>95</td><td>0.2</td><td>562</td><td>54</td><td>54</td><td>54</td><td>45</td><td>99</td><td>30</td><td>69</td><td>181</td><td>0.04</td><td>151</td><td>5.0</td><td>68</td><td>7.1</td><td>0.12</td><td>31.4289</td></th<>	04031820000	24	21-Jun-94	Crusaders Club	56380.000	3759900.000	95	0.2	562	54	54	54	45	99	30	69	181	0.04	151	5.0	68	7.1	0.12	31.4289
Idd3182000 12 218-8-94 Consider Cube 5538000 111	04031820000	24	07-Jul-94	Crusaders Club				0.4		52	52	52	29	81	22	59	197	0.11	142	3.0	69	8.4	0.11	37.1834
Display Consistence Object 63380.000 376000.000 07 572 T <td>04031820000</td> <td>24</td> <td>31-Aug-94</td> <td>Crusaders Club</td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>180</td> <td></td> <td></td> <td></td> <td>73</td> <td>0.1</td> <td></td> <td>0.61972</td>	04031820000	24	31-Aug-94	Crusaders Club				ļ									180				73	0.1		0.61972
Construction 2 12 Constant Cons																								33.6422
Cability 24 10 Alon-44 Cruatesen Cub 5530.000 3756900.000 147 612 - - 268 - 107 618 30.1000 GG03182000 24 08-Cue44 Chuatesen Cub 5580.000 3756900.000 14 0.9 107 618 201 125 108 215 0.0 4 6.4 6.4 107 6.8 5.4 6.9 107 6.8 107 107 6.8 215 0.0 4 6.4 6.4 108 35 163 6.4 108 37 161 0.05 153 6.0 17 1.8 0.00 7.5 2.1 15 6.0 17 8.6 2.2 15 6.0 17 8.6 2.2 15 6.0 17 8.6 12.2 12.2 101 1.5 10.2 18 0.0 17 18.0 0.0 17.0 10.2 2.8 12.2 10.2 18.1 12.2										L									I	L				
CADD/EXCOUNT 24 OB-Dep-64 Cruaders Cube 55300.000 3756900.000 18 600 T T 385711 325711 32721 325 100 107 630 330 330 330 330 330 330 330 330 330 330 300 330 300 330 300 330 300 330 300 330 300 330 300								0.7		102	102	102	61	163	62	_101		0.01	177	12.0			0.21	
140071220000 24 05-Jun-65 Cruadeer Cub 56830.000 375990.000 128 0.4 121 122 106 718 0.11 117.228 0.01 107 0.01 107 0.01 107 0.01 107 0.01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td> </td><td></td><td> </td><td> </td><td></td><td></td><td></td><td>l</td><td> </td><td> </td><td></td><td></td><td></td><td></td></t<>																		l	 	 				
1003122000 24 15-Mar-26 Crustater Cub 6383.000 375900.000 120 748 . <										62	82	0.2	140	- 224	105	100		0.04	107	AFA			0.11	
Construction 24 15 Marged Consider Cub 58380.000 77500.000 710 000 6982 000 6982 Construction 24 05 Marged Consider Cub 68380.000 375990.000 100 646 62 62 64 63 37 181 0.05 155 6.6 77 1.8 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 0.00 75890 7500 750 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.9</td> <td></td> <td>1 03</td> <td>03</td> <td>03</td> <td>140</td> <td>231</td> <td>125</td> <td>106</td> <td></td> <td>0.04</td> <td>10/</td> <td>40.0</td> <td></td> <td></td> <td>0.11</td> <td></td>								0.9		1 03	03	03	140	231	125	106		0.04	10/	40.0			0.11	
Construction Construction<								 · ·		<u> </u>									<u> ·</u>					
Clossification 24 0								07		62	62	62	46	108	33	75		0.05	153	60			0.09	
Direction 24 01-surveys Crusseers Cubs 6838.000 3789900.000 110 778 776 777 756 777 756 777 756 777 756 777 756 777 756 777 756 777 756 777 756 777 756 777 756 777 756 777 756 777														100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.00		0.0			0.00	
CACGATESCOND 24 12-Jun-85 Crusteder Club 6538.0.00 3788900.000 116 766 2 2 2 242 102 5.7 252.37 CACGATESCOND 16 7-Jun-83 8 Hallack Road 5558.000 3780077.000 183 0.3 1066 4 4 48 48 44 147 195 75 120 611 0.02 286 5.0 135 4.4 0.12 194.7 CACGATEGORD 16 17-Jun-83 8 Hallack Road 5558.000 3780077.000 177 2.5 1012 14 141 141 155 226 55 141 442 0.44 291 5.0 73 3.6 0.12 15.4837 CACGATEGORD 16 0.47.94 8 Hallack Road 5559.000 3760077.000 174 2.5 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1								1												1				
Understand TANOR-93 PEM SL Georges Park 6524 0.000 375975.000 180 - - 437 - 457 - 655 0.11 0.022133 04034050000 16 07																			1					
CH030450000 16 07_Jun-93 8 Haltack Road 55569 003 376077 000 163 0.3 1056 44 44 147 195 75 120 511 0.02 226 5.0 135 4.4 0.12 19477 0403050000 16 170-Aug-93 8 Haltack Road 55569 000 376077 000 174 41 411 1185 226 55 141 462 463 44 291 5.0 73 3.6 0.12 15395 0403050000 16 14-Sep-83 8 Haltack Road 55569 000 376077 000 174 0.2 982 42 42 44 145 195 75 120 490 0.01 254 4.5 68 0.12 12384 0.01 256 982 42 42 44 44 145 195 76 0.01 264 4.5 68 121 490 0.01 264 4.5 68 123 44 14 14 14 14 14 14 14 14 14 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3759375.000</td><td>180</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						3759375.000	180																	
10463360000 16 17.0493 8 Hallack Road 55589000 376077.000 174 41 41 185 22 85 144 65989000 376077.000 177 2.5 1012 41 41 185 22 85 144 425 0.44 291 5.0 73 3.6 0.12 15.9358 04034050000 16 16-Nev38 8 Hallack Road 5559000 376077.000 177 2.5 1012 41 41 115 238 144 457 58 - 140 0.6 17.5 140 0.6 17.5 140 0.6 17.5 140 0.6 17.5 141 141 141 141 141 141 141 141 141 141 141 141 224 124 144 141 141 142 245 104 161 460 0.01 366 16 14.9 141 141 142 245 104 161 460 0.01 36 36.0 124 161 140 160 <		16	07-Jun-93	8 Hallack Road	55569.000	3760077.000	183	0.3	_1056	48	48	48	147	195	75	120	511	0.02	286	5.0	135	4.4	0.12	19.477
Det30300000 16 14-Sep-93 8 Hallack Road 5558.000 3760077.000 177 2 1012 41 41 41 185 226 85 141 422 0.44 291 5.0 73 3.6 0.12 153935 0403305000 16 12-Jan-94 8 Hallack Road 5558.000 3760077.000 17 2.5 41 41 195 236 8 142 400 0.01 254 4.5 86 3.6 0.12 15.3935 04033050000 16 05-Peb-94 8 Hallack Road 55598.000 3760077.000 16 16 41 41 41 41 41 41 41 42 42 42 16.0 86 4.4 19.47 04034050000 16 05-Mar48 8 Hallack Road 5568.000 376077.000 18 0.4 41 41 41 41 41 41 41 41 41 41 41 41		16	17-Jul-93	8 Hallack Road	55569.000	3760077.000	180										490							
10433450000 16 12-May-8 8 Hallack Road 55569.000 3760077.000 177 1	04034050000	16																						
Constrain Constrain State								2.5	1012		41	41	185	226	85	141		0.44		5.0			0.12	
Characterization Constraint C										<u> </u>						<u></u>				<u> </u>				
Display Display B Hallack Road S5569.000 3760777.000 B <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>982</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.01</td> <td></td> <td></td> <td></td> <td></td> <td>0.12</td> <td></td>									982									0.01					0.12	
Deck Display B Hallack Road 55569 0.00 3760077 0.00 181 0.8 43 43 - - 462 - 80 4.4 19477 06034050000 16 05-May-94 8 Hallack Road 55569 0.00 3760077 0.00 183 0.6 976 41 41 41 42 225 104 161 460 0.01 163 4.3 181491 00334050000 16 13-Jul-94 8 Hallack Road 55569 0.00 3760077 0.00 182 0.3 1006 49 49 49 123 202 78 124 501 0.33 188 4.0 83 5.1 122.877 04334050000 16 14-Sep-94 8 Hallack Road 55569 0.00 3760077 0.00 183 2.5 175 57 57 156 213 82 131 417 0.0 22 20 9.0 92 4.3 0.21 19.034 040340500000 16 12-Dep							174			41	41	41	192	230	88	148	437			10,0	86	3.6		15.9358
Deck304550000 16 14-Apr-94 8 Hallack Road 55569.000 376077.000 183 0.6 976 41 41 41 224 265 104 161 460 0.01 316 8.0 85 4.9 0.33 27.9903 04034050000 16 05-Mary-94 8 Hallack Road 55559.000 3760077.000 182 1014 106 480 103 4.3 19.034 04034050000 16 13-Aup-94 8 Hallack Road 55589.000 3760077.000 182 1010 49 49 49 153 202 78 124 501 0.36 318 4.0 83 5.1 22.5757 04034050000 16 14-Sep-94 8 Hallack Road 55569.000 3760077.000 182 1164 757 57 57 156 213 82 131 472 0.26 270 9.0 22 4.3 0.21 18.044 04034050000 16 12-Dec-94 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>181</td> <td>0.8</td> <td></td> <td>13</td> <td>43</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>462</td> <td></td> <td></td> <td>1</td> <td>- 00</td> <td>- 4.4</td> <td></td> <td>10 477</td>							181	0.8		13	43						462			1	- 00	- 4.4		10 477
Consisting Consisting <thconsisting< thc=""> Consisting</thconsisting<>		-							976			<u>41</u>	224	265	104	161		0.01	316	80	<u> </u>		0.35	
Odd34050000 16 O9-Jun-94 8 Hallack Road 55569.000 3760077.000 182 1014 460 103 4.3 19.034 Odd34050000 16 10-Aug-94 8 Hallack Road 55569.000 3760077.000 182 3.100 49 49 153 20.2 78 124 501 38 4.0 83 5.1 22.877 Odd34050000 16 12-Oct-94 8 Hallack Road 55569.000 3760077.000 181 1044 460 472 0.28 270 9.0 92 4.3 0.21 19.034 0434050000 16 12-Oct-94 8 Hallack Road 55569.000 3760077.000 181 0.012 - - 316 - 93 5.0 21.33 2.0 131 4.7 0.05 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0												1		200	- 104	_101		0.01					0.00	
Decksdp50000 16 13-Jul-94 8 Hallack Road 55569 000 3760077.000 185 0.3 1006 49 49 49 153 202 78 124 501 0.36 318 4.0 83 51 0.225757 04334050000 16 14-Sep-94 8 Hallack Road 55569 000 3760077.000 181 1044 465 465 86 4.9 215600 040334050000 16 12-Oce-94 8 Hallack Road 55569.000 3760077.000 177 1012 - 465 9.0 9.0 9.2 4.3 0.21 19.034 040334050000 16 12-Dec-94 8 Hallack Road 55569.000 3760077.000 177 1012 - 465 213 82 131 419 0.01 273 8.0 91 4.7 0.05 2.133 040334050000 16 10-Aur-95 8 Hallack Road 55569.000 3760077.000 182 11156 - 371 4.																								
Deck2d050000 16 10-Aug-94 8 Hallack Road 55569.000 3760077.000 182 1010 422 83 5.1 22.787 04034050000 16 14-Sep-94 8 Hallack Road 55569.000 3760077.000 183 2.5 1150 57 57 156 213 82 131 472 0.26 270 9.0 92 4.3 0.21 18034 04034050000 16 12-Oct-94 8 Hallack Road 55569.000 3760077.000 183 2.5 110 45 45 168 213 82 131 419 0.1 73 8.0 91 4.7 0.05 2.138 131 419 0.1 73 8.0 91 4.7 0.05 2.133 421 116 11-Apr-95 8 Hallack Road 55569.000 3760077.000 182 1156 91 4.6 20.3624 0.02 278 8.0 94 4.0 0.05 17.7064 1430450000 16							185	0.3	1006	49	49	49	153	202	78	124		0.36	318	4.0			0.05	
Deci3d050000 16 14-Sep-94 8 Hallack Road 55569.000 376077.000 181 1044 465 86 4.9 21,6903 04030450000 16 12-Octe48 8 Hallack Road 55569.000 3760077.000 177 1012 77 57 57 57 156 213 82 131 419 0.01 273 8.0 91 4.7 0.05 22,133 04030450000 16 10-Jar-95 8 Hallack Road 55569.000 3760077.000 183 986 2131 419 0.01 273 8.0 91 4.7 0.05 20.005 04030450000 16 10-Mar-95 8 Hallack Road 55569.000 3760077.000 182 1156 - - 371 94 4.6 20.052 4438 428 278 8.0 4.5 19.9197 4238 428 2.2 278 8.0 4.5 19.9197 42365 19.9197																					+			
04034050000 16 12-Dec-94 8 Hallack Road 55569.000 3760077.000 177 1012 110 45 45 168 213 82 131 0.1 273 8.0 91 4.7 0.05 22.133 04034050000 16 10-Jan-95 8 Hallack Road 55569.000 3760077.000 184 0.4 1110 45 45 168 213 82 131 419 0.01 273 8.0 91 4.7 0.05 22.0805 04034050000 16 10-Mar-95 8 Hallack Road 55569.000 3760077.000 182 1156 - 371 94 4.6 20.3924 04034050000 16 09-May-95 8 Hallack Road 55569.000 3760077.000 182 1012 - 428 80 4.5 19.9197 04033050000 16 12-Jun-95 8 Hallack Road 5569.000 3769077.000 181.9 972 - 428 80 4.5 19.9197<				8 Hallack Road																				
04034050000 16 10-Jan-95 8 Hallack Road 55569.000 3760077.000 184 0.4 1110 45 45 168 213 82 131 419 0.01 273 8.0 91 4.7 0.05 20.805 04034050000 16 09-Feb-95 8 Hallack Road 55569.000 3760077.000 182 1156 - - 371 94 4.6 20.3624 04034050000 16 11-Apr-95 8 Hallack Road 55569.000 3760077.000 181 1.7 1028 46 46 152 198 75 123 432 0.02 278 8.0 94 4.0 0.05 17.7064 04034050000 16 12-Ju-95 8 Hallack Road 55569.000 3760077.000 181 1.7 1028 46 46 152 198 75 123 432 0.02 278 8.0 94 4.0 0.05 17.7064 04033650000 38	04034050000	16						2.5		57	57	57	156	213	82	131		0.26	270	9.0			0.21	
04034050000 16 09-Feb-95 8 Hallack Road 55569.000 3760077.000 183 986 1 446 97 5.0 22.133 04034050000 16 10-Mar-95 8 Hallack Road 55569.000 3760077.000 182 1156 371 94 4.6 20.3624 04034050000 16 11-Apr-95 8 Hallack Road 55569.000 3760077.000 182 1012 428 371 94 4.6 20.3624 04034050000 16 05-May-95 8 Hallack Road 55569.000 3760077.000 182 1012 428 80 4.5 19.9197 04033960000 38 12-Jun-95 8 Hallack Road 55589.000 376907.000 181.9 972 389 100 4.3 19.034 04033960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 74 94 70 9.7 42.938 04033960000 38 10-Aug-93 Whithrey Street 50952.464																								
04034050000 16 10-Mar-95 8 Hallack Road 55569.000 3760077.000 182 1156 371 94 4.6 20.3624 04034050000 16 11-Apr-95 8 Hallack Road 55569.000 3760077.000 181 1.7 1028 46 46 152 198 75 123 432 0.02 278 8.0 94 4.6 20.3624 04034050000 16 12-Apr-95 8 Hallack Road 55569.000 3760077.000 182 1012 428 8.0 4.5 19.9197 04034050000 38 21-Jul-93 Fort Frederick 57435.000 3759820.000 74 92 70 9.7 42.938 04035960000 38 09-May-94 Fort Frederick 57435.000 3759820.000 74 92 70 9.7 42.938 04035960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 77 45.0 508 99 99 101 82								0.4		45	45	45	168	213	82	131		0.01	273	8.0			0.05	
04034050000 16 11-Apr-95 8 Hallack Road 55569.000 3760077.000 181 1.7 1028 46 46 152 198 75 123 432 0.02 278 8.0 94 4.0 0.05 17.7064 04034050000 16 09-May-95 8 Hallack Road 55569.000 3760077.000 182 1012 428 80 4.5 19.9197 04034050000 16 12-Jun-95 8 Hallack Road 55569.000 3769077.000 181.9 972 389 100 4.3 19.9197 04035960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 77 - - 94 70 9.7 42.938 04035960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 77 45.0 508 99 99 - 101 85 10.3 45.94 04035960000 38 14-Jul-94 Fort Frederick 57435.000																								
04034050000 16 09-May-95 8 Hallack Road 55569.000 376077.000 182 1012 428 60 4.5 19.9197 04034050000 16 12-Jun-95 8 Hallack Road 55569.000 3769077.000 181.9 972 339 100 4.3 19.034 040335960000 38 21-Jul-93 Fort Frederick 57435.000 3759820.000 77 97 42.93 04035960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 74 94 70 9.7 42.938 04035960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 74 94 70 9.7 42.938 04035960000 38 14-Jul-94 Fort Frederick 57435.000 3759820.000 75 1.5 422 26 26 26 45 71 23 48 152 0.08 13.1 0.23 57.9885 06000560000 2 10-Aug-93 3								47		40		40	450	100		400		0.00						
04034050000 16 12-Jun-95 8 Hallack Road 55569.000 3760077.000 181.9 972 389 100 4.3 19.0344 04035960000 38 21-Jul-93 Fort Frederick 57435.000 3759820.000 77 92 92 92 92 92 92 93 93 42.938 04035960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 74 99 94 70 9.7 42.938 04035960000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 74 99 90 101 85 10.3 45.94 04035960000 38 14-Jul-94 Fort Frederick 57435.000 3759820.000 85 19.0 620 116 116 116 22 138 62 76 114 0.25 104 5.0 83 13.1 0.23 57.9885 06000560000 2 10-Aug-93 3 Whitney Street 50952.464 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.7</td> <td></td> <td>40</td> <td>40</td> <td>40</td> <td>154_</td> <td>198</td> <td></td> <td>123</td> <td></td> <td>0.02</td> <td>2/8</td> <td>8.0</td> <td></td> <td></td> <td>_0.05_</td> <td></td>								1.7		40	40	40	154_	198		123		0.02	2/8	8.0			_0.05_	
04035960000 38 21-Jul-93 Fort Frederick 57435.000 3759820.000 77 92 <										·					ļ				ł	{				
0403596000 38 10-Aug-93 Fort Frederick 57435.000 3759820.000 74 94 70 9,7 42.938 0403596000 38 09-May-94 Fort Frederick 57435.000 3759820.000 77 45.0 508 99 99 101 85 10.3 45.594 04035960000 38 14-Jul-94 Fort Frederick 57435.000 3759820.000 85 19.0 620 116 116 12 138 62 76 114 0.25 104 5.0 83 13.1 0.23 57.985 06000560000 2 03-Jun-93 3 Whitney Street 50952.464 3757754.59 75 1.5 422 26 26 45 71 23 48 152 0.08 105 3.0 13.21 2.238 06000560000 2 14-Sep-93 3 Whitney Street 50952.464 3757754.59 98 1.1 520 17 17 17 103<										<u> </u>						<u> </u>				{				10.0044
04035960000 38 09-May-94 Fort Frederick 57435.000 3759820.000 77 45.0 508 99 99 101 85 10.3 45.594 04035960000 38 14-Jul-94 Fort Frederick 57435.000 3759820.000 85 19.0 620 116 116 116 22 138 62 76 114 0.25 104 5.0 83 13.1 0.23 57.9885 06000560000 2 03-Jun-93 3 Whitney Street 50952.464 3757754.59 75 1.5 422 26 26 26 45 71 23 48 152 0.08 105 3.0 60 3.9 0.1 17.237 06000560000 2 16-Nag-93 3 Whitney Street 50952.464 3757754.59 98 1.1 520 17 17 17 103 120 43 77 239 0.03 160 4.0 46 1.5 0.11 6.6399																<u> </u>					70	97		42 938
O403596000 38 14-Jul-94 Fort Frederick 57435.000 3759820.000 85 19.0 620 116 116 116 22 138 62 76 114 0.25 104 5.0 83 13.1 0.23 57.9885 06000560000 2 03-Jun-93 3 Whitney Street 50952.464 3757754.59 75 1.5 422 26 26 26 45 71 23 48 152 0.08 105 3.0 60 3.9 0.10 17.2637 06000560000 2 10-Aug-93 3 Whitney Street 50952.464 3757754.59 98 1.1 520 17 17 103 120 43 77 239 0.03 160 44 1.8 7.96788 06000560000 2 12-Jan-94 3 Whitney Street 50952.464 3757754.59 93 0.5 488 16 16 17 187 29 58 230 0.02 134								45.0	508	99	99													
06000560000 2 03-Jun-93 3 Whitney Street 50952.464 3757754.59 75 1.5 422 26 26 26 45 71 23 48 152 0.08 105 3.0 60 3.9 0.10 17.2637 06000560000 2 10-Aug-93 3 Whitney Street 50952.464 3757754.59 87 10 107 103 120 43 77 239 0.03 160 4.0 46 1.5 0.11 6.6399 06000560000 2 16-Nor-93 3 Whitney Street 50952.464 3757754.59 90 - 241 44 1.8 7.96788 06000560000 2 12-Jan-94 3 Whitney Street 50952.464 3757754.59 93 0.5 488 16 16 71 87 29 58 230 0.02 134 1.6 38 1.7 0.5 7.52522 06000560000 2 08-Feb-94 3 Whitney Street 50952.464 <td></td> <td>116</td> <td>22</td> <td>138</td> <td>62</td> <td>76</td> <td></td> <td>0.25</td> <td>104</td> <td>5.0</td> <td></td> <td></td> <td>0.23</td> <td></td>												116	22	138	62	76		0.25	104	5.0			0.23	
06000560000 2 10-Aug-93 3 Whitney Street 50952.464 3757754.59 87 100 100 100 199 63 3.0 13.2798 06000560000 2 14-Sep-93 3 Whitney Street 50952.464 3757754.59 98 1.1 520 17 17 103 120 43 77 239 0.03 160 4.0 46 1.5 0.11 6.6399 06000560000 2 16-Nov-93 3 Whitney Street 50952.464 3757754.59 90 241 44 1.8 7.96788 06000560000 2 12-Jan-94 3 Whitney Street 50952.464 3757754.59 93 0.5 488 16 16 71 87 29 58 230 0.02 134 1.6 38 1.7 0.5 7.52522 06000560000 2 08-Feb-94 3 Whitney Street 50952.464 3757754.59 100 0.9 24 24 25 156 6.0									422	26														
06000560000 2 14-Sep-33 3 Whitney Street 50952.464 3757754.59 98 1.1 520 17 17 103 120 43 77 239 0.03 160 4.0 46 1.5 0.11 6.6399 06000560000 2 16-Nov-93 3 Whitney Street 50952.464 3757754.59 90 - - 241 - 44 1.8 7.96788 06000560000 2 12-Jan-94 3 Whitney Street 50952.464 3757754.59 93 0.5 488 16 16 71 87 29 58 230 0.02 134 1.6 38 1.7 0.05 7.52522 06000560000 2 08-Feb-94 3 Whitney Street 50952.464 3757754.59 100 0.9 24 24 24 85 109 36 73 256 156 6.0 40 1.4 6.19724 06000560000 2 09-Mar-94 3 Whitney Street					50952.464	3757754.59														1				13.2798
06000560000 2 16-Nov-93 3 Whitney Street 50952.464 3757754.59 90 241 44 1.8 7.96788 06000560000 2 12-Jan-94 3 Whitney Street 50952.464 3757754.59 93 0.5 488 16 16 16 71 87 29 58 230 0.02 134 1.6 38 1.7 0.05 7.52522 06000560000 2 08-Feb-94 3 Whitney Street 50952.464 3757754.59 100 0.9 24 24 24 85 109 36 73 256 156 6.0 40 1.4 6.19724 06000560000 2 09-Mar-94 3 Whitney Street 50952.464 3757754.59 100 0.9 24 24 26 69 69 69 69 53 1.9 8.41054					50952.464	3757754.59	98	1.1	520	17	17	17	103	120	43	77		0.03	160	4.0				
06000560000 2 12-Jan-94 3 Whitney Street 50952.464 3757754.59 93 0.5 488 16 16 71 87 29 58 230 0.02 134 1.6 38 1.7 0.05 7.52522 06000560000 2 08-Feb-94 3 Whitney Street 50952.464 3757754.59 100 0.9 24 24 24 85 109 36 73 256 156 6.0 40 1.4 6.19724 06000560000 2 10-Feb-94 3 Whitney Street 50952.464 3757754.59 0				3 Whitney Street	50952.464	3757754.59																		
06000560000 2 10-Feb-94 3 Whitney Street 50952.464 3757754.59		2							488								230	0.02		1.6		1.7	0.05	
06000560000 2 09-Mar-94 3 Whitney Street 50952.464 3757754.59 80 4.6 69 69 69 151 53 1.9 8.41054							100	0.9		24	24	24	85	109	36	73	256		156	6.0	40	1.4		6.19724
	06000560000		14-Apr-94	3 Whitney Street			93	0.6	488	17	17	17	97	114	46	68	245	0.03	158	4.0	45			
06000560000 2 09-May-94 3 Whitney Street 50952.464 3757754.59 90 0.4 490 15 15 226 47 2.3 10.1812	06000560000	2	09-May-94	3 Whitney Street	50952.464	3/5//54.59	90	U.4	490	15	15				- Hora Carago		226		L	!	47	2.3		10.1812

⊢
OJEC
РЯС
RCH
RESEA
П-R
É
ARTN
Ë
EER'S DEP
GINE
ITY EN
Ч С Г
ALIT
ICIP
H MUNICIP
BETH
ELIZAI
ORT E
₿
KIRSTE
& KIF
ISON
ERT
ROBER
LEN.
/STEFFEN
NO
MISSIM
ģ
RCH
ESEA
ER RE
NATE
>

z	16 3784	0.22133	9.29586	19.477	0.75252	0.22133	0.22133	0.22133	0.22133	0.57546	0.22133	0.66399	0.17706	0.79679	0.84105	0.22133	0.22133	0.22133	001 77.0	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.04427	0.02213	0.22133	0.88532	0 22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.04427	0.02213	0.22133	0.22133	1.43059	11.0665	12.3945	9.73852 11 0665	11.0665	10.1812	11.06651 10.6238	11.5092	
Ľ	010		0.06	T	0.36	0.40	11	0.44 44		0.43	100	1		í í	0.37	1	0.70	000	1	0.70				041	1	0.05		0.05		T	1	0.25	í í	0.24		0.05	1	0.05		0.23	1	[[15.0				0.05	[[0.15	0.22	
NO3-N	37	50	2.1	4	0.2	 	0.1	56	50	0.1	0.0	- 60	0.0	0.2	0.5		0.1		5	0.1	0.1		56	5		0.1	000	0.0	0.1	0.5		0.1	0.1 -	56	0.1	0.1			00		0.1	0.1 1	-	2.5	2.8	22	5:2 5:2	2.3	2.5	23 23	2
S04	99	319	57		170	147	184	143	120	164	159	172	148	161	164	363	293	288	394	374	300	272	288	305	289	299	323		281	294	20	64	82	CL1	73	95	67	:12	11	4 49	64	88	+	77	6	<u>و</u> ر	31	99	66 66	67 68	-
×	- 06	2	4.0		14.0	17.0		30.0	2	23.0					23.0	<u>,</u>	19.0	0.00	31.0	31.0		12.0	-	34.0	2	26.0		32.0		-	70	8.3	1	2	ľ	5.0	120	11.0		12.0		4	0. 0		1.9	9.9	4.0		0.	7.0	_
Na	63	3	91	1	860	847	001	/99 825	3	923		804			821	040	1345	1005	1355	1399		1290		1203		1273	╈	1244			511	519		542		504	533	512		521			53		267	257	258		237 -	231	
Fe(t)	0 0		0.19	1	0.74	0.10		90.0		0.11	410	 	1-		0.01	3	3.64	03 6	30.0	3.36		4.49	+	500	+	3.94		0.28		-	2.28	0.12		43.80	T	5.71	001	3.07		4.71		100	87.D			+	0.01		800	0.02	
- 5	170	153	141	1/4	1689 1386	1632	1299	1243	1488	1620	1461	1364	1490	1533	1380	2471	2633	2542 2540	2512	2466	2446	2533	2242	2517	2379	2276	2402	2101	2038	2799	948	1070	$ \rightarrow $		866	897	1056	921	946	333 1046	1005	1118	352	313 313	360	349	360	362	3/0	375 379	2
ВW	CaC03	ţ	54		376	433	\vdash	389	╈	468	- 12		T	\vdash	420	+-	728	+	╉	844		669		735	+-	716		678			╀	241	\vdash			223	+	233	+	233	Н	$\left \right $	104	+	103		104	\mathbb{H}	86	6	
Ca		2	83		210	285		233	2	325					275		514	707	545	562		386		461		478		457			150	142			-	125	157	146		153			ž		46	48	93		- - S	47	
E	CaCO3 C		137		586	718		620		793	574	4/0			695	8	1242	1110	1380	1406		1085		1106		1194		1135			386	383	t o	43/		353		379		386			1.51		149	143	197		148	137	
NCH	aco3 c	3	48		429	560		408 518	2	638	44.0	410			534 046		1042	033	+	1213		895	+	000	╋	998		937			342	331		405	╞	309	- 035	338		341			5		93	1	161		- - 8	94	
Н	CaCO3 C	3	89		157	158	151	154	7	155	150	8	-		161	721	200	╉	╋	193		<u>1</u>		197	2	196	_	198			44	52		83	T	44		41		45	1		12		56	32	36		4	43	
BCA	aco3 C	3	89		157	158		15.7	161	155	150	8			161	701	200	105	183	193		190		197	5	196		198		+	44	52	76	83 65		4		41	+	45			D 52		56	35	38		 9	43	-
TA	CaC03 C	- - 3	89		157	158		152	161	155	150	 0	-		161	70	200	105	182	193		90	_	197		196	+	198		+	44	52	76	83 65		44	Ę	41		45			530		56	32	28		0	43	-
TDS	564 I C	1-	628	264	3110	2982		29062	+	2850	3060	3062	2920	2920	3010	000	4836	0101		5412	4840	4748	4940	48.84	4930	4912	4868	5090	4804	4544	1952	2038		2234	2006	1926	2016	1990	2120	1994	2064	1844	705		868	+	764	800	808 842	838 836	
Turb.		2	3.2		3.7	2.6). 	┼╴	0.5		<u>,</u>		\square	1.1	+	42.0		0.10	0		60.0	-	410	, -	42.0		53.0		-	+	2.0			+	27.5		17.0		12.0					3.0	0.2	+	$\left \right $	4	0.5	
ЕС	82	382	11	_ _ ≽	509 498	496	486	403	506	504	209	504	502	+	509	╀	\mathbb{H}	╉	╀	815		-	/99	╋	┼	┞╌┤	799	╋	\vdash	793	╉	321	H	╋	┢	H	338	341	335	╋	+	338	150	130		+	143	147	145	147	
-ord	54.59	54.59	54.59	54.59	6.000	6.000	6.000		6.000	6.000	6.000	000	6.000	6.000	6.000	8.000	1 1					- 1				1										1 1						000.0		0000	0.000	0000	0000	0.000	0000	00000	1 2222
-X-Co-ord	_	T		3/5//54.59 3757754.59			3757926.000					3757926.000			3757926.000			375869	375860								3758698.000					375848	375848	3/5848					3758480.000								3759040.000			3759040.000 3759040.000	-
-Y-Co-ord	952 464	952.464	952.464	50952.464 50952.464	50660.000 50660.000	660.000	50660.000	660.000	50660.000	660.000	660.000	50660.000	660.000	50660.000	50660.000	300.000	300.000	47300.000	47300.000	300.000	47300.000	300.000	47300.000	4/300.000	300.000	300.000	47300.000	300.000	47300.000	47300.000	808 230	46808.230	46808.230	808.230 808.230	46808.230	808.230	46808.230	808.230	46808.230	46808.230 46808.230	808.230	808.230	1000-5965	53965.000	53965.000	965.000 065.000	53965.000	53965.000	965.000 965.000	53965.000 53965.000	
۲	+	1	t f	1		+	+	╈	+	H			┢		-	+	\square	_	+	+		-	+	+-		+ +	-+	-		-+-	+-	+	\mathbf{H}	+	1-	t-t	+	+-			\uparrow		+		\vdash	-+-		\mathbf{H}			
Address	tnev Stre	they Street	tney Stre	3 Whitney Street 3 Whitney Street	14 Thames Road	14 Thames Road	ames Roa	14 I names Koad	14 Thames Road	ames Roa	14 Thames Road	14 Inames Road	14 Thames Road	14 Thames Road	14 Thames Road	ind Cresc	5 Norland Crescent	Ind Cresc	nd Cresc	5 Norland Crescent	ind Cresc	ind Cresc	Ind Cresc	5 Norland Crescent	Ind Cresc	ind Cresc	5 Norland Crescent	ind Cresc	Ind Cresc	5 Norland Crescent	hera Ros	78 Kabega Road	bega Ros	78 Kabega Road	78 Kabega Road	bega Ros	78 Kabega Road	bega Roa	78 Kabega Road	78 Kabega Koad 78 Kahena Road	bega Ros	bega Roa	Golf Clut	P.E. Golf Club	Golf Clut	Goff Clut	Golf Club	Golf Clut	Gof Clut	P.E. Goff Club	122
Ă	3 Whi	3 Whi	3 Whi	3 Whi	14 Th: 14 Th:	14 Th	14 Th	14 LU	14 Th	14 Th	14 14 14	14 LD	14 Th	14 Th	14 Th	5 Norla	5 Norta	5 Norta	5 Norla	5 Norla	5 Norla	5 Norla	5 Norla	5 Norla	5 Norla	5 Norta	5 Norta	5 Norla	5 Norla	5 Norla	78 Ka	78 Ka	78 Ka	78 Ka 78 Ka	78 Ka	78 Ka	78 Ka	78 Ka	78 Ka	78 Ka	78 Ka	78 Ka	uju a a	μ να	Ъ	ці ц а а	iui La l	ці а	ين بن م م	ui u a a	į
Date	13-11-94	Sep-94	12-Oct-94	Mar-95	04-Jun-93	14-Sep-93	Nov-93	12-Jan-94	09-Mar-94	14-Apr-94	Jun-94	13-JUI-94 10-Aug-94	15-Sep-94	Dec-94	10-Jan-95	Aug-93	Sep-93	11-Nov-93	12-Jan-94	Apr-94	09-Jun-94	-Jul-94	10-Aug-94	14-060-04	Dec-94	10-Jan-95	Feb-95	20-Apr-95	11-May-95	-Jun-95	10-Aug-93	12-Jan-94	09-Mar-94	14-Apr-94	09-Jun-94	-Jul-94	14-Sep-94	10-Jan-95	13-Feb-95	08-Mar-95	May-95	28-Jun-95	Jun-93	1/-Jul-93 10-Aug-93	19-Jan-94	22-Feb-94	21-Apr-94	20-May-94	21-Jun-94 21-Sep-94	12-Oct-94	10-101
	+	╈	11	╞			H	╉	╈			┽	┽	\square		╈	П	+	╈	ϯ	Π		┥	Ť	1			+	Π		╈	+-	$\left \right $	╈	1				$\left \cdot \right $	╈	T	Ħ		+	┼┤					┼┼╴	
Bh.No.	+	38		000		_	00 13	+	300				_						_	0 8 8 8 8			_				8 00					00 42 00 42		_									-	88 88	\square	\square		┼-┤	_	200 C	
Erf. No.	060056000	00000560000	06000560000	06000560000	06002980000	160029800C	06002980000	06002980000	1600298000	000298000	06002980000	06002980000	06002980000	000298000	06002980000	70085900	700859000	07008590000	0/00650000	700859000	07008590000	7700859000	07008590000	0/008590000	70085900	07008590000	07008590000	07008590000	07008590000	070085900	12000/200	12000720000	1200072000	12000720000	12000720000	12000720000	120007200	12000720000	12000720000	120007200	12000720000	120007200	14001480000	14001480000 14001480000	14001480000	14001480000	14001480000 14001480000	14001480000	14001480000 14001480000	14001480000	

Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb,	TDS	TA	BCA	СН	NCH	TH	Ca	Mg	CI	Fe(t)	Na	K	SO4	NO3-N	F	N
									CaCO3		CaCO3	CaCO3	CaCO3	CaCO3	CaCO3								
14001480000	30	08-Dec-94	P.E. Golf Club	53965.000	3759040.000	171		1082								397				96	0.5		2.2133
14001480000	30	05-Jan-95	P.E. Golf Club	53965.000	3759040.000	145	0.5	928	84	84	84	75	159	62	97	297	0.02	217	7.0	74	2.6	0.21	11.5092
14001480000	30	16-Mar-95	P.E. Golf Club	53965.000	3759040.000	145		808	-							342			1	69	2.4		10.6238
14001480000	30	05-May-95	P.E. Golf Club		3759040.000	144	0.5	792	67	67	67	84	151	57	94	340	0.01	217	6.0	72	2.9	0.24	12.8371
14001480000	30	01-Jun-95	P.E. Golf Club		3759040.000	141		786								370		1		74	2.7		11.9518
14001480000	30a	21-Jun-94	P.E. Golf Club		3758980.000	225	11.0	1250	52	52	52	233	_285	120	165	606	0.20	363	10.0	79	1.3	0.05	5.75458
14001480000	30a	10-Aug-94	P.E. Golf Club		3758980.000	225		1310								650				80	1.0		4.4266
14001480000	30a	21-Sep-94	P.E. Golf Club		3758980.000	187		1104								490				73	1.7		7.52522
14001480000	30a	12-Oct-94	P.E. Golf Club		3758980.000	186	0.2	1076	29	29	29	143	172	56	116	508	0.45	294	9.0	73	1.7	_0.31	7.52522
14001480000	30a	10-Nov-94	P.E. Golf Club		3758980.000	186		1020								521				75	2.0		8.8532
14001480000	30a	08-Dec-94	P.E. Golf Club		3758980.000	184		1008								564				83	2.1		9.29586
14001480000	30a	05-Jan-95	P.E. Golf Club		3758980.000	187	0.3	1034	34	34	34	142	176	58	118	451	0.02	_288	8.0	76	1.9	0.05	8.41054
14001480000	30a	16-Mar-95	P.E. Golf Club		3758980.000	185		_992_	· · · · · ·							498			ļ	75	2.1		9.29586
14001480000	30a	01-Jun-95	P.E. Golf Club		3758980.000	180	07.0	990	015	045	- 100		100			488				73	2.0		8.8532
14001480000	31	18-Jun-93	P.E. Golf Club		3758865.000	140	37.0	932	215	215	192	0	192	92	100	305	0.93	_200	7.0	70	0.8	0.29	3.31995
14001480000	31	17-Jul-93	P.E. Golf Club		3758865.000	167										463			ļ				
14001480000	31	10-Aug-93	P.E. Golf Club													378				91	5.6		24.789
14001480000	31	26-Oct-93	P.E. Golf Club P.E. Golf Club		3758865.000	165 175										401 511		<u> </u>	<u> </u>	86	6.6		29.2156
14001480000	31	16-Nov-93 22-Feb-94	P.E. Golf Club		3758865.000	173	0.5		23	23	23	188	211	76	135	555		326	7.9	88	3.8 4.5		16.8211 19.9197
14001480000	31	17-Mar-94	P.E. Golf Club		3758865.000	173	1.2		25	25	_23	100	411	- 10	135	398			1. ^{7.9}	78	4.5 5.3		23.461
14001480000	31	21-Apr-94	P.E. Golf Club		3758865.000	167	0.6	1020	23	23	24	195	219	88	131	436	0.00	305	7.0	89	5.0	0.05	23.461
14001480000	31	20-May-94	P.E. Golf Club		3758865.000	171	0.0	1020					-13			457	0.00		+ <u>'.</u>	87	5.9	0.05	26.1169
14001480000	31	21-Jun-94	P.E. Golf Club		3758865.000	169	3.9	980	81	81	81	99	180	67	113	390	0.10	287	8.0	94	5.9	0.12	23.0183
14001480000	31	10-Aug-94	P.E. Golf Club		3758865.000	172		1154	- - -		<u>_</u>					335			+ <u> </u>	93	0.1	0.12	0.44266
14001480000	31	21-Sep-94	P.E. Golf Club		3758865.000	177		1020								462	1	<u> </u>	<u> </u>	79	5.1		22.5757
14001480000	31	12-Oct-94	P.E. Golf Club			160	1.1	854	36	36	36	105	141	43	98	392	0.02	260	8.0	97	7.5	0.24	33.1995
14001480000	31	10-Nov-94	P.E. Golf Club		3758865.000	175		978								472	1		1	87	5.0		22.133
14001480000	32	18-Jun-93	P.E. Golf Club		3758635.000	120	2.6	680	76	76	76	52	128	51	77	287	0.01	188	4.0	69	4.2	0.18	18.636
14001480000	32	17-Jul-93	P.E. Golf Club		3758635.000	129										301							
14001480000	32	10-Aug-93	P.E. Golf Club		3758635.000	120										270				81	4.4		19.477
14001480000	32	26-Oct-93	P.E. Golf Club		3758635.000	118										_519				75	4.3		19.0344
14001480000	32	16-Nov-93	P.E. Golf Club		3758635.000	125										_ 300				42	4.1		18.1491
14001480000	32	19-Jan-94	P.E. Golf Club		3758635.000	127	0.4	670	25	25	25	114	139	46	93	305		226	5.6	65	4,4		19.477
14001480000	32	22-Feb-94	P.E. Golf Club		3758635.000	128_	0.3		29	29	29	102	131	43	88	307		232	6.5		4.8		21.2477
14001480000	32	17-Mar-94	P.E. Golf Club		3758635.000	132	0.3		25	25						306				62	4.2		18.5917
14001480000	32	21-Apr-94	P.E. Golf Club		3758635.000	134	0.2	706	24	24	24	177	201	79	122	331	0.00	289	10.0	108	4.4	0.05	19.477
14001480000	32	20-May-94	P.E. Golf Club		3758635.000	130	2.5	712								306				72	4,6		20.3624
14001480000	32	21-Jun-94	P.E. Golf Club		3758635.000	132	2.1	700	26	26	26	106	132	45	87	315	0.04	_218	6.0	71	5.1	_0.05_	22.5757
14001480000	32	10-Aug-94	P.E. Golf Club		3758635.000	139		762								282			I		4.6		20.3624
14001480000	32	21-Sep-94	P.E. Golf Club		3758635.000	135		786	26	26		- 00	440		70	324	0.00	- 040		64	54	0.40	00 5757
14001480000	32	12-Oct-94	P.E. Golf Club		3758635.000	131 133	0.1	726	26	26	26	90	116	38	78	321	0.00	210	6.0	74	5.1	0.18	22.5757
14001480000	32 32	10-Nov-94 08-Dec-94	P.E. Golf Club P.E. Golf Club		3758635.000	133		724								327 367				76	5.1 4.9		22.5757 21.6903
14001480000	32	05-Jan-95	P.E. Golf Club		3758635.000	138	1.4	758	25	25	25	96	121	39	82	297	0.02	216	7.0	79	4.9	0.11	20.805
14001480000	32	16-Mar-95	P.E. Golf Club		3758635.000	135		744					1-1		~~	314	0.02	210	···· ···	75	4.7	<u></u>	20.3624
14001480000	32	05-May-95	P.E. Golf Club		3758635.000	137	0.4	722	27	27	27	98	125	40	85	329	0.01	216	6.0	75	5.1	0.13	22.5757
14001480000	32	21-Jun-94	P.E. Golf Club			134	2.0	700	22	22	22	99	121	45	76	320	0.02	227	6.0	65	8.6	0.05	38.0688
14001480000	32a	10-Aug-94	P.E. Golf Club		3758800.000	134		716								320			0.0	61	8.1		35.8555
14001480000	32a	21-Sep-94	P.E. Golf Club		3758800.000	132		756								314				72	5.2		23.0183
14001480000	32a	12-Oct-94	P.E. Golf Club		3758800.000	132	0.4	722	21	21	21	85	106	38	68	326	0.03	217	6.0	64	8.9	0.07	39.3967
14001480000	32a	10-Nov-94	P.E. Golf Club		3758800.000	114		622								288				65	6.9		30.5435
14001480000	32a	08-Dec-94	P.E. Golf Club	-	3758800.000	112		642								277				71	6.6		29.2156
14001480000	32a	05-Jan-95	P.E. Golf Club	54300.000	3758800.000	118	0.4	724	32	32	32	70	102	42	60	274	0.02	189	6.0	64	6.9	0.05	30.5435
14001480000	32a	01-Jun-95	P.E. Golf Club	54300.000	3758800.000	134		752								348				80	3.7		16.3784
14002420000	19	08-Jun-93	8 Mill Park Road		3759026.000		0.5	502	30	30	30	63	93	18	75	152	0.04	116	3.0	92	5.2	0.10	23.0183
14002420000	19	17-Jul-93	8 Mill Park Road	54785.000	3759026.000	105										198							
14002420000	19	10-Aug-93	8 Mill Park Road		3759026.000	89	_									178				88	5.6		24.789
14002420000	19	14-Sep-93	8 Mill Park Road		3759026.000	100	0.7	692	32	32	32	78	110	31	79	202	0.04	167	5.0	81	6.4		28.3302
14002420000	19	11-Nov-93	8 Mill Park Road		3759026.000	101										204				72	6.2		27.4449
14002420000	19	12-Jan-94	8 Mill Park Road		3759026.000	100	0.7	572	26	26	26	59	85	23	62	218	0.03	158	4.2	73		0.12	
14002420000	19	08-Feb-94	8 Mill Park Road		3759026.000	98	1.3		24	24	_24	71	95	23	72	204			7.0	77	5.0		22.133
14002420000	19	09-Mar-94	8 Mill Park Road		3759026.000	99	0.7		25	25						138				39	7.1		31.4289
14002420000	19 19	14-Apr-94	8 Mill Park Road		3759026.000	101	0.8	520	26	26	26	59	85	21	64	210	0.04	162	6.0	75	6.6		29.2156
14002420000		09-May-94	8 Mill Park Road	1 54/85 000 1	3759026.000	98	0.5	566	27	27				l i		217			1	76	5.8		25.6743

		Data	Address	V Co ord	V Co ord	L EC	Trut	TDO	TA					0-			F - (4)						
Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb.	TDS	TA CaCO3	BCA CaCO3	CH CaCO3	NCH CaCO3	TH CaCO3	Ca CaCO3	Mg CaCO3	CI	Fe(t)	Na	ĸ	SO4	NO3-N	F	
14002420000	19	09-Jun-94	8 Mill Park Road	54785.000	3759026.000	97		546	00000	00000	00000	00000	00000	00000	00000	206				84	6.5		28.7729
14002420000	19	13-Jul-94	8 Mill Park Road	54785.000	3759026.000	82	1.3	492	37	37	37	61	98	21	77	172	0.06	107	3.0	93	5.7	0.12	25.2316
14002420000	19	10-Aug-94	8 Mill Park Road		3759026.000	89		528								164			1	77	6.4		28.3302
14002420000	19	14-Sep-94	8 Mill Park Road	54785.000	3759026.000	90		542								188				80	6.6		29.2156
14002420000	19	12-Oct-94 12-Dec-94	8 Mill Park Road	54785.000 54785.000	3759026.000	93	0.4	572 590	28	28	28	60	88	21	67	193	0.02	147	5.0	81	6.0	0.05	26.5596
14002420000	<u>19</u> 19	10-Jan-95	8 Mill Park Road 8 Mill Park Road		3759026.000	101	0.4	588	27	27	27	57	84	23	61	229 192	0.01	165	5.0	81 80	<u>6.3</u> 6.7	0.09	27.8876 29.6582
14002420000	19	09-Feb-95	8 Mill Park Road		3759026.000	102	0.4	584	_ /					20		212	0.01	105		84	6.3	0.09	27.8876
14002420000	19	10-Mar-95	8 Mill Park Road		3759026.000	101		456								214				82	7.3		32.3142
14002420000	19	11-Apr-95	8 Mill Park Road		3759026.000	101	0.6	538	34	34	34	57	91	26	65	212	0.49	161	6.0	79	6.1	0.05	27.0023
14002420000	19	09-May-95	8 Mill Park Road	54785.000	3759026.000	94		544								187				77	6.2		27.4449
14002420000	19	12-Jun-95	8 Mill Park Road	54785.000	3759026.000	98		568	- CO	- FO		<u> </u>	100			208		L		80	6.3		27.8876
14002650000	25	18-Jun-93	Grey High School	55080.000 55080.000	3759275.000	<u>117</u> 85	6.0	660	50	50	50	59	109	33	76	296 157	0.65	189	3.0	76	3.0	0.10	13.1913
14002650000	25 25	10-Aug-93 29-Sep-93	Grey High School Grey High School	55080.000	3759275.000	82	4.1	442	25	25	25	63	88	26	62	175	1.18	134	5.0	87 80	4.2	0.20	18.5917 8.8532
14002650000	25	16-Nov-93	Grey High School	55080.000	3759275.000	- VL				20	20			20				104	3.0	00		0.20	0.0002
14002650000	25	14-Dec-93	Grey High School	55080.000	3759275.000	89	0.7					· · · ·				161				61	3.9		17.2637
14002650000	25	19-Jan-94	Grey High School	55080.000	3759275.000	76	3.5	456	24	24	24	45	69	20	49	152		106	4.2	71	2.1		9.29586
14002650000	25	22-Feb-94	Grey High School	55080.000	3759275.000	77	1.6		22	22	22	57	79	22	57	168		130	4.1		4.1		18.1491
14002650000	25	17-Mar-94	Grey High School		3759275.000	78	1.4	400	23	23					F 1	160					4.5		19.9197
14002650000	25	21-Apr-94	Grey High School	55080.000	3759275.000	77 80	1.6	420	23	23	23	59	82	28	54	153	0.04	118	4.0	73	4.3	0.05	19.0344
14002650000	25	20-May-94 21-Jun-94	Grey High School Grey High School		3759275.000	80	1.7	450 542	52	52	52	70	122	64	58	156 165	0.27	129	3.0	<u>73</u> 74	4.5	0.07	19.9197 18.1491
14002650000	25	07-Jul-94	Grey High School		3759275.000	79	$\frac{1.7}{1.1}$	444	23	23	23	46	69	15	54	176	0.27	129	3.0	82	4.1	0.07	18.1491
14002650000	25	10-Aug-94	Grey High School	55080.000	3759275.000	96		558	<u> </u>	t						212				75	3.4		15.0504
14002650000	25	26-Sep-94	Grey High School	55080.000	3759275.000	77		442								156				74	4.2		18.5917
14002650000	25	12-Oct-94	Grey High School		3759275.000	79	1.2	420	23	23	23	50	73	18	55	160	0.20	124	5.0	79	4.4	0.22	19.477
14002650000	25	10-Nov-94	Grey High School	55080.000		121		664								292				78	3.3		14.6078
14002650000	25	08-Dec-94	Grey High School	55080.000	3759275.000	133 146		742 802	22	22	22	101	402	34	89	363	0.02	142		86	3.1	0.07	13.7225
14002650000	<u>25</u> 25	05-Jan-95 16-Mar-95	Grey High School Grey High School	55080.000	3759275.000	148	0.3	820				101	123	- 34	09	<u>326</u> 231	0.02	113	6.0	80 78	<u>2.2</u> 3.3	0.07	9.73852 14.6078
14002650000	25	05-May-95	Grey High School		3759275.000	112	2.4	728	67	67	67	62	129	61	68	226	0.13	166	5.0	78	3.7	0.04	16.3784
14002650000	25	01-Jun-95	Grey High School		3759275.000	180		752	<u> </u>							364				85	2.9	0.01	12.8371
14009890000	18	08-Jun-93	47 Wychwood Avenue	53145.000	3759304.000	150	1.6	884	16	16	16	142	158	50	108	_ 434	0.11_	218	3.0	58	0.5	0.05	2.0805
14009890000	18	10-Aug-93	47 Wychwood Avenue	53145.000		139_										411				56	0.4		1.72637
14009890000	18	14-Sep-93	47 Wychwood Avenue		3759304.000	147	0.7	784	17	17	17	161	178	65	113	387	0.08	221	3.0	58	1.1	0.05	4.86926
14009890000 14009890000	18	11-Nov-93 12-Jan-94	47 Wychwood Avenue		3759304.000	149 150	1.1	846	20	20	20	137	157	54	103	405	0.10	200	3.2	<u>50</u> 47	1.0	0.07	4.33807
14009890000	18	08-Feb-94	47 Wychwood Avenue		3759304.000	146	0.5	040	17	171	17	180	197	70	127	384	0.10	239	9.0	53	1.3	0.07	5.53325
14009890000	18	09-Mar-94	47 Wychwood Avenue			154	0.9		17	17						409				44	0.7		3.09862
14009890000	18	14-Apr-94	47 Wychwood Avenue	53145.000	3759304.000	157	0.3		17	17	17	218	235	91	144	437	0.03	266	6.0	51	0.7	0.05	3.05435
14009890000	18	09-Jun-94	47 Wychwood Avenue		3759304.000	145		810								388				47	1.0		4.2938
14009890000	18	13-Jul-94	47 Wychwood Avenue	53145.000	3759304.000	148	1.4	838	19	19	19	134	153	48	105	415	0.12	185	3.0	49	1.3	0.05	5.75458
14009890000	18	14-Sep-94 12-Oct-94	47 Wychwood Avenue 47 Wychwood Avenue	53145.000 53145.000	3759304.000	152	0.5	850 846	24	24	24	143	167	56	111	415 422	0.08	220	6.0	48 52	0.9	0.10	3.98394
14009890000	18 18	12-Dec-94	47 Wychwood Avenue		3759304.000	132	1- ^{0.0}	814	- 4	<u> </u>	. 24	143	107	JO	111	422	0.00	220	0.0	52	0.9	0.10	4.86926 3.98394
14009890000	18	10-Jan-95	47 Wychwood Avenue			155	0.8	830	28	28	28	148	176	63	113	376	0.02	225	6.0	52	1.1	0.06	4.86926
14009890000	18	11-May-95	47 Wychwood Avenue		3759304.000	141		840								366				48	2.2		9.73852
14009890000	18	12-Jun-95	47 Wychwood Avenue	53145.000	3759304.000	128		746								339				58	3.6		15.9358
15028720000	20	14-Jun-93	Fedlife Building	53170.000	3758100.000	62	7.1	356	81	81	69	0	69	38	31	108	0.22	94	7.0	47	2.6	0.19	11.5092
15028720000	20	17-Jul-93	Fedlife Building	53170.000	3758100.000	<u>141</u> 153			 	 						264							40 7047
15028720000	20 20	10-Aug-93 29-Sep-93	Fedlife Building Fedlife Building	53170.000 53170.000	3758100.000	153	7.6	954	121	121	121	16	137	63	74	<u>_282</u> 259	0.21	234	9.0	<u>98</u>	9.2 1.0	0.20	40.7247 4.2938
15028720000	20	29-Sep-93 25-Oct-93	Fedlife Building	53170.000	3758100.000	135	<u> '.º</u>		- 141	·····						239	0.41	2.04		84	9.6	0.20	4.2930
15028720000	20	16-Nov-93	Fedlife Building		3758100.000	140	1	<u> </u>		t			-			318				90	11.0		48.6926
15028720000		24-Feb-94	Fedlife Building		3758100.000		7.2		255	255	255	46	301	116	185	505		462	19.0		8.7		38.5114
17016790000	1	03-Jun-93	12 West Street		3758016.000		0.9	500	23	23	23	29	52	19	33	171	0.09	147	2.0	60	16.0	0.05	70.8256
17016790000	1	10-Aug-93	12 West Street		3758016.000	50	L									61				53	11.0		48.6926
17016790000		14-Sep-93	12 West Street		3758016.000	81	0.7	622	_27	_27	27	_51	78	31	47	125	0.40	149	3.0	57	15.0	0.17	66.399
17016790000		16-Nov-93	12 West Street		3758016.000	76 67		396	28	28			20			177	0.10	444	17	70	14.0	0.40	61.9724
17016790000	$\left - \frac{1}{4} \right $	12-Jan-94 08-Feb-94	12 West Street 12 West Street		3758016.000	83	0.9 4.5	290	28	28	28 28	<u>8</u> 36	36 64	12 27	24 37	109 153	0.10	111 145	1.7 2.0	52 59	0.3	0.10	1.32798 61.0871
17016790000		10-Feb-94	12 West Street		3758016.000				<u> </u>	<u> </u>	<u>20</u>			- 1	51	.55		140	2.0		13.0		01.0071
17016790000		09-Mar-94	12 West Street		3758016.000	77	0.6		24	24						128				43	14.7		65.071
17016790000		14-Apr-94	12 West Street		3758016.000	66	0.3	386	23	23	23	22	45	17	28	107	0.03	119	24.0	50	11.5	0.05	50.9059
	·															_					···-		

ECT
2
H PR
RO.
RESEA
•
IENT
RTM
EPA
IEER'S DEP.
E
ĝ
۱ ح
Ê
È
IICIPA
ŝ
ΞE
ABETI
ELIZA
RT
МР
STE
KIR:
[®] ZO
RTSO
EFFEN ROBERTSOI
ĒNR
EFFE
5
SION
MIS
SOM
ARCH (
Ð
RES
Ë
W

z	0001	30 9862	54.0045	44.266	41.61	61.9724	54.0045	61.9/24 53 1197	53.1192	61.9724	61.9724	0.75252	0.22133	0.22133	95017	0.48693	0.53119	0.22133	0.22133	0.44266	0.70826	0.88532	0.44266	22133	1.5092	57.5458	61.9724 1 72637	3.09862	0.22133	3.01009	1 22 133	0.22133	0.88532	3.22133 3.05435	0.22133	2.87729	2.3461	46078	2.16903	22133	0.44266	9.6788	70 8256	88.532	0	55.4334 7774	80.9862	5.2522	12.9586	84.1054 84.1054
			0.10	П	100		0.10		0.07		034			0.35 0	0.24				0.42	T	0.32 0		0.25		0.17		0.32	Т	0.59 (0.66		0.47		0.40	0.71				1	0.44 7	0.58 7		0.46	10			0.39	0.64 8
NO3-N			12.2	10.0	9.4	14.0	12.2	120	12.0	14.0	14.0	0.2	0.1			0.1	0.1	0.1			0.2	0.2	0.1	- 0 0	2.6	13.0	14.0	0.7	0.1	1.0		0.1	0.2	0.1	0.1	0.7	0.5	0.3	0.5	0.1	0.1	18.0	16.0	20.0 20.0		19.3	7.0	17.0	21.0	19.0 19.0
SO4 N	-	1	┼	┼┼		54	+	+	+	53	┽	46	42	89 4	44	37	39	35	5	24	46	43	44	40 87			112	╀	49	65 Ee	84	12	02 2	52	57	56	20	57	61	4	$\left \right $	$ \cdot $	87	+	+	+	89	┝┼	+	88
×	-	+	1.0		40	2	4.0	+	4.0		00		-	4.0		3.0			3.0		2.0		2.0	╉	2.0		3.0	2	4.0		2	2.3		3.0		3.0	2.0			2		4.0	60	2	3.5		2		3.0	4.0
Na	-	+-	107	$\left \cdot \right $	149	+	127		125		151	╀	\mathbb{H}	159	╉	136		_	150	+-	141		39	╁	96	$\left \cdot \right $	245	+	221	- 070	+	283	$\left \right $	250	+	260	251	$\left \right $	Car Car	╋	-	193	218	┼┤	169				6/1	178
Fe(t)	-		0.41	$\left \right $	0.01	+	0.20		0.35	\square	1 33	+	\square	0.02		2.43		_	21.80		0.03	$\left \cdot \right $	0.33		0.07	\mathbb{H}	0.05	+	1.29		-	0.05	┝╌╿			0.00	0.02	-		┽╸	-	0.01	- 600	$\left - \right $	0.04	000		\vdash	50.03	0.37
CI F		4	164 0	$\left + \right $		203	-+	52 68	╀	\mathbb{H}	+-	+-	+	+	╋	339 2	12		339 21	345	╞	$\left \right $	-	54	┢─		252 0 478 0	+		48	77	╋	┝┼	+-	┢╌┥		335 486 0	\vdash		+-	80	$\left \cdot \right $	+	285	+	+	+	┝┼	+-	280 283 0
Mg			29 1	┝┼	40	+	31		29 1		F 0	+	┼╴	82 3	╉	202	e		89) (C	64 3	Н	52	87 3	┢	$\left \cdot \right $	156 2 156 2	+-	183 4	150 3	╉	171 4	\mathbb{H}	155	\mathbb{H}	153 4	144 4	H	4	╀	+	98 3	123 2	H	95	123	+	\vdash	2 7 201	98 2
Ca A	C03 Ca	-	15		7	$\left \right $	~		2		388	+		433		326		_	345	-	323 6		398	+	80		163 1	+	412 1	42.4	┽	415 1	┝┤	399	+	417 1	400	Н	104	╀	┝	438 (406 1	+	378	140	+	$\left \right $	398	400
- H	CaCO3 Ca(44		74	$\left \right $	48	_	46 1			+		515 4	+	396	$\left \right $	-	413	-	387 3	-	450 3	╉	124 8	H	269 1	+	595 4	E07	╀	586 4	$\left \right $	554		570 4	544 4			+-	-	536 4	529 4	+	473 3	570 4	+	\vdash	505	498 4
HT HC	:03 Ca(16 4	┝╌┝	┽	$\left \cdot \right $	4		13 4		17R 457	+-	+	248 5	╉	125 33	$\left \right $	+	130	-	108	$\left \right $	184 4	╉	28	$\left \cdot \right $	0 2(178 5	-	185 5:	400	╉	179 50	$\left \right $	138	+	151 5	132 5.	┝┥	476 574			$\left \cdot \right $	140 5	┼┤	+	106 F.	+-	┝╌┤╸	071	4
CH NCH	:03 CaC	+	28 1		36	$\left \right $	-	_	-	$\left \right $	-	╀	$\left \right $		+	+-		-	283 1 1	+-			+	+	-	$\left \right $	+	$\left \right $	410 18	+	╀		$\left \right $	+	+	419 15		$\left - \right $		╀		152		$\left \cdot \right $	10 91	+	+	\mathbb{H}	+	1
BCA C	03 CaC		╞	$\left \right $	38	+	59		33	$\left \cdot \right $	0 70	╀	$\left \right $	7 267	╉	1 271			╉	-	9 279	$\left \cdot \right $	6 276	╀	96	\vdash	0 269	+		100	+	7 407	$\left + \right $	6 416	+	_	2 412	\vdash	+	╀	-	4 384	986	+	2 382	6 376	+-	┝─┼╸	383	4 384
A BC	ឌ		8 28	$\left \cdot \right $	38	$\left \cdot \right $	3	+	33	$\left \right $	0 070	+-	7 277	-	+	1 271			283 283		279 279	H	6 276	+	96	$\left \cdot \right $	0 270 7 397	-	0 410	╉	+	7 407	\mathbb{H}	6 416	H	419 419	2 412	Н	306	+		4 384	380	+	_	+	6/2 6	\mathbb{H}	383	4 384
	-	4 4	4 28	-	8 - 38		4 29	4 0	4 33	$\left \right $	6 270	+	277	_	+	54 271	22		╉	1 98	┝	$\left \cdot \right $	2 276	+-	8	$\left \cdot \right $	58 270 347 347	-	50 410			1366 407	\square	/8 416 50 416	\vdash	_	00 412 30 412	┝	12 005			54 384	10 389	┼┤	+	+	72 379		80	06 32 384
b. TDS	-				-	462	0	2 49	+	488	1			960		╀	H			ļ	\vdash	$\left \right $		1222	3 558	$\left \right $	2 1168	┢	3 1360		+			- -	┝	\neg	3 1480		1412	14	145	┝╼┼	1240	┼╌	1164	╉	╉	$\left + \right $	+-	1206 1232
Turt	╉	-	2.3		0	+	135		5.6	┝┤	20	╀╴	+	3 0.6	╉	┝	$\left \right $		3 42.	-	0 3.5		5 2.6		0.3	$\left - \right $	1 1.2	-	9.0	+	╀	3.1	$\left \right $	0.8	+	90.4	2 0.3		+	- 6		6 0.2	80	┼┤	+	╀	6 0.2		7 0.4	6 6 0.2
d EC						00				Ιſ	00 /2.7			00 153	+		1				1	1	00 155				70 161 00 236										00 22/	1 1	231		1	11	00 188	1 1			00 186			00 186 00 186
-X-Co-ord	700400	3758016.000	758016.0	758016.0	3758016.000 3758016.000	3758016.000	758016.0	3758016.000	758016.0	3758016.000	3758016.000 3768830 000	768830.0	3768830.000	768830.0	3/68830.000	768830.0	3768830.000	768830.0	768830.0	3768830.000	768830.0	768830.0	768830.0	7607167	3760716.770	760716.7	3760716.770	3762843.000	3762843.000	762843.0	762843.0	3762843.000	3762843.000	3762843.000 3762843.000	3762843.000	3762843.000	3762843.000	762843.0	3762843.000	762843.0	3762843.000	762682.0	3762682.000 3762682.000	762682.0	3762682.000	162682.U	3762682.000	3762682.000	<u>/62682.0</u> 762682.0	3762682.000 3762682.000
-Y-Co-ord			- I	1 1		1.1	_				+													1										_								<u> </u>								
- <u>Y</u> -Co	20202	52765.000	52765.000	52765.000	52765.000	52765.000	52765	52765 000	52765	52765.000	52765.000	54150.000	54150	54150.000	54150.000	54150	54150.000	54150	54150	54150.000	54150	54150.000	54150	54150.000	57326	57326.570	57326.570 62141 000	62141.000	6214	62141	6214	62141.000	62141.000	62141.000 62141.000	6214	62141.000	62141.000 62141.000	62141	62141.000	62141 000	62141.000	60364.000	60364.000 60364.000	60364.000	60364.000	60364.000	60364.000	60364.000	60364.000 60364.000	60364.000 60364.000
SSS	1	Street	Street	Street	Street	Street	Street	Street	Street	Street	Street	<u>i</u>	ink	ink	ž	ž	ink	ink	<u>z</u> i	<u>i</u>	jz.	ink	ink	-Ink Dark	a Park	a Park	a Park	Ity Way	ity Way	Ity Way	thy Way	tty Way	tty Way	tty Way	ity Way	ity Way	Ity Way	Ity Way	Admiralty Way	Ity Way	Ity Way	rescent	rescent	rescent	rescent	rescent	rescent	rescent	rescent	rescent
Address	10.141.14	12 West	12 West Street	12 West	12 West	12 West Street	12 West	12 West	12 West	12 West Street	12 West Str	Vital I	Vital Link	Vital I		Vital Link	Vital Link	Vital (Vital Link	Vital Link	Vital I	Vital Link	Vital I	Vital Link	17 Victoria Park	17 Victoria Park	17 Victoria Park	21 Admiralty Way	21 Admira	21 Admiralty Way	21 Admiratly Way	21 Admiratty Way	21 Admiratty Way	21 Admira	21 Admire	21 Admiratty Way	21 Admirafty Way 21 Admirafty Way	21 Admiralty Way	21 Admira	<u>21 Admiralty Way</u> 21 Admiralty Wav	21 Admirz	5 Kolbe Crescent	Kothe C	5 Kolbe Crescent	5 Kolbe Crescent	5 Kolbe Crescent	5 Kolbe Crescent	5 Kotbe C	5 Kolbe C	5 Kolbe Crescent 5 Kolbe Crescent
		-94	+	\square			+	+	-	$\left \right $	_	26- 56-	-94	-94	-94	54	-94	+94	6	404	-95	-95	-95	- 62	-93 10-	Ц		╀	\mathbb{H}	+	+	-+-	┼┼		+	┝╌┥	_		\square	+	+	$\left \right $	+				+-	$\left \cdot \right $		
Date		09-Jun-94	13-Jul-94	10-Aug-94	12-04-94	12-Dec-94	10-Jan-95	13-Feb-95	11-Apr	09-May-95	12-Jun-95	11-Nov	17-Mar-94	21-Apr-94	20-May-94	07-Jul-94	10-Aug-94	22-Sep-94	12-Oct-94	13-Dec-94	05-Jan-95	16-Mar-95	05-May-95	01-Jun-95	UDC-50	10-Aug-93	14-Sep-93	10-Aug-93	14-Sep-93	16-Nov-93	08-rep-94	14-Apr-94	09-Jun-94	14-Jul-94	21-Sep-94	12-Oct-94	20-Dec-94	13-Fet	27-Mar-95	20-Apr-95	12-Jun-95	03-Jun-93	10-Aug-93	16-Nov-93	12-Jan-94	09-Mar-94	09-May-94	09-Jun-94	14-Jul-94 10-Aug-94	21-Sep-94 12-Oct-94
Bh.No.		- -		-		- -	-		-		- ?	34	2	34	8	5	34	34	34	4 F	34	34	34	34	=	11	1	20	2	5	n 4	n n	2	2	2	ŝ	ی د	2	2	0 Y	2	9	99	9	9	90	ە ە	9	99	စစ
Erf. No.		17016790000	17016790000	17016790000	17016790000	17016790000	17016790000	17016/90000	17016790000	17016790000	17016790000		21001090000	000060	21001090000	21001090000	21001090000	21001090000	21001090000	21001090000	000060	21001090000	21001090000	21001090000	240000	22006240000	22006240000	160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23006160000	23014100000	23014100000	23014100000	23014100000	23014100000	2301410000	23014100000	23014100000 23014100000	23014100000 23014100000
Ēđ.		17016	17016	17016	17016	17016	17016	17016	17016	17016	17016	21001	21001(21001	21001	21001(21001(21001	21001	21001	21001	21001	21001	21001	22006:	22006	22006	23006	23006	23006	23006	23006	23006	23006	23006	23006	23006	23006	23006	23006	23006	23014	23014	23014	23014	23014	23014	23014	23014	23014 23014

5
OLEC
Ř
а Н
õ
- RESEARC
RESE
Ř
Ė
Ш
RTV
ÅR.
JEER'S DEPARTMEN
S
Ř
Ű
5
ENG
Ê
È
Ę
ď
ę
ź
2
BETI
ELIZA
Щ
/PORT
ĕ
st
KIRSTEN/P(
-
I ROBERTSON &
ğ
ERT
ROBEI
Ř
÷.
E.
ION/STEFFEN
NOISSIN
ŝ
5
ģ
RCH
ъ
ŝ
Ľ
TER
M
>

z	07 0596	82.9300 88 0893	84,1054	97.3852	92.9586	92.9586	53.1192	53.1192	23.1132	57.5458	66.399	62.8577	61.9/24 61.9724	110.665	128.371	137.225 137.708	201.20	110.665	141.001	96.0572	110.665	115.092	123.945 173.045	123.945	106.238	110.665	119.018	106 238	106.238	0.88532	0.92959	0.88532	1.34//	2.65596	1.41651	1.77064	1.32/30	2 1004	0.22133	0.22133	1.59358		1.99197	1 81401	2.39036	2.39036	1.99197	2.03624	1.81491	1.81491	2.2133	2.2133	2.2133
u.		0.56	3		0.14		0.46		0.45			0.54		0.51	11	0.64	0.64		0.76	1		0.47		0.63				nc.n			0.37	40				0.05	T			0.10					0.05					0.24			
NO3-N	21.0	10.12	19.0	22.0	21.0	21.0	12.0	12.0	 7.7	13.0	15.0	14.2	14.0	25.0	29.0	31.0	2	25.0	32.0	21.7	25.0	26.0	28.0	28.0	24.0	25.0	21.0	24.0	24.0	0.2	0.2	200	4.0	0.6	0.3	4.0		2	+	+	0.4		0.5	30	0.5	0.5	0.2	0.0 9	0.4	0.4	0.5	0.5	0.5
S04	6	84	58	6	82	86	95	84	299	80	78	88	83	87	76	85	102	96	4/0	116	26	68	91	105	74	111	50	30	26	126	102	125	0 	120	118	150	35	106	<u>8</u> 3	88	105		84	30	646	89	- 	121	130	110	115 108	113	105
¥	+	40	- ? F		5.0		3.0	T	22			3.0	T	7.0		0.4	7.9	11.0	0	<u>,</u>		6.0	-+-	 0.6	-			0.01	1-		8.0	0 9	0.0		8.0	10.0				5.5 6.6	13.0		+	13.0	5.0	5.0			+-	11.0	 11:0		
Na	╉	177			181		204		172			185		210		136	198	219	747	147	-	223		235	_				┢		515		440		465	439	+			431 520	475			183	476	440	-	+		476	+		
Fe(t)	-	0.05	200		0.62		0.12	-	000			0.01	ĺ	0.02		0.06	0.03		100	5	┢	0.05	-	0.00			010	2	T		0.25	0.0	05.0		0.23	0.33	+			5				11	0.16	0.13	-			0.89	0.03		
<u>5</u>	322	222	272	288	280	301	504	351	324	363	363	359	344	411	398	379	472	408	429	464	454	467	441	485	381	485	203	233	511	1006	961	961	020 763	802	823	836	/c/	969	871	863	829		803	856	+-	\vdash	837	26/ 202	+	╞┼	+	31 1 1016	929
Мg	aco3	101	5		104	+-	109	+	104			97		137		146	127	135	148	<u>P</u>	-	142		133			001	67			335	133	77		260	251	┢			223	277			780	235	240	+			266	258		
Ca	acoa	431			444		478		442		-	459		583		591	572	598	673	220		589		607			511	4	.		190	125	<u>62</u>	-	168	175	+-			141	149			185	105	139	+			134	143		
	caco3 c	532			548		587		546			556	-	720		737	669	733	824	170		731		740			743	2	ŀ		525	- 10	105		428	426	+-			393	426			465	340	379	-			400	401		
NCH		144	<u>-</u>		182		227	+	195			196		310		260	╀	335	117			319	+	316							471			+-	395	+	+		+	363	+	┞╴╢		135	310	331	-		┼─	369	+-		
н Н		388			366	+	360	-	351			360		410		417	┼╴	398				412		424			5	403			54	10	5		33	33				500	+	$\left \right $		+	38					31	-	$\left \right $	
BCA		388	3		366	╀	360	+	351			360	+-	410		417	403	398	296	404		412	+	424			507	200 200	.		5		5	+-	33	33	╋			500	27		32	5	38	48	╎	╎	╎	31	28	\parallel	
TA	cacos c	388			366	+-	360	╉	351			360	+-	410		417	403	398	222	104		412		424			507	402			54		5		33	33	┢		-	508	27		32	ç	88	48	+			31	28		_
TDS	-1-	1238	1354	1180	1146	1200	1378	+	1118	1270	1296	1370	1344	1512		1548	1652		1628	1648	1690	1598	1664	1758	1744	1938	1840	1870	1734		2132	4 7 7 7	7711		1842	1710				1538	2		000	1708	1708	1810	1834	1814	1946	1918	1930	1964	1782
Turb.		03	-	┝┤	0.4		0.4		04	+		4.0		0.4		9.0	0.9		8. 7	t		1.9		0.3				0.0			5.9	-	4		4.5	2	+			0./L			28.0	55	2 40	26.0	-		+-	5	-		
EC	188	188	186	185	193	187	211	197	194	205	200	199	203	239	235	239	253	234	254	248	249	249	256	258	253	264	200	212	266	332	335	328	28/	290	288	291	2/4	275	-+		299	\mathbb{H}	+	502	304	$\left \cdot \right $	295	301	318	312	314	314	300
pro-	000 61	000	2.000	12.000	2.000	12.000	3.000	833.000	000	3.000	3.000	3.000	3.000	000.00	000.00	0000	000.00	000.00	000.00		000.00	000.00	0000	000.00	0.000	000.00	000.00		000.00	03.07	03.07	03.07	570	570	570	570	0/0 270	570	570	570	570	570	+	╁	+	$\left \cdot \right $	220	5/0	570	570	570	570	570
-X-Co-ord	376265	3762682 000	3762682.000	3762682.000	3762682.000	3762682.000	<u> </u>			3762833.000				-		3762750.000										3762750.000		376275	3762750.000	37564	37564	3756403.07	3/605/0	3760570	3760570	3760570	3/605/0	3760570	3760570	3/605/0	3760	3760570	3760	3760570	3760570	3760570	3760570	37605/0	3760570	3760570	3760570	3760570	3760
-Y-Co-ord	364 000	60364 000	60364.000	60364.000	60364.000	60364.000	59912.000	912.000	12 DOD	59912.000	912.000	912.000	912.000	60270.000	60270.000	60270.000	60270.000	60270.000	00000202	000 0220	270.000	60270.000	60270.000	000.000	000.020	60270.000	000.070	60270.000	60270.000	47812.79	7812.79	47812.79	54350 54350	54350	54350	54350	54350 54350	54350	54350	54350 54350	54350	54350	54350	2423U	54350	54350	54350	54350	54350	54350	54350 54350	54350	54350
Ē	+	+-	+	$\left \cdot \right $	+	+	H	Ť	╈	+			+	t	t.		+-	+-+	-+-		+-			+-		++		-		H			+	+	×	_		+		-	┼		+	╉	+-		-	+	+				
Address	o Creere		5 Kolbe Crescent	5 Kolbe Crescent	be Cresce	5 Kolbe Crescent	Ibring Ro	10 Bulbring Road	10 Bulbring Koad	10 Bulbring Road	Ibring Ro.	Ibring Ro	10 Bulbring Road	68 Winchester War	68 Winchester Way	68 Winchester Way	68 Winchester Way	68 Winchester Way	chester V	Chester V	68 Winchester Way	68 Winchester Way	68 Winchester Way	68 Winchester Way	chester V	68 Winchester Way	68 Winchester Way	68 Winchester Way	68 Winchester Way	15 Cosmos Street	15 Cosmos Street	smos Str	Clarendon Park	Clarendon Park	endon Par	Clarendon Park	endon Par	Clarendon Park	endon Par	endon Par	Clarendon Park	endon Par	Clarendon Park	Clarendon Park	Clarendon Park	Clarendon Park	endon Par	Clarendon Park	Clarendon Park	endon Par	endon Par	Clarendon Park	endon Par
A	5 Kol		5 Koll	5 Koll	5 Kol	5 Kot	10 Bu	10 Bu	10 80	10 Bu	10 Bu	10 Bu	10 Bu	68 Win	68 Win	68 Win	68 Wir	68 Wir	68 Win	68 Win	68 WI	68 Wir	68 Win	68 Wir	68 Win	68 Wir	68 Wir		68 Wir	15 Co	15 Co	15 Co	Clar	Clar	Clare	Clare	Clare	Clare	Clare	Clare	Clare	Clare	Clare		Clar	Clare	Clare	Clare	Clare	Clare	Clare	Clare	Clare
Date	20-Doc-04	10-1an-95	13-Feb-95	10-Mar-95	20-Apr-95	12-Jun-95	-Jun-93	10-Aug-93	12- Jan-94	21-Sep-94	-Dec-94	10-Jan-95	10-Mar-95	03-Jun-93	10-Aug-93	14-Sep-93	12-Jan-94	08-Feb-94	09-Mar-94	14-Apr-94	09-Jun-94	14-Jul-94	10-Aug-94	21-Sep-34	-Dec-94	13-Feb-95	10-Mar-95	20-Apr-95	-Jun-95	10-Aug-93	14-Sep-93	6-Nov-93	18-Jun-93	10-Aug-93	-Sep-93	29-Sep-93	-Oct-93	16-Nov-93	14-Dec-93	12-Jan-94	08-Feb-94	10-Feb-94	17-Mar-94	03-Jun-94	21-Jul-94	3-Jul-94	10-Aug-94	12-Aug-94	22-Sep-94	12-Oct-94	13-Oct-94	08-Dec-94	12-Dec-94
	╁	+	╈			╎		-	╈	15 21			15 10	-	7 10	14	12	7 08	50		200	7 12	20	12	7 20	7 13	2	22	12	t	H		-	┼	┢	23 29	┢	╉	$\left \cdot \right $	╉	23 08	┢	+	+	23 23	┝┤		+	╈	23 12	+	23 08	H
Bh.No.	9					80							_		00	88	38	8	88	2 2 2	28	8	8	88	8	8	8	88	38				_		_		+				_					Ц		_	-				
Erf. No.	30141000	2301410000	2301410000	23014100000	23014100000	30141000	23016930000	23016930000	23016930000	23016930000	23016930000	23016930000	23016930000 23016930000	30173600	23017360000	23017360000	23017360000	23017360000	230173600	2301/360000	23017360000	23017360000	23017360000	23017360000	30173600	23017360000	23017360000	23017360000 23017360000	23017360000	70068800	270068800	270068800	32000470000	20004700	32000470000	32000470000	32000470000	32000470000	32000470000	320004700	32000470000	32000470000	32000470000	320004/0000	32000470000	32000470000	32000470000	32000470000	32000470000	32000470000	32000470000	320004700	32000470000

Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb.	TDS	TA	BCA	СН	NCH	тн	Ca	Mg	CI	Fe(t)	Na	K	SO4	NO3-N	F	N
									CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3							1	
32000470000	23	10-Jan-95	Clarendon Park	54350	3760570	315	2.7	1806	35	35	35	341	378	130	248	825	0.04	462	9.0	104	0.5	0.05	1.99197
32000470000	23	09-Feb-95	Clarendon Park	54350	3760570	306		1790								807			1	113	0.5	1	2.16903
32000470000	23	10-Mar-95	Clarendon Park	54350	3760570	308		1892								758	1			123	0.6		2.61169
32000470000	23	16-Mar-95	Clarendon Park	54350	3760570	309		1828								859	1			106	0.6	1	2.65596
32000470000	23	10-Apr-95	Clarendon Park	54350	3760570	325	0.7	1940	55	55	55	362	417	172	245	987	0.06	479	11.0	112	0.6	0.05	2.52316
32000470000	23	11-Apr-95	Clarendon Park	54350	3760570	314	0.6	1694	34	34	34	345	379	133	246	949	0.03	475	12.0	102	0.5	0.05	2.03624
32000470000	23	11-May-95	Clarendon Park	54350	3760570	282		1814								877				107	0.6	0.00	2.43463
32000470000	23	01-Jun-95	Clarendon Park	54350	3760570	311		1734	1				· ·			967				103	0.3		1.50504
32000470000	23	12-Jun-95	Clarendon Park	54350	3760570	320	<u> </u>	1754	1							947				105	0.5		2.39036
32001790000	14	07-Jun-93	12 11th Avenue	53190.000	3761589,000	171	13.0	1182	145	145	145	148	293	151	142	515	0.61	209	19.0	74	0.5	0.27	0.22133
32001790000	14	17-Jul-93	12 11th Avenue	53190.000	3761589.000	169	10.0	1102		145		140	200	101	142	406	0.01	_203	19.0	. /4	0.1	0.21	0.22133
			12 11th Avenue	53190.000	3761589.000	160										369			<u> </u>			Į	0.00400
32001790000	14	10-Aug-93		53190.000	3761589.000	176	2.6	1156	140	4.40	4.40	239	385	211	474		0.04	000	05.0	41	0.1		0.22133
32001790000	14	14-Sep-93	12 11th Avenue			174			146	146	146	235	300	211	174	452	0.61	239	25.0	48	0.1	0.36	0.22133
32001790000	14	16-Nov-93	12 11th Avenue		3761589.000			4400	- 140	4.45	440	4.40	000	455	100	436		100		45	0.1		0.22133
32001790000	14	12-Jan-94	12 11th Avenue		3761589.000	170	3.7	1108	148	148	148	140	288	155	133	442	0.06	188	18.0	34	0.1	0.21	0.22133
32001790000	14	08-Feb-94	12 11th Avenue		3761589.000	171	4.2		144	144	144	212	356	196	160	429		215	20.0	36	0.1	L	0.22133
32001790000	14	09-Mar-94	12 11th Avenue	_53190.000	3761589.000	177	10.0		143	143						479				30	0.1		0.22133
32001790000	14	14-Jul-94	12 11th Avenue	53190.000	3761589.000	174	25.0	1114	162	162	162	145	307	160	147	429	8.73	198	14.0	38	0.1	_0.19_	0.22133
32001790000	14	10-Aug-94	12 11th Avenue	53190.000	3761589.000	169		1150	L					I		386			L	35	0.1		0.22133
32001790000	14	15-Sep-94	12 11th Avenue	53190.000	3761589.000	175		1214	ļ							406				40	0.1		0.22133
32001790000	14	12-Oct-94	12 11th Avenue		3761589.000	177	5.2	1178	153	153	153	158	311	165	146	442	0.66	_209	23.0	38	0.1	0.29	0.22133
32001790000	14	13-Dec-94	12 11th Avenue	53190.000	3761589.000	184		1158								501	1			44	0.1		0.22133
32001790000	14	10-Jan-95	12 11th Avenue	53190.000	3761589.000	173	7.0	1178	152	152	152	160	312	170	142	438	0.02	205	23.0	40	0.1	0.19	0.22133
32001790000	14	09-Feb-95	12 11th Avenue	53190.000	3761589.000	189		1056								446				46	0.0	1	0.04427
32001790000	14	10-Mar-95	12 11th Avenue	53190.000	3761589.000	184		1264								468	1			40	0.0	1	0.04427
32001790000	14	11-Apr-95	12 11th Avenue	53190.000	3761589.000	192	4.2	1232	171	171	171	143	314	173	141	533	0.03	225	21.0	41	0.0	0.05	0.02213
32001790000	14	11-May-95	12 11th Avenue	53190.000	3761589.000	169		1146				-				490				42	0.1		0.22133
32001790000	14	12-Jun-95	12 11th Avenue		3761589.000	185	1	1208	1							480				42	0.1		0.22133
32004980000	33	28-Jun-93	64 Short Road		3761117.000	414	68.0	2558	195	195	195	502	697	283	414	1437	29.00	638	5.4	163	0.1	0.27	0.22133
32004980000	33	17-Jul-93	64 Short Road		3761117.000	404										1144					•	0.27	0.22100
32004980000	33	10-Aug-93	64 Short Road	53010.000	3761117.000	429			1							1230	1			232	0.1		0.22133
32004980000	33	16-Nov-93	64 Short Road		3761117.000	345			1							1246			<u> </u>	159	0.1		0.22133
32004980000	33	12-Jan-94	64 Short Road	53010.000	3761117.000	353	56.0	2066	178	178	178	334	512	236	276	1057	4.89	518	6.1	125	0.1	0.29	0.22133
32004980000	33	08-Feb-94	64 Short Road	53010.000	3761117.000	349	43.0	2000	164	164	164	414	578	272	306	938	4.05	547	16.0	130	0.1	0.29	0.22133
	33	10-Feb-94	64 Short Road	53010.000	3761117.000				-104	104	104		5/0		300	330	<u> </u>	341	10.0	100	0.1		0.22133
32004980000			64 Short Road		3761117.000	356	40.0		178	178						957				126	0.1		0 22122
32004980000	33	09-Mar-94			3761117.000	356	79.0	2318	178	178	178	411	589	279	210		60.50	E70			0.1	0.04	0.22133
32004980000	33	14-Apr-94	64 Short Road	53010.000							1/0	411	569	219	310	966	69.50	579	9.0	122	0.1	0.31	0.22133
32004980000	33	09-May-94	64 Short Road	53010.000	3761117.000	348	80.0	2180	184	184						956				128	0.1		0.22133
32004980000	33	09-Jun-94	64 Short Road	53010.000	3761117.000	361	415.0	2166				070	470	- 005		958		- E 40	<u> </u>	127	0.1		0.22133
32004980000	33	14-Jul-94	64 Short Road		3761117.000	359	145.0	_2162_	_206_	206	206	272	478	205	273	987	7.90	548	3.0	104	0.1	0.05	0.22133
32004980000	33	10-Aug-94	64 Short Road	53010.000	3761117.000	360		2234								918			I	118	0.1		0.22133
32004980000	33	15-Sep-94	64 Short Road	53010.000	3761117.000	360		2226	<u> </u>	455						893				113	0.1	L	0.22133
32004980000	33	12-Oct-94	64 Short Road	53010.000		357	31.0	2202	179	179	179	345	524	240	284	975	5.60	542	11.0	133	0.1	_0.53_	0.22133
32004980000	33	12-Dec-94	64 Short Road	53010.000	3761117.000	341		2238								1021	L			122	0.1		0.22133
32004980000	33	10-Jan-95	64 Short Road	53010.000	3761117.000	353	77.0	2266	187	187	187	310	497	241	_256	_ 867	9.34	_ 509	9.0	107	0.1	0.05	0.53119
32004980000	33	09-Feb-95	64 Short Road		3761117.000	356		2068						[]		932			[132			
32004980000	33	10-Mar-95	64 Short Road		3761117.000	346		2128								935				135	0.0		0.04427
32004980000	33	11-Apr-95	64 Short Road		3761117.000	361	77.0	2218	211	211	211	276		225	262	1024	15.34	541	10.0	109	0,0	0.22	0.02213
32004980000	33	11-May-95	64 Short Road		3761117.000	344		2282								1020				110	0.1		0.22133
32004980000	33	12-Jun-95	64 Short Road	53010.000	3761117.000	360		2138								991				107	0.1		0.22133
32019350000	28	18-Jun-93	Walmer Country Club	52495.000	3762895.000	226	12.0	1356	455	455	392	0	392	268	124	528	6.18	292	6.0	65	0.1	0.31	0.22133
32019350000	28	31-Aug-93	Walmer Country Club		3762895.000	209										505				64	0.1		0.22133
32019350000	28	29-Sep-93	Walmer Country Club		3762895.000	281	28.0	1758	210	210	210	248	458	299	159	784	14.50	395	13.0	60	0.1	0.24	0.22133
32019350000	28	26-Oct-93	Walmer Country Club		3762895.000	205										459			<u> </u>	59	0.1		0.22133
32019350000	28		Walmer Country Club						1 1										I	65	0.1	1	0.22133
32019350000			Walmer Country Club						tl		• •					458				56	0.1	1	0.22133
32019350000			Walmer Country Club				8.1	1206	131	131	131	236	367	243	124	501	<u>├</u>	288	<u> </u>	49	0.1		0.22133
32019350000			Walmer Country Club				17.0		241	241	241	102	343	211	132	428		294	7.8		0.1		0.22133
			Walmer Country Club				45.0		233	233	271			_411	1.52	420		_ 234	0.1	50			
32019350000			Walmer Country Club					1292			140	273	412	267	140		1 70	200		58	0.1		0.22133
32019350000							24.0		140	140	140	213	413	267	146	480	1.76	320	6.0	60	0.1	0.20	0.22133
32019350000			Walmer Country Club			245	26.0	1482				402	407		465	586	- <u></u>	007	<u> </u>	76	0.1		0.22133
32019350000			Walmer Country Club				7.0	1298	242	242	242	193	435	309	126	447	0.47	265	6.0	62	0.1		0.22133
32019350000			Walmer Country Club			237	5.0	1518	226	226	226	157	383	247	136	618	4.10	322	5.0	61	0.1	0.34	0.22133
32019350000			Walmer Country Club			218		1452								552				58	0.1		0.22133
32019350000		22-Sep-94	Walmer Country Club	_52495.000	3762895.000	205		1364	1							457				65	0.1		0.22133
32019350000	28	12-Oct-94	Walmer Country Club	52495.000	3762895.000	220	33.0	1336	243	243	243	155	398	274	124	528	19.80	295	7.0	64	0.1	0.41	0.22133
																							تصغيب

5
Щ
Å.
Η
Å,
ESEA
RESE/
÷
Å.
Ę
<
IGINEER'S DEP,
ŝ
Ë
ģ
Ű,
≿
Σ
Ē
ICIPA
NIC
MUN
Ē
ZABETI
/PORT
~
(IRSTE)
(IRS
2
g
ROBERTSON
OBE
õ
Ë
STEFFE
ŝ
Ž.
VISSIO
WW
Š.
İ.
ARC
ESE/
Ľ
Ē
MAT
1

Z		0.22133	18.5917 177 064	0.44266	17.7064	0.22133	0.22133	0.22133	0.22133	0.22133	00100	0.22133	0.22133	0.44266	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	17.2637	0.22133	0 22133	10.1812	29.2156	24.789	3.09862	CU8U2	0.22133	0.22133	56.2178	2008.00	70.8256	6.6399	70.8256	75.2522		79.6788	72.5962	42.4954	70.8256	70.8256	61.9724	57.5458	69.055	68.1696	57.5458	63.3004	75 7577	70.8256	66.399	79.6788	79.8394		10.0041
u			940		0.05		0.24	11					0.10		0.23		- 1	R7.0	0.47		0.05		0.44				- I	60'D	0.05		0.29	- 1		0.23						0.37	1	0.55	11		049			0.05				0.05	T		0.29
NO3-N		0.1	4.2	0.1	40		50	0.1	0.1	<u>-</u>			50		0.1	0.1		5	50	0.1	3.9		2 7 7	2.3	6.6	5.6	- <u>'</u>	4- 		<u>0</u>	12.7	14.4	16.0	1.5	16.0	17.0		18.0	16.4	9.6	13.5	16.0	14.0	13.0	15.6	15.4	13.0	14.3	12.0	16.0	15.0	18.0	0.71		2.3
SOA 1		64	101	63	86	20	55	64	56	49		22		52 62	62	57	83	19	88	63	<u>1</u> 0	179	140	114	125	122	119	82	11	102	245	077	233	268	20	109	205	2	203	234	203	220	210	203	214	231	230	217	213	221	221	221	229		68
-			0 8	2	4.0	2.0	11.0			9.9	0.0			6.0	6.0		-	0.0	5.0		3.0		200	2			-	0.2	10.0	\square	3.0	+		9.0				8.9	┝	3.0	╀	3.0	$\left \right $			┼	$\left \right $	5.0	╉		+	3.0		+	0.8
e N		-	070	+-	264	+	370	╀┦		311	-+	+	336	╋	342		╉	787	289	-	260	┽	220 278	╀╴			-	- 0/7	411	$\left \cdot \right $	524	+	-	544		_	+	580	┝	611	+	544			527	┿	-	524	+		$\left \right $	495	-	$\left \cdot \right $	231
Ep(t)			100	+	0.10	+	11.70	_	_	-	_	+	2.18	0.01	+		+	50.0	0.16	┝	0.08	+	161		_	_	┥	10.0	0.01	┼─┤	0.0		+-	0.01			-		-	0.01	+	0.04			0 10	+-	\mathbb{H}	0.03				0.21		+	0.13
		99		+-	432 (╈	$\left \right $	153	189	575	-	-	+	┢	347	-+	+-	╀	-				+-	183	182	4		+-		-	_ -	923 923		<u>4</u>	789	12	200	-		897	+	\square	808	+	-	$\left \cdot \right $	984 (871	+		843	+	516 (
No.			116	+	110	+	150	\square	+	142	-	╉	8		147 6		╉	8	111	\vdash	107 4		119	+			+	22	242 8	\vdash	500	+		208	\square		+	228	\vdash	259 5	╉	213 9		_	199	+-	$\left - \right $	181 (╀	1	$\left \right $	174 8		\square	72
<u>a</u> 1	CaCO3 CaCO3	-	304		309 1	╉	293 1	$\left \cdot \right $	+	257 1	+	+	167	┽╴	236		-	400	245 1	-	308 1		435	+	_	_		402	195 2		575	+-		640 2		_	╋	595	$\left[- \right]$	32 2	╋	586 2	$\left - \right $	_	575 1	┿	$\left \cdot \right $	545	╉		$\left \right $	530	-		448
<u>TH 1 (</u>	CaCO3 Ca		510 3	+	419 3	╋	443 2	$\left \right $	+	399 2	-	+	452	+	383 2		+		356 2	\vdash	415 3	+	554 4				-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	437 1	$\left \cdot \right $	775 5		-	848 6		+	╋	823 5	+	991 7	+	799 5			774 5	+	H	726 5	╉	-	$\left - \right $	704 5			520 4
8	CaCO3 Cal		138 F	┼	126 4	+	182 4		+	268 3	+	╉	312 4	191 4	┢		╡	0 217	118 3	┝	128 4	╉	148 5	+			+	4	373 4		380	+		457 8	\square		+	443 8	\vdash	593 9	+	406 7		+	378 7	+-	$\left - \right $	334 7	+	┢	+	282 7		$\left \right $	27 5
CH N	2		370 4	╞	293 1	+	221 1		-	131 2	-	╉	140	╀	217 1		+	707	238 1	╞	287 1	+	406	+			┥	185	64 3		395 33	╉		391 4			+	380	H	398 5	+	393 4			306	+	Η	392 3			+	422 21	_	\square	493 2
BCA C	3		370 2		293 2	╉	221 2	$\left \cdot \right $	-+	-	216 2	+		+-	217 2		+	205	238 2	-	287 2	+	406 4	┢		_	┥	281	64	$\left \cdot \right $	395 3	+		391 3	$\left \right $		╉	380	\vdash	+	+-	393	┝─┟	╉	396	+	Н	392 3	+-	┢	+	422 4	-		493 4
TA B(CaCO3 Cal	-	370 3	┼	293 2	╀	221 2	\square	+	-	216 2	╀		+-	217 2		╉	205	238 2	-	287 2		406	┢			+	281	64	$\left \right $	395 3	+		391 3	$\left \right $		╉	380	-	-+		393 3	┝─┼	-	306	╉╌	$\left - \right $	392 3	╀		+	422 4	_	\downarrow	493 4
TDS I T		1414	+	╀	1328 2	+	1654 2	$\left \cdot \right $		1234 1	- 0	+		+	╞	42	+	+	_	┡	\square	1476	+-	╞	1590	34	-+	1350 3	-	$\left \cdot \right $	-	-		2250 3	\square		2728	╀	\vdash	\square	2236 2416 3	╞	$\left \right $	04 76	+	+	\square		_ -	96	2312		9 g		1518 4
		4	+	┼	.	5	0			。	0,0				E	14	╡	4	6	12	<u>ل</u>				15	14	13	3 13	6			4					╎						- 24	24			$\left \right $		╉	38	23	2 24	78		2 15
	$\left - \right $			┿	┝┼	2	22.	⊢	+	+	28.0	╉	-	+	┢	-	+	20	3 18	9	$\left \right $	0 7 7	┢	╞	9	5	-		0 45	$\left \cdot \right $	-) 2 2 2	5	0 9	\square	е I	+	+		7 0.7	+-		2		, C	╀	H	1 1.2	╉	+ 4	4		0		5
d EC				-	00 223	-			- 1		00 242					1						252						100 232 100 275		1		395					_				00 398			00 383						00 384			00 380 00 380		50 225
-X-Co-ord		3762895.(3762895.0	3762895.000	3762895.0	3/62555.000	3762555.0	3762555.000	3762555.(3762555.(3762555.000	3762555.(1622221 7675551	3762555.(3762555.0	3762555.(3762555.(3762555(3762555.000	3762555.(3762555.(3762645.000	3762645 (3762645.0	3762645.000	3762645.0	3762645.0	376202945.000	3762029.4	3762029.4	3764120.0	3764120.0	3764120.000	3764120.0	3764120.0	3764120.000	3764120.000	3764120.0	3764120.0	3764120.000	3764120.000 3764120.000	3764120.000	3764120.000	3764120.0	764120 (3764120,000	3764120.000	3764120.000	5/64120.0	3764120.0	3764120.000	3764120.0	3764120.000	3764120.0	3763403.9
-Y-Co-ord	11		1	52495.000	(I	+	+-	52925.000			52925.000			52925.000								53460.000		53460.000				53460.000				52540.000					52540.000		1		52540.000		52540.000		- T-	2540.000		52540.000					52540.000		
<u></u>		-		-+										+-										-							-	5254	5254	5254	5254	5254	5254	5254	5254	5254	5254	5254	5254	5254	5257	5254	5254	5254	9070	5254	5254	5254	5254	5254	5565
220		untry Clu	untry Clu	untry Clu	untry Clu	untry Clu		untry Clu	untry Clu	untry Clu	untry Clu	untry Clu	untry Clu		untry Clu	untry Clu	untry Clu		untry Clu	untry Clu	untry Clu	untry Clu		untry Clu	untry Clu	untry Clu	untry Clu	untry Clu	dward P	dward Pl	Club	Club	Club	Club	n Club	1 Club		Club	1 Club	n Club		Club	n Club	Club			Club	l Club			Club	1 Club		Club	nel Club
Address		Walmer Country Club	almer Co	Walmer Country Club	Watmer Country Club	Walmer Country Club	almer Co	Walmer Country Club	Walmer Country Club	almer Co	Walmer Country Club	almer Co	almer Co	Walmer Country Club	almer Co	Walmer Country Club	almer Co	Walmer Country Club	almer Co	almer Co	almer Co	Walmer Country Club	Walmer Country Club	almer Co	Walmer Country Club	almer Co	almer Co	Walmer Country Club	M King	PEM King Edward Pk.	Telkom Club	Telkom Club	Telkon	Telkon	Telkom Club	Telkom Club	Telkon	Telkom Club	Telkon	Telkom Club	Telkom Club	Telkon	Telkom Club	Telkon		Telkom Club	Telkon	Telkom Club		Telkom Club	Telkom Club	Telkon	Telkom Club Telkom Club	Telkom Club	P.E. Ken
-	+	-+	-+-	+-															-95	r-95 V	r-95 W	V-94 W		╈							-	-93	-93	-93	t-93	v-93	-93 -93	-94	r-94	r-94	y-94	-94	g-94	-94	404	v-94	0-94	1-95	-95	-95	-95	r-95	y-95		
Date		10-No	13-Dec-94	16-Mar-95	06-Apr-95	18-Jur	29-Ser	16-Nov-93	20-Dec-93	19-Jar	22-Feb-94	17-Ma	21-Apr-94	21-hun-94	07-Jul-94	10-Aug-94	22-Se	12-06	05-Jan-95	16-Ma	06-Ap	20-May-94	21-JUN-34	10-Aug-94	21-Sep-94	10-Nov-94	16-Ma	15 Can 04	12-00	13-Dec-94	18-Jun-93	23-Jun-93	10-Au	29-Sep-93	25-Oct-93	16-Nov-93	14-Dec-93	22-Feb-94	17-Mar-94	21-Apr-94	20-May-94	07-Jul-94	10-Aug-94	20-Se	12-Sep-94	10-Nov-94	13-Dec-94	05-Jan-95		13-Mar-95	16-Mar-95	10-Ap	01-Jun-95	21-Jun-95	18-Jun-93
Rh No		28	78	58	28	29	29	29	29	29	29	50	50	67 59	29	29	29	50	29	29	29	29a	202	29a	29a	29a	29a	29a	14	44	27	27	27	27	27	27	27	27	27	27	27	27	27	27	17	27	27	27	22	27	27	27	27		
Ert No		350000	350000	350000	32019350000	350000	350000	350000	32019350000	32019350000	32019350000	350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	480000	32019480000	32019480000	32019480000	32019480000	480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000 32019480000	32019480000	480000
E H		32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32019	32010	32015	32019	32019	32015	32019	32019	32019	32019	32019	32019

ü
ROJE
RCH P
RESEA
IT-R
Ð
EPARTN
EER'S DEP
GINEEF
ENG
Ē
ALID
NICIP
UM H
ABET
T ELIZA
4/PORT
STEN
& KIR
TSON & KIF
COBER.
ž
STEFF
SION/S
INISSI
RCH COMMISSION/STEFFE
EARCH
RES
ATER
5

v	0 70050	9.13652	11.0665	97 67677	77070'1	11.5092	12.3945	11.9518	12.3945	C000.11	0 29586	0	106.238	61.9724	40.2821	66.399	69.94U3	79 6788	32.7568	66.399	21.2477	15.0504	17.7064	19.477	18.1491	19.9197	15.0304	19.4//	20 805	19.477	20.3624	14.6078	22.133	20.802	19.919/	20.3624	14.6078	13.7225		13./225	15.0504	18.1491	19.477	19.919/	21 2477	19.0344	12.8371	15.0504	20.3624	1000.04	40.7247	40.7247	44.266	23.9036	46.0366	49.1353
Ŀ	Т	0.17				1 i	0.22				0.50			0.59		0.25		0.17		11	0.17	0.26	1	0.25			0.40		0 10		0.24				1		0.16		0.23					100			0.05					0.35	20.0	0.26	1 1	0.30
NO3-N		7.4	2.5	- ²	-	2.6	2.8	2.7	2.8		- c	i	24.0	14.0	9.1	15.0	10.0	18.0	7.4	15.0	4.8	0.4 6 4 7	40	4.4	4.1	4.5	4	4.4	2 4	4.4	4.6	3.3	50	4 \ \	0.4	4.0	3.3	3.1	-	3.1 1	3.4	4.1	4.4	0.4 1.1	2 8 8 8	14	2.9	3.4	4.6	0.0	9.2	9.2	10.0	5.4	10.4	1.1
S04			29	59	56	66	92	2	4	28	20	2	173	158	65	160	153	162	133	157	57	67	59	63	63	35	4 5	29	2	363	99	48	2	996	99	130	123	120	122	117	130	130	115	117	100	120	108	95	112	5	151	4	161	129		132
¥	0	0.0	2.0				1.0		1	T	20	;		6.0		4.0	Ì	30	2		40	3.0		3.0	6.0	-	0.0		0 6	2	5.0	3.0		-		2	0.6		5.0	6.0				0 -	2	+-	6.0		96	0.7	+-	5.0	ļ	1.3	,	2.0
Na		270	256	+	-		272	┥	+	+	230			328		314	╋	333	3		215	243		212	238		9/7		223	3	224	175			000	000	373		302	359			-	334	3		336		167	- Į	+	535		508 535		516
Fe(t)		0.04	0.02				0.06				0.03			0.11		0.02		0.21			0.04	2.60		0.39			40.0		0.05	202	0.05	3.26			010	2	0.03		0.01	-				0 22	C7-D		5.30			2 2	╞	0.18	. 25	4.35		13.70
CI	+	+	603	040 601	580	535	\mathbb{H}	479	4//	40/ 507	+	╀	525	\vdash	372	_	330	+	+		+	354	┢	-	334	+	╉	344	╉	-	┝		344	358	+	712	+-	$\left \cdot \right $	491	643	502	645	630	+	╀	642 642	+	579	-	+	972	1049		+	922	
Mg		-					116				65	+		175	\mid	155		135	╀		74	83	┢	70		+	5		78	+	78				110	╋	166		126	+				107	+		114				+	281		263	+	294
Ca	CaCU3 C	121	4/0	╀			412		╉	╀	424			526		531		49D	╀		206	207		194	234		- 10/2		205	3	216	169	┥	╎	25.0	╀	350		304					224	+	+-	293		090	+	_	284	-	250	$\left \right $	294
TH		10	800			\vdash	528	+	╉		486	+-		701	-	686	+	625	+-		280	290	┢	264		+	30/		283	-	295	\mid		╎	007	╀	516	\vdash	430				-	154	╉		407		103	+-		565		513	+	588
	cacus c		312		+	$\left \right $	302		╎	╁	230	╞		374		343	-	253	╀	H	83	81	+	58		+	43		102	-	6/	\mid		╎	010	╉	360		280	+			-	000	╉	-	245		120	+-	┼╴	391		3/1 433		442
CH N		+	246	+		\mathbb{P}	226 :		-	+-	756	-	+-	327		343	+	370	+		197	209		206	-	+	224		212	2	216	163		-	+		156	+	150	+				+	ß		162			+		174	$\left \right $	147	+	146
BCA		╉	246	╎	-	223	$\left \cdot \right $		_		756	+	+		193	+		370	+	\vdash	197	209	+	\vdash	Η	204	+	807	212		┢	163		-	╉	001	156	\vdash	\neg	149	151			┽	8		162			╀	┢	174	$\left \cdot \right $	+-	149	
TAB	C03	+	246			223	H		┤	╎	256	╀	┢		193	+	+	. 625		\vdash	197	506	+	╞	\square	204	+	+	212	+		163 .	+		+	001	156		-	149		+-		+	8	+	162			╉	+-	174	\mathbb{H}	┼	149	-
TDS	-1	1480	+		-	+	1560 2	_	1380	1414		+		1792 3	\square	+	202	+	1682	\square	-	904	+	936		+	976	+	050	+	-		906	84	+	╉	1644	-	1506		1672	+	1644	_	+	432	494	504	-			2298 1	\square	2156	++	2244 1
	╉		+				$\left \right $	0.6			1	t		0.4 1	1.1	+		- +		1	0.2	3.6			0.4	3.4	┥	50 20	6	- -	ŀ	27.0 5	+		╎	-	0.5	-	_	1.8	3.5	+-	-		2		19.0	-			╞	4.8 2	$\left \right $		16.0	
EC Tur	+	+	+	235	33	238 ($\left \cdot \right $		215	241		┾	83		180	-	//	┽	-	77	165	+-	+	162 (-	165	+	+	+	60	1	\vdash	21	17	+	╉	╀	-	-	260	+	+-	258	+	╇	247	-	252	+	╉	202	364	$\left \cdot \right $		349 1	
Н										ļ							_					1					· [ľ	ſ	ſ									1										-							
-X-Co-ord	0010020	3/034U3	3/63403.950	3/63403.950	3763403	3763403.950	3763403	3763403	3/63403.950	3/03403.950	3763405	3760815	3760815.000	3760815	3760815.000	3760815	3/60815.000	3760815.000	3760815.000	3760815	3763293	3763293.540	3763293	3763293	3763293	3763293.540	3/63293	3/63293	27620010	3763293 540	3763293.540	3763293	3763293.540	3763293	3763293	3763734	3763234	3763234.000	3763234	3763234.000	3763234	3763234.000	3763234	3763234.000	1022010	3763234.000	3763234	3763234.000	3763234.000	3760684	3760684	3760684.000	3760684.000	3760684.000 3760684.000	3760684.000	3760684
-Y-Co-ord				55654.200		55654.200				52624.200			57035.000				135.000							50109.560						50109 560			50109.560		50109.560			51139.000				51139.000		51139.000		51139.000			39.000					23.000	53623.000	
- 7 -1	1	+	╉	╈	+	1	H	+	-†	+	+	+	570	570	570	210	2/2	0	570	570	1ue 501		TUR 50'	Tue 501	1ue 501	1ue 501	106 901	111e 501		anie 20,	ue 501	1ue 501	1ue 501	1ue 501	111e 501	ent 51													-	200	200	536	536	+		
Address		Kennel Club	nnel Club		nnel Club	P.E. Kennel Club	P.E. Kennel Club	nnel Clut	innel Clut			Victoria Park	ria Park	ria Park	Victoria Park	Victoria Park	Victoria Park	Victoria Park	Victoria Park	Victoria Park	12 Newcombe Avenue	12 Newcombe Avenue 12 Newcombe Avenue	mbe Ave	mbe Aver	mbe Avei	12 Newcombe Avenue	mbe Aver	mbe Aver	mbe Ave	12 Newcombe Avenue	mbe Aver	mbe Aver	12 Newcombe Avenue	mbe Aver	mbe Aver	de Cresc	Ide Cresc	10 ldyhwylde Crescent	10 Idylwylde Crescent	10 Idylwylde Crescent	de Cresc	10 Idylwylde Crescent	10 Idylwylde Crescent	10 Idylwylde Crescent	de Cresc	10 Idviwylde Crescent	10 Idviwylde Crescent	10 Idylwylde Crescent	10 Idylwylde Crescent	/4 Kiver Koad 74 Diver Dood	74 River Road	74 River Road	74 River Road	74 River Road 74 River Road	74 River Road	74 River Road
ΡV	ի	л Т Г	ы Ч Ч	н Ц Ц	יי הי ע	н Б Ц	P.E. Ke	Р. Б. К	н П Ц				Victo	Victo	Victo	< ict				Victo	2 Newco	12 Newco	12 Newco	12 Newco	12 Newco	2 Newco	2 Newco	2 Newco	IZ NEWCO	12 Newco	2 Newco	2 Newco	12 Newco	12 Newco	12 Newco	Wildying	10 Idvlwv	10 Idylwy	10 Idylwy	10 Idylwy	10 Idvhw	10 Idylwy	10 Idylwy	10 Idylwy	10 Idylwy	10 Idvlwv	10 Idvhwy	10 Idylwy	10 Idylwy	74 Ki	74 Riv	74 Riv	74 Riv	74 KN 74 Riv	74 Riv	74 Riv
Date	-	30-Aug-93	ep-93	01-Nov-93	10-NOV-93	17-Mar-94	07-Jul-94	31-Aug-94	22-Sep-94	10-Nov-94	13-Dec-34	21-Jul-93	21-Jun-93	ep-93	09-Mar-94	12-Oct-94	09-Feb-95	10-Mar-95	09-Mav-95	12-Jun-95			11-Nov-93	14-Jan-94		09-Mar-94	pr-94	09-May-94	48-UN	71-Sen-94	oct-94	10-Jan-95 1	eb-95	13-Mar-95 1	28-Jun-95	03-Jun-93		11-Nov-93		1		14-Jun-94			10-1an-95				-	15-Jul-93	17-JUF93	14-Sep-93	16-Nov-93	12-Jan-94 08-Feh-94	09-Mar-94	14-Apr-94
			1	╈	┽	+-		31-A	22-5	╈	1	┼	╋	t	Η	+	+	+	╈	┢	<u>5</u>	10-7		14	08-F	V-60	4	1-60	<u>+</u>	21-0	12-0	<u>1</u>	<u>1</u> -60	13-1	28-		54	11-1	12-1	188		14	21-5	5		120		Η		╈	-	+		- -	+	
Bh.No.	_	50				56			26	\downarrow			38				\downarrow		50	╀	e O		_	0 0 0		е С				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			е С			4 4					4 4					4 4			_							Ц
Erf. No.	00000101	32019480000	1948000C	1948000C	19480000	32019480000	19480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019810000	32019810000 32019810000	3201981000	32019810000	32019810000	32019810000	19810000	32019810000	1981000	32019810000	19810000	19810000	32019810000	19810000	32019810000	32019820000	19820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	19820000	32019820000	19820000	32019820000	32019820000	25500000	32025500000	3202550000	32025500000	255000UC	32025500000	25500000
ū		320	3201	320	320	3201	3201	3201	3201	320	220	3201	3201	3201	3201	320	320	025	320	3201	320	320	320	320	3201	320	320	320		320	3201	320	320	320	320	320	320	3201	320	320	320	3201	3201	320	022	320	3201	320	320	3202	3200	3202	320	320:	3202	3202

Description 1 Description Description <thdesc< th=""><th>Erf. No.</th><th>Bh.No.</th><th>Date</th><th>Address</th><th>-Y-Co-ord</th><th>-X-Co-ord</th><th>EC</th><th>Turb.</th><th>TDS</th><th>TA</th><th>BCA</th><th>СН</th><th>NCH</th><th>TH</th><th>Ca</th><th>Mg</th><th>CI</th><th>Fe(t)</th><th>Na</th><th>K</th><th>SO4</th><th>NO3-N</th><th>F</th><th>N</th></thdesc<>	Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb.	TDS	TA	BCA	СН	NCH	TH	Ca	Mg	CI	Fe(t)	Na	K	SO4	NO3-N	F	N
Subscience 16 1 1 1						-				CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3								
3202250000 35 7770 162 7770 162 162 1670 162 162 163 163 1770 162 163 163 163 1770 162 163 163 163 1770 162 163 163 163 1770 162 163 163 163 1770 162 163 163 163 1770 162 163 163 177 163 163 177 163 177 170 1 100 100 170 100 100 100 100 170 100 100 100 <								_25.0		157	157						939				167	5.5		24.3463
Substrate Substrate <t< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11.0</td><td></td><td>48.6926</td></t<>				*						L												11.0		48.6926
Substrate Substrate <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[</td><td></td><td></td></t<>																						[
Statistics (1) 1								0.4	878	334	334	334	30	. 364	295	69		0.01	124		86	11.0	0.17	48.7811
SackSacoon In 454-930 U eth Annual 5600000 376185.000 II 0.2 696 31 377 296 61 174 0.13 130 71 105 101 1										 			<u> </u>							L		10.0		
320250000 1 64 Markan 5560.000 3967550.000 10								1-02-	966	346	346	346	31	277	206	01		0.12	127	20			0.00	
320283000 17 120.004 10 0.4 400 300 303 305 266 70 117 10.4 113 10 47 0.15 320283000 17 144.474 10 64.04478 64.04078								0.2	900	340	340	340	- 31	511	_290	01		0.13	137	3.0			0.28	
3200580000 17 105 + 65-04. 10 6 a Annua. 5500.000 171 150.000 110 110								04	840	330	330	330	3	333	266	67		0.04	113	10		14.0	0.15	01.9724
3202580000 17 19.4449-44 10 44.44 11.0 44.46 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 11.0 44.47 12.0																		0.04				93		41 1674
3202830000 17 14.Apr-44 10 th Average 5560 000 376 390 000 324 67 91 344 77 102 0.01 129 1.4 52 6.6 0.27 35.8 328 1 100 100 1 60 0.2 45.8 33.0 100 <																				2.0				
3202380000 17 08.46 10 0.47 82.8 28 1 128 56 10.2 455(16) 3202380000 17 10.40.47 10.40.47 4550000 377(350.000 12 642 - 103 - 641 - 633 - 561 10.2 451 453 380 380 10.2 621 - 561 10.2 641 - 611 - 641 - 611 - 611 - 611 - 611 - 611 - 611 - 611 - 611 611 - 611 611 - 6111 61					55800.000				786			324	67	391	314	77		0.01	129	1.4			0.25	
3202580000 17 00-00-04 0.0.0.00 370380000 125 0.02 0.0 0.0.0 0.0.0 0.0.0.0 <td>32026390000</td> <td>17</td> <td>09-May-94</td> <td>10 4th Avenue</td> <td>55800.000</td> <td>3761360.000</td> <td>119</td> <td>0.3</td> <td>778</td> <td>328</td> <td>328</td> <td></td>	32026390000	17	09-May-94	10 4th Avenue	55800.000	3761360.000	119	0.3	778	328	328													
3202860000 17 15.8g-34 10 dn Avenue 5500.00 376156.000 17 28.9g 338 2 56 63 120 53 120 120 120 120 153 120 124 450 120	32026390000	17	09-Jun-94	10 4th Avenue	55800.000	3761360.000	125		828								138				58	12.4		
1202830000 17 15 Jaco 44 10 4 M Avenue 5800.000 371180.000 117 802 838 3313	32026390000	17	10-Aug-94	10 4th Avenue	55800.000	3761360.000			896								130				52	13.0		57.5458
2022/30000 11 10 - Jam - 8 10 dh Avenue 5800.000 376138.000 116 0.2 82.8 338 338 33 12 250 63 116 0.04 115 2.0 63 116 0.04 115 2.0 63 116 0.04 115 2.0 63 116 0.04 115 2.0 65 110 48 65 110 48 65 110 48 65 110 48 65 110 48 65 110 48 65 100 48 65 100 48 65 110 48 65 110 65 110 64 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 110 100 <td>32026390000</td> <td>17</td> <td>15-Sep-94</td> <td>10 4th Avenue</td> <td>55800.000</td> <td>3761360.000</td> <td>122</td> <td></td> <td>840</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>122</td> <td></td> <td></td> <td></td> <td>53</td> <td>12.0</td> <td></td> <td>53.1192</td>	32026390000	17	15-Sep-94	10 4th Avenue	55800.000	3761360.000	122		840								122				53	12.0		53.1192
1222330000 17 16 Personal 580 000 376 3800.000 172 6.08 172 173 174 194 580 116 1822333 32023580000 17 174 1.04 Association 5500 0.03 767 3800.000 776 3800.		17	13-Dec-94	10 4th Avenue													121							32.7568
Subscience 117 Interaction 110 148.5926 Subscience 110 Interaction 5580.000 376.58								0.2		338	338	338	12	350		63		0.04	115	2.0			0.12	
2022830000 17 12 June 5 10 H Avenue 5880.000 376 380.000 121 682 1 1 17 12 June 5 10 H Avenue 5880.000 376 380.000 721 10 Avenue 10 Avenue 5880.000 376 380.000 376 380.000 376 380.000 220 2200 10 Avenue 682 H Avenue 10 Avenue 682 H Avenue 10								I					· ·						I	L				
20220010000 12 0 - Lune 33 6 Club Read 52835.000 376931.000 281 110.0 1634 173 174 173 174 173 174								<u> </u>		L		ļ							<u> </u>	<u> </u>			ļ	
2222010000 12 17.Jul-93 6 Club Read 2233.00 100 233 100								1100		472	473	472	207	280	404	100		00.40	000					
12220510000 12 15 Aug.43 6 Cub Read 5233.000 270931.000 223 6 6 0.1 0.42433 32026010000 12 15 Hevol.43 6 Cub Read 5238.000 376931.000 211 15 Aug.44 6 Cub Read 5238.000 376931.000 221 2.50 133 134 143 143 143 141<								110.0	1634	1/3	1/3	1/3	207	380	184	196		23.10	336	3.0	08	0.1	0.27	0.22133
12020010000 12 16 Aubre-93 6 Chub Road 5233.000 3760931.000 223 1 1 1 1 1 444 1 69 0.1 1022133 32020010000 12 12 Aubre-94 6 Chub Road 5238.000 3760931.000 212 25.0 133 133 138 188 221 170 151 583 28 6 6.0 6 0.1 0.22133 3302001000 12 0.444 6 6.0 6 0.1 0.22133 3302010000 12 0.444 6 6 0.1 0.22133 330201000 12 0.444 146																					80	0.1		0 44266
3202600000 12 12-Jan-94 6 Club Road 5233.000 3760931.000 221 130 141 141 141 111 120 400 2.70 306 2.0 48 0.1 0.2213 32028010000 12 0.8-Mar-44 6 Club Road 5235.000 3760931.000 221 320 133 134 145 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td>								<u> </u>						·										
12023070000 12 0.8-Feb-34 6 Cub Read 5233.000 7609.1000 221 150 133 134 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>49.0</td> <td>1426</td> <td>141</td> <td>141</td> <td>141</td> <td>119</td> <td>260</td> <td>138</td> <td>122</td> <td></td> <td>2 70</td> <td>306</td> <td>20</td> <td></td> <td></td> <td>0.25</td> <td></td>								49.0	1426	141	141	141	119	260	138	122		2 70	306	20			0.25	
32029070000 12 14.4.MP-94 6 Cub Read 5233.000 3760931.000 223 13.0 125 145 156 110 102333 32029010000 12 144.MP-94 6 Club Read 5233.000 3760931.000 221 168 197 197 197 197 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1120</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>0.20</td> <td></td>									1120									2					0.20	
12225910000 12 14-AprA4 6 Club Read 52383.000 3760831.000 227 32.0 1386 145 145 145 147 158 611 4.76 382 6.0 53 0.1 0.22133 32029010000 12 09-Jun-94 6 Club Read 52383.000 3760831.000 227 1310 - - 566 - 686 0.1 0.22133 32029010000 12 14-Ju-44 6 Club Read 52383.000 3760831.000 227 1558 167 - - 566 - 622 - 0.1 0.22133 320391000 12 15-be-44 6 Club Read 52383.000 3760831.000 222 1488 154 154 154 157 157 160 0.78 360 7.0 50 0.1 0.11 0.22133 32029010000 12 15-be-44 6 Club Read 5238.000 3760831.000 222 2.0 148 154 153 153 150 0.0 1.041 0.22133 32029010000 12 12																								
120229010000 12 09-May-94 6 Club Road 5233000 376031.000 225 520 1350 145 145 - 580 - 580 - 580 0.1 0.22133 32029010000 12 14-Ju-94 6 Club Road 5233000 3760931.000 224 1508 197 197 197 200 397 213 194 694 6.1 0.22133 32029010000 12 14-Ju-94 6 Club Road 52383.000 3760931.000 222 1468 - - 572 630 7.0 60 0.1 0.22133 32029010000 12 12-O4-46 6 Club Road 52383.000 3760931.000 222 22.0 1618 193 153 153 619 0.7 660 0.1 0.0 0.22133 32029010000 12 12-O4-46 6 Club Road 52383.000 3760931.000 227 142 154 154 154 154 154 154 154 157 291 160 131 650 0.0 0.0				6 Club Road	52363.000	3760931.000	227	32.0	1366	145	145	145	207	352	194	158	611	4.76	382	6.0		0.1	0.14	
12020500000 12 14-Jul-94 6 Club Road 52383.000 3760931.000 224 165 1608 197 197 197 200 397 213 184 694 2.12 376 3.0 70 0.1 0.27 0.27133 32025910000 12 15-Sep-94 6 Club Road 52383.000 3760931.000 222 1468 - - 572 - 58 0.1 0.22133 32025910000 12 12-Oc-544 6 Club Road 52383.000 3760931.000 222 1428 - - 603 - 53 0.1 0.022133 3020591000 12 12-Oc-64 6 Club Road 5238.000 3760931.000 222 1412 - - - 603 0.0 0.04427 32025910000 12 13-Mar-95 6 Club Road 5238.000 3760931.000 227 1536 - - - 584 63 0.0 0.04427 320229010000 12 14-Mar-95 6 Club Road 5238.000 3760931.000 227 27.27 15			09-May-94	6 Club Road	52363.000	3760931.000	225	52.0	1358	145	145						590				84	0.1		0.22133
120209010000 12 10-Aug-94 6 Club Road 5228.000 3760931.000 222 1688 1 572 58 0.1 0.22133 12020901000 12 12-Ce-94 6 Club Road 52383.000 3760931.000 222 1488 - - 572 58 0.1 0.22133 12020901000 12 12-Ce-94 6 Club Road 52383.000 3760931.000 222 1428 - - 603 - 533 0.1 0.22133 12020901000 12 10-Lan-95 6 Club Road 52383.000 3760931.000 225 1412 - - 603 . 660 0.0 0.04427 12020901000 12 10-Mar-95 6 Club Road 52283.000 3760931.000 227 1276 - 538 61 0.2 0.64399 12022901000 12 11-Apr-95 6 Club Road 52283.000 3760831.000 227 1276 - - 538 618 0.2 0.63399 350 8.0 1.0 0.22133 3202801000 321 <td>32029010000</td> <td>12</td> <td>09-Jun-94</td> <td>6 Club Road</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td></td> <td></td>	32029010000	12	09-Jun-94	6 Club Road											_							0.1		
120229010000 12 15 58 0.1 02213 120229010000 12 12-0c-94 6 Cub Road 5283.000 3760931.000 242 22.0 1618 193								16.5		197	197	197	200	397	213	184		2.12	376	3.0		0.1	_ 0.27_	0.22133
120220010000 12 12:0:ch:44 6 Club Road 5233.000 376031.000 222 1428 - 603 - 63 0.1 0.10 0.22133 320229010000 12 10:D-lam-95 6 Club Road 5233.000 376031.000 222 1428 - 603 - 66 0.1 0.01 0.01 0.01 0.22133 320229010000 12 10:D-lam-95 6 Club Road 5233.000 376031.000 225 1412 - 554 - 66 0.0 0.04427 320229010000 12 10:Mar-95 6 Club Road 5233.000 376031.000 227 1276 - 554 - 61 0.2 0.0 0.0 0.04427 32028010000 12 11:Amar-95 6 Club Road 5233.000 3760931.000 227 1276 - 618 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<													<u> </u>											
120229010000 12 12-Dec-84 6 Club Road 52330.000 3760931.000 222 1428 1 147 291 160 131 545 0.0 533 0.1 0.05 0.22133 320229010000 12 0.9+Eb+56 6 Club Road 52363.000 3760931.000 227 1536 1412 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 1554 156 0.0 0.0427 1536 0.0 0.04427 1536 133 654 0.1 0.22133 0.0 0.00 0.0 0.04427 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>400</td><td>450</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												400	450											
12022910000 12 10-Jan-95 6 Club Road 5232300000 3760931.000 225 1412 154 154 157 291 160 131 545 0.09 336 6.0 64 0.0 D.04427 32029010000 12 10-Mar-95 6 Club Road 52363.000 3760931.000 227 1536 538 60 63 0.0 0.04427 32029010000 12 11-Mar-95 6 Club Road 52363.000 3760931.000 227 1536 538 60 538 60 61 0.0 0.04427 32029010000 12 11-Mar-95 6 Club Road 52363.000 3760931.000 227 25.0 1390 160 160 160 124 244 151 133 600 3.9 350 8.0 49 0.0 0.18 0.02213 32029010000 12 11-Mar-95 6 Club Road 52363.000 3760633.000 192 159 59 59 59 59 59 59 59 59 59 59 50 119										193	193	193	159	352	189	163		0.78	_360_				_0.19_	
32029010000 12 10%-Feb-95 6 Club Road 5283.000 3760931.000 225 1412 1 554 66 0.0 0.04427 32029010000 12 15-Mar-95 6 Club Road 5238.000 3760931.000 227 1526 538 61 0.2 0.66396 32029010000 12 11-Mar-95 6 Club Road 5238.000 3760931.000 227 25.0 1390 160 160 160 124 284 151 133 600 3.39 350 8.0 49 0.0 0.66396 3223610000 12 11-Mar-95 6 Club Road 52383.000 3760931.000 2214 1452 618 618 66 0.0 0.44276 0.22133 32025010000 35 15-Jul-93 98 Verdun Road 46923.000 3760683.000 101 25.0 659 59 59 59 60 119 54 65 288 7.7 128 0.7 3 0.0 0.22133 3202901000 35 11-Aug-39 98 Verdun Road 46923.000 376068.000 98 2								6.6		154	154	154	137	201	160	131		0.00	326	60			0.05	
32029010000 12 100 Mar-96 6 Club Road 52363.000 3760931.000 227 1536 584 63 0.0 0.04427 32029010000 12 11-Mar-96 6 Club Road 52383.000 3760931.000 227 1276 584 61 0.2 0.66399 32029010000 12 11-Mar-96 6 Club Road 52383.000 3760931.000 227 25.0 1390 160 160 124 284 151 133 600 3.39 350 8.0 49 0.0 0.18 0.02213 32029010000 12 11-Mar-96 6 Club Road 52363.000 3760931.000 259 1592 59 59 60 119 54 65 258 7.78 128 0.1 0.01 0.1 0.22133 32029010000 35 14-Sep-93 98 Verdun Road 46923.000 3760653.000 102 24.0 720 52 52 52 93 145 61 84 268 6.57 161 10.2 0.1 0.1 0.22133 32029010000 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td> <td>1.04</td> <td></td> <td>104</td> <td>157</td> <td>231</td> <td>100</td> <td>101</td> <td></td> <td>0.03</td> <td>. 330</td> <td>0.0</td> <td></td> <td></td> <td>0.05</td> <td></td>								0.0		1.04		104	157	231	100	101		0.03	. 330	0.0			0.05	
132023010000 12 13-Mar-95 6 Club Road 5233 300 376031.000 227 1276 538 61 0.2 0.66339 32023010000 12 11-Apr-95 6 Club Road 52363.000 376031.000 227 25.0 1390 160 160 160 124 284 151 133 600 3.39 35.0 8.0 49 0.0 0.18 0.02213 32023010000 12 11-Mar-95 6 Club Road 52363.000 3760631.000 259 1552 - - 679 - 66 0.1 0.44266 32023010000 35 10-Aug-93 98 Verdun Road 46923.000 3760663.000 96 - - - 248 10 0.1 0.22133 32023010000 35 11-Ag-93 98 Verdun Road 46923.000 3760663.000 96 - - - 248 10 0.1 0.22133 32023010000 35 11-No-93 98 Verdun Road 46923.000 3760663.000 97 64.0 682 57 57																								
32023010000 12 11-Apr-95 6 Club Road 5233000 376931.000 227 25.0 1390 160 160 160 160 124 284 151 133 600 3.39 350 8.0 49 0.0 0.18 002213 32023010000 12 11-Apr-95 6 Club Road 52363.000 3760931.000 259 1592 59 59 59 60 119 54 65 288 7.78 128 0.7 3 0.0 0.22 0.08853 32023010000 35 14-Sep-33 98 Verdun Road 46923.000 3760663.000 99 - - 248 . 10 0.1 0.22133 32023010000 35 11-Aver-93 98 Verdun Road 46923.000 3760663.000 99 - - - 248 . 10 0.1 0.22133 32023010000 35 12-Jan-94 98 Verdun Road 46923.000 3760663.000 97 64.0 652 65 69 164 472 171								1		<u> </u>														
32029010000 12 11-May-95 6 Club Road 5283.000 3760931.000 214 1452 618 56 0.1 0.22133 32029010000 35 15-Jul-93 99 Verdun Road 46923.000 3760633.000 101 25.0 659 59 59 59 60 119 54 65 258 7.78 128 0.7 3 0.0 0.22 0.08853 32029010000 35 11-Sup-93 98 Verdun Road 46923.000 3760663.000 102 24.0 720 52 52 52 93 145 618 248 100 0.1 0.22133 32029010000 35 11-Nov-93 98 Verdun Road 46923.000 3760663.000 98 - - - 249 20 0.1 0.22133 32029010000 35 11-Nov-93 98 Verdun Road 46923.000 3760663.000 102 36.0 65 65 65 69 94 4.72 137 1.2 1.0 1.0 0.22133 32029010000 35 08-Herb-94								25.0		160	160	160	124	284	151	133		3.39	350	8.0				
32029010000 12 12-Jun-95 6 Club Road 52363.000 3760653.000 101 25.0 659 59 59 50 60 119 54 679 66 0.1 0.44266 32029010000 35 15-Jul-93 98 Verdun Road 46923.000 3760663.000 96 10 25.0 659 59 59 60 119 54 65 248 7.8 128 0.7 3 0.0 0.22 0.08853 32029010000 35 14-Sep-33 98 Verdun Road 46923.000 3760663.000 102 24.0 720 52 52 52 93 145 61 84 268 6.7 161 1.0 20 0.1 0.22133 32029010000 35 12-Jan-94 98 Verdun Road 46923.000 3760663.000 102 36.0 65 65 199 164 73 91 247 158 6.0 25 0.1 0.22133 32029010000 35 14-Apr-94 98 Verdun Road 46923.000 3760663.000 101																				1				
32029010000 35 10-Aug-93 98 Verdun Road 46923.000 3760663.000 96 248 10 0.1 0.22133 32029010000 35 14-Sep-93 98 Verdun Road 46923.000 3760663.000 102 24.0 720 52 52 93 145 61 84 248 0.1 0.22133 32029010000 35 12-Jan-94 98 Verdun Road 46923.000 3760663.000 97 64.0 682 57 57 65 122 53 69 246 4.72 137 1.2 12 0.1 0.14 0.22133 32029010000 35 08-Heb-94 98 Verdun Road 46923.000 3760663.000 102 36.0 65 65 65 99 164 73 91 247 158 6.0 22 0.1 0.22133 32029010000 35 14-Apr-94 98 Verdun Road 46923.000 3760663.000 103 51.0 6				6 Club Road																	66			0.44266
32029010000 35 14-Sep-93 98 Verdun Road 46923.000 3760663.000 102 24.0 720 52 52 52 52 93 145 61 84 268 6.57 161 1.0 20 0.1 0.17 0.22133 32029010000 35 11-Nov-93 98 Verdun Road 46923.000 3760663.000 98 - - - - 249 20 0.1 0.22133 32029010000 35 08-Feb-94 98 Verdun Road 46923.000 3760663.000 102 36.0 65 65 65 99 164 73 91 247 158 6.0 25 0.1 0.22133 32029010000 35 08-Mar-94 98 Verdun Road 46923.000 3760663.000 101 14.0 63 63 - 248 19 0.1 0.22133 32029010000 35 09-Mar-94 98 Verdun Road 46923.000 3760663.000 103 51.0 696 55 55 55 140 55 85 16.0 159								25.0	659	59	59	59	60	119	54	65		7.78	128	0.7				
32029010000 35 11-Nov-93 98 Verdun Road 46923.000 3760663.000 98 64.0 682 57 57 65 122 53 69 246 4.72 137 1.2 12 0.1 0.22133 32029010000 35 12-Jan-94 98 Verdun Road 46923.000 3760663.000 102 36.0 65 65 65 99 164 73 91 247 137 1.2 12 0.1 0.14 0.22133 32029010000 35 09-Mar-94 98 Verdun Road 46923.000 3760663.000 101 14.0 63 63 - - 248 19 0.1 0.22133 32029010000 35 09-Mar-94 98 Verdun Road 46923.000 3760663.000 103 51.0 696 55 55 85 140 55 85 265 16.60 159 2.0 24 0.1 0.16 0.22133 32029010000 35 09-Mar-94 98 Verdun Road 46923.000 3760663.000 103 618 - 278 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td> </td> <td></td>									L															
32029010000 35 12-Jan-94 98 Verdun Road 46923.000 3760663.000 97 64.0 682 57 57 65 122 53 69 246 4.72 137 1.2 12 0.1 0.14 0.22133 32029010000 35 08-Feb-94 98 Verdun Road 46923.000 3760663.000 102 36.0 65 65 65 99 164 73 91 247 158 6.0 25 0.1 0.22133 32029010000 35 14-Apr-94 98 Verdun Road 46923.000 3760663.000 103 51.0 696 55 55 55 85 140 55 85 265 16.60 159 2.0 2.4 0.1 0.16 0.22133 32029010000 35 09-May-94 98 Verdun Road 46923.000 3760663.000 103 51.0 692 72 72 27 278 29 0.1 0.22133 32029010000 35 07-Ju-94 98 Verdun Road 46923.000 3760663.000 96 75.0 6								24.0	720	52	52	52	93	145	61	84		6.57	161	1.0				
32029010000 35 08-Feb-94 98 Verdun Road 46923.000 3760663.000 102 36.0 65 65 65 99 164 73 91 247 158 6.0 25 0.1 0.22133 32029010000 35 09-Mar-94 98 Verdun Road 46923.000 3760663.000 101 14.0 63 63 248 19 0.1 0.22133 32029010000 35 09-Mar-94 98 Verdun Road 46923.000 3760663.000 103 51.0 696 55 55 55 85 140 55 85 265 16.60 159 2.0 24 0.1 0.1 0.22133 32029010000 35 09-Jun-94 98 Verdun Road 46923.000 3760663.000 103 618 259 22 0.1 0.02133 32029010000 35 07-Jul-94 98 Verdun Road 46923.000 3760663.000 96 620 251								-	000		67			400	60				46-					
32029010000 35 09-Mar-94 98 Verdun Road 46923.000 3760663.000 101 14.0 63 63 0 248 19 0.1 0.22133 32029010000 35 14-Apr-94 98 Verdun Road 46923.000 3760663.000 103 51.0 696 55 55 55 85 140 55 85 265 16.60 159 2.0 24 0.1 0.16 0.22133 32029010000 35 09-May-94 98 Verdun Road 46923.000 3760663.000 103 618 259 22 0.1 0.22133 32029010000 35 07-Jul-94 98 Verdun Road 46923.000 3760663.000 96 75.0 662 57 57 59 116 46 70 263 12.30 124 1.0 29 0.1 0.08 0.22133 32029010000 35 21-Sep-94 98 Verdun Road 46923.000 3760663.000 100 628 268 214									682									4.72						
3202901000 35 14-Apr-94 98 Verdun Road 46923.000 3760663.000 103 51.0 696 55 55 85 140 55 85 265 16.60 159 2.0 24 0.1 0.16 0.22133 32029010000 35 09-May-94 98 Verdun Road 46923.000 3760663.000 106 23.0 602 73 73 73 73 75 75 75 74 74 74 74 74 74 74 74 74 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75												60	22	164	13	-91			158	6.0				
32029010000 35 09-May-94 98 Verdun Road 46923.000 3760663.000 106 23.0 602 73 75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>696</td> <td></td> <td></td> <td>55</td> <td>85</td> <td>140</td> <td>55</td> <td>85</td> <td></td> <td>16.60</td> <td>150</td> <td>20</td> <td></td> <td></td> <td></td> <td></td>									696			55	85	140	55	85		16.60	150	20				
32029010000 35 09-Jun-94 98 Verdun Road 46923.000 3760663.000 103 618 259 22 0.1 0.22133 32029010000 35 07-Jul-94 98 Verdun Road 46923.000 3760663.000 96 75.0 662 57 57 59 116 46 70 263 12.30 124 1.0 29 0.1 0.08 0.22133 32029010000 35 21-Sep-94 98 Verdun Road 46923.000 3760663.000 96 620 251 14 0.1 0.22133 32029010000 35 13-Dec-94 98 Verdun Road 46923.000 3760663.000 100 628 260 251 14 0.1 0.22133 32029010000 35 09-Feb-95 98 Verdun Road 46923.000 3760663.000 105 728 260 25 0.0 0.04427 36000330000 35 28-Jun-95 98 Verdun Road 46923.000 3760663.000 105 586 322														140				10.00	109	2.0				
32029010000 35 07-Jul-94 98 Verdun Road 46923.000 3760663.000 96 75.0 662 57 57 59 116 46 70 263 12.30 124 1.0 29 0.1 0.08 0.22133 32029010000 35 21-Sep-94 98 Verdun Road 46923.000 3760663.000 96 620 251 14 0.1 0.22133 32029010000 35 13-Dec-94 98 Verdun Road 46923.000 3760663.000 100 628 268 21 0.1 0.22133 32029010000 35 09-Feb-95 98 Verdun Road 46923.000 3760663.000 105 728 260 255 0.0 0.04427 36000930000 35 28-Jun-95 98 Verdun Road 46923.000 3760663.000 105 728 260 2260 25 0.0 0.04427 36011250000 41 10-Aug-93 308 Kragga Kamma 39775.92 3761278.55 334 958 94 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- '-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · ·</td> <td></td> <td></td> <td></td> <td></td>										- '-										· · · ·				
32029010000 35 21-Sep-94 98 Verdun Road 46923.000 3760663.000 96 620 251 14 0.1 0.22133 32029010000 35 13-Dec-94 98 Verdun Road 46923.000 3760663.000 100 628 268 21 0.1 0.22133 32029010000 35 09-Feb-95 98 Verdun Road 46923.000 3760663.000 105 728 260 255 0.0 0.04427 36000930000 35 28-Jun-95 98 Verdun Road 46923.000 3760663.000 105 728 260 225 0.0 0.04427 36011250000 41 10-Aug-93 308 Kragga Kamma 39775.92 3761278.55 334 334 958 94 0.1 0.22133 36011250000 41 14-Sep-93 308 Kragga Kamma 39775.92 3761278.55 356 49.0 208 170 170 367 537 264 273 1082 6.91 592 10.1 0.46 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.9							and the second se	75.0		57	57	57	59	116	46	70		12.30	124	1.0				
32029010000 35 13-Dec-94 98 Verdun Road 46923.000 3760663.000 100 628 268 21 0.1 0.22133 32029010000 35 09-Feb-95 98 Verdun Road 46923.000 3760663.000 105 728 260 25 0.0 0.04427 36000330000 35 28-Jun-95 98 Verdun Road 46923.000 3760663.000 105 586 322 28 0.1 0.22133 36011250000 41 10-Aug-93 308 Kragga Kamma 39775.92 3761278.55 334 958 94 0.1 0.22133 36011250000 41 14-Sep-93 308 Kragga Kamma 39775.92 3761278.55 356 49.0 208 170 170 367 537 264 273 1082 6.91 592 10.1 0.40 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 341 891								1				<u> </u>							······					
32029010000 35 09-Feb-95 98 Verdun Road 46923.000 3760663.000 105 728 260 25 0.0 0.04427 36000930000 35 28-Jun-95 98 Verdun Road 46923.000 3760663.000 105 586 322 28 0.1 0.22133 36011250000 41 10-Aug-93 308 Kragga Kamma 39775.92 3761278.55 334 99.0 958 98.0 94.0 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 356 49.0 208 170 170 367 537 264 273 1082 6.91 592 10.0 10.46 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 341 891 110 0.1 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 341 891 110 0.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>i——</td><td></td><td></td><td></td><td></td></td<>								I												i——				
36000930000 35 28-Jun-95 98 Verdun Road 46923.000 3760663.000 105 586 322 28 0.1 0.22133 36011250000 41 10-Aug-93 308 Kragga Kamma 39775.92 3761278.55 334 958 94 0.1 0.22133 36011250000 41 14-Sep-93 308 Kragga Kamma 39775.92 3761278.55 356 49.0 2208 170 170 367 537 264 273 1082 6.91 592 12.0 73 0.1 0.46 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 341 891 110 0.1 0.22133																								
36011250000 41 10-Aug-93 308 Kragga Kamma 39775.92 3761278.55 334 958 94 0.1 0.22133 36011250000 41 14-Sep-93 308 Kragga Kamma 39775.92 3761278.55 356 49.0 2208 170 170 367 537 264 273 1082 6.91 592 12.0 73 0.1 0.46 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 341 891 110 0.1 0.22133																								
36011250000 41 14-Sep-93 308 Kragga Kamma 39775.92 3761278.55 356 49.0 2208 170 170 367 537 264 273 1092 6.91 592 12.0 73 0.1 0.46 0.22133 36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 341 891 110 0.1 0.22133					39775.92	3761278.55																		
36011250000 41 11-Nov-93 308 Kragga Kamma 39775.92 3761278.55 341 0.22133								49.0	2208	170	170	170	367	537	264	273	1082	6.91	592	12.0		0.1		
	36011250000																							0.22133
	36011250000	41	08-Feb-94	308 Kragga Kamma			358	23.0		164	164	164	378	542	274	268	986		587	16.0	94	0.1		0.22133
36011250000 41 09-Mar-94 308 Kragga Kamma 39775.92 3761278.55 363 55.0 171 171 958 82 0.1 0.22133																								
36011250000 41 14-Apr-94 308 Kragga Kamma 39775.92 3761278.55 311 40.0 1518 170 170 170 294 464 237 227 872 5.36 508 10.0 93 0.1 0.40 0.22133								_40.0		170	170	170	294	464	237	227		5.36	508	10.0				
36011250000 41 09-Jun-94 308 Kragga Kamma 39775.92 3761278.55 305 1824 824 85 0.1 0.22133	36011250000	41	09-Jun-94	308 Kragga Kamma	39775.92	3/61278.55	305		1824								824				85	0.1		0.22133

Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb.	TDS	TA	BCA	СН	NCH	ТН	Ca	Mg	CI	Fe(t)	Na	K	SO4	NO3-N	F	N
				1				1	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3							•	<u> </u>
36011250000	41	13-Jul-94	308 Kragga Kamma	39775.92	3761278.55	370	21.0	2244	180	180	180	258	438	206	232	1076	2.61	548	5.0	79	0.1	0.47	0.22133
36011250000	41	10-Aug-94	308 Kragga Kamma	39775.92	3761278.55	262		1654								695				64	0.1		0.22133
36011250000	41	14-Sep-94	308 Kragga Kamma	39775.92	3761278.55	340		2132				_				983				84	0.3		1.32798
36011250000	41	12-Oct-94	308 Kragga Kamma	39775.92	3761278.55	366	51.0	2320	184	184	184	295	479	247	232	1035	0.24	572	13.0	86	0.1	0.53	0.22133
36011250000	41	12-Dec-94	308 Kragga Kamma	39775.92	3761278.55	364		2284								1104				86	0.1		0.22133
36011250000	41	10-Jan-95	308 Kragga Kamma	39775.92	3761278.55	375	5.4	2324	151		151	296	447	218	_229	951	0.15	558	12.0	91	0.1	0.05	0.22133
36011250000	41	09-Feb-95	308 Kragga Kamma	39775.92	3761278.55	325		1850	L	L			<u> </u>			835				89	0.0		0.04427
36011250000	41	10-Mar-95	308 Kragga Kamma	39775.92	3761278.55	195		1452						L		458		<u> </u>		81	0.0		0.04427
36011250000	41	20-Apr-95	308 Kragga Kamma	39775.92	3761278.55	279	34.0	1676	132	132	132	231	363	175	188	803	9.05	420	9.0	79	0.0	0.19	0.02213
36011250000	41	11-May-95	308 Kragga Kamma	39775.92	3761278.55	223		1374		L				ļ		600				82	0.1		0.22133
36011250000	41	28-Jun-95	308 Kragga Kamma	39775.92	3761278.55	278		1600	- 054	-	054	400				716				74	0.1		0.22133
99003510000	10	03-Jun-93	Scotsam		3765034.790	279	0.2	1580	251	251	251	109	360	276	84	626	0.11	412	3.0	179	2.1	0.22	9.29586
99003510000	10	10-Aug-93	Scotsam	47018.779	3765034.790	223 245		I						<u> </u>		500				128	2.3		10.1812
99003510000	10	11-Nov-93	Scotsam		3765034.790 3765034.790		0.2	1346	235		235	53	288	- 220-		517		220		90	2.0	0.40	8.8532
99003510000	10	12-Jan-94 08-Feb-94	Scotsam Scotsam		3765034.790	230	0.2	1340	235	_ <u>235</u> 229	235	151	380	220 287	68 93	<u>557</u> 560	0.02	332 412	2.2	135 147	2.5 2.2	0.19	11.0665
99003510000	10	14-Apr-94	Scotsam		3765034.790	240	0.7	1358	245	245	225	60	305	233	72	550	1.86	373	<u>6.0</u> 5.0	139		0.10	9.73852
99003510000	10	09-May-94	Scotsam		3765034.790	248	0.2	1382	243	245		00	- 303	235	14	511	1.00	3/3	5.0	153	2.3	0.18	11.0665
99003510000	10	14-Jun-94	Scotsam		3765034.790	225	<u> </u>	1002	2.4.4	<u> </u>						480				126	2.5		10.6238
99003510000	10	14-Jul-94	Scotsam		3765034.790	244	0.2	1382	251	251	251	44	295	222	73	551	0.02	416	2.0	120	2.4	0.20	11.5092
99003510000	10	10-Aug-94	Scotsam		3765034.790	246		1506				<u> </u>	<u> </u> _			499	0.02			130	3.0	0.20	13.2798
99003510000	10	21-Sep-94	Scotsam		3765034.790	242		1414		<u> </u>				1		524				132	2.9		12.8371
99003510000	10	20-Dec-94	Scotsam		3765034.790	225		1314						1		489				127	2.4		10.6238
99003510000	10	10-Jan-95	Scotsam		3765034.790	247	0.2	1428	257	257	257	62	319	245	74	500	0.02	388	6.0	140	3.3	0.42	14.6078
99003510000	10	13-Feb-95	Scotsam		3765034.790	243		1552						1		528				151	3.0		13.2798
99003510000	10	13-Mar-95	Scotsam		3765034.790	247		1384					-			518				135	3.1		13.7225
99003510000	10	20-Apr-95	Scotsam	47018.779	3765034.790	251	0.3	1370	251	251	251	70	321	247	74	553	0.00	399	6.0	162	3.1	0.16	13.7225
99003510000	10	11-May-95	Scotsam	47018.779	3765034.790	241		1324								517				141	3.6		15.9358
99003510000	10	21-Jun-95	Scotsam		3765034.790								_										
99007400000	9	03-Jun-93	Sardinia Bay		3764679.926		0.2	646	203	203	203	78	281	223	58	176	0.07	91	3.0	37	5.3	0.24	23.461
99007400000	9	10-Aug-93	Sardinia Bay		3764679.926	103										_145				82	4.4		19.477
99007400000	9	14-Sep-93	Sardinia Bay		3764679.926	105	0.2	658	209	_209	209	82	291	220	71	148	0.34	109	4.0_	43	3.6	0.36	15.9358
99007400000	9	20-Sep-93	Sardinia Bay		3764679.926	- 407		<u> </u>					ļ										
99007400000	9	11-Nov-93	Sardinia Bay		3764679.926	107						70				161				33	4.7		20.805
99007400000	9	12-Jan-94	Sardinia Bay		3764679.926	102	0.2	590	208	208	208	75	283	222	61	181	0.01	99	2.8	33	2.2	0.22	9.73852
99007400000	9	08-Feb-94	Sardinia Bay	48140.731	3764679.926	101	0.4		196 201		196	122	318	247	71	155		109	7.0	38	3.8		16.8211
99007400000 99007400000	9	09-Mar-94 14-Apr-94	Sardinia Bay Sardinia Bay		3764679.926	104	0.5	586	201	201 204	204	103	307	240	67	167 166	0.01	115	3.0	<u>18</u> 34	<u>3.9</u> 4.6	0.18	20.3624
99007400000	9	09-May-94	Sardinia Bay		3764679.926	107	0.4	594	204	204	_204	105	- 307	240		159	0.01	115	- 3.0	34	5.4	0.10	23.9036
99007400000	9	14-Jun-94	Sardinia Bay		3764679.926		0.5			_200						165	——			40	4.9		21.6903
99007400000	9	16-Jun-94	Sardinia Bay	48140.731	3764679.926	100		·													4.5		21.0000
99007400000	9	14-Jul-94	Sardinia Bay		3764679.926	104	0.2	606	212	212	212	63	275	213	62	165	0.23	99	3.0	31	5.4	0.14	23.9036
99007400000	9	10-Aug-94	Sardinia Bay		3764679.926	104		714					<u> </u>			161			0.0	34	5.4	0.14	23.9036
99007400000	9	21-Sep-94	Sardinia Bay		3764679.926	103		688								166				31	5.8		25.6743
99007400000	9	12-Oct-94	Sardinia Bay		3764679.926	104	0.2	660	212	212	212	55	267	209	58	168	0.00	98	2.0	34	5.1	0.17	22.5757
99007400000	9	20-Dec-94	Sardinia Bay		3764679.926	104		622								172				37	5.3		23.461
99007400000	9	10-Jan-95	Sardinia Bay	48140.731		103	0.2	606	213	213	213	63	276	219	57	166	0.04	98	3.0	31	5.6	0.23	24.789
99007400000	9	13-Feb-95	Sardinia Bay	48140.731		103		720								157				33	5.2		23.0183
99007400000	9	13-Mar-95	Sardinia Bay		3764679.926	103		616								158				36	5.6		24.789
99007400000	9	20-Apr-95	Sardinia Bay	48140.731	3764679.926	105	0.2	658	211	211	211	61	272	215_	67	163	0.00	99	3.0	31	5.7	0.05	25.2316
99007400000	9	21-Jun-95	Sardinia Bay	48140.731	3764679.926																		0
99040340000	21	18-Jun-93	Arlington	51915.000	3763632.000	195	4.5	1262	372	372	372	26	398	304	94	454	0.21	223	2.0	77	3.7	0.16	16.5555
99040340000	21	10-Aug-93	Arlington	51915.000	3763632.000	_275			ļ			ļ				465				138	16.0		70.8256
99040340000	21	25-Oct-93	Arlington	51915.000	3763632.000	269										556				107	15.0		66.399
99040340000	21	16-Nov-93	Arlington	51915.000	3763632.000	304										702				147	15.0		66.399
99040340000	21	14-Dec-93	Arlington	51915.000	3763632.000	2//	0.5	1604	475	475	475	404	6FO	440	244	519		400		118	7.1		31.4289
99040340000	21	19-Jan-94	Arlington		3763632.000		0.5	1694	475	475	475 367	184	659 367	418	241	524	<u> </u>	432	20.0	118	8.7		38.5114
99040340000	21	22-Feb-94 17-Mar-94	Arlington		3763632.000 3763632.000		<u> 1.2</u> 0.9		466 492		307	0		155	_212_	<u>458</u> 585		407	20.0	127	12.0 13.4		53.1192 59.3164
99040340000 99040340000	21 21	21-Jun-94	Arlington Arlington		3763632.000		2.2	1562	492	492	495	88	583	368	215	453	0.06	376	21.0	112	13.4		59.3164
99040340000	21	07-Jul-94	Arlington		3763632.000		0.2	1880	495	495	485	125	610	308	213	654	0.08	424	10.0	138	14.0		61.9724
99040340000	21	10-Aug-94	Arlington		3763632.000		0.2	1754				120				538	0.00	747	10.0	123	9.3		41.1674
99040340000	21	22-Sep-94	Arlington		3763632.000			<u> </u>		<u> </u>						550				120	0.0		-1.1014
99040340000	21	12-Oct-94	Arlington		3763632.000	269	0.4	1652	510	510	510	23	533	339	197	500	0.03	379	20.0	115	15.0	0.51	66.399
99040340000	21	10-Nov-94	Arlington		3763632.000		₩. -7	1872	<u> </u>							670			20.0	142	14.0		61.9724
1 23040340000	1 41	1 10-1101-34	7111191011	1 0 10 10.000	10.00001.000								l			010				176			

Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb.	TDS	TA	BCA	СН	NCH	ТН	Ca	Mg	CI	Fe(t)	Na	ĸ	SO4	NO3-N	F	N
									CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3								
99040340000	21	13-Dec-94	Arlington	51915.000	3763632.000	303		1832								637				137	11.0		48.6926
99040340000	21	05-Jan-95	Arlington	51915.000	3763632.000	267	1.2	_1788	494	494	489	0	489	305	184	492	0.03	371	17.0	119	12.9	0.68	57.1031
99040340000	21	16-Mar-95	Arlington	51915.000	3763632.000	314		1916								592				128	13.0		57.5458
99040340000	21	10-Apr-95	Arlington	51915.000	3763632.000	261	0.7	1708	485	485	482	0	482	298	184	467	0.11	369	17.0	118	14.0	_0.16	61.9724
99040340000	21	01-Jun-95	Arlington		3763632.000	225		1602		_						472				127	13.0		57.5458
99040340000	22	18-Jun-93	Arlington	51915.000	3763632.000	298	1.4	1798	492	492	492	107	599	384	215	589	0.03	412	13.0	141	17.5	0.38	77.4212
99040340000	22	10-Aug-93	Arlington	51915.000	3763632.000	246										507				122	9.1		40.2821
99040340000	22	25-Oct-93	Arlington	51915.000	3763632.000	236										528				92	9.8		43.3807
99040340000	22	16-Nov-93	Arlington		3763632.000	205										522				76	3.4		15.0504
99040340000	22	14-Dec-93	Arlington	51915.000	3763632.000	200	0.4									440				67	3.1		13.7225
99040340000	22	19-Jan-94	Arlington		3763632.000	191	0.3	1198	195	195	195	256	451	341	110	457		239		62	3.4		15.0504
99040340000	22	22-Feb-94	Arlington	51915.000	3763632.000	162	0.7		129	129	129	236	365	263	102	372		222	3.6		1.3		5.75458
99040340000	22	17-Mar-94	Arlington	51915.000	3763632.000		0.6		124	124						391				37	1.4		6.19724
99040340000	22	21-Apr-94	Arlington	51915.000	3763632.000	191	0.2	1146	204	204	204	328	532	399	133	395	0.00	252	3,0	78	4.9	0.14	21.6903
99040340000	22	20-May-94	Arlington	51915.000	3763632.000	191	0.4	1140								424				64	5.6		24.789
99040340000	22	07-Jul-94	Arlington	51915.000	3763632.000	196	0.2	1202	207	207	207	203	410	299	111	450	0.06	218	2.0	67	5.6	0.23	24.789
99040340000	22	10-Aug-94	Arlington	51915.000	3763632.000	169		1250								416				64	4.2		18.5917
99040340000	22	22-Sep-94	Arlington	51915.000	3763632.000																	٦ ا	
99040340000	22	12-Oct-94	Arlington	51915.000	3763632.000	243	3.5	_1476_	312	312	312	250	562	443	119	<u>518</u>	0.72	284	2.0	114	12.0	0.35	53.1192
99040340000	22	10-Nov-94	Arlington	51915.000	3763632.000	198		1214								446				75	5.6	L	24.789
99040340000	22	13-Dec-94	Arlington	51915.000	3763632.000	167		1148								442				44	2.0	l	8.8532
99040340000	22	05-Jan-95	Arlington		3763632.000	228	0.4	1398	267	267	267	192	459	359	100	500	0.03	266	3.0	100	8.5	0.42	37.6261
99040340000	22	16-Mar-95	Arlington	51915.000	3763632.000	203		1224								418				73	6.1		27.0023
99040340000	22	10-Apr-95	Arlington		3763632.000	203	0.5	1258	228	228	220	177	397	605	92	425	0.17	232	3.0		6.0	0.05	26,5596
99040340000	22	01-Jun-95	Arlington	51915.000	3763632.000	198		1170						1		460				90	4.6	L	20.3624