RESEARCH INTO GROUNDWATER ABSTRACTION

IN THE PORT ELIZABETH MUNICIPAL AREA

by

C R Lomberg and P N Rosewarne Steffen Robertson and Kirsten (CAPE)

and

D A Raymer and D G Devey Port Elizabeth Municipality

7

Report to the Water Research Commission on the Project, "Research into groundwater abstraction in the Port Elizabeth Municipal area"

Project Leader:

P N Rosewarne

. · -

SRK Report No. 191472/4

Steffen, Robertson and Kirsten 7 Heugh Road Walmer PORT ELIZABETH November 1996

P.O. Box 21842 PORT ELIZABETH 6000

Tel: (041) 511911 Fax: (041) 511964

WRC Report No 515/1/97 ISBN 1 86845 304 9

ACKNOWLEDGEMENTS

The research in this report emanated from a project funded by the Water Research Commission entitled:

Research into groundwater abstraction in the Port Elizabeth Municipal Area.

The Steering Committee responsible for the project consisted of the following persons:

Mr A G Reynders	:	Water Research Commission (Chairman)
Mr H C Chapman	:	Water Research Commission
Mr N Andersen	:	Atomic Energy Corporation (AEC)
Mr P Seward	:	Department of Water Affairs and Forestry
Mr D Coetzee	:	Department of Water Affairs and Forestry
Mr M van Zyl	:	Department of Water Affairs and Forestry
Mr F A Stoffberg	•	Department of Water Affairs and Forestry
Mr T H Proudlock	:	Port Elizabeth Municipality
Mr D A Raymer	:	Researcher Port Elizabeth Municipality
Mr D G Devey	:	Researcher Port Elizabeth Municipality
Mr P N Rosewarne	:	Researcher Steffen, Robertson and Kirsten

Mr G Nel and Mr S Meyer of the Department of Water Affairs and Forestry and Mr W Illenberger were alternate members, co-opted to represent the Department of Water Affairs and Forestry and AEC.

The researchers thank the above Committee members for their valuable input during the project.

The financing of the project by the Water Research Commission and the contributions of the members of the Steering Committee, and their representatives, are gratefully acknowledged.

The researchers also wish to record their sincere thanks to the following:

Port Elizabeth Municipality, who funded the installation of water meters and provided staff for monthly monitoring duties and their Scientific Services Division which analysed all the water samples.

The many borehole owners in Port Elizabeth who co-operated with the research team and allowed access for monitoring purposes.

Mr Chris Langton, Researcher, who worked on the project in 1993 and 1994.

CONTENTS

SECT	ION AND DESCRIPTION	PAGE
EXEC	CUTIVE SUMMARY	i-x
1	INTRODUCTION AND RESEARCH OBJECTIVES	1
1.1	Historical groundwater development	2
2	INVESTIGATION APPROACH	8
2.1	Borehole census	8
2.2	Borehole monitoring network	9
2.3	Monitoring programme	12
2.4	Data base	13
3	RAINFALL	14
4	GEOLOGY	15
5	HYDROGEOLOGY	
5.1	Aquifer definition	
5.2	Present distribution of boreholes	21
5.3	Borehole characteristics	23
5.4	Groundwater abstraction and use	24
5.5	Groundwater levels	32
5.6	Groundwater chemistry	34
5.7	Overview of groundwater quality	34
5.8	Groundwater contamination	36
5.9	Sea water intrusion	46
5.10	Overview of aquifer potential	48

6	LEGAL ASPECTS
6.1	The International situation
6.2	South African Water Law
6.3	Municipal by-law formulation
7	CONCLUSIONS AND RECOMMENDATIONS
8	REFERENCES

TABLES:

1	HISTORICAL	BOREHOLE	INFORMATION
-			

- 2 SUMMARY OF PORT ELIZABETH RAINFALL STATISTICS
- **3 BOREHOLE DISTRIBUTION BY SUBURB**
- 4 FREQUENCY OF BOREHOLE YIELDS
- 5 METERED ABSTRACTION FROM PRIVATE BOREHOLES
- 6 METERED ABSTRACTION CORPORATE BOREHOLES
- 7 ANNUAL WATER CONSUMPTION

FIGURES:

- **1** LOCALITY MAP SHOWING BOREHOLE DISTRIBUTION
- 2 DISTRIBUTION OF MONITORING BOREHOLES
- **3 PORT ELIZABETH ANNUAL RAINFALL STANDARD DEVIATION**
- 4 GENERAL GEOLOGY MAP OF PORT ELIZABETH
- 5 COMPARISON BETWEEN YIELD AND DEPTH
- 6 WATER CONSUMPTION
- 7 GROUNDWATER LEVELS
- 8 WATER LEVEL FLUCTUATIONS VERSUS RAINFALL VARIATION
- 9 PIPER DIAGRAM
- 10 ELECTRICAL CONDUCTIVITY
- 11 CHLORIDE
- 12 SULPHATE
- 13 NITRATE
- 14 GHYBEN-HERZBERG RELATION

APPENDICES:

- A1 CENSUS FORM
- A2 BOREHOLES EQUIPPED WITH METERS
- B PHYSICAL DATA BASE CHEMICAL DATA BASE

. EXECUTIVE SUMMARY

INTRODUCTION AND RESEARCH OBJECTIVES

The Port Elizabeth area experienced a downward trend in rainfall from 1983, culminating in water restrictions being introduced from 1989 to 1992. In response to this, a proliferation of private boreholes were drilled into the sandstone aquifer underlying the municipal area, with much attendant publicity in the local press. In early 1992, Steffen Robertson and Kirsten (SRK) held discussions with Port Elizabeth Municipality (PEM) with a view to initiating a project to investigate the extent and effects of private groundwater abstraction in the municipal area. SRK and PEM then agreed to submit a joint proposal to the Water Research Commission for funding, which was subsequently approved, and the project commenced in January 1993. Research objectives are divided into principal and secondary categories as follows :

Principal objectives

- Determine the number and distribution of boreholes in the PEM area;
- Assess the volumes of groundwater abstracted and overall groundwater quality;
- Assess the potential for saline water intrusion;
- Investigate legal options for PEM to control development and use of groundwater in the municipal area.
 - Secondary objectives
- Determine spatial and seasonal variations in groundwater use;
- Assess groundwater contamination from irrigation with final effluent and fertilizer application.

INVESTIGATION APPROACH

The initial priority of the investigation was to determine the number and location of boreholes by means of a census. A representative monitoring network of boreholes was then established from which data on abstraction, water levels and water quality were obtained. Originally, 50 boreholes were selected to be monitored over the study period, including for completeness, boreholes that fall outside the PEM boundary. Sites were selected to enable collection of representative data from as wide an area as possible, with a balance between private residential and higher consumption corporate and municipal boreholes. Permission was granted to equip 37 boreholes with water meters as principal monitoring points. Monitoring data to be collected included water consumption (abstraction), water levels and samples for chemical and bacteriological analysis.

Once the water meter installation programme was completed, meters were read on a monthly basis along with water levels where possible. In total some 700 meter readings were taken from 37 boreholes. About 1 000 borehole water samples were analysed from the 47 boreholes monitored.

i

A database was developed using Dbase 4, which was designed to accommodate information from the census forms. The PEM Engineer's Department maintained a database on Quattro Pro into which monitoring data on borehole water levels and abstraction rates, as well as records of corresponding municipal consumption, were entered. The Scientific Services Division of PEM entered all the results of the hydrochemical analyses on Excel spreadsheets.

HYDROGEOLOGY

Port Elizabeth is situated at the eastern extremity of outcrop of the Table Mountain Group sandstones (TMGS) on a northwest-southeast trending anticlinal structure, which forms part of the southern limb of the Cape Fold Belt. Along the northern boundary of the study area, the resistant sandstones form an escarpment where they dip under the Uitenhage Group, while to the south, the sandstones form an elevated wave-cut platform.

Much of the southern part of the wave-cut platform that forms the Cape Recife headland is covered by a mantle of Tertiary to Recent age deposits, such as The Nanaga Formation, a consolidated calcareous aeolian sand or dune rock. The formation is relatively resistant to weathering and forms topographic highs, e.g. Lovemore and Walmer Heights. Recent unconsolidated aeolian sand forms longitudinal sand dunes with crests trending east-northeast, west-southwest. Calcrete layers are commonly developed within the sand.

The rocks and sediments described above can be classified into two broad aquifer types. The TMGS form secondary aquifers in which groundwater flows and is stored within fractures such as joints, bedding planes and faults. The Tertiary to Recent sands are primary aquifers in which groundwater flows and is stored in interstices within the constituent sand grains. Rocks of the Uitenhage Group are not classed as aquifers within the study area due to their generally low permeability and poor water quality.

The area covered by the Tertiary to Recent deposits is large but little is known about their thickness or aquifer potential. The coastal sands underlying Summerstrand and Humewood are younger and have a greater coarse grained sand fraction, less calcretisation and compaction, and are thus likely to have higher aquifer potential. None of the boreholes recorded in the database pump water from the sands in the Walmer, Arlington and Kragga Kamma areas.

The TMGS have been intensely folded to form a series of northwest-southeast trending synclines and anticlines, and associated thrusting has resulted in a thickening of the sequence in the PEM area. Consequently, the rock mass is highly bedded and fractured, resulting in development of a network of secondary structural discontinuities.

There are two primary controls on the distribution of boreholes, the most important of which appears to be socio-economic status, while geological and hydrogeological factors are of secondary consideration. Although not all boreholes within the study area were located in the census, the borehole distribution and density recorded is considered to be representative of borehole occurrence in the area. Walmer and Summerstrand show the highest concentration of boreholes and major roads can be identified by the alignment of boreholes. Together these suburbs account for 65% of boreholes and the distribution drops-off dramatically moving away from these areas.

The data indicate that the TMGS aquifer in the PEM area is relatively low yielding with >96% of recorded boreholes having a yield of <10 m³/h. The generally exploited depth is from 60 to 120 m. As a comparison, yields at St Francis Bay are in the range of 7 to 50 m³/h from depths up to 90 m, while at Ceres, yields range from 20 to $45m^3$ /h from depths of 80 to 120 m.

In the majority of average and above average rainfall months, abstraction is minimal as groundwater quality is considered generally undesirable and municipal water relatively cheap. Records show that, for the majority of borehole owners, groundwater is used and considered as an emergency supply source only. Therefore, the proliferation of boreholes tapping the aquifer between 1989 and 1992 does not necessarily represent higher sustained abstraction rates but rather the potential for high demand pulses to be imposed on the aquifer.

Annual metered private groundwater abstraction amounts to 20 486 m³ from which, by simple proportion, it is estimated that total private groundwater abstraction is 236 600 m³/annum. An order of magnitude figure of total corporate abstraction is estimated to be about 150 000 m³/annum. Combining figures for corporate and private abstraction, total annual groundwater abstraction in the PE municipal area is thus estimated to be about 387 000 m³. This volume forms less than 1% of total municipal consumption since recent expansion of the reticulation network. The total cost of groundwater use in PEM to the municipality in terms of lost revenue, based on an annual abstraction of 370 000 m³ at R1,80 per m³, is therefore R666 000 at July 1995 prices.

Groundwater contours indicate a natural hydraulic gradient along geological strike from north-west to south-east, towards and across the study area. This reflects the enhanced permeability along strike, with bedding and thrust planes being the principal flow conduits. Exceptionally steep groundwater gradients are maintained across geological strike.

The contours indicate that the Baakens River intercepts and drains water from the aquifer and may play an important role in limiting the spread of high conductivity groundwater from the north-west into the Humewood and Summerstrand areas. To the north of the study area, the TMGS is covered by a thick sequence of Tertiary and Cretaceous mudstones. This has generated artesian conditions in the Uitenhage

iii

Basin and the groundwater contours indicate that the hydraulic head in this basin pushes groundwater to the south-east and south. Groundwater levels monitored over the study period show that no significant regional fluctuations of the water table have occurred beside localised drawdown due to pumping.

HYDROGEOCHEMISTRY

Groundwater from the central and inland suburbs is all of a sodium chloride type, particularly north of the Baakens River. Groundwater from the Summerstrand area has a greater $Ca/Mg HCO_3$ component, which is due to the influence of the lime rich coastal sands. This could indicate that boreholes are tapping the primary aquifer directly or that a component of the secondary aquifer groundwater is derived by leakage from the sands.

Although water types are consistently within the above two categories, there is a large spatial range in electrical conductivity and individual constituents within the sodium chloride type. There are also significant time variations in water quality within individual boreholes, as shown by the high values of standard deviation for many constituents, although some are skewed by one analysis, which in many cases was the first of the monitoring period. The time variations do not appear to be seasonally related, with each borehole having its own pattern. Fluctuations also appear to be above and below a fairly constant level, with concentrations at the start and end of the monitoring period not being significantly different. The groundwaters generally comply with SABS 241-1984 upper limits for domestic water use, some exceptions including chloride, nitrate and iron.

In the context of expected TMGS groundwater chemistry, the Port Elizabeth aquifer is atypical. For example, the range in conductivity is 50 to 819 mS/m, and in chloride, 100 to 2799 mg/l. Furthermore, contour plots of these parameters and sulphate appear to indicate that they are decreasing in concentration along the groundwater flow path to the south of the Baakens River. Chemical reactions such as adsorption, precipitation and base exchange can cause natural attenuation and alteration of groundwater chemistry but, in the case of chloride, this explanation is not satisfactory, as chloride is a conservative ion.

If it is thus accepted that chloride is not being lost from the aquifer system along the flow path, then the only feasible explanation is that it is being diluted. The explanation put forward is that expanding urbanisation in the PEM area along the outcrop of the TMGS aquifer has resulted in partial replacement of diffuse recharge through the soil profile by the development of numerous point sources of contamination such as old waste tips, leaking sewers and water mains, septic tanks, fertilizer application and stormwater runoff. This would explain the frequent occurrence of groundwater with radically different chemistry from boreholes a few streets apart. Examples of such conductivity-chloride contrasts are 475mS/m-1463mg/l and 151mS/m-390mg/l in Walmer, and 247mS/m-559/mgl and 652mS/m-1591/mgl in Walmer Heights. Historical reports of 'brackish' water in the Walmer area in the 1920's could indicate a natural level of salts in the aquifer.

Nitrate concentrations show an opposite trend to chloride in that concentrations increase along the flow path towards the coastal suburbs. The low iron concentrations in these areas may indicate an increase in redox potentials and a decrease in denitrification potential within the aquifer. This could have long-term implications for groundwater quality, with a continuing build-up of nitrates, given the practice of irrigation with treated sewage effluent in many coastal areas and fertilizer application to gardens, sports fields and parks. There is a trend for a general increase in nitrates in the peripheral coastal areas, which possibly supports the above contention.

Activities which could result in the introduction of contaminants into the aquifer include waste disposal sites, sites irrigated with reclaimed sewage effluent, golf courses where nitrogenous fertilizers are used, and other sites where nitrogenous and other fertilizers are used. For the purpose of assessment of contamination, the major borehole water quality indicators considered were, chloride, nitrate, iron, Total Organic Carbon and bacteria. These five indicators are discussed separately as far as the monitoring boreholes are concerned.

• Chloride

Most of the boreholes in the PEM area have relatively high chloride concentrations, predominantly in the form of sodium chloride. Of the 47 boreholes monitored, 37 had average chloride levels of >250 mg/l; 28 with >400 mg/l and 11 with >600 mg/l. The majority of the borehole waters fall into the medium and medium/high chloride category, i.e., 250 to 600 mg/l.

• Nitrate

Out of the 44 borehole waters analysed, 21 have nitrate levels >4,0 mg/l as N, with 11 being >10,0 mg/l. The high nitrate boreholes are contained in a triangle from Newton Park towards the sea, with Central and Summerstrand being the outer corners of the triangle. Sources of nitrate include areas irrigated with treated sewage effluent, e.g PE Technikon, UPE and Humewood Golf Course and irrigated parks and golf clubs where nitrogenous fertilizers are used, e.g Walmer Country Club, Walmer and PE Golf Clubs, municipal parks. Nitrate contamination is not seen as being a serious problem as the water is used for irrigation purposes rather than drinking water.

Iron

Iron has only been found in significant levels, i.e., >1 mg/l, at 10 sites, of which four were >5,0 mg/l. The Walmer/Walmer Heights area seems to have a particular iron problem and this also applies to the Framesby, Lorraine and Kragga Kamma areas. Very high iron levels of >20 mg/l

v

were found on occasions, particularly in Walmer. High iron concentrations are typical of TMGS groundwater, but levels > 5 mg/l are probably more indicative of borehole condition, ie casing corrosion.

Organics

The Total Organic Carbon test was used to evaluate the possible organic pollution of borehole waters. Only in seven out of the 47 boreholes monitored were the levels of organic carbon considered significant, i.e., >6,0 mg/l as C. Of these sites, three are situated in the Arlington area and three in Summerstrand, but others in the same areas did not have significant organic carbon levels.

• Bacteria

Faecal bacteria were recorded from a few samples, but most of these can be attributed to poor sampling and were not considered to be significant.

With regard to saline water intrusion, the main area of concern is the suburb of Summerstrand and, to a lesser extent, Humewood. The other coastal areas are either undeveloped or bordered by office or industrial areas. Inspection of the results from the four monitoring boreholes in Summerstrand shows no sign of any problem relating to sea water intrusion. Of all the boreholes investigated for this project, the Summerstrand boreholes were some of the most consistent in terms of water quality. On the basis of these results, sea water intrusion would not be seen as a problem, although the drought ended shortly before the commencement of this project, and the boreholes have not been used as much as they would in drought conditions.

However, recent information has come to light on boreholes in Summerstrand, very close to the sea, which the owners report change from fresh water to saline water very quickly during pumping. When the borehole is next pumped, fresh water is again obtained initially. These boreholes are within 200 m of the beach, whereas the four monitoring boreholes are further inland, with more of a buffer zone between the fresh/salt water interface.

Under drought conditions, with all boreholes being used on a regular basis, there is a risk that this transient, short-lived intrusion of saline water could be drawn further into the aquifer at Summerstrand. This is especially true under the likely scenario of borehole use, with pumps being switched on and off on a daily or otherwise frequent basis. Turbulence in fractures is a prime cause of expansion of the brackish water diffusion zone between fresh and sea water. With the northwest-southeast structural trend of the

TMGS, there is potential for direct connection between the aquifer and the sea. Ideally, boreholes should be pumped continuously at a relatively low rate to minimize turbulence.

On the basis of the yield and water quality characteristics described above, it can be concluded that the TMGS aquifer in the PEM area does not have potential for municipal water supply, unless more productive aquifers exist at depths greater than those so far exploited.

LEGAL ASPECTS

Broadly speaking, international water law can be classified into two main systems, which are often referred to as the common law and civil law systems. The common law system is the body of law built up by the courts through successive judgements, whereas civil law is codified law developed by Parliament or its equivalent in the country concerned. Both systems have their origin in Roman Water Law, the common law system developing into the riparian system primarily found in England and in countries across the world with historical ties to England. The civil law system is found in European countries where the Napoleonic Code of 1804 applied, and in other countries in Africa and the East with historical ties to the European states of France, Germany, Belgium and others.

In the United States of America, most of the eastern states have accepted the riparian system, while in the more arid western states, the appropriation system developed, which at the same time protects the rights of people who had prior rights to water. A common factor in the national systems of most countries is a tendency towards greater State control. Even in regions where water availability is not the primary issue, State intervention in order to safeguard the quality of water resources appears to be the order of the day.

South Africa's water law is contained primarily in the Water Act of 1956 but is also scattered in 33 other Acts. Most of the legislation is based on the legal system of the countries from which the European settlers came from. South Africa is one of the few countries in the world that has no legal way to restrict the use of groundwater, save through emergency regulation by the minister of Water Affairs. The Water Act of 1956 vests in the owner of land the exclusive right to use groundwater occurring on his land, with only some prohibitions on transfer of such water across boundaries of the land. The declaration of Subterranean Government Water Control Areas (SGWCA's) is the only way within the present Act (Section 26) to regulate development and use of groundwater. As of 1993, only 13 SGWCA's had been declared, covering a total area of about 5000 km², including the Uitenhage Artesian Basin.

On 17 January 1986 a proposed Water Amendment Bill was published in the *Government Gazette*, the main purpose of the bill being to," vest in the minister the powers to control and exploit water in subterranean sources in certain areas in the public interest." The bill does not alter the existing state of groundwater law and only confers wider powers concerning public management and use of subterranean water found in a

SGWCA. The best policy, however drastic, would be to define all groundwater as public water and to deal with such water as is presently proposed for water found inside a SGWCA.

South Africa's water legislation is unsuited to an essentially dry country and is being reviewed. It is based on Roman law which was developed in a totally different climate where water shortages were not of major concern. The shortfalls in current SA water law with regard to groundwater are recognised by the Department of Water Affairs and Foresty (DWA&F) and a draft white paper is being drawn-up in consultation with experts from the private sector, and there seems little doubt but that the status of groundwater will change from private to public water in the near future. In this respect, the DWA&F has published a booklet "You and Your Water Rights - South African Water Law Review - a call for public response". Contributions, comments, recommendations and submissions concerning the review of any aspect of the present water law were invited from individuals and interested parties, to be submitted by 19 May 1995.

From the above it can be assumed that far reaching changes can be expected in South African water law in the near future.

The current legal framework for local government in South Africa comprises National Statutes, provincial ordinances and municipal by-laws. Municipal by-laws are generally in accordance with the provisions of the relevant provincial ordinance. The PEM Water Supply by-laws were promulgated in The Province of the Cape of Good Hope Gazette No. 4672, November 1990, and contain clauses on water installations that can be related to borehole use. In terms of the existing Water Act and by-laws, PEM cannot regulate the volumes of groundwater pumped from the aquifer.

Other municipalities with known private groundwater use were contacted to obtain further insight into the *status quo* in respect of legislation. Most have no provision for control or even notification of groundwater use, eg. Somerset West, Hermanus and Graaff Reinet. Beaufort West has no general by-law concerning groundwater/boreholes but further drilling is prohibited in one particular suburb because of the large number of existing boreholes. The most detailed examples of a by-law that the researchers came across is that of Johannesburg.

Aspects that should be addressed in any by-law promulgated by PEM include:

- Compulsory employment of drilling contractors affiliated to the Borehole Water Association to assist the borehole owner to achieve a satisfactory standard of construction;
- Compulsory submission of copies of borehole completion certificates to the municipality by the owners;
- Right of access for inspection of borehole installations, groundwater sampling, installation of flow

meters and measurement of water levels;

- Compulsory submission of one water sample per year for chemical and bacterial analysis;
- The imposition of restrictions on groundwater use should declining water levels become evident, or changing water chemistry indicate pollution or saline intrusion, or should well interference be proven and a dispute between borehole owners arise;
- Possible ban on borehole use within an exclusion zone adjacent to the sea;
- Provision for restriction of use of groundwater unfit for domestic consumption.

The aim of PEM should not be just to regulate groundwater use and possibly alienate borehole owners, but also to generate an interest and awareness in the public of the need to protect the resource. However, in the light of the fairly limited use of groundwater as a percentage of municipal consumption, the low yields and moderate to poor water quality, the need for a by-law containing all of the above provisions may need to be reconsidered. It may also be prudent to wait for indications from the DWA&F as to the status of groundwater in the new water laws soon to be formulated.

CONCLUSIONS AND RECOMMENDATIONS

The main conclusions to be drawn from this study are:

- There are an estimated 300 boreholes in the PEM area, of which 239 have been located.
- Annual groundwater abstraction is estimated at 370 000 m³;
- There are very few municipalities who have promulgated by-laws to control private groundwater use. Aspects that should be included in a by-law for PEM are:
 - employment of an affiliated drilling contractor;
 - submission of borehole completion certificates;
 - right of access for inspection and monitoring;
 - regular submission of water samples for quality analysis;
 - restrictions on groundwater use in areas with declining water levels or quality, or where mutual interference occurs;
 - restriction on groundwater use in an exclusion zone adjacent to the sea;
 - public awareness on groundwater issues.
- Over most of the study area the groundwater is a sodium chloride type. The only exception is Summerstrand where the groundwater has a greater Ca/Mg HCO₃ component;
- Groundwater quality in the PEM area is generally atypical of TMGS aquifers elsewhere in the Eastern and Western Cape;
- There is extreme spatial variation in groundwater quality, often over very short distances in the same suburb;
- There is sporadic and short-lived intrusion of saline water in those boreholes closest to the sea in the

Summerstrand area. This is a local and non-permanent phenomenon at the moment but there is potential for a deeper incursion of saline water into the aquifer under higher pumping stress, should drought conditions return;

- There is evidence of groundwater contamination in many areas on the basis of conductivity, chloride and nitrate levels, especially in the context of groundwater quality in TMGS aquifers elsewhere. The contamination is attributed to urbanisation and, specifically old waste dumps, fertilizer application, irrigation with treated effluent, leaking sewers and stormwater runoff;
- Groundwater use has had a negligible effect on municipal consumption in respect of homeowners;
- In terms of yield and water quality, the TMGS aquifer in the PEM area is not a potential source of municipal supply, unless untapped aquifers exist at greater depths than so far exploited.

The following recommendations are made for continuation of the research project:

- The results of drilling, water sampling and testing at Arlington waste site should be incorporated into the research findings;
- A reduced monitoring borehole network should be maintained in representative areas of the aquifer. These include "upstream" (Kabege Park) central (Arlington), northern (Newton Park) and coastal (Summerstrand) areas. This would equate to about six boreholes, including Arlington waste site, which will be monitored as part of a separate project;
- A more detailed study of the boreholes within the coastal rim of Summerstrand/Humewood, where saline water has been reported, should be made to quantify the threat or occurrence of sea water intrusion;
- There is a vast amount of chemical data in the database which has only been qualitatively assessed in this study. More rigorous statistical and graphical analysis should be carried out to provide further insight into the atypical hydrogeochemistry of the TMGS aquifer in Port Elizabeth.

RESEARCH INTO GROUNDWATER ABSTRACTION IN THE PORT ELIZABETH MUNICIPAL AREA

1 INTRODUCTION AND RESEARCH OBJECTIVES

The Port Elizabeth area experienced a downward trend in rainfall from 1983 onward culminating in water restrictions being introduced from 1989 to 1992. In response to this, a proliferation of private boreholes were drilled into the sandstone aquifer underlying the municipal area, with much attendant publicity in the local press. Headlines such as "PE, boreholes can go salty, expert warns," and, "Boreholes could drain groundwater," illustrate the concerns over extensive and uncontrolled use of groundwater in the municipal area.

In early 1992, Steffen Robertson and Kirsten (SRK) held discussions with Port Elizabeth Municipality (PEM) with a view to initiating a project to investigate the extent and effects of private groundwater abstraction in the municipal area. SRK and PEM then agreed to submit a joint proposal to the Water Research Commission for funding, which was subsequently approved and the project commenced in January 1993. The original two year project duration was extended by six months in 1995 to facilitate gathering of further monitoring data.

Research objectives are divided into principal and secondary categories as follows :

• Principal objectives

- Determine the number and distribution of boreholes in the PEM area;
- Assess the volumes of groundwater abstracted and overall groundwater quality;
- Assess the potential for sea water intrusion;
- Investigate legal options for PEM to control development and use of groundwater in the municipal area.

- Secondary objectives
 - Determine spatial and seasonal variations in groundwater use;
 - Assess groundwater contamination from irrigation with final effluent and fertilizer application;
 - Assess impact of groundwater abstraction on municipal consumption and the potential for pollution of municipal supply by contaminated groundwater.

1.1 Historical groundwater development

More than a century ago, the greatest problem the settlement of Port Elizabeth had to face was the question of regular and adequate supply of fresh water for the number of inhabitants resident in the town. When the British Settlers landed in 1820 Port Elizabeth comprised Fort Frederick and very little else. From 1820 until 1880 no house in Port Elizabeth had water on tap unless the owner could afford rain water tanks or underground storage tanks.

Water was collected from the roofs of houses and stored in tanks on the land owners premises or obtained from the many creeks and streams located in the town area. A wide vlei on the site of the present Trinder Square (opposite the P E Club in Bird Street) was used chiefly by cattle, spans of oxen hauling-in produce from neighbouring farms, and by the Fingoes.

The first mention in the records of the municipality dealing with water supply for the town was the receipt of a letter from a Mr Coleman, dated 5 July 1848, submitting certain views on the subject. On 12 July 1848, the Commissioners decided to meet Mr Coleman. At the same meeting it was decided to advertise for tenders for sinking a well, 5 feet in diameter, and to hold not less than 6 feet of water. Only one tender was received, from a Mr Joseph Morton, and it was decided to sink the well near to Mr Diesel's property.

On 28 February 1849 it was decided to sink a well in the kloof (now Whites Road), between the houses of Mr Bird and Mr Adcock. In the second report of the Commissioners for the year 1849, submitted to a public meeting in the Commercial Hall on Monday, 15 April 1850, the following paragraph appears:-

"The Public Wells have been constantly attended to a large one has been sunk at the bottom of Donkin Street and although at a depth of 42 feet (12,8m), no permanent spring has been found, yet it answers for a tank and a very large supply of water has been obtained there. A great portion of this well has been sunk through solid rock, but as the expenditure was becoming greater, it was thought advisable to leave off at a depth of 42 feet, having 10 feet diameter at the bottom and it is walled up from the rock to the surface. The well near Mr Diesel's property was deepened by 9 feet more, making the present depth 26 feet. A pump has been put into this well which has been found a great convenience and it is impossible to prevent the dipping in of dirty buckets and other nuisances, as well as the waste of much water."

In order that the supply of water to the town should be augmented, it was resolved at the meeting of the Commissioners held on 29 July 1852, that Messrs Doiner, Pattinson, Slater and Blaine "repair to the Duin to ascertain the level of the springs there."

The following letter was submitted at a meeting of the Board of Commissioners dated 2 January 1856:-

"I am instructed by Mr W N Coleman to inform the Municipal Commissioners through you that for some time past he has been and is engaged in opening the spring on his property in the valley and that the result so far has happily developed a very copious supply of fine water which he purports to make available to the inhabitants of Port Elizabeth.

I am therefore instructed to apply to the Commissioners for their sanction to an act of Incorporation to enable Mr Coleman and others to be associated for the purpose to perform certain essential acts in a corporate capacity. Amongst these would be liberty to lay down pipes through the streets belonging to the Municipality for which I am very respectfully to ask the license of the Commissioners.

Mr Coleman confidently predicts that these springs will afford sufficient water to supply the present population of Port Elizabeth, but should they not prove adequate, Mr Coleman and his friends will nevertheless make them available to their full extent and, as he does not ask the exclusive privilege, he ventures to claim the credit of offering the best water from the most practicable source".

The Board decided to give Mr Coleman permission to lay down pipes according to the terms proposed in his letter.

During the period 1857 to 1862 the population of Port Elizabeth rapidly increased and areas on the Hill, North End, South End and the lower regions of the town were developed, and Port Elizabeth was rapidly established as an important commercial town in the Eastern Province of the Cape Colony.

As a result of this progress, the need for water intensified and investigations to find suitable and reliable water sources in Port Elizabeth and the surrounding rural areas continued. The conditions for possible water supply schemes were that any scheme which required pumping was to be disregarded, at any rate until it was proved that gravitation schemes were impractical, either from an engineering or financial point of view; that the water was to be uncontaminated by any exposure in furrows or percolation through unwholesome soil. The water was also to be free of injurious matter, whether in suspension or in solution. Another important requirement was that the population of the town and the quantity of water required for shipping and other purposes be taken into consideration when establishing the source of water supply.

A number of sources in town and in the rural area recommended as being likely sources of water supply were dismissed by the Commissioners as unsuitable because the water was either unfit for consumption, brakish, pumping would be required or that during dry seasons the sources of supply would be completely inadequate for the town.

However, on 10 June 1857, it was decided to call for tenders for sinking wells in the following localities:

- Opposite the Commissariat Buildings;
- Opposite Mr Proudfoot's in Queen street;
- On the Hill near Bird Street, also for deepening the well in Constitution Hill;
- Opposite Mr Geard's;
- Opposite Mr Sparrow's.

In February 1860 wells were ordered to be sunk in Jetty Street and the corner of Dament Street.

(It was only a few years ago that this well was discovered again when repairs were being made to Jetty Street and one of the workmen, getting deeper than usual with an excavation, was surprised to see his spade disappear from sight. The well was then backfilled.) It was decided to sink more wells in town, and Grace Street, Britannia Street and Alice Street were the sites chosen to establish additional wells.

On 26 September 1865, owing to the scarcity of water, all the municipal wells were closed from 9 am to 4 pm daily. At this juncture it is worthy of mention that the majority of wells in town were five feet in diameter and held no less than 6 feet of water. They were all lined with stone or masonry and for protection against accidents and contamination, strong wooden frames with trap-doors covered the openings of the wells.

After the implementation of the Frames Dam in 1865 and the Van Stadens Water Scheme in 1879, the reliance on underground water decreased as surface water became the major source of supply for domestic use.

The record then continues with Annexure B, of the Mayor's report of 1928, on the underground water supply of Port Elizabeth by E D Mountain. He states that boreholes in the Table Mountain Group Sandstone (TMGS) – are a fairly safe proposition but are not likely to give very large supplies, and recommended drilling a number of "coordinated" boreholes aligned in a NE-SW direction on the "plateau" (presumably this refers to the wave cut platform). He postulates that greater supplies of water are possible in the north-eastern area around Zwartkops with potential artesian conditions. The borehole information in Table 1 below is taken from his report.

Owner	Locality	Depth (ft)	Yield (gal/day)	Comments
Patterson	Walmer	200	10 000	Brackish
Mattingly	Walmer	200	14 000	-
Holmes	Walmer	200	_	-
Roper	Walmer	200	5 000	Brackish
Parkin	Greenbushes	150	17 000	-
Richardson's	Port Elizabeth	292	52 000 (1919)	25 000 (1928)
Ohlsson's	Port Elizabeth	390	Dry	Cretaceous Blue clay
Grewer	Uitenhage	197	90 000	TMGS at 170 ft
Van Vuuren	Uitenhage	400	216 000	TMGS at 150 ft

TABLE 1 : HISTORICAL BOREHOLE INFORMATION

The occurrence of brackish water in the Walmer area as far back as the 1920's is of significance when evaluating the hydrochemistry of water samples taken during the current project, with some apparently anomalous results in the context of TMGS water quality. This is discussed further in Section 5.7.

The historical record then moves to the 1950's and extracts from the City Engineer's reports for 1954, '55 and '56 concerning groundwater exploration are given below:

1954

'Drilling of a borehole into the Artesian Basin on "Wells Estate", near Coegakop commenced under contract in July. The borehole was first drilled to a depth of 555 feet and then lined with 8" casing. Drilling was then resumed to a depth of 759 feet and a small flow of water under pressure was struck at approximately 700 feet. Drilling was then suspended whilst 6" casing was inserted, after which cement grout was pumped into the borehole to anchor the casing. After the grout had set, drilling continued to a total depth of 1,220 feet which was reached on 24th November.

A meter was installed on the outlet from the borehole and, in October, a flow of 196 800 gallons per day was recorded at a depth of 800 feet. On 4th November, at a depth of 1,138 feet the flow was 440,640 gallons per day and on 24th November, at the maximum depth of 1,220 feet, it was then 421 900 gallons per day. Readings at the meter were taken from 30th November, and up to the end of the year the flow averaged 409000 gallons per day.

These results were considered to be very encouraging and in December, the City Council resolved to extend the contract and the drilling of a second borehole is now in progress on "Wells Estate" at a point approximately one mile east of the first borehole. In addition, an amount of £20,000 was placed on the Loan Schedule, which is due to be placed before the Ratepayers early in the new year, for the drilling of further boreholes.'

1955

'Borehole No. 1 on Wells Estate, which was completed in October, 1954, to a depth of 1,220 feet, was allowed to run uninterruptedly until February and daily readings were taken of the flow which stabilised at approximately 400,000 gallons per day.

Borehole Nos. 2 and 3, which are situated on the East side of the Grahamstown Road twelve miles from the City, were drilled during the year and work started in August on Borehole No 4, which is 1,000 feet North of Borehole No. 1. Borehole No. 2 was abandoned at a depth of 626 feet due to the unsatisfactory nature of the formation, while Borehole No. 3 was drilled to a depth of 1,209 feet when the flow was 59,000 gallons per day. The artesian flow was struck in Borehole No. 4 at a depth of 825 feet and the flow from this borehole, which had a depth of 920 feet when the contractor closed down for the holidays on 14th December, was 151,000 gallons per day.'

1956

'The fourth and final borehole on Wells Estate was completed in June to a depth of 1,226 feet, when the yield was 203,000 gallons per day. Tests were carried out during the period August -November to determine the individual and combined flows from Boreholes Nos. 1 and 4, which are approximately 1,000 feet apart. These give a yield from Borehole No. 4 of 195,000 gallons per day and from Borehole No. 1 of 447,000 gallons per day. The previous yield from Borehole No. 1 from tests made soon after it was_completed in 1954 was_391,000 gallon per_day. The combined yield with both boreholes flowing together was 617,000 gallons per day.

The analysis of the water from the boreholes showed an iron content of 4 parts per million, which would prove objectionable in the water supply. A pilot plant was, therefore, erected near Borehole No. 1 to determine what treatment would be necessary to reduce the iron content to reasonable limits, and encouraging results were obtained by the Municipal Chemist.'

Marais (1964) reports that the completion of these flowing boreholes and others on Coegakop led to a halving of the water available from the Uitenhage Springs. Bush (1986) reports that piezometric levels declined by approximately 32 m over the 71 years since boreholes were first drilled and that abstraction approximately doubled since 1963.

The Uitenhage Subterranean Water Control Area (USWCA) was proclaimed in August 1957 in order to exercise control over the drilling of boreholes and abstraction of subterranean water contained in the said area. The area under control was increased in 1964 and is partly shown on Figure 4. Despite the declaration of the Subterranean Water Control Area, the aquifer is still being overpumped (Braune *pers comm*).

In April 1989, Steffen, Robertson and Kirsten (SRK), held discussions with personnel of the City Engineer's Department on the possibility of developing emergency groundwater supplies from the TMGS and a detailed proposal was submitted. However, improved rainfall and dam levels led to the shelving of these plans.

2 INVESTIGATION APPROACH

The initial priority of the investigation was to determine the number and location of boreholes by means of a census. A representative monitoring network of boreholes was then established from which data on abstraction, water levels and water quality were obtained.

2.1 Borehole census

The majority of boreholes in Port Elizabeth are privately owned so it was realised at an early stage that public co-operation was vital to the success of the project. To this end, a press release was issued jointly by the Water Research Commission (WRC), PEM and SRK to create public awareness of the need for research prior to requesting information on boreholes. Unfortunately, for reasons outside the research teams' control, the press release did not enjoy the exposure intended.

An explanatory letter, combined with a census form was then prepared and mailed with monthly accounts by PEM to all ratepayers in suburbs where boreholes were known to exist. A total of 30 000 such forms were mailed during February and March 1993 and by the end of May, 74 completed forms had been returned. The poor response led to a second press article published in the Eastern Province Herald on 19 April, but the response to the article was negligible. After discussions between the WRC and the researchers, a final press release was published on 30 June 1993 in the Port Elizabeth Express, a newspaper distributed free of charge in all residential areas of the city. The release contained an outline of the research, the importance of the study, reassurances to the public regarding the use and ownership of private boreholes and a copy of the census form (Appendix A1). The response to the article was again poor, with only three further census forms returned. The lack of co-operation from the public is ascribed mainly to a perceived threat of intervention and ultimate control of the use of groundwater by PEM. Secondary reasons are a lack of interest and understanding of groundwater related issues.

Following the census form mailing, the two main contractors involved in borehole installations in the city were contacted and with their co-operation, installation lists were obtained. In conjunction with a chemical database already maintained by the Scientific Services Division of PEM, these lists were used to identify further borehole locations in the city. Installation inspectors from the PEM Water Division also recorded address details of properties found to have boreholes during routine inspection work. In this way a total of 259 boreholes were identified, 238 within the study area. From discussions between the researchers and borehole installation contractors it was estimated that this figure constitutes about 85% of boreholes in the study area. Even if this figure is out by 50%, the impact on the study is negligible. The co-ordinates, and ground levels were determined for each borehole from the 1:10 000 orthophoto maps of Port Elizabeth. Borehole locations are shown on Figure 1.

2.2 Borehole monitoring network

Originally, 50 boreholes were selected from the results of the census to be monitored over the study period, including for completeness, boreholes that fall outside the PEM boundary.

Sites were selected to enable collection of representative data from as wide an area as possible. A balance between private residential and higher consumption corporate and municipal boreholes, such as golf clubs, schools, parks and large office complexes was planned. The researchers contacted the relevant home owners and institutions and permission was granted to equip 37 boreholes with water meters as principal monitoring points. These sites are listed in Appendix A2 and shown on Figure 2.

The collection of monitoring data was mainly conducted by PEM staff. Monitoring activities were accommodated within normal work schedules of the relevant municipal department and, as a result, sampling could not take place on a fixed schedule as intended. Successful sampling was also often dependent on the presence of the landowner (or pump operator) at the time of the visit. For this reason, several gaps exist in the sampling database and the sampling period was extended for six months to ensure adequate data for interpretation purposes.

The monitoring of groundwater levels was also problematic as PEM staff omitted readings in boreholes out of commission or unused. In an effort to remedy the lack of groundwater level information, a two week programme of measurements was initiated in July 1995 and 45 measurements were made over the entire study area, from which a water level contour map of the study area was generated.

The hydrochemical monitoring points were planned to cover as large an area as possible with at least four boreholes in each suburb. Unfortunately, borehole distribution is heavily skewed by socio-economic factors, resulting in a clustered distribution across the city. Forty seven boreholes were finally selected for sampling on a regular basis, with the ratio between private, low usage, and "corporate" boreholes designed to be about 50/50 (Figure 2). In addition, borehole drilling and pump installation companies have submitted groundwater samples to the Scientific Services Laboratories for many years and chemical analyses from these samples have been stored in the database maintained by them.

2.3 Monitoring programme

Monitoring data to be collected included water consumption (abstraction), water levels and samples for chemical and bacteriological analysis.

Water meters were installed from April 1993 by the Water Installation Workshop of the Port Elizabeth City Engineer's Department. Three sizes of water meter were fitted depending on pump capacity and delivery volume. Due to abnormally high workloads, the PEM staff could only complete the installation programme in August 1993.

Once the water meter installation programme was completed, meters were read on a monthly basis along with water levels where possible. In total, some 700 meter readings were taken from 37 boreholes. During the monitoring period, seven boreholes became non-functional for various reasons and this incidence of borehole failure was taken into account when formulating an estimate of annual abstraction volumes from the aquifer.

Seven hundred and forty four borehole water samples were analysed from the 47 boreholes monitored. To spread the workload on the Scientific Services Division Laboratories, analyses were rotated over a cycle of three months. The aim was to get as many "full" analyses as possible during the project period, with partial indicator analyses in between, and the following schedule was established :

Month 1 - Full physical and chemical analysis for the following determinands :
 Physical parameters: pH, conductivity, colour, turbidity;
 Macro determinands: Total Alkalinity, Total Hardness, Total Dissolved Solids;
 Cations: calcium, magnesium, sodium, potassium;

Anions:chloride, bicarbonate, sulphate, nitrate, fluoride;Trace elements:iron, manganese, copper, lead, zinc;Organics:total organic carbon.

Month 2 - Partial analysis covering pH, conductivity, Total Dissolved Solids, chloride, sulphate and nitrate.

 Month 3 - Partial analysis and bacteriological analysis for: Total coliforms;
 Faecal coliforms;
 <u>E. coli I;</u>
 Total bacterial count.

2.4 Database

A data base was developed using DBASE IV which was designed to accommodate information from the census forms. PEM City Engineer's Department maintained a database on Quattro Pro into which monitoring data on borehole water levels and abstraction rates, as well as records of corresponding municipal consumption, were entered. The Scientific Services Division of PEM entered all the results of the hydrochemical analyses on Excel spreadsheets.

The research team was offered a specialised groundwater programme and database, HYDROCOM, which could serve to amalgamate the physical and hydrochemical databases and has the facility to plot relationships between parameters such as water levels, abstraction volumes, rainfall, hydrochemistry and time. Piper and Durov plots can be easily produced to evaluate hydrochemical trends. Because of the amount of data that would have to be re-entered and the incompatibility with other spreadsheets, the research team decided against this option. Instead, all the databases were transformed to the Quattro Pro format which allows easy maintenance, updating, access and manipulation of the data-set for a wide range of interested parties.

13

The database is maintained in two files:

- File 1: This is a physical database which contains 238 entries and lists erf numbers, names and addresses of owners, co-ordinates and information as to borehole depth, yield, abstraction volumes and rates, and water levels. Twenty one other boreholes are recorded but fall outside the perimeter of the study area.
- File 2: This is a hydrochemical database with the results of all the analyses for each borehole over the study period. This can be expanded to include the results of all analyses of borehole water ever conducted by the Scientific Services Division.

At the request of PEM, the two parts of the database are correlated by erf numbers.

PEM undertook to perform the plotting and contouring of hydrogeological data on the Genesis GIS system. Borehole positions are plotted according to the erf number, and not co-ordinates, which creates problems when more than one borehole is present on an erf, the erf size is very large or the borehole does not fall on a municipal erf. As a result not all monitoring points could be plotted by the programme. The distribution of data points is clustered but groups are dispersed and large areas have no boreholes. The software was unable to grid and contour the data set and the maps were contoured manually. The extreme variation in hydrochemical values over short distances precluded a standard contour interval being used and contour values were selected to illustrate regional trends.

The complete database in Quattro Pro can be saved in a variety of compatible formats and distributed on 3.5" diskette on request.

3 RAINFALL

The rugged mountainous topography resulting from erosion of the resistant TMGS has a strong orographic influence on the rainfall patterns in the Cape Province and particularly the SE Cape coast. Some of the highest annual precipitation in South Africa occurs on these mountain ranges, with up to 2 400 mm/pa on mountain peaks. This rainfall and extensive outcrop ensures a ready supply of recharge in all but the driest years. However, Port Elizabeth's rainfall tends

to be atypical and highly erratic, and references to "drought" years are frequent. The definition of "drought" varies, but is generally accepted a period in which rainfall is half the annual average over any 12 months. More specifically, drought in the Eastern Cape has been defined as rainfall below -0.5 times the standard deviation for more than nine consecutive months over a catchment area (Jury and Levey, 1993). A plot of the standard deviation from the mean monthly rainfall averages (Figure 3) shows that references to monthly and annual averages are less meaningful than the "likelihood of occurrence". The table below shows that over the last 10 years, exceptionally low rainfall has reduced the mean annual average, calculated from the records dating back to 1926, from 672mm to 611mm.

IADLE 2: SUMIMARI	OF FORI	LLLADEIN	KAUNFALL SIA	11121102

	YEAR	RAINFALL mm/a
Average	1926 - 1982	672
	1926 - 1992	611.2
Minimum	1969	406.3
Maximum	1968	1068.9
Standard Deviation	1926 - 1992	139.9

17 A DETELL DA INTEALL OT A TROTICO

4 GEOLOGY

The geological succession in the Port Elizabeth area comprises the following:

...

Tertiary to Recent {	Aeolian sand Nanaga Formation
Uitenhage Group {	Sundays River Formation Kirkwood Formation Enon Formation
Table Mountain Group	Nardouw Subgroup Peninsula Formation Sardinia Bay Formation

The Sardinia Bay Formation is a predominantly arenaceous sequence of rocks comprising thin to medium bedded quartzitic sandstone with interbedded shale. The formation outcrops along the coast from west of Skoenmakerskop to about 1.5 km west of the Willows and has a total

÷ .

thickness of about 950 m in this area. The boundary with the overlying Peninsula Sandstone Formation is gradational, being taken where shale becomes subordinate in the sequence.

The Peninsula Sandstone Formation (PSF) is aerially, stratigraphically and topographically the most prominent member of the Table Mountain Group (TMG) and consists of medium to coarse grained, generally massive, quartzitic sandstones. The formation is exposed along the coast from the Willows to Cape Recife and in the central and northern areas of Port Elizabeth. In the Willows - Chelsea Point area the sandstones strike in a northwest-southeast direction, dipping at 25° to 45° to the north-east.

The Nardouw Subgroup comprises three sandstone formations which are limited to the northern part of the study area. Along the northern boundary of the study area the resistant sandstones form an escarpment where they dip under Cretaceous formations of the Algoa Basin, while to the south, the sandstones form an elevated wave-cut platform.

The Uitenhage Group rocks consist of mudstones, conglomerates and subordinate sandstones and outcrop to the north of the study area.

Port Elizabeth is situated at the eastern extremity of outcrop of the TMGS on a northwestsoutheast trending anticlinal structure, which forms part of the southern limb of the Cape Fold Belt (Figure 4). Booth and Shone (1992) have identified two major fault zones in the TMGS, the Chelsea-Noordhoek Fault in the south and Moregrove Fault in the north. Between these faults they postulate a recumbent fold with numerous thrust planes in a graben structure to account for the excessive thickness of the PSF in the area. The inland extension and trend of the Chelsea-Noordhoek fault, as postulated by Booth and Shone, is based on field observations along the coastal outcrop. A photo-lineament trending west-northwest from the coast, which can be traced for 2 km inland, may be associated with this fault zone (SRK 1993). The Cedarberg Shale Formation, which is normally present between the PSF and Nardouw Subgroup, is absent, probably due to pinching out as a result of thrusting and folding (Shone *op cit*).

Ozalid 87-1735

Much of the southern part of the wave-cut platform that forms the Cape Recife headland is covered by a mantle of Tertiary to Recent age deposits. The Nanaga Formation is a consolidated aeolian sand or dune rock, which is calcareous due to the presence of numerous shell fragments. The formation is relatively resistant to weathering and forms topographic highs, e.g. Lovemore and Walmer Heights. Recent unconsolidated aeolian sand forms longitudinal sand dunes with crests trending east-northeast, west-southwest. Calcrete layers are commonly developed within the sand.

5 HYDROGEOLOGY

5.1 Aquifer definition

The rocks and sediments described above can be classified into two broad aquifer types. The TMGS form secondary aquifers in which groundwater flows and is stored within fractures such as joints, bedding planes and faults. The Tertiary to Recent sands are primary aquifers in which groundwater flows and is stored in interstices within the constituent sand grains. Rocks of the Uitenhage Group are not classed as aquifers within the study area due to their generally low permeability and poor water quality.

Primary Aquifer

The area covered by the Tertiary to Recent deposits is large, but little is known about their thickness or aquifer potential. At St Francis Bay, which is in an equivalent hydrogeological setting, sand thickness varies widely due to the sub-outcrop of more resistant TMGS. Softer formations have been denuded by wave action and the sand cover varies from zero to over 40 m in thickness. Shallow pit profiles at Arlington revealed a soil profile to 3.3m of medium grained aeolian sand with widespread calcrete development. No seepage was observed within these pits.

The coastal sands underlying Summerstrand and Humewood are more recent in age and contain a greater element of shelly beach sand. With a greater coarse grained sand fraction, less calcretisation and compaction, they are likely to have higher aquifer potential. The Recent sands have high infiltration potential and internal drainage of rainfall takes precedence over surface runoff, thus reducing losses due to evaporation and enhancing recharge volumes. Most of the sand covered area is free of residential development, although the dunes have been stabilised by alien vegetation such as Rooikranz and Port Jackson, increasing losses due to evapotranspiration.

None of the boreholes recorded in the database pump water from the sands in the Walmer, Arlington and Kragga Kamma areas. Reasons for this might be that the sands are unsaturated or it is easier and cheaper to construct a borehole in the TMGS and rely on the upper sands to store groundwater and recharge the fractured rock.

Secondary Aquifer

There are a number of features that contribute to the TMGS being a major aquifer within the context of the generally limited potential of the secondary 'hard rock' aquifers in South Africa. These indicators are:

- Large areal extent and great thickness;
- Extensive fracture development;
- High rainfall and therefore recharge potential;
- Good quality groundwater.

The TMGS outcrop over a large part of the Cape Province and attain great thicknesses, e.g. Peninsula Sandstone Formation 1 550 m, and Nardouw Subgroup 500 m. The TMGS form one of the major secondary aquifers occurring in South Africa and the local towns of Uitenhage, Humansdorp, Jeffrey's Bay and St Francis Bay all use groundwater from this aquifer for domestic purposes, as do other towns such as Ceres, Calitzdorp, Citrusdal and Albertinia. In the Port Elizabeth area these rocks have been intensely folded to form a series of NW-SE trending synclines and anticlines, and associated thrusting has resulted in an increased thickness of the PSF. Consequently, the rock mass is highly bedded and fractured resulting in the development of a network of secondary structural discontinuities. The secondary fractures form the conduits through which groundwater flows and is stored and give the otherwise impermeable rock its favourable aquifer characteristics.

Groundwater contained in the TMGS is usually among the best in quality in South Africa in terms of dissolved salts, as the sandstones mainly comprise silica and contain little in way of soluble salts. Problems can arise with the low pH and unbuffered water corroding steel and concrete, and deposition of iron compounds in pipes.

While groundwater is not a source of municipal water supply to Port Elizabeth at the moment, the TMGS within the surface water supply catchments of Port Elizabeth, which stretch beyond the Humansdorp area, are a strategic regional resource which should be incorporated into the City's water supply planning in the future. It has been proposed to the Municipality that boreholes drilled into TMGS aquifers, where traversed by existing surface water supply pipelines, could prove a cost effective way of augmenting the municipal water supply. Estimates of sustainable delivery of such a system range between 200 and 600 ℓ /sec. Groundwater protection within this area is therefore an important factor in land-use planning.

5.2 **Present distribution of boreholes**

There are two primary controls on the distribution of boreholes, the most important of which appears to be socio-economic status, while geological and hydrogeological factors are of secondary consideration. Although not all boreholes within the study area were located in the census, the borehole distribution and density recorded is considered to be representative of borehole occurrence in the area. Beyond the municipal reticulation network, in areas such as Sardinia Bay, Kragga Kamma Road and Theescombe, rainwater tanks and groundwater are the only supply options. Several boreholes are found in these areas, some of which have been included in the database. Table 3 gives a breakdown of the number of boreholes in the database by suburb.

Walmer and Summerstrand show the highest concentration of boreholes. Together these suburbs account for 65% of boreholes and the distribution drops off dramatically moving away from these areas.

It is apparent from driller's records that new boreholes are sunk primarily in response to drought conditions. Between 1983 and 1992 properties with larger gardens were suffering under both drought conditions and municipal water restrictions and there was a dramatic

increase in the number of private boreholes in PE. With a depressed economic climate and escalating costs of drilling and pumping equipment, it was only the upper socio-economic groups who could afford the installation of a borehole.

SUBURB	TOTAL BOREHOLES	PERCENTAGE
Central	13	5
Fernglen	3	1
Humewood	8	4
Kabega	3	1
Lorraine	5	2
Mill Park	25	11
Newton Park	7	3
Summerstrand	60	25
Sunridge Park	3	1
Walmer	96	41
Sub Total	223	94
Others	15	6
TOTAL	238	100
Boreholes outside Municipal area	21	

 TABLE 3 - BOREHOLE DISTRIBUTION BY SUBURB

(Only suburbs with \geq 3 boreholes are listed.)

Borehole water use is still considered secondary to municipal water use, which is reflected in the number of out of commission or unused boreholes. Expense on maintenance is considered unnecessary until the next drought threat materialises. In many cases, groundwater quality is so poor that people have a negative attitude to groundwater use and the ownership of boreholes is not considered desirable.

Almost all the boreholes in the study area have been drilled by two or three local contractors. However, none are dependent on local work as the demand is neither reliable nor steady. Enquiries with these contractors reveal they have not drilled a private borehole in the municipal area since 1993.

5.3 **Borehole characteristics**

Construction

Borehole construction is usually simple, with casing through the upper sands and weathered rock, and the competent TMGS left uncased. Drilling conditions in steeply dipping TMGS can be very difficult and deep boreholes (>100m) can take weeks to complete. In many boreholes, the casing installed was insufficient resulting in collapse and loss of the borehole and pumping equipment within two years. In others, collapse has resulted from weathering of the wall rock during cycles of oxidation and saturation induced by pumping. The result is that an unacceptably high number of successful boreholes are redundant because of poor construction and collapse.

Depth

Average drilling depths in all areas except Summerstrand tend to be between 60 and 120 m, implying fairly deep water strikes in the fractured rock aquifer. The depth of these water strikes indicates that the boreholes are not supplied from saturated upper sands. The majority of boreholes in the Walmer and western suburbs of the study area record a water level less than 15 m below ground level. In the Summerstrand and Humewood coastal belt, drilling between 30 and 60 m in depth results in average yields of between 1 and 5 m³/h. Figure 5 shows the yield versus depth relationship for 91 boreholes. The minimum drilling depth of a borehole on record along the coastal belt is 20 m and the maximum, is 90 m. Borehole yield characteristics indicate a typical fractured rock distribution despite the mantle of permeable sands.

Yields

In the context of water requirements for garden irrigation and other domestic uses, the success rate of boreholes drilled is high. The high density of functional boreholes in Walmer and Summerstrand indicates that, even without the benefit of geophysical borehole siting techniques, success is guaranteed. Table 4 shows individual borehole yields rarely exceed 12 m³/h and yields of between 1 and 5 m³/h are normal. Continuous sustainable yields have been proven up to 8 m³/h at the PE Golf Club.

Yield range (m ³ /h)	<1	1 to 5	5 to 10	> 10
Frequency	1	60	27	3

TABLE 4 :FREQUENCY OF BOREHOLE YIELDS

More than half the boreholes on the depth vs yield plot (Figure 5) are deeper than 80m. The chances of a yield above 5 m³/h are greatest between 80 and 120 m, although the majority of boreholes only yield between 1 and 4 m³/h. "Dry" boreholes have been reported. To the north-west outside the study area, the incidence of unsuccessful boreholes increases, as do the chances of yields in excess of $10m^3/h$.

The data indicate that the TMGS aquifer in the PEM area is relatively low yielding when compared to TMGS aquifers elsewhere. Boreholes in the adjacent USWCA, which tap the TMGS at depth below the Uitenhage Formation, deliver exceptional yields in the order of 20 to $100m^3/h$. Yields at St Francis Bay, Jeffreys Bay and Humansdorp are in the range 7 to 50 m³/h from depths of 60 to 90 m, while at Ceres, yields range from 20 to 45 m³/h, from depths of 120 to 150 m. In the latter two examples, the boreholes are tapping the Nardouw Subgroup sandstones, which appear to be more productive than the PSF.

Pumping equipment

Almost all boreholes are equipped with submersible pumps and electric motors. These installations are favoured in urban areas because they can be concealed, make no noise, are entirely automated and are the cheapest to buy, install and run. They require little maintenance but are subject to excessive wear by sand or particulate matter in the water. The relatively high incidence of pump failure is unusual and attests to the indifferent attitude of borehole owners to their groundwater resources.

5.4 Groundwater abstraction and use

Much of the groundwater demand is socio-economically controlled, with the water being used for maintaining gardens and other activities where potability is not a criteria. A minor quantity is used for human consumption and only in those areas where municipal water is not available. As a result, abstraction volumes peak in dry weather and particularly when restrictions are imposed by means of tariff penalties for "excessive" municipal consumption.

Water restrictions were first introduced on 22 February 1989. Due to good rains in the catchment areas of the supply dams in November 1989 restrictions were lifted on 22 November 1989. However, the drought continued and restrictions were again introduced on 29 April 1991. High rainfall in October and November resulted in all restrictions being lifted on 2 December 1992. It should be noted that, for this project, the rainfall figures used are those of the gauging station at Port Elizabeth airport and are not the rainfall figures of the catchment areas of the supply dams. It was the available storage capacity in the dams that determined the level of water restrictions which were implemented in stages. An analysis of the situation conducted by consultants after the drought established that it was a one in a two hundred year drought return and was one of the most severe in history.

In the majority of average and above average rainfall months, abstraction is minimal as groundwater quality is considered generally inferior and municipal water relatively cheap. Records show that, for the majority of borehole owners, groundwater is used and considered as an emergency supply source only.

The proliferation of boreholes tapping the aquifer between 1989 and 1992 does not necessarily represent higher sustained abstraction rates but rather the potential for high demand pulses to be imposed on the aquifer. The ability of the TMGS aquifer to cater for this type of demand pattern has been proven, within reason, in the coastal resort towns along the south-west Cape coast, which rely on groundwater for their water supply. Many of these towns specifically manage their groundwater resources to accommodate the skewed water demand imposed by the influx of tourists over the summer season.

• **Private boreholes**

Of the 238 boreholes in the database, 216 are located on private property. Twenty five boreholes were initially metered, but only 20 can be used to assess the representative volume of groundwater abstracted. Table 5 gives a breakdown of abstraction over the study period.

From the 20 boreholes an annual volume of 20486 $m^3/annum$ is abstracted. With the 216 private boreholes recorded estimated to represent 85% of private boreholes in the study area, the total volume abstracted annually from private boreholes is calculated by simple proportion as:

$$\frac{216}{0,85 \times 20} \times 20 \ 486 \ \text{m}^3 = 260 \ 292 \ \text{m}^3/\text{annum}$$

Location	Total Abstraction (m ³)	Period (days)	Total Annual Abstraction (m ³)	Erf Size m ³
98 Verdun Road	5 547	660	3068	16184
78 Kabega Road	26	707	13	1907
5 Norland Close	155	790	72	1849
308 Kragga Kamma Road	data unreliable			3684
12 West Street	2 358	790	1089	1606
47 Wychwood Road	2 475	790	1144	1190
8 Hallack road	4 752	783	2215	4214
8 Mill Park Road	3 372	781	1575	2078
14 Thames Road	1 126	780	527	1218
3 Whitney Street	1 095	790	506	2201
12 11th Avenue	1 684	408	1506	2146
6 Club Road	1 295	761	621	1983
64 Short Road	794	765	379	3780
10 4th Avenue	502	780	235	1707
10 Idlewylde Cresent	5 519	788	2556	5788
12 Newcombe Avenue	4 156	790	1920	14182
*Sardinia Bay (Stone)	8 333	769	*3955	-
*Sardinia Bay (Danoher)	30 658	829	*13498	-
21 Admirality Way	220	765	105	1740
10 Bullbring Road	1 066	776	501	1104
68 Winchester Road	2 193	776	1031	1620
5 Kolbe Cresent	2 334	739	1153	1700
74 River Road	not operable			2911
15 Cosmos Street	111	150	270	1685
17 Victoria Park Drive	not operable			765
20 Boreholes	40780 m ³		20 486m ³	

TABLE 5 : METERED ABSTRACTION FROM PRIVATE BOREHOLES

* Denotes boreholes not considered for abstraction calculations

Including the percentage of boreholes that became inoperable as being representative of the general incidence of failure in the area, this total is modified as follows:

$$\frac{216}{0,85 \times 22} \times 20 \ 486 \ \text{m}^3 = 236 \ 629 \ \text{m}^3/\text{annum}$$

Corporate boreholes

Ten percent of boreholes in the PEM area are classified as corporate. These include business premises, schools, parks, golf courses and the like. Twenty three were identified in the database of which 13 were monitored. Of these, one collapsed, one pump failed and one is disused. This incidence of failure is higher than for private boreholes and is attributed to the lack of a responsible person in charge of borehole maintenance. The sample size is relatively small and 15% is considered to be a more representative figure for incidence of failure. Table 6 overleaf, gives details of groundwater abstraction from corporate boreholes.

From Table 6 it can be seen that an average annual volume of 60 884 m³ was abstracted from the 10 boreholes during the study period. The calculated average abstraction at PE Golf Course is conservative as metering has shown they use about 75 000 m³ per year. Taking this into account, the volume abstracted from the metered boreholes is 92 582 m³. If the total volume abstracted annually from corporate boreholes in the study area is calculated by simple proportion as with the private boreholes, a figure of 213 650 m³ is obtained. This is heavily skewed as, with the exception of PE Golf Club, Telkom, Victoria Park and Crusader Club, the corporate use of groundwater is negligible. Allowing for the two other major corporate users in the area ie. Walmer CC and Arlington Race Course, an order of magnitude figure of total corporate abstraction is estimated to be no more than 150 000 m³/annum.

Location	Total Abstraction (m ³)	Period (days)	Annual Abstraction (m ³)	
PE Golf Club				
No 1	38 400	763	18370	
No 2	35 167	762	6845	
No 3	16 907	763	8087	
No 4	borehole collapsed			
Telkom	1 475	722	746	
Clarendon Park School	337	748	165	
Victoria Park	24 766	746	12 085	
Fort Frederick	9	760	4	
Donkin Reserve	15	736	7.5	
St George's Park	b	borehole not working		
Crusaders Club	6 197	753	3004	
King Edward Park	borehole not required			
Fedlife Building	241	56	1571	
10 boreholes	123 514	680,9	60884	

 TABLE 6:
 METERED ABSTRACTION FROM CORPORATE BOREHOLES

Combining figures for corporate and private abstraction, total annual groundwater abstraction in the PE municipal area is estimated to be of the order of 387 000m³.

• Impact on municipal water use

From the estimates given above, the annual volume of groundwater that is abstracted is approximately $387\ 000m^3$. Table 7 below shows that this volume forms less than 1% of total municipal consumption since recent incorporation of black residential areas.

Source	1992/93	1993/94	*1994/95
Municipal (Ml)	28 915	32 336	50 114
Groundwater (Ml)	370	370	370
Percent	1.3	1.1	0.74

 TABLE 7:
 ANNUAL WATER CONSUMPTION

* Includes incorporation of the former Ibhayi, Motherwell, Kwadwesi and Kwamagxaki areas.

This low percentage is due mainly to the small proportion of properties with boreholes compared to those served by municipal reticulation. The percentage of groundwater to municipal water use where a borehole is present appears to be high from the two sites where both sets of data are available. These results are presented in graphical form in Figure 6.

At 5 Kolbe Crescent, Summerstrand, borehole water is used for irrigation and household appliances such as the dishwasher, washing machine and toilet cisterns. Once the borehole was installed in July 1993, municipal consumption dropped dramatically and has remained consistently low, on average only between 10 and 20% of total monthly consumption. A rough calculation indicates a reduction of about R2 000 per annum for this user, excluding borehole installation and running costs.

At 64 Short Road Walmer, groundwater is used solely for garden irrigation, partly due to a high iron content making it unsuitable for any household application. As a result, groundwater demand is seasonally driven with typical abstraction peaks in summer. At these times groundwater accounts for up to 75% of total consumption but typically more than 50%. The saving to this user is about R1 200 per annum at current rates but is significantly more during dry years and times of rationing.

Because the borehole distribution is socio-economically controlled, the more affluent people who have the highest per capita daily water demand have the opportunity to make the greatest savings on their water account.

Abstraction volumes have increased since the beginning of the drought in 1983 and peaked in 1992. After the drought and during the monitoring period when "normal" rainfall resumed, many borehole owners allowed their boreholes to fall into disrepair or stopped using them, as the water quality was poor and they are not solely dependent on groundwater. However, many owners do use groundwater as an ongoing part of their consumption, particularly for garden irrigation purposes.

During dry periods additional borehole owners resume abstraction principally to save money. This results in a saving of municipal water which becomes available to other users during times of drought. In this way, boreholes within PEM boundaries that are privately owned are, to a degree, an extension of PEM water resources.

Of interest is the effect of municipal water restrictions and water rationing on the user. The Kolbe Crescent site shows that after the lifting of restrictions and rationing, and prior to the installation of a borehole, municipal consumption remained well below the previous average monthly consumption. As soon as the borehole was installed, the total consumption levels increased beyond those previously recorded outside of restriction periods. This indicates that people adapt to conservative water use when restrictions are initially imposed, but as soon as the water is perceived as "free" or strategically unimportant, consumption volumes are unimportant.

The potential impact on municipal water sales can best be illustrated by a large groundwater consumer like PE Golf Club. An annual consumption of 75 000 m^3 of groundwater for irrigation replaced a similar volume bought from the municipality. At current rates this saves the golf club about R135 000 per annum but costs approximately R11 000 to pump.

The total cost of groundwater use to the municipality in terms of lost revenue, based on an annual abstraction of 390 000 m³ at R1.80 per m³, is therefore R702 000 at July 1995 prices.

5.5 Groundwater levels

A groundwater contour map has been drawn-up from the water levels measured in July 1995 (Figure 7). The contours indicate a natural hydraulic gradient along geological strike from north-west to south-east, towards and across the study area. This reflects the enhanced permeability along strike, with bedding and thrust planes being the principal flow conduits. Exceptionally steep groundwater gradients are maintained across geological strike. This is typical of the TMGS aquifer and mirrors conditions at St Francis Bay and in the Hex River Valley.

The contours indicate that the Baakens River intercepts and drains water from the aquifer and may play an important role in limiting the spread of high conductivity groundwater from the north-west into the Humewood and Summerstrand areas. To the north of the study area, the TMGS is covered by a thick sequence of Tertiary and Cretaceous mudstones. This has generated artesian conditions in the Uitenhage Basin and the groundwater contours indicate that the hydraulic head in this basin pushes groundwater to the south-east and south.

Groundwater levels monitored over the study period show that no significant regional fluctuations of the water table have occurred besides localised drawdown due to pumping. There is no meaningful correlation with rainfall due to the latter's erratic pattern. In general, levels have remained remarkably stable, and without accurate water level data from 1991 and 1992, it is not possible to ascertain the effect of the 'drought' years and increased abstraction on water levels.

The largest monitored user of groundwater is PE Golf Club which uses groundwater for all its irrigation requirements. Three of the four boreholes have been pumped consistently over the last three years. Water levels monitored in the non- pumping borehole indicate that pumping water levels have reached equilibrium at around 58 m below collar and the cone of drawdown is relatively stable. Figure 8 shows water level fluctuations compared to rainfall and abstraction over the study period. Water level measurements were complicated by automated pumping systems and *ad hoc* pumping by major users, which made planning for monitoring difficult.

The presence of the overlying primary aquifer is thought to buffer the effects of both rainfall and pumping on groundwater levels. This is a result of the ability to store and release large volumes of water per unit rise or fall in the water table.

5.6 **Groundwater chemistry**

Groundwater chemistry is firstly discussed in terms of general water types followed by sections on contamination and seawater intrusion.

5.7 Overview of groundwater quality

The database contains over 700 chemical analyses presented in Appendix B. To simplify matters, the average analytical values for each constituent over the entire monitoring period have been used for general discussion on water quality characteristics. The average analyses from 47 boreholes representing all suburbs have been plotted on a Piper Diagram, to enable classification of groundwater types and determine evolution patterns, if any.

With reference to the Piper Diagram (Figure 9) it can be seen that groundwater from the central and inland suburbs is all of a sodium chloride type, particularly north of the Baakens River. Groundwater from the Summerstrand area has a greater Ca/Mg HCO_3 component, which is due to the influence of the lime rich coastal sands. This could indicate that boreholes are tapping the primary aquifer directly or that a component of the secondary aquifer groundwater is derived by leakage or direct rainfall percolation from/through the sand.

Although water types are consistently within the above two categories, there is a large spatial range in electrical conductivity and individual constituents within the sodium chloride type. This is discussed further in Section 5.7.2.

There are also significant time variations in water quality within individual boreholes, as shown by the high values of standard deviation for many constituents, although some are skewed by one analysis, which in many cases was the first of the monitoring period.

The time variations do not appear to be seasonally related, with each borehole having its own pattern. Fluctuations also appear to be above and below a fairly constant level, with concentrations at the start and end of the monitoring period not being significantly different. One exception is the Fedlife borehole, which has shown a continual increase in chloride concentration from 100 mg/ ℓ in June 1993 to 500 mg/ ℓ in February 1994, although this is based on a small number of samples.

The groundwater generally complies with SABS 241-1984 upper limits for domestic water use, with some exceptions, including chloride, nitrate and iron.

5.8 Groundwater contamination

Groundwater from TMGS aquifers in undeveloped mountain catchments ranks among the lowest in electrical conductivity in South Africa. In these recharge areas, conductivity of the "young" groundwater is generally <20 mS/m. Examples include the Ceres and Hex Valleys, and the Citrusdal area. In a recent drilling programme at Ceres, groundwater conductivity was <4 mS/m . Further along the flow path "older" groundwater quality is influenced by catchment land-use and longer contact with the host rock or rocks, and conductivity tends to

Fig. 9

increase. Examples include St Francis Bay and Gansbaai, both coastal aquifers with similar physiographic and geological features to Port Elizabeth. In the latter aquifers, conductivity ranges between 80 to 150 mS/m. Plots of conductivity and chloride concentration in the St Francis area showed a clear increase in both parameters along the groundwater flow path (SRK 1989), ie towards the coast.

In the study area, however, this chemical evolution of the groundwater is not seen and, in the context of expected TMGS groundwater chemistry, the Port Elizabeth aquifer is atypical. For example, the range in conductivity is 50 to 819 mS/m, and in chloride, 100 to 2 799 mg/ ℓ . Furthermore, contour plots of these parameters and sulphate (Figures 10, 11 and 12) appear to indicate that they are decreasing in concentration along the groundwater flow path to the south of the Baakens River. Chemical reactions such as adsorption, precipitation and base exchange can cause natural attenuation and alteration of groundwater chemistry but, in the case of chloride, this explanation is not satisfactory as chloride is a conservative ion. Two quotes from the literature illustrate this fact. Mckee and Wolfe (1963) state that "the chloride ion is probably the best tracer of groundwater flow as it is least affected by absorption-desorption lag or by other physical or chemical phenomena". Hem (1985) states "that chloride ions do not significantly enter into oxidation or reduction reactions, form no important solute complexes with other ions unless the chloride concentration is extremely high, do not form salts of low solubility, are not adsorbed on mineral surfaces and play few vital biochemical roles".

If it is thus accepted that chloride is not being lost from the aquifer system along the flow path, then the only feasible explanation is that it is being diluted. The explanation put forward is that expanding urbanisation in the PEM area (along the outcrop of the TMGS aquifer) has resulted in partial replacement of diffuse recharge through the soil profile by the development of numerous point sources of contamination such as old waste tips, leaking sewers and water mains, septic tanks, fertilizer application and stormwater runoff. For example, Walmer only converted to water-borne sewage in 1968.

This would explain the frequent occurrence of groundwater with radically different chemistry from boreholes a few streets apart. Examples of such conductivity/chloride contrasts are 475mS/m - 1463mg/l and 151mS/m - 390mg/l in Walmer, and 247mS/m - 559mg/l and 652mS/m - 1591mg/l in Walmer Heights. A contributory factor here could be the discrete

nature of the secondary aquifer due to poor hydraulic connection across geological strike. The trend for lower conductivity and concentration of some ions to develop along the flow path is thus a reflection of dilution of contaminated groundwater and its tendency to approximate to background chemistry with time and distance. The main threat to groundwater quality could therefore be from inland sources rather than from seawater intrusion. The reports of 'brackish' water in the Walmer area in the 1920's could also indicate a natural level of salts in the aquifer.

Nitrate concentrations show an opposite trend to chloride in that concentrations increase along the flow path towards the coastal suburbs. The low iron concentrations in these areas may indicate an increase in redox potentials and a decrease in denitrification potential within the aquifer. This could have long-term implications for groundwater quality, with a continuing build-up of nitrates, given the practice of irrigation with treated sewage effluent in many coastal areas and fertilizer application to gardens, sports fields and parks. Figure 13 shows a trend for a general increase in nitrates in the peripheral coastal areas, which possibly supports the above contention.

In a study of the impacts of urban development on groundwater quality in a coastal aquifer near Perth, Australia (Appleyard 1995), it was concluded that significant changes had occurred. These were mainly manifested in increases in nitrate and sulphate. Chloride did not appear to be affected to the same degree.

Potential souces of contaminants into the aquifer are listed below and shown on Figure 13.

- I) Waste disposal sites
 Arlington, Victoria Drive
 Historical sites at Walmer and Baakens River Valley and elsewhere.
- ii) Sites irrigated with reclaimed sewage effluent
 Port Elizabeth Technikon
 University of Port Elizabeth
 Humewood Golf Course
- iii) Golf courses where nitrogenous fertilizers are used Humewood Golf Club
 Walmer Country Club
 Walmer Golf Club
 Port Elizabeth Golf Club, Mill Park

 iv) Other sites where nitrogenous and other fertilizers are used Port Elizabeth Municipal Parks St Georges Park
 Donkin Reserve
 Fort Frederick
 Clarendon Park
 Settler's Park
 Private and corporate sports clubs

For the purpose of assessment of contamination, the major ground water quality indicators considered were, chlorides, nitrates, iron, total organic carbon and bacteria. These five contaminants are discussed separately as far as the monitoring boreholes are concerned.

• Chloride

Most of the boreholes in the Port Elizabeth area have relatively high chloride concentrations, predominantly in the form of sodium chloride. Of the 47 boreholes monitored, 37 had average chloride levels of >250 mg/ ℓ ; 28 with >400 mg/ ℓ and 11 with >600 mg/ ℓ . The majority of the borehole waters fall into the medium and medium/high chloride category, i.e., 250 to 600 mg/ ℓ .

On the basis of information available, there are not many boreholes in Port Elizabeth where the water is used for domestic/potable purposes, other than for the flushing of toilets, washing down floors and other general uses. The high chlorides have a considerable effect on the use of these waters for irrigation purposes, and in many cases special practices have to be used when irrigating plants. Many of the waters are unsuitable for spray irrigation of plants because of problems resulting from salt build-up on leaves. Certain of the boreholes are virtually unusable for irrigation purposes because of the very high total salt content. None of the very highly saline boreholes are close to the sea.

Nitrate

Out of the 47 borehole waters analysed, 21 have nitrate levels >4,0 mg/ ℓ as N, with 11 being >10,0 mg/ ℓ . The high nitrate boreholes are contained in a triangle from

Newton Park towards the sea, with Central and Summerstrand being the outer corners of the triangle.

In a study by Tredoux (1993) on nitrates in groundwater in South Africa, it was found that out of a data base of 18827 complete analyses, the median nitrate value (as N) was 4,5 mg/l. The majority of this sample base was representative of inland aquifers, with few coastal aquifers apart from the west coast. In this context, nitrate values in the study area are not excessive, although in the context of TMGS aquifers, they are excessive.

Sources of nitrate include areas irrigated with treated sewage effluent eg PE Technikon, UPE and Humewood Golf Course, irrigated parks and golf clubs where nitrogenous fertilizers are used, eg Walmer Country Club, Walmer and PE Golf Clubs, municipal parks.

Nitrate contamination is not seen as being a serious problem with the Port Elizabeth boreholes as the water is used for irrigation purposes rather than drinking water.

Iron

Iron has only been found in significant levels, i.e., >1 mg/l, at 10 sites, of which four were >5,0 mg/l. The Walmer/Walmer Heights area seems to have a particular iron problem and this also applies to the Framesby, Lorraine and Kragga Kamma areas. Very high iron levels of >20 mg/l were found on occasions, particularly in Walmer. High iron concentrations are typical of TMGS groundwater, being derived from oxidation of pyrite, but levels > 5 mg/l are probably more indicative of borehole condition, ie casing corrosion.

Organics

The Total Organic Carbon test was used to evaluate the possible organic pollution of borehole waters. Only in seven out of the 47 boreholes monitored were the levels of organic carbon considered significant, i.e., >6,0 mg/ ℓ as C. Of these sites, three are situated in the Arlington area and three in Summerstrand, but others in the same areas did not have significant organic carbon levels. There may be some possible connection between the boreholes and the situation of the City's largest domestic waste disposal site at Arlington, but this cannot be proved from the relatively few boreholes studied in the

area.

Bacteria

Some samples recorded faecal bacteria during the period of study, but most of these can be attributed to bad sampling. One site had significant <u>E. coli</u> I counts on several occasions. This borehole is situated on a smallholding and there are several labourer's cottages with "toilets" in the vicinity of the borehole, and this is the likely cause of the contamination. After due modifications to the facilities the problem was resolved. One borehole in Walmer also had faecal contamination on the several occasions that it was sampled, but these were not significant.

On the basis of this study bacterial contamination of borehole water is not a problem in the Port Elizabeth area. Even the situation of a low income suburb with informal housing in part of Walmer does not appear to result in pollution of the groundwater, as yet.

5.9 Sea water intrusion

The main area of concern with regard to sea water intrusion is the suburb of Summerstrand and, to a lesser extent, Humewood. The other coastal areas are either undeveloped or bordered by office or industrial areas. Inspection of the results from the four monitoring boreholes in Summerstrand shows no sign of any problem relating to sea water intrusion. Of all the boreholes investigated for this project, the Summerstrand boreholes were some of the most consistent in terms of water quality. Water levels are about 4 mamsl within 100m of the sea. This positive hydraulic head will maintain the current fresh/sea water interface position. On the basis of these results sea water intrusion would not be seen as a problem. However, the drought ended shortly before the commencement of this project, and the boreholes have not been used as much as they would during drought conditions.

Recent information has come to light on boreholes in Summerstrand, very close to the sea, which change from fresh water to saline water very quickly during pumping. The owners report that when the borehole is next pumped, fresh water is again obtained initially. These boreholes are within 200 m of the beach, whereas the four monitoring boreholes are at least 400 m from the fresh/salt water interface. A diagram illustrating the mechanics of pulsed sea water intrusion in a secondary aquifer is shown in Figure 14.

Under drought conditions, with all boreholes being used on a regular basis, there is a risk that this transient, short-lived intrusion of saline water could be drawn further into the aquifer at Summerstrand. This is especially true under the likely scenario of borehole use, with pumping frequently taking place at relatively high rates for short periods of time. Turbulence in fractures is a prime cause of expansion of the brackish water diffusion zone between fresh and sea water. With the NW-SE structural trend of the TMGS, there is potential for direct connection between the aquifer and the sea. Ideally, boreholes close to the sea should be pumped continuously at a relatively low rate to minimize turbulence.

5.10 Overview of aquifer potential

On the basis of the yield and water quality characteristics described in the preceeding sections, it can be concluded that the TMGS aquifer in the PEM area does not have potential for municipal water supply, unless more productive aquifers exist at depths greater than those exploited so far. The economics of a network of low yielding boreholes delivering variable but generally poor quality water into the system are not feasible.

It is possible that many boreholes are not being used to full capacity and the yields are generally underestimated. It appears that some areas, like Port Elizabeth Golf Club, are more favourable and the aquifer can support fairly high sustained yields of suitable quality groundwater in these areas.

The clustering of boreholes in selected areas means large parts of the aquifer remain unassessed. The extreme variability in groundwater quality is consistent over the sample areas and on this basis further reduces the aquifer potential for larger scale exploitation.

On a more regional scale, the aquifer beyond the western boundary of the study area improves in both water quality and yield potential. Boreholes forming part of the AEC/WRC investigation and drilled in the Bushy Park area on a large fault, yield between 18 and $55m^3/h$ of potable quality water. Smallholdings in the Kragga Kamma area use groundwater for all domestic purposes, as do the landowners stretching back toward the Lady Slipper and Van Stadens area.

The linear TMGS aquifers formed by the E - W trending folds of the Cape Fold Belt extend for hundreds of kilometers into the Western Cape. Large outcrops form the mountains of the West and South East Cape and high rainfall over the area ensures significant recharge to the aquifer. Three major parallel aquifer systems traverse the catchment feeding Port Elizabeth's water supply dams. These aquifers are being exploited on a small scale locally, but show high potential for further development for regional objectives.

Within this regional hydrogeological framework, the portion of the aquifer forming the Port Elizabeth Peninsula is atypical in terms of both groundwater quality and yield.

It appears from water level data that recharge exceeds abstraction and there is little doubt the aquifer can cope with greater abstraction volumes if they are spread over a wider area. The aquifer is suitable for the type and nature of the demand it currently fulfills and has the ability to cope with the pulses of increased abstraction in dry years.

6 LEGAL ASPECTS

6.1 The international situation

Broadly speaking, international water law can be classified into two main systems, which are often referred to as the common law and civil law systems. The common law system is the body of law built up by the courts through successive judgments, whereas civil law is codified law developed by Parliament or its equivalent in the country concerned.

Both systems had their origin in Roman Water Law, the common law system developing into the riparian system primarily found in England and in countries across the world with historical ties to England. The civil law system is found in European countries where the Napoleonic Code of 1804 applied and in other countries in Africa and the East with historical ties to the European states of France, Germany, Belgium and others.

In the United States of America, most of the eastern states have accepted the riparian system while in the more arid western states the appropriation system developed, which at the same time protects the rights of people who had prior rights to water. A common factor in the national systems of most countries is a tendency towards greater State control. Even in regions where water availability is not the primary issue, State intervention in order to safeguard the quality of water resources appears to be the order of the day. Some examples of the international situation are:

- Botswana: Water is publicly owned and anyone who drills a borehole must apply for

a water abstraction right. All boreholes have to be registered and such registration can be refused if the information supplied is inadequate;

- Germany: Water belongs to the community of citizens of a state, who are represented by a government which is responsible for protection and fair distribution of the resource. Some of the basic tenets of the German Federal Water Balance Act are, no water use without a permit, which is limited in time and quantity, and protection of wells and springs for public water supply;

- Russia: Water is an exclusive state property and is made available only for use. It is neither bought nor sold and cannot be separated from the state property.

With the above summary of international water law as a background, section 7.1 focuses on the situation within South Africa.

6.2 South African Water Law

South Africa's water law is contained primarily in the Water Act of 1956 but is also scattered in 33 other Acts. Most of the legislation is based on the legal system of the countries from which the European settlers came from.

The Roman-Dutch Law was introduced by the first Dutch settlers in the Cape in 1652 and it was soon found to be necessary to control the use of water from rivers near the original settlement. As the Cape settlement was extended and more water was used for irrigation, disputes arose which were dealt with by the "Landdrost en Heemraden" until their abolition in 1827. These bodies, when dealing with water disputes, in effect performed the State's traditional role of regulating water use and resolving disputes. The abolition left a vacuum which could only be filled by the Cape Supreme Court. By the end of the 19th Century, however, it became clear that laws were needed to regulate competing demands on water resources and consuquently laws were developed in the Cape Colony, Natal and the Transvaal. After Union in 1910, water law was rationalised under a single Act - the Irrigation and Conservation of Waters Act, 1912. This Act largely contained the existing common law position as developed by the Courts. Because the courts dealt mainly with irrigation disputes, the Act was largely aimed at compiling these irrigation rules. After the Second World War, when industrial development was on the increase, it became necessary to update the law, which

resulted in the substitution of the 1912 Act with the Water Act, 1956.

South Africa is one of the few countries in the world that has no legal way to restrict the use of groundwater, save through emergency regulation by the minister of Water Affairs. The Water Act of 1956 vests in the owner of land the exclusive right to use groundwater occurring on his land, with only some prohibitions on transfer of such water across boundaries of the land. The declaration of Subterranean Government Water Control Areas (SGWCA's) is the only way within the present Act (Section 26) to regulate development and use of groundwater. As of 1993, only 13 SGWCA's have been declared, covering a total area of about 5000 km², including the Uitenhage Artesian Basin.

The Water Act distinguishes between two types of groundwater, namely *subterranean water* and *underground water*. The former is defined by the Act as ,"such water naturally existing underground...as is contained within the areas proclaimed by the State President to be subterranean water control areas". It is presumed to exist or flow in defined channels. The latter category of water is not defined in the Act but it can be assumed to refer to water that also exists naturally underground but is not included in a subterranean water control area (Visser 1987).

On 17 January 1986 a proposed Water Amendment Bill was published in the *Government Gazette*, the main purpose of the bill being to, vest in the minister the powers to control and exploit water in subterranean sources in certain areas in the public interest." The bill does not alter the existing state of groundwater law and only confers wider powers concerning public management and use of subterranean water found in a SGWCA. The best policy, however drastic, would be to define all groundwater as public water and to deal with such water as is presently proposed for water found inside a SGWCA.

South Africa's water legislation is unsuited to an essentially dry country and is being reviewed. It is based on Roman law which was developed in a totally different climate where water shortages were not of major concern. The shortfalls in current SA water law with regard to groundwater are recognised by the DWA&F and a draft white paper is being drawn-up in consultation with experts from the private sector, and there seems little doubt but that the status of groundwater will change from private to public water in the near future. In this respect, the Department of Water Affairs and Forestry has published a booklet "You and Your Water Rights - South African Water Law Review - a call for public response". The following is an extract from the section of the booklet dealing with the process of reviewing South Africa's water law and the call for public response:

"It is planned to undertake the review in three phases:

- * The first phase will be to make sure that as wide a cross-section of South African society as possible has the opportunity to comment on the law and express what is important to their community. The objective is to avoid the "tyranny of the articulate". Workshops will be encouraged throughout the country, particularly in rural and poor communities.
- * The second phase will be the consideration of the public's response by a monitoring team to be set up by the Minister of Water Affairs and Forestry. This committee will consist of experts in various fields disciplines to the water field, including community representatives, who will recommend to the Minister the principles that should provide the basis for a new legal structure. These principles will then be published in a White Paper giving further opportunity for public involvement.
- * After the Government has made a decision in principle, the third phase will be the actual drafting of new legislation under the supervision of a second monitoring committee consisting of legal experts, whereupon once again draft legislation will be widely published for comment.

Contributions, comments, recommendations and submissions concerning the review of any aspect of the present water law were invited from individuals and interested parties, to be submitted by 19 May 1995."

From the above it can be assumed that far reaching changes can be expected in South African water law in the near future.

52

6.3 Municipal by-law formulation

The current legal framework for local government in South Africa comprises National Statutes, provincial ordinances and municipal by-laws. Municipal by-laws are generally in accordance with the provisions of the relevant provincial ordinance. The PEM Water Supply by-laws were promulgated in The Province of the Cape of Good Hope Gazette No. 4672, November 1990, and contain the following clauses on water installations that can be related to borehole use;

• Chapter I - Section 13

The clause provides for the right of entry to premises to request information regarding the water installation, or to inspect, examine or operate any water fitting of the water installation on the premises.

• Chapter IV - Section 52: "Persons permitted to do installation and other work".

This clause states that only plumbers registered with the Council may carry out work on pipes and fittings on any premises.

• Chapter VI - Section 68: "Use of pipes and water fittings to be authorised by Engineer".

Only pipes and fittings included in the Schedule of Accepted Pipes and Water Fittings, shall be installed. The schedule is drawn up by JASWIC, the Joint Acceptance Scheme for Water Installation components whose members are representatives from the municipalities of Port Elizabeth, Cape Town, Durban, Johannesburg, Pretoria, East London and Kimberley as well as the Water Research Commission and the South African Bureau of Standards.

• Chapter VI - Section 74(8): "Installation of pipes".

The Engineer may require that different water installations on premises bear an acceptable means of identification such as colour coding.

Chapter VIII - Section 99(4)(b): "Protection of water installation".

The owner is to ensure that no cross connection is made between the municipal supply and an alternative supply, for example, a borehole.

Chapter IX - Section 102: "Use of water from sources other than the water supply system".

No person shall use an alternative source of water for domestic, industrial or commercial purposes unless the water quality conforms to the specifications of SABS 241-1984: Water for Domestic Supplies. Also, if borehole water used on a premises is discharged to the municipal sewerage system, the Engineer may install a water meter at the source of the borehole supply.

Chapter IX - Section 103: "Notification of boreholes".

The Engineer may, by public notice, require that owners with boreholes on their premises notify the Engineer of the boreholes and that owners intending to sink boreholes advise the Engineer of their intentions.

The owner of a premises within a municipal area is obliged to comply with the promulgated by-laws of that authority (in this case PEM). The municipality can, by enforcing by-laws and publishing of public notices, regulate the use of groundwater in terms of installation standards, health aspects related to water quality, discharge of effluent groundwater and the registration of existing and future boreholes.

In terms of the existing Water Act and the by-laws outlined in the previous section, PEM cannot regulate the volumes of groundwater pumped from the aquifer and thereby assess the impact of abstraction on the resource in terms of available storage and groundwater quality. This highlights the need for public awarness through education as well as a need for self control.

Further potential problems that may occur and ultimately involve the municipality, include the following:

- <u>Well interference</u> this can occur when a cone of drawdown formed during pumping from one borehole extends to other boreholes situated nearby. The water levels in surrounding boreholes can decline to the extent that the neighbouring boreholes cannot be used simultaneously;
- <u>Over-pumping from an aquifer</u> which will occur if the total volume of water pumped from an aquifer exceeds the rate of recharge to the aquifer, resulting in a nett decrease in storage and a consequent decline in water levels;
- <u>Groundwater pollution</u> Indiscriminate disposal of effluents on surface areas and the application of fertilizers can, in time, result in pollution of an aquifer and degradation of groundwater supplies in areas adjacent to the source of the contamination;
- <u>Sea water intrusion</u> Port Elizabeth occupies a peninsula bounded by the ocean to the east and south. Summerstrand is a suburb situated on the coastal plain and a major proportion of the boreholes identified in Port Elizabeth are concentrated in this area. A potential exists for saline intrusion to occur if pumping in the area exceeds recharge. This potential will be aggravated by high rate, short duration, pumping and in times of drought, when recharge is diminished;
- <u>Sub-standard borehole construction</u> During the drought, some owners in the city sought quick solutions and did not specify borehole construction to the drilling contractor with the result that, in some instances, borehole owners have paid dearly for remedial work to boreholes that were poorly constructed.

Other municipalities with known private groundwater use were contacted to obtain further insight into the *status quo* in respect of legislation. Most have no provision for control or even notification of groundwater use, eg. Somerset West, Hermanus and Graaff Reinet. Beaufort West has no general by-law concerning groundwater/boreholes but further drilling is prohibited in one particular suburb because of the large number of existing boreholes. The most detailed examples of a by-law that the researchers came across is that of Johannesburg, relevant sections of which are as follows:

Wells and excavations:

33.(1) Every well or excavation shall be and be kept adequately covered or fenced and everything shall be done which is necessary to prevent its being in any way dangerous to life or limb.

Construction of wells and boreholes:

35.(1) No well, tube well or borehole may be sunk or constructed, nor shall any person cause, permit or suffer it to be sunk or constructed, unless fourteen clear days' notice has first been given to the Council of the intention to carry out such work, which notice shall also state the proposed position and nature of the work and the purpose for which the water to be derived therefrom is to be used.

The Council may, in any case in which the medical officer of health deems it necessary for the protection or otherwise in the interests of the public health, to do so, by notice in writing to the owner of the premises -

- (a) prohibit the use of any well, tube well or borehole permanently or for such period as he may specify in the notice;
- (b) require modifications of or alterations to, including a change in the position of any well, tube well or borehole and prohibit the use thereof until such modifications or alterations have been completed and approved by the medical officer of health;
- (c) prohibit the carrying out of any work the subject of a notice given to it in terms of sub-section (1) or give such directions as the medical officer of health may deem necessary with regard to the carrying out of such work.

Water supply:

No person shall use or cause, permit or suffer to be used the water from any well, tube well, borehole, spring, dam, river or other source, not being the Council's water main, for human consumption or for any other domestic purpose or for the preparation or manufacture of food or drink for human consumption or in the cleansing of vessels, utensils or appliances used in the preparation or manufacture of the aforesaid unless and until the Council's Medical Officer of Health has given a certificate under his hand stating that such water is suitable for the use which is to be made of it.

Aspects that should be addressed in any by-law promulgated by PEM include:

• Compulsory employment of drilling contractors affiliated to the Borehole Water Association to assist the borehole owner to achieve a satisfactory standard of construction;

- Compulsory submission of copies of borehole completion certificates to the municipality by the owners;
- Right of access for inspection of borehole installations, groundwater sampling, installation of flow metres and measurement of water levels;
- Compulsory submission of one water sample per year for chemical and bacterial analysis;
- The imposition of restrictions on groundwater use should declining water levels become evident or changing water chemistry indicate pollution, sea water intrusion or should well interference be proven and a dispute between borehole owners arise;
- Possible ban on borehole use within an exclusion zone adjacent to the sea;
- Provision for restriction of use of groundwater unfit for domestic consumption;
- Education and self controll.

The aim of PEM should not be just to regulate groundwater use and possibly alienate borehole owners, but also to generate an interest, awareness and self control in the public of the need to protect the resource. In parts of the USA, signposts inform the public that they are entering a protected aquifer area. Such signs placed at strategic points along main thoroughfares would create an awareness among the public and possibly generate interest and enquires.

In the light of the fairly limited use of groundwater as a percentage of municipal consumption, the low yields and moderate to poor water quality, the need for a by-law containing all of the above provisions may need to be reconsidered. It may also be prudent to wait for indications from the DWA&F as to the status of groundwater in the new water laws soon to be formulated.

58

7. CONCLUSIONS AND RECOMMENDATIONS

The main conclusions to be drawn from this study are listed below and follow the same order as the research objectives:

- Number and distribution of boreholes; There are an estimated 300 boreholes in the PEM area, of which 241 have been located on the ground;
- Volume of groundwater abstracted;
- Annual groundwater abstraction is estimated at 370 000 m³;
- Legal aspects;

There are very few municipalities who have promulgated by-laws to control private groundwater use. Aspects that should be included in a by-law for PEM are:

- employment of an affiliated drilling contractor;
- submission of borehole completion certificates;
- right of access for inspection and monitoring;
- regular submission of water samples for quality analysis;
- restrictions on groundwater use in areas with declining water levels or quality, or where mutual interference occurs;
- restriction on groundwater use in an exclusion zone adjacent to the sea;
- create public awareness on groundwater issues.
- Groundwater Quality

Over most of the study area the groundwater is a sodium chloride type. The only exception is Summerstrand where the groundwater has a greater Ca/Mg HCO₃ component;

Groundwater quality in the PEM area is generally atypical of TMGS aquifers elsewhere in the Eastern and Western Cape;

There is extreme spatial variation in groundwater quality, often over very short distances in the same suburb;

Seasonal variation in groundwater quality is not seen as the rainfall patterns are so irregular. There is no 'winter' or 'summer' period of high or low rainfall as in Cape Town, for example;

Sea water intrusion

There is sporadic and short-lived intrusion of sea water in boreholes closest to the sea in the Summerstrand area. This is a local and non-permanent phenomenon at the moment but there is potential for a deeper incursion of saline water into the aquifer under higher pumping stress should drought conditions return;

• Groundwater pollution

There is evidence of groundwater contamination in many areas on the basis of conductivity, chloride and nitrate levels, especially in the context of groundwater quality in TMGS aquifers elsewhere. The contamination is attributed to urbanisation and specifically waste dumps, fertilizer application, leaking sewers and stormwater runoff;

• Effect of groundwater use

Groundwater use has had a negligible effect on municipal consumption in respect of homeowners but in the case of the main corporate user, PE Golf Club,

75 000 m³/annum of groundwater is used. This costs the municipality about R135 000 per annum in lost revenue from sales;

Groundwater potential

In terms of yield and water quality, the TMGS aquifer in the PEM area is not a potential source of municipal supply, unless untapped aquifers exist at greater depths than so far exploited.

The following recommendations are made for further attention:

- The database should be maintained, expanded and constantly updated to include all boreholes drilled into the Port Elizabeth TMGS aquifers as far as Van Stadens River;
- A reduced monitoring borehole network should be maintained in representative areas of the aquifer. These include upgradient (Kabega Park), central (Arlington), northern (Newton Park) and coastal (Summerstrand) areas. This would equate to about six boreholes, including Arlington waste site, which will be monitored as part of a separate project;
- A more detailed study of the boreholes within the coastal rim of

Summerstrand/Humewood, where sea water intrusion has been periodically reported, should be made to quantify the threat or occurrence of sea water intrusion;

- There is a vast amount of chemical data in the database which has only been qualitatively assessed in this study. More rigorous statistical and graphical analysis should be carried out to provide further insight into the atypical hydrogeochemistry of the TMGS aquifer in Port Elizabeth;
- The upgradient limits of the poor quality groundwater should be delineated to ensure that the potential groundwater resources in the TMGS to the west of Port Elizabeth remain unpolluted.

8 **REFERENCES**

Booth, P.W.K and Shone, R.W. (1992). Structure of the Table Mountain Group in the Port Elizabeth area. South African J. Geol, 95 (1/2) p 29-33.

Braune, E. An Overall Strategy for Groundwater Management in South Africa

Bush, R.A. (1986). Hydrogeological Assessment of the Uitenhage - Kruis River Area.

Davies, A.W. (1986). <u>The difficulties of the Regulatory Authorities in the Protection</u> of Underground Water, December 1986.

Department of Water Affairs and Forestry (1995). South Africa - you and your water Rights - Water Law Review : A call for public response. Information and discussion document.

Government Gazette - Department of Water Affairs and Forestry. January 1993 Vol 331 : No. 145507.

Hall on Water Rights in South Africa : Control and Use of Subterranean Water and Water Found Underground. Juta and Co 1974.

Hem, J.D., (1985). Study and interpretation of the Chemical characteristics of natural water. US Geol Sun Water Supply Paper 2254, 3rd edition.

Kulikov, G.V., Kurennoi, V.V., Yazvin, L.S., (1983). Legal and economic aspects of groundwater use. <u>Proceedings of International Association of Hydrological Sciences</u> on Groundwater in Water Resources Planning, 1983, Vol 1, pp 257-264.

Langton, C.W., and Raymer D.A., (1994). Private Boreholes and the Municipality. Paper presented at the IMESA conference in Cape Town.

McKee, J.E., and Wolfe, H.W., (1963). Water quality criteria. California State Water Quality Control Board Publications 3-A.

Mountain, E.D., (1928). Underground water supply of Port Elizabeth. Annexure B to the Mayors report.

The Province of the Cape of Good Hope Gazette, No. 4672, No. 4672, November 1990.

Sekwale, M., (1984)., Geological Survey Dept. (Hydrogeology Division) Lobatse, Botswana <u>Hydrogeological data</u> (Proceedings of the Harare Symposium July 1984).

Simpson, G.C., (1990). Research into groundwater abstraction in residential areas. Water Research Commission Report No. 211/1/90.

Steffen, Robertson and Kirsten (1989). Proposal to develop emergency groundwater supplies for Port Elizabeth. Report 17122/1 for Port Elizabeth Municipality.

Steffen, Robertson and Kirsten (1990) <u>Wellfield development at St Francis-On-Sea</u>-Summary report 171719/6.

Steffen, Robertson and Kirsten (1993) <u>Hydrogeological Investigation of Arlington</u> <u>Waste Disposal Site, Port Elizabeth - Phase I.</u> Rep 189350/1.

Tredoux, G., (). <u>Preliminary investigation of the nitrate content of groundwater and</u> <u>limitation of the nitrate input</u>.

Vos, W.J., (1978). <u>Underground Water - Principles of South African Water Law</u> : Juta &Co.

Visser, F., (1987). Groundwater Law in South Africa. <u>Tydskrif vir die Hedendaagse</u> <u>Romeins-Hollands Reg. November 1987. Vol 50. pp 412-427</u>.

Woodford, A.C.K, (1993). Aspects of the development and management of groundwater resources for urban supply. <u>Municipal Engineer, September 1993, pp 48-50</u>.

RESEARCH INTO BOREHOLES IN THE PORT ELIZABETH MUNICIPAL AREA

THE OWNER/OCCUPIER

PLEASE READ THIS PAMPHLET IF THERE IS A BOREHOLE ON YOUR PROPERTY

The recent extended drought in the Eastern Cape has resulted in a proliferation of boreholes in Port Elizabeth with a corresponding increase in groundwater abstraction. Unless the situation is professionally assessed, the future integrity of the groundwater resource cannot be guaranteed.

Research into groundwater abstraction in Port Elizabeth has been initiated jointly by the Port Elizabeth Municipality and Steffen, Robertson and Kirsten Inc. in a two year project funded by the Water Research Commission. The research will focus on the following main aspects:

* Determination of the number of boreholes in the municipal area;

- * Assessment of the volumes of groundwater abstracted;
- * Monitoring of groundwater quality and assessment of the potential for contamination of the groundwater by sea-water intrusion and the disposal of effluents on the surface.

In order to gather information on boreholes a census form has been printed below this letter and, if you have a borehole on your premises, you are kindly requested to complete the form and return it to the City Treasurer's Department with your monthly municipal services payment or to the City Engineer, P.O. Box 7, Port Elizabeth 6000.

A borehole represents a considerable investment. Your co-operation will be in your best interests to ensure that the groundwater resource can be protected in the long term for all users. Any enquiries that you may have in this regard should be directed to the telephone numbers given below.

City Engineer's Department Scientific Services Division (041) 5062333 Enquiries: Mr G Devey

Steffen Robertson and Kirsten Inc. (041) 323706 Enquiries: Mr C Langton

BOREHOLE CENSUS FORM

LOCALITY

OWNER/OCCUPIER:					
STREET ADDRESS:		POSTAL ADDRESS:		•••••••••••••••••••••••••••••••••••••••	
SUBURB:		SUBURB:			
CODE:		CODE:		·····	••••••
TELEPHONE NUMBERS:					
RESIDENCE: BUSINE	ESS:	ERF NO.:	ERF SIZE:		(m²)
BOREHOLE DETAILS					
DATE DRILLED: /	/19	CONTRACTOR:			•••••
DRILLED DEPTH: (m) LENGTH C	OF CASING:	(m) TYPE OF CASING: I	PVC: STEEL:	ВОТН: .	
CASING PERFORATED: FROM:	(m) TO:	(m) REST WATER LEVE	EL: (m) BOREHOL	E YIELD:	•••••
WAS THE YIELD OBTAINED					
FROM: (a) DRILLING RESULTS?:	YES 🗌 NO 🗌	OR (b) DETERMINED FF	ROM TEST PUMPING?:	YES 📋	№ 🗆
		TEST PUMPING CONTR	ACTOR:		
PUMPING DETAILS					
PUMP TYPE: SUBMERSIBLE:		JET:	OTHER:		
PUMPING RATE:		ESTIMATED DAILY USA	GE:		•••••
DO YOU HAVE A FLOW METER INSTALLED	ON YOUR BOREHOLE	DELIVERY LINE?		YES 🗌	NO 🗌
WOULD YOU BE PREPARED TO HAVE A METE	R INSTALLED AT NO C	OST TO YOU FOR THE DUP	RATION OF THE RESEARCH?	YES 🗌	NO 🗌
GROUNDWATER QUALITY					
HAS A SAMPLE OF YOUR BOREHOLE WATE	R BEEN SUBMITTED	FOR:			
CHEMICAL ANALYSIS: YES D NO	MICROBIOLOGICA	L ANALYSIS: YES 🔲	NO 🗖		
SAMPLES ANALYSED BY:		•••••••••••••••••••••••••••••••••••••••			
GENERAL					

ARE YOU PREPARED TO PERMIT ACCESS TO YOUR PROPERTY ON A CONTROLLED BASIS FOR BOREHOLE MONITORING DURING THE PROJECT?

NAVORSING OOR BOORGATE BINNE DIE MUNISIPALE GEBIED VAN PORT ELIZABETH

DIE EIENAAR/HUURDER

LEES ASSEBLIEF HIERDIE PAMFLET INDIEN DAAR 'N BOORGAT OP U EIENDOM IS

Die onlangse langdurige droogte in Oos-Kaapland het tot 'n groot toename in die getal boorgate in Port Elizabeth gelei, met 'n ooreenstemmende toename in grondwateronttrekking. Tensy die situasie professioneel geëvalueer word, kan die voortgesette beskikbaarheid van die grondwater nie gewaarborg word nie.

Die Port Elizabethse Munisipaliteit het tesame met Steffen, Robertson en Kirsten Ing. 'n navorsingsprojek oor grondwateronttrekking van stapel gestuur. Dié projek sal oor twee jaar strek en deur die Waternavorsingskommissie gefinansier word. Die navorsing sal hoofsaaklik die volgende aspekte dek:

* Bepaling van die aantal boorgate in die munisipale gebied;

- * Evaluering van die volume grondwater wat onttrek is;
- * Monitering van die grondwatergehalte en evaluering van die moontlikheid dat die grondwater deur seewaterindringing en die wegdoening van afvloeistowwe op die oppervlak besmet kan word.

Ten einde inligting oor boorgate in te samel, is 'n sensusvorm hieronder gedruk. Indien daar 'n boorgat op u eiendom is, word u vriendelik versoek om die vorm in te vul en dit saam met die betaling van u maandelikse rekening vir munisipale dienste aan die Departement van die Stadstesourier te stuur of aan die Stadsingenieur, Posbus 7, Port Elizabeth 6000 te pos.

'n Boorgat verteenwoordig 'n aansienlike belegging. Dit is in u eie belang om u samewerking in dié verband te verleen sodat die langtermynbeskikbaarheid van grondwater vir alle verbruikers verseker kan word. Skakel asseblief onderstaande telefoonnommers indien u enige navrae oor die aangeleentheid het.

Departement van die Stadsingenieur Wetenskaplikediensteafdeling (041) 5062333 Navrae: Mnr G Devey

LIGGING

Steffen Robertson en Kirsten Ing. (041) 323706 Navrae: Mnr C Langton

BOORGATSENSUSVORM

EIENAAR/HUURDER:		
STRAATADRES:	POSADRES:	
VOORSTAD:		
KODE:	KODE:	· · · · · · · · · · · · · · · · · · ·
TELEFOONNOMMERS:		
HUIS	ERFORCETTE	
BESONDERHEDE VAN BOORGAT		
DATUM GEBOOR:	KONTRAKTEUR:	
BOORDIEPTE: (m) LENGTE VAN VOERING:	(m) TIPE VOERING: PVC: STAAL:	BEIDE:
VOERING GEPERFOREER: VAN: (m) TOT	:	BATVLOEI:
IS DIE VLOEI VERKRY		
VAN: (a) BOORRESULTATE?: JA 🗌 N	IEE 🗍 OF (b) BEPAAL UIT TOETSPOMPRESULTATE?:	JA 🗌 NEE 🗍
	TOETSPOMPKONTRAKTEUR:	
BESONDERHEDE VAN POMP		
TIPE POMP: DOMPELPOMP:		
POMPTEMPO:	GERAAMDE DAAGLIKSE VERBRUIK:	
IS 'N VLOEIMETER IN U BOORGAT SE TOEVOERPYP GE	EINSTALLEE P?	JA 🔲 NEE 🗍
SAL U INSTEM DAT 'N METER VIR DIE DUUR VAN DIE NAV	ORSINGSPROJEK KOSTELOOS GEINSTALLEER WORD?	JA 🗌 NEE 🗖
GRONDWATERGEHALTE		
IS 'N MONSTER VAN U BOORGATWATER VOORGELÊ VI	IR:	
CHEMIESE ONTLEDING: JA 🗌 NEE 🗍 MIKRO	BIOLOGIESE ONTLEDING: JA 🗍 NEE 🗍	
MONSTER(S) ONTLEED DEUR:		
ALGEMEEN		

IS U BEREID OM VIR DIE DUUR VAN DIE PROJEK TOEGANG TOT U EIENDOM OP 'N BEHEERDE GRONDSLAG TOE TE LAAT SODAT DIE BOORGAT GEMONITOR KAN WORD?

JA 🗌 NEE 🔲

	NAME OF OWNER	STREET ADDRESS	SUBURB	-Y CO-ORD	X CO-ORD
	PE GOLF CLUB NO.1	WESTVIEW DRIVE	MILL PARK	54285.000	3758980.000
A	PE GOLF CLUB NO. 2	WESTVIEW DRIVE	MILL PARK	53965.000	3759040.000
14001480000	PE GOLF CLUB NO.3	WESTVIEW DRIVE	MILL PARK	53995.000	3758865.000
14001480000	PE GOLF CLUB NO.4	WESTVIEW DRIVE	MILL PARK	54000.000	3758635.000
17030090000	METROPOLITAN LIFE LTD	281 CAPE ROAD	NEWTON PARK	52965.350	3757956.920
04031820000	PE MUNICIPALITY	CRUSADERS CLUB	CENTRAL	56380.000	3759900.000
32019350000	PEMUNICIPALITY	KING EDWARD PARK	WALMER	53690.810	3762029.400
32019480000	TELKOM CLUB	VICTORIA DRIVE	WALMER	52540.000	3764120.000
32000470000	CLARENDON PARK SCHOOL	50 SEVENTH AVENUE	WALMER	54350.000	3760570.000
22005270000	VICTORIA PARK SCHOOL	VICTORIA PARK DRIVE	CENTRAL	57035.000	3760815.000
04035960000	PE MUNICIPALITY	FORT FREDERICK	CENTRAL	57435.000	3759820.000
	PEMUNICIPALITY	DONKIN	CENTRAL	57290.000	3759405.000
	PE MUNICIPALITY	ST GEORGES PARK	CENTRAL	56240.000	3759375.000
	BUYS, ISC	17 VICTORIA PARK DRIVE	SOUTH END	57326.570	3760716.770
	KEMP, ES	10 4TH AVENUE	WALMER	55800.000	3761360.000
32001790000	EXLEY, FR	12 11TH AVENUE	WALMER	53190.000	3761589.000
32025500000	VAN DER WALT, A	74 RIVER ROAD	WALMER	53623.000	3760684.000
32004980000	CORNISH, C	64SHORT ROAD	WALMER	53010.000	3761117.000
	MILLER, P	6 CLUB ROAD	WALMER	52288.000	3760925.000
	DEWAR, BN	8 MILL PARK ROAD	MILL PARK	54785.000	3759026.000
04034050000	DASHWOOD, HA	8 HALLACK ROAD	CENTRAL	55569.000	3760077.000
14009890000	LAPINER	47 WYCHWOOD AVENUE	MILL PARK	53145.000	3759304.000
17016790000	LANDMAN	12 WEST STREET	NEWTON PARK	52765.000	3758016.000
06000560000	ENGELBRECHT	3 WHITNEY STREET	FERNGLEN	50952.464	3757754.59
36000930000	DU TOIT, LM	98 VERDUN ROAD	LORRAINE	46923.000	3760663.000
	LOFTIE-EATON, GA	14 THAMES ROAD	FERNGLEN	50660.000	3757926.000
12000720000	MICHEALS	78 KABEGA ROAD	KABEGA	46808.230	3758480.000
32019810000	HARTY, JP	12 NEWCOMBE AVENUE	WALMER	50109.560	3763293.540
07008590000	LANGER	5 NORLAND CLOSE	FRAMESBY	47300.000	3758698.000
	PEINKE	15 COSMOS STREET	WESTERING	47812.790	3756403.070
	PEDERSEN, C	10 IDYLWYLDE CRESCENT	WALMER HEIGHTS		3763310.000
99003510000	DANHOER	SCOTSAM		47018.087	3765034.779
99007400000	STONE, TC	STONE'S THROW	LOVEMORE PARK	48140.731	3764679.926
23006160000	GRAHAM, RC	21 ADMIRALTY WAY	SUMMERSTRAND	62141.000	3762843.000
23014100000	CHURCH, KA	5 KOLBE CRESCENT	SUMMERSTRAND	60364.000	3762682.000
23017360000	BOSCH, JK	68 WINCHESTER ROAD	SUMMERSTRAND	60270.000	3762750.000
23016930000	VAN RENSBERG	10 BULBRING ROAD	SUMMERSTRAND	59912.000	3762833.000
APPENDIX B

PHYSICAL DATA BASE

CHEMICAL DATA BASE

.

-

No.	ERFNO	NAME	STREET ADDRESS	SUBURB	-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
1	04005270000	VICTORIA PARK SCHOOL	VICTORIA PARK DRIVE	CENTRAL	57035.000	3760815.000	61.500	· · · · ·	1	33.25	28.75
2	04019000000	PE MUNICIPALITY	DONKIN	CENTRAL	57290.000	3759405.000	56.000			36.53	19.47
3	04028630000	PE MUNICIPALITY	OVAL TRACK	CENTRAL	56410.000	3759200.000	71.500				
4	04031820000	PE MUNICIPALITY	ST GEORGES PARK	CENTRAL	56240.000	3759375.000	71.500		1	46.65	26.35
5	04031820000	PE MUNICIPALITY	CRUSADERS CLUB	CENTRAL	56380.000	3759900.000	72.500	100.0	6.0		
6	04032120000	NAZARETH HOUSE	10 PARK LANE	CENTRAL	55749.000	3759355.000	84.000	100.0	7.4	53.94	30.06
			2 HALLACK ROAD	CENTRAL	55679.000	3760135.000			1		100.00
			4 HALLACK ROAD	CENTRAL	55641.000	3760116.000			1		
			6 HALLACK ROAD	CENTRAL	55607.000	3760096.000			1		
			8 HALLACK ROAD	CENTRAL	55569.000	3760077.000				52.3	23.7
		VAN DER SPUY, S	1 BRIAN CLOSE	CENTRAL	55622.000	3759857.000		1		02.0	20.7
		GREYLING, JGB	11 HALLACK ROAD	CENTRAL	55609.000	3760003.000			1		·
		PE MUNICIPALITY	FORT FREDERICK	CENTRAL	57435.000	3759820.000		100	6	27.7	51
		FERREIRA, TIR	8 LEWERKIESTRAAT	COTSWOLD	50189.000	3757019.000		5.0	<u> *</u>	2.2	128,8
		ENGELBRECHT	3 WHITNEY STREET	FERNGLEN	50952.464	3757754.590		3.0		<u> </u>	120.0
		STRECKER, H		FERNGLEN	49993.000	3758026.000		100.0	6.0	58.87	31.13
		LOFTIE-EATON, GA	14 THAMES ROAD	FERNGLEN	50660.000	3757926.000		110.0	1.3	45	68
			5 NORLAND CLOSE	FRAMESBY	47300.000	3758698.000		110.0	1.5	2.7	
					58795.000	3758698.000		84.0	2.4	21.33	122.3
			15 GLENGARRY CRESCENT	HUMEWOOD				104.U	2.4	21.33	22.11
	09001160000		13 KILLARNEY ROAD		59206.000	3760809.000		<u> </u>		22	1
	09001170000		15 KILLARNEY ROAD	HUMEWOOD	59234.000	3760841.000		00.0	4.5	22	14.9
		MUKHEIBER, E	14 GLENGARRY CRESCENT		58850.000	3766115.000		80.0	1.5	20.35	22.65
	09001780000		27 MARSHALL ROAD	HUMEWOOD	59428.000	3761039.000					
			33 BEACH ROAD	HUMEWOOD	59751.000	3760896.000		60.0	3.0	4.13	4.37
			8 LA ROCHE DRIVE	HUMEWOOD	59617.390	3761160.000		43.0	1.4		
			HAPPY VALLEY	HUMEWOOD	59405.000	3761695.000			Į		
		GOLIGHTLY, GA	10 KLEINEMOND STREET		44426.000	3758285.000					
	12000720000		78 KABEGA ROAD	KABEGA	46808.230	3758480.000		ļ		5.1	126.9
	12009620000		21 TULBAGH STREET	KABEGA	45220.660	3757160.000				3.2	170.8
	12009920000		18 TULBACH STREET	KABEGA	45224.640	3757214.270		}			
31	14001480000	PE GOLF CLUB NO. 2	WESTVIEW DRIVE	MILL PARK	53965.000	3759040.000				62.31	35.69
32	14001480000	PE GOLF CLUB NO.1	WESTVIEW DRIVE	MILL PARK	54285.000	3758980.000	93.000	150	7.0	62.95	35.05
33	14001480000	PE GOLF CLUB NO.3	WESTVIEW DRIVE	MILL PARK	53995.000	3758865.000	95.000				
34	14001480000	PE GOLF CLUB NO.4	WESTVIEW DRIVE	MILL PARK	54000.000	3758635.000	97.000	COLLAPSED			
		PE GOLF CLUB NO.5	WESTVIEW DRIVE	MILL PARK	54300.000	3758800.000	98.000	1	1		
36	14002240000	SIMPSON, KA	25 MILL PARK ROAD	MILL PARK	54602.000	3759238.000	88.000	110.0	4.5		1
		MEYBURG, JM	11 MILL PARK ROAD	MILL PARK	54705.000	3758991.000	90.600	104.0	9.0		1
		MOORCROFT, CF	9 MILL PARK ROAD	MILL PARK	54717.000	3758963.000		1		60.2	31.3
	14002370000		2 MILL PARK ROAD	MILL PARK	54821.000	3758940.000		1			1
		ALAN ORCHARD FAMILY TRUST		MILL PARK	54855.000	3759023.000		1	1	65	25.5
		ORCHARD, NA	3 MCLEAN ROAD	MILL PARK	54840.000	3759020.000		96.0	3.5		1
42	14002420000		8 MILL PARK ROAD	MILL PARK	54785.000	3759026.000			1		1
		JONES, IA	10 MILL PARK ROAD	MILL PARK	54757.000	3759087.000		110.0	4.0		
		VAN ZYL RUDD & ASS, PTY, LTD		MILL PARK	54716.000	3759191.000			+ ····		
			GREY HIGH SCHOOL	MILL PARK	55080.000	3759275.000		125.0	6.0		1
		MCCALL, I	10 SALISBURY AVENUE	MILL PARK	55312.790	3759343.680		110.0	3.0		1
			5 WAVERLEY DRIVE	MILL PARK	55128.000	3759609.000		80.0	2.4		1
		HOPEWELL, EC	1 YOUNG LANE		54797.000	3759947.000		00.0		<u>├───</u> ──	<u> </u>
			11 REITZ ROAD	MILL PARK	54862.000	3759715.000		100.0	3.0		{
		GOWAR, GB	1 LINTON ROAD	MILL PARK	55009.000			100.0	10.0		
	14005610000	OLIVETO				3759552.000					<u> </u>
		GREYVENSTEIN PRIMARY TRUS		MILL PARK	55079.000	3759750.000		60.0	122		<u> </u>
		VIANELLO	10 FAIRFORD AVENUE	MILL PARK	54250.000	3759520.000		60.0	2.2		Į
		LAPINER		MILL PARK	53145.000	3759304.000		100.0	4.5		
				MILL PARK	53549.000	3759356.000			6.0		
			4 CAMDEN ROAD	MILL PARK	53230.000	3759452.000			2.6	34.1	45.9
				NEWTON PARK	51991.000	3756937.000		80.0	2.0	50.7	55.3
57			92 PICKERING STREET	NEWTON PARK	51165.910	3757250.193		70.0	L		l
	17008720000	FEDLIFE	GREENACRES	NEWTON PARK	53170.000	3758100.000	106.000	140.0	7.4	57.45	48.55
	17016790000		12 WEST STREET	NEWTON PARK	52765.000	3758016.000		126.0	3.0	56.48	54.7

No.	ERFNO	NAME	STREET ADDRESS	SUBURB	-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
		BRERETON, DN	20 MANGOLD STREET	NEWTON PARK	52880.000	3757619.000		100.0	2.4		1
		METROPOLITAN LIFE LTD	281 CAPE ROAD	NEWTON PARK	52965.350	3757956.920				1	1
	17030500000		GREENACRES	NEWTON PARK	53130.000	3758030.000	106.000		3.0		1
63	21000690000	SHEPHERD, SB	108 MARINE DRIVE	SCHOENMAKERSKOP	59727.000	3768115.000	19.000				
		ALGOA REGIONAL SERVICES	"VITAL LINK" FAITH MISSION	SCHOENMAKERSKOP	54150.000	3768830.000	11.000	30.0	1.8	4.6	6.4
		BUYS, ISC		SOUTH END	57326.570	3760716.770	59.000			22.07	36.93
	23000250000		8 BRIGHTON DRIVE	SUMMERSTRAND	61229.000	3761888.000			· · · · · · · · · · · · · · · · · · ·		
		MOOLMAN, CH	1 3RD AVENUE	SUMMERSTRAND	61242.000	3761731.000	6.000	· · · · · · · · · · · · · · · · · · ·	1	1.85	4.15
		BLUMBERG, JM	3 3RD AVENUE	SUMMERSTRAND	61233.000	3761757.000	7.000			1	
69	23000230000	ZONIA PROPERTY TRUST	4 3RD AVENUE	SUMMERSTRAND	61306.000	3761763.000	6.000			1	
			8 3RD AVENUE	SUMMERSTRAND	61285.000	3761826.000	7.000	30.0	10.0		
71	23000450000	HARTZENBERG, FA	8 2ND AVENUE	SUMMERSTRAND	61170.000	3761857.000	10.000			3.4	6.6
		ALBERTYN, ML	7 BRIGHTON DRIVE	SUMMERSTRAND	61229.470	3761888.090		13.0	10.0	2.35	6.65
		VAN HEERDEN, PS	34 BRIGHTON DRIVE	SUMMERSTRAND	61637.000	3762184.000		45.0	4.0		
		ROTHERAY, B	7 9TH AVENUE	SUMMERSTRAND	61953.000	3762182.000					1
		HUISAMEN, GG	2 BOGNOR STREET	SUMMERSTRAND	61767.000	3762285.000	12.000			1	
76	23001980000	KRUGER, M	17 SCARBOROUGH STREET	SUMMERSTRAND	62015.000	3762370.000	6.000	40.0			1
	23002220000		70 BRIGHTON DRIVE	SUMMERSTRAND	62139.000	3762602.000		T	1	1	
		DEMAY, JRC	77 BRIGHTON DRIVE	SUMMERSTRAND	62096.000	3762648.000		[1	1	1
		LONGWORTHY, T	5 ADMIRALITY WAY	SUMMERSTRAND	62356.000	3762640.000	5.300	16.0	4.0	0.66	4.64
80	23002530000	BYRAM, AG	9 ADMIRALTY ROAD	SUMMERSTRAND	62314.000	3762675.000	6.000	20.0	3.0		1
	23005060000		22 BOGNOR ROAD	SUMMERSTRAND	61468.000	3762614.000	20.000	40.0	3.0		1
		EDWARDS, JP	18 BOGNOR STREET	SUMMERSTRAND	61520.000	3762584.000	19.000		1	1	1
83	23005290000	KOORTS, EM	19 NOBBS STREET	SUMMERSTRAND	61328.110	3762723.210	23.000				
	23005310000		28 7TH AVENUE	SUMMERSTRAND	61326.000	3762660.000	23.000	26.0		1	······
85	23005330000	REEDERS, AJ	24 7TH AVENUE	SUMMERSTRAND	61332.000	3762602.000	22.000				
86	23005400000	PLACKETT, CK	15 JENVEY STREET	SUMMERSTRAND	61964.000	3762597.000	10.000		1	1	1
87	23005790000	CONNACHER, KH	21 BRADLEY ROAD	SUMMERSTRAND	61749.000	3763009.000	21.800	32.0	4.5	2.04	19.76
88	23006160000	GRAHAM, RC	21 ADMIRALTY WAY	SUMMERSTRAND	62141.000	3762843.000	11.000				
89	23006930000	DITSHOFF, IT	8 ERASMUS AVENUE	SUMMERSTRAND	61353.000	3763092.000				1	
		SCHONEGEVEL,NC	4 ERASMUS AVENUE	SUMMERSTRAND	61368.000	3763154.000					
91	23007650000		8 SHERINGHAM STREET	SUMMERSTRAND	61213.000	3762422.000		30.0	7.0		
92			41 ERASMUS AVENUE	SUMMERSTRAND	61072.000	3762723.000		43.0			
93	23007890000	TRUSTEES OF MARCLA TRUST		SUMMERSTRAND	60957.000	3762768.000					
94	23008120000	MICHAEL, H	33 SOUTH PORT ROAD	SUMMERSTRAND	61000.000	3762555.000					
95	23008620000	PELLE, PJW	13 AVONMOUTH CRESCENT	SUMMERSTRAND	60704.000	3762512.000					
96	23008840000	CHERRY, HT	30 AVONMOUTH CRESCENT		60555.000	3762544.000					
		GOUDBERG, VE	11 7TH AVENUE	SUMMERSTRAND	61575.630	3762095.170		30.0			
	23014100000		5 KOLBE CRESCENT	SUMMERSTRAND	60364.000	3762682.000				27.5	4.5
		SCHNETLER, ES	17 KOLBE CRESCENT	SUMMERSTRAND	60403.000	3762815.000		50.0	16.0		
		BRADSHAW, JH	64 WINCHESTER WAY	SUMMERSTRAND	60310.000	3762684.000		32.0	8.0		1
	23014400000		31 KOLBE CRESCENT	SUMMERSTRAND	60474.000	3762683.000			.l	I	ļ
	23014550000		14 LOUIS BOTHA CRESCEN		60817.000	3762831.000		l	l <u>.</u>	l	1
	23014660000		1 BURGER STREET	SUMMERSTRAND	61200.000	3762861.000		40.0	3.0		1
	23014670000		3 BURGER STREET	SUMMERSTRAND	61180.000	3762897.000		40.0	3.0	·	ļ
		HATTINGH, DJH		SUMMERSTRAND	61131.000	3762864.000		<u> </u>	<u> </u>	<u> </u>	
		BLUMBERG, AV	44 LOUIS BOTHA CRESCEN		61260.000	3762983.000			·		
	23015000000		2 MARITZ STREET	SUMMERSTRAND	60553.000	3763040.000				5.45	28.55
	23015010000		23 BEYERS ROAD	SUMMERSTRAND	60567.000	3763075.000		78.0	16.0	<u> </u>	-
		DIPPENAAR, MJ	90 LOUIS BOTHA AVENUE	SUMMERSTRAND	60735.420	3763254.540			·		
	23015190000		89 ADMIRALTY ROAD	SUMMERSTRAND	60867.000	3763276.000		30.0	4.8	I	
	23015680000		10 HATTINGH ROAD	SUMMERSTRAND	60925.000	3762988.000		<u> </u>		ļ	. <u> </u>
	23016570000		28 VIGNE ROAD		60252.000	3762902.000			1		
	23016760000		11 VIGNE ROAD	SUMMERSTRAND	59975.000	3762815.000		50.0	10.0	l	
		HENDRIN PROPERTIES CC	19 VIGNE ROAD	SUMMERSTRAND	60055.000	3762860.000		ł	·		·
		DORFLING, NJ	20 BULBRING ROAD	SUMMERSTRAND	60012.000	3762890.000		170.0	<u> </u>		100.10
			10 BULBRING ROAD	SUMMERSTRAND	59912.000	3762833.000		70.0	·	6.58	32.42
		GREYVENSTEIN, R	8 BULBRING ROAD	SUMMERSTRAND	59892.000	3762821.000		42.0	ļ	ļ	
4 4 A I	23016050000	BERNADE, AJ	6 BULBRING ROAD	SUMMERSTRAND	59871.000	3762810.000	38.500	<u> </u>	I		

No.1	ERFNO	NAME	STREET ADDRESS	SUBURB	-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
				SUMMERSTRAND	60163,510	3762922.490		60.0			
				SUMMERSTRAND	60140.000	3762962.000		42.0	3.0		
				SUMMERSTRAND	60270.000	3762750.000		60.0	3.0	13	20
				SUMMERSTRAND	60329,800	3762739.370		40.0	10.0	13	20
				SUMMERSTRAND	59832.000	3763164.000	46.000	40.0	10.0	7.4	100.0
				SUMMERSTRAND	60160.380			00.0		7.1	38.9
						3762072.150		96.0			
				SUMMERSTRAND	60095.000	3762201.000		90.0	6.0		
				SUNDRIDGE PARK	49097.000	3757911.000		50.0	4.0	<u> </u>	
			58 HONEYSUCKLE AVENUE		48618.000	3758639.000	138.000	60.0	4.5	1	
			7 SUNRIDGEPARK AVENUE		49448.000	3757651.000					
				WESTERING	48358.000	3757368.000				0.9	142.1
130	27006880000	PEINKE		WESTERING	47812.790	3756403.070	140.000	105.0	2.0	108.28	31.72
131	30012220000	SCHEEPERS, G	2 FILIPPUS	THEESCOMBE	45646.970	376096.709	3.000				
132	32000170000	HOUZE, AAP	87/89 9TH AVENUE	WALMER	53600.000	3760460.000	60.000				1
		PEARSON, NP	20 ALCOCK ROAD	WALMER	54310.000	3760188.000	64.000	100.0	1.2	1	
				WALMER	54350,000	3760570.000		100.0	7.2		
				WALMER	53304.000	3760872.000		100.0	1.2	<u>i </u>	
				WALMER	52250,000	3761129.000		100.0	3.0	<u> </u>	·
				WALMER	53425,000	3761147.000		l	1	1	
				WALMER	53190.000	3761323.000		I		11	6.4
				WALMER	53190.000	3761589.000		93.0	10.0	5.73	74.27
				WALMER	56041.000	3761235.000		45.0	10.0	13.13	14.21
								45.0		·}	
				WALMER	54220.000	3760005.000					
				WALMER	53743.050	3760706.600		90.0	6.0		
				WALMER	53565.000	3760790.000					
				WALMER	53172.000	3760888.000		110.0	1.2		·
				WALMER	52550.000	3761098.000			<u> </u>	<u> </u>	
	32004960000			WALMER	5296 3.000	3761118.000		110.0	2.0		
				WALMER	53010.000	3761117.000		102.0	3.0	4.3	74.4
148	32005700000	TWL INVESTMENT TRUST		WALMER	5367 3.000	3760839.000	74.000				
149	32006560000	JUDD, BJ	104 CHURCH ROAD	WALMER	53763.000	3760991.910	66.000				
150	32006640000	PUTTER, J	160 CHURCH ROAD	WALMER	53174.000	3761256.000	73.000	110.0	2.5	1	1
151	32006910000	LUWMI TRUST	230 CHURCH ROAD	WALMER	52325.000	3761247.000	89.000				
152	32007270000	SEAMAN, VN	236 WATER ROAD	WALMER	52539.000	3761410.000	85.000	100.0	3.0	1	
			17 11TH AVENUE	WALMER	53237.170	3761498.260	77.000	110.0	2.5	· · · · · · · · · · · · · · · · · · ·	
				WALMER	53817.000	3761184.000					
				WALMER	53827.740	3761129.050			1		1
				WALMER	54981.150	3760682.440			i	35.38	34.62
		MENZIES, P		WALMER	53312.000	3761559.000		·	· · · · · · · · · · · · · · · · · · ·		104.02
				WALMER	53286.000	3761568.000	79.000	100.0	{	5	74
	32010120000			WALMER	52336.000	3761645.000	100,000	100.0			- <u> '</u>
				WALMER			100.000			ł	
					52430.000	3761654.000			<u> </u>		<u> </u>
				WALMER	53556.730	3761637.390	79.000	70.0	100	·	l
				WALMER	536C6.000	3761654.000		70.0	2.0		
				WALMER	54142.000	3761436.000		109.0	<u> </u>	<u> </u>	
				WALMER	55876.000	3760762.000			I	ļ	Į
				WALMER	55580.370	3761152.590		103.0	8.0	I	
				WALMER	558£0.000	3760951.000				I	
				WALMER	55931.000	3761198.000		110.0		1	
168			94 HEUGH ROAD	WALMER	55641.000	3761234.000	62.000	75.0	8.0		
			5 3RD AVENUE	WALMER	56232.000	3761201.000	59.000	86.0		1	1
				WALMER	54130.640	3761045.190	1			1	
				WALMER	53690.810	3762029.400	90,000	58	10	11.5	82
		WALMER COUNTRY CLUB NO.1		WALMER	52495.000		107.000		- <u>-</u>	12.5	78.5
		WALMER COUNTRY CLUB NO.2		WALMER	52925.000		101.000	[12.0	1.0.0
		WALMER COUNTRY CLUB NO.2		WALMER	53460.000	3762555.000			+	·	· · · · · · · · · · · · · · · · · · ·
									<u> </u>	<u>}</u>	<u> </u>
		WALMER COUNTRY CLUB NO.4		WALMER		3762216.000	and the second s	50.0		l	
1761	32019480000	PE KENNEL CLUB	VICTORIA DRIVE	WALMER	55654.200	3763403.950	103.000	50.0	3.0	1	[

and the second second

No. T	ERFNO	NAME	STREET ADDRESS	SUBURB	I-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
		TELKOM CLUB		WALMER	52540.000	3764120,000			1		1
		HARTY, JP		WALMER	50109.560	3763293.540				31.5	112.5
	32019820000			WALMER	51139.000	3763234.000				1	
		SOFOKLEOUS, V		WALMER	54548.000	3761598.000					+
		REPTON, PJ	132 PROSPECT ROAD	WALMER	53644.000	3761632.000				·	+
		GRAHAM, SJ	15 ST JOHNS AVENUE	WALMER	53841.000	3760607.000					
		VAN DER WALT, A	74 RIVER ROAD	WALMER	53623.000	3760684.000				19.53	50.47
		MALHERBE, AL	231 WATER ROAD	WALMER	53202.000	3761314.000		72.0	3.0	10.00	
		MATTHEWS, PD		WALMER	53600.450	3761161.060		12.0	1.0		
		KEMP, ES	10 4TH AVENUE	WALMER	55800.000	3761360.000		60.0		<u> </u>	
		TAVERNER, SM	125 CHURCH ROAD	WALMER	53197.000	3761143.000		100.0	3.0		
	32026570000		186 CHURCH ROAD	WALMER	52871.000	3761272.000	80.000	90.0	3.0	┝────	·
		BEYLEVELD, HJJ		WALMER	53301.000	3761021.400		100.0	2.0		·}
		HOFMEYER, ALC	99 CHURCH ROAD	WALMER	53470.000	3761035.000		140.0	1.2	<u> </u>	
			54 THOMAS ROAD	WALMER	53908.000	3760186.000					
		CONNELLAN, PM						100.0	1.8	5.75	70.05
		EASTWOOD, JC		WALMER	53730.000	3761460.000			100	5.75	72.25
		COOK, RP		WALMER	53752.000	3760600.000		18.0	12.0	<u> </u>	
	32028050000	KOHLER, LE		WALMER	53752.000	3760600.000		108.0	7.0		
		MC WILLIAMS, PJ		WALMER	53510.000	3761020.000		112.0	9.0		· [
	32028350000		49 SHORT ROAD	WALMER	53130.000	3761000.000		38.0		<u> </u>	
		BLUMBERG, SA	12 DORMY PLACE	WALMER	51982.000	3760923.000		ļ	1	1	89
		MILLER, P		WALMER	52288.000	3760925.000		l	l	2.73	77.27
		RUDMAN, LV		WALMER	52508.000	3760794.000		80.0	1.2		
		STRYDOM, CJ	10 CLUB ROAD	WALMER	52470.000	3760849.000				<u> </u>	
	32029000000		1 CLUB ROAD	WALMER	52359.000	3760974.000		110.0			
	32029010000		3 CLUB ROAD	WALMER	52363.000	3760931.000		72.0	2.5	1.5	86.5
		KEHL, HJ		WALMER	52491.000	3760932.000		30.0			
		LEVIN, R		WALMER	52515.000	3760998.000		85.0	2.5	<u> </u>	
		VAN AARDE, FJ		WALMER	54439.000	3760128.000					
	32030480000			WALMER	54896.000	3760549.000	70.000				
	32030630000		5 HILLBROW PLACE	WALMER	54900.000	3760471.000					
		DU PLESSIS, YS		WALMER	53158.000	3761483.000		114.0	3.6	3	74
209	32036260000	SKINNER, DHG		WALMER	53243.000	3761410.000					
210	32036490000	BRETT, ES	146 CHURCH ROAD	WALMER	53327.000	3761195.000					
	32038800000		17 13TH AVENUE	WALMER	52535.000	3761281.000		100.0	4.5		
212	32038810000	WILLIAMS, MA	214 CHURCH ROAD	WALMER	52537.000	3761248.000	85.000				
213	32038820000	BOOYSEN, L		WALMER	54540.000	3760606,950		110.0	3.0		
214	32039640000	PLEKKER	152 PROSPECT ROAD	WALMER	53620.000	3761610.000	78.000				
215	32039860000	MILLWOOD CORNER BODY	162 MAIN ROAD	WALMER	53703.000	3761398.000	71.000				
216	32040170000	PEDERSEN, C	10 IDYLWYLDE CRESCENT	WALMER HEIGHTS	51150.000	3763310.000	143.000	69.0	2.0	29.7	110.3
		GAIL TAVERNER TRUST		WALMER	52699.000	3761111.000	83.000				
		SPEYERS, SA		WALMER	53042.240	3761146.060	78.000				1
				WALMER	51737.000	3759846.000			1	1.2	103.8
	32041360000		75 SHORT ROAD	WALMER	52591.000	3761012.000			1	1	1
221	32041370000	MOLLER, JJ	75 SHORT ROAD	WALMER	52571.370	3760967.330		100.0	3.0	1	· · · · · · · · · · · · · · · · · · ·
	32041510000	VERNON GRAMANDA SCHOOL		WALMER	54430.000	3761940.000		l	1	1	
		BRICKNELL, NW	141 PROSPECT ROAD	WALMER	53892.870	3761400.880		<u> </u>	1	1	1
		SUNDE, HP	53 SHORT ROAD	WALMER	53033.060	3761030.000		30.0	0.9	1	1
			49 10TH AVENUE	WALMER	53427.000	3760801.000			1	1	1
			52 SHORT ROAD	WALMER	53101.860	3761069.680			1	1	1
				WALMER	54500.440	3760530.980			1	1	1
		DATMAN		WALMER	54790.281	3761103.062			<u> </u>	33.2	38.8
			19 KITCHING ROAD	CHARLO	50752.000	3762275.000			1	1-2.2	
			14 MARTIN ROAD	CHARLO	50869.250	3761780.502		85.0	7.0	<u> </u>	
			12 WOODLANDS AVE	LORRAINE	50003.250	0101700.302	110.000	80	2.5	12	116
					46612 000	3760609 000	156.000		4.0	<u> '<</u>	110
			66 VERDUN ROAD		46612.000	3760608.000		70.0			160.0
			98 VERDUN ROAD		46923.000	3760663.000	1130.000		ł	15.7	150.3
			262 KRAGGA KAMMA ROAD		46615.760	3759561.900	497.000	100.0		1.5	490.99
235	36019180000	SAMUELS, DA	29 LOURDES AVE	LORRAINE	47265.000	3759864.000	1137.000			0.67	136.33

WATER RESEARCH COMMISSION/STEFFEN ROBERTSON & KIRSTEN/PORT ELIZAGETH MUNICIPALITY CITY ENGINEER'S DEPARTMENT - RESEARCH PROJECT

No. ERFNO				-Y CO-ORD	X CO-ORD	ELEVATION(m)	BH_DEPTH(m)	YIELD(m3/hr)	WLMBGL(m)	WLAMSL(m)
236 36054090000			THEESCOMBE	47611.956	3761750.750	94.500	68		58	36.5
237 99002980000	MACKAY	MELLOWMEAD	LOVEMORE PARK	46745.593	3765654.594	53.000			7	46
238 99002860000	MAHLERT	ALTMARK	LOVEMORE PARK	46724.533	3765554.660	58.200			33.6	24.6

Boreholes outside of the PE municipal area

.

239	990 0000	GREEF W.	GLENDORE ROAD	THEESCOMBE	51423.971	3746261.871	114.000			10	104
240	990 0000	WADE T.	GLENDORE ROAD	THEESCOMBE	51424.922	3746443.627	125.000			11	114
241	99000180000	CILLIE, H	KRAGGA KAMMA ROAD	THEESCOMBE	42312.792	3760845.005	195.000			1.7	178.3
242	99000460000	THEOPHILUS, AJ	GREENBUSHES	THEESCOMBE	39775.920	3761278.550	180.000	186.0	4.0	29.7	113.3
243	99002850000	ELIOT	CROSSWINDS	LOVEMORE PARK		3765575.162				23.7	26.6
244	99002860000	FUGARD		LOVEMORE PARK		3765546.567				5.65	50.45
245	99003050000	PUFFETT, R	843 SARDINIA BAY ROAD	LOVEMORE PARK		3765262.214		94		10.45	80.55
246	99003410000	NICKELSON	OVER-THE-MOON	LOVEMORE PARK		3765583.432				7.6	68.5
	99003450000			LOVEMORE PARK	47354.776	3765439.476				43	29.9
248	99003510000	DANHOER	SCOTSAM	LOVEMORE PARK	47018.087	3765034.779	81.900	220		9.17	72.73
249	99003510000	LONG, S		LOVEMORE PARK				220		9.2	70.8
250	99004090000	PUFFETT, R		LOVEMORE PARK							
251	99007400000	STONE, TC		LOVEMORE PARK	48140.731	3764679.926				10.7	84.3
	99007780000		250 KRAGGA KAMMA ROAD			3759360.000					
253	99019350000	PE TURF CLUB	ARLINGTON R. COURSE NO.	ARLINGTON	51535.000	3763685.000		18	7	20	94
254	99019480000	ROVER MOTORCROSS		THEESCOMBE	51375.000	3765620.000					
255	99019520000			THEESCOMBE	51330.000	3764420.000					
256	99019520000	WELLS J.	GLENDORE ROAD NO3	THEESCOMBE	51500.000	3764436.000					
257	99019520000			THEESCOMBE	51480.000	3764410.000					
	99019520000					3764440.000					
259	99040340000	PE TURF CLUB	ARLINGTON R. COURSE NO.	ARLINGTON	51915.000	3763632.000	110.000		7	4	106

WATER RESEARCH COMMISSION/STEFFEN ROBERTSON & KIRSTEN/PORT ELIZAE ETH MUNICIPALITY CITY ENGINEER'S DEPARTMENT - RESEARCH PROJECT

Erf. No.	Bh.No.	Date	Address	-Y-Co-ord	-X-Co-ord	EC	Turb.	TDS	TA	BCA	СН	NCH	тн	Ca	Mg	CI	Fe(t)	Na	ĸ	SO4	NO3-N	F	
									CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3	CaCO3								1
04019000000	37	21-Jul-93	Donkin Reserve		3759405.000	91	·			1						112							
04019000000	37	10-Aug-93	Donkin Reserve		3759405.000	91				:						132			J	73	26.0	1	115
04019000000	37	12-Jun-95	Donkin Reserve		3759405.000	104		694								153			I	75	31.0		137
04031820000	24	18-Jun-93	Crusaders Club	56380.000	3759900.000	301	4.9	2210	379	379	379	210	589	356	233	277	0.15	186	345.0	263	152.0	0.19	67:
04031820000	24	17-Jul-93	Crusaders Club	56380.000	3759900.000	135										266							1
04031820000	24	10-Aug-93	Crusaders Club	56380.000	3759900.000	118	2.1	666	85	85	85	48	133	39	94	216	0.06	176	7.0	102	7.4	0.17	32.
04031820000	24	25-Oct-93	Crusaders Club	56380,000	3759900.000	102										203				78	8.5		37
04031820000	24	20-Nov-93	Crusaders Club	56380.000	3759900.000	104										193				74	0.4	ł	1.7
04031820000	24	14-Dec-93	Crusaders Club	56380.000	3759900.000	103										178				64	0.3		1.2
04031820000	24	24-Feb-94	Crusaders Club		3759900.000	92	0.7		44	44	44	69	113	37	76	242		162	11.0		9.3		
04031820000	24	17-Mar-94	Crusaders Club		3759900.000	93	0.6		53	53					- ^0	181		102	<u> </u>	65			41
								544	47	47		70	447	40	75		0.05	407		65	8.9		39
04031820000	24	21-Apr-94	Crusaders Club		3759900.000	94	0.2		4/	: 41	47	10	117	42	75	186	0.05	167	6.0	84	3.5	0.10	15
04031820000	24	20-May-94	Crusaders Club		3759900.000	112	0.4	654								221				81	6.5		28
04031820000	24	21-Jun-94	Crusaders Club		3759900.000	95	0.2	562	54	54	54	45	99	30	69	181	0.04	151	5.0	68	7.1	0.12	31.
04031820000	24	07-Jul-94	Crusaders Club		3759900.000	94	0.4	546	52	52	52	29	81	22	59	197	0.11	142	3.0	69	8.4	0.11	37.
04031820000	24	31-Aug-94	Crusaders Club	56380.000	3759900.000	102		644								180			I	73	0.1		0.6
04031820000	24	21-Sep-94	Crusaders Club	56380.000	3759900.000	111		710								219				86	7.6		33
04031820000	24	26-Sep-94	Crusaders Club	56380.000	3759900.000	97		572								188				73	8.7		38.
04031820000	24	12-Oct-94	Crusaders Club		3759900.000	123	0.7	698	102	102	102	61	163	62	101	239	0.01	177	12.0	95	7.7	0.21	34
04031820000	24	10-Nov-94	Crusaders Club		3759900.000	127		812								269		· · · · · · · · · · · · · · · · · · ·	1	107	6.8	1	30
04031820000	24	08-Dec-94	Crusaders Club		3759900.000	94		600								212			t	81	8.7	1	38
04031820000	24	05-Jan-95	Crusaders Club		3759900.000	149	0.9	1076	83	83	83	148	231	125	106	216	0.04	167	45.0	136	31.0	0.11	13
04031820000	24	15-Mar-95	Crusaders Club		3759900.000	126		748	<u> </u>	<u> </u>					<u> </u>	244	<u> </u>		1	101	6.9		30
04031820000	24	16-Mar-95	Crusaders Club		3759900.000	123		804						· · · ·		238			<u> </u>	101	7.0	I	30
04031820000	24	05-May-95	Crusaders Club		3759900.000	97	0.7	646	62	62	62	46	108	33	75	181	0.05	153	6.0	77	1.8	0.09	7.9
						109	0.7		02	02	02	40	100		-13-		0.05	100	<u> </u>			0.09	
04031820000	24	09-May-95	Crusaders Club		3759900.000			696								201				78	6.6		29
04031820000	24	01-Jun-95	Crusaders Club		3759900.000	110	·	778		<u> </u>						215				88	5.3		23
04031820000	24	12-Jun-95	Crusaders Club		3759900.000	116		746		i						242				102	5.7		25.
04031820000	43	17-Nov-93	PEM St.Georges Park		3759375.000	180										437			L	85	0.1		0.2
04034050000	16	07-Jun-93	8 Hallack Road		3760077.000	183	0.3	1056	48	48	48	147	<u>195</u>	75	120	511	0.02	286	5.0	135	4.4	0.12	19
04034050000	16	17-Jul-93	8 Hallack Road	55569.000	3760077.000	180										490							
04034050000	16	10-Aug-93	8 Hallack Road	55569.000	3760077.000	174										483				97	3.6		15.
04034050000	16	14-Sep-93	8 Hallack Road	55569.000	3760077.000	177	2.5	1012	41	41	41	185	226	85	141	462	0.44	291	5.0	73	3.6	0.12	15.
04034050000	16	16-Nov-93	8 Hallack Road	55569.000	3760077.000	177										356			· · · · · ·	140	3.5		15.
04034050000	16	12-Jan-94	8 Hallack Road	55569.000	3760077.000	164	0.2	982	42	42	42	148	190	69	121	490	0.01	254	4.5	86	2.8	0.12	12.
04034050000	16	08-Feb-94	8 Hallack Road	55569,000	3760077.000	174	2.5		41	41	41	195	236	88	148	437		284	10.0	86	3.6		15
04034050000	16	10-Feb-94	8 Hallack Road	55569.000	3760077.000			<u> </u>												1	1		+
04034050000	16	09-Mar-94	8 Hallack Road		3760077.000	181	0.8		43	43						462				80	4.4		19
04034050000	16	14-Apr-94	8 Hallack Road			183	0.6	976	41	41	41	224	265	104	161	460	0.01	316	8.0	85	4.9	0.35	21.
04034050000	16	09-May-94	8 Hallack Road		3760077.000	173	0.3	966	41	41			200			490		- 010		93	4.1	0.55	18
04034050000	16	09-Jun-94	8 Hallack Road		3760077.000	182	0.0	1014								460			<u> </u>	103	4.3		19
						185	0.3	1006	49	49	49	153	202	78	124		0.26	210				0.05	
04034050000	16	13-Jul-94	8 Hallack Road		3760077.000		0.3		49	49	49	155	202		124	501	0.36	318	4.0	83	4.8	0.05	21.
04034050000	16	10-Aug-94	8 Hallack Road		3760077.000	182		1010								422			 	83	5.1	 	22
04034050000	16	14-Sep-94	8 Hallack Road	55569.000		181		1044				450	040		- 494	465		070		86	4.9		21.
04034050000	16	12-Oct-94	8 Hallack Road		3760077.000	183	2.5	1150	57	57	57	156	213	82	131	472	0.26	270	9.0	92	4.3	0.21	19
04034050000	16	12-Dec-94	8 Hallack Road		3760077.000	177		1012	<u> </u>							316			l	93	5.0	L	22
04034050000	16	10-Jan-95	8 Hallack Road		3760077.000	184	0.4	1110	45	45	45	168	213	82	131	419	0.01	273	8.0	91	4.7	0.05	20
04034050000	16	09-Feb-95	8 Hallack Road		3760077.000	183		986								446				97	5.0		22
04034050000	16	10-Mar-95	8 Hallack Road		3760077.000	182		1156								371				94	4.6		20
04034050000	16	11-Apr-95	8 Hallack Road		3760077.000	181	1.7	1028	46	46	46	152	198	75	123	432	0.02	278	8.0	94	4.0	0.05	17.
04034050000	16	09-May-95	8 Hallack Road	55569.000	3760077.000	182		1012								428				80	4.5		19
04034050000	16	12-Jun-95	8 Hallack Road	55569.000	3760077.000	181.9		972								389				100	4.3		119
04035960000	38	21-Jul-93	Fort Frederick		3759820.000	77										92				1	1	· · · · · ·	1
04035960000	38	10-Aug-93	Fort Frederick		3759820.000	74			l	tl						94			1	70	9.7	i	42
04035960000	38	09-May-94	Fort Frederick		3759820.000	77	45.0	508	99	99						101			· · · ·	85	10.3		4
					3759820.000		19.0	620	116	116	116	22	138	62	76	114	0.25	104	5.0	83	10.1	0.23	
04035960000	<u></u> 2	14-Jul-94 03-Jun-93	3 Whitney Street		3757754.59	75	1.5	422	26	26	26	45	71	23	48	152	0.08	105	3.0	60	13.1 3.9	0.10	
					3757754.59	87									<u>-</u>	199	0.00	- 105		63		0.10	13
06000560000	2	10-Aug-93	3 Whitney Street				····	E00			47	102	100	12	77		0.02	460	- 10-		3.0	- 0.44	
06000560000		14-Sep-93	3 Whitney Street		3757754.59	98	1.1	520	17	17	17	103	120	43	77	239	0.03	160	4.0	46	1.5	0.11	
06000560000	2	16-Nov-93	3 Whitney Street		3757754.59	90	L						<u> </u>			241				44	1.8	<u> </u>	7.9
06000560000	2	12-Jan-94	3 Whitney Street		3757754.59	93	0.5	488	16	16	16	71	87	29	58	230	0.02	134	1.6	38	1.7	0.05	
06000560000	2	08-Feb-94	3 Whitney Street	50952.464		100	0.9		24	24	24	85	109	36	73	256		156	6.0	40	1.4		6.1
06000560000	2	10-Feb-94	3 Whitney Street	50952.464																1			
06000560000	2	09-Mar-94	3 Whitney Street	50952.464		80	4.6		69	69						151				53	1.9		8.4
06000560000	2	14-Apr-94	3 Whitney Street	50952.464		93	0.6	488	17	17	17	97	114	46	68	245	0.03	158	4.0	45	1.9	0.05	8.2
					3757754.59	90	0.4	490	15	15						226			•	47	2.3	<u> </u>	10.

z	T	115.092	137.225	672.843	32.7568	37.6261 1 77064	1.28371	41.1674	39.3967	1064-CI	31.4289	37.1834	0.61972	33.6422	30.0114	30 1009	38.5114	137.225	30.5435	30.9862	1.30/00	23.461	25.2316	0.22133	19.477		15.9358	15 4931	12.3945	15.9358	10 477	21 6903	18.1491	19.0344	21.2477	22.5757 21.6003	19 0344	22.133	20.805	22.133	17 7064	19.9197	19.0344	12 028	45.594	57.9885	17.2637	13.2798	6.6399 7 06788	7.52522	6.19724	P 41054	8.27774	10.1812
Ŀ				0.19	0.17				010			0.11			10.0	1		0.11		1	5.5			1	0.12		0 12	1	0.12			0.35			0.05		0.21		0.05		0.05						0.10	1	•	0.05	11		0.05	11
NO3-N		26.0	31.0	152.0	7.4	0.0	0.3	9.3	8.9 3.5	65	7.1	8.4	0.1	7.6	7.7	6.8	8.7	31.0	6.9	0.7	0. 9.9	53	5.7	0.1	4.4		3.5	3.5	2.8	3.6		4 9 4	4.1	4.3	4.8	5.1	43	5.0	4.7	5.0	40	4.5	4.3	07	10.3	13.1	3.9	3.0	1.5	1.7	1.4	1 9	6.1	2.3
SO4		73	75	263	102	74	64		65 84	81	68	69	2	86	05	107	81	136	101	101	78	88	102	85	135		18	140	86	86	Ca Ca	85	93	103	83	83 86	92	93	91	97	94	80	8	02	<u>85</u>	83	60	63	46	38	40	53	45	47
¥	T			345.0	7.0	T		11.0	60	2	5.0	3.0			12.0			45.0		00					5.0		5.0	2	4.5	10.0		8.0			4.0		0.6		8.0		8.0					5.0	3.0		4.0	1.6	6.0		4.0	
Na	T			186	176			162	167	2	151	142			177			167		163	3				286		100		254	284		316			318		270		273		278					104	105		160	134	156		158	Π
Fe(t)	Ì			0.15	0.06	T			0.05	3	0.04	0.11			0.01	2		0.04		0.05	50.2				0.02		0.44	5	0.01			0.01			0.36		0.26		0.01		0.02					0.25	0.08		0.03	0.02	Π	Ţ	0.03	Π
Ū	112	132	153	277	216	193	178	242	181	221	181	197	180	219	230	269	212	216	244	238	201	215	242	437	511	490	483	356	490	437	462	460	490	460	501	422	472	316	419	446	432	428	389	26	<u>او</u>	114	152	199	239	230	256	151	245	226
ВW	Cacus			233	94			76	75	2	69	59			101	5		106		76	2				120		141		121	148		161			124		131		131		123					76	48		=	58	13		68	Π
Ca	cacus			356	39	T	Π	37	64	*	30	22			53	3		125		6	3				75		85	3	69	88	T	104			78	T	82		82	T	75			Ì	T	62	23	4	6 4	29	36	T	46	Π
TH Ca	cacos			589	133			113	117		66	81			163	3		231		001	3				195		226		190	236		265			202		213		213		198				Ì	138	12		120	87	109	Ť	114	Π
	racos			210	48			69	02	2	45	29			61	5		148		4	2				147		185	3	148	195		224			153		156		168		152				T	22	45		13	14	85	Ţ	- 26	Π
CH	racos			379	85			4	47	F	54	52	Ţ		101	5		83		6.2	3	T			48		44	F	42	4		41			49		57		45		46				T	116	26		=	16	24		17	
BCA	Carcos			379	85	T		44	53	F	54	52			t i	1		83		6.7	3				48		41		42	4	43	₽ ₹	4		49		57		45		46	2			g	116	26		5	16	24	69	17	15
AT A	Carcos			3/9	85			4	814	F	5	52	T		102	5		83		6.2	3				48		41	-	42	41	54	₽ ₽	41		49		57		45		46	2			g	116	26	ļ	=	16	24	50	11	15
TDS			694	2210	666	T			544	654	562	546	644	/10	2/6	812	80	1076	748	804	969	778	746		1056		1012	4	982			976	996	1014	1006	1010	1150	1012	1110	986	1028	1012	972		508	620	422		520	488			488	490
Turb.				6.4	2.1			20	9.0	40	0.2	0.4			20	3		6.0		20	3				0.3		25			2.5	au	0.0			0.3		2.5		4		17				45.0	19.0	1.5		-	0.5	60	4 6	0.6	4
ပ္ဆ	91			301 135		104		32				9 6		111	T	127	L		1	123	T		116		183			177	164					182	1	182			184			18	181.9		77		75	87	88	ន	8	Ca.	93	66
-X-Co-ord	3759405.000	405.000	405.000	3759900.000	3759900.000	3759900.000	3759900.000	000.006	3759900.000	000.000	000.006	3759900.000	900.005	3/59900.000		000.006	900.006	3759900.000	900.006	3759900.000		3759900,000	000.006	375.000	017.000	000.770	000 220	000.770	3760077.000	3760077.000	3/600//.000	0017 000	017.000	077.000	017.000	3/600//.000	077 000	000.770	3760077.000	017.000	3760077 000	3760077.000	027.000	820.000	000 0c8	3759820.000	3757754.59	7754.59	7754.59	7754.59	3757754.59	754.59	7754.59	3757754.59
H	_		_					- 1						+						1																												-				_	_	
-Y-Co-ord	57290.0C	57290.00	57290.00	56380.000 56380.000	56380.00	56380.00	56380.000	56380.000	56380.000	56380.00	56380.00	56380.000	56380.00	56380.000	20200.00	56380.000	56380.00	56380.000	56380.00	56380.000	20200.00	56380.000	56380.00	56240.00	55569.000	55569.00	22209.UL	55569.00	55569.000	55569.000	0.80000	55569.000	55569.00	55569.000	55569.000	55569.000	55569.00	55569.000	55569.00	55569.00	55569 0C	55569.00	55569.00	57435.00	51433.00	57435.000	50952.464	50952.46	50952.464	50952.46	50952.464	50952.46	50952.46	50952.464
	+	F	H		11	+	Ħ	1	╈	$^{+}$	\dagger	H	1		$^{+}$	\uparrow	T	H	1		\uparrow	+	1		_	1	T	T	11		Ť	T	T	T	oad	\dagger	T	1	T		T	\mathbf{T}		T		1			+	+	+		+	H
Address	nkin Rest	Donkin Reserve	Donkin Reserve	Crusaders Club	Crusaders Club	Crusaders Club	Crusaders Club	Crusaders Club	Crusaders Chub	Isaders (Crusaders Club	usaders (Crusaders Club	Crusaders Club	Crusaders Club	usaders (usaders (Crusaders Club	Crusaders Club	usaders (usaucis -	Crusaders Club	Crusaders Club	PEM St. Georges Park	Hallack R	Hallack R	8 Hallack Road	Hallack R	8 Hallack Road	Hallack R	Hallack R	Hallack R	Hallack R	Hallack R	8 Hallack Road	8 Hallack Road	Hallack R	Hallack R	8 Hallack Road	8 Hallack Road	Hallack R	8 Hallack Road	8 Hallack Road	Fort Frederick	Fort Frederick	Fort Frederick	3 Whitney Street	3 Whitney Street	3 Whitney Street	Whitney S	3 Whitney Street	Whitney S	3 Whitney Street 3 Whitney Street	3 Whitney Street
		1	\square	\downarrow		+	\mathbb{H}				-	\square		+	_	+-	-	Ц		\downarrow	4		╞	-		4	+	4-	\square		+	+		+		4	\downarrow	\downarrow	\square		4	-		_						╀	++	+		┼╌┨
Date	21-Jul-93	10-Aug-9	12-Jun-95	18-Jun-93	10-Aug-93	20-Nov-93	14-Dec-93	24-Feb-94	17-Mar-94	2-14-12	21-Jun-94	07-Jul-94	31-Aug-94	21-Sep-94	20-00-07	10-Nov-94	78-Dec-9	05-Jan-95	15-Mar-9	16-Mar-9	PO New OL	01-Jun-95	12-Jun-95	17-Nov-93	07-Jun-9	17-Jul-93	10-Aug-93	16-Nov-93	12-Jan-94	08-Feb-94	10-Feb-94	14-Am-94	09-Mav-94	09-Jun-94	13-Jul-94	10-Aug-94	12-04-94	12-Dec-9-	10-Jan-95	09-Feb-95	11-Anr-05	09-May-95	12-Jun-99	21-Jul-93	10-Aug-93	14-Jul-94	03-Jun-93	10-Aug-93	14-Sep-93	12-Jan-94	08-Feb-94	10-Feb-94	09-Mar-94 14-Apr-94	09-May-94
Bh.No.	+	\uparrow	37	+	+	╈	†	+	\dagger	╈	24	Ħ	+	+	2	╈	T	\square		5	T	T	24	Π	16	+	<u>0</u> 4	╈	+	H	+	0 4	╀	+		99	$^{+}$	$^+$	H	\vdash	╈	10		+	T	- 8 8	\uparrow		~ ~	~	101	~	20	5
H	0000	0000	0000	0000	800		0000	8	800		0000	0000	000	000		300	0000	000	8	88		800	0000	0000	0000	800			0000	0000	800		800	0000	0000	88		0000	0000	0000	800	8000	0000	800	3000	2000	0000	0000	0000		0000	0000	0000	0000
Erf. No.	04019000000	0401900000	04019000000	04031820000	04031820000	0403182	0403182	0403182	04031820000	0403182	0403182	04031820000	0403182	0403182	0403182000	0403182	04031820000	04031820000	04031820000	04031820000	04031820000	0403182	04031820000	04031820000	0403405	0403405	0403405	0403405	04034050000	0403405	0403405	0403403	0403405	04034050000	04034050000	04034050000	0403405	04034050000	04034050000	0403405	04034050000	0403405	04034050000	04035960000	0403590	0403596 0403596	06000560000	06000560000	06000560000	000000	06000560000	0600056	06000560000	0600056

OJECT
RCH PR
- RESEA
TMENT
EPAR.
ER'S C
ENGINI
JITY CITY ENGI
IPAI
ŝ
Ē
RT ELIZA
STEN/PORT
& KIRS
RISON
ROBERTS
EFFEN
SSION/STE
Ŵ
ARCH CON
ñ
WATER RES
-

z	16.3784	0.22133	19.477	0.75252	0.44266	0.22133	0.22133	0.44266	0.22133	0.22133	0.22133	0.66399	0.17706	0.84105	0.22133	0.22133	22133	0.22133	1 221 22	0.22133	0.22133	0.22133	0.22133	7 22133	0.22133	0.04427	0.02213	0.22133	22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	70427	0.04427	0.02213	0.22133	7.43669	11 0000	12.3945	9.73852	11.0665	10.1812	11.0665	11.5092	10.1812
	0.10	g		0.36		0.40	0.44	1 1		2	0.05				0.64		2	0.80	0.70		Ī			4.0	0.05	Ţ	0.05		T		0.25	0.24	1 1		<u> </u>	0.39			0.23		0.31	11			0.05		0.15	0.22	
NO3-N	3.7	<u>.</u>	4.4	0.2	0.1			0.1	<u>.</u>	50	0.1	0.2	0.0	020	0.1	-	50	0.1	•	-	0.1		5	50	0.1	000	0.0	-	20	0.1		50	-	-	5 6	0.1		0.0	0.0		1.7	36	28	22	220	2.3	2.5	2.6	2.3
SO4	66	61	o 65	170	237	147	143	183	120	159	153	172	148	<u>5</u>	306 306	363	288	280	394	000	272	288	505	289	299	323	300	281	86 86	50	54	115	93	23	۶ <u>۲</u>	72	27	74	64	28	77	F	: 8		70	. 99	9 <u>8</u> 4	8 <u>1</u> 9	68
¥	3.0		2	14.0		17.0	13.0	30.0	23.0		11.0			23.0	17.0		2.6	20.0	31.0	2	12.0		34.0		26.0	1	32.0		t	7.0	8.3	7.0			 D:0	12.0			12.0	╈	5.0		61	6.6	40		7.0	7.0	1
R	93	10	5	860		847	<u> </u>	825		272	804		+	821	1340	3746	- 	1235	1355	-	1290		1202	1230	1273	1	1244		1-	511	519	542			8	533	212		521		223		267	257	258		237	231	1
Fe(t)	0.09	910	2	0.74		0.10	0.06		11		0.45			0.01	2.65		5	3.60	376	3	4.49		500	3	3.94		0.28			2.28	0.12	43.80		E 74		1.08	3.07		4.71	1	0.25				100		0.03	0.02	
J	170	153	174	1689	1386	1632	1541	1343	1488	1461	1499	1364	1490	1380	2455	2471	2542	2619	2512 2466	2446	2533	2242	2312	2379	2276	2402	2101	2038	1006	948	1070	1042	950	866	1056	1027	921	666	1046	1118	316	352	360	349	360	362	370	375	379
BW	74	- 13	5	376	┼╌╢	433	389	H	460		374			┿	714	004	+	Η	835	+	669		735	2	716	1	678			236	241	260			3	250	55		233		104		103	35	104		86	6	1
Ca	40	E.	3	210		285	233	246	375	C70	200			275	394	544	# 5	427	545	-	386		464		478		457	1		150	142	177		475	67	152	140		153	Ť	87		46	8	<u>9</u> 3	┝╼╂	20	47	
TH	114	137	2	586		718	622	670	203	<u>2</u>	574			695	1108	1242	747	1118	1380		1085		1106	2	1194	+	1135			386	383	437			202	402	6/2		386	+	191		149	143	197		148	137	1
NCH /	55	- RA	2	429		260	468	518	638	8	416			534	916	010	75	933	1198	2	895		000	000	966		937			342	331	354			500	360	825		341	Ť	0		60	Ē	161	<u>}-</u> +	108	94	1
CH	59	68	3	157		158	154	152	155	3	158			161	192	200	3	185	182	3	190		107	10	196		198			44	52	83			\$	42	14		45	+-	191		56	32	36		6	43	1
BCA	59	68	3	157		158	154	152	161	3	158	Í	Ì	161	192	200	3	185	182		190		107	101	196	ĺ	198		T	44	52	83	65		4	42	4		45	Ť	230		56	33	298 39		9	43	
TA TA	59	68	3	157		158	154	152	161	3	158			161	192	200	3	185	182	3	190		107	101	196		198	Ť		44	52	68 8	65		4	42	4		45	Ť	230		56	32	290 390		4	43	
TDS	Π	482	264	3110		2982	2966		7850	3060	2828	3062	2920	3010	4866	3604		4848	5412	4840	4748	4940	4000	4930	4912	4868	5090	4804	4400	1952	2038	2234	1884	2006	2016	2074	2120	2044	1994	2064	952		868		764	800	808 813	838	836
Turb.	2.3		;	3.7		2.6	1.7	0.8	0.7	3	1.2			-	30.0	0.57	2.4	51.0	22.0	2	60.0		110	2. 7	42.0		53.0			20.0	2:0	48.0	60.0	17.5	c.17	1.6	0.2		12.0	+	1.3		30	0.2	9.0 0.8	0.7	0.4	0.5	1
ЕĈ	82	78		509	498	496	469	497	208	505	512	504	202	209 209	815	790	807	774	798 815	810	793	199	/30	778	809	799	819	728	320	325	321	a de la compañía de la Compañía de la compañía	323	337	338	339	335	342	342	323	150	163	153	139	143	147	145 146	147	147 1
-X-Co-ord	3757754.59	3757754 59 3757754 59	3757754 59	3757926.000	3757926.000	3757926.000	3757926.000	3757926.000	3757926.000	3757926.000	3757926.000	3757926.000	3757926.000	3757926.000	3758698.000	3758698.000	758698 000	3758698.000	3758698.000	3758698,000	3758698.000	3758698.000	3758698.000	3758698.000	3758698.000	3758698.000 I	3758698.000	3758698.000	3758480.000	3758480.000	3758480.000	3/56460.000	3758480.000	3758480.000	3758480.000	3758480.000	3/58480.000 3758480.000	3758480.000	3758480.000	3758480.000 3758480.000	3759040.000	3759040.000	3759040.000	3759040.000	3759040.000	3759040.000	3759040.000	3759040.000	3759040.000
-Y-Co-ord		-	1-1	50952.464 50660.000 3	1-1	- 1	50660.000				50660.000							1 1	47300.000								47300.000					46808.230		-+-		46808.230		1 1				53965.000	-				53965.000		
Address -	3 Whitney Street 5		3 Whitney Street 5	+-	$\left \cdot \right $	╈	14 Thames Road 5	H		1-	Ħ	-1	Ť	14 Thames Road 5		5 Norland Crescent 4				-+-	† •••	5 Norland Crescent 4			+-+	_	5 Norland Crescent 4	_	78 Kabena Road 4		\square	78 Kabega Road 4	Ħ	-+-	78 Kabega Road 4	H	-		\vdash	+	1	Ħ		$\uparrow \uparrow$	Gort Club	\uparrow	Golf Club	P.E. Golf Club 5	Goff Club
Date	13-Ju+94	14-Sep-94	15-Mar-95	21-Jun-95	10-Aug-93	14-Sep-93	12-Jan-94	08-Feb-94	09-Mar-94	09-Jun-94	13-Jul-94	10-Aug-94	15-Sep-94	10-Jan-95	03-Jun-93	10-Aug-93	14-06P-30	12-Jan-94	08-Feb-94	16-10-40	13-Jul-94	10-Aug-94	14-Sep-94	12-Dec-94	10-Jan-95	13-Feb-95	20-Apr-95	11-May-95	28-JUN-93	14-Sep-93	12-Jan-94	14-Apr-94	09-May-94	09-Jun-94	14-Sep-94	12-0d-94	10-Jan-95	08-Mar-95	20-Apr-95	11-May-95	18-Jun-93	17-Jul-93	19-Jan-94	22-Feb-94	71-Anr-94	20-May-94	21-Jun-94	12-0ct-94	10-Nov-94
Bh.No.	2	~~~	7	13	13	5	13	13	13	2	13	13	е;	2 62	8	80 0		8	•	0 00	8	80		o a	σ	æ 6	0 60	8	R (1	42	42	42	42	42	42	42	42	42	42	42	8	8	86	8	88	38	86	88	8
Erf. No.	060056000	06000560000	06000560000	06000560000	06002980000	06002980000		06002980000	06002980000	06002980000	06002980000	06002980000	06002980000	06002980000	07008590000	07008590000	0/000530000	07008590000	07008590000	07008590000	07008590000	07008590000	07008590000	07008590000	07008590000	07008590000	07008590000	07006590000	120005590000	12000720000	12000720000	12000/20000	12000720000	12000720000	12000/20000	12000720000	12000/20000	12000720000	12000720000	12000720000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000

G
Ū,
PRO
Ŧ
ARC.
RESE
RES
É
ų,
Ē
PAI
ᆸ
EER'S
Ш
١,
n L
≧
Š
Ē
~
NG N
MUN
-
BET
Z
ц
PORT
ĕ
Ē
IRSTEN
¥
N &
130
Ì۲.
8
27
E
STEFFEN
ISSION
ŝ
N.
8
RCH
RESE
R.
Ē
X
-

Z		2.2133	11.5092	10.6238	11.9518	5.75458	7.52522	7.52522	8.8532	9.29586	0.41034 9.29586	8.8532	3.31995	780	29.2156	16.8211	19.9197	22.133	26.1169	23.0183	22.5757	33.1995	22.133	18.636	10 477	19.0344	18.1491	19.477	21.2477	19.477	20.3624	22.5757	470C.U2	22.5757	22.5757	20.805	20.3624	22.5757 38.0688	35.8555	23.0183	39.3967	29.2455	30.5435	16.3784	23.0183	24.789	28.3302	21.4443	22.133	31.4289 29.2156	25.6743
4			0.21	0.24		0.05	Ť	0.31		20			0.29				T	0.05		0.12		0.24		0.18						0.05		0.05		0.18		0.11		0.13			0.0		0.05		2		0.19	0.12		0.20	1
NO3-N		0.5	2.6	29	2.7	.		1.7	0,0	2.1		20	0.8	<u> ч</u>	9.9	3.8	4.5	5.0	5.9	5.2	2	7.5	5.0	4.2		40.4	4	4.4	8 9 C	4.4	4.6	5.1	D.	5.1	5.1	4 4	4.6	5.1	8.1	5.2	6.8	6.6	6.9	3.7	N.	5.6	6.4	7.0	5.0	7.1	5.8
504	1-	96	7	22	74	19	23	73	75	83	22	73	20	6	86	88	- 10	89	87	94	62	97	87	69	-	- 57	42	65	5	108	2	-+-	543	74	76	22	75	75	61	72	3	212	64	80	2	88	81	23	1	39	76
¥			0.	6.0		10.0		9.0	1		2		7.0				6.7	7.0		8.0		8.0		4.0	T	Ť		5.6	6.5	10.0		0.0	T	6.0		7.0		<u>6.0</u>			6.0	+-	6.0	-			5.0	4.2	0.7	6.0	
Na			217	217		363	+-	294		288	007		200		-		326	305		287		260		188				226	232	289		218		210		216		216			217	+-	189	-	<u>e</u>		167	158	167	162	Η
Fe(t) 1			0.02	0.01		0.20	╁╸	0.45			70.0	+-	0.93				╡	0.00		0.0		0.02		0.0	T				T	0.00		8		0.00		0.02		0.01			80	+-	0.02		5		0.04	0.03		0.0	
CI CI		397	297	340	370	606	7 90	508	521	564	804	488	305	463 378	401	511	555	436	457	390	462	392	472	287	105	519 519	300	305	202	331	306	315	324	321	327	297	314	329	320	314	326	277	274	348	198	178	202	218	204	138 210	217
Ma	CaC03		6	94		165		116		-	•		1 00				135	131		113	+-	98		~		+		93	88	122		87	T	78		82		85 76	2		88	+-	09		2		- 19	62	22	64	
Ca	2		62	57		120		56		8	8		92	+			76	88		67	+-	43		51				46	43	79		42		38		39		40 74	2		8		42		- - ₽		31	23	23	21	Π
H	CaCO3 C		159	151		285	╞	172		176			192	+-	+-		511	219		 180		141		128		+-		139	131	201		132		116		121		125			<u>8</u>	┥	102		 2		110	85	95	85	
NCH	CaCO3 C		2	84		533		143		641	ž		0	T			188	195		66		105		22				114	102	177		8	t	6		86		88			85	+-	70	ę	2		78	59	1	 29	
CH	CaCO3 C		84	67		52	╎	29			5		192	+-			2	24		- - 18		36		76	t	T		25	62	24				26		25		27	:		5	-	32		8		32	26	24	26	
BCA 1	CaCO3 C		84	67		52		29	ſ	24	5		215	t			23	24				36		76	t			25	29	24		26	ł	26		25		27			21	+-	32	6	8		32	26	24	58 28	27
I I	2		84	67		52		29	-		5		215	-			- 23 23	54		18		36				Ì		25	29	24		26		26		25		27	:		5		32		8		32	26	24	25 26	27
TDST		1082	928	792	786	1250	108	1076	1020	1008	500	066	932		1		1	1020	1004	980	1020	854	978	88	+	+		670		706	712	200	786	726	724	758	744	722	716	756	722	022 642	724	752	222		692	572	┝╾┼	520	566
Turb			0.5	0.5		11.0	t	0.2			3		37.0				1.0	9.0	0.3	3.9	Ť	1.1		2.6	T	ĺ		0.4		0.2	2.5	5.1		0.1		4		0.4	2		4		0.4		- - 2		0.7	0.7	1.3	0.0	0.5
EC		171	145	144	141	225	187	186	186	184	185	180	140	16/	165	175	51	167	171	169	12	160	175	2	R71	118	125	127	128	134	130	132	135	131	133	38	135	137	134	132	132	113	118	134	49 105	89	100	<u>5</u> 8	86	8 <u>5</u>	88
-X-Co-ord		040.000	040.000	3759040.000	3759040.000	3758980.000	000.086	980.000	3758980.000	980.000	000 086	3758980.000	865.000	3758865.000	865.000	3758865.000	3758865.000	3758865.000	865.000	3758865.000 3758865.000	865.000	865.000	865.000	3758635.000	635.000	3758635.000	635.000	3758635.000	3758635.000	3758635.000	635.000	3758635.000	3758635.000	635.000	3758635.000	635,000	635.000	3758635.000 3758635.000	3758800.000	800.000	800.000	800.000	3758800.000	800.000	026.000	3759026.000	3759026.000	3759026.000	3759026.000	3759026.000	026.000
+	T-1	- T											1		_				T T		1	1 1		_															0 3758	0 3758	0 3758								7-7	_	
-Y-Co-ord		53965.000	53965.00	53965.000	53965.000	54285.000	54285.00	54285.00	54285.000	54285.000	54285.00	54285.000	53995.000	53995.000	53995.000	53995.00	53995.000	53995.00	53995.000	53995.000	53995.000	53995.000	53995.000	54000.000	54000.000	54000.00	54000.00	54000.000	54000.000	54000.000	54000.00	54000.00	54000.000	54000.000	54000.000	54000.00	54000.000	54000.000	54300.00	54300.00	54300.000	54300.00	54300.000	54300.00	54/85.000	54785.000	54785.000	54785.000	54785.000	54785.000 54785.000	54785.00
	T	Π	╈				1		┪	1	Ť		a I	╈	T	Ħ	9	╈	H	9		P P	q	q			T	Ħ	+	Ħ	T	╈	╈	Γ	T	1-	H	41	\uparrow	H	+	╈			1	Road	Road	Coad	++		H
Address		E. Golf C	P.E. Goff Club		E. Golf C	P.E. Golf Club		P.E. Golf Club	E. Golf Club	P.E. Golf Club	P.E. Golf Club	E. Golf C	E. Golf C	P.E. Golf Club		E. Golf C	E Golf C	P.E. Golf Club	E. Golf C			P.E. Golf Club	E. Goff C	E. Golf C	P.E. GOT CIUD		E. Golf C	E. Golf C		P.E. Golf Club	E. Golf C	L Got C	E Golf C	E. Golf C	P.E. Golf Club		E. Golf C	P.E. Golf Club	E. Golf C	E. Golf C	E. Golf C		E. Golf C	E. Golf C	8 Mill Park Road 9 Mill Dark Boad	Aill Park F	8 Mill Park Road	8 Mill Park Road 8 Mill Park Road	Aill Park F	8 Mill Park Road 8 Mill Park Road	Aill Park F
	L						\perp		_	_		╞	\square	4		Ц	4	┶		4	\downarrow	_	Ц			_	1.		\downarrow			╉			\square	4-					+	_	1	\square		+-	$\left - \right $		\downarrow		∔ - ↓
Date		08-Dec-94	05-Jan-95	10-Mar-95 05-Mav-95	01-Jun-95	21-Jun-94	21-Sep-94	12-0ct-94	10-Nov-94	08-Dec-94	16-Mar-95	01-Jun-95	18-Jun-93	17-JuF93	26-0ct-93	16-Nov-93	22-Feb-94	21-Apr-94	20-May-94	21-Jun-94	21-Sep-94	12-0d-94	10-Nov-94	18-Jun-93	17-JUF93	26-Oct-93	16-Nov-9	19-Jan-94	22-Feb-94	21-Apr-94	20-May-94	21-Jun-94	10-Aug-94 21-Sep-94	12-00-94	10-Nov-94	05-1an-95	16-Mar-95	05-May-95	10-Aug-9-	21-Sep-94	12-Oct-94	10-Nov-94	05-Jan-95	01-Jun-95	08-Jun-93	10-Aug-93	14-Sep-93	11-Nov-93 12-Jan-94	08-Feb-94	09-Mar-94 14-Apr-94	09-May-9
Rh No	+-	H	╈	+	\top	30a	+	30a		90a	+	30a		5	T			3		33	56		Π	32	+	26	t	Ħ	+		32	32	╈	T	32	36		32		Ħ	32a	+	32a	H	19	19	19	- 19 19	П	61	
Γ		80000	80000	80000	80000	80000	80000	80000	80000	0000		80000	80000	80000	80008	80000	0000	80008	80000	8000		80000	80000	80000	80000	80000	80000	80000	80000	80000	80000	80000		80000	80000		80000	80000	80008	80000	80000	80000	80000	80000	2000	20000	20000	20000	20000	20000	20000
Ed No		14001480000	140014	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	140014	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	140014	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14001480000	14002420000	14002420000	14002420000	14002420000	14002420000	14002420000	14002420000

÷
ñ
20
R
X
ĕ
ត្ត
ш
5
z
¥
E
PA
Ш
Ś
Ë
Ä
ğ
Ó
≿
ö
≿
5
₫.
¥
ş
Ŧ
(T39)
2
3
PORT
ğ
z
KIRST
* *
ž
S
5
B
BOR
7
FFEI
Ĕ.
δ
S
š
ŝ
Mo
8
Б
Ř
ň
RES
TER
×
-

z	28.7729	25.2316	28.3302	29.2156 26 5596	27.8876	29.6582	27.8876	27.0023	27.4449	27.8876	13.1913	8.8532		17.2637	9.29586	18.1491	19.0344	19.9197	18.1491	15 0504	18.5917	19.477	14.6078	13.7225	14 6078	16.3784	12.8371	2.0805	4.86926	4.33807		0.03320 3.09867	3.05435	4.2938	3.98394	4.86926	3.98394	9.73852	15.9358	11.5092	40.7247	4.2938	42.4954	48.6926 38.5114	70.8256	48.6926	66.399 61 9724	1.32798	61.0871	65.071	50.9059
Ľ	Ī	0.12		50.0		80		0.05			0.10	0.20					0.05	T	20.07	Т		0.22		20.0	1	0.04		0.05	0.05	4 1	10.0	Î	0.05		S	0.10			1 1	0.19		0.20			0.05	,		0.10	П	_	0.05
NO3-N	6.5	5.7	6.4	9 0 9 0 9 0	6.3	6.7	- 1 - 2 - 2 - 2	6.1	6.2	6.3	0.0	7 0 7		3.9	2.1	4.4	4.0	4.5		- 4 6	42	4.4	3.3		3.6	3.7	2.9	2.0 7		1.0		5,0	0.7		<u>6</u> 0	1.1	6.0	52	3.6	2.6	9.2	0.	9.6	11.0 8 7	16.0	11.0	15.0	200	13.8	14.7	11.5
SO4	84	93	11	818	81	8	8 8	30	77	80	/6 87	8		61	=	+ ~	202	73	74	75	2	6/	78	86	36	78	85	28	58	<u>8</u> :	4	24	51	47	48	52	22	48	58	41	98	112	8	5	60	53	21	52	65	+-	50
×	ł	3.0		50		5.0	+	6.0			3.0	5.0			4.2	-	4.0		000		-	5.0			2	5.0		0.5	3.0	-	2.5		6.0		20	6.0				0.2		0.6	┥	19.0	2.0		3.0	1.7	2.0	╋	24.0
RN Na		107		147	-	165	+	161			681	134			8	3	118		129	+-		124		113	2	166		817	221		32	5	266	105		220	775			8	╎	234		╉	147		149		145		119
Fe(t)		0.06		0.02	+-	0.01	+	0.49	\vdash	-	C 102	1.18	$\left \cdot \right $	+	╉		0.04	\mathbb{H}	0.27	+-	+-	0.20			╋	0.13			0.08		21.0		0.03	+		0.08		+-		0.22		0.21			0.09		0.40	0.10	$\left + \right $		0.03
1	┢		64	188		$\left \cdot \right $	714	+	Н	+	157	+	┝┥	161	20	09	╀	\vdash	165	+-	56	H	292	+	+-	226 (-	╉	+	-+	+	100	+	╉	╉	$\left \right $	400	┼╴	$\left \right $	+	82	\mathbb{H}	89	805	┼┤	-+	╋	109	\vdash	+-	107 0
Mg CaCO3		17		67		61		65	$\left - \right $		+	62		-	49	╉	54	$\left \cdot \right $	28	+		55 1	-		╉	68	+		113 2			+-	144 4	40	╀	11	112	╀		31		74 2		185	H		47	24	$\left \cdot \right $	+	28
Ca Ca		21		21	-	23		26	H		2	26		+	200	+	28	H	4	+		18			╀	61	+	2	65 1	$\left \right $	4 6	╉	91	+	┼	56 1		╀	$\left \right $	88		63	╉	116	+	-	5	12		+	-
TH CaCO3 Ca		98		88		84		91			+	88		+	69	╉	82		+	60		73		122	+-	129	-	801	178	-	/61	╉	235	153	╀	167	176	┢		69		137	+	301	H	+	/8	36	$\left \cdot \right $	+	45
NCH 1	-	61		60		57 1	+	57			+	63		-	64 C	+	59	$\left \right $	2	+		50		101	┿	62 1		145	161 1	\mathbb{H}	/20	+-	218 2	+	5	143 1	148	╀	┼┼	-		16 1		╀	29		21	8	$\left \right $	+	22
CH N CaCO3 Ca		37 (28	-	27		34			+	25 (_	24	+	23	$\left \cdot \right $	52			23	-		╀	67 (+	_ _	17 1			╉	17 2	40	┼╴	24 1	- BC	┢		69		121	+	+-	23	+	27	28	$\left \right $	+	23
3CA Cal		37 3		28	-	27 2	╀	34			+	25 25		+	╉	+	23	$\left \right $	52	+		23 2			+-	67 6	+	₽	17	$\left \right $	╀	1	$\left \right $	-	╀	24	28	╀	$\left \right $	81		121 1		+	23	-	21	28 2		4	23
TA 30 CaCO3 Ca(-	-		28		27 2		34 3			╉	25 25		+	+	. .	23	$\left \right $	22	+-		23 2	~		-	67 6	╉		17 1	\square	+		$\left \right $	•	<u> </u>	24 2	38	-	$\left \right $	5		121 1	_	+-	23 23		+	28 2		+	23
TDS T		37 37	8	572 2	-	4	t 19	-	544	+	╀	442 2		+	400 400	1	╞		542	+	12	$\left \right $	3	+	╀	728 6	+	╀	784 1		040		H	+	+-	$\left \cdot \right $	814 830 3	╞	\square	+	+	954 1;	+	2	+	╉	21 21	+	\square	7	386 2
-	5	3 49	22	+-	\vdash	4		+	δ	568	+			╉	╉	0	╀	$\left \right $	╤┤	_	4	2 42	8	╉	+	4	200	0	7		╉		$\left \cdot \right $	80 6		2	╉	┼╌	2	- -	-	96 96		_	9 500	╡	7 622	9 396	$\left \cdot \right $	9	\mathbf{H}
		-		0	\vdash	- -		1 0.6	-	╉		2 4.1	$\left \cdot \right $	0.7	╉	╞	1.6	Н	╉			+	-	50	╀	2 2	-	╀	7 0.	6	╉		┼┤	•	-	2	5	╋	8	~ 	- 67	5 7.	20	9 7 2	H	+		+	$\left \cdot \right $	-	H
о Ч ЕС				900 900 900		00 101		00 101		8000		00 82		00 B		28			8					00 133		00 112					Ì	1					00 135			00 62				00 140			00 81 00 76			200	
-X-Co-ord	3759026.000	759026.0	3759026.000	3759026.000	3759026.000	3759026.000	759026.0	3759026.000	3759026.000	759026.0	3759275 000	3759275.000	3759275.000	759275.0	1.012801	3759275 000	3759275.000	759275.0	3759275.000	759275.0	3759275.000	3759275.000	759275.0	750775 C	3759275 000	3759275.000	759275.0	3759304.000	759304.0	3759304.000	159304.0	759304.0	3759304.000	3759304.000	759304.0	759304.0	3759304.000	759304.0	759304.0	758100.0	758100.0	3758100.000	758100.0	3758100.000	3758016.000	758016.0	758016.0	3758016.000	3758016.000	3758016.000	758016.0
┣-┼-						54785.000 3								_															T							53145.000 3										-					
-Y-Co-ord	54785	5478	5478	54785.000	54785.000	5478	5478	5478	5478	5478	5508(H	+	+	+	+		1	-†-	5508(5508(5508(5508(55080	55080.000	5508(5314	s 53145.000	e 5314:	50314	5314	s 53145.000	53145.000	5314	6 5314	_	-	53145.000		53170	5317(53170	5317(52765.000	5276	52765.000	5276	5276	52/65.000	5276
55	k Road	k Road	k Road	k Road	k Road	k Road	k Road	k Road	k Road	II Park Road	School School	School	School	School			School	School	School	School	School	School	School	School		Grey High School	School	Avenue	d Avenu	d Avenu	DO Avenui	Avenue	47 Wychwood Avenue	47 Wychwood Avenue	a Avenue	47 Wychwood Avenue	47 Wychwood Avenue	47 Wychwood Avenue	47 Wychwood Avenue	uilding	uilding	uilding	uilding	uilding	Street	Street	Street	Street	Street	Street	Street
Address	8 Mill Par	8 Mill Par	8 Mill Park Road	8 Mill Park Road	8 Mill Park Road	8 Mill Park Road	8 Mill Par	8 Mill Park Road	8 Mill Park Road	8 Mill Par	Grev High School Grev High School	Srey High	Grey High School	Grey High	Jey High	Grev High School Grev High School	Srev High	Srey High	Grey High School	Grev High School Grev High School	Srev High	Grey High School	Srey High	Srey High	Srev High	Srey High	Srey High	Wichwoo	Wychwoo	Wychwoo	WYCHWO	Wichwor	Wychwoo	Wychwoo	Wichwoo	Wychwoo	Wychwoo	Wichwood	Wychwoo	Fedlife Building Eedlife Building	Fedire Building	Fedire Building	Fedlife Building	Fedire Building Fedire Building	12 West Street	12 West Street	12 West	12 West Street	12 West Street	12 West Street 12 West Street	12 West
╞	H	$\left \cdot \right $		+			_		\square		_	┝	$\left \cdot \right $	+	╉		╇		-	╈	╇	+	-		20.	-95	-95 (-93 47	-93 47	4	94 4/	94 47			94 47		-	1 1		\downarrow	[]	-	4	-93	-03	-93 -93	94	94	94 -	8
Date	09-Jun-94	13-Jul-94	10-Aug-94	12-Oct-94	12-Dec-94	10-Jan-95	10-Mar-95	11-Apr-95	09-May-95	12-Jun	10-0un-93	29-Sep-93	16-Nov-93	14-Dec-93	19-Jan-94	22-rep-94	21-Apr	20-May-94	21-Jun	10-JUF34	26-Sep	12-Oct-94	10-Nov	08-Dec-94	16-Mar	05-May-95	01-Jun	08-Jun-93	14-Sep-93	11-Nov-93	12-Jan-94	DQ-Mar-04	14-Apr-94	09-Jun-94	14-Sep-94	12-Oct-94	12-Dec-94	11-May-95	12-Jun-95	14-Jun-93	10-Aug-93	29-Sep-93	25-Oct-93	16-Nov-93	03-Jun-93	10-Aug-93	14-Sep-93 16-Nnv-93	12-Jan-94	08-Feb-94	10-Feb-94 09-Mar-94	14-Apr-94
Bh.No.	19	19	19	6	19	19	20	19	19	19	52 22	25	25	55	2	67 22	25	25	25	52	25	25	25	25	22	25	25	2	18	18	2	8	18	₽,	<u>0</u>	18	18	<u>8</u>	18	2	22	20	2	88	-	-	-	-			-
	120000	4002420000	120000	120000	120000	120000	14002420000	120000	120000	120000	14002650000	50000	14002650000	650000	550000		350000	14002650000	14002650000	14002650000	350000	14002650000	550000	550000 550000		14002650000	650000	14009890000	00006	14009890000	000068	14009890000	000068	000066	00006	14009890000	000066	14009890000	14009890000	15028720000	720000	15028720000	15028720000	15028/2000	00006/	000062	000062	17016790000	17016790000	17016790000	00006/
Ert. No.	14002420000	140024	14002420000	14002420000	14002420000	14002420000	14002420000	14002420000	14002420000	14002420000	14002650000	140026	140026	140026	14002650000	14002650000	14002650000	140026	140026	140026	140026	140026	140026	14002650000	140026	140026	140026	14009890000	14009890000	140096	140098	14009890000	14009890000	14009890000	14009890000	140096	14009890000	140098	140095	15028720000	15028720000	150287	150287	150281	17016790000	17016790000	170167	170167	170167	1/016/	17016

WATER RESEARCH COMMISSION/STEFFEN ROBERTSON & KIRSTEN/PORT ELIZABETH MUNICIPALITY CITY ENGINEER'S DEPARTMENT - RESEARCH PROJECT

z	56.6605	0.9862	4.0045	44.266	1 7109	61.9724	4.0045	61.9724	3.1192	3.1192	1 9724	88532	.75252	22133	22133	85017	48693	.53119	.22133	22133	44266	70826	.88532	.44266	22133	1 5007	7.5458	1.9724	1.72637	3.09862	01009	.77064	0.22133	.88532	1.22133	05435	62178 ·	22133	2.3461	46078	0	0.22133	44266	9.6788	70.8256	38.532	0	5.4334	2.///4 0.9862	5.2522	92.9586	2.9586	4.1054
ц.	5		0.10 5		0.04	Т	0.10 5	9	2 2 2			0.34 0			0.35		0.18	1		0.42		0.32 0	11	0.25 0	-	0 17	1	1	0.48 1	0.50		-	0.66.0		0.47 0	<u> </u>	0.40	1	0.71		0.19			0.44	0.58 7	1	0.46			1	0.39	5 00	0.64 8
NO3-N	12.8	7.0	12.2	00	16.2	14.0	12.2	14.0	12.0	140	14.0	0.2	0.2	0.1	-		50	0.1	0		50	0.2	0.2	- -		200	13.0	14.0	4		50	0.4	00	0.2	0.1	200	0	0.1	0.5			0.1	0.1	18.0	16.0	20.0		19.3	18./ 7 N	17.0	21.0	21.0	19.0
S04	77	68	62	6 6	; 99	24	58	26	82	85	38	49	46	42	₽ \$	**	37	39	35	5	2 Q	46	43	44	45	202	122	112	47	22	65	56	42	52	52	57	56	85	56	10	8	43	20	23	87	66	75	62	89	86	82	81 B1	88
¥			1.0	1	40		4.0			7		2.9		-	0.4	06	3.0			3.0	T	2.0		2.0	1	20		3.0	4.0		2	4.0	53	3	3.0	Ť	3.0		2.0	T	5.0			•	6.0		3.5		9		3.0	Ť	4.0
RZ			107	T	149		127		301	G		151			159	145	136			3		141		139		8	3	245	239	100	1	249	283	3	250		260		251	T	262			193	218		169	000	22		179	T	178
Fe(t)			0.41		0.01		0.20		0.95	CC-D		0.33			20.0	0.49	2.43			21.80	,	0.03		0.33		0.07	555	0.05	0.11	1 20	2		0.05	20.0	0.05		0.00		0.02		0.10			0.01	0.09		0.04	000	70.0		0.03	T	0.37
J	134	144	164	69	171	203	133	123	132	021	132	344	337	336	RUS	307	339	312	338	339 357	345	322	317	317	354	133	229	252	478	480	348	449	472	480	492	465	480	355	486	455	480 480	457	480	306	285	285	278	304	304	287	288	285	283
Mg CaCO3			29		40		31		00	67		69		00	29	13	202			8		2		52		44	F	106	156	183	3	158	171		155		153		144		150			86	123		95	103	C21		105		98
Ca CaCO3			15		34		17		1	-		388			433	386	326			ŝ		323		398	4		3	163	419	415		434	415		399		417		4 00		421			438	406		378	140	744		398		400
TH CaCO3			44		74		48		31	ŧ		457			C1C	459	396			413		387		450		124		269	575	202		592	586		554		570		544		571			236	529		473	570	2/2		503		498
NCH CaCO3			16		36		19		;	2		178		4	248	190	125			2		108		184	4	2	2	0	178	185		198	179		138		151		132		176			152	140		91	q0	ß		120		114
t CaCO3			28		38		29		22	3		279			207	269	271			583		279		276	100	2 2 4	3	269	397	10		394	407		416		419		412		395			384	389		382	376	3/0		383		384
BCA CaCO3			28	_	38		29		2	3		279		277	207	269	271			282		279		276	264	t y	8	270	397	410		394	393		416		419		412		395			384	389		382	366	9/c 379	;	383		384
TA CaCO3	29		58	_	88		29		56	3		279		277	+	╋	271		4	287		279	$\left \cdot \right $	276	+	₹ 8	╞	270	397	110		394	393	-	416	_	419	\square	412		395			384	389		382	366	379	;	383	+	384
SQI	464	504	464	318	536	╞	Н	374	492	488	466	1026				101	1054	1062	1094	11082	1066	1076	1072	3 62	948	228		1168	1394	1360	3		1366	1486	1478	1550	1546	1460	1480	1410	1406	1428	1458	1154	1240		1164	1136	1128	1220	1198	1206	1232
Turb.	3.9		2.3	_	0.7		135.0		22	0		9.7		0.6		23	6.4			42.0		3.5		5.6 2		033	2	1.2	2.7	90	3	9 .4	31	;	0.8	_	4.0		0.3					0.7	0.8		0.3	40	202	;	0 4	-	0.2
I	0 76	1		88	ł			22	1		1-	11		- (4	4	4-	11	1	163	1	1	1_1	1	0 157	+-	Ľ	()	1	222	Ĺ	11	228	1	((Í	1	1	0 232	- [1	11	[[196	1			187	\perp	1	188	1	11
-X-Co-ord	3758016.000	58016.00	58016.00	3758016.000 3758016.000	3758016.000	3758016.000	3758016.000	3758016.000	50010.00	3758016 000	58016.00	3768830.000	3768830.000	68830.00	3768830.000	3768830.000	3768830.000	3768830.000	68830.00	3768830.000	68830.00	3768830.000	3768830.000	68830.00	3768830.000	3760716770	3760716.770	60716.77	3762843.000	62843.00	3762843.000	3762843.000	3762843.000 3762843.000	62843.00	3762843.000	3762843.000	62843.00	62843.00	3762843.000	62843.00	3762843.000	3762843.000	62843.00	3762682.000	62682.00	3762682.000	3762682.000	62682.00	3762682.000 3762682.000	3762682.000	3762682.000	62682.00 67682.00	62682.00
						+	-			1					_	_	-								-							- T		- I								_								-			
-Y-Co-ord	52765.000	52765.	52765.000	52765.000	52765	52765.000	52765.000	52765.000	52765.000	22/03	52765.000	54150.000	54150	54150	24150	5150	54150	54150	54150	24150	54150	54150	54150	54150	54150	57376	57326	57326	62141	62141.000 62141.000	62141.000	62141.000	62141.000 62141.000	62141	62141.000	62141.000	62141.000	62141	62141.000	62141	62141.000	62141	62141.000	60364.000	60364.000	60364.000	60364.000	60364.000	60364.000 60364.000	60364.000	60364.000	60364.000 60364.000	60364
22	Street	Street	Street	Street	Street	Street	Street	Street	Street	Street	Street	ink	Link	¥	Ĕ		Ě	ink	Link	ž		ž	Link	ink	×	a Park	a Park	a Park	tty Way	Ity Way	ty Way	fty Way	l Admirafty Way Admirafty Way	fty Way	fty Way	thy Way	the Way	fty Way	fty Way	Admiratty Way	fty Way	tty Way	fty Way	rescent	rescent	rescent	rescent	rescent	rescent	rescent	rescent	rescent	rescent
Address	12 West Street	12 West	12 West	12 West Street	12 West	12 West Street	12 West Street	12 West Street	12 West	12 West	12 West Street	Vital Lini	Vital L	Vital Link	Vital Link		Vital Link	Vital Linl	Vital L		Vital Link	Vital Link	Vital L	Vital L		17 Victoria Park	17 Victoria Park	17 Victori	21 Admiratty Way	21 Admiratty Way	21 Admira	21 Admiralty Way	21 Admira	21 Admira	21 Admiratty Way	21 Admiratty Way	21 Admiratty Way	21 Admira	21 Admiralty Way	21 Admira	<u>21 Admiranty Way</u> 21 Admiratty Wav	21 Admiralty Way	21 Admira	5 Kolbe Crescent	5 Kolbe Crescent	5 Kolbe C	5 Kolbe Crescent	5 Kolbe C	5 Kolbe Crescent 5 Kolbe Crescent	5 Kolbe C	5 Kolbe Crescent	Kolbe C	5 Kolbe C
	-94			+		L			⊥	-		-93	/-93	-94	5	6 3	6	9-4	-94	1-94	18	-95	r-95	۷-95	-95	76-1	26-	┢	\square	_	1	\square	4-	-	\square	_	+	1_	$\left \right $	-		+	Ц		+		$\left \cdot \right $	\vdash	+	+	++		+
Date	09-May-94	09-Jun-94	13-Jul-94	10-Aug-94	12-0c1-94	12-Dec-94	10-Jan-95	13-Feb-95	10-Ma	C8-J04-11	12-Jun-95	07-Jut-93	11-Nov-93	17-Mar-94	21-Apr-94	21- hin-04	07-Jul-94	10-Aug-94	22-Sel	12-00-94	13-Dec-94	05-Jan-95	16-Mar-95	05-May-95	01-Jun-95	02-Apr-92	10-Auc	14-Set	03-Jun-93	10-Aug-93	16-Nov-93	08-Fet	09-Mar-94	un(-60	14-Jul-94	10-Aug-94	12-04	20-Dec-94	10-Jan-95	13-Feb-95	20-Ant-95	09-May	12-Jun-95	03-Jur	14-Sep-93	16-Vov-93	12-Jan-94	09-Mar-94	14-Apr-94	09-Jun-94	14-Jul-94	10-Aug-94	12-00-94
Bh.No.	-	-	-		-	-	-	-	-		-									8					æ.		=	=		5 4		2			S	د م	0 v			2 L	0 4			ω					94	0 0		94	Ш
Ert. No.	17016790000	17016790000	17016790000	17016790000	17016790000	17016790000	17016790000	17016790000	17016790000	1/016/90000	17016790000	1090000	10900001	21001090000	21001090000		21001090000	21001090000	1090000	21001090000	21001090000	1090000	21001090000	1090000	21001090000	22006240000	6240000	6240000	6160000	23006160000	23006160000	6160000	23006160000 23006160000	23006160000	23006160000	23006160000	23006160000	6160000	23006160000	23006160000	23006160000 23006160000	23006160000	23006160000	23014100000	2301410000 23014100000	4100000	23014100000	23014100000	23014100000 23014100000	2301410000	2301410000	23014100000 23014100000	2301410000
ET	17016	17016	17016	1701(17016	17016	17016	1701(110/1	10/1	17016	2100	2100	2100	218		3100	2100	2100	218	300	2100	2100	2100	2100	2200	2200	2200	2300	2300	2300	2300	2300	2300	2300	2300	2000	2300	2300	2300	2300	2300	2300	2301	2301	2301	2301	2301	2301	2301	2301	2301	2301

H
ROJECT
2
PRO.
H PR(
Ð
RCI
5
RESE
2
÷
μË
EPARTA
DEPA
۵
JEER'S DEP
ĒŖ
ENE.
5
Ĕ
Ĕ
Y CITY ENG
ō
È
Э.
2
ō
UNICI
ž
Ŧ
BET
m
ELIZABI
ELIZA BETH
I/PORT EI
ĸ
ĕ
STEN
ŝ
Ŧ
-5
ž
ы М
ERTS
Ш
ö
2
STEFFEN ROBERTS
Ľ.
Ē
2
Ž
S.
ŝ
IMISSIO
Ň
Ś
EARCH COMMISSION/STI
ñ
Ł
ESE
RES
2
TER RESEARCH
\$
5

Z		92.9586	88.0893	97 3852	92.9586	88.532	53.1192	53.1192	53.1192		57.5458 66 300	60.333 G	61.9724	61.9724	110.665	128.371	C22.761	2	110.665	141.651	96.0572	110.665	115.092	123.945 173 045	123.945	106.238	110.665	119.518	110.665	106.238	0.88532	0.92959	0.88532	1.9477	1.//U64	1.41651	1.77064	1.32798	1.46078	0 22133	0.22133	1.32798	1.59358	1.99197	1.46078	1.81491	2.39036	1 99197	2.03624	1.23945	1.81491	2.2133	1.50504	2.2133
			0.56		0.14		0.46			0.45		0 54			0.51	Т	5	0.64		0.76	1		0.47	T	0.63	1			0.30			0.37		<u>9</u>		Т	0.05			Ī	0.16			T			0.02	Т	Ī	Π		0.23	1	
N.SON		21.0	19.9	200	21.0	20.0	12.0	12.0	12.0		13.0	0.54	14.0	14.0	25.0	29.0			25.0	32.0	21.7	25.0	26.0	28.0	28.0	24.0	25.0	27.0	25.0	24.0	20	0.2	0.2	4	4.0		90	0.3	6.0	-	0.1	0.3	4	0.5	0.3	4.0	0.5	0.5	0.5	6.0	4 4	0.5	0.3	0.5
SO4 11		6	84	88	82	8	95	84	87	99	80	2	58	76	87	92	123	102	8	4 9	116	97	89	5	105	74	.	<u>ā</u>	8	e/6	126	102	125	116		118	150	123	5 2 2 2	26	86	86	102	93	103	6 <u>0</u>	8	20 10	121	131	212 212	115	9 1 8 1 8	105
×			4.0		5.0	╋	3.0			2.2	╎	30	3		7.0		2	7.9	10				6.0	+	9.0				10.0			8.0	-	0.0		8.0	10.0				3.3	6.6	13.0			13.0	5.0	2			11.0	11.0	-+-	
Na			11	+-	181		204			172	+	185	3		210	961	8	198	219	247			223	+	235			+	251		┢	515		420	╉	465	439		┥	+-	┼┥	520	╉		$\left \right $	483	┿	 2			┿	472		+-
Fe(t)		$\left \right $	0.05	╞	0.62	┥	0.12			0.02		100		$\left \right $	0.02		B	0.03		100	┝		0.05		0.00			+	0.10			0.25		0.30		+	0.33		╎	+-	1.04		+-	+-	$\left \cdot \right $	+	0.16	+			+	0.03		┼┨
		\vdash	+	288	280 (245	+-	┢╌┥		+	363	+	╀	Н		╉	440	╀	408	┿	┼─		467 (441	-	381	485	-	+	111	1006	\square	+	+	26	┢	┼╌	$\left \cdot \right $	8	871	+	847	829	<u>303</u>	817	+	+-	┽	795	202	+	$\left \cdot \right $	974	929
Ma	CaCO3	H	101	+	104		109	$\left \right $		5	-	97	╀	Н	137		+	127	-	448	╞	\vdash	142 4		133				129		╞	335	+	232		╉	251			+	+	252	╉	F	$\left \cdot \right $	┥	235 235	+-	-			258		
Ca	CaCO3 Ca	$\left \cdot \right $	431		444	╉	478	$\left - \right $		442		459	3		583		╋	572	+	673	╀	\square	589		607			+	614	┼	-	190	-	2	$\frac{1}{1}$	╉	175		+	+	+	+	149		H	╉	105	┿		┝╾╋╸	┽╾	143	-	+
	CaCO3 Ca	-+	532 4		548 4	-	587		-	546		556	+	$\left \right $	720	707	╉	669	+	821	+	\vdash	731 5		740			-	743	+-	╞	525	-	36/		+	426		┤	-	Н	393	+	1	H	+	340	+	$\left \right $	┝╼╇		401		+
	CaCO3 Ca	$\left \right $	144	-	182 5	+	227 5	$\left \right $	-	195 5		196	+	$\left \right $	310 7	- 	╀	296 6		A17 P	╞		319 7	_	316 7			-	340	╉	╞	471 5	+	306	ŀ	╋	393 4		_	+	+	363 3	┿	-	┝┥	+	310 3					373 4		+
CH N	CaCO3 Ca		388		366 1		360 2	$\left \right $	-	351		360 1	+	Η	410 3		┽	403 2	+	404	╀		412 3	+	424 3			+	403	+	-	54 4	+	19		╀	33		-	-	-	30	┽			-	30	+-		┝┼	+-	28 3		+
	CaCO3 Ca	$\left \right $	388		366 3	+	360 3	$\left \right $	+	351 3		360 3	+	$\left \cdot \right $	410 4		┼	+-	398 3	┽	╀	\vdash	412 4		424 4			+	403	+		54	+	5	+	╀	33		+		31 2		21	32	$\left \cdot \right $	-	30		$\left \right $		+	28		+
TA B(CaCO3 Cat	-	996	<u>.</u>	366 3		360 3	$\left \right $	+	351 3		360 3	╎	Н	410	1.7	╀		398 3	╀	+		412 4		424 4				403	$\frac{1}{1}$		54		5		+-	33		-	+		8		32 32	-	-	30			-		28 2	_	+-
TDS I T			+	58	1146 3(88	+-	Ц	\rightarrow	4	12/0	-			1512 4	1 073	╋	1652 4(÷ -	+-	╞			1664	+	44	1938	+	+	2 2	;	2132 5	_	1/22 6	+	+	1710 3			+	1560 3	4		4-	_	4			. 90	14	_	\square	16	1782
	\square	+	+	² - 	┼╌┼	= :	╉	$\left \right $	+	+	12		+	$\left \cdot \right $	\rightarrow	+	╉	+	~	╉	┼─	Н	1.9 15		+	11	19		+			\vdash	+	╉		┼	┢		_	+				6	H	+		_	18	99	+	H	19	17
1 Turt		+	8	20	3 0.4	8	1 0.4	$\left \cdot \right $	+	4	2 Q	9 04	+		9.0	200	┿	3 0.9		+-	8 0.5	$\left \right $	+		8 0.3	5	4	+	2 0.5		5	5 5.9	+	3.4	4 9	┿	1 5.5	\mathbb{H}	4		+		6	5 28.	$\left \cdot \right $	+	4 1.5	+) -	6	+-	4 2.2	9,	+0
d EC			00 188 00 188				00 211				202 202		1	1			00 243				1				258	1	1						07 328	╉	+	╀	+	\vdash	╉	2/2	+	294	+-	╋	$\left \cdot \right $	+		-	+	303		┝┨		+
-X-Co-ord		3762682.000	3/62682.000	3762682.0	3762682.000	3762682.0	3762833.0	3762833.0	3762833.0	3762833.0	3762833.000	762833 (3762833.000	3762833.0	3762750.000	5/62/50.0	3762750.000	3762750.0	3762750.0	102/20/0	3762750.0	3762750.0	3762750.0	3/62/50.000	3762750.0	3762750.0	3762750.000	3762750.0	3762750.0	3762750 C	3756403.07	3756403.07	3756403	3/605/0	3760571	3760570	3760570	376057(376057(3760570	3760570	376057(3760570 3760570	376057(3760570	3760570	3760570	3760570	3760570	3760570	3760570	3760570	3760570	3760570
-Y-Co-ord		60364.000		60364.000		1	59912.000		- 1		59912.000	—	- T				60270.000						60270.000			I		60270.000		602/U.000	1	H		350	54350	350	350	350	350	54350	350	54350	54350	350	54350	350	54350	350	350	350	54350	54350	54350	350
- <u>Y</u> -C	Н	H	+	╈	++	+	+	H		-	-+-	+-	+	$\left \cdot \right $		_	-	-	-		-		+		-	←		-+	-+	╈	╈		-+	+	82	5 3	5	54	2	8 3	54	2	2 2	5 35	54	2	+ 8 3	8 3	54	54	5 3	54	23	52
ess		Crescent	5 Kolbe Crescent	Crescent	5 Kolbe Crescent	Crescent	ng Road	10 Bulbring Road	ng Road	10 Bulbring Road	ng Road	no Road	10 Bulbring Road	10 Bulbring Road	68 Winchester Way	ester Way	ester Way	ester Way	68 Winchester Way	ester Way	ester Way	ester Way	ester Way	ester Way	68 Winchester Way	ester Way	ester Way	ester Way	ester Way	68 Winchester Way	os Street	os Street	15 Cosmos Street	on Park	on Park	Clarendon Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park	on Park on Park	on Park	on Park	on Park
Address		5 Kolbe (5 Kolbe	5 Kolbe	5 Kolbe (5 Kolbe (10 Bulbri	10 Bulbri	10 Bulbring Road	10 Bulbr	10 Bulbri	10 Bulbri	10 Bulbri	10 Bulbri	8 Winche	8 Winch	8 Winch	8 Winch	8 Winch	Ninch	S8 Winch	S8 Winch	38 Winch	8 Winch	S8 Winch	S8 Winch	58 Winch	38 Winch	S8 Winch	Ninch	15 Cosm	15 Cosm	15 Cosm	Clarend	Clarendon Park	Clarend	Clarend	Clarend	Clarend	Clarendon Park	Clarendon Park	Clarend	Clarendon Park	Clarend	Clarendon Park	Clarend	Clarend	Clarend	Clarendon Park	Clarendon Park	Clarendon Park	Clarend	Clarend	Clarendon Park
	-		-	╋	++		┿-	┥┥	-		-	+	+			- 1		+						-	1	+	+		+	+			┝─┼	╉	9-93	22-0	+		-		╇	46- 46-	P-94	56-	n-94	n-94	1-94	-04	94	P-94	1-94 1-94	1-94	v-94	5 G
Date	-	20-Dec-94	10-Jan-95	10-Mar-95	20-Apr-95	09-May-95	07-Jun-53	10-Aug-93	16-No	12-Jan-94	21-Sep-94	10-Jan-95	10-Mar-95	12-Jun-95	03-Jun-93	10-Au	16-Nov-93	12-Jan-94	08-Feb-94	09-Mar-94	09-Mav-94	inf-60	14-Ju	10-Aug-94	12-Oct-94	20-De	13-Feb-95	10-M	20-Apr-95	09-May-95	10-Aug-93	14-Sep-93	16-No	18-Jun-93	10-Aug-93	14-Sen-93	29-Sep-93	25-0ct-93	16-Nov-93	14-Dar-93	12-Jan-94	19-Jan-94	08-Feb-94	17-Mar-94	09-Jun-94	21-Jun-94	07-Jul-94	10-Jul-94	12-Aug-94	14-Se	22-Sep-94	13-Oct-94	10-Nc	12-Dec-94
Bh.No.		9	9			9			15	15	15	24	15	15	7.		~ ~	-	-	~		-	~	~ ~		~	-	2	~		4		\$			35	32	23		38		23	23	23	23	23	23	35	23	23				38
Ert. No.		23014100000	23014100000	2301410000	23014100000		930000	23016930000	23016930000	23016930000	23016930000	23016930000	23016930000	23016930000	360000	23017360000	2301/360000	23017360000	23017360000	2301/360000	23017360000	23017360000	23017360000	23017360000	23017360000	360000	360000	'360000	23017360000	23017360000	27006880000	27006880000	3880000	32000470000	320004/0000	320004/0000	32000470000	32000470000	32000470000	320004/0000	32000470000	32000470000	32000470000	32000470000	32000470000	32000470000	32000470000	320004/0000	32000470000	32000470000	32000470000 32000470000	470000	1470000	32000470000
Ed		23014	23014	23014	23014	23014	23016	23016	23016	23016	23016 23016	23016	23016	23016	23017	23017	1022	23017	23017	23017	23017	23017	23017	23017	23017	23017	23017	23017	23017	23017	27006	27006	27006	32000	32000	12000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000	32000

5
DIECT
PRO
Ð
Ξ
RESE
Ē
MEN
E
DEP/
R'S DEP
8
NB
Ĩ
Ê
È
M
ü
N
VBETH N
ZAB
ORT
NP.
RSTE
¥
No No
ERTSO
OBEF
œ
EFFEN
STEF
¥
SSIO
Į,
Õ
Ę,
SEA
TER RES
TER
Ň

z	19197	2.16903	2.61169	2.65596	03624	2.43463	.50504	2.39036		0.22133	0.22133	0.22133	0.22133	0.22133	22133	0.22133	0.22133	22133	0.04427	0.04427	0.02213	22133	0.22133	00100	0.22133	0.22133	0.22133	22422	22122	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133		0.04427	22133	0.22133	0.22133	0.22133	0.22133	0.22133	22133	22133	22133	22133	22133	0.22133	22133	22133
L	0.05	1		- 1	0.05	11		0.27	11	300		0.21					0.29	0 19	1	11	600		0.27	Ť		0.29	11	Ť	131	1		0.05		0.53	500			77.0	11	0.31	0.24		T			11	0.20	0.01	11		0.41
N-EON	0.5	0.5	0.6	0.6	0.5	9.6	0.3	<u></u>				0.1	0.1		0	0.1	0.1	56	0.0	0.0	0.0	50	0.1		5	10	0.1	•		0.1	1.0			0.1			0.0	0.0	0.1		10	1.0		56	0.1	0.1					0.1
S04 h	1	113	123	9	102	107	103	<u></u>		41	45	3	36	86	35	40	38	4 4	46	6	4	42	163		232	125	130	1 26	300	128	127	104	113	133	122	132	135	110	107	65	500	59	65 E	89		58	60 76	25	61	58 55	5
¥	0.6			0 * *	12.0			19.0		25.0	0.07	18.0	20.0				23.0	23.0			0.12	+-	5.4			6.1	16.0	+	00	2		3.0		11.0	- 00	3		n 'n		6.0	13.0		+	+	7.8		6.0	6.0	5.0		7.0
Na	462			┿	475	$\left \cdot \right $		209		010	╉	188	$\left \cdot \right $	108	3	\vdash	209	205	╀─	┞┤	S7		638	+		518	547	+	579			248	+-	542	509	3		7		292	395	╞╼┼	+	288	294		320	265	322	+	295
Fe(t)	0.04	-		+	800	┼┤		0.61		151	10.0	0.06		8 7.3	2	-	0.66	0.02			50.0	+-	29.00	1	Ì	4.89		-	69 50					5.60	4.54	+			$\left \right $	6.18	14.50			-			1.76	0.47	$\left \right $		19.80
5	+		758	-+-	+	\mathbb{H}	967	515	\square	-		╀	429	+-	╀		\vdash	+-	┢	$\left \right $	╇	╉	\mathbb{H}	144	246	+-	938	047	+	Н		╉	893	Н	+-	+	935	020	$\left \right $	+	784	459	460	201 201	428	479	480 586	+	\mathbb{H}	457	+-1
Mg	248				246	$\left \cdot \right $	+	142	┝	474	+	133	$\left \cdot \right $	147	╋	┢╌╢	146	142	┢		141	╀	414			276	\mathbb{H}		310	+	+	273	+-	284	256	┽╴	┟┼	707		124	159		╉	╀	132	H	146	+	136	-	124
	130			╉	133	H		151	$\left \right $	211	┽	155	196	150	╋	\vdash	165	170		$\left \cdot \right $	5	╀	283	\dagger	╎	236	$\left \cdot \right $	╈	279	+		205	+	240	140	┢		╉	H	268	299		┥	+	211	$\left \right $	267	309	$\left \right $	+	274
TH				+	379	╎┤		293		385	+	288	356	307	╀	H	311	312			314	+-	697	╉		512	$\left \cdot \right $	╉	589	-	-	478	┽╴	524	497	$\left \right $	107	+-	$\left \cdot \right $	392	458			╋	343	$\left \cdot \right $	413	435	┝┥	+	398
NCH	341 5			┽	345	H	╎	148	┞╌┼	020	╀	140		145	╀	\mid	158	160	┼	\vdash	2	+-	502	╉	1	334		╀	411	$\left \cdot \right $	-	272	╉╴	345	310	┼╴	┝┼	0/7		•	248			╋	102	$\left - \right $	273	+	157	╋	155
CH				╉	38	$\left \right $	┥	145	$\left \cdot \right $	146	+	148	\square	16.7	╀╴	Н	153	152				╉	195	╉	+	178	\vdash		178	+	+	506		179	187	┢	┝┼	5		392	210			+	241	H	140	+	226		243
BCA	32 22		+		34		_	145	$\left \cdot \right $	146	+	\mathbb{H}	144	┿	╋	$\left \right $	153	152		$\left \right $	5	+	195		+	178	$\left \cdot \right $	178	+	184	-	508		179	187	+-	H		Н	455	210		+	+	241	H	+	+	226	+	243
TATE	35 15			EE.	38			145	$\left \cdot \right $	146	+	Н	144	╀	╀	Н	153	152		$\left \right $			195	┤	+-	+	$\left \cdot \right $	╉	╀	184		506	T	179	187	┢	┝┼	17	$\left \cdot \right $	455	210			+	241	$\left \cdot \right $	+	+	226	-	243
TDS			892	828	1694	814	734	1182		1156	╋	1108		+			1178	178	056	\square	_	208	-	╉	╀	2066		_	╀	\square		+	╇	Н	-	+	2128	+-	$\left \right $	+	1758			1206	+-	\mathbb{H}	+	+	1518	452 364	
Turb.	2.7	┝┤			╋	┝┤		13.0	$\left \right $	36	╈	Н	4.2	+	+	\square	5.2	10.2		H	 7-		68.0	+	+	56.0	t3.0		╉	80.0		145.0		31.0	77.0		┢╸┢	0.2	┼╍┨	12.0	28.0			+	+-	┝╌╢		+	⊢		33.0
EC	╉	$\left \right $	308	+	314	$\left \right $	311	121	H	+	+-	-	171	╈	╀╴	H	177	173	189	$\left + \right $	╉	185	$\left \cdot \right $	404	345	+-	H	╈	+	Н	+	359 1	300	357	╉	+-	346	+	H	╉	┼	┞┤	219 206	+	+	H	204	+	237	218	220
$\left + \right $	+	Η	+	+	╋	┼╌┤	╉			1													ΕI	1					1										11	1							-				
-X-Co-ord	3760570	37605	3760	3/60:	3760570	3760	3760570	376158	3761589.000	376158			3761589.000		376158	376158	3761589.000	376158	376158	376158			3761117.000			3761117.000	376111	376111	376111	3761117.000	376111	376111	3761117.000	376111			3761117.000			3762895.000	376289	3762895.000	376289	376289	3762895.000	376289	3762895.000	3762895.000	3762895.000	3762895.000	376289
-Y-Co-ord	54350	54350	54350	04350 54350	54350	54350	54350	190.000	53190.000	53190.000	190.000	190.000	53190.000	100.000	53190.000	190.000	53190.000	190.000	190.000	190.000		190.000	53010.000	010.000		53010.000	010.000	010.000	010 000	53010.000	010.000	53010.000	010.000	53010.000	010.000	010.000	53010.000	010.000	53010.000	52495.000	52495.000	52495.000	495.000	52495.000	495.000	52495.000	52495.000	52495.000	52495.000	52495.000 52495.000	495.000
	+			╇	+	$\left \right $	+	\top			1-	Ħ		╈	+-				1	H	-1-	T	П		\uparrow				T	Γ		╈	1	t	1	T	Ħ	1-	+				-+-	+-					lub 52	1ub 52	lub 52
Address	Clarendon Park	ndon Pari	Clarendon Park	Idon Part	Clarendon Park	Clarendon Park	Clarendon Park	11th Avenue	11th Avenue	12 11th Avenue	th Avenue	th Avenue	12 11th Avenue	ID Avenue	th Avenue	th Avenue	12 11th Avenue	th Avenue	th Avenue	12 11th Avenue	th Avenue	th Avenue	64 Short Road	hort Road	Nort Brad	64 Short Road	nort Road	nort Road	Port Brad	64 Short Road	nort Road	hort Road	64 Short Road	hort Road	64 Short Road	hort Road	64 Short Road	nort Road	64 Short Road	Walmer Country Club	Waimer Country Club	Country C	Walmer Country Club	Waimer Country Club	Country C	Walmer Country Club	Country C	Walmer Country Club	Watmer Country Club	Country C	Country C
Ă	Clarer	Clarer	Clarer	Clarer	Clarer	Clarer	Clare	12 11	12 11	12 11	12 11	12 11	12 11	12 11	12 11	12 11	12 11	12 11	12 11	12 11	121	12 11	64 SI	64 SI	200	64 55	64 St		50	64 St	64 SI	64 SI	200	64 SI	64 SI	500	64 01		64 SI	Walmer	Walmer	Walmer	Walmer	Walmer	Walmer	Walmer	Walmer	Walmer	Watmer	Walmer	Walmer
Date	10-Jan-95	09-Feb-95	10-Mar-95	Mar-95	11-Apr-95	11-May-95	01-Jun-95	07-Jun-93	17-Jul-93	10-Aug-93	16-Nov-93	12-Jan-94	Feb-94	09-Mar-94	10-Aug-94	Sep-94	12-0ct-94	Jan-95	09-Feb-95	10-Mar-95	Apr-95	Jun-95	28-Jun-93	Jul-93	10-Aug-93	Jan-94	08-Feb-94	10-Feb-94	14-Anc.04	May-94	09-Jun-94	10-07	15-Sep-94	Oct-94	12-Dec-94	Feb-95	10-Mar-95	11-Apr-95	12-Jun-95		31-Aug-93 29-Sep-93		-	20-Dec-93				21-Jun-94	07-Jul-94	10-Aug-94	0ct-94
Ш	╀			+	╋	H	┥	╉	H	┽	╈	T	┢╼┼	╈	\uparrow			\uparrow	T	Ħ	╈	╧	Ħ	1	╈	†-		+	1	\top		1	╈	Ħ		╈	\dagger	╈		H	1-	\square	+	╉	+	┢	$\left \right $	╈	††	╈	
Bh.No.								142	\square	200				2	╞					Ц			33		1	30						33	1		33		Ш				0 78 0 28			28		0 28			0 28		
Erf. No.	32000470000	3200047000	3200047000	3200047000	32000470000	32000470000	32000470000	32001790000	32001790000	32001790000	3200179000	3200179000	32001790000	32001/90000	32001790000	32001790000	3200179000	32001790000	32001790000	32001790000	32001/9000	32001790000	32004960000	3200498000	32004980000	3200498000	32004980000	32004980000	3200408000	32004980000	32004980000	32004980000	32004980000	32004980000	320049800C	32004980000	32004980000	32004980000 32004980000	32004980000	3201935000	32019350000	3201935000	32019350000	3201935000	32019350000	3201935000	3201935000	32019350000	32019350000	320193500C	3201935000

ECT	
OLEC	
ЪЯ	
Ŧ	
NT - RESEARCI	
ß	
RESE	
Ė	
Ш.	
PARTMEN	
AH	
ø	
EER	
ž	
Ŷ	
Ē	
B	
ž	
Ê.	
2	
Ĩ	
ΪŇ	
I.	
AFIETI	
ž	
Å	
0	
EN	
KIRSTEN/P	
Ĕ	
÷	
TSON &	
13(
Ë	
OBEF	
ž	
Ë.	
Ë	
ŝ	
ģ	
SS	
Ň	
ő	
r	
RC	
ŝ	
Ш.	
R RI	
ATE	
Š	

z	0.22133	18.5917	177.064	0.44266 17 7064	0.22133	0.22133	0.22133	0 22133	0 22133	2014-0	0.22133	0.22133	0.44766	0.22133	0.22133	0 22133	0.22133	0.22133	0.22133	0.22133	23.0183	10.1812	29.2156	24.789	20.805	0.22133	0.22133	0.22133	65.9563	20 0760	0CZ8.U/	70.8256	<i>1</i> 5.2522		73 6788	42.4954	59.7591	70.8256	61.9724	57 5458	69.055	68.1696	57.5458	69 9403	75.2522	70.8256	66.399 79.6788	75.2522	39.8394	10.0041
u.		Γ	0.46		0.33	1 1	0.24	T				0.0		0.23	1 1	0.29	1	0.47	0.05	1 1	50				0.05	1	0.05	- 1	0.27		0.23	П				0.37		0.55			0.49	1		900 900			0.05	П		0.29
NO3-N	10	4.2	4 0.0	- 0 • 0		0.1	-	56			0.1	-	56		5.0	56	0.1	0.1	39	0	2.0	53	6.6	5.6	4	0.1	0.1		14.9	0.94	1.5	16.0	0.7		18.0	9.6	13.5	16.0	14.0	13.0	15.6	15.4	13.0	15.8	17.0	16.0	15.0	17.0	0.6	2.3
S04	8	61	121	56	88	20	22	58	64	2	52	69	6 2	62	57	819	65	65 65	2 <u>8</u>	179	121	114	125	123	119	82	117	102	220		268	8	205	197		395	203	220	210	214	214	231	230	212	143	221	221	207	229	68
¥	ſ		3.0	40	5.0		0.11	1	6.6	10.0	-	<u>.</u>	60	6.0		30		5.0	3.0		0.0				2.0		10.0		20		0.6			6.8	8.9	3.0	0 -	3.0			6.0		4	202	;		3.0	;	Ť	8.0
Na	-		279	264	265		3/0		311	388		336	279	342		292		289	260		320				270		411	103	492		544		1	576	580	611	22	544			527			540			495		╈	231
Fe(t)	-		<u>9</u>	010	3.50		11.70					2.18	0.01	6.56		60.0	8	0.16	0.08		191	5			0.01		0.01	- 20	0.03		0.01					0.01	30.0	0.0			0.12		000	20 O			0.21		+	0.13
5	540	486	480	497	480	H	+	453	489	675	511	240	200 480	969 969	347	407	502	487	44/ 432	480	4/8 511	436	483	482	413	719	834	803	1090	959	922	841	/89	901	907	903 803	864	965 566	851	940 940	930	977	978	904 896	898	871	870 893	843	889	516
Mg			116	110	114		150		142	161		155	125	147		136	2	111	107		162	2			69	5	242		136		208		+	228	228	259	325	213			199			213			174	:	+	72
CaCO3 (394	906	272		293		257	283		297	311	236		439		245	308		528	3			402		195	676	452		640		1	615	595	732	620	586			575				};		530		+	448
TH CaCO3 (510	419	386		443		399	444		452	436	383		575	2	356	415		554	ş			495		437	776	588		848			843	823	991	515	662			774		005	821			704		+	520
NCH CaCO3			138	126	0		182		268	228		312	191	166		213	2	118	128		293	2		1	114		373	000	217		457			453	443	593	344	406			378			407 604			282		+	27
CH CaCO3			372	293	386		122		131	216		140	245	217		362		238	287		19/ 406	3			381		64	305	371		391		Ť	390	380	398	006	393			396			332			422		1	493
BCA CaCO3			372	293	472		5		131	216	213	40	245	217		362		238	287		408 408	ş			381		64	305	371		391			390	380	398	906	393			396		000	332 412	:		422		Ť	493
TA CaCO3			372	293	472		5		131	216	213	140	245	217		362		238	287		397	3			381		64	305	371		391			390	380	398	ooc ooc	393			396			332			422	+-+	-+-	493
TDS	1414	1464	1526	1232	1352		1654	T	1234			1292	1322	1628	1442	1422	1292	1498	1348	1476	1524	3	1590	1434	1350	1674	1886	1760	2388		2250			2278		2392	2296	2420	2466	2404	2420	2452	2440	2498	2350	2296	2312	2406	2256	1518
Turb.			0.8	14	13.0		22.0	T	22.0	28.0	37.0	20.0	7.5	7.1		04	;	18.0	1.5	6.4	13.0	2			0.3		45.0	90	0.4		0.5			04	8.0	0.7	9.4	0.2		Ì	2.1			70			12		T	1.2
EC	223			223	1 1		1		199	242	220	507	208	253	231	502	202	223	218	252	102	245	246	242	232	275	290	271	398	395	396	376	375	383	390	397	398	400	402	283 402	394	407	394	403	384	384	394	336	380	225
-X-Co-ord	3762895.000	3762895.000	3762895.000	3762895.000	3762555.000	3762555.000	3/62555.000	3762555,000	3762555,000	3762555.000	3762555.000	3/62555.000	3762555.000	3762555.000	3762555.000	3762555 000	3762555.000	3762555.000	3/62555.000	3762645.000	3762645 000	3762645.000	3762645.000	3762645.000	3762645.000	3762029.400	3762029.400	3762029.400	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000 3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000	3764120.000 3764120.000	3764120.000	3764120.000	3763403.950
-Y-Co-ord	52495.000			52495.000	1		-		52925.000			52925.000	1		925.000				52925.000					53460.000								52540.000									+	+	540.000	52540.000	540.000	540.000		52540.000		
Address	Walmer Country Club	-		Walmer Country Club Walmer Country Club			-			Walmer Country Club		Walmer Country Club	Watmer Country Club	Walmer Country Club	Walmer Country Club		Walmer Country Club	Walmer Country Club	Walmer Country Club	Walmer Country Club		Walmer Country Club	Walmer Country Club	Walmer Country Club	Waimer Country Club I Waimer Country Club I	PEM King Edward Pk.	+	ž		Telkom Club			T	Telkom Club		Telkom Club		T	Telkom Club	T	T	Ħ	Telkom Club	Telkom Club	Telkom Club	Telkom Club		Telkom Club		P.E. Kennel Club
Date	10-Nov-94	13-Dec-94		16-Mar-95 06-Anr-95			29-Sep-93			22-Feb-94		21-Apr-94	21-hin-94	07-Jul-94	10-Aug-94	22-Sep-94			16-Mar-95 06-Apr-95		21-Jun-94			10-Nov-94			12-0ct-94	13-Dec-94	23-Jun-93	17-Jul-93	79-Sep-93	25-Oct-93	16-Nov-93	19-Jan-94	22-Feb-94	21-Apr-94	20-May-94	07-Jul-94	10-Aug-94	20-Sep-94	12-00-94	10-Nov-94	13-Dec-94	05-Jan-95	09-Feb-95	13-Mar-95	16-Mar-95 10-Apr-95	11-May-95	01-Jun-95	21-Jun-33
Bh.No.	28		H	28	┢		╈	Ť	t		H	╈	╈	T	29	╈	1-	H	29	29 a	29a	╈	Ħ	29a	1-	44	44	4	27	27	2/	27	27	27	27	27	27	t	Ħ		27	27	27	27	27	27	27	21	27	26
Ert. No.	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019330000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019350000	32019480000	32019480000	32019480000	32019480000	32019480000 32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000 32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000

JECT
CH PRO
RESEAR
MENT -
DEPARTA
R'S
Y ENGI
LITY CITY ENGINER
JNICIPA
N H.
IT ELIZAE
EN/POR
& KIRST
EN ROBERTSON & KIRSTEN/PORT ELIZABET
EN ROBE
I/STEFFE
MISSION
CH COM
RESEARC
VATER RI
2

z	9 73852	11.0665	9.29586	.52522		11.5092	11.9518	2.3945	11.0665	7.96788	9.29586	0	1 0724	10 2821	66.399	59,9403	88.532	13.0/80	66 399	21 2477	19.0344	then concern	10 477	8.1491	19,9197	5.0504	19.477	9.0344	20.805	0.3624	4.6078	22.133	20.805	19.9197	20.3624	4.6078	3.7225	2005	5./225	15.0504	8.1491	19.477	63784	1.2477	9.0344	2.8371	5.0504	1 1807	1000'2	0.7247	40.7247	44.200	3.9036	46.0366	9.1353
L.	017 9	1			Ť		0.27	1		1 1	0.50		0.50	1	0.25			5	1	0.17		07.7	0.25			0.40		- 1	0.19	1	0.11	1 ł			1	0.16	1 1	0.23					0 05		1 1	0.05	=[110	1		0.35 4	0.26	11	11	0.30
NO3-N	22	5.2	2.1	1.7	-	2.6	5.7	2.8	2.5	1.8	57	010	24.0	2 	15.0	15.8	20.0	0.8	15.0	4.8	4.3			4	4.5	3.4	4.4	4 5 1		194	3.3	5.0	47	4.5	99	3.3	3.1		-	34	4.1	44		4.8	4.3	2.9	3.4	φ α	2	9.2	9.2	0.01	5.4	10.4	
SO4	100	219	93	104	6	66	22	74	73	66	62	5.	1/3	329	160	153	162	201	157	57	25	2	69	63	35	74	62	2	200	88	48	20	88	66	130	123	120	122		130	130	115	117	122	120	108	95	112	3	151	141	101	132		132
×	30	20					2				0.7		9	2	4.0			 2'0		4.0	0	2	10	6.0		5.0			3.0	5.0	3.0			20	2	9.0		2:0	0.0				70			6.0	T	36	2		5.0	13	2.0		2.0
e N	228	256				272	717				230		328	2	314			222		215	640	2	212	238		276		000	223	224	175			308	200	373		302	600				331			336		467	2		535	508	535		516
Fe(t)	0.04	0.02				50.0	8				0.03		110	5	0.02			12.0		0.04	7 60	2.00	05.0	22.2		0.04		202	<u>ç0.0</u>	0.05	3.26			010	2	0.03		0.01					0 23			5.30		1 40	2		0.18	435	3		13.70
IJ	510		646	691	580	535	479	477	487	592	511	548	C7C	372	2965	336	549	200	579	339	324		277	334	353	417	344	362	3/5	355	269	344	358	40 6	712	102	635	4 <u>9</u> 1	545	705	645	830	605	525	642	644	579	1140	992	972	1049	1245	873	922	932
6W BM	86	88				416					65		175		155			2		74	60	3	92	82		91		4	2	78	59			110	P#	166		126	140				127			114		753	3		281	263	289		294
Ca	431	470				112					421		526	3	531			430		206	202	3	104	234		276		-	COZ	216	169			253	ŝ	350		30	80°				334			293		958	3		284	250	283		294
TH		558				50B	3				486		701		686		202	C70		280		ŝ	264	316		367			587	295	228			007	nn+	516		430	5				461			407		504	3		565	513	572		288
NCH		312				CUE	3				230	4	374	;	343			22		83		₅	58	113		143		-	2	62	65			212	<u>}</u>	360		280 780	200				303			245		367	3		391	371	433		442
CH	3	246				300	3				256	_	327	3	343		010	3/2	-	197	000	ŝ	306	203		224			513	216	163			150	8	156		120	143				158			162		151	5		174	147	139		146
BCA	1	246				223	ş 				256		105	192	343			2/2	-	197	Ş	5	206	503	204	224	208		213	216	163		_	150		156		150	149	151		-	158			162		164	5		174	147	139	149	146
TA CCCC	-1-	246	\vdash			223	┿				256		100	193	343	$\left - \right $	+	3/2		197	000	8	306	203	204	224	208 208		213	216	163			150	8	156	\square	-	149	151			158	-		162		164		\vdash	174	+	139	149	148
TDS	1480	1574				1550		1380	1414	1612	1482	_	1792		1764	1552	1796	1687	1828	0 6	100	\$	936	╀		926	-		930	╇		H	984	966		1644	H	1506		1672		1644	1530	1466	\vdash	Η	1504	╉	┿		2298	2156	+-	┼┼	2244
Turb.	+	0.5	-		•	0.0	90	+		Н	<u>0</u>		2	╀	0.3	$\left - \right $	ľ	7	+	0.2		2	ľ	64	3.4	0.5	0.3	-	0.2	╋	27.0	$\left \right $		~ ~	┿	0.5		<u> </u>	╉	3.5			10	3		19.0		•••	+		4.8	540	21.0	16.0	65.0
EC	0 216		1	0 235			ł		1 1	1	220		0 283	1_	0 279			267 0	1										0 169						0 267	1	0 269		\perp	263	1 1	0 258		_	1	0 253		0 249		-	\square	0 351		Ц	347
-X-Co-ord	3763403 950	3763403.950	763403.95	3763403.950	763403.95	763403.95	3763403.950	763403.95	3763403.950	763403.95	763403.95	3760815.000	3760815.000	760815.00	760815.00	3760815.000	3760815.000	3760815.000	760815.00	763293.54	3763293.540	PC.022001	763293.34	763293.54	763293.54	763293.54	763293.54	/63293.54	/63293.54 763203.64	3763293.540	763293.54	763293.54	763293.54	763293.54	3763234.000	763234.00	3763234.000	763234 00	3/63234.000	3763234.000	3763234.000	3763234.000	3763234.000	3763234.000	3763234.000	3763234.000	3763234.000	3/63234.000	3760684.000	3760684.000	3760684.000	3760684.000 3760684.000	3760684.000	3760684.000	3760684.000
\mathbb{H}	╈				55654.200 3		1																																_	-				-			_			+	\vdash	_	-	+ +	-
-Y-Co-ord	55654 200	+-	55654.200	+	+	+	+-	+	55654.200	-		-+-	5/035.000	5703	5703	5703	57035.000	5/03:	5703	+	e 50109			e 5010	e 50109.560	e 50109	e 5010	6 5010	50103	e 50109,560	6 5010	e 50109.560	e 5010	6 5010	1 51139.000	1 5113	11 5113	1 5113	11 0113	1 51139.000	11 5113	1 51139.000	1132	-		it 51139.000		1 51139.000	53623.000	53623.000	5362	53623.000 53623.000	5362	53623.000	5362
ress	ool Chib	nel Club	nel Club	P.E. Kennel Club	nel Club		nel Club	a Park	a Park	a Park	a Park	a Park	a Park	a Park	a Park	12 Newcombe Avenue	12 Newcombe Avenue	IDE Avenu	12 Newcombe Avenue	be Avenu	he Avenu	the Avenu	the Avenu	the Avenu	12 Newcombe Avenue	the Avenu	he Avenu	ibe Avenu	the Avenu	12 Newcombe Avenue	e Crescer	e Crescer	10 Idyhwylde Crescent	e Crescer	10 Idyhwylde Crescent 10 Idyhwylde Crescent	e Crescer	e Crescer	10 Idytwylde Crescent	10 Idyhyyde Crescent 10 Idyhyyde Crescent	10 Idvlwvide Crescent	10 Idyhwylde Crescent	e Crescer	10 Idyhwylde Crescent	e Crescer	74 River Road	r Road	er Road	74 River Road	r Road	River Road	r Road				
Address	DEKen	P E Ken	P.E. Ken	P.E. Ken	P.E. Ken	ы Т Б Б	P Rel Rel	P.E. Ken	P.E. Ken	P.E. Ken	P.E. Ken	Victoria Park	Victoria Park	Victoria Park	Victoria Park	Victoria Park	Victoria Park	Victoria Park	Victoria Park	2 Newcon	2 Newcorr	Newcon	Newcon	Newcorr	2 Newcorr	2 Newcorr	2 Newcorr	2 Newcort	2 Newcorr	Newcon	2 Newcon	2 Newcorr	2 Newcon	2 Newcor	D Idviwyla	0 Idvhwvld	0 Idyhwyld	0 Idytwyld	0 Idylwyld	D Idviwyld	0 Idyhwyld	0 Idyhwyld	0 Idytwyld	D Idviwvid	0 Idyhwyld	0 Idytwyld	D Idytwyld	DIVWVIQ	74 RIVE	74 River Road	74 River Road	74 River Road	74 River Road	74 Rive	74 River Road
9	+		+	H			+-	+-					1 <u>9</u> -93	51-33	6-8	6-95	ar-95	0-95 20 10	-95 0-95	+	12-93 12				ar-94 1	pr-94 12	ay-94 1;	In-94	5		in-95 1;	sb-95 12	ar-95 1;	In-95 1;	1-93									+-	1			- 1	1-93	-93	14-Sep-93	04-93	n-34	ar-94	or-94
. Date	30-4110-03	29.56	01-Nov-93	16-Nov-93	14-D	N-11	07-Jur-34	22-Se	10-Nov-94	13-De	05-Jan-95	21-Jul-93	10-Aug-93		12-0	09-Feb-95	10-Mar-95	30-10-11	12-4	03-Jun-93	10-At	14-060-03	Ž	08-Feb-94	09-Mar-94	14-Apr-94	09-May-94	14-11	14-1	12-0-01	10-Jan-95	09-F	13-M.	28-Jr	03-JUD-93	14-54	11-Nov-93	12-1	08-Feb-94	09-May-94	14-Jun-94	21-Sep-94	1 20-Dec-94	09-Feb-95	13-M	11-A	09-May-95	28-Jun-95	17-14-93	10-41	14-St	16-Nov-93	12-Jan-94 08-Feb-94	09-Mar-94	14-Apr-94
Bh.No.	36			26			28					33					39						2				6				3	3	9		4 4		4			4	4			14		4				38			38	\square	
Erf. No.	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000 32010480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019480000	32019810000	32019810000	3201981000	32019810000	32019810000	32019810000	32019810000	32019810000	32019810000	32019810000	32019810000	32019810000	32019810000	32019810000	32019810000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	32019820000	3202550000	3202550000	3202550000	32025500000	3202550000	3202550000	3202550000

z	21 2165	48.6926	0700.01	48.7811		51.0400	61.9724		41.1674	48.6926	38.0688	45.1513	54.8898	27.2428	03.119Z	00C/.7C	52 2330	48 6976	48.6926	0.22133		0.44266	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133		0.22133	0.22133	0.22133	0.04427	124400	0.66399	0.02213	0.22133	0.44266	0.08853	0.22133	0.22133	0 22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.22133	0.04421	0 22133	0.22133	0.22133	0.22133	0 22133	0.22133
L	T		Т	0.17		800	T	0.15			0.25					\$				0.27				0.25		- 1	0.14			0.27			0.19		85	T	T	0.18	1		0.22		0.1	0 14	T	Γ.	0.16			800			1		0.46		T	0.40	
NO3-N	44	110		11.0	0.01	200	14.0		9.3	11.0	8.6	10.2	12.4	13.0		4. 4	10.0		10	0.1				5	<u>-</u>	5	0.1	0.1	0.1	0.1		0.1	5	-			200	00	0.1	<u>.</u>	0.0	5	-	50	50	0.1	10	0.1	.	5	5	0.0		5	•	0.1		50	
S04	157	130	611	88		717	73	47	56	4	2	26	8	25	35	22	38	22	28	80		8	59	48	56	ន	53	84	28	70	82	58	8	23	8 8	3 6	319	49	56	99	e	2	22	35	55	19	24	29	22	23	4	2	2	8 8	23	110	94	65	85
×	Ť		13.0	2.0	1	06	;	1.9	5.0 2	•	4.		T		1	00	3	T	T	3.0				50	80	-	6.0			3.0			0.	0	20	T	T	8.0			0.7			12	10.9		2.0			<u>-</u>		1	T	Ť	12.0		16.0	10.0	
Na	T		453	124		137	5	113	113		129		Ť	Ť		445	2	Ī		336	-			306	358		382			376			ĝ	320	2			350			128		191	137	158		159			124			Ì	T	592		587	508	Π
Fe(t)	T		0.02	0.01		0 13	2	0.04			50		Ì		-	200	5			23.10				5.2			4.76	-	-	2.12			0.78		5.5			3.39			7.78		6.57	4 72			16.60			12.30					6.91		-	5.36	
Ū	030	873	1078	156	118	174	178	117	115	130	2	128	8		2	171	119	121	127	634	636	264	44	8 9	583	543	611	590	586	694	522	572	619	603	243		538	8	618	619	258	248	268	246	247	248	265	278	259	263	251	268	86	226 958	1082	891	986 058	872	824
BW	3	+-	201	69	Ť	81	;	67	2	-+ ;	-		1			63	3		+	196				122	151		158			184			163	-	2		╏	133			65	-	84	69	91		85			2					273		268	227	
Ca			585	295		296		266	596	-	415				Ť	787	5			184		1		138	2		<u>1</u> 9			213		-	189		2			151	ſ		2		5	53	23		55			9				+	264		274	237	
TH Caffor	2020		786	364		377		333	366	-	5				+	350				380				260	321		352	_		397			352	100		T	ſ	284	ſ		119		45	122	19		140		-	116			T		537		542	464	
NCH	20280		624	8	1	31		3	4	-	۵					÷		T		207				119	8		207			200			159	137	2			124			09		66	65	86		85			8					367		378	294	
CH	202			334		346		330	325		324			T	T	338	8			173				41	33		145			197			193	151	5	T		160			23		22	57	65		55			57			T	T	170		164	170	
BCA	157		162	334		346		330	325	324	324	328			Ť	378	3			173		T		141	33	125	145	145		197			193	151	t.	T	ſ	160			59	-	22	57	65	63	55	72		57				T	170		164	120	
TA	157			334		346		330	325	324	324	328				328	3		ĺ	173				141	8	125	145	145		197			193	151	<u>s</u>			160			59	-	52	57	65	63	55	72		57					170		164	122	
TDS	-	2120	2779	878	T	996		840		005	80	8//	070	020		808	838	788	862	1634				1426			1366	1358	1310	1608	1568	1468	1618	1428	1412	1536	1276	1390	1452	1592	659		8	682			696	602	618	662	620	628	140	8	2208		T	1518	1824
Turb.	25.0	22	15.0	0.4		0.2		0.4		6.0		5.0	T		T	6	;			110.0				49.0	25.0	13.0	32.0	52.0		16.5			22.0	4	0'0			25.0			25.0		24.0		36.0					75.0		T		T	49.0		23.0	40.0	
EC	352	348	379	126	124	127	123	118	115	120		119	2		3	a F	123	116	121	251	260	233	523	219	221	223	227	225	227	258	247	232	242	272	225	222	227	227	214	259	101	8	202	26 26	102	101	103	106	ទ	8	8	8	5	35	356	341	358	311	305
-X-Co-ord	3760684 000	<u>84.000</u>	584.000	3761360.000	3/61360.000	3761360.000	3761360.000	360.000	360.000	3761360.000	N 000	3/61360.000			3761360.000		3761360.000	360.000	360.000	3760931.000	3760931.000	331.000	000 166	3760931.000	31.000	3760931.000	31.000	331.000	3760931.000	331.000	3760931.000	3760931.000	3760931.000	3760931.000	3760931 000	0001000010	3760931.000	3760931.000	331.000	331.000	3760663.000	3760663.000	3/60663.000	600 C90	3760663.000	563.000	563.000	3760663.000	563.000	563.000	563.000	563.000	3760663.000	278.55	3761278.55	3761278.55	278.55 778.55	3/612/8.55	278.55
╟	+					1				1																_1							-			-1-		-			- 1	1	-1-	1.	1.	<u>ا</u>		1 1	- 1				+	+		+	-	-+-	
-Y-Co-ord	53623 000	53623.00	53623.00	55800.000	55800.000	55800.000	55800.00	55800.000	55800.00	55800.000		000.00866			22000.000	55800.00	55800.000	55800.00	55800.00	52363.000	52363.000	52363.00	52363.00	52363.000	52363.00	52363.000	52363.000	52363.00	52363.00	52363.00	52363.000	52363.000	52363.000	52363.000	52363.000	57363 00	52363 000	52363.000	52363.00	52363.000	46923.000	46923.000	46923.000	46923.000	46923.000	46923.000	46923.000	46923.000	46923.000	46923.000	46923.000	46923.00	16073 000	39775.92	39775.92	39775.92	<u>39775 92</u>	39775.92	39775.92
	t	1-	t	Ħ	╈		T		1	╡	1	╈	╈	T	T	T	T	t	T	ſ		1	1	1									1	T	t	T	t	t	┢			+	+	╉	+		-	┝┤	+	-	+	+	t		-	1_1	_	╋	+-1
Address	74 Diver Doad	River Ro	River Ro	10 4th Avenue	10 4th Avenue	10 4th Avenue	0 4th Avenue	10 4th Avenue	4th Aven	10 4ul Avenue	10 4th Avenue	6 Club Road	6 Club Road	Club Roa	Club Roa	6 Club Road	Club Roa	Club Roa	Club Roa	Club Roa	Club Roa	Club Roa	6 Club Road	6 Club Road	Club Roa	6 Club Road			Club Roa	6 Club Road	Club Roa	Club Roa	98 Verdun Road	Verdun R	98 Verdun Koad	98 Verdun Road	Verdun R	Verdun R	98 Verdun Road	98 Verdun Road	Verdun R	Verdun Ri	98 Verdun Road	Verdun R	90 Verdum Road	ranna Ka	308 Kragga Kamma	(ragga Ka	308 Kragga Kamma 308 Kragga Kamma	308 Kragga Kamma 308 Kragga Kamma	308 Kragga Kamma								
	1	\downarrow	-		29					<u></u>	4		_				219			9																		Ļ	┢			86	86	8	╀╌	-	┞	98 \	98			4		208 4	308 ×	308 K	308 4	+	+-1
Date	No May 04	15-Sep-94	12-Oct-94	C6-UNC-20	17-Jul-93	14-Sep-93	16-Nov-93	12-Jan-94	08-Feb-94	09-Mar-94	14-Apr-54	09-May-94	50-UNC-50	the bound	10-060-04	10-00C04	09-Feb-95	10-Mar-95	12-Jun-95	04-Jun-93	17-Jul-93	10-Aug-93	16-Nov-93	12-Jan-94	08-Feb-94	09-Mar-94	14-Apr-94	09-May-94	09-Jun-94	14-Jul-94	10-Aug-94	15-Sep-94	12-Oct-94	12-Dec-94	10-Jan-95	10 10 100	13-Mar-95	11-Apr-95	11-May-95	12-Jun-95	15-Jul-93	10-Aug-93	14-Sep-93	12-Jan-94	08-Feb-94	09-Mar-94	14-Apr-94	09-May-94	09-Jun-94	07-Jul-94	21-Sep-94	13-Dec-94	00-L-00-40	10-0111-93	14-Sep-93	11-Nov-93	08-Feb-94	14-Anr-34	96-Jun-60
Bh.No.	╉	36	+	Ħ		t	17	17	1	2	-† =!	+	+	+	=:	=		-	-	12	12	12			5								1	12	T	t	*	┢	┢╴	┢	35	35	35	35	╈	-		35	35			+	9 K	8	14	41	4	+	4
Π		00000	00000	00006	00006		00006	00006	8000	0006	0006	0006	0006					0000	00006	10000	10000	800	10000	800	80	10000	10000	10000	10000	10000	10000	10000	0000	10000				10000	10000	10000	10000	1000	800		10000	10000	10000	10000	1000	1000	000	10000	2000		50000	50000	50000	0000	50000
Ert. No.	3203660000	320255(3202550000	32026390000	32026390000	320263	32026390000	320263	320263	32026390000	320263	32026390000	320263	22020202020	3202630000	2202020	32026390000	320263	320263	32029010000	32029010000	320290	320290	320290	32029010000	320290	32029010000	320290	320290	32029010000	32029010000	320290	320290	32029010000	32029010000	32025010000	32029010000	320290	32029010000	320290	32029010000	320290	32029010000	32029010000	320290	320290	32029010000	32029010000	32029010000	320290	32029010000	320290	00001062025	200003	36011250000	36011250000	36011250000	36011250000 36011250000	360112

~

·

z	0 00 1 00	0 22133	1 32708	0.22133	0.22133	0.22133	0.0442/	0.02213	0.22133	0.22133	9.29586	10.1812	8.8532	11.0065	5.7 J0 J2 J	11 0665	10.6238	11.5092	13.2798	12.8371	10.6238	13 2798	13 7225	13,7225	15.9358		23.461	19.477	15.9358	200.00	9.73852	16.8211	17.2637	20.3624	23.9036	21.0903	23 0036	23.9036	25.6743	22.5757	23.461	24.789	23.0183	25 2316	0	16.5555	70.8256	66.399	66.399	31.4289	51100	59 3164	54.0045	61.9724	41.1674	66.399	61.9724
Ľ		4		0.53	-	0.05		0.19			0.22			0.19	4 0			0.20			-	74-0	T	0.16			0.24		0.36	Ì	0 22	1	1	0.18		Ì	11	1		0.17		0.23	Ì	0.05	1	0.16					Î		T	0.40	I I	0.51	
NO3-N			20		0.1	.		00	0.1	5	2.1	2.3	2.0	0.0	7,6	2 4	24	2.6	3.0	2.9	4.0	200	1	1	3.6		5.3	4.4	3.6	ŀ		38	3.9	4.6	5.4	4 7.	54	5.4	5.8	5.1	5.3	5.6	2.0	2.0	\$	3.7	16.0	15.0	15.0			13.4	12.2	14.0	9.3	15.0	14.0
SO4	-	2	5 2	58	86	6	20	62	82	7	179	128	8	2	100	35	126	132	ŝ	132	127	151	135	162	141		37	82	ę		38	38	18	ह	8	₽	1	5	31	34	37	3	36	86	;	11	138	ē	147		=	127	112	138	123	115	142
×	4			13.0		12.0	T	9.0			3.0			77	202	?		2.0			4	2		6.0			3.0		40	-	28	7.0		3.0			30	3		2.0		9.0		30		2.0				000		2.02	21.0	10.0		20.0	
Ra		8	T	572		558	Ť	420			412			225	373	25	T	416			000	200		399			91		8		66	109		115			g	3	ľ	98		8		g		223				133	432	ž	376	424		379	, ,
Fe(t)	100	10.7	T	0.24		0.15	T	9.05			0.11			20.0	1 86	3	T	0.02				70.0		8			0.07		0.34		10.0			0.01			0.23			0.00		0.0		80		0.21							0.06	0.03		0.03	
5	4070	9701	583	1035	1104	951	458	803	600	716	626	200	517	202	250	511	480	551	499	524	489	528	518	553	517		176	145	148	151	181	155	167	166	159	8	165	161	166	168	172	166	21	89		454	465	556	202	519	924	585	453	654	538	500	670
бW	Caros	767		232		229	Ť	188			84			88	36	*		73			ŀ	2		74			58		=	T	61	1		67		T	63	;		58		22		67	;	94					241	77	215	213		197	1
Ca			T	247		218		175			276			122	107	33		222			246	2		247			223		220		222	247		240			213	2		209		219	Ì	215		304				011	410	<u>8</u>	368	397		939	
TH	Cacus	430	T	479		447		363			360			887	202	3		295			470	2		321			281		291		283	318		307	Ţ	T	275			267		276	T	646		398					600	Ì	583	610		533	
NCH	Cac O3	007	T	295		296		231			109		1	2	n yy	3		44				70		02			78		82		75	122		1			Ę	3		55		63		61	;	26					64	2	88	125		23	
ъ				184		151		132			251			222	245	2		251			222	3		251			203		509	T	208	196		20			212			212		213		211		372				175	267	202	495	485		510	;
BCA	Cacus 1 and 1	001		184		151		132			251	-		235	245	244	1	251			757	3		251			203		5 09		208	196	201	204	208		212			212		213		211		372				175	4/5	400	495	485		510	;
TA 1	100			184		151		132			251		-	235	245	244		251			257	173		251			203		509		208	196	201	204	208		212			212		213		211		372				175	4/2	492	495	485		510	;
TDS	1044	1654	2132	2320	2284	2324	1452	1676	1374	1600	1580			1340	1158	1382		1382	1506	1414	1314	1552	1384	1370	1324		646		658		590			586	594		ene B	714	688	660	622	909	07/	010	3	1262				1001	4701		1562	1880	1754	1652	1872
Turb.	010			51.0		5.4		34.0			0.2		•	0.2	, o 0	104		0.2				7.7		0.3			0.2		0.2		0.2	0.4	0.5	0.4	0.3		0.0	4.5		0.2		0.2		00	,	4.5				0.2	C.D	7.0	2.0	0.2		04	5
EC	170	262	340	366	364	375	325	279	223		279	ł		.1.				244			225			1				103	- 1	107			ğ					105	1				1	36					304		282			311			317
-X-Co-ord	1111 E	61278 55	61278 55	3761278.55	61278.55	61278.55	012/0.00	3761278.55	61278.55	61278.55	3765034.790	65034.790	65034.790	00014-700	65034.790	65034.790	65034.790	3765034.790	65034.790	65034.790	3765034.790	65034 790	65034.790	65034.790	65034.790	3765034.790	64679.926	64679.926	646/9.926	3/646/9.926	64679.926	64679.926	3764679.926	64679.926	3764679.926	3/040/9.920 3764679 976	920 07979	3764679.926	64679.926	64679.926	64679.926	3764679.926	646/9.92b	3764679 936	64679.926	3763632.000	63632.000	63632.000	3763632.000	63632.000	3/63632.000	63632 000	63632 000	3763632.000	3763632.000	3763632.000 3763632.000	3763632.000
				1		-							- 1		-T-	1	1		- 1																		-						_				_								1 - 1		
-Y-Co-ord	30776	_		39775.92		_		<u> </u>	1.	39775.92	47018.779	47018	47018.779	4/018.//9	47018 770	47018 779	47018	47018.779	47018.779	47018.779	47018.779	47018	47018	47018	47018.779	47018.779	48140.	48140.731	48140	48140./31	48140.731	48140	48140.731	48140	48140.731	48140./31	48140	48140.731	48140	48140	48140.731	48140.731	48140	48140./31	48140 731	51915.000	51915.	51915.	51915.000	51915.000	000.01910	51915.000	51915	51915.000	51915.000	51915.000	51915.000
Address	and Vanna	kranna kamma	gya Kamma	308 Kragga Kamma	308 Kragga Kamma	308 Kragga Kamma	gga Kamma ooa Kamma	308 Kraqqa Kamma	308 Kragga Kamma	308 Kragga Kamma	Scotsam	otsam	otsam	otsam	DISUIT	Scotsam	otsam	Scotsam	otsam	Scotsam	Scotsam	otsam	otsam	otsam	Scotsam	Scotsam	linia Bay	Sardinia Bay	tinia Bay	linia Bay	tinla Bay	tinia Bav	Sardinia Bay	Jinia Bay	linia Bay	Sardinia Bay Sardinia Bay	linia Day	Sardinia Bay	dinia Bav	dinia Bay	Sardinia Bay	tinta Bay	Jinia Bay	Sardinia Bay	Sardinia Bav	Artington	Artington	Arlington	lington	Arlington	Arlington	Arlington	Artington	Arlington	Arlington	Arlington	Arlington
Ā	2/10/00	308 Kra	308 Kra	308 Kra	308 Kra	308 Kra	308 Kra	308 Kra	308 Kra	308 Kra	ŭ	З С	ŭ	5	ň	50	Š	Š	ÿ	ŭ	йö	ň			о О	S	Sarc	Sarc	Sarc	Sar	Sar	Sarc	Sarc	Sarc	Sarc	2 area	Care C	Sarc	Sarc	Sarc	Sarc	Sarc	Sarc		Sar	Ā	A	A	Ar	¥.	A	Z Z	Z A	V	Ā	A	2Z
Date	15 1.1 04	13-JUF94	14. Sen 94	12-Oct-94	12-Dec-94	10-Jan-95	U9-Feb-95	20-Apr-95	11-May-95	28-Jun-95	03-Jun-93	10-Aug-93	11-Nov-93	12-Jan-94	14-Anr-04	00-May-94	14-Jun-94	14-Jul-94	10-Aug-94	21-Sep-94	20-Dec-94	13-Fehras	13-Mar-95	20-Apr-95	11-May-95	21-Jun-95	03-Jun-93	10-Aug-93	14-Sep-93	20-Sep-93	12-Jan-94	08-Feb-94	09-Mar-94	14-Apr-94	09-May-94	14-Jun-94	14 hill 04	10-Aug-94	21-Sep-94	12-0ct-94	20-Dec-94	10-Jan-95	13-Feb-95	13-Mar-95	21- hin-95	18-Jun-93	10-Aug-93	25-Oct-93	16-Nov-93	14-Dec-93	19-Jan-94	22-Feb-94	71-Mar-94	07-Jul-94	10-Aug-94	22-Sep-94	10-Nov-94
Bh.No.	ļ	T	-		41	1	4	T	h		H	e	- -	2	2	2 ç		Π	ę	e	<u>e</u>	Ŧ	\uparrow	ϯ		h		6	1	- Б	Ť	t	6	6	6	5	» o	, o	6	6	6	6	"	"	n a	t	Π	Η	H	T	\uparrow	T	1	51	Ħ		54
Ħ		1250000		20005	50000	50000		50000	50000	50000	10000	10000	8	1000			000	10000	1000	800	10000			10000	10000	10000	00000	00000	0000	0000		00000	00000	00000	00000	0000		8000	00000	00000	00000	0000	8000	0000		40000	40000	40000	40000	4000 4000	40000	40000		40000	40000	10000	40000
Erf. No.	26644260000	361175	3601126	36011250000	36011250000	36011250000	360112	36011250000	36011250000	36011250000	99003510000	99003510000	990035	99003510000	00001250066	1250000	990035	99003510000	99003510000	990035	99003510000	99003510000	99003510000	99003510000	99003510000	99003510000	990074	99007400000	990074	99007400000	9900741	99007400000	99007400000	99007400000	99007400000	9900/400000	990014/0000	99007400000	99007400000	99007400000	99007400000	990074	99007400000	9900/400000	9900740000	99040340000	990403	990403-	99040340000	99040340000	99040340000	99040340000	9904034000	99040340000 99040340000	99040340000	990403	99040340000

-

WATER RESEARCH COMMISSION/STEFFEN ROBERTSON & KIRSTEMPORT ELIZABI TH MUNICIPALITY ENGINEER'S DEPARTMENT - RESEARCH PROJE

Z		48.6926	57.1031	57.5458	61.9724	57.5458	77.4212	40.2821	43.3807	15.0504	13.7225	15.0504	5.75458	6.19724	21.6903	24.789	24.789	18.5917		53.1192	24.789	8.8532	37.6261	27.0023	26.5596	20.3624
u			0.68		0.16		0.38								0.14		0.23			0.35			0.42	1	0.05	
NO3-N		11.0	12.9	13.0	14.0	13.0	17.5	9.1	8.6	3.4	3.1	3.4	1.3	1.4	4 9	5.6	5.6	4.2		12.0	5.6	2.0	8.5	6.1	6.0	4.6
SO4		137	119	128	118	127	141	122	92	76	67	62		37	78	2	67	2		114	75	44	8	73	11	60
¥			17.0		17.0		13.0						3.6		3.0		2.0			2.0			3.0		3.0	
R			371		369		412					239	222		252		218			284			266		232	
Fe(t)			0.03		0.11		0.03								0.00		0.06			0.72			0.03		0.17	
IJ		637	492	592	467	472	589	507	528	522	440	457	372	391	395	424	450	416		518	446	442	500	418	425	460
бW	CaCO3		184		184		215					110	102		133		111			119			100		92	
ပီ	CaCO3		305		298		384					341	263		399		299			443			359		605	
HI	CaCO3		489		482		599					451	365		532		410			562			459		397	
NCH	CaCO3		0		0		107					256	236		328		203			250			192		177	
Н	CaCO3		489		482		492					195	129		204		207	-		312			267		220	
ECA	C:ICO3		494		485		492	_				195	129	124	204		207			312			267		228	
ΔT	CaCO3		494		485		492					195	129	124	204		207			312			267		228	
TDS		1832	1788	1916	1708	1602	1798					1198			1146	1140	1202	1250		1476	1214	1148	1398	1224	1258	1170
Turb.			1.2		0.7		1.4				0.4	0.3	0.7	0.6	0.2	0.4	0.2			3.5			0.4		0.5	
EC				314	261	225	298	246	236	205	200	191	162	165	191	191	196	169		243	198	167	228	203	203	198
-X-Co-ord		3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000	3763632.000
-Y-Co-ord		51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000	51915.000		_	51915.000	51915.000	51915.000
Address		Arlington	Arlington	Artington	Arlington	Arlington	Arlington	Arlington	Arlington	Artington	Arlington	Artington	Artington	Artington	Artington	Artington	Arlington	Artington	Artington	Arlington	Artington	Arlington	Arlington	Arlington	Arlington	Arlington
Date		13-Dec-94	05-Jan-95	16-Mar-95	10-Apr-95	01-Jun-95	18-Jun-93	10-Aug-93	25-Oct-93	16-Nov-93	14-Dec-93	19-Jan-94	22-Feb-94	17-Mar-94	21-Apr-94	20-May-94	07-Jul-94	10-Aug-94	22-Sep-94	12-0ct-94	10-Nov-94	13-Dec-94	05-Jan-95	16-Mar-95	10-Apr-95	01-Jun-95
Bh.No.		21	3	21	21	21	22	22	22	22	22	22	22	22	22	22	22	_ 22	22	22	22	22	22	ដ	22	22
Erf. No.		99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000	99040340000