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ABSTRACT
Optimising crop planning in conjunction with intra-seasonal water allocation necessitates the use of daily water budget 
calculations to determine the timing and amount of irrigation events, which complicates the solution of the problem to 
global optimality. The main objective of this research was to compare the intra-seasonal water allocation of a mixed integer 
nonlinear programming (MINLP) model with that of differential evolution (DE), to allocate a limited amount of water while 
considering irrigable area and the irrigation schedule that will maximise the total gross margin. Results show that both 
solution procedures adhere to economic theory of water allocation under limited water supply. The conclusion is that the 
MINLP model most likely achieved very near global optimality as the solutions of the two models were very close to each 
other. DE holds promise to solve more complex models involving risk and multiple crops.
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INTRODUCTION

Dealing with increasing water scarcity will be an important 
research topic during the next decade, in the midst of 
producing enough food for a growing population (Paly et al., 
2010). According to Garg and Dadhich (2014), there is a shift in 
research from maximising crop yield per unit area to increasing 
productivity of water through deficit irrigation under limited 
water supply conditions. English et al. (2002) also predicted 
a paradigm shift towards using economic principles to 
optimise agricultural water use in contrast to maximising crop 
yield. Providing decision support to irrigators for improved 
irrigation management under limited water supply conditions 
is extremely difficult, because irrigation management is a 
dynamic problem. 

Crops grow through a process where water, abstracted from 
the soil water store, is transpired. Transpiration is reduced 
when the root zone soil water content drops below a crop 
specific threshold (Allen et al., 1998) and, consequently, the 
water deficit reduces crop yield. The onset of water deficit will 
only be known if the soil water content is tracked on a daily 
basis and the impact thereof on crop yield is determined by 
the sensitivity of a specific growth stage to the water deficit 
(Doorenbos and Kassam, 1979). Intra-seasonal water allocation 
is further complicated, because water availability on a per 
hectare basis is determined by the cropping area and available 
water. Thus, the irrigation scheduling decision (amount and 
timing) and the decision to plant a specific area must be 
considered simultaneously. Even if the allocation per hectare is 
known, the irrigator still needs to schedule water allocation to 
minimise electricity costs. 

Intra-seasonal water allocation is not widely studied 
in South Africa. Botes et al. (1996) provide the most 

comprehensive treatment on the dynamics of intra-seasonal 
water allocation. The authors used a crop growth simulation 
model to determine the dynamic relationship between the 
soil water status and maize growth. Water use was optimised 
through linking the Nelder-Mead simplex algorithm to 
the crop growth simulation model. Botes et al. (1996) 
acknowledge that the intra-seasonal water allocation problem 
is characterised by many near-optimal solutions and did not 
consider the area irrigated as a decision variable. Schütze et al. 
(2012) argue that the solution procedure may fail when local 
optima exist or the number of decision variables become too 
large. Grové and Oosthuizen (2010) included area irrigated as 
a decision variable in their nonlinear programming model. 
However, these researchers approximated the dynamic 
interactions between soil water status and crop yield through 
the inclusion of 1 296 alternative irrigation schedules in their 
model. Achieving global optimality with such an approach is 
difficult when using time-of-use electricity tariff structures 
such as Ruraflex (Eskom, 2015/2016). In such a case, the 
irrigation schedules need to be optimised for the timing of 
water stress in conjunction with the time-of-use timeslots, 
which corresponds with lower electricity tariffs. As a result, the 
alternatives used to represent the problem might not include 
the best global solution. Recently, Venter and Grové (2016) 
developed a nonlinear programming model that incorporates 
daily water budget calculations to schedule irrigation events 
while considering detailed electricity cost calculations. 
The model includes area irrigated as a decision variable and 
could easily be applied to study the interaction between water 
availability, area irrigated and the timing and quantity of 
irrigation events. The square root approximations for the 
minimum and maximum functions used to model the water 
budget calculations, correctly make the constraint set highly 
non-linear and difficult to solve. One of the major problems of 
solving nonlinear programming models is that the solvers do 
not guarantee global optimality (Murtagh et al., 1998). Thus, 
the feasibility of the model solutions could only be judged on 
logical rationality. 
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An evolutionary algorithm (EA) provides an alternative 
means of solving complex intra-seasonal water allocation 
models (Shütze et al. 2012). The phrase EA refers to a class 
of stochastic optimisation algorithms inspired by biological 
evolution. The goal of these optimisation algorithms is to locate 
the global optima within a multidimensional search space in 
which local optima may be present. The global optimum is the 
best possible solution in the search space. A local optimum is a 
solution that is better than all surrounding solutions, but not as 
good as the global best solution. 

An advantage of EAs is that they are relatively easy to 
implement, with the most complex part being the method to 
evaluate the quality of a given solution. Thus, the researcher does 
not have to specify how the problem should be solved, but only 
provides a means of determining how well a particular solution 
performs. A further advantage is that EA is suited to search 
spaces that are not differentiable, constrained or discontinuous, 
i.e., where the more traditional gradient-descent based 
algorithms cannot be used. Although the objective of an EA is 
to find the global optimum, there is no guarantee that it will be 
able to achieve this for any given problem. The algorithm could 
potentially be trapped in a local optimum, which constitutes 
an inferior solution. Various EAs exist in literature, including 
genetic algorithms (Holland, 1975), genetic programming (Koza, 
1992), evolutionary programming (Fogel, 1962) and differential 
evolution (DE) (Storn, 1996). Differential evolution (Price, 
et al., 2005; Storn and Price, 1996; Storn and Price, 1997) is a 
relatively new addition to the EA family. Differential evolution 
has garnered considerable interest, because of its simplicity, 
effectiveness and general insensitivity to parameter settings. The 
application of DE within irrigation agriculture in South Africa 
is not new. Adeyemo and Otieno (2010) applied multi-objective 
DE to allocate areas irrigated between multiple crops based on 
full irrigation in the Vaalharts irrigation scheme. Apart from the 
multi-objectivity of their problem, the decision-making problem 
represented in this paper is much more complex as it represents 
the dynamic linkage between choosing the size of an irrigation 
area and scheduling irrigation water throughout the season 
dynamically on a daily basis.

The main objective of this research is to compare the 
intra-seasonal water allocation of a mixed integer nonlinear 
programming (MINLP) model with that of DE to allocate 
a limited amount of water while considering area irrigated 
and the irrigation schedule, which will maximise the total 
gross margin. Comparison of the results will allow a more 
formal judgement on the optimality of the MINLP model, 
and determine the suitability of using DE for optimising 
agricultural water use. 

IRRIGATION ECONOMIC MODEL

The main purpose of the irrigation component of the irrigation 
economic model is to determine the impact of the timing and 
quantity of irrigation events on crop yield. Crop yield is linearly 
related to actual evapotranspiration (ETa) (Doorenbos and 
Kassam, 1979) and a key component of the irrigation model 
is to determine ETa. The level of ETa is a function of the root 
water content (RWC), because the level of evapotranspiration 
is reduced when the RWC falls below a threshold root water 
content (TRWC) (Allan et al., 1998). Consequently, daily water 
budget calculations are necessary to determine ETa. More 
specifically ETa is calculated on a daily basis as follows:
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The numerator of the term in parenthesis represents the 
daily water budget calculations necessary to calculate RWC. 
The RWC as a fraction of the TRWC acts as a scaling factor with 
which potential evapotranspiration (ETm) is scaled to calculate 
ETa. The RWC is a function of the initial RWC, ETa, rainfall 
(R), net irrigation (IR) and any increases in the RWC due to root 
growth, which is a function of the water content below the root 
zone (BRWC) and the fraction of roots that grow into the zone 
(RGF).  The RWC is limited not to exceed the amount of water 
that could be stored in the root zone and it is assumed that all 
excess water drains below the root zone. ETa is limited not to 
exceed ETm when the RWC is above the TRWC. Additions to 
the RWC due to root growth require knowledge of the BRWC, 
which requires a separate water budget calculation for the zone. 
The BRWC is calculated on a daily basis as follows: 
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The BRWC is a function of the initial BRWC, water that 
drains below the roots (BR) and the reduction in water content 
due to root growth where RGF represents the fraction of BRWC 
that will form part of RWC due to root growth. The BRWC is 
limited not to exceed the amount of water that could be stored 
in the zone below the roots and all excess water is assumed to 
drain below the zone.

Important to note is that IR represents the net amount of 
irrigation water that enters the soil. Thus, the amount does 
not take into account any inefficiencies. Inefficiencies may 
result from non-uniform water applications and wind drift. 
A constant wind drift loss of 10% (Van der Ryst, 1995) was 
assumed. Multiple water budgets (Hamilton et al., 1999) were 
modelled to incorporate inefficiencies that may have arisen due 
to non-uniform water applications. A distribution uniformity 
of 85% was assumed to determine the distribution of irrigation 
water across the water budgets. Only 3 water budgets were 
considered to keep the irrigation economic model tractable. 

The relative evapotranspiration formula from Stewart et al. 
(1977) was used to relate relative evapotranspiration deficits to 
relative crop yield: 
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The formula distinguishes between 4 growth stages (g) 
that are characterised by different yield responses (ky) to 
evapotranspiration deficits. The multiplicative form allows the 
proportional decrease in potential crop yield (Ym) to be more 
if the crop is stressed in more than one crop growth stage. 
The crop yield and daily irrigation output from the irrigation 
component was used in the economics component to calculate 
the resulting total gross margin as follows:
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The first term, (P−YC)Ya x HA calculates gross income 
minus yield-dependent costs (YC) while the second term, 
AC x HA, accounts for the total area dependent costs (AC) 
for the area (HA) irrigated. The last term calculates the 
irrigationdependent costs, which include electricity costs 
(EC), labour costs (LC) and repair and maintenance costs 
(RM). Irrigation system-specific parameters in the calculation 
comprised kilowatt requirement (kW), pumping rate (PR) and 
irrigation system application efficiency (e). Of note is that EC 
is defined for a specific day (t) as well as the specific Ruraflex 
time-of-use time period during the day (r). As a result, the 
effect of irrigation during periods with high electricity tariffs 
was captured in the total gross margin calculation for the pivot. 

DATA AND ANALYSES

Venter (2015) compiled a dataset with all the necessary weather, 
crop, soil, irrigation system-specific and cost parameters 
required to populate the irrigation economic model for maize 
grown at Douglas under centre pivot irrigation. Weather-
dependent parameters include rainfall and maximum evapo-
transpiration rates derived from weather data. Crop parameters 
include Kc-values to relate maximum evapotranspiration rates 
to the evapotranspiration rates of maize, and Ky-values to relate 
crop water deficits to crop yield and root growth. Soil infor-
mation relates to the soil water-holding capacity, which was 
assumed as 130 mm/m, and the threshold water content beyond 
which the crop will start to experience water stress. The size of 
the pivot was 30 ha and the irrigation system capacity was 10 
mm/day. The uniformity of water applications was assumed to 
be 85%, which implied that a third of the area was under- 
irrigated by 30% and a third was over-irrigated by 30% (Li, 
1988) when a uniform distribution between the maximum 
and minimum amounts was assumed. The costs in the data-
set include enterprise budgets for maize as well as electricity 
costs for the 2013/14 production season. The database was not 
updated as the sole purpose of this paper is to compare the 
results obtained with the MINLP and DE models with the aim 
of scrutinizing the global optimality of the MINLP solver. 

The irrigation economic model was solved for 
8 different water allocations ranging from 75 mm/ha listed to 
600 mm/ha listed. The total area listed is 30 ha. The range of 
water availabilities were chosen such that the results included 
both water-limiting and area-limiting phases of production. 

Mixed integer nonlinear programming solver

Before solving the model with the MINLP solver, it is necessary 
to represent the model within a constrained optimisation 
framework. Representing the water budget calculations of 
the irrigation component within a constrained optimisation 
framework is troublesome, because boundary conditions need to 
be set for the variables that define the water budget calculations. 
Using minimum and maximum functions to impose the 
boundary conditions is not recommended, as these functions 
are discontinuous and therefore not differentiable (GAMS 
Development Corporation, 2017). The smooth approximation of 
the minimum and maximum functions proposed by the GAMS 
Development Corporation (2017) is used to ensure that the 
equations are differentiable. For a complete implementation of 
the model using the smooth approximation approach, the reader 
is referred to Venter (2015). Binary variables were introduced 
to ensure that the net irrigation amounted to zero or between 
6 mm/day and 9 mm/day. 

The irrigation economic model was constructed in GAMS 
(GAMS Development Corporation, 2017) and solved with 
GAMS/DICOPT, which required a nonlinear programming 
(NLP) solver and mixed integer programming (MIP) solver. 
GAMS/MINOS and GAMS/CPLEX were selected as the 
NLP and MIP solvers, respectively. The complete irrigation 
economics model consisted of 1 808 equations and 1 544 
variables. At first the model was constructed such that an 
irrigation event could take place on any of the 120 growing 
days. However, the model failed to solve and the process was 
terminated. The model was then simplified by restricting 
irrigation events to every second day while leaving the 
possibility to irrigate between a minimum of 6 mm and a 
maximum of 18 mm, which corresponded to 2 days of water 
application. By implication, the model was allowed to spread 
the irrigation hours over a 2-day period even though enough 
hours might have been available to irrigate the designated 
amount of water on 1 day. Thus, the model was able to make 
better utilization of the off-peak hours. In the process, the 
dimension of the programming model was reduced to 1 388 
equations and 1 244 variables.

Differential evolution

DE is a stochastic optimisation algorithm inspired by biological 
evolution that iteratively optimises a set (referred to as 
population) of potential solutions (referred to as individuals). 
Iterations are called generations, as components from 
individuals in the current population are combined to form the 
individuals of an offspring population. The population entering 
the next iteration is made up of better performing individuals 
than the previous populations. In general, the following 
pseudo-code describes the working of the DE algorithm for a 
maximisation problem:

Initialise a random population of individuals (candidate 
solutions)
 While termination criteria are not met do
  For each individual 








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

 in the current population do 
   Randomly select 3 individuals from the population: 








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

 and 








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

   Create a new vector 








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

 as follows:
    








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

 where F is a constant
   Create a new vector 








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗)  as follows:

    








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

     where jr is a randomly selected vector index and 
C is a constant

 For each individual 








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

 in the current population do
  If Fitness 








 +++−
= −−−−−

t

tttttt
tt TRWC

BRWCRGFIRRETaRWCETmETa 11111

 

 

11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 


++−−−= 
 

 

𝑥𝑥1⃗⃗⃗⃗ , 𝑥𝑥2⃗⃗⃗⃗       𝑥𝑥3⃗⃗⃗⃗  

 

 

𝑣𝑣𝑖𝑖⃗⃗⃗   

 

𝑣𝑣𝑖𝑖⃗⃗⃗  =  𝑥𝑥1⃗⃗⃗⃗ + 𝐹𝐹(𝑥𝑥2⃗⃗⃗⃗ −  𝑥𝑥3⃗⃗⃗⃗ ) 

 

 𝑢𝑢𝑖𝑖𝑖𝑖 =  {𝑣𝑣𝑖𝑖𝑖𝑖    if 𝑟𝑟~𝑈𝑈(0,1) < 𝐶𝐶 or 𝑗𝑗 =  𝑗𝑗𝑟𝑟
𝑥𝑥𝑖𝑖𝑖𝑖    otherwise  

 

𝑥𝑥𝑖𝑖⃗⃗  ⃗ 

 

(𝑥𝑥𝑖𝑖⃗⃗  ⃗) 

(𝑢𝑢𝑖𝑖⃗⃗  ⃗) 

 < Fitness(








 +++−
= −−−−−

t

tttttt
tt TRWC
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11 −− −+= ttttt BRWCRGFBRBRWCBRWC  

 

𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦 × ∏[1 − 𝑘𝑘𝑦𝑦𝑔𝑔 (1 −
∑ 𝐸𝐸𝐸𝐸𝑌𝑌𝑡𝑡𝑡𝑡∈𝑔𝑔
∑ 𝐸𝐸𝐸𝐸𝑦𝑦𝑡𝑡𝑡𝑡∈𝑔𝑔

)]
4

𝑔𝑔=1
 

 

 

( ) ( )
PRe
HAIRRMLCkWECHAACHAYaYCPTGM t

tr tr 

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The concept of fitness is central to the functioning of DE. The 

fitness is a measure of how well a particular individual solves the 
problem at hand. In the current application, the total gross margin 
generated was used to evaluate the fitness of the individuals. 

Individuals (candidate solutions) in a DE population are 
viewed as vectors in the search space. The core idea behind 
DE is that the vector differences between individuals are used 
to perturb parent individuals when creating offspring. This 
provides a natural means of controlling the exploration of the 
population. Initially, when the population is widely distributed 
(this is referred to as having high diversity), the vector 
differences would be large, thus resulting in large perturbations 
and more exploration of the search space. Eventually, as the 
population converges to a solution, the vector differences would 
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be small (low diversity), resulting in a fine-grained exploitative 
search around the optimum.  

The algorithm thus has 3 parameters: the population size, 
F and C. These last two parameters are normally set within 
the range [0,1] and can be tuned to change the exploration and 
exploitation behaviour of the algorithm. Although guidelines for 
appropriate settings for F and C can be found in the literature 
(Storn, 1996; Pedersen, 2010; Rönkkönen et al., 2005), it is best to 
find problem-appropriate values for these parameters by testing a 
range of values during preliminary experiments. 

Differential evolution implementation for the irrigation 
problem

The goal of the optimisation process is to determine the 
irrigated area in hectares and the irrigation schedule that 
should be followed to maximise total gross margin of maize 
production within the constraints of the problem. The 
constraints that were imposed included the maximum amount 
of water that can be irrigated in a single day (IRMax), the 
minimum amount of water that can be given on a day when 
irrigation occurs (IRMin), the total amount of water that can 
be applied during the entire season (IRTotal and the maximum 
number of hectares that can be planted (HaMax).

The nature of the DE is that the hectares irrigated and the 
irrigation schedule can be directly encoded as an individual. 
Each individual thus consists of an array of real values. One 
of these values represents the number of hectares that should 
be placed under irrigation. The remainder of the array values 
represent the amount of water that must be irrigated on each 
successive day of the production season. The population is 
initialised by creating random individuals. The array values 
for each individual are assigned a random real value between 
0 and IRMax for the irrigation values, and 0 and HaMax for 
the number of hectares to be planted. A hard constraint is 
implemented that ensures that the values always fall within 
the initialisation ranges during the entire evolution process. 
Invalid values are prevented by clipping each array value to 
the valid range as soon as the  individuals are created. Values 
that exceed IRMax are set to IRMax. However, values below 
IRMin are left unchanged, although these values are treated as 
zero when fitness calculations are performed. This approach 
is analogous to the concept of recessive genes in biology. 

Encoded information is passed from one generation to the next, 
although this information is not necessarily expressed by the 
individual. The constraint where the total amount of water used 
for irrigation during a season must not exceed IRTotal is more 
complex to incorporate into the algorithm. Individuals were 
physically corrected to ensure compliance with this constraint. 
This was achieved by scaling the irrigation value for each day 
in the season by the ratio by which the total budget was exceed. 
So, for each individual  in the population for which > IRTotal 
where J is the total number of days in the production season) 
the irrigation amount for each day was adapted as follows:

     

 

 

𝑥𝑥𝑖𝑖𝑖𝑖 =  𝑥𝑥𝑖𝑖𝑖𝑖 × 𝐼𝐼𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 𝐽𝐽

𝑖𝑖=0
  (5)

This technique ensures that the water budget is not 
exceeded, without biasing the algorithm towards any particular 
watering scheme. 

The DE algorithm as well as the irrigation economics 
model that is used to simulate the fitness of each individual 
were coded in the Java programming language. Preliminary 
experiments found that parameter values of F = 0.3 and C = 0.7 
worked well. Due to the stochastic nature of the DE algorithm, 
each optimisation at a specified water allocation was done 30 
times and the best one was retained as the optimal solution. 
Daily irrigation events were allowed, which was the only 
difference between the MINLP solver and the DE algorithm. 

RESULTS

Objective / fitness function

The total gross margin, hectares irrigated and the resulting crop 
yield, optimised with the MINLP solver and the DE algorithm, 
are given in Table 1. The results show that the MINLP solver 
outperformed the DE algorithm in terms of achieving a higher 
total gross margin. Whether the MINLP solver achieved 
global optimal solutions is open to debate. Maize productivity 
plateaued at the maximum potential maize yield of 17 t/ha 
when water allocations exceeded 525 mm/ha for the 30 ha listed 
for both MINLP and DE. Thus, water allocation in excess of 
525 mm is associated with abundant water supply and both the 
solvers are expected to reach maximum potential gross margins 
resulting from maximum potential maize yields on fully 

TABle 1
Optimised total gross margin, hectares irrigated and crop yields as a function of irrigation water availability for the mixed 

integer nonlinear programming (MINlP) and differential evolution (De) algorithm

Total gross margin Hectares irrigated Crop yield

Water MINlP De De change* MINlP De De change MINlP De De change

mm (R) (R) (%) (ha) (ha) (%) (t/ha) (t/ha) (%)

75 86 570 86 477 −0.11 6.77 6.73 −0.73 14.55 14.61 0.41
150 173 314 172 903 −0.24 13.59 13.46 −0.98 14.53 14.61 0.49
225 259 219 258 918 −0.12 20.38 20.36 −0.09 14.51 14.53 0.09
300 346 503 344 965 −0.45 27.10 26.97 −0.51 14.56 14.59 0.20
375 420 276 419 080 −0.29 30.00 30.00 0.00 15.47 15.47 0.00
450 456 480 456 953 0.10 30.00 30.00 0.00 16.40 16.43 0.18
525 480 498 479 383 −0.23 30.00 30.00 0.00 17.00 17.00 0.00
600 480 139 479 383 −0.16 30.00 30.00 0.00 17.00 17.00 0.00

*Change in DE results relative to MINLP results
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utilised irrigation areas. Interestingly, the total gross margin 
of a water allocation of 600 mm is lower than the 525 mm 
allocation when considering the MINLP solutions. Such a 
result is an indication that the MINLP solver fails to identify 
the maximum outcome if water is unlimited and multiple 
irrigation schedules characterise the optimal solution. The DE 
algorithm achieved the same results for unlimited water supply 
which is more logical; however, total gross margins were lower 
when compared to the MINLP solutions. The DE algorithm was 
able to achieve a slightly higher total gross margin for a water 
allocation of 450 mm. The optimised total gross margin results 
for the DE algorithm showed a close resemblance to that of 
the MINLP solver, even though most of the optimised values 
were lower than that of the MINLP solver solutions. The largest 
difference was 0.45%.  

Two distinct phases were identifiable from the results, 
depending on whether water or land was the most limiting 
factor of production. During the water-limited phase 
(75 mm–300 mm), it was profitable to deficit-irrigate the crop 
and to use the saved water to irrigate a larger area. The total 
gross margins increased linearly during the water-limited phase, 
because the optimal level of deficit irrigation did not change as 
long as water was the limiting factor. Consequently, crop yield 
per hectare was the same and any increases in total gross margin 
were attributed to increases in irrigated area. The area-limited 
phase commenced from a water allocation of 375 mm. During 
the area-limited phase, water was not the most limiting factor 
of production and any additional water was used to increase 
crop yields per hectare. Declining marginal productivity 
characterised the area-limited phase and the total gross margins 
increased at a decreasing rate when more water was applied per 
hectare. Interestingly near maximum crop yield per hectare was 
achieved under water abundance, which indicated that electricity 
costs and water tariffs were still low compared to the value of the 
marginal product of applying an additional unit of water. 

A key part of the irrigation scheduling problem is to 
schedule the timing and irrigation amounts to achieve good 
crop yields. The problem is further complicated when water is 
pumped during the Ruraflex timeslots with lower electricity 
tariffs, thereby reducing irrigation costs. Table 2 shows the 
optimised distribution of pumping hours during the different 
Ruraflex time-of-use timeslots for the MINLP solver and the 
DE algorithm. 

The optimised distribution of pumping hours obtained with 
the MINLP solver for each water allocation showed that a larger 
proportion of the water was pumped during off-peak hours when 
compared with the distribution obtained with the DE algorithm. 
Thus, the total electricity cost of the MINLP solver was lower 
in all instances except for a water allocation of 75 mm where 
the cost was the same. A larger allocation of pumping hours to 
standard tariff timeslots was the direct result of not allowing the 
DE algorithm to allocate pumping hours over 2 days. Changing 
the DE algorithm to allocate pumping hours over 2 consecutive 
days may have resulted in the difference between the two 
solution procedures being reduced further.

The importance of keeping track of the soil water status was 
accentuated by the results, because it was optimal to irrigate 
in standard and even peak timeslots to ensure good crop yield 
per hectare. The large difference between the hour distribution 
of the MINLP solver and the DE algorithm while achieving 
similar total gross margins further showed that numerous 
solutions existed that were close to the optimal solution.

Irrigation schedules

Previously it was argued that the same level of deficit irrigation 
was optimal in the water-limited phase of production. By 
implication, the irrigation schedules in the water-limited phase 
should all be the same irrespective of water allocation, as long 
as water is the most limiting factor of production.  Figure 1 and 
Figure 2, respectively, show the irrigation schedules optimised 
with the MINLP solver and the DE algorithm for the water-
limited phase of production.

The irrigation schedules for both solution procedures 
demonstrated that a variety of irrigation schedules yielded 
similar results. The diversity of the MINLP solver irrigation 
schedules seemed higher when compared with the irrigation 
schedules of the DE algorithm. Such a result is surprising given 
the fact that the DE algorithm is a stochastic process. The 
irrigation schedules of both solution procedures did, however, 
exhibit some important characteristics. Water stress set in 
when the RWC of the irrigation schedule was below TRWC. 
The results from Figs 1 and 2 clearly show that the RWC of both 
solution procedures fell below TRWC most of the time during 
establishment and vegetative crop growth stages (Days 1–49) 
when the crop was less sensitive to water deficits. Both solution 

TABle 2
Optimised distribution of pumping hours across different Ruraflex time-of-use time periods at different water availabilities 

for the mixed integer nonlinear programming and differential evolutionary algorithm

Mixed integer nonlinear programming Differential evolution

Water 
(mm)

Off-peak 
hours

Standard 
hours

Peak 
hours

Total
hours

Off-peak 
hours

Standard 
hours

Peak 
hours

Total 
hours

75 199 (1.00)* 199 199 (1.00) 199
150 387 (0.97) 398 378 (0.95) 21 (0.05) 398
225 556 (0.93) 41 (0.07) 598 445 (0.75) 152 (0.25) 598
300 707 (0.89) 79 (0.1) 11 (0.013) 797 501 (0.63) 289 (0.36) 7 (0.01) 797
375 887 (0.89) 94 (0.09) 15 (0.01) 996 619 (0.62) 352 (0.35) 25 (0.03) 996

450 951 (0.8) 225 (0.19) 20 (0.02) 1 195 765 (0.64) 416 (0.35) 14 (0.01) 1 195 

525 1 251 (0.92) 107 (0.08) 1 358 982 (0.72) 376 (0.28) 1358
600 1 164 (0.86) 194 (0.14) 1 358 982 (0.72) 376 (0.28) 1 358

*The percentage distribution (fraction) of pumping hours is given in parentheses for each water allocation
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procedures ensured that the RWCs of the irrigation schedules 
were above the TRWC between Days 50–110 when the crop was 
most sensitive to water deficits, while no irrigation water was 
applied during the last 10 days in both models. 

DISCUSSION AND CONCLUSIONS

The main conclusion from this research is that the MINLP 
model specification of the intra-seasonal water allocation 
problem provided answers that were likely to be close to the 
global optima. This was because the MINLP model solutions 
were close to the DE solutions, which were determined 
with the more robust solution procedure. Despite both 
models independently finding almost identical solutions, 
global optimality could, however, not be guaranteed. It is 
common knowledge that it is more difficult to use nonlinear 
programming to solve a problem if the non-linearity is 
confined to the constraint set. It may be possible to reformulate 
the square root approximations into linear functions using 
disjunction (Nemhauser and Wolsey, 1999) to aid the discovery 
of the global optimal solution. 

The ease with which the DE algorithm is applied to the 
intra-seasonal water allocation problem and the quality of the 
results is encouraging. Preliminary results of testing a stochastic 
representation of the intra-seasonal water allocation problem 

seem promising, especially if one considers that the mathematical 
programming model formulation of the same problem could 
not be solved with the same solvers used in this research. The 
robustness of the algorithm should further be tested.
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