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ABSTRACT
Alkylphenols (APs) are ultimate breakdown products of alkylphenol polyethoxylate (APEs) that are used in cleaning and 
industrial processes. The most commonly used APEs in the market are the nonylphenol ethoxylates (NPEs) and octylphenol 
ethoxylates (OPEs). As a result of their widespread use and their lipophilic nature, these compounds are ubiquitous in the 
environment and are currently of concern because of their toxicity, oestrogenic properties and widespread contamination. 
This review summarizes the concentrations of NPE and NP in different environmental media. The sources of NPE in the 
environment and toxicity are reviewed. Their distribution patterns in the environment as well as exposure pathways are 
discussed with a view to provide better understanding of these emerging environmental contaminants. It is envisaged that 
this review will heighten the importance of identifying emerging issues and data gaps, and generate a future research agenda 
on APEs.
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INTRODUCTION

Surfactants are a diverse group of chemicals that are designed 
to have cleaning or solubilization properties (Ying, 2006). 
They generally consist of a polar group which is well solvated 
in water and a nonpolar hydrocarbon group which is not 
easily dissolved in water. Hence, surfactants combine both 
hydrophobic and hydrophilic properties in one molecule (Ying, 
2006; Olkowska et al., 2014). Based on the hydrophobic part 
of their molecules, surfactants may be classified as cationic, 
nonionic and/ or anionic compounds (Olkowska et al., 2014). 
Nonionic surfactants, such as alkylphenol ethoxylates (APEs), 
are one of the most widely used classes of surfactants. They 
have been used as detergents and emulsifiers in domestic, 
industrial and institutional applications, including paper 
production, leather and textile processing, and cleaning 
detergents. Also, some examples of this type of surfactant 
have been used in pesticide formulation (Datta et al., 2002; 
Ying et al., 2002; Kannan et al., 2003; Siemering et al., 2008; 
Xie and Ebinghaus, 2008; Bjorkland et al., 2009). The most 
important members of APEs are nonylphenol ethoxylates 
(NPEs) and octylphenol ethoxylates (OPEs), which account 
for approximately 80% and 20% of total APEs production, 
respectively (Keith et al., 2001; Diaz et al., 2002; Chiu et 
al., 2010). The chemical structures of these compounds are 
illustrated in Fig. 1. 

Concern has increased about relatively stable degradation 
products of APEs, alkylphenols (APs) such as nonylphenol 
(NP) and octylphenol (OP) (Zhang et al., 2009). APs have 
been classified together with lower ethoxylates (mono- tri),  as 
endocrine-disrupting compounds (EDCs), because of their 
effects on the hormonal system of numerous organisms by 

competing with oestrogen for binding receptors (Gibble and 
Baer, 2003; Bonefeld-Jorgensen et al., 2007). Exposure to 
the aquatic ecosystem is of particular concern, since aquatic 
organisms are exposed to continual introduction of discharged 
effluents from wastewater treatment works (WWTWs) (Olujimi 
et al., 2010). Moreover, the polar and non-volatile nature of 
these compounds prevents their escape from the aquatic 
realm (Xu et al., 2006). For this reason, NPs and OPs have 
been phased out in most developed countries and have been 
designated as priority substances in the Water Framework 
Directive (Directive 2000/60/EC 2000), and most of their 
uses are currently regulated (Directive 2003/53/EC 2003). 
However, in many developing countries, such as those in Africa 
and Asia, uncontrolled domestic and industrial discharge to 
waterways contributes to the high levels of EDCs in the aquatic 
environment (Falconer et al., 2006; Peng et al., 2006), and no 
schedule has been designed to reduce the use of NP, and use of 
APEs is these countries may be increasing. For example, the 
production of NP in 2001 reached approximately 16 000 t in 
China (Jin et al., 2004) increasing to 31 434 t in 2011 (Gao et 

Figure 1
Structures of nonyl- and octylphenol ethoxylates (top left and right) and 

their metabolites nonylphenol (NP) and octylphenol (OP)  
(bottom left and right)
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al., 2014). This increase accounted for 10% of total world NP 
production, according to the records of the China Petroleum 
and Chemical Industry (Gao et al., 2014). Thus, monitoring 
of NP in the environment becomes of particular concern 
because (i) both the NP and its parent compound, NPE, are 
ubiquitous in the environment, (ii) these compounds indicate 
a long-term environmental contamination, and (iii) they have 
shown to be toxic to aquatic organisms. The strong evidence 
of increasing contamination of the environment by these 
compounds heightens the importance of identifying emerging 
issues and data gaps. This review, therefore, focuses on sources, 
distribution in the environment, exposure pathways, and 
toxicity of APEs.

SOURCES OF APES IN THE ENVIRONMENT

Environmental release of APEs may occur during their initial 
synthesis, incorporation into related finished products for 
use, or as a result of their ultimate disposal or recycling. 
Nonylphenol and other alkylphenols are synthesized from 
intermediates in the refinement of petroleum and coal-tar 
(Núñez et al., 2007). Technical preparation of nonylphenol is a 
complex mixture of several branched alkyl isomers (Vazquez-
Duhalt et al., 2005). The process for the manufacture of 
alkylphenols is presented in Fig. 2.

Similarly, the synthesis of alkylphenol ethoxylates involves 
ethoxylation of branched octyl- or nonyl- phenols using 
ethylene oxide, resulting in isomers (with different alkyl 
moieties) and oligomers with different numbers of ethoxylate 
units (De Voogt et al., 1997).

Discharges from wastewater treatment works (WWTW) 
has been identified as another major source of APEs and their 
degradation products to aquatic environments (Fujita et al, 
2000; Farre et al., 2002; Rice et al., 2003; Esperanza et al., 
2004; Jensen and Jepsen, 2005; Johnson et al., 2005; Gatidou 
et al., 2007; Ying et al., 2008, 2009; Diehl et al., 2012; Chokwe 
et al., 2015a). Reported removal efficiency of APEs in sewage 
treatment works varies between 9 and 94%, depending on the 
region and type of unit treatment process (Jensen and Jepsen, 
2005; Johnson et al., 2005). These results are of concern as they 
indicate that sewage treatment works are only partially efficient 
in removing such compounds. Primary degradation of APEs 
in sewage treatment works or in the environment generates 
more persistent shorter-chain APEs and alkylphenols (APs), 
such as NP, OP and AP mono- to triethoxylates (NPE1, NPE2, 
NPE3) (Giger et al., 1984; Ying et al., 2002; Langford et al., 
2005). Short-chain APEs, such as NP1E and NP2E, have been 
analysed in a few studies and are often present in effluents 

at concentrations higher than their respective alkylphenols 
(i.e. NP) due to their higher water solubility (Glassmeyer et 
al., 2005; Loyo-Rosales et al., 2007). Further transformation 
proceeds via oxidation of the EO chain, producing mainly 
alkylphenoxy ethoxy acetic acid and alkylphenoxy acetic 
acid. The general degradation pathway of these compounds is 
presented in Fig. 3.

Biodegradation of longer-chain NPEs is readily achievable, 
but ultimate biodegradation of NP1EO, NP2EO, carboxylate 
derivatives and NP is considerably slower (Health Canada, 
2001). The lower rate of biodegradation indicates that these 
pollutants have the capacity to accumulate in organisms and be 
transferred between trophic levels, thus leading to a stepwise 
increase in contamination.

ANALYSIS OF ALKYLPHENOL ETHOXYLATES IN THE 
ENVIRONMENT

In terms of sample preparations, several techniques have been 
reported for the isolation of APEs from matrices. For liquid 
samples, liquid-liquid extraction (Tsuda et al., 2000; Espejo 
et al., 2002), and solid phase extraction (Chen et al., 2006; 
Koh et al., 2008; Chokwe et al., 2012), as well as solid-phase 
microextraction (Pan and Tsai, 2008), have been used. The use 
of large amounts of generally toxic solvents, and formation of 
emulsion as well as loss during chromatographic clean-up of 
extracts derived from liquid-liquid extraction has made the 
techniques less popular for isolation of APEs in liquid samples. 
The use of solid-phase extraction (SPE) has received much 
attention as it is used as a pre-concentration and purification 
step at the same time. Selection of SPE cartridges with a 
particular sorbent material such as porous silica bonded 
with C18 or other hydrophobic alkyl groups such as styrene-
divinylbenzene, plays an important role in the achievement of 
reproducible recoveries of analytes in liquid samples (Gilart et 
al., 2014).

For solid samples, extraction methods such as microwave-
assisted extraction (Fountoulakis et al., 2005), Soxhlet 
extraction (Sibali et al., 2010), pressurized liquid extraction 
(Fiedler et al., 2007), and ultrasonic-assisted extraction 
(Núñez et al., 2007) have been employed for the isolation 
of NP, NPE1, NPE2 and NPPE. Due to the fact that some of 
these techniques are too sophisticated or expensive, Soxhlet 
extraction has been the method of choice for the isolation 
of APEs in environmental solid matrix (Sibali et al., 2010), 
though the use of ultrasonic-assisted extraction is becoming 
more popular (Núñez et al., 2007; Chokwe et al., 2015a, 2016). 
Prior to extraction, solid samples are dried and homogenized 

Figure 2
Chemical synthesis of nonylphenol
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by air-drying or freeze drying, or by mixing with anhydrous 
sodium sulphate until free flow is obtained. The extracts 
obtained are purified further by column chromatography or 
SPE before instrumental analysis.

Separation and identification of APEs in environmental 
media has been achieved by either high-performance liquid 
chromatography (HPLC) or gas chromatography (GC) (Lu 
and Gan, 2014). With both instruments, a mass spectrometer 
detector (MSD) was the most commonly used detector for 
quantifying the APEs (Wu et al., 2010; Chokwe et al., 2012). 
A flame ionization detector (FID) has been used in some 
instances for the quantification of APEs in the environment 
(Güenther et al, 2006; Sibali et al., 2010; Guruge et al, 2011). 
Tandem mass spectrometry (MS/MS) has been used to detect 
trace amounts of these pollutants in the environment (Schmitz-
Alfonso et al., 2003; Shao et al., 2005, 2007; Moeder et al., 
2006). The polarity of phenols affects their chromatographic 
resolution and usually results in broad or tailored peaks 
(Olujimi et al., 2010). A widely used instrumentation for the 
analysis of APEs in the environment has been GC after the 
derivatization of the hydroxyl group (Cathum & Sabik, 2001; 
Gatidou et al., 2007; Fiedler et al., 2007). Several derivatization 

methods such as acetylation, alkylation and silylation have been 
used for GC analysis of phenolic compounds. For example, 
HFBA was used as a derivatizing agent for the determination of 
APE and BFR analytes in environmental samples (Chokwe et 
al., 2012, 2014). In another study, NP and BPA were derivatized 
within 30 min at 60°C using TFAA (Stehmann and Schröder, 
2004). Derivatization of NPEO with n-propanol-acetyl chloride 
at 80°C for 1 h has also been reported (Ding and Tzing, 1998). 
Cathum and Sabik (2001) described a derivatization procedure 
for APEO using pentafluorobenzoyl bromide (PFB-Br) as 
derivatizing agent, aided with K2CO3 by sonication. The 
derivatization took 2 h and was conducted in the dark. Gatidou 
et al. (2007) reported derivatization of NP, NP2EO, BPA and 
triclosan with bistrimethylsilylfluoroacetamide (BSTFA) at 
65°C for 20 min while Fiedler et al. (2007) derivatized APs with 
the same reagent at room temperature for 2 h. Furthermore, 
NPEO was derivatized with BSTFA in the presence of 
trimethylchlorosilane (TMCS) at 70°C for 4 h (Esperanza 
et al., 2004). In a separate study, Hoai et al. (2003) reported 
derivatized NPEOs and NPECs with bistrimethylsilylacetamide 
(BSA) at 25°C for 1 h. 

Figure 3
Degradation pathway of APEs (Renner, 1997)
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DISTRIBUTION OF APES IN THE ENVIRONMENT

APEs make up the world’s third-largest group of surfactants in 
terms of production, and have been used widely in the industry 
for over 50 years (Ying et al., 2002; Koniecko et al., 2014). 
Their behaviour in the environment is influenced by their 
physicochemical properties (Ying et al., 2002). The solubility 
of an APE surfactant depends on the number of polar groups 
forming the hydrophilic part of the molecule. Lower APE 
oligomers (EO < 5) are usually described as ‘water-insoluble’ 
or lipophilic, whereas the higher oligomers are described as 
‘water-soluble’ or hydrophilic (Ahel and Giger, 1993). The 
solubility of OP1EO- OP4EO ranged from 8 000–24 500 µg/L in 
water, while solubility of OP was 12 600 µg/L (Ahel and Giger, 
1993). NP has a water solubility of 5 430 µg/L while the NP1EO- 
NP4EO have solubility ranging from 3 020–9 480 µg/L. 
From these solubility values, the partition coefficients in the 
octanol/ water system and other logarithmic (log Kow) values 
were calculated for OP, NP and NP1EO-3EO. The log Kow 
for these metabolites ranged from 3.90–4.48 suggesting that 
these substances are associated with the organic matter in 
sediments. These solubility and log Kow results indicate that 
OP, NP, NP1EO- 3EO have large soil or sediment adsorption 
coefficients and a large bioaccumulation factor for aquatic life 
(Ying et al., 2002; Zhu and Zuo, 2013). The environmental 
fate assessment of OP and NP by Fugacity modelling showed 
that these pollutants occur at high levels in soil or sediments; 
lower levels occur in water and the lowest in air (Klosterhaus et 
al., 2012; Mao et al., 2012; Zhu & Zuo, 2013; Chen et al., 2014; 
Chokwe et al., 2015a).

APEs presence in the environment is as a consequence 
of anthropogenic activities. The level of APs and APEs in the 

environment has been documented in many studies around 
the globe. NP, OP, octylphenol ethoxylates (OPEs) and NPEs 
have been detected in air, wastewater, surface water, sediment, 
sludge and biota samples (Rudel et al., 2003; Petrovic et al., 
2003; Esperanza et al., 2004; Micic & Hofmann, 2009; Zhang 
et al., 2009; Grund et al., 2011; Wang et al., 2012; Chokwe 
et al., 2015b). A schematic diagram showing the emission, 
distribution and exposure pathway is given in Fig. 4.

Air

Air concentrations of alkylphenols are rarely reported 
in the literature. Existing studies show that nonylphenol 
has been found in indoor environments in air and dust at 
concentrations higher than outdoor values (air – 100 ng/m3, 
and dust – 2 580 ng/g) (Rudel et al., 2003; Saito et al., 2004). 
Van Ry et al. (2000) reported gas-phase concentrations of 
nonylphenol and tert-octylphenol (tOP) at two sites in the 
lower Hudson River Estuary. NP concentrations ranged 
from ND to 56.3 and 0.13 to 81 ng/m3 for Sandy Hook and 
New Brunswick sites, respectively. The concentration range 
of tOP ranged from not detected (ND) to 1.0 and 0.01 to  
2.5 ng/m3 for Sandy Hook and New Brunswick, respectively. 
NPs and tOP exhibited seasonal trends with higher gas phase 
concentrations during summer than during autumn and early 
winter. The results for NP were similar to the results reported 
by Dachs et al. (1999) from the same sampling points. Xie et 
al. (2006) reported a concentration range of 14 to 50 pg/m3 for 
NP1EO in atmospheric samples from the North Sea. Rudel 
et al. (2010) investigated the concentration of NP and NPE in 
indoor and outdoor air samples from California. The indoor 
NP concentration ranged from < LOQ to 89 ng/m3 and was 

Figure 4
Schematic diagram showing the emission, distribution and exposure pathway of APEs (WHO, 2004)
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higher than that outdoors (< LOQ to 40 ng/m3); while indoor 
NPE1 concentration ranged from < LOQ–72 ng/m3 and was not 
detected in outdoor samples. Salapasidou et al. (2011) reported a 
concentration range of 1.6–16.5 and 0.3–12.8 ng/m3 for NP and 
NP1EO in the atmosphere of an urban area of Thessaloniki, 
Greece.

Wastewater

Although they are highly treatable in well-functioning sewage 
treatment works, APEs and their degradation products (NP, 
OP, and NPE1–3) have been detected in effluents of many 
municipal wastewater treatment plants (WWTPs). Table 1 
present some of the reported data on the levels of APs and 
APEs in WWTPs around the world.

The reported concentrations of APs and APEs in sewage 
effluents varied widely among various WWTPs, from 
ND–15.3 µg/L. The highest concentration of NP (9.83 µg/L) 
was detected in effluent samples collected in Cape Town, South 
Africa (Olujimi et al., 2013) while the lowest concentration 
(0.028 µg/L) was detected in the UK (Koh et al., 2008). NP was 
not detected from effluent samples collected in Vereeniging, 
South Africa (Chokwe et al., 2012), but in the same study 
quantifiable concentrations of nonylphenol ethoxylates (NPE1, 
NPE2 and NPPE) were reported. In one of the few studies that 
determined NPE1 and nonylphenol di-ethoxylates (NPE2), 
samples from Taiwan (Ding and Tzing, 1998) exhibited the 
highest concentration (9.6 µg/L and 15.3 µg/L; respectively) 
with South Africa (Chokwe et al., 2012) reporting the lowest 
concentrations (2.09 µg/L and 0.55 µg/L; respectively). Both 
the nonylphenol penta-ethoxylates (NPPE) and octylphenol 
penta-ethoxylates (OPPE) were detected in effluents from 
South Africa (Chokwe et al., 2012).

Surface water

Investigations of nonylphenol in surface waters are in 
agreement that its occurrence is mainly correlated with 
anthropogenic activities, especially for urban river sediments. 
The main source of NP appears to be closely related to effluent 

discharges from WWTPs, proximity of industrial/urban areas 
and other related activities such as stormwater discharge and 
runoff (Hale et al., 2000; Petrovic et al., 2002; Corsi et al., 
2003; Micic and Hofmann, 2009). The results for NP in surface 
waters are presented in Table 2.

Nonylphenol concentrations in surface water ranged 
from ND–30 µg/L. The highest concentration (30 µg/L) was 
reported by Azevedo et al. (2001) from Portugal followed by 
9.35 µg/L reported by Sibali et al. (2010) from South Africa. 
For nonylphenol mono-ethoxylates, the highest concentration 
(5.1 µg/L) was reported from Cuyahoga River, USA (Rice et 
al., 2003). Concentrations ranging between 0.1 and 7.01 µg/L 
were reported for nonylphenol penta-ethoxylates (NPPE) 
from the Vaal River, South Africa (Chokwe, 2015). For the 
octylphenol ethoxylates, a study by Sibali et al. (2010) reported 
a concentration range from 0.31–6.01 µg/L for OPPE (1–3) 
from the Jukskei River, South Africa. Freshwater invertebrates 
and fish are sensitive to this category of chemicals and have 
demonstrated toxicity to it in varying degrees. A chronic water 
quality criteria concentration for NP on freshwater species 
of 6.6 µg/L has been derived by the USEPA’s Office of Water 
(USEPA, 2005) while a no-observable-effects concentration 
(NOEC) of 0.33 μg/L was derived in the EU risk assessment 
report (WHO, 2004). Some of the measured surface water 
concentrations exceeded both the water quality criteria for 
freshwater species living in the water column as well as the 
NOEC limit.

Sediments

Sediments are the ultimate sink or reservoir for 
environmentally persistent and hydrophobic organic 
pollutants in the aquatic environment derived from various 
human activities. Thus, globally, nonylphenol was found in 
higher concentrations in river or lake sediments than dissolved 
in the aqueous phase (Soares et al., 2008; Brix et al., 2010). The 
distribution of contaminants in the sediment of a river is also 
related to sediment properties such as organic carbon and 
particle size distribution (Baker et al., 1991; Lai et al., 2000). 
Nonylphenol was found to be resistant to biodegradation 

TABLe 1
Concentration of APs and APes in effluents of WWTPs

Location
Concentration (µg/L)

Reference
NP NPe1 NPe2 NPPe OPPe

Taiwan 1.6 9.6 15.3 Ding and Tzing, 1998
Switzerland 1–6.8 Espejo et al., 2002
Spain 0.085 Petrovic et al., 2003
USA 1.93 2.95 13.24 11.99a Esperanza et al., 2004
Norway 0.05–1.31 Johnson et al., 2005
Japan 0.5–1.1 Nakada et al., 2006
UK 0.028 Koh et al., 2008
Greece 0.03–0.90 0.34–6.89 0.41–17.4 Stasinakis et al., 2008
Australia 1.627 2.212 Ying et al., 2008
South Africa ND 2.092 0.55 0.972b 1.46 Chokwe et al., 2012
South Africa 0.52–9.83 Olujimi et al., 2013
Hong Kong 0.44–1.56 Xu et al., 2014

aNPE3
bNPE5
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in lake water/sediment systems, showing only a slight (9%) 
loss (after 56 days) and 4.2% loss (after 28 days) (Lalah et al., 
2003). The degradation half-life of nonylphenolic compounds 
was estimated to be greater than 60 years once they enter the 
sediments (Shang et al., 1999). The levels of NP, OP, OPPEs 
and NPEs in sediments are presented in Table 3.

Adsorption processes controlling the partition of 
nonylphenol ethoxylates to sediments demonstrated that 
the organic content of the sediments was one of the most 
important determinants of the adsorption process, especially 
for short-chain nonylphenol ethoxylates (John et al., 2000). 
Higher concentrations of nonylphenol and its ethoxylates 
were detected in samples from developed countries as 
compared to samples from developing countries. Nonylphenol 
concentrations of up to 1 364 ng/g were reported in sediments 
collected in Germany (Grund et al., 2011). A study by Verslycke 

et al. (2005) reported a total concentration of up 1 151 ng/g for 
longer chain length NPEs (NPE3–16) from The Netherlands. 
Another study in the USA detected higher concentrations 
(1 800–11 000 ng/g) for NPE0–14 (Loyo-Rosales et al., 2007). 
The presence of long-chain NPEs in sediment corroborates 
findings by Shang et al. (1999) that little degradation of NPEs 
occurs once these compounds enter the sediment. Sibali et 
al. (2010) reported a concentration range of 1.94–941 ng/g for 
OPPE (1-3) in sediments from the Jukskei River, South Africa. 
Recently, concentration ranges of ND–46; 6.4–51; 13–82 and 
24–38 ng/g for OPPE, NPE1, NPE2 and NPPE, respectively, 
were reported for Vaal River sediments (Chokwe et al., 2016). 
These results indicate that APs and APEs are ubiquitous in 
the environment. An NP predicted-no-effect concentration 
(PNEC) for sediment of 39 ng/g was derived in the EU risk 
assessment report using the portioning methods (WHO, 2004).

TABLe 2
Concentrations of APs and APes in surface waters

Location Concentration (µg/L) Reference
NP NPe1 NPe2 NPPe OP OPPe

Canada ND 0.048 Cathum and Sabik, 2001
Portugal 0.3–30 Azevedo et al., 2001
USA 1.1 2.01 Kannan et al., 2003
USA 0.13–5.1  0.0053–0.19 Rice et al., 2003
Japan 1.6 0.48 0.56 Hoai et al., 2003
Korea 0.023–0.19 Li et al., 2004
Hong Kong 0.029–2.59 0.011–0.35 Li et al., 2007
China 0.075–1.52 0.021–0.063 Zhang et al., 2009
South Africa 0.38–9.35  0.31–6.01a Sibali et al., 2010
Nigeria 0.044–0.079 0.06–0.07 Oketola and Fagbemigun, 2013
China 0.036–3.105 0.0028–0.542 Chen et al., 2014
South Africa 0.06–0.11 ND–0.73 ND–0.74 0.1–7.01  ND–1.93b Chokwe, 2015

aSum of OPE1, OPE2, OPE3
bOPE5

TABLe 3
APs and APes levels in sediment samples

Location 
Concentration (ng/g)

Reference
NP NPe1 NPe2 NPPe OP OPPe

USA 75–340 32–320 30–200 54–159 74 Rice et al., 2003
USA 5.8–15.3 Kannan et al., 2003
Korea 25.4–932 Li et al., 2004
The Netherlands ND–1 222 ND–51.9 ND–221 ND–1 151a Verslycke et al., 2005
Spain 13–225 Lara-Martin et al., 2006
Italy 47–192 Pojana et al., 2007
USA 1800–11 000b Loyo-Rosales et al., 2007
Brazil 1–10 Fiedler et al., 2007
South Africa 1.94–941c Sibali et al., 2010
Germany ND–1 364 Grund et al., 2011
China 16.6–203.8 ND–2.6 Wang et al., 2012
Nigeria 1.1–79.4 2.2–24.5 Oketola and Fagbemigun, 2013
Poland 1.46–2.31 6.56–13.1 Koniecko et al., 2014
South Africa ND 6.4–51 13–82 24–38 ND–46   Chokwe et al., 2016

aSum of NPE3–16
bSum of NPE0–14
cSum of OPE1–3
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Biota

Alkylphenols are lipophilic and thus accumulate in fatty 
tissues (Vazquez-Duhalt et al., 2005; Uguz et al., 2003; 
Abdulla Bin-Dohaish, 2012). Uptake occurs mainly through 
two pathways: water (gill ventilation) and diet. Generally, 
high concentrations of APEs are expected to be found in the 
liver relative to muscle because of the liver’s role in storage, 
detoxification and regulation of all metabolic process (Uguz et 
al., 2003). However, most of the analysed publications limited 
their studies to APE levels in muscle and this will therefore be 
discussed in this section. 

Fish, mussel and shellfish are the most common 
biosamples because they are typical aquatic organisms that 
might be sensitive to APs and APEs in surface water. The 
ability of these organisms to accumulate APs and APEs 
depends on their feeding strategy (David et al., 2009). A 
higher portion of APEs and APs were detected in organisms 
with higher exposure to sediments, suggesting that the main 
source of APEs and APs may not be the water column, but 
sediments and dietary uptake, both depending on their 
distribution in the aquatic environment (Ferreira-Leach and 
Hill, 2001; David et al., 2009).

NP, NPE1 and NPE2 were detected in all shellfish samples 
obtained from rivers flowing into Lake Biwa, Japan with 
concentration ranges of 2.8–19.3, 7.7–23.3, 2.0–5.3 ng/g 
wet wt., respectively (Tsuda et al., 2002). Datta et al. (2002) 
reported the concentration of NP and NPEs in trout, common 
carp and yellow perch from various locations in the USA 
Great Lakes region. Concentrations of NP, NPE1, NPE2, 
and NPE3 from fish samples ranged from 18–2 075 ng/g wet 
weight. In the Cuyahoga River, USA the concentration of 
NPE0–2 in carp ranged from 32–920 ng/g (Rice et al., 2003). 
A concentration range of 151–300 ng/g for NP was reported 
in 6 fishes (i.e., weever, catfish, bartail flathead, white flower 
croaker, wolfish, and mullet) from Bohai Bay by Hu et al. 
(2005). Wang et al. (2007) reported NP in mussels from the 
Masan Bay of Korea, where concentrations ranged from 
50.5–289.2 ng/g dry wt. In the Venice lagoon, NP in mussels 
was detected with a concentration range of 115–211 ng/g dry 
wt (Pojana et al., 2007). Concentrations ranging from 32.6–
47.2 ng/g were detected in carp and moggel (Labeo umbratus) 
from South Africa (Chokwe et al., 2015b). 

Sludge

Sorption to sludge, as a consequence of a high affinity for 
organic matter, and biological degradation are major 
removal mechanisms for APEs during wastewater treatment 
(Scrimshaw and Lester, 2002; Shao et al., 2003; Soares et al., 
2008; Stasinakis et al., 2008). It has also been reported that 
treatment plants that treat wastewater of industrial origin, 
or from areas with high population densities indicative 
of an urban area, exhibit high concentration of APEs 
(Langford and Lester, 2002). Few studies have been reported 
the presence of APEs in sludge. La Guardia et al. (2001) 
investigated concentrations of APE degradation products 
(NP, NPE1, NPE2) in sludge from 11 US WWTPs and 
found that concentrations were highest in the anaerobically 
digested samples (721 000–981 000 ng/g dry wt). In the 
majority of samples, NP was the most abundant. NP 
concentrations of 242 000 ng/g (sludge before anaerobic 
digestion) and 308 000 ng/g (sludge anaerobically stabilized) 

were reported by Bruno et al. (2002) in a sludge sample 
from Italy. Concentrations ranging from 3 600–93 000 ng/g 
and 12 800–233 500 ng/g for NP and NPEO, respectively, 
were reported by Fountoulakis et al. (2005) in three 
WWTPs (Athens, Patras and Heraklion) in Greece. NP, 
NPE1 and NPE2 concentrations (110, 1 010 and 2 890 ng/g, 
respectively) were reported by Gatidou et al. (2007) from 
Mytilene City WWTPs, Greece. In Spain, the concentrations 
of NP, NPE1 and NPE2 were determined from biological 
wastewater treatment plants and ranges from 3 200–
199 000 ng/g were reported (Fernández-Sanjuan et al., 2009). 
A concentration range of between ND and 642 ng/g was 
reported by Chokwe et al. (2015c) for sludge samples from 
three WWTPs in South Africa.

EXPOSURE PATHWAYS TO APES

According to human exposure assessments, as shown 
in Fig. 4, non-occupational exposure to APEs can occur 
through a variety of exposure pathways including inhalation 
of air, ingestion of food and indoor dust, and by drinking 
contaminated water (Ying et al., 2002; Erickson, 2002; Lu et 
al., 2007; Salapasidou et al., 2011; Zhou et al., 2011). Another 
source of exposure might be via the cleaning agents used in 
the food-processing industry, or plastic packaging materials 
from which NP, used in tris(nonylphenol) phosphite as an 
oxidant, could migrate into food (Inoue et al., 2001; Loyo-
Rosales et al., 2004). When animals ingest NP, its absorption 
from the gastrointestinal tract is initially rapid, and probably 
extensive. NP is distributed widely throughout the body, with 
the highest concentrations in fatty tissues (WHO, 2004).

Exposure through food

NP levels were measured in 39 foods and beverages, including 
fruits and vegetables, dairy products, fish and meat, pasta, 
beer, coffee and chocolate, from German supermarkets, by 
Güenther et al. (2002), who found a concentration range 
of 0.1–19.4 µg/kg. These findings suggest that food may be 
an important route of exposure to endocrine-disrupting 
compounds (EDCs) like APEs in humans. A similar study 
was conducted by Lu et al. (2007) in Taiwan by sampling 
25 types of food consumed by locals, including two freshwater 
fish, two saltwater fish, two shellfish, two other seafoods, 
poultry, livestock, vegetables, rice and noodles, three other 
proteins and fruits. The foodstuff samples were analysed for 
NP, OP, butylphenol (BP), NPE1 and NPE2. NP was detected 
in 243 samples from the total of 318 samples (76.4%), with an 
average concentration of 235.8 ± 90.7 µg/kg. NP in vegetables 
can likely be attributed to pesticides (Güenther et al, 2002). 
Both branched and linear NP were detected in the tissues of 
pumpkin, carrot, and citrus purchased from Florida, with the 
highest concentration, of 18.5 µg/kg, reported for citrus (Lu 
et al., 2013). NP concentration ranged from 1.18 to 4.31 µg/kg 
(lettuce) and 3.79 to 6.95 µg/kg (collard) in the stems and leaves 
while the concentrations in the roots of lettuce and collard 
were 926.9 µg/kg and 339.2 µg/kg, respectively (Dodgen et al, 
2013). Monitoring studies by Dodder et al. (2014) reported NP 
levels exceeding 50 µg/kg and a detection frequency of more 
than 50% in mussel tissues collected along the Californian 
coast. The data supported the trend that NP levels increase 
with increasing urbanization of the sampling site (Careghini 
et al., 2014; Luo et al., 2014).
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Exposure through air and other pathways

Exposures to APEs are not always exclusively through food. 
Other exposure pathways to these compounds may include 
non-dietary ingestion, dermal absorption from product use, 
drinking contaminated water and inhalation (Rudel and 
Perovich, 2009). A day-care study concluded that dietary 
ingestion was the primary exposure pathway for toddlers to 
a group of phenolic compounds that included nonylphenol, 
though inhalation was found to be a secondary route of 
exposure (Wilson et al., 2001). Short-chain alkylphenol 
polyethoxylates have been found in drinking water and 
groundwater in the US (White et al., 1994; Rudel et al., 1998; 
Swartz et al., 2006) indicating that drinking of contaminated 
water is another exposure pathway to NP.

TOXICITY

Exposure to APE degradation products can result in acute 
and/or chronic toxicity to aquatic organisms (Langston 
et al., 2005; Vazquez-Duhalt et al., 2005). Studies have 
demonstrated that APEs compete for the binding site of 
natural oestrogen receptors in vertebrates and can elicit a 
variety of responses, including stimulation of vitellogenin, an 
egg-yolk protein in males; modification of testicular structure 
and decreased sperm counts thus leading to both intersex 
fish and altered sex ratios in populations, and induction of 
both liver damage and mortality (Servos, 1999; Ackermann 
et al, 2002; Bakke, 2003; Staples et al., 2004; Rempel and 
Schlenk, 2008; Amaro et al., 2014; Chen et al., 2014). Among 
marine organisms, gastropods and bivalves appear to be 
most sensitive to the effects of NP and OP, followed by fish, 
other invertebrates and then algae (Staples et al., 2004; Van 
Miller and Staples, 2005; Wang et al., 2010; Gao et al., 2014; 
Hsu et al., 2016). In general, decreasing exothylate chain 
length has been correlated with increasing toxicity (Servos 
et al., 2003). Chronic toxicity values and no-observed-effect 
concentrations (NOEC) are as low as 6 µg/L in fish and 
3.7 µg/L in invertebrates, respectively (Servos, 1999). Lowest-
observed-effect concentration (LOEC) was at a nominal dose 
of 4 µg/kg body weight of AP for effects on the timing of 
puberty, while the delay effect in mature fish was at 20 µg/
kg body weight (Meier et al., 2011). A study by Bellingham 
et al. (2010) demonstrated that the developing foetus 
during pregnancy was sensitive to environmentally relevant 
concentrations of EDCs that may have a serious impact on 
the future development of the reproductive system. Xie et 
al. (2013) showed that nonylphenol and tert-octylphenol 
bind with human serum albumin during transport and 
metabolic processes in vitro. The USEPA guideline for 
ambient water quality designates nonylphenol concentrations 
of below 6.6 µg/L and 1.7 µg/L in freshwater and saltwater, 
respectively (USEPA, 2005; Brooke and Thursby, 2005). In the 
European Union (EU) risk assessment report on NP of 2001 a 
no-observable-effect concentration (NOEC) of 0.33 µg/L was 
derived (WHO, 2004).

MAJOR KNOWLEDGE GAPS FOR ALKYLPHENOL 
ETHOXYLATES

Wastewater effluents were identified as a major source of APEs 
and their degradation by-products in the environment; thus, 
more studies should be undertaken to measure the levels 
of APEs at WWTP outfalls, and terrestrial environments 

close to agricultural, mining and chemical industries, as 
the concentration are expected to be highest there. Within 
effluent studies, as these pollutants are directly linked to 
urbanization (Falconer et al., 2006), the impact of population 
increases in metropolitan areas need to be assessed for APEs 
pollution. As sewage is known to be released into wetlands and 
oceanic waters, studies of APE levels in these compartments’ 
inhabitants (such as birds, frogs, algae, daphnia, dolphins, etc.) 
need to be undertaken in order to assess the impact of APEs on 
biodiversity of such bodies. Indoor dust has been implicated 
as an important exposure route for other persistent organic 
pollutants (POPs) such as TBBPA (Abdallah et al., 2008; Harrad 
et al., 2010), PBDEs (Ali et al., 2013; Abafe and Martincigh, 
2015) and PCBs (Abafe and Martincigh, 2015); an accurate 
assessment (occurrence and fate) of alkylphenol ethoxylates in 
the indoor environment is of major importance for developing 
countries as the use of these endocrine-disrupting chemicals is 
suspected to be on the rise.

There were two studies considered in this review which 
reported on degradation of NPE0–16 (Verslycke et al., 2005; 
Loyo-Rosales et al., 2007).  Though these studies confirmed 
NP as the major product, more information on the behaviour 
and degradation of the longer-chain NPE6–16 in different 
environmental matrices and biota becomes of utmost 
importance. In addition, the fate and transport of the longer-
chain NPE in the environment is still not well understood. 
Also, there is a paucity of data on the adverse health 
impacts of NPE1–3. Hence, studies should be undertaken to 
establish the minimum health risk concentration for each 
isomer as well as to investigate the synergic health effect 
of a combination of different environmentally relevant 
concentrations of APEs. There is a scarcity of data on human 
biological monitoring for APEs around the globe and more 
research also needs to be directed toward NPE isomer 
identification, as the available studies determined exposure to 
technical mixtures of OPs and NPs (Calafat et al., 2005; 2008; 
Faniband et al., 2014). 

NPE (1–3) as emerging environmental contaminant should 
be studied systematically to evaluate their potential threat 
to environmental and human health. To accomplish this 
goal, research activities should look into, among others: (i) 
developing analytical methods to measure these pollutants in a 
variety of matrices down to trace levels; (ii) fate and transport 
of NP and NPE (1–3) in air; (iii) more toxicity data to assess 
the effects on terrestrial organisms such as plants; and (iv) 
potential effects on wildlife due to long-term exposure to low 
concentrations of NP and NPEs.

CONCLUSIONS

Irrespective of sources, APEs have become ubiquitous in 
the environment. The occurrence of APEs and APs has been 
reported around the globe in wastewater effluents, surface 
waters, sediments, biota and air. Discharges from WWWTPs 
were found to be a major source of these compounds in the 
environment, though atmospheric deposition, urban runoff 
and direct discharge, such as application of pesticides to aquatic 
vegetation, may also be important sources of these compounds 
in the environment and humans. There were few results cited in 
the review that showed concentrations of NP above the USEPA 
guideline for ambient water quality, thus indicating moderate 
to high risk from contamination by NP of surface waters 
around the globe. Exposure pathways to these compounds 
include: contaminated foods, ingestion, inhalation and water. 
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Thus, the presence of APEs in the food chain, indoor air, dust 
and water should be continuously monitored. More studies are 
required to further understand the fate and transport of NPE 
(6–16) in the environment and biota as well as adverse health 
impacts of NPE (1–3) isomers in wildlife and humans.
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