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EXECUTIVE SUMMARY 

Groundwater is a vital source of freshwater, essential for socio-economic development and the 
sustainability of groundwater-dependent ecosystems (GDEs). These ecosystems play a crucial role 
in preserving biodiversity and enhancing resilience against the impacts of global environmental 
change. Recently, GDEs have become increasingly at risk due to anthropogenic and climatic 
stressors, including hydrological alterations, rising temperatures, and land-use transformations.  
The effective management and conservation of these ecologically significant systems are hindered 
by a lack of comprehensive data on their condition, structure, function, and resilience. Addressing 
these knowledge gaps is critical for developing scientifically informed conservation strategies that 
ensure the long-term sustainability of GDEs and their associated biodiversity. The spatial 
distribution, vegetation composition, soil moisture dynamics, and water quality of GDEs remain 
poorly understood, particularly in Africa. In the southern regions of Kruger National Park (KNP), 
groundwater serves as a critical resource for sustaining ecosystems due to significantly lower 
rainfall when compared to other areas of the park. Keystone phreatophyte species, such as Boscia 
albitrunca (Shepherd’s tree), play a vital ecological role by accessing deep groundwater reserves 
and redistributing moisture to the upper soil layers, thereby supporting the survival of other key 
plant species in these water-limited environments. Similarly, the groundwater-dependent thorny 
thickets and grasslands support several species, such as the endangered Ceratotherium simum 
(White Rhino). Characterising these ecosystems in these pristine areas is essential for enabling 
resource managers to implement timely interventions and mitigate environmental stressors, such 
as salinisation, before they propagate to other parts. However, these ecosystems remain poorly 
understood due to a lack of comprehensive data on their spatial distribution, vegetation species 
diversity, soil moisture dynamics, and water quality. As a result, GDEs in this region are 
understudied, limiting the ability to develop effective conservation and management strategies. 
Traditionally, field-based techniques have been widely employed to map and assess GDEs across 
different environments. While these methods provide valuable on-the-ground insights, they are 
often constrained by limited spatial coverage, high costs, and time-intensive data collection 
processes. In contrast, advancements in Earth observation technologies offer significant 
advantages over conventional field-based approaches. Remote sensing enables the monitoring of 
large spatial areas, facilitates regular temporal assessments of ecosystem changes, reduces the 
costs associated with extensive fieldwork, and provides access to remote or otherwise inaccessible 
locations. Furthermore, Earth observation techniques allow for the integration of diverse 
environmental datasets, offering a more comprehensive understanding of GDEs.  
When combined with hydrogeological approaches, these advanced geospatial techniques enhance 
the ability of resource managers and policymakers to make data-driven decisions regarding 
biodiversity conservation in GDEs. Considering this, the present study aims to develop a geospatial 
framework for monitoring GDEs in the southern regions of the KNP. This framework will leverage 
satellite-based spatiotemporal models to support effective ecosystem management and decision-
making. To achieve this overarching goal, the study has outlined the following specific objectives: 

1. To conduct a comprehensive and state-of-the-art literature review and potential use of 
remote sensing-based models for GDE monitoring in the light of climate change. 

2. To develop remote sensing-based methods for delineating GDEs specifically in vulnerable 
areas such as KNP, South Africa. 
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3. To assess the use of spatial explicit techniques in measuring species diversity in GDE. 
4. To assess the soil moisture potential of GDEs in the southern tip of KNP, South Africa.  
5. To assess water quality and chlorophyll variability in the selected GDEs in the southern tip 

of KNP, South Africa. 
To effectively achieve the contractual objectives, the project was structured into four distinct work 
packages, each addressing specific research components. The first work package focused on 
addressing Contractual Objective No. 1 through two comprehensive narrative literature reviews. 
These reviews provided a theoretical foundation for the study by synthesising existing knowledge 
on GDEs, remote sensing applications, and associated environmental parameters. The second work 
package aimed at delineating GDEs, using advanced remote sensing techniques, directly 
addressing Contractual Objectives No. 2 and 3. This phase involved the development and 
application of geospatial methodologies to accurately map the extent and distribution of GDEs 
within the study area. The third work package was dedicated to the in-situ measurement of plant 
species diversity, soil moisture, and water parameters within GDEs, corresponding to Contractual 
Objectives No. 3, 4, and 5. This component integrated field-based data collection with remote 
sensing-derived insights to enhance the characterisation of these ecosystems. The final work 
package focused on research dissemination, ensuring that key findings are translated into 
actionable knowledge for stakeholders. This package emphasised the communication of research 
outputs through scientific publications, policy briefs, and stakeholder engagement activities. 
Additionally, it included a report on capacity development, highlighting efforts to enhance 
expertise in GDE monitoring and conservation. To systematically address these work packages 
and fulfil the overarching contractual goals, the following specific objectives were established: 

1. To conduct a detailed synthesis of the progress and advancements in remote sensing 
integrated with geospatial techniques for assessing groundwater-dependent vegetation 
(GDV) at fine spatial and temporal scales. 

2. To provide a comprehensive review of the applications of groundwater flow models 
coupled with advanced geospatial tools in understanding the ecohydrology of GDEs and 
their connectivity to underlying aquifers. 

3. To evaluate the effectiveness of machine learning (ML) classifiers in predicting 
groundwater-dependent vegetation potential zones (GDVpz) within the KNP, South 
Africa; 

4. To accurately characterise groundwater flow systems in the southern region of KNP and 
enhance hydrogeological modelling of groundwater-dependent ecosystems; 

5. To assess (i) spatial and temporal variations in water and sediment chemistry in pan 
wetlands across different geological formations and hydroperiods (low and high), and (ii) 
the diversity and abundance of macroinvertebrate communities across geological regions, 
geological types, and hydroperiods in relation to water and sediment chemistry; 

6. To develop and evaluate predictive models for Alpha and Beta diversity in potential 
groundwater-dependent vegetation zones using spectral coefficient of variation (CV), 
topographic features, and soil moisture data. 

7. To integrate soil moisture data from the Soil Moisture Active Passive (SMAP) satellite 
with machine learning models based on Sentinel-1 Synthetic Aperture Radar (SAR) data 
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to analyse temporal and spatial trends in soil moisture and vegetation productivity in GDEs, 
thereby supporting informed environmental management strategies in KNP. 

The project aimed to leverage action research methodologies to facilitate active participation and 
maximise the benefits for the community of practice in the targeted locations. The project team 
worked in close collaboration with scientific teams from the KNP, which played a crucial role in 
fostering strong social capital both within and surrounding the park. As part of this partnership, 
certain datasets were provided by the authorities of the KNP, enhancing the project’s data-driven 
approach. For example, the project’s spatial data for the study area was sourced from KNP. Various 
studies then derived their sampling points using the shapefiles of the southern region of KNP. 
These GIS datasets were integrated with satellite imagery, including data from the Sentinel-2 
Multispectral Instrument (MSI), Shuttle Radar Topography Mission (SRTM), Soil Moisture 
Active Passive (SMAP), and Soil Moisture and Ocean Salinity (SMOS) missions. These datasets 
were accessed and utilised through the widely available big data cloud platform, Google Earth 
Engine, in combination with various machine learning algorithms for analysis. 
In addition, to ensure a rigorous and comprehensive approach to literature review, the project 
employed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines. The PRISMA checklist was used to generate key search terms for retrieving relevant 
literature from major databases, including Web of Science, Scopus, and ScienceDirect. The first 
comprehensive state-of-the-art literature review on the use of Earth observation data for the 
assessment and monitoring of GDEs examined a total of 200 peer-reviewed studies published 
between 2000 and 2021. The findings revealed significant advancements in remote sensing 
technologies that have enhanced the monitoring capabilities of GDEs. The reviewed literature 
emphasised the potential for future studies to explore the utility of cloud computing platforms, 
particularly Google Earth Engine, which facilitates rapid data processing and integration across 
extensive spatial and temporal scales. These technologies were identified as critical tools for 
addressing the challenges posed by climate change, offering researchers valuable insights into 
ecosystem dynamics. This section of the project underscored how remote sensing methods can 
improve the detection of changes in GDEs, enabling more timely and precise responses for 
conservation planning.  
The second review assessed groundwater modelling applications coupled with space-based 
observations in groundwater-dependent assessments. The reviewed literature highlighted concerns 
regarding the mismatch in spatial and temporal scales between remotely sensed data and 
groundwater models, which makes it difficult to integrate them in the delineation of GDEs. 
Additionally, it noted that there is a lack of ground truth data, particularly in remote areas, which 
further complicates GDE validation efforts. This review then identified the need to integrate spatial 
data with groundwater numerical modelling to improve the accuracy of the model results by 
providing more detailed information about the area’s geology and hydrogeology. In addition, the 
review demonstrated the ecological significance of understanding GDE-aquifer connectivity and 
its critical role in conservation efforts within these ecosystems. 
The study examined vegetation diversity using the Shannon-Wiener and Simpson Diversity 
Indices, finding a negative correlation between environmental variability (measured by the 
coefficient of variation) and species richness. This suggests that increased environmental 
fluctuations may reduce vegetation diversity. The findings highlight the need for further 
exploration of plant phenology’s role in diversity and emphasise the importance of understanding 
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these dynamics for developing effective conservation strategies that account for seasonal and 
phenological changes.  
Concerning the water quality component, a comprehensive water quality assessment and 
macroinvertebrate sampling, focusing on the influence of hydroperiod (the duration and frequency 
of water presence) and geological characteristics, was conducted. The first study noted that 
hydroperiod significantly influences chlorophyll-a concentrations more than geological type, with 
higher levels observed during the low hydroperiod. Benthic chlorophyll-a was positively linked to 
salinity and TDS but was negatively affected by high pH and large pan surface areas due to nutrient 
binding and sediment resuspension. Results of the second study on water quality showed that lower 
hydroperiods correlated with reduced biodiversity, emphasising the critical role of hydrological 
stability in sustaining diverse invertebrate communities. Furthermore, variations in sediment 
chemistry, influenced by underlying geological formations, were found to impact nutrient 
availability, directly affecting invertebrate diversity. These findings underscore the need for 
nuanced, site-specific conservation approaches that consider both hydroperiod dynamics and 
geological factors in preserving GDE biodiversity.  
In assessing the soil moisture potential within Kruger's GDEs, the study utilised SMAP and 
Sentinel-1 Synthetic Aperture Radar (SAR) data. Satellite-derived soil moisture measurements 
correlated strongly with field data, with R² values between 0.51 and 0.59. The findings 
demonstrated the potential of these remotely sensed products in capturing eco-hydrological 
dynamics in GDE-dominated environments. This understanding of soil moisture variability is 
critical for conservation planning, as soil moisture plays a direct role in vegetation productivity 
and GDEs' Health. 
 
New Knowledge and Innovation 
The use of Earth observation technologies to create a Geospatial Framework for Monitoring GDEs 
is a relatively recent development in the context of their application in South Africa. To the best 
of our knowledge, no study has mapped GDEs in South Africa using geospatial techniques. The 
information derived from the Geospatial Framework for Monitoring grassland ecosystems is thus 
critical in determining the spatial extent, biomass and carbon sequestration potential of GDEs in 
the KNP. Subsequently, this project contributes to the emerging use of Earth observation facilities 
for detecting and mapping the spatial extent, biomass, species diversity, and water quality 
attributes of GDEs. This project is a step toward developing smart technologies that provide 
essential and timely information for resource managers to make in-field decisions and for scientists 
to offer recommendations for the sustainable management of conservation areas in South Africa. 
This is relevant in conserving fauna dependent on the existence of GDEs and in meeting the Paris 
Climate Agreement targets. 
  

Capacity Building 
The project was successful in its capacity-building mandate by recruiting and mentoring two 
African female Master of Science Students and an African female doctoral student. Additionally, 
this project mentored a postdoctoral fellow and an early-career researcher transitioning to a mid-
career researcher. This effort significantly strengthened both the institutional and individual 
capabilities. The project is still going to recruit one more Master's student by leveraging other 
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funding streams to address any other issues lurking in the objectives. In this project, the 
postdoctoral fellow actively participated in supervising students alongside early, mid-career and 
established researchers.  The early and mid-career researchers benefited from the active 
mentorship provided by experienced researchers in the project, particularly in developing 
conceptualisation and project management skills. 
 
Conclusion 
This project establishes a comprehensive framework for monitoring Groundwater-Dependent 
Ecosystems by integrating remote sensing technologies with field-based data to assess ecological 
health in KNP. By examining the interplay between geological, hydrological, and biological 
factors, the study provides a robust model for sustainable ecosystem management in climate-
sensitive regions. The findings underscore the critical role of spatial data characteristics in 
accurately delineating GDEs, demonstrating how variations in resolution and sensor capabilities 
influence detection accuracy. The methodologies and insights developed in this research offer a 
scalable approach that can be adapted to other vulnerable ecosystems worldwide, supporting 
conservation efforts and informing data-driven decision-making. Ultimately, this study contributes 
to the broader understanding of GDE dynamics and enhances strategies for preserving these vital 
ecosystems in the face of global environmental change.  
 
Recommendations 
Several research gaps persist in the utilisation of geospatial technologies and data for mapping and 
monitoring GDEs, particularly in developing countries where fine spatial resolution data 
availability is limited. 

• There is a need for extending the research efforts combining deep machine learning 
techniques, multisource spatial datasets and groundwater hydrogeological modelling 
techniques to enhance the delineation of the spatial extent of GDEs.  

• Also, fine spatial resolution remotely sensed data needs to be assessed for mapping soil 
moisture potential in GDEs to better understand flora and fauna abundance, diversity and 
distribution within these GDEs. 

• Future studies should consider engaging Stable and Radioactive Isotope Tracers in concert 
with GIS techniques in identifying geological interactions unique to groundwater across the 
hydrological season to verify GDEs. 

• Water quality parameters, including the variability in chlorophyll content and its 
relationship with species diversity in GDEs, require more comprehensive assessments. 
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CHAPTER ONE 

BACKGROUND 

 

1.1 Introduction and Project Objectives  

Groundwater is a vital source of freshwater, supporting both socio-economic development and the 

needs of groundwater-dependent ecosystems (GDEs). Groundwater ecosystems include rivers, 

lakes, wetlands, and springs. Groundwater-dependent vegetation (GDV), such as phreatophytes, 

plays a key role within GDEs. These plants, like the Shepherd's tree (Boscia albitrunca) in Africa, 

are considered keystone species, capable of redistributing groundwater to shallower parts of the 

soil profile, thereby benefiting other co-existing species (Wang et al. 2013). For example, the 

thorny thickets (Albizia versicolor and Terminalia sericea) and grasslands (Hyparrhenia spp.) 

although not nutritious, they support various species, including the Sable Antelope (Hippotragus 

niger) and the White Rhino (Ceratotherium simum). Meanwhile, the numerous shallow waters 

from wetlands and springs support a wide variety of vertebrates. All these GDEs are impacted 

when the groundwater regime changes and exceeds the natural bounds of natural variation. 

Unsustainable abstractions and poor groundwater quality also present a threat to the GDEs 

existence. However, the major challenge with enforcing regulations regarding their preservation 

is that important information about their carbon sequestration potential, species diversity, and 

pollution abatement remains largely unknown, particularly in Africa (Turner et al., 2001). 

Subsequently, an understanding of their distribution, vegetation soil and water quality attributes 

remains complex. Furthermore, insights on the effects of groundwater variations on GDEs remains 

largely understudied. The southern parts of Kruger National Park (hereafter Kruger) are no 

exception to this fate, and the GDEs therein are understudied. 

Unlike other parts of Kruger with surplus surface water from preceding precipitation, the southern 

parts of the park are characterized by deep sandy soils with low precipitation and limited surface 

water resources. If groundwater is not available in these parts of Kruger, ecosystem structure and 

function will likely shift, vegetation dieback will increase, and invasive species will become more 

common. Around the Pretoriuskop area in southern Kruger, groundwater is essential for vegetation 

and other fauna species. Consequently, characterizing GDEs in the southern parts of Kruger will 

allow resource managers to timely intervene and control environmental stressors (e.g., 
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salinization) from cascading to other parts of Kruger. While field-based techniques have been used 

in mapping GDEs in different environments, these techniques have limited spatial coverage.  

Meanwhile, GIS and remote sensing techniques have been demonstrated to be useful in mapping 

GDEs even in smaller areas owing to the high spatial resolution offered by most remote sensing 

products (Eamus et al. 2015a). The advent of remote sensing data from active and passive sensors 

has availed opportunities for up-to-date synoptic inventories of GDEs, even for inaccessible GDEs. 

Remote sensing has also allowed for the inquiry into whether GDEs are expanding or shrinking 

for a particular time series. However, the utility of remote sensing in mapping GDEs depends 

heavily on both the spatial and spectral resolution of the imagery used, since GDEs can be narrow 

strips and, more importantly, they can even be less than a hectare in size (e.g., the small wetlands 

in East Africa). Initially, researchers used low-resolution imagery (>30 m) such as Advanced Very 

High-Resolution Radiometer (AVHRR) and aerial photographs for monitoring GDEs until the 

availability of medium spatial resolution data (4 m - 30 m). Medium resolution multispectral 

sensors then became more common for GDEs mapping, along with a set of band combinations.  

Importantly, the effectiveness of GDEs mapping also depends on the delineation techniques 

employed, such as image classification algorithms (Baker et al., 2006). Commonly used 

classification algorithms for GDEs include the Maximum Likelihood, Minimum Distance, and 

Support Vector Machines. These algorithms primarily classify images based on top-of-atmosphere 

reflectance values. However, more advanced techniques, such as Object-Based Image Analysis 

(OBIA), incorporate additional factors, including reflectance, shape, structure, and connectivity, 

in the segmentation process before classification (Duro et al., 2012). Studies that successfully 

employed OBIA often utilised high-resolution optical sensors such as IKONOS and QuickBird 

(Wang et al., 2020) but tended to overlook medium-resolution imagery due to concerns about 

spatial resolution. The recent availability of Sentinel-2 imagery, launched in 2016, offers a new 

opportunity for resource managers to map GDEs with improved accuracy. Sentinel-2 provides a 

spatial resolution of 10–60 m and high spectral resolution in the near-infrared region, surpassing 

previous medium-resolution sensors like Landsat 8 Operational Land Imager (OLI). 

By integrating medium-resolution multispectral data with machine learning algorithms, the 

mapping of GDEs can be significantly enhanced (Dronova, 2015). Additionally, advancements in 

geospatial cloud computing platforms like Google Earth Engine (GEE) have addressed challenges 
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related to computational intensity and high costs associated with specialized software. The GEE 

provides users with powerful computational resources and sophisticated image analysis 

techniques, making it a valuable tool for understanding the dynamics of GDEs. Remote sensing in 

concert with hydrogeological approaches can provide water resource managers and policy makers 

with robust information and knowledge necessary for making informed decisions on biodiversity 

conservation in GDEs (Munch et al., 2013). This project proposed to develop a geospatial 

framework and models for monitoring GDEs in the southern parts of KNP. The project utilised the 

cloud-based Google Earth Engine (GEE) platform to delineate and monitor the spatial distribution 

of GDEs and their associated ecohydrological status (i.e., water quality, soil moisture variability, 

vegetation species diversity). In addition, invertebrates associated with different water level 

regimes were also assessed to infer the interactions between groundwater levels and biodiversity 

within the study area. The framework provides actionable information services for GDEs 

assessment and monitoring across key land management areas. Specifically, the assessment and 

monitoring service will deliver satellite-based Earth observation spatiotemporal models that will 

assist users in operational GDE management, as well as policy and decision-making in the target 

areas. 

1.2 Project aims and objectives 

1. To conduct a comprehensive and state-of-the-art literature review and potential use of 

remote sensing-based models for GDE monitoring in the light of climate change. 

2. To develop remote sensing-based methods for delineating GDEs specifically in vulnerable 

areas such as KNP, South Africa. 

3. To assess the use of spatial explicit techniques in measuring species diversity in GDE. 

4. To assess the soil moisture potential of GDEs in the southern tip of KNP, South Africa. 

5. To assess water quality and chlorophyll variability in the selected GDEs in the southern tip 

of KNP, South Africa. 

 

1.2.1 Specific objectives 

The outlined contractual objectives of this project were addressed by drawing the following 

specific objectives: 
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1. To develop a detailed synthesis on the progress and development of remote sensing 

integrated with geographic and information systems in assessing GDV over fine spatial 

and temporal scales. 

2. To provide a comprehensive overview of the progress and applications of groundwater 

flow models coupled with advanced geospatial tools to understand the ecohydrology GDEs 

and their extent of connectivity to underlying aquifers. 

3. To assess the efficacy of machine learning (ML) classifiers in predicting groundwater-

dependent vegetation potential zones (GDVpz) within the KNP, South Africa. 

4. To accurately characterise groundwater flow systems in southern KNP and improve 

hydrogeological modelling of groundwater-dependent ecosystems. 

5. To assess (i) variations in water and sediment chemistry in pan wetlands across different 

geological types and hydroperiods (low and high) and (ii) spatiotemporal 

macroinvertebrate diversity and abundance across geological regions, geological types, 

and hydroperiods in relation to water and sediment chemistry. 

6. To assess water quality and chlorophyll variability in the selected GDEs in the southern tip 

of Kruger National Park. 

7. To evaluate models predicting Alpha and Beta diversity in potential groundwater-

dependent vegetation zones using spectral coefficient of variation (CV), topographic 

features, and soil moisture. 

8. To integrate soil moisture data from SMAP with machine learning models based on 

Sentinel-1 SAR data to evaluate temporal and spatial trends in soil moisture and vegetation 

productivity in GDEs, thereby supporting informed environmental management strategies 

in the KNP. 
 

1.3 Scope and the overview of the report 

This report is presented in a paper format, with each chapter standing alone as an entity that 

partially addresses the contractual objectives of the project. The report leverages guidance from 

the WRC project managers, technical reference group members, and the rigorous international 

peer-reviewed systems, with some chapters published in scientific journals. In this regard, 

considering that all the work was conducted in the same study area, the study area description is 

presented only once in the preceding subsection to avoid repetition. In addition, since stand-alone 
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chapters addressed the same overarching aim and were from the same study area, there are 

inevitable overlaps in some of the sections, including the methods sections. This was deemed 

insignificant, since all these chapters present a seamless flow of methods and principles that 

underpin the current scientific setting to address the same overarching aim. Furthermore, some of 

the chapters were adapted from articles already published in internationally peer-reviewed 

journals. The report is structured to address all the project’s contractual objectives in a logical 

framework.  

Specifically, the chapters in this report are as follows: 

Chapter 1: Presents a comprehensive introduction, background and motivation of the entire study. 

It outlines the project’s contractual objectives as captured in the contract document. It also presents 

the specific objectives that were drawn up to address the contractual objectives. 

Chapter 2: A comprehensive and state-of-the-art literature review on the progress and 

applications of groundwater flow models coupled with advanced geospatial tools to understand 

the ecohydrology GDEs and their extent of connectivity to underlying aquifers. This chapter 

addresses contractual objective number 1. 

Chapter 3: Also, a comprehensive and state-of-the-art literature review on the progress and 

applications of groundwater flow models coupled with advanced geospatial tools to understand 

the ecohydrology GDEs and their extent of connectivity to underlying aquifers. This chapter 

contributes to addressing contractual objective number 1. 

Chapter 4: Engages various ML classifiers in predicting GDVpz within KNP, South Africa. This 

chapter addresses a critical gap by evaluating the applicability of ML classifiers in comparison to 

AHP in pristine ecohydrological settings. Specifically, this chapter addressed project objective 

number 2, which sought to develop remote sensing-based methods for delineating GDEs 

specifically in vulnerable areas such as KNP, South Africa. 

Chapter 5: Characterised groundwater flow systems in southern KNP to enhance hydrogeological 

modelling of groundwater-dependent ecosystems. It assessed preferential groundwater flow paths 

and defined boundary conditions of the GDEs system by analysing borehole core loggings and 

examining geological cross sections across the study area. Additionally, this chapter contributed 

to addressing contractual objective number 2. 
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Chapter 6: Assessed (i) variations in water and sediment chemistry in pan wetlands across 

different geological types and hydroperiods (low and high) and (ii) spatiotemporal 

macroinvertebrate diversity and abundance across geological regions, geological types, and 

hydroperiods in relation to water and sediment chemistry. This chapter hypothesized that 

hydroperiod, defined as the duration and frequency of inundation, has a substantial influence on 

the diversity of macroinvertebrates. Overall, this chapter addressed project objectives number 3 

and 5, focusing on species diversity and partially on water quality. 

Chapter 7: This chapter assessed chlorophyll-a dynamics as a proxy for understanding water 

quality in the KNP, South Africa.  

Chapter 8: Predicted vegetation alpha and beta species diversity in potential groundwater-

dependent vegetation zones using spectral coefficient of variation (CV), topographic features, and 

soil moisture. This chapter contributed to addressing contractual objective number 3, focusing on 

developing techniques for accurately assessing species diversity in GDEs. 

Chapter 9: Presents a conceptual procedure for integrating soil moisture data from SMAP with 

machine learning models based on Sentinel-1 SAR data to evaluate temporal and spatial trends in 

soil moisture and vegetation productivity in GDEs, thereby supporting informed environmental 

management strategies in KNP. 

Chapter 10: Presents a comprehensive synthesis and discussion of the entire project’s outcomes, 

connecting all individual studies in addressing the project objectives. This chapter also provides 

conclusions and suggestions for future research. 

1.4 Description of the study area  

The study area for this project is the Kruger National Park (KNP). KNP is one of the largest 

conservation areas in Africa, covering almost 2 million hectares. It is located along the north-

eastern boundary of South Africa in the Mpumalanga and Limpopo provinces (Figure 1.1). The 

KNP lies within the savanna biome, which is characterized by a discontinuous tree canopy and an 

herbaceous layer dominated by C4 grasses. The KNP interior is drained by five perennial rivers, 

which flow from the west to the east across the KNP before flowing into Mozambique and the 

Indian Ocean. Rivers established before the Pliocene erosion phase tend to flow from west to east, 

and smaller rivers tend to flow from the north to south, following the strike of geology.  
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The study area is generally semi-arid and experiences warm summers with seasonal rainfall. 

Winters are mild and dry with little to no rainfall. In summer, temperatures may reach 44°C and 

seldom fall below freezing point in winter. In the KNP, the mean annual rainfall decreases from 

south to north and from west to east. The KNP receives an annual rainfall of 650 mm (Smit et al., 

2013). In KNP, extreme periods of both inundation and aridity are a common phenomenon. On 

average, in the dry season (June–October), ephemeral water sources dry up, and only the 

permanent rivers (Sabie and Crocodile) and artificial waterholes are available for wildlife 

sustenance. The topography of the KNP is primarily influenced by the different rock resistance to 

weathering. The park is a gently undulating landscape between 200 m and 400 m above sea level 

with a gentle gradient to the east, except for the Lebombo Mountains, which have a higher 

elevation. Within the borders of KNP, lies a diverse assemblage of igneous, sedimentary, and 

metamorphic rocks as well as unconsolidated sediments deposited over a timespan of more than 

300 million years (Ma). The primary litho-stratigraphic units within the KNP are the Basement 

complex, characterised by ancient granitoid rocks dating back to the Swazian era (>3090 Ma), 

sedimentary and volcanic rocks of the Soutpansberg Group and the volcanic rocks of the Karoo 

Supergroup. The KNP is divided roughly in half (north to south) as per the dominant basaltic and 

granite geological formations.  

The south-eastern region of the KNP is underlain by rocks that belong to the Nelspruit Suite 

(Figure 1.1). The batholith rocks are approximately 3303± Ma and are predominantly composed 

of coarse-grained porphyritic granodiorites, with high contents of quartz, microcline and biotite. 

In the KNP, geology is the key controlling factor of how the hydrogeological conditions within 

the area vary. There are two types of aquifers present in the southern part of the KNP: the shallow 

weathered aquifer and the deep hard rock granite/gneiss aquifer. Borehole yields will heavily rely 

on the permeability and porosity of the subsurface geology as different geological units will also 

have different recharge rates, storage capacities and permeabilities. Generally, groundwater is less 

likely to flow through the hard rock aquifer than through the weathered rock aquifer. In the KNP, 

groundwater flow direction is from the 1st order hillslope towards the 3rd order hillslope running 

parallel to streams. 
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Figure 1.1 Map of the Kruger National Park, South Africa  
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CHAPTER TWO 

THE ROLE OF EARTH OBSERVATION DATA IN GROUNDWATER-DEPENDENT 

ECOSYSTEMS ASSESSMENT AND MONITORING IN SEMI-ARID ENVIRONMENTS 
 

2.1. Introduction 

Vegetation is a major component of terrestrial ecosystems and plays a vital role in energy flow, 

global carbon circulation, and the hydrological cycle (Zhao et al., 2012). It is estimated that 29% 

of global carbon emissions are decreased by terrestrial vegetation, thus reducing the accumulation 

of atmospheric carbon dioxide (Cernusak et al., 2019). Further, desertification processes are 

buffered by vegetation cover, which maintains healthy natural environmental conditions (Lv et al., 

2013). About 25-40 tonnes of the topsoil are eroded annually, due to vegetation clearing and 

cultivation as well as poor land management practices (FAO and ITPS, 2015; Lv et al., 2013). 

During this process, 23-42 tonnes of phosphorous and nitrogen are washed away, decreasing the 

soil's ability to regulate nutrients, carbon, and water (FAO and ITPS, 2015). In addition, the 

vegetation communities provide other valuable ecosystem services, such as flood control, water 

purification, pollinator habitats and recreational opportunities (DeFries and Bounoua, 2004; 

Gerten et al., 2004; Northcote and Atagi, 1997). A study by Blevins and Aldous, (2011) revealed 

that 17% of terrestrial vegetation in the United States was groundwater dependent and provided 

habitat for 39% invertebrates. In arid regions, vegetation is a major contributor of soil organic 

material, which fosters soil aggregation, water attenuation and nutrient accumulation (Lv et al., 

2013). Furthermore, vegetation contributes to the economy through ecotourism, as a genetic hub 

for bioprospecting and in the preservation of biodiversity (Williams., 2018). In 2011, the global 

economic value of ecosystem services was estimated at 124.8 trillion USD, and the benefits of 

ecosystem conservation far exceed the costs of conservation (Costanza et al., 2014). Therefore, 

vegetation must be protected and safeguarded from both natural and anthropogenic threats.  

Climate variability affects water availability and temperature which, in turn, affect vegetation 

distribution, health and productivity (Barron et al., 2014; Kløve et al., 2014). Moreover, a third of 

the sub-Saharan African landscape consists of arid and semi-arid land, which experiences low 

rainfall with annual averages below 500mm/yr. Only 2% of the average rainfall replenishes 

groundwater resources (Wada et al., 2010; Xu and Beekman, 2003). Available surface water for 
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terrestrial vegetation in these regions is highly limited. Therefore, groundwater is an important 

resource for growth, species composition and structure as well as the distribution of terrestrial 

vegetation (Liu, 2011). In addition, some terrestrial vegetation in arid and semi-arid regions is 

maintained by direct and indirect access to groundwater and is collectively referred to as 

groundwater-dependent vegetation (GDV) and sometimes as phreatophytes (Richardson and 

Kruger, 1990). These are a type of GDE. 

Global environmental change, infrastructural developments and most importantly, over-

exploitation of surface and groundwater resources have largely compromised the ecological 

integrity of ecosystems (McDowell and Moll, 1992; Rouget et al., 2003). Global change has 

widespread impacts on the Earth’s terrestrial ecosystems, such as habitat loss and fragmentation, 

biological invasions, pollution, frequent droughts, and climate change, which rapidly erode 

biodiversity and threaten ecosystem functioning (Lv et al., 2013). For instance, available water for 

terrestrial vegetation has been compromised due to escalating air temperature, prolonged droughts, 

as well as over-exploitation of groundwater resources for anthropogenic activities (Williams, 

2018; Krogulec, 2018). Subsequently, this compromises the ability of GDV to provide essential 

ecosystem goods and services (Rouget et al., 2003; Shadwel and Febraury, 2017). Monitoring 

vegetation conditions and their response to environmental and global changes over time improves 

our understanding of change processes, and helps identify affected and vulnerable areas (Franklin 

et al., 2016). Information on the nature and types of vegetation-groundwater interactions will guide 

policymaking, setting restrictions, and developing strategic mechanisms for groundwater use 

within the region. In this regard, such information is also critical for supporting agendas on 

sustainable future development, for example, the United Nations’ (UN) Sustainable Development 

Goal 15 on ‘Life on Land’ (United Nations, 2017). Vegetation condition and its response to global 

change are specified in the lists of Essential Climate Variables (Bojinski et al., 2014) and Essential 

Biodiversity Variables (Pereira et al., 2013).  

So far, groundwater-vegetation interaction monitoring has been limited by the trade-off that exists 

between the costs, efficiency, and level of detail offered by the techniques employed (Hoyos et al., 

2016). Water chemistry indicators can give direct evidence of groundwater and vegetation 

interactions, which helps determine groundwater dependence (Colvin et al., 2007; Orellana et al., 

2012). Other indicators are inferential and include: Eddy correlation, Bowen ratio, climatic indices, 
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sap flow measurements, plant phenology, and leaf area index using ground-based equipment 

(specialized leaf area meter), to assess the influence of groundwater variability on vegetation 

(Colvin et al., 2003; Eamus et al., 2015a; Hoyos et al., 2016). While these methods provide highly 

detailed information, they are limited in that they are costly, resource-intensive, and are unsuitable 

for catchment-scale assessment of GDV, as they provide site-specific information. 

Remote sensing has emerged as an efficient monitoring tool that can provide crucial vegetation 

information on the status and response to environmental change at the community or landscape 

scale (Griffiths et al., 2019; Wessels et al., 2008; Zhu, 2017). The success of remote sensing in 

assessing vegetation response to water availability is well documented in the literature (Colvin et 

al., 2003; Boulton and Hancock, 2006; Münch and Conrad, 2007; Rohde et al., 2017a; Parker et 

al., 2018). However, there is a dearth of knowledge on the applicability of satellite and spectral 

data for determining groundwater-vegetation interactions, especially at the species level. Current 

research primarily focuses on global groundwater availability and its impact on society, with 

limited research focusing on ecosystem impacts. The state of knowledge on vegetation and 

groundwater interactions (Le Maitre et al., 1999; Colvin et al., 2003; Eamus and Froend, 2006; 

Bertrand et al., 2012) and recent techniques for mapping and assessing GDV (Eamus et al., 2015a; 

Hoyos et al., 2016; Klausmeyer et al., 2018) is well documented. Therefore, this review chapter 

aims to develop a detailed synthesis on the progress and development of remote sensing integrated 

with geographic and information systems in assessing GDV over fine spatial and temporal scales. 

More specifically, the review objectives are to a) provide a detailed background on GDEs b) Give 

an overview of groundwater vegetation interactions, assess the effects of climate induced 

groundwater variability on groundwater dependent vegetation c) exemplify the application of 

remote sensing (RS) and geographic information systems (GIS) in identifying GDV d) discuss the 

application potential role of RS and GIS in future applications. The chapter will be a synthesis of 

the state of knowledge on the physical response patterns and thresholds to acquire a comprehensive 

understanding of the degree of dependency of GDV in arid environments. The assessment of recent 

techniques in identifying GDV should prompt research on their potential to acquire information 

useful for GDV management. 
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2.2. Literature search on groundwater dependent ecosystems  

Relevant literature was acquired from several search engines such as Google Scholar, SCOPUS, 

and the Web of Science Core Collection (WoSCC). Numerous expressions or topic search 

keywords were used, and these included: “groundwater”, “groundwater dependent ecosystems”, 

“remote sensing”, “climate and groundwater”, “semi-arid and arid”, “phreatophytes” and 

“terrestrial vegetation” were used to source literature from international peer-reviewed journals. 

These words were selected to retrieve information that provides the background on the interaction 

of groundwater and the dependent vegetation and highlight the progress in the use of remote 

sensing approaches. The literature search range was from 2000-2021 with a total of 200 articles 

from international peer-reviewed journals, theses and reports. An additional source for literature 

was obtained through a rigorous assessment of references cited by the read papers. Due to the 

paucity of studies of remote sensing applications, the review was not limited to a specific criterion. 

Consequently, studies that used remote sensing data for the assessment and monitoring of GDV 

were considered. The literature search revealed that most publications largely focused on GDEs in 

general, 52% of those were on GDV, with only 0.06% GDEs incorporating remote sensing 

approaches. An increase in the number of publications on groundwater-dependent ecosystems and 

GDV was noted (Figure 2.1).  

 

Figure 2.1 Number of publications on GDEs, GDV and remote sensing of GDEs for the period 
between 2000 and 2021 
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2.3. Background on groundwater-dependent ecosystems 

GDEs are communities of plants, animals and microorganisms that continuously or to some extent 

rely on the available groundwater to maintain their structure and functioning (Colvin et al., 2003; 

Kløve et al., 2011). These ecosystems may be maintained by direct or indirect access to 

groundwater and rely on the flow regime and chemical characteristics of groundwater (Hatton and 

Evans, 1998). In this regard, when groundwater is limited, the functioning and structure of these 

ecosystems will be significantly altered. Various classification systems have been introduced 

based on the geographic setting in which they exist and the type of aquifer-ecosystem interface 

(Hatton and Evans 2003; Sinclair 2001; Colvin et al., 2007). A classification system with three 

basic classes based on the type of groundwater reliance was introduced by Eamus et al., (2006). 

The ecosystem classification method makes distinguishing and identifying groundwater 

dependence much easier and improves ecological risk assessments. This review focuses on the 

terrestrial vegetation class, which is referred to as Groundwater Dependent Vegetation and the 

third class according to Eamus et al., (2006) GDE's classification system (Table 2.1).   

Table 2.1  Summary of GDE Classification according to Eamus et al., (2006) 

Class Ecosystem type Members 

I Aquifer and cave systems Stygofauna 

II Ecosystems dependent on the surface 

expression of Groundwater 

wetlands, river base flow, floodplains, riparian 

vegetation, low lying springs, mound springs 

III Ecosystems dependent on the subsurface 

expression of Groundwater 

Terrestrial vegetation (Phreatophytes) and 

associated dependent flora and fauna  

 

GDV is vital for biodiversity conservation and provides ecological resources in terrestrial 

ecosystems. Surface water and groundwater resource quality are maintained by groundwater-

dependent vegetation (Hoyos et al., 2016). For example, vegetation aids in the attenuation and 

infiltration of surface water recharge into the aquifer. Terrestrial vegetation also plays an important 

role in preventing soil erosion, provides vital habitats, and acts as corridors for migratory species 

(Kreamer et al., 2015). Terrestrial vegetation dependent on groundwater also acts as nutrient 

pumps and provides water to shallow-rooted plants through hydraulic lift. In recreational areas 

such as national parks and fisheries, GDV have economic and aesthetic value and provide 
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ecosystem services such as runoff interception and carbon capture (Rohde et al., 2017; de Klerk et 

al., 2012). Therefore, research on GDV has continued to develop and has renewed interest due to 

increased natural and anthropogenic threats (Chambers et al., 2013; Mawdsley et al., 2009).  

2.3.1. Threats to groundwater-dependent vegetation 

Groundwater and associated ecosystems are increasingly threatened by global environmental 

change. These are planetary-scale changes in the Earth’s systems, which encompass changes in 

population, climate, resource use, land use and land cover (Noone et al., 2011). An ever-growing 

population, agricultural and economic development, coupled with a changing climate, have 

heightened the pressure on water resources. Climate change has decreased the reliability of surface 

water resources. As a result, greater consideration has been given to groundwater as a resilient 

freshwater resource that can augment surface water resources (MacKay, 2006; Kundzewicz and 

Döll, 2009). Subsequently, groundwater exploitation has drastically increased, with 33% of the 

global available freshwater supply obtained from groundwater (Vaux, 2011; Richey et al., 2015). 

Moreover, global groundwater levels and volume have been reported to be on a decline (Richey et 

al., 2015). Modification of groundwater levels and the deviation of flow patterns from the natural 

groundwater regime due to anthropogenic influence and climate change have detrimental impacts 

on the structure and functioning of groundwater-dependent vegetation communities (Kløve et al., 

2014; Loomes et al., 2013). Therefore, there is a need to develop management plans and policies 

which promote the sustainable use of groundwater resources, thereby mitigating negative 

environmental impacts, such as storage depletion, saltwater intrusion, wetland and riparian habitat 

loss, land subsidence and reductions in stream flow. The influence of elevated groundwater 

demand is exacerbated by a rapidly changing climate (IPCC, 2014).  

Long-term variability in precipitation, temperature and wind threatens the health and abundance 

of GDV, which is influenced by the spatial and temporal availability of groundwater (Chambers 

et al., 2013). Global average surface temperatures have been estimated to increase by 1.5℃ from 

1880-2014. This rise has been associated with negative impacts on groundwater quantity and 

quality. Under all climate scenarios, global surface temperatures are expected to rise. Further, 

drought and flood events are predicted to increase in the 21st century (IPCC, 2014). Reduced 

precipitation and elevated temperatures are detrimental to groundwater levels because of limited 

groundwater recharge and increased plant water demand (Noone et al., 2011; Kløve et al., 2014). 
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There is a large body of literature on anthropogenic impacts on GDV (Muñoz-Reinoso, 2001; 

Krause et al., 2007; Huang et al., 2020). However, there is little scientific research focusing on the 

impacts of climate variability on terrestrial vegetation (Barron et al., 2012; Kløve et al., 2011; 

Taylor and Tindimugaya, 2011). Groundwater and associated ecosystems are particularly 

vulnerable to climate impacts as the resource is unseen and there exists a time lag before the 

response is noticed (Morsy et al., 2017). In some instances, inappropriate management policies 

and strategies have also been linked to the degradation of GDV (Morsy et al., 2017). Therefore, a 

comprehensive synthesis of knowledge on the interactions and response mechanisms for 

groundwater and dependent vegetation will ensure the formation of adaptive and holistic 

management plans.  

2.3.2. Groundwater dependent vegetation response to groundwater variability 

Groundwater availability affects the spatial distribution and abundance of terrestrial vegetation 

(Orellana et al., 2012). Numerous studies have been conducted to establish the relationship 

between groundwater and vegetation (Eamus et al., 2006; Rodriguez-Iturbe and Porporato, 2005; 

Le Maitre et al., 1999). Vegetation response to fluctuating groundwater levels varies from non-

observable changes to alterations of the entire community structure based on their physical and 

biological properties (Naumburg et al., 2005). Several studies were conducted to characterize 

phreatophytes according to their relations to groundwater depth (Robinson, 1958; Loheide et al., 

2005). They reported that a decreasing water table could result in severe plant water stress when 

the rate of plant root development is insufficient or when the soil has low water holding capacity. 

Therefore, a declining water table limits the amount of water available for vegetation, resulting in 

plant water stress and decreased plant productivity (Loheide et al., 2005; Naumburg et al., 2005). 

Further, Han and He, (2020) reported a decrease in leaf intensity with a receding water table. 

Alternatively, a rising water table can flood plant roots, resulting in anoxic stress (Naumburg et 

al., 2005). In another study, Meinzer, (1929) reviewed GDV species and characterized them 

according to their rooting depth.  

Results revealed that rooting density decreased with an increase in depth to groundwater. The 

physiological characteristics of GDV included dimorphic roots, which allow them to exploit deep 

groundwater sources. It was also determined by Laio et al. (2009) that a decline in groundwater 

level may cause an increase in the plants’ rooting zone and an increased aerated soil profile suitable 
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for new root development. Additionally, Zhang et al. (2020) modelled the spectral vegetation 

response to depth to the groundwater table using the Tsallis Entropy Theory. It was reported that 

vegetation response was not uniform; different thresholds exist for grassland, shrubland, and forest 

vegetation. They found that at depths (>1m), the normalised difference vegetation index (NDVI), 

which measures the quantity of greenness in vegetation, therefore used as a proxy for vegetation 

density and health, decreased with increasing depth to the groundwater table. The alternative was 

also true, whereby NDVI declined with the rising water table at depths (< 1m) (Figure 2.2). 

Therefore, deeper water tables increase soil volume available for the storage of precipitation and 

hydraulically lifted water that can drastically increase the water available for plant use and growth. 

Also, in arid environments, evapotranspiration can result in salt accumulation in soils, and elevated 

groundwater levels limit the rooting zone to saline soils, resulting in plant stress from access to 

saline water (Zhang et al., 2020).  

 

Figure 2.2 The relationship between NDVI of a) grass land b) forest land c) shrub forest and 
groundwater depth (GWD) based on Tsellis Theory in Ejina oasis in Hei (Source: 
Zhang et al., 2020) 

 

A declining groundwater table has negative effects on plant physiology (Kath et al., 2014). During 

transpiration, water from the soil is pulled into the plant roots, then transported through the xylem 

to the plant leaves. A deficit in soil moisture increases the potential pressure in the xylem to the 

extent where xylem cavitation occurs. When this threshold is reached, the amount of water 

transported to plant leaves is decreased, which causes stomatal closure, a reduction in 

photosynthetic activity and then branch and crown mortality (Le Maitre et al., 1999; Kath et al., 
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2014). For instance, Huang et al. (2016) reported the decrease in the ratio of actual 

evapotranspiration, potential evapotranspiration and a declining groundwater table. Different plant 

species have different xylem cavitation resistances (Kath et al., 2014; Naumburg et al., 2005). It 

is reported that riparian vegetation cannot tolerate limited water supply and therefore is vulnerable 

to xylem cavitation as well as crown and branch mortality (Kath et al., 2014; Hancock et al., 2009; 

Johansen et al., 2018). On the other hand, xeric phreatophytes are drought-tolerant vegetation 

species and can survive significant water table declines, despite losing some branches and leaf 

area. In a different study, Muñoz-Reinoso (2001) examined vegetation changes in Spain and the 

causal processes. Results revealed species composition change into xerophytic communities, due 

to a decrease in water availability.  

Ecosystems dependent on groundwater show low seasonal variability in vegetation health and 

transpiration rates when compared to non-GDEs. The effects of  groundwater extraction on coastal 

GDEs in New South Wales were assessed by Adams et al, (2015). Their findings indicated that 

long-term changes in evapotranspiration from groundwater-dependent vegetation occur 

seasonally. Evapotranspiration rates had lower variability than those of vegetation dependent on 

surface water. Further, tree ring analysis has demonstrated that groundwater availability is an 

important factor in plant growth rates (Xia et al., 2012; Gholami et al., 2015). The hydraulic lift of 

moisture from deeper soil horizons provides water for shallow-rooted herbaceous vegetation 

during water stress periods. Increasing groundwater depth has been associated with reduced plant 

growth rate. In addition, increased growth rates are associated with deeper water tables (Osmond 

et al., 1987; Sarris et al., 2007). Vegetation response to groundwater variability differs with the 

plants' anoxic and water stress tolerance, water uptake capacity and the change in the distribution 

and size of the active rooting zone (Naumburg et al., 2005). The variable plant responses to 

groundwater variability mean that studies on GDV should not take a generalized approach. 

However, valuable insights may be attained from long-term understanding of the relationship 

between groundwater, GDV and climate. Understanding the relationship between how 

groundwater availability affects vegetation and how that translates in terms of spectral signatures 

has opened a more cost-effective and robust methodology for the long-term monitoring of GDV 

(Barron et al., 2014). A detailed summary of recent studies that have exploited the spectral 

response of DGV to assess their interaction with groundwater is provided in Table 2.2.   
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Table 2.2 Summary of recent studies on vegetation response to groundwater variability 

Application Results Reference 

Hydrological controls on 

vegetation dynamics 

The annual correlation between terrestrial water storage and 

NDVI is greater than that of rainfall and NDVI. The 

monthly/seasonal correlation between rainfall and NDVI is 

greater than that of Terrestrial water storage and NDVI.  

(Ndehedehe et al., 2019) 

West and Central Africa 

Ecohydrological response Response to water convergence: 80-day time lag for 

groundwater, 4-7 years for vegetation 

(Liao et al., 2020) 

China 

Groundwater and GDE 

response to ecological 

water conveyance 

Decrease in depth to water (DT)T (p<0.05). Increase in NDVI 

(p<0.05) 

(Huang et al., 2020) 

China 

GDE veg Index using 

Entropy theory 

At DT >1m) NDVI declines with increasing DT 

At DT <1m) veg growth is restricted. NDVI correlation 

coefficient (p<0.01) 

(G. Zhang et al., 2020) 

Northern China 

Estimate crop groundwater 

use 

50% of irrigation water from groundwater. Seasonal crops are 

more reliant on groundwater than perennial crops. Groundwater 

dependence increases with drying conditions.  

(Hunink et al., 2015a) 

Spain 

Effects if Groundwater 

extraction on Et rates, 

Long-term change in Et close to extraction zones. Sig change Et 

for Facultative communities (p<0.01) 

(Adams et al., 2015) 

New South Wales 

Role of climate, GW 

availability and land 

management on veg vigour 

Strong correlation between changes in plant vigour, 

precipitation, groundwater depth and evaporative demand. 

(Huntington et al., 2016) 

United States 

Veg response to 

groundwater drawdown 

Vegetation ecophysiology is negatively affected by groundwater 

drawdown. 

(Antunes et al., 2018) 

Spain 

Quantify groundwater 

contribution to Salix 

psammophila water use.  

Groundwater contribution to evapotranspiration ratio decreases 

with increasing depth to the groundwater table.  

(Huang et al., 2016) 

China 

Demonstrate the role of 

hydraulic path in 

determining plant intensity. 

Leafing intensity decreases with increasing water table depth 

and plant height 

(Han and He, 2020) 

China 
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Effects of groundwater 

table decline on vegetation 

transpiration. 

Transpiration rates decrease with declining groundwater table, 

critical depth is at 3.6 and 2.0 m depths. Groundwater depth 

correlation with evapotranspiration is 0.98 

(Wang et al., 2020) 

China 

Relationship between 

riparian vegetation and 

groundwater depth 

Peak evapotranspiration rates occur at groundwater depths <3m, 

and evapotranspiration values are significantly lower at depths 

greater than 3m.  

(Lurtz et al., 2020) 

United States 

Assess spatio-temporal 

evapotranspiration patterns 

of TGDV 

Vegetation in shallow groundwater had high actual 

evapotranspiration rates as compared to those on deeper 

groundwater table, during the growth season.  

(Sommer et al., 2016) 

Influence of water table 

depth on evapotranspiration 

rates in the Amazon arc of 

deforestation 

There were no differences in Evapotranspiration (ET), Land 

surface Temperature (LST) and Enhanced Vegetation Index 

(EVI) between vegetation and deep and shallow groundwater 

tables. Higher ET in shallow water table cops than those from 

deeper water tables during the dry season transition.  

(O’connor et al., 2019) 

Brazil 

Show the extent of 

groundwater-vegetation 

interaction distribution 

Positive relationships (shallow DT with high Plant productivity) 

for shrubs in mesic regions. Negative relationship (deep DT with 

high plant productivity) for forests in humid regions. Vegetation 

primary productivity and groundwater depth are correlated in 

more than two-thirds of the global vegetated area. 

(Koirala et al., 2017) 

Global 

 

2.3.3. Climate impact on groundwater and dependent ecosystems 

Changes in climate on annual or multi-decadal time scales have been seen to impact groundwater 

recharge and levels, depending on the aquifer size (Huss et al., 2010; Taylor and Tindimugaya, 

2011). Groundwater resources and associated vegetation depend on the distribution, amount, 

timing of precipitation, evaporation loss, and land use/land cover characteristics. An aquifer's 

recharge potential depends on the groundwater level. A deeper water table increases recharge 

potential and capture zones. Properties of the aquifer are also vital; smaller shallow unconfined 

aquifers are more sensitive to climate change, whereas larger confined aquifers are likely to have 

a more delayed response (Poiani et al., 1996; Scibek and Allen, 2006). Confined non-renewable 

groundwater will be less sensitive to direct effects of climate change and variability but vulnerable 

to indirect effects of increased abstractions (Poiani et al., 1996; Scibek and Allen, 2006). 

Subsequently, the degree at which GDV is affected by climate variability depends on the aquifer 
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characteristics; therefore, vegetation dependent on groundwater from small and shallow 

unconfined aquifers is more vulnerable to the effects of climate change (Poiani et al., 1996).  

Climate warming can influence the availability and demand for groundwater resources, thus 

affecting the water available for sustaining ecological functions (Barron et al., 2012; Wattendorf 

et al., 2010). Further studies on the effects of climate on groundwater and associated vegetation 

are outlined in Table 2.3. Climate change impacts on general water resources have been widely 

investigated. Although impacts on groundwater resources have gained increasing attention over 

the years, there is limited information on how GDVs are impacted. The seasonal distribution of 

precipitation and the temperature determine global climate zones and consequently the distribution 

of ecosystems, including GDV (Richards et al., 1975). As they are adapted to specific water 

regimes, many ecosystems are vulnerable to climate change. For example, the study by Barron et 

al., (2012) noted that reduced surface water flows and longer dry periods place GDV at high risk, 

with an estimated 19% decrease in current habitats in Australia. In addition, GDEs are increasingly 

likely to be threatened by groundwater abstraction. Extreme climate conditions change the 

hydrological regime, whereas the extent and seasonality of aquatic environments change the 

environmental conditions of GDV (Kløve et al., 2014).  

Table 2.3 Impacts of climate change on groundwater and associated ecosystems 

Application Key Findings Reference 

Identify key hazards of 

climate change to develop a 

DGE risk assessment and 

decision-making 

framework 

Ecosystem change affected by threshold tolerance of biota. GDV 

threatened by groundwater decline due to low rainfall, increased water 

extraction and land use change to pine plantations. The temporal 

regime of temperature, groundwater depth were significant floristic 

change drivers. 

(Chambers et al., 

2013) 

Australia 

Revealing Impacts of 

Climate Change on GDEs 

Temperature and rainfall variability may be the primary threats to 

groundwater and GDEs. they reduce recharge and possibly increase 

groundwater withdrawal rates. Climate change further accentuated the 

degradation of spring biota by causing changes in the precipitation and 

evapotranspiration regimes. 

(Morsy et al., 2017) 

Kuwait 

Impacts of predicted 

climate change on 

groundwater flow systems: 

Flow systems their hierarchy can change from nested flow systems to 

a set of single flow cells. Preservation of GDV becomes a challenge 

under these conditions since long-term climate change could 

(Havril et al., 2018) 

Hungary 
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Can wetlands disappear due 

to recharge reduction? 

potentially have serious consequences, including wetland 

disappearance. 

Assessing the role of 

climate and resource 

management on 

groundwater-dependent 

ecosystem changes in arid 

environments. 

Time series analysis clearly illustrates that there are strong correlations 

between changes in vegetation vigour, precipitation, evaporative 

demand, depth to groundwater, and riparian restoration. Trends in 

summer NDVI and groundwater level changes were found to be 

statistically significant, and interannual summer NDVI was found to 

be moderately correlated to interannual water-year precipitation. 

(Huntington et al., 

2016) 

United States 

Impacts and uncertainties 

of climate/CO2 change on 

net primary productivity 

(NPP) in dryland 

vegetation. 

Simulations showed a consistent temporal pattern of the regional NPP 

during 2000–2014 that increased during 2008–2011 and decreased 

during 2005–2006 and 2013–2014. All simulations indicated that 

ecosystems at high altitudes (> 47°) and were dominated by 

precipitation change. 

(Fang et al., 2019) 

China 

 

Climate-induced changes in groundwater-surface water interactions will directly and indirectly 

affect wetlands and GDV. Impacts on GDV will likely result from changes in groundwater and 

surface water levels and will vary in intensity depending on the location of the landscape, scale of 

the system and land use changes. Local and intermediate systems are overly sensitive to 

groundwater level dynamics and increased temperatures lead to significant changes in these 

systems. Regional-scale systems are less impacted by extreme events, seasonal fluctuations in 

groundwater level, recharge, and increased evapotranspiration rates. For GDV, a shift in local 

species composition will occur and decreased leaf density and primary productivity (Mawdsley et 

al., 2009 ; Naumburg et al., 2005; Shafroth et al., 2000). Additionally, Albano et al., (2020) 

demonstrated that long-term riparian vegetation response due to climate variability is driven by 

changes in groundwater and surface water dependence as compared to upland vegetation, which 

is controlled by the aridity gradient. Other studies also indicated that riparian vegetation had 

greater potential for groundwater dependence and was therefore sensitive to climate-induced 

groundwater variability (Barron et al., 2012; Barron et al., 2014; Froend and Sommer, 2010). 

Further, Kath et al., (2014) demonstrated that climate-induced groundwater decline resulted in the 

deteriorated tree canopy and a shift in species composition from non-vascular to vascular plants. 
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Highly variable rainfall could result in fluctuating groundwater levels due to variations in 

groundwater recharge caused by varying rainfall (Kumar, 2013). Climate warming is predicted to 

alter the magnitude and timing of recharge (Scanlon et al., 2006; Kløve et al., 2014)). This will 

result in a shift in the mean seasonal and annual groundwater levels, depending on the rainfall 

distribution (Liu, 2011; Scanlon et al., 2006). Long-term fluctuations in groundwater levels may 

also be a result of climate variability, in addition to land-use/landcover and anthropogenically 

induced alterations (Anderson and Emanuel, 2008; Gurdak et al., 2007). Further, in areas with 

highly variable vegetation productivity, it is unclear or difficult to determine if climate variability 

is the main contributor to changes in vegetation productivity since these systems may gain access 

to precipitation, shallow groundwater, and surface water, varying across temporal and spatial 

scales. Therefore, discriminating the influence of climate variability from management practices, 

disturbance and other long-term human activities requires long-term monitoring (Hausner et al., 

2018). A review of the literature revealed that there are limited studies that have focused on the 

impact of climate change (Hancock et al., 2009; Shafroth et al., 2000; Huang et al., 2020). Most 

studies mainly investigated impacts on surface water, and little work has been done on 

groundwater. This may be because GDV communities are highly complex and heterogeneous 

systems that are influenced by multiple factors, which makes it hard to account for their status 

based on one factor. The integration of scientifically sound methodologies like long-term data 

handling and cloud-computing techniques with newer approaches that have high processing 

efficiency has the potential to mitigate these challenges (Hausner et al., 2018; Huntington et al., 

2016). The first step for effective management of GDV begins with the knowledge of their 

location, distribution and areal extent (Rohde et al., 2017a). Groundwater-dependent ecosystems 

at catchment scale can be identified mainly through field or floristic assessment, numerical 

modelling and (geospatial) RS and GIS approaches (Eamus et al., 2015; Glanville et al., 2016). 

The choice of the selected approach is dependent on the temporal and spatial extent of the study 

as well as available resources.  

2.4. Field-based methods for identifying groundwater-dependent ecosystems 

Groundwater use by phreatophytes has been assessed using field techniques: isotope analysis 

(Eamus, 2009; Chapman et al., 2003; Cartwright et al., 2010), water balance methods (Le Maitre 

and Hughes, 2003), and the assessment of ground-based leaf area index (Eamus, 2006; Hatton & 

Evans, 1998), vegetation rooting depth (Eamus, 2006; Shafroth et al., 2000), as well as depth to 
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groundwater models (Hoogland et al., 2010; Eamus, 2009). For instance, water flux measurements 

were used in determining groundwater use for deciduous black oak trees in California (Miller et 

al., 2010). The study indicated that black oak trees were obligate phreatophytes, with a 

groundwater uptake ranging from 4mm/month to 25mm/month. Dependence was most in the dry 

season, with 80% of evapotranspiration from groundwater (Miller et al., 2010). In Australia, Jones 

et al. (2019) emphasized the importance of validating ecohydrological conceptual models of GDV. 

While field techniques offer the most detailed insight on the nature, extent, and degree of 

groundwater ecosystem dependence, they are resource-intensive, expensive and represent one 

point in time (Eamus et al., 2015b). Therefore, they are ideal for testing and developing a 

conceptual understanding of GDV and validating GDV mapping (Glanville et al., 2016a; Gow et 

al., 2010). However, although these studies demonstrate the importance of field-based methods in 

GDV characterisation, most of these techniques lack spatial representation, which makes it 

difficult to upscale to larger areas and is complex in areas characterised by heterogeneous plant 

species. 

2.5. Modelling approach for identifying groundwater-dependent vegetation 

Numerical modelling provides simulations on groundwater-vegetation interactions that can be 

used to infer on ecosystem dependence on groundwater. Model-based methods have been used in 

conjunction with geospatial techniques (Münch and Conrad, 2007) and field studies (Móricz, 

2010; Wu et al., 2015). These methods demonstrate a unique opportunity in understanding GDV 

as they integrate numerous datasets such as soil water data, groundwater depth and underlying 

hydrogeological conditions. Due to this ability, it was therefore noted that groundwater 

contribution and consumption could be modelled with low estimation errors of 0.007 (Wu et al., 

2015; Móricz, 2010). However, like any other method, these techniques have their inherent 

challenges. For example, while numerical models provide innumerable insights, they are not 

entirely suitable for GDE mapping at catchment scale, especially in data-sparse areas. In addition, 

the numerical modelling approach can be time-consuming and resource-intensive. 

2.5.1 Geospatial approach for identifying and assessing groundwater-dependent vegetation 

Remote sensing and GIS techniques are robust methods for mapping GDV at catchment scale. 

Their implementation, however, requires basic knowledge of groundwater-ecosystem interactions 

and their spectral signature response (Barron et al., 2014). These approaches relate the presence of 
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vegetation in unexpected areas and dark soils to high soil moisture content and groundwater 

availability (Brodie et al., 2002). Remote sensing technologies such as airborne sensors, Light 

Detection and Ranging (LIDAR), Synthetic Aperture Radar (SAR), and spaceborne satellite 

sensors provide land surface information used in GDV identification. For example, LIDAR 

produces high-quality digital elevation models (DEM) used to obtain topographic indicators for 

locating GDEs such as aspect, slope and topographic wetness index (Hoyos et al., 2016). Based 

on the assumption that surface water is the surface expression of groundwater, the SAR provides 

information on seasonal fluctuations of the water table, surface water inundation, vegetation 

patterns, etc. SAR data can help infer on GDV water balance and hydrological boundaries. Satellite 

sensors are also widely used to obtain GDV indicators such as vegetation pattern, 

evapotranspiration, and soil moisture saturation (Table 2.4). Remote sensing equates GDEs to a 

distinct ecosystem type (green islands); however, groundwater dependence is one factor affecting 

ecosystem productivity.  

Literature search has revealed an increase in the use of remote sensing and GIS approaches in eco-

hydrogeology and related environmental studies (Tables 2.2 and 2.4). Remote sensing can offer 

new applications that can quickly and synoptically monitor and manage areas at different temporal 

and spatial resolutions. For example, remote sensing supports timely and spatially explicit 

assessment of groundwater-dependent ecosystems, wetlands, water quality monitoring and aquatic 

weeds (Zhang et al., 2020; Klausmeyer et al., 2018; Thamaga and Dube, 2018; Lv et al., 2013). 

Moreover, continual coverage of sensors provides both near-real-time and long-term data required 

for monitoring GDE response to changing groundwater regimes resulting from climate variability. 

As such, the use of satellite imagery has provided a reliable source of data that is intensively used 

in hydrology and ecology (Ali and Alandjani, 2019).  

Several satellite sensors are suitable for extracting variables utilized in determining the location of 

GDV and their probable response to groundwater fluctuations. Sensor suitability has influenced 

research needs in terms of spatial, temporal, radiometric and spectral resolution. While sensor 

resolution is an important consideration, the cost of the satellite imagery is usually the major 

limiting factor. In general, there exists a trade-off between spatial resolution and acquisition; this 

is also true for spatial and temporal resolution. Very high-resolution sensors such as QuickBird, 

SPOT, IKONOS and Aerial photography with spatial resolutions < 0.5m are high cost. GDE 
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potential has been estimated in Portugal, using SPOT 4 and 5 products (Marques et al., 2019). The 

high spectral resolution sensors were found to be ideal for vegetation mapping and change 

detection at the species-specific and community level. MODIS, which is a low-cost sensor with 

low spatial resolution (250m-1000m) and multispectral and multi-date data sets, is therefore useful 

for global-scale evapotranspiration estimation, monitoring photosynthetic activity, and vegetation 

mapping (Hoyos et al., 2016). MODIS products have been incorporated with other satellite 

products for GDV assessments (Gou et al., 2015; Hunink et al., 2015; Doody et al., 2017; Huang 

et al., 2020; Liao et al., 2020). While MODIS datasets are widely used, they lack the spatial 

resolution suitable for GDV delineation at scales below the community level. The low spatial 

resolution has resulted in misclassification errors in heterogeneous environments with mixed 

vegetation.   

Medium spatial resolution (30m) and multispectral sensors such as the LANDSAT series have 

been extensively used in land cover change detection, vegetation mapping and photosynthetic 

activity assessments applications at the community level ( Roy et al., 2016; Kalbus et al, 2006; 

Yates et al., 2010; O.  Barron et al., 2014; Adams et al., 2015; Doody et al., 2017; Mtengwana et 

al., 2020; Shoko et al., 2016). Landsat series data are easily accessible and have an archive of 

historical data, great for applications in developing economies (Dube et al., 2016). An extensive 

review of literature has revealed that the potential for new generation multispectral remote sensing 

products, such as Landsat 8 Operational Land Imager (OLI) and Sentinel 2 has yet to be developed 

in mapping and monitoring GDV. Landsat 8 OLI has improved signal-to-noise characteristics, 

improved calibration and higher radiometric resolution and spectrally narrower wavebands than 

the previous Landsat 7 ETM+ (Roy et al., 2016).  

The location of potential GDV can be greatly improved through these new features. Sentinel 2 has 

a high spatial and temporal resolution of 10m and a 5-day revisit time, making it suitable for 

community-level classification of GDV. In Western Australia, Macintyre et al. (2020) assessed the 

efficacy of Sentinel 2 imagery for classifying multi-seasonal changes in vegetation for complex 

areas at fine scales. The classification scheme utilized 24 target classes, and a 60/40 split was used 

for model building and validation. A comparison of the seasonal variations in vegetation indices, 

spectral bands, classification trees, and principal component transformations was used as input for 

machine learning to separate classes. The study findings revealed that Sentinel 2 has a high 
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potential to determine compositional vegetation characteristics with high accuracy. However, 

further investigations must be considered to determine the potential for vegetation indices derived 

from new generation sensors in delineating GDV. Landsat 8 OLI and Sentinel 2 datasets provide 

spatially and site-specific, timely information on GDEs that may be used in setting management 

decisions. However, their applicability is limited to the local and community levels. Advancements 

in remote sensing technological developments have resulted in the introduction of space and 

airborne hyperspectral sensors with fine spatial resolution (<10m), with strategically positioned 

spectral bands such as panchromatic and red edge, as well as improved signal-to-noise ratio. For 

example, Worldview 2 data has been used in assessing arid vegetation health in response to 

environmental variables such as depth to water, groundwater depletion, and management practices 

at tree level (Chávez and Clevers, 2012).  

Unmanned aerial vehicles (AUVs) is an emerging topic in vegetation studies that has the potential 

to bridge the gap between expensive satellite remote sensing, fieldwork, and classical manned 

photographs. AUVs combined with multispectral cameras and hyperspectral remote sensors 

produce high-quality datasets with user user-determined revisit period, suitable for long-term 

monitoring of GDV. AUVs have been used in determining vegetation distribution at the plant 

species level with overall accuracies of 88.9- 94.31% (Zhaoming, 2020; Kaneko and Nohara, 

2014). As the field of AUVs is gradually expanding in vegetation studies, there is great potential 

for AUV application in GDV mapping in complex heterogeneous environments, due to the high 

spatial resolution (<1cm), and the ability to increase pixel purity by adjusting the flying altitude. 

Hyperspectral remote sensing data improves GDV investigations, but the datasets are often large. 

The rapidly increasing archive of data for long-term GDV monitoring has associated challenges 

such as data storage, computational efficiency, and bandwidth mismatch from multigenerational 

satellites. The GEE cloud computing environmental platform and Climate Engine have emerged 

as the solution. GEE stores Petabyte-scale multi-sensor database vector datasets, and parallelised 

cloud computing. The strength of Cloud-Based computing is that it does not need high computer 

processing power or the latest software, which opens new research opportunities for resource-poor 

regions to engage in GDV analysis at the advanced nations (Mutanga and Kumar, 2019; Gxokwe 

et al., 2020). While there are advancements in remote sensing and vegetation analysis, there 

remains a gap in assessing their effectiveness in GDV investigations.     



27 
 

Previously employed vegetation indices used for GDVs assessment include the Enhanced 

Vegetation Index (EVI), Leaf Area Index (LAI), the Tasseled Cap Wetness Index (TCWI) and the 

Normalized Difference Wetness Index (NDWI). A wide range of studies ( Roy et al., 2016; Kalbus 

et al, 2006; Yates et al., 2010;  Barron et al., 2014; Adams et al., 2015; Doody et al., 2017; Gu et 

al., 2007; Hunink et al., 2015) have demonstrated the capabilities of indices in locating GDV. For 

example, the study by Gow et al., (2010) collated multiple remotely sensed information from 

MODIS-EVI, SRT DEM, and water table surface to identify and monitor GDEs within the Hat 

Head National Park. In Australia, Barron et al., (2014) proposed a method for identifying GDEs 

from Landsat-TM derived indices. Mapping had high producer accuracy, ranging from 59% to 

91% increasing from regional to local scales.  

Results showed that GDV with permanent access to groundwater had no significant change in 

seasonal GDV size. However, a substantial reduction of 26 - 56% in total GDV size is observed 

over the 10 years. Mapping demonstrated good agreement with field data. GDV was associated 

with riparian vegetation, terrestrial vegetation with access to shallow groundwater depths (~6m) 

and found close to springs. Expert knowledge, field techniques and remote sensing techniques 

were used to develop a catchment-scale mapping method of GDEs in Queensland, Australia 

(Glanville et al., 2016b). They produced a catchment scale map of GDEs, which can be scaled up 

or down, and the study emphasized the value in integrating local experts’ knowledge with available 

spatial data and information. While remote sensing data indices are a robust methodology, the 

literature indicates that GDV identification can be substantially improved by the selection of an 

appropriate classification technique. Given these indices perform differently in different 

environments due to pixel mixing, cloud cover, and shadows in mountainous and built-up areas. 

However, their performance can also be significantly improved by the sensor’s spectral 

characteristics, such as the availability of red edge, near infrared II and panchromatic bands. 
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Table 2.4 Summary of key research that utilises geospatial techniques to identify potential GDV 

Sensor Type classifier Key Findings Limitations Reference 

Landsat 5 TM NDVI 

Principal 

Component 

Compared Top of Atmosphere Reflectance and the 

Atmospherically corrected images (AC) for inflow 

dependent vegetation.  TOA and AC are in good 

agreement, Kappa = 0.83. Both methods show high 

accuracies for capturing Known IDV, 85-91%. 

Accuracy of the delineated IDV extent may 

vary due to differences in landscape 

characteristics and variations in vegetation 

type. 

(Emelyanova et al., 

2018a) 

Landsat 5 TM 

MODIS 

MODIS (ET, 

MSSR, Pid) 

 (NDVI, NDWI) 

34% of the Australian continent contains GDEs, of 

which 5% have high potential for GDEs. 

Emphasized the need to integrate expert knowledge 

to gain a conceptual understanding for setting rules 

in identifying potential GDEs. 

A broad-scale approach cannot identify 

GDEs <25X25 m. The method provides a 

snapshot, and GDEs that may be in decline 

due to other factors may be missed. The 

GDE atlas requires regular updating. 

(Doody et al., 2017) 

Australian /continent 

WorldView-2 

SPOT-7 

Landsat 8 OLI 

Maximum 

likelihood 

Classifier, 

Object Based 

Image Classifier 

SPOT-7 (Overall Accuracy= 69%) 

WorldView-2 (Overall Accuracy= 72%) 

GDEs are likely to occur in lowland areas and break 

of slope where groundwater is discharged to the 

surface. 

High misclassification (Overestimation) 

error along the hillslopes during the wet 

period and higher misclassifications on the 

riparian zone during the dry season.  

(Dlikilili, 2019) 

South Africa  

Landsat MS, 

TM, ETM, OLI 

NDMI, NDVI 

Parameter-

elevation 

Regressions on 

Independent 

Slopes Model 

(0.02%) of Landsat data not included. The map 

constitutes of layers of local datasets for identifying 

possible locations of GDEs, in a heavily modified 

environment. 

Not all areas included updated landcover 

layers, gaps in groundwater depth datasets. 

GDEs are dynamic systems, therefore 

require regular updating. 

(Klausmeyer et al., 

2019) 

United States 
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(PRISM) 

precipitation 

data 

Landsat 7 ETM 

MODIS 

NDVI 

LAI 

K-means 

Classifier 

Not all phreatophytes and wetlands are groundwater 

dependent, only 9% of phreatophytes had high 

groundwater use potential. 75% of identified GDEs 

were at soil depths below 45cm. 

The use of vegetation indicators led to 

overestimations. Cells with mixed 

vegetation coverage groundwater 

dependence was not accurately reflected. 

Resampling of MODIS images may have 

led to information loss. Lack of previous 

GDE studies hinders verification of results. 

(Gou et al., 2015) 

Texas, United States 

MODIS Terra 7 Standardized 

NDV 

K-means cluster 

classifier 

Pixels were likely to be GDV where the groundwater 

table was shallow.  

Standardized NDVI does allow for 

observing areas with low seasonal 

variability or interannual variability. No 

quantitative method to validate results. 

Areas with low tree density, GDV were not 

captured.  

(Páscoa et al., 2020) 
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2.5.2. Available groundwater-dependent ecosystems classification algorithms 

Spectral discrimination of GDV types in complex environments is challenging, as different 

vegetation types may have similar spectral characteristics; alternatively, they may show 

different spectral signatures. Image classification can aid in grouping image pixels into 

meaningful clusters. Automatic image classification can be done in two ways: unsupervised or 

supervised, parametric or non-parametric classification. Unsupervised classifiers, such as 

IsoData and K-means, use clustering mechanisms to group satellite image pixels into 

unlabelled classes, which are later assigned meaningful labels to produce a well-classified 

image (Ismail, 2009). Unsupervised classification techniques have been extensively used in 

mapping and assessing potential GDEs (Barron et al., 2014; Davies et al., 2016; Gou et al., 

2015; Münch and Conrad, 2007; Páscoa et al., 2020). Supervised classification requires input 

from analysts in the form of training datasets. For supervised classifiers, classification accuracy 

depends on the representativeness of the training sample (Ismail, 2009). When training cannot 

account for the complex spatial variations, statistically based (unsupervised) clustering can 

produce better results (Rozenstein and Karnieli, 2011). Common supervised classifiers are 

Artificial Neural Networks (ANN), Decision Tree (DT), Maximum Likelihood Classifier, K-

nearest neighbour, etc. The Maximum Likelihood Classifier (ML) is the most extensively used 

supervised classification algorithm.  

The application of pixel classifiers to mixed pixel images often produces unsatisfactory 

classification results due to poor spectral and spatial resolutions (Barron et al., 2012; Glanville 

et al., 2016b; Gow et al., 2010). Increased availability of higher resolution images, coupled 

with the development of machine learning algorithms, can significantly improve classification 

accuracies (Hoyos et al., 2016). These include the support vector algorithm (SVM) (Boser et 

al., 1992), ANN (Paola and Schowengerdt, 1995) and Random Forest (RF) classifiers. The 

random forest or random decision forest is a learning method for classification operated by the 

construction of a multitude of decision trees during training, and the output is a class made of 

the predicted mean of the individual tree (Raczko and Zagajewski, 2017). The advantage to the 

RF is the short classification time and the method’s resistance to overfitting of training datasets 

(Sabat-Tomala et al., 2020). A previous study by Hoyos et al., (2016) compared the 

classification and regression tree (CART) and RF for estimating GDV potential. Results 

revealed that the RF classifier was superior to CART in terms of estimates, accuracy of training 

data, and sensitivity.  
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SVM produces significant accuracies with little computation power, they work well on small 

testing data and noisy datasets (Song et al., 2012). Classes are produced from training data 

models that transform the space into an optimal hyperplane in the multidimensional feature 

space, which separates features into classes with the greatest margin of separation (Mountrakis 

et al., 2011). The SVM classifier has an advantage over ANN in that they are simple to use, 

reliable, stable and has a faster processing speed (Raczko and Zagajewski, 2017). Reducing 

training data sample size per sample compromises classification accuracies; however, the SVM 

seems to be insensitive to this effect (Shafroth et al., 2000; Mountrakis et al., 2011). In South 

Africa, Cooper (2010) investigated the potential of the SVM recursive feature eliminator (RFE) 

approach in detecting the presence of Solamum mauritianum (Bugweed) alien plant within a 

forest plantation. The SVM-RFE produced an outstanding classification accuracy of 93% and 

a skills statistics value of 0.83.  

ANNs are complex models that are inspired by biological neural networks to develop 

classification rules. Raczko and Zagajewski, (2017) studied tree species composition in Poland 

using the SVM, RF and AAN algorithms for tree species classification. The ANN outperformed 

the other learning algorithms with 77% overall accuracy, while the SVM and RF produced 

68% and 62.5% respectively. Literature reveals that unsupervised classification techniques are 

reliable and widely developed (Hoyos et al., 2016; Peters et al., 2008) while other studies have 

indicated the potential for machine learning algorithms in GDE assessment (Peters et al., 2007; 

Klausmeyer et al., 2019; Páscoa et al., 2020). These methods demonstrate a great potential in 

retrieving GDE information with reasonable accuracy. However, their performance is also 

dependent on the scale of application, satellite spectral and spatial data characteristics. Further, 

the supervised machine learning algorithms produced great results, although significant 

limitations have been reported. For example, ANN and SVM are not easily automated and 

require adjustments to several parameters; whereas models such as the RF have been reported 

to overfit for datasets as small as the size of a tree, which can take up memory. Thus, cloud 

image processing simplifies the issues related to supervised machine learning algorithms; 

however, the literature shows that these techniques are underused, especially in GDV 

assessments (Gxokwe et al., 2020). 
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2.5.3. Challenges in remote sensing of groundwater-dependent ecosystems 

Several studies have noted various limitations in the remote sensing approach for detecting and 

mapping groundwater-dependent vegetation communities. Remote sensors can detect land 

surface features such as temperature, vegetation, and land cover; therefore, information on 

groundwater is only from indirect inferences. Groundwater-vegetation interactions can only be 

inferred from indicator variables such as vegetation, temperature and surface water (Barron et 

al., 2014). As such, the information gathered is only estimates that mainly indicate potential 

GDV. Thus, the results should be validated using field data. Although numerous works have 

been done in regional GDV mapping, most of the studies have not been validated through 

ground-truthing. For instance, Jones et al., (2020) investigated GDV communities using stable 

isotopes and found that 75% of reported GDV sites were using groundwater. Remote sensing 

offers a snapshot of GDV; those outside the range may not be identified. There is often a lag 

between changes in water availability and vegetation response (Gow et al., 2010). Further, 

ecosystems dependent on groundwater affected by a drought may not be identified as GDV if 

their phenology was in decline at the time. Remote sensing is suitable for places that are 

minimally modified, in urban or cultivated areas, vegetation greenness may be attributed to the 

return of irrigation, runoff and dam releases. Also, there is minimal integration between the 

field, chemical assessment and remote sensing datasets. As a result, remote sensing and GIS-

derived information are being undervalued and underutilised. Remote sensing identifies GDV 

based on the principle that vegetation that is greener than its surroundings during dry periods 

is likely to be maintained by groundwater; therefore, it is suitable for areas with distinct wet 

and dry seasons (Barron et al., 2012). This method has been criticized because vegetation 

greenness may be a result of other factors (Glanville et al., 2016a). For example, wildfires may 

result in green islands, as resistant forest vegetation is surrounded by fire-prone vegetation 

(Bowman, 2000; Glanville et al., 2016). Further, remote sensing generates GDV maps with 

little or no information on how vegetation communities are connected to groundwater within 

the landscape.  

The potential for remote sensing applications in GDV monitoring has not been fully explored. 

This is attributable to the inaccessibility of high-resolution remotely sensed products. This has 

been primarily attributed to their high acquisition costs, the low temporal resolution and smaller 

swath width. The freely available medium resolution products, such as Landsat, are limited in 

the level of detail that can be achieved for assessing GDV. For instance, some groundwater-

dependent communities are at the sub-pixel level (<30m) and may be masked out in mixed 
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feature pixels. Thus, GDV monitoring, and assessment can benefit from a multidisciplinary 

approach through the integration of ecohydrological data, geology, soil information, land use 

and land management practices, soil characteristics, groundwater flux and recharge rates. So 

far, however, such collaborations are limited. Cloud computing techniques provide access to 

multi-sensor datasets and computing efficiency that can enhance GDV detection and 

monitoring, especially in resource-poor regions at low costs. However, challenges due to 

unreliable network or internet connectivity, unskilled personnel, and the lack of high-

performance computing power limit their applicability in underdeveloped countries where it is 

needed the most. 

2.5.4. Possible future direction in remote sensing and GIS applications for groundwater-

dependent ecosystems 

Several strides have been made in mapping and monitoring GDV and its response to 

groundwater variability using satellite data. There is still, however, limited information on 

long-term monitoring of vegetation response to changing groundwater regimes, especially 

associated with climate change. Investigating the impacts of climate change is limited by the 

high complexities of GDV, where multiple factors influence the plant's phenology, distribution, 

and chemical processes. Most of such studies are dominant mainly in Australia, the United 

States and China; however, there is a dearth in knowledge in resource-poor areas such as the 

arid regions of Africa. The major limitation is that these methods for GDV identification or 

delineation are likely to change with differing landscapes, vegetation types and climates; 

therefore, geospatial techniques need to be evaluated under diverse environmental conditions. 

Likewise, determining whether changes in groundwater regime and associated vegetation are 

products of climate change requires long-term (>50 years) monitoring (Kløve et al., 2014). To 

fully understand these vegetation communities, groundwater-vegetation responses should be 

monitored seasonally at catchment or species-specific scales. There have been huge 

developments in geospatial technologies, such as hyperspectral and AUVs datasets, providing 

new opportunities for species-level vegetation monitoring; however, they have been poorly 

utilized in GDV assessments. Hyperspectral drones, AUVs and Worldview data potential 

should be investigated for GDV assessments. Sentinel 1 offers high spatial and spectral 

resolution datasets that provide valuable information for vegetation mapping and validation. 

For example, the ground penetrating E-band offers soil moisture data, a valuable variable for 

GDV mapping. This will provide detailed information useful for decision makers when 

drawing up strategic catchment management plans.  
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As groundwater dependence is one characteristic of GDV mapping, there is therefore a need to 

find the best ancillary (variables) data and predictive models that can be integrated with freely 

available datasets. Further, Landsat series and MODIS datasets are widely used in GDV 

mapping; however, the major limitation is their low spatial resolution (>30m). Despite these 

limitations, the Landsat series has a large historical archive that has not been fully exploited. 

The introduction of advanced cloud computing methods such as GEE, peta-scale image 

processing and artificial intelligence (AI) have the potential to overcome limitations of spatial 

resolution and temporal range through the integration of hyperspectral and coarse-scale 

multispectral datasets. Cloud computing methods can provide new insight in GDV monitoring 

and offer new opportunities to resource-poor nations where GDV investigations were hindered 

by the cost of acquiring these datasets. Further, more studies integrating field methods with 

remote sensing in assessing GDV should be prioritized, as this will increase the reliability of 

the derived spatial and thematic GDV maps. When there is a large body of local information 

on GDV occurrence, geospatial methods can be adequately evaluated and indicate areas of 

improvement. Further, machine-learning algorithms such as ANN, SVM, and regression tree-

based classifiers need to be explored for GDV assessments and distribution mapping.   

2.6. Conclusions 

Groundwater resources are increasingly deteriorating and constantly under threat due to global 

change, and increased abstraction impacts vegetation. Literature has revealed the effects of a 

reduced groundwater table in areas where GDV is dominant. In the context of this review, 

GDVs were classified as terrestrial vegetation (Phreatophytes) and associated dependent flora 

and fauna, which are sustained by groundwater. The classification of these systems in this 

review was based on the classification system of GDEs by Eamus et al. (2006).  There is a large 

body of literature on GDV response to groundwater variability. Most of these studies have 

shown that GDV has responded variably to groundwater availability based on the plant 

physiological characteristics, such as the plant rooting depth. Literature shows that the major 

responses to a declining groundwater table are reduced photosynthetic rates, plant productivity, 

reduced leaf area and the change in species composition and distribution. However, GDV is 

also affected by the timing and or groundwater regime. This needs to be explored further, 

especially with the looming impacts of climate change. Elevated surface temperature and low 

rainfall are associated with groundwater depth decline, leading to GDV degradation and 

floristic change. The research reveals the effects of climate variability on GDV are difficult to 
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isolate. Therefore, further long-term climate-vegetation interaction research is required. 

Remote sensing has emerged as a popular method for GDV mapping and assessment, because 

of the efficiency, unique spatial, spectral, and temporal Characteristics that allow GDV 

assessment at different scales. While readily available datasets (MODIS and Landsat) have 

provided critical insights on the state of GDV, they are, however limited by the poor (low) 

spatial and spectral characteristics. There is therefore a need to enhance remote sensing 

potential by integrating multiple indicator variables in GDV investigations. In addition, new 

generation sensors (Landsat 8 OLI and Sentinel 2) with improved spatial and temporal 

resolutions and advances in ML algorithms can further improve the identification and 

monitoring of GDV. Moreover, the potential of integrating multisource datasets such as drones, 

AUVs, Worldview and Sentinel 1 to calibrate GDV models should be assessed. Emerging 

cloud-based image computing techniques such as GEE can significantly improve the long-term 

monitoring of GDV. The effects of climate change have created a need to adequately delineate 

vulnerable groundwater-dependent vegetation communities to ensure their sustainability when 

allocating groundwater resources for anthropogenic activities. 
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CHAPTER THREE 

GROUNDWATER MODELLING APPLICATIONS COUPLED WITH SPACE-

BASED OBSERVATIONS IN GROUNDWATER-DEPENDENT ASSESSMENTS: 

A REVIEW ON APPLICATIONS, CHALLENGES, AND FUTURE RESEARCH 

DIRECTIONS 

 

3.1. Introduction  

Groundwater-dependent ecosystems are complex systems that depend on the consistent or 

intermittent connection to groundwater for their continued existence and ecological 

functionality (Klove et al., 2011; Orellana et al., 2012; Pérez Hoyos et al., 2016; Rampheri et 

al., 2023). These ecosystems encompass a diverse range of habitats, including wetlands, 

riparian zones, and springs, playing a crucial role in maintaining biodiversity and ecosystem 

services. The ecological significance of GDEs has gained increasing attention due to their 

susceptibility to environmental changes (Rohde et al., 2017). Subsequently, research advances 

have focused on the significant threats to GDEs, including groundwater depletion, impacts of 

climate change and groundwater contamination (Brown et al., 2011; Eamus et al., 2015). A 

study by Kidmose et al. (2013) revealed that climate change variations have an impact on 

groundwater level fluctuations. Long periods of rainfall cause an increase in groundwater 

levels, while prolonged dry periods and droughts decrease groundwater levels. Considering 

how GDEs are dependent on groundwater supply, the effects of climate change on groundwater 

levels are likely to have a considerable impact on the functioning of GDEs. In addition, the 

impacts of climate change on groundwater level fluctuations are not only influenced by rainfall 

but also by changes in temperature and land use. Wang et al. (2021) found that increasing 

temperatures are likely to decrease groundwater levels due to increased evapotranspiration. 

Furthermore, the overabstraction of groundwater continues to alter the hydrological regimes 

and aquifer dynamics (Kath et al., 2018). Groundwater levels have been reported to be 

declining globally (Jasechko & Perrone, 2021), thereby increasing the threat to ecosystem 

functioning and health of GDEs. Increased groundwater levels offer a reliable source of water, 

ensuring the long-term viability of GDEs even in arid climates. Additionally, increased 

groundwater levels strengthen GDEs' resistance to drought and support their function as 

habitats for species during dry periods. Evaluating the effects of climate change on 

groundwater and dependent systems is challenging because of the complexity of these systems 

and the insufficiency of accessible data (Goderniaux et al. 2009). 
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GDE protection is particularly challenging due to variations in hydrogeological and climatic 

settings, as well as the variability in groundwater flow paths, discharge patterns, and water 

quality required for the comprehensive understanding of their functioning at local and regional 

scale (Tomlinson, 2011; Pérez Hoyos et al., 2016; Rohde et al., 2017; Erostate et al., 2020). 

However, the study of the relationship between GDEs and groundwater presents a significant 

stride towards their conservation by improving our understanding of the relationship that exists 

between GDEs and groundwater, providing information on the vulnerability of GDEs to 

changes in groundwater levels, which can inform management decisions aimed at protecting 

these systems. This relationship is referred to as the ‘hydrogeological connectivity’ in this 

paper. The hydrogeological connectivity between underlying aquifers and GDEs plays a 

critical role in determining long-term sustainability and ecological integrity of these delicate 

ecosystems. This relationship is complex and crucial for the sustainability and functioning of 

GDEs. It affects important aspects of such as nutrient distribution and water storage. 

Additionally, the exchange of water between GDEs and aquifers influences local and regional 

hydrologic cycle, which in turn influences the resilience of ecosystems and contributes to 

groundwater recharge. To understand the complex relationships between GDEs and 

groundwater systems, various models and conceptual frameworks have been employed. These 

frameworks often consider factors such as groundwater recharge, and flow paths as key 

determinants of hydrogeological connectivity. Understanding these frameworks is essential for 

understanding how GDEs rely on groundwater for sustainability and how changes in aquifer 

properties can impact on the ecological integrity of these systems.  

While the topic of the relationship between GDEs and groundwater has been widely studied 

(Bracken & Croke, 2007; Lexartza-Artza & Wainwright, 2009; Lesschen et al., 2009; Bracken 

et al., 2013; Wei et al., 2023), there are still several challenges identified in existing literature. 

The process of analysing the relationship between GDEs and the underlying aquifers is limited 

by the lack of data such as groundwater levels, flow rates, and water quality (Eamus et al., 

2015; Doody et al., 2017; Link et al., 2023). In addition, complex hydrogeological systems 

marked by intricate geological formations and complex flow dynamics pose significant 

challenges in developing accurate predictive models (Harken et al., 2019). Furthermore, the 

precise impacts of groundwater abstraction on GDEs are not well understood, especially over 

long periods. Lastly, human activities such as land use and the abstraction of groundwater can 

have substantial effects on the connectivity of groundwater and dependent ecosystems 

(Schirmer et al., 2013). An important first step in studying the hydrogeological relationship 
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between GDEs and underlying aquifers is the accurate identification and delineation of these 

systems to comprehensively understand their hydrological connectivity, ecological 

dependence, and vulnerability to land use and land cover changes. This is usually achieved 

using field data-based models, which are data-intensive which is very costly to collect for some 

regions (Gxokwe et al., 2020a). 

The availability of remote sensing data and tools offers unprecedented opportunities for the 

identification and delineation of these GDEs and understanding their eco-hydrological changes 

and vulnerability to land use and land cover changes over time. With input data from various 

sources such as Landsat, Sentinel 1 and 2 as well as Moderate Resolution Spectroradiometer 

(MODIS), among others. However, challenges associated with the spatial resolution of the 

remote sensing data tend to present inaccuracies during the monitoring of these systems 

(Gxokwe et al., 2024; Ramperi et., 2020). Moreover, the unavailability of cloud-free images 

for certain times of the year causes challenges with continuous assessment and monitoring of 

GDEs from RS data (Gxokwe et al., 2024).  Advancements in data analytics tools, such as the 

introduction of artificial intelligence-based cloud computing platforms, such as Google Earth 

Engine, offer unprecedented opportunities to address challenges associated with remote 

sensing applications in GDE assessments and monitoring. With the availability of advanced 

data handling and processing tools in these platforms, it has become possible to integrate 

various data types, therefore combining their strengths and improving the delineation and 

assessment of GDEs over time. In addition, free access to higher resolution remote sensing data 

such as the Copernicus Sentinel data through these platforms also makes it possible to 

accurately delineate, assess and monitor ecohydrological changes of the GDEs over time.  

Although remote sensing technological advancements have been made, and have the potential 

of improving the delineation, assessments and monitoring of ecohydrological changes in GDEs 

over time, these have not been fully explored. Moreover, the potential of coupling geospatial 

tools to groundwater models for improved groundwater-dependent assessments, according to 

our knowledge, is not fully understood.  Owing to this background, the chapter seeks to provide 

a comprehensive overview of the progress and applications of groundwater flow models 

coupled with advanced geospatial tools to understand the ecohydrology GDEs and their extent 

of connectivity to underlying aquifers. In achieving the main objective, the review firstly 

provides in broader sense critical background on the science of GDEs and their classification, 

followed by the progress that has been made in the application of remote sensing and GIS 
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technologies in the identification and delineation of GDEs. Secondly, the review provides an 

overview of the application of groundwater modelling techniques and challenges. Lastly, the 

review presents the potential of integrating geospatial tools into groundwater models and future 

research prospects. Although other reviews, such as Ramperi et al. (2020), Bertrand et al. 

(2014) have provided an overview on understanding GDEs and their ecohydrological dynamics 

over time, however, they did not focus on the progress on coupling groundwater models with 

geospatial tools to understand these systems. Hence, our review focuses on such, therefore 

informing the GDEs’ monitoring systems in various states about the key priority research areas 

on these critical ecosystems. Moreover, the review provides an overview of robust 

methodologies for accurate assessment of GDEs, therefore informing the Sustainable 

Development Goals (SDG 6.1.1), emphasizing the need to protect and restore aquatic 

ecosystems.  

3.2. Literature search  

To achieve the main objectives and relevant literature for this study, an extensive search was 

conducted on the various search engines like Web of Science (WoSCC, Google Scholar and 

SCOPUS. During the search of these articles, the following search query was used: 

(groundwater dependent ecosystems* OR springs*) AND (groundwater modelling OR 

groundwater simulation) AND (conditions OR contaminant transport OR ecological status OR 

hydrological connectivity) AND (Finite Difference Methods OR Finite Element Methods OR 

Remote Sensing OR Earth Observation OR GIS). The search yielded 13900 articles from 

Google Scholar, 8300 from SCOPUS and 2100 from WoSCC, respectively (n = 29300). Figure 

3.1 shows the workflow followed during the literature selection process. The articles included 

in the review also had to meet the following criteria:  

1. The use of remote sensing data to study groundwater and/or GDEs. 

2. Integration of remote sensing data and other data sources (e.g. hydrological models, 

groundwater models, land use data) to study GDEs. 

3. The article clearly states the remote sensing and groundwater model used  

4. Published in a peer-reviewed, accredited journal. 

5. Article written in English 

6. Article is freely accessible and available in full text  

7. Papers published between 2000 and 2023 
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Figure 3.1 Flow diagram showing the selection of articles included in this review 

The first stage of the screening process involved the removal of duplicates, given that the search 

query was the same throughout the databases chosen. After the exclusion of duplicate articles 

(n = 2960), the articles were screened by the year range (2000 -2023) of the review and a total 

of 4736 articles were excluded during this process. Further screening was conducted based on 

free accessibility. Consequently, a total of 6915 articles were excluded due to subscription 

requirements to access these articles. The remaining articles (n = 188) were downloaded and 

used in this review. The exclusion of articles based on the full text accessibility would have 

introduced some bias towards certain studies that have used certain models and remote sensing 

tools in their analysis.  
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3.3. Background on groundwater-dependent ecosystems and their classification  

For this chapter, GDEs are defined as ecosystems that are maintained by direct or indirect 

access to groundwater and rely on the flow or chemical characteristics of groundwater for some 

or all of their water requirements (Rohde et al., 2017). This definition indicates the importance 

of groundwater in the sustainability and functioning of these ecosystems. During dry seasons, 

some wetlands in semi-arid and arid regions depend on the supply of groundwater to ensure 

the provision of ecological services and regulations (Thakur et al., 2012; Rampheri et al., 2023). 

In addition, when surface water bodies become depleted, phreatophyte vegetation draws water 

from saturated zones and is also sustained by groundwater when transpiration rates are high 

(Sommer & Froend, 2014). GDEs support a wide range of ecosystem services and are critical 

habitats that need to be included in the watershed-level policies and water resources 

management initiatives to build a sustainable ecosystem with the precise allocation of water 

resources (Pérez Hoyos et al., 2016; Shukla et al., 2022). However, due to the insufficient 

supply and over abstraction of groundwater, GDEs are threatened and hence the services they 

provide. Some of the ecosystem services provided by GDEs include, but are not limited to, 

water purification, active biodegradation of anthropogenic contaminants and inactivation and 

elimination of pathogens, carbon sequestration and the mitigation of floods and droughts. 

GDEs also have an intrinsic value for maintaining biodiversity and ecosystem functioning. As 

GDEs rely on groundwater to sustain all or some of their water requirements, particularly in 

arid and semi-arid climates, any alterations in the quality or quantity of groundwater also affect 

these ecosystems. Due to the growing threat that local and regional anthropogenic changes, 

together with climate change and variability, pose to aquifers and GDEs, the effects of 

anthropogenic climate change on groundwater and associated ecosystems have recently 

attracted a lot of attention (Rampheri et al., 2023).  

Over the past century, there have been significant changes in the water cycle (Bierkins & Wada, 

2019). Notably, the abstraction of groundwater for various water demands has increased from 

approximately 500 to over 3500 km3 yr-1 within the past century (Kenikow & Kendy, 2005; 

Hanasaki et al., 2018; Lall et al., 2020), leading to a depletion of total groundwater available. 

Consequently, the over abstraction of this resource causes the loss of discharge from 

groundwater to GDEs, which results in the loss of ecosystem structure and function, resulting 

in the decline of services provided by these ecosystems (Orellana et al., 2012; Eamus et al., 

2015; Chiloane et al., 2022). A study by Pritchett & Manning (2012), revealed that GDEs are 

vulnerable to water table decline, leading to losses in vegetation cover. Prolonged precipitation 
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due to climate variations results in groundwater recharge, thus leading to an increase in 

groundwater levels. Increased groundwater levels offer a reliable source of water, ensuring the 

long-term viability of GDEs even in arid climates (Rhode et al. 2021). Additionally, increased 

groundwater levels strengthen GDEs' resistance to drought and support their function as 

refuges for species during dry periods. Evaluating the effects of climate change on groundwater 

and dependent systems is challenging because of the complexity of these systems and the 

insufficiency of accessible data (Goderniaux et al. 2009).  

A significant number of studies (Hanock et al., 2009; Serov et al., 2012; Gou et al., 2015; 

Eamus et al., 2015) highlight the importance of classifying GDEs into different classes to 

protect and manage them accurately. Several types of GDEs have been acknowledged in 

literature, and different classification systems have been proposed (Hatton and Evans, 1998; 

Clifton and Evans, 2001; Sinclair Knight Merz Pty Ltd, 2001; Colvin et al., 2007; Klove et al., 

2011). Hatton and Evans (1998) was the first to classify GDEs into five categories namely, (i) 

obligate GDEs which are entirely groundwater dependent and can lose their complete 

ecosystem structure and function even due to small changes in groundwater availability, (ii) 

highly water-dependent GDEs in which small to moderate changes in groundwater availability 

result in significant changes in ecosystem structure and function, (iii) proportionally dependent 

GDEs which do not exhibit the threshold-type responses of obligate or highly dependent GDEs, 

(iv) opportunistic GDEs which are facultative users of groundwater, that is, only in the 

condition of low surface water flow or droughts, and (v) GDEs that only appear to be 

groundwater-dependent but are entirely rain fed or dependent only on surface water flows. 

However, Eamus et al. (2015) and Doody et al. (2017) noted that this classification lacks 

accuracy in the determination of the degree of dependency, and the presence or absence of 

threshold response is difficult to establish using this classification. Eamus et al. (2016) further 

categorised these ecosystems into three classes.  

The classes proposed in Eamus et al. (2006) include: Class (i) characterised as aquifers and 

cave systems, Class (ii) characterised as ecosystems that depend on groundwater seepage to 

surface water and Class (iii) characterised as ecosystems that depend on the subsurface 

expression of groundwater. This ecosystem classification approach simplifies the 

differentiation and recognition of groundwater dependency, thereby enhancing the evaluation 

of ecological risks (Chiloane et al., 2022). However, Serov & Kuginis (2017) reported that the 

current available ecosystem classifications do not adequately address GDEs as a whole and are 
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ineffective in representing the range of GDE types. Additionally, the classification system by 

Eamus et al. (2006) relied on expert judgement, which makes it difficult to apply consistently.  

3.4. Application of space-based observations in groundwater-dependent 

ecosystems assessment  

GDEs assessment mostly relies on inference-based methodologies, which use indicators such 

as hydrological features, which comprise springs, wetlands, and baseflow, amongst others, as 

well as vegetation types and conditions of a certain period (Rohde et al., 2024). Such indicators 

are retrieved from satellite images ranging from coarse, medium to finer resolution datasets 

based on the sensing characteristics of the satellite sensor collecting a particular dataset (White 

et al., 2015; Wu, 2018; Bian et al., 2021). The commonly used data types and their 

characteristics (spatial and temporal resolution are presented in Figure 3.2. These data sources 

include freely accessible products such as Landsat series, Sentinel, as well as Moderate 

Resolution Spectroradiometer (MODIS), amongst others, while other commercial products 

include Quickbird, IKONOS, Aerial photography, and AVIRIS. The commercial satellites are 

mostly unsuitable for larger-scale and time series monitoring due to cost complexities 

associated with the acquisition of such data, particularly in resource-scarce regions like sub-

Saharan Africa, therefore resulting in the increased use of freely accessible remote sensing 

products (Thamaga and Dube 2018; Ramperi et al., 2023; Pérez Hoyos et al., 2016a; Castellazzi 

et al., 2019).  

The availability of freely accessible remote sensing data has been the most viable options, 

resulting in the increased use of these freely accessible satellite products (Doody et al., 2014; 

Guanter et al., 2015; Dash & Ogutu, 2016; Wu et al., 2021). Although this is the case, there are 

challenges associated with the use of these data types. These challenges include the spatial 

resolution of some of the data, which results in challenges with mapping the finest details of 

the GDEs indicators. For example, earlier studies such as Elmore et al. (2003) monitored 

vegetation responses to groundwater level changes because of climate variability in eastern 

California using cloud-free Landsat Thematic Mapper coupled with field-based vegetation 

surveys and time series groundwater data. Although the study reported acceptable accuracies 

of the vegetation responses to groundwater level changes derived from the remote sensing data 

used, there were some inaccuracies observed for some vegetation types attributed to the spatial 

resolution of the data used. 
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Advancements in remote sensing data, such as the introduction of new generation satellite 

products like Sentinel data (1&2) with improved spatial and spectral resolution, offer 

unprecedented opportunities to address challenges associated with the use of freely accessible 

remote sensing data in GDEs assessment and monitoring (Chiloane et al., 2020; Liu et al., 

2021; Guo et al., 2015; Kiptala et al., 2013; Ndou et al., 2018; Noorduijn et al., 2019). These 

new generational satellite products have proved to be useful in delineating and assessing 

changes in the ecohydrological status of GDEs in various climatic zones Gow et al., 2010; 

Castellazzi et al., 2019; Liu et al., 2021; Rampheri et al., 2023a). However, for the smallest 

systems (< 10 ha) dominating in certain parts of the world, the use of single-source data 

products presents some challenges associated with the limitations of a particular product used. 

Therefore, necessitating, fusion of various data types to improve the delineation and monitoring 

of GDEs indicators from remote sensing data.  

The introduction of advanced geospatial tools and platforms, such as Google Earth Engine 

cloud computing platforms, offers opportunities to further improve the delineation and 

monitoring of GDEs, through their specialized data fusion and filtering algorithms, as well as 

advanced machine learning techniques (Gorelick et al., 2020). Moreover, these platforms 

provide access to multiple data types and sources, thus simplifying the process of data 

acquisition (Mahdianpari et al., 2020). These platforms also allow the user to process the data 

in the cloud, therefore saving on data storage. Some of the studies that have used these 

platforms include a study by Ramperi et al., (2023), which utilized multisource remote sensing 

data coupled with an analytical hierarchical process in Google Earth Engine to delineate GDEs 

in the Khakea-bray transboundary aquifer system. The findings of the study underscored the 

relevance of these platforms in improving the delineation of the GDEs in the study, although 

there were noted overestimations in GDEs even in areas with deep groundwater.  Another study 

by Fildes et al. (2023) mapped GDEs in the Leigh Creek area located in the north of Adelaide 

using multisource remotely sensed data coupled with an analytical hierarchical approach in 

Google Earth Engine cloud computing platforms. The findings of the study also underscored 

the relevance of the approach in spatial analysis of GDEs; however, there were some 

limitations, such as underestimation of GDEs in areas with depth to groundwater closest to the 

surface. Such limitations require an integration of the quantitative groundwater flow models to 

improve the representation of these systems, as these models tend to quantitatively assess the 

exchange of water between groundwater and surface water systems. 
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Figure 3.2 Satellite sensors commonly used for mapping and monitoring of GDEs (Pérez 
Hoyos et al., 2016a)  

 

3.5. Overview of groundwater flow models applied in groundwater-dependent 

ecosystems  assessments  

Over the last five decades, many groundwater models have been used for groundwater 

management by researchers all over the world (Table 3.1). Groundwater flow models can be 

divided broadly into two categories, i.e., groundwater flow and solute transport models. Solute 

transport models solve for contaminant movement over time, while groundwater flow models 

solve for the spatio-temporal values of hydraulic head (Singh, 2014). For complex groundwater 

flow and contaminant transport systems, numerical models are mostly applied. The selection 

of a numerical method for a particular field problem depends on several factors, including 

accuracy, efficiency, and usability. The accuracy and efficiency of a model primarily depend 

on the availability of data and the scope of the research. Numerical models provide discrete 

solutions over the entire area that is being modelled, and use direct methods to perform 

approximations (Gxokwe, 2018). In numerical groundwater modelling, both the finite element 

and the finite difference approaches have been widely used (Singh, 2014). These approaches 
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use different sets of equations to solve groundwater flow systems. The dimension of the 

equations applied depends on the conditions of the aquifer that is being modelled.  

 

3.5.1. Finite Difference Method 

The finite difference method (FDM) is one of the oldest methods used in numerical modelling 

and has been made more useful with the advent of digital computers (Magnus & NJ, 2011). 

FDM solves the equations of groundwater flow using a grid-based approach, where the 

groundwater domain is divided into a finite number of rectangular grid cells. Within this model, 

each rectangle grid cell used has X, Y and Z co-ordinates and the hydraulic head is calculated 

within the centre of each grid cell (Spitz & Moreno 1996). FDM calculates variables (e.g., 

hydraulic head or pressure) at discrete grid points by solving algebraic equations derived from 

the discretised equations. This method is often used for larger-scale simulations, as they can be 

computationally efficient (Niswonger et al., 2004). MODFLOW is one of the most widely used 

finite difference models (Kumar, 2002; Zdechlik, 2016), because of its ability to simulate a 

wide variety of systems, its extensive publicly available documentation, and its rigorous peer 

review process. Other FDM models include MODPATH and MT3D, which are commonly 

used in contaminant transport analysis studies (Thoms & Johnson, 2005; Whittier & Maddock, 

2006; Fan et al., 2011; Han et al., 2015; Behera et al., 2022; Rafiei et al., 2022).  The advantages 

of FDM include easy data input, numerous facilities for data preparation, extended worldwide 

experience, availability of source code, and relatively low cost (Kumar, 2002). However, this 

method has low accuracy in some problems and regular grid (Gxokwe, 2018). Furthermore, it 

is difficult to apply the FDM when we encounter irregular geometries or an unusual 

specification of boundary conditions (Anderson and Woessner, 2002).  

3.5.2. Finite Element Method 

Finite Element Method (FEM) equations are more complex than those of the finite difference 

method. FEM solves equations by dividing the domain into finite elements that are defined by 

nodes (Anderson et al., 2015). In this method, the dependent variable (e.g. head) is defined as 

a continuous solution within elements. A FEM mostly uses triangles to discretize the area being 

modelled or quadrilaterals in 2D and tetrahedra or hexahedra in 3D. The finite discretisation 

procedure reduces the problem to one of a finite number of unknowns by dividing the solution 

region into elements and by expressing the unknown variable in terms of an assumed 

interpolation function within each element (Hueber et al., 2001). The FEM can formulate 

solutions for individual elements before putting them together to represent the entire problem. 
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Other advantages of the FEM include better treatment of thin sections and complex shape, and 

this method is very versatile, and its versatility can be contained in a single program (Gxokwe, 

2018). However, the implementation of the FEM can be more complex, requiring expertise in 

mesh generation and numerical methods. 

3.5.3. Available groundwater models for groundwater-dependent ecosystems assessments 

and applications  

The application of groundwater flow models to large-scale aquifer system simulation began in 

the late 1970s, with the Regional Aquifer System Analysis (RASA) program of the US 

Geological Survey (Zhou, & Li, 2011).  The use of 3D groundwater flow models has led to 

significant advances in the understanding of regional groundwater flow systems. Some of the 

applications of existing groundwater flow models include simulation of water flow and 

chemical migration in the saturated zone, including river-groundwater relations, assessing the 

changes of groundwater depth on ecosystems, setting up groundwater protection zones and 

monitoring networks, and gaining knowledge about the quantitative aspects of the unsaturated 

zone (Table 3.1). Recently these models have been used in understanding the emerging 

contaminants such as pesticides and pharmaceuticals in groundwater systems within various 

aquifer Although these models provided baseline knowledge to groundwater systems for 

different aquifers and served as an imported tool informing decision making process, they are 

field data intensive, and such data is scanty to non-existent for some regions due to cost 

complexities associated with the collection of such data particularly at regional scales (Condol 

et al., 2021; Ntona et al., 2022). Therefore, introducing data limitations during the 

implementation of such models. A study by Rodiger et al. (2023) simulated the water table of 

the Hashemite Kingdom of Jordan using the FEFLOW finite element method. The study 

reported that scarcity in some of the input data parameters has limited the calibration of the 

model. Another study by Gxokwe et al. (2020b) modelled the scenarios of water sensitive urban 

design, including managed aquifer recharge by wetlands and ponds in the Cape Flats Aquifer 

using the MODFLOW Finite Difference Method. The results demonstrated the potential of 

managed aquifer recharge during the summer season when the water table is deeper, using 

wetlands and ponds in the area. Although the study demonstrated such, there were some 

drawbacks during the calibration of the FDM model caused by the limited availability of water 

level data in the area.
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Table 3.1 Summary of groundwater flow models applied in assessing GDEs 

Study focus Model Results Model 
validation 

Accuracy results Limitations Authors 

method 

This study used an integral flow modelling approach to 
simulate surface water-groundwater interactions along a 
ripple in stream bed. 

HYDRUS-2D The study revealed that surface water flow 
velocity, bedform geometry, and near-bed 
pressure significantly influence water exchange 
between streams and aquifers, with 
distribution strongly controlled by the 
hyporheic zone and water table depth. 

Visual 
comparison 
of simulated 
and observed 
heads from 
other 
scholars 

Good agreement 
observed between 

simulated and 
observed values 

for the calibrated 
model 

The HYDRUS model was not able to 
simulate the effects of surface 
roughness, which can have a 
significant impact on stream-
groundwater interactions. 

Broecker et al., (2019) 

This study examined the sensitivity of land surface 
evapotranspiration (ET) to water table depth, soil texture, 
and two commonly used soil hydraulic parameter datasets 

using four models with varying levels of complexity. 

HYDRUS-1D The results indicated a strong influence of 
water table depth on groundwater 

contributions to ET. Furthermore, the 
simulated ET was highly dependent on the 

depth to groundwater. 

R2 

determinant 
R2= 0.96 – 0.98 Hydrus-1D consistently predicted a 

higher ETa/ETp ratio than IBIS. 
Especially for sand and clay, the 

difference was as high as a factor 
of two to three. This difference 
would have a major impact on 

regional energy and water balance 
predictions. 

Soylu et al., (2011) 

This study used various methods to examine the 
relationship between the depression wetlands and the 

underlying groundwater. The study used hydrogeological 
data, geophysical surveys, dye tracer tests, and water level 
monitoring to determine the groundwater connectivity of 

the wetlands. 

VS2DI 
model 

The study found that depression wetlands in 
the study area are hydrologically connected to 

groundwater, with topographic depressions 
being more connected than upland slopes, and 

their connectivity is influenced by geologic 
properties. 

Visual 
comparison 
of simulated 
and observed 
heads from 

other 
scholars 

Good agreement 
observed between 

simulated and 
observed values 

for the calibrated 
model 

The models did not directly model ET, 
instead, the models used a 

recharge boundary in upland areas 
equal to net recharge, defined as 

precipitation less ET. The study did 
not simulate spatial heterogeneity 

in ET. 

Neff et al., (2019) 

This study used numerical models for predicting two-
dimensional groundwater flow in the continental river 

watersheds based on the water budget in the watershed, 
and by regarding the effects of groundwater depth on 

vegetation change as the source/sink factors. 

FEFLOW The study found that groundwater levels 
decreased in the upper marginal zone of fans 

and increased in the alluvial-diluvial plains. This 
led to vegetation deterioration in the upper 
watersheds and increased soil salinisation in 

the lower plain 

Root Mean 
Square Error 

RMSE = 12 m for 
Hydraulic head 

residuals 

The model did not account for 
changes in root water uptake or 

transpiration rates in response to 
changing groundwater levels, 

which may lead to the 
overestimation of the impact of 

groundwater level in the ea. 

Zhao et al., (2005) 
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The study modelled future scenarios of the impact of 
climate change on surface and groundwater and surface 
water resources in Gareh Bygone Plain, southern Iran. 

Runoff-
nfall coupled 

with a 
MODFLOW-

derived 
roundwater 

model 

The results of the groundwater recharge 
modelling showed no significant difference 

between present and future recharge change 
due to climate change for all scenarios 

R2 
determinant 

R2 = 0.82, residual 
difference 

between the 
simulated and 

observed hydraulic 
heads for the 

calibrated model. 

Missing Evapotranspiration input 
data for the period of 1990 and 

2021 was a limitation of the study 

Hashemi (2015) 

This study assessed the changes in important waterfowl 
habitats - protected wetlands situated in the impact zone 

of proposed dolomite mining. 

FEFLOW The study found that a decrease in 
groundwater level in a dolomite quarry 

wouldn't affect Lake Čedasas or riparian zones. 
However, combined with predicted climate 
change, it could impact nearby groundwater 

levels, affecting Lake Čedasas ecosystems 

R2 
determinant 

R2= 0.90 when 
comparing 

simulated and 
observed hydraulic 

heads for the 
calibrated model 

If lake water level changes are 
primarily influenced by surface 

water inflow and outflow, using the 
FEFLOW 5.0 model alone is 

inadequate. Instead, other models 
such as FEFLOW 6.0 or GSLOW 

versions are necessary to 
accurately simulate these changes. 

Taminskas et al., (2013) 

Submarine Groundwater discharge and stream baseflow 
sustain pesticide and nutrient Fluxes, Faga’Alu Bay, 

American Samoa 

MODFLOW, 
M3TDMS 

Analysis of baseflow contributions revealed 
that groundwater contributed 41% to the bay 

and about 9 ± 2 g/d of dichlorodiphenyl-
trichloroethane was found in 85% of the 

samples collected both in Groundwater and the 
Bay 

Root Mean 
Square Error, 

R2 
determinant, 

RMSE = 12 m for 
Hydraulic head 

residuals and R2 = 
0.99 

The model worked on a smaller scale, 
not tested on a larger scale due to 

field data 

Welch et al., (2019) 

Assessing the Transport of Pharmaceutical Compounds in a 
Layered Aquifer Discharging toa Stream 

finite 
element 
method 

plemented in 
COMSOL 

The pharmaceutical compounds migrate in 
both a deep semiconfined aquifer, as well as in 
the shallow unconfined aquifer, and enter the 
stream along a 2-km stretch. This contrasted 
with the chlorinated ethenes, which mainly 
discharge to the stream as a focused plume 

from the unconfined aquifer. 

Root Mean 
Square Error, 

R2 
determinant 

RMSE = 10 m for 
Hydraulic head 

residuals and R2 = 
0.98 

The method relies on the assumption 
that the compounds migrate with 
groundwater and are not or only 

slowly degrading 

Balbarini et al., 2024 
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The increase in availability of numerical models has offered more prospects to improve the 

assessment and monitoring of GDEs. These models, including amongst others HYDRUS, 

COSMOL, VS2DI, MIKE SHE and SWAT-MODFLOW have proved to be successful in 

predicting the extent and changes regarding quality and quantities of these systems over time 

at acceptable accuracies (Table 3.1). For example, a study by Prucha et al. (2016) developed a 

physically based MIKE SHE integrated groundwater and surface water model for the Mokolo 

River basin flow system to simulate key hydraulic and hydrologic indicator inputs to the 

downstream response to imposed flow transformation for an arid rivers decision support 

system. Although the study managed to match the observed and simulated hydraulic heads at 

an acceptable mean error, mean absolute error and root mean square error, calibration for the 

model presented challenges due to a lack of data on basic subsurface hydrogeologic 

characterisation. Other studies, such as Qiao et al. (2023); Shah et al. (2007); Soylu et al. 

(2011); and Balugani et al. (2017), used the HYDRUS model to study plant and soil water 

interaction in various climatic zones. These studies also reported challenges with model 

calibrations and simulations due to a lack of data on their input parameters. With the increasing 

availability of remotely sensed products, there is an opportunity to overcome challenges such 

as data scarcity, which limits the functionality of groundwater flow models in simulating 

GDEs.  

3.5.4. Geospatial data integration for groundwater modelling and challenges  

Groundwater resource management and modelling are hindered by the lack of high-quality 

data, particularly in arid and semi-arid regions where there are limited monitoring stations 

(Brunner et al. 2007; Singh 2014). When there is a lack of necessary extensive data required 

for model processing, the model outputs can either be under- or overestimated, therefore 

preventing it from being used as a reliable decision support tool (Kasahara & Hill 2006).  The 

integration of remote sensing data with modelling techniques has proved to be an efficient tool 

in groundwater studies (Saraf and Choudhury 1998; Trabelsi et al. 2013). The integration of 

such techniques can provide a preliminary spatial distribution of the recharge zone. Large 

datasets on the hydrogeological framework, hydraulic parameters, hydrological stresses, and 

measured groundwater heads are required for groundwater basin modelling (Pathak et al. 

2018). The amount of time needed for data preparation, processing, and presentation 

throughout the modelling process can be greatly decreased with a well-designed GIS database 

(Tsihrintzis et al. 1996). Faults and dikes, lithological changes, and the depth of magnetic 

features can be identified using airborne geophysical surveys (e.g. Doll et al. 2000; Jorgensen 
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et al. 2003). Using this knowledge can assist in the accurate conceptualisation of aquifer 

systems under study, therefore informing the accurate development of a reliable groundwater 

model. The integration of geospatial data with groundwater models can be achieved through 

three techniques: loose coupling, tight coupling, and embedded coupling (Ruthy et al. 2003). 

Most applications of GIS in groundwater modelling use the loose coupling technique (Gogu et 

al. 2001). This is because this approach allows these two complex systems to be developed and 

maintained separately, giving users the option to select specific software tools for each domain, 

improving data transfer, and simplifying model maintenance.  

Various studies attest to the suitability of GIS applications in groundwater hydrology (Brunner 

et al. 2007; Brunner et al. 2008; Singh 2014; Pathak et al. 2018). Chenini and Mammou (2010) 

demonstrated the potential of GIS and remote sensing in numerical groundwater modelling by 

coupling a GIS ARCVIEW with MODFLOW in the development of a model for the arid 

Maknassy basin of Central Tunisia resources. The study found that the extent of groundwater 

connectivity to GDEs is strongly influenced by the permeability of the aquifer, the size of the 

groundwater system and the nature of GDEs therefore demonstrating the potential of 

integrating GIS into groundwater models in improving the monitoring and assessment of 

GDEs. While integrating GIS and groundwater modelling proved to be useful in GDEs 

monitoring and assessments, there were still limitations regarding this process of data 

integrations, and these include, amongst others, changes in the quality of the data fused, which 

may cause errors in during the modelling development, distortion on the data, particularly 

remotely sensed images, when merged with other data types (Mahdianpari et al., 2018; Gxokwe 

et al., 2020b).   

The emergence of satellite missions such as Gravity Recovery and Climate Experiment 

(GRACE) and its advancements over time offer prospects to monitor subsurface water storage 

changes over time, including the dependency on shallow groundwater systems. The ability of 

the GRACE Satellite to measure variation in gravitational forces allowed for the determination 

of large-scale mass distribution, such as large groundwater depletion (Sun et al. 2012; Lakshmi 

2016; Ali et al. 2021; Brunner et al. 2006). Data from this satellite mission has been 

successfully applied in various groundwater modelling studies, such as Rahaman et al. (2019). 

The study by Rahaman et al. (2019) simulated groundwater flow of the Colorado Basin using 

GRACE satellite dataset. The results underscored the relevance of GRACE GRACE-derived 

groundwater flow model to track long-term changes in groundwater storage in the basin; 

however, the study recommended the inclusion of other field-measured data like climate 
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variables to enhance the reliability of the model outputs. Another study by Singh et al. (2023) 

used GRACE data coupled with TerraClimate data to model regional groundwater changes in 

the Bundelkhand region of Uttar Pradesh, India, between the years 2002 and 2017. The results 

indicated major fluctuations in groundwater levels, with mostly groundwater depletion 

occurring around the year 2012. Although the study demonstrated the utility of GRACE 

imagery coupled with TerraClimate data to model groundwater fluctuations in the area, 

however, there were some uncertainties with the accuracy of some outputs caused by the coarse 

spatial resolution of the data used. 

Improvements in the newly launched GRACE-FO after the initial GRACE twin satellites have 

been decommissioned in 2017, offer prospects to improve GDEs monitoring and assessments 

(Ali et al., 2021). With improved microwave ranging system, and improved resolution, the 

GRACE-FO has revolutionized the monitoring of groundwater systems, and most recent 

studies such as Castellazzi et al., (2024); Rohde et al., (2024), have demonstrated the 

applicability of this satellite data in GDEs assessments and monitoring in larger spatial extent, 

however its applicability at more localized extent still needs to be investigated. Moreover, the 

use of GRACE-FO data in the modelling of groundwater dependency still needs to be 

investigated.  

3.6. Limitations of modelling approaches applied in groundwater-dependent 

ecosystems   

Although studies targeted at understanding GDEs have increased, understanding the complex 

interactions between groundwater and surface water flow remains a challenge. Particularly in 

arid and semi-arid regions where there is limited surface water availability and high 

evaporation rates. Understanding the extent of GDEs is important for monitoring and 

conservation of these ecosystems; however, studies show that understanding the extent of 

GDEs fully remains a challenge. Modelling the interaction between GDEs and groundwater is 

a key research area that benefits their management by allowing the prediction of GDE response 

to different magnitudes, rates and seasons of groundwater drawdown, as well as different 

climatic scenarios (Eamus & Foen, 2006). An essential first stage in the development of a 

groundwater model is groundwater system conceptualisation (Anderson et al. 2015). As such, 

a robust and well-structured conceptual model is essential for ensuring the validity and 

reliability of a model’s results (Gross 2003). However, finding relevant data for model testing 

remains a challenge (Enemark et al. 2019). GDEs often lack thorough data (Glanville et al. 

2016), which makes it challenging to adequately depict the dynamics and components of the 
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ecosystem. Inadequate data about critical elements like aquifer properties, vegetation 

characteristics, and ecosystem interactions may significantly limit the level of accuracy of 

modelling efforts. The absence of detailed data about aquifer properties obstructs the ability to 

accurately delineate groundwater flow patterns and distribution, while insufficient data on 

vegetation and ecosystem interactions make it challenging to model the complex relationships 

between water availability and ecological processes. The relationship between the dynamics of 

water table levels and vegetation patterns is still being explored (Orellana et al. 2012). 

GDEs are linked to the interconnections between groundwater and surface water. Accurately 

representing these interactions in models may be challenging (Barthel & Banzhaf 2016), 

particularly considering the changing conditions and variations in the water table. Accounting 

for varying water levels and their impact on the flow and availability of water in an ecosystem 

makes accounting for GW-SW interaction in groundwater models more challenging. The 

modelling process is further complicated by transient variables, such as seasonal changes and 

human impacts.  

3.7. Future research prospects in the application of modelling approaches to 

groundwater-dependent ecosystems  

Current studies conducted groundwater flow modelling rarely take the model’s objective into 

account before creating substitute models for the multi-model strategy (Enemark et al. 2019). 

The construction of the model and the data applied for model testing should be influenced by 

the model's objective. Considering the complexity of the hydrogeological characteristics of 

GDEs, Enemark et al. (2019) suggest that increasing complexity effectively transforms 

uncertainty in the conceptual model into uncertainty in the parameters by increasing the number 

of processes in the model and/or the resolution in both space and time. The integration of GIS 

and remote sensing into groundwater modelling offers the potential to improve the way we 

study groundwater and dependent ecosystems (Gogu et al. 2001), by enabling the 

understanding of spatial analysis and visualisation of groundwater dynamics and dependent 

ecosystems. Technologies like sensor networks have the potential to improve our ability to 

gather data. These tools can improve our comprehension of the complex interactions between 

groundwater and ecosystems by providing real-time data. Due to the growing challenges that 

climate change poses in GDE assessments, future modelling prospects will require the 

inclusion of scenarios that take changing climate conditions into consideration. These scenarios 

are expected to involve changes in temperature and precipitation patterns, both of which can 

have significant impacts on groundwater levels, an essential element of GDEs. We can predict 
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how GDEs will react and adapt to the changing climate by including these climate change 

scenarios in the models. Moreover, these models will shed light on the dangers and weaknesses 

that GDEs can encounter when coping with the effects of climate change.  

3.8. Conclusions 

Groundwater modelling has become a commonly used tool for hydrogeologists to manage and 

monitor groundwater. This review highlighted the critical function of GIS-based models in 

assessing GDEs as their susceptibility to the impacts of climate change. The comprehensive 

analysis of literature reveals that GIS technology has significantly advanced our ability to 

understand and predict the responses of GDEs to changing climatic conditions. These models 

combine environmental variables, hydrological modelling, and spatial data to provide an 

effective tool for both researchers and decision-makers. However, there remain challenges and 

areas of improvement. The limitations that have been identified include difficulty with data 

access, where some of the higher resolution Earth Observation data are commercial and the 

freely accessible data have limitations in terms of their spatial resolution. However, data 

integration proves to be a solution to address the limitations of the freely accessible EO data. 

Although this is a solution, there are still challenges that would result from data integration, 

and these include, amongst others, image colour distortion, which may result in uncertainties 

in these model outputs. This study therefore recommends that future studies should focus on 

improving these EO-based models, which have been revealed to have potential in studying the 

dynamics of these systems. Such studies will promote the accurate monitoring of GDEs, 

therefore enhancing the development of policies governing the management and protection of 

these systems.     
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CHAPTER FOUR 

GEOSPATIAL AND MACHINE LEARNING FRAMEWORK FOR DELINEATING 

POTENTIAL GROUNDWATER-DEPENDENT VEGETATION ZONES IN 

KRUGER NATIONAL PARK, SOUTH AFRICA 

4.1 Introduction  

Groundwater-dependent vegetation, identified as a type of groundwater-dependent ecosystem 

(Hatton and Evans, 1998), plays a crucial role in maintaining ecological balance. In arid 

regions, such as the KNP, dryland GDV holds substantial economic, ecological, and social 

significance. In KNP, GDV sustains wildlife by providing essential resources like water, 

habitat, and forage during prolonged dry periods. The conservation of these systems not only 

ensures the survival of wildlife but also supports socio-economic development through 

activities like eco-tourism (van Aardt et al., 2020). Climate change and increased reliance on 

groundwater resources threaten groundwater availability for sustaining GDV. Besides research 

on the changes in groundwater use and availability, research in groundwater-dependent 

ecosystems, such as GDVs, has intensified over the past 30 years (Chiloane et al., 2021; Link 

et al., 2023). However, information on GDV ecohydrology is limited and pivotal for integrated 

resource management and achieving Sustainable Development Goal 15, targeting life on land 

(Mpakairi et al., 2022). Understanding the distribution of GDV within arid landscapes is the 

initial step in acquiring information and developing knowledge on GDV species diversity and 

groundwater use characteristics, such as the extent and timing of their groundwater 

dependence.  

Remote sensing has played a significant role in identifying GDVs in different environments 

and scales. The geographical information system (GIS) and analytical hierarchical processes 

(AHP) constitute a proven method for mapping potential GDV. The AHP technique serves as a 

multi-criteria decision-making tool, integrating various GIS and remotely sensed variables. A 

notable benefit of the AHP method is its inclusion of expert opinions in the assignment of 

weights to factors influencing GDV potential. For example, Duran-Llacer et al. (2022)  

indicated that rainfall and land use were the most important contributing parameters for 

delineating groundwater-dependent ecosystem zones (GDEZ) in Chile. Fildes et al. (2023) 

highlighted a substantial level of concordance with identified spring locations (77%) and 

known phreatophytes, as well as groundwater depths (87%) in their assessment of GDE 

potential through the utilisation of vegetation indices, coefficient of variation statistic, and 
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other parameters employing AHP. While the integration of GIS and AHP proves to be 

dependable and effective, the process may entail a considerable amount of time for variable 

acquisition, occupy storage space, and exhibit inefficiencies (Hoyos et al., 2016; Zhaoming, 

2020; Chiloane et al.,  2021; Glanville et al., 2023). 

On the other hand, the introduction of machine learning and cloud computing has proven to 

enhance the delineation of GDV. Notably, the GEE cloud platform stands out by providing an 

extensive array of readily available geospatial data archives, including Sentinel 2 data, along 

with tools and advanced technical computing resources. This integration facilitates seamless, 

rapid, and reproducible classification of GDV  (Pekel et al., 2016). Classifiers such as support 

vector machines (SVM), random forests (RF), and classification regression trees (CART) 

exhibit significant potential in the delineation of GDV. Hoyos et al. (2016) devised a method 

for mapping GDV potential based on known GDE locations and three influencing factors, 

employing classification trees (CT) and RF, and found that RF (AUC = 1, accuracy of 0.88, 

and kappa of 0.96) demonstrated a superior ability to generate GDE probability estimates 

compared to CT (AUC =0.74, accuracy of 0.99, and kappa of -0.38). The optimal performance 

of RF could be attributed to its ensemble learning nature, where subsets of trees contribute to 

the overall prediction, resulting in a more robust and accurate model than a single tree. 

Additionally, RF introduces randomness in the data, reducing noise and mitigating model 

overfitting. In a similar study, Al-Fugara et al. (2020) compared machine learning models for 

mapping potential GDEs,  and noted optimal accuracies of 83.2% for the mixture discriminant 

analysis (MDA), 80.6% for the RF, 80.2% for SVM, 78% for the boosted regression trees, and 

75.5% for the multivariate adaptive regression spline (MARS). These results underscore the 

significant potential of machine learning models in delineating GDE potential. Furthermore, it 

is suggested that an ensemble of machine-learning models could further enhance the mapping 

of GDV potential. 

Machine learning models yield varying outcomes due to their distinct assumptions regarding 

input data and algorithmic architectures. Consequently, no single classifier is inherently 

superior. Stacked ensemble models enhance classification performance by integrating the 

classification strengths of multiple models while mitigating their weaknesses, thereby yielding 

a superior model (Mudereri et al., 2020; Mtengwana et al., 2021). For instance, in a study by 

Yao et al. (2022), the performance of CatBoost, RF, XGBoost, and a stacked ensemble 

comprised of these models was evaluated for vegetation mapping. Their findings revealed that 

the stacked ensemble outperformed the individual models, resulting in an increase in overall 
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accuracy from 77% to 92%. Similarly, Zhang et al., (2023) classified karst wetland vegetation 

using four algorithms, including a stacking ensemble. The accuracies of the models ranged 

from 82% to 93%, with the stacking ensemble demonstrating improved classification results. 

Given the significant potential of both machine learning and the traditional AHP method, 

current studies lack a comprehensive comparison of their capabilities in modelling the potential 

distribution of GDV zones. Furthermore, no specific suitable model has been applied in 

different environments exhibiting optimal accuracies. Therefore, there is a need to compare 

and assess the performance of the traditional AHP and the ensemble stacking machine learning 

approach in characterising GDV. Thus, this study aimed to address this gap by presenting a 

detailed exploration of both the AHP and machine learning approaches, followed by a 

comparison of the results obtained from these two models. Identifying the most efficient and 

robust methodology for identifying GDV potential areas within the KNP, South Africa, will 

assist in developing integrated resource management strategies. Furthermore, the identified and 

proposed method will be adaptable to various semi-arid environments and will have the 

potential to guide sustainable management practices in conservation areas through the 

establishment of a continuous monitoring framework for GDV. Ultimately, this method is 

poised to offer valuable insights into the spatial dynamics of GDV, contributing to a more 

informed and proactive conservation management strategy. 

4.2 Materials and methods  

4.2.1 Field data collection  

The field survey was conducted in September 2022 (late dry season), when the pans were 

mostly dry, with a few inundated pans being found in the Makuleke section. The sampling 

period was selected to easily discriminate vegetation and pans maintained by groundwater from 

those that are not. Pans with water surrounded by green vegetation during the late dry season 

are likely to be receiving groundwater. Field plots were randomly sampled within KNP. These 

sample plots were distributed along natural pans at the Makuleke and Letaba areas within KNP. 

The centre of the plot was navigated using a handheld Garmin geographic positioning system 

(GPS) with less than 5m. The north-oriented plots were set to measure 100 m2 (10 × 10 m), 

moreover, this corresponds to the Sentinel-2 imagery resolution. Vegetation surveys were 

conducted in the plots to determine plant species composition and abundance across the 

GDVpz. A high-resolution image (5 m) matching the date of the site visit was used to obtain 

additional training points. Overall, 355 points represent two classes, namely, high GDVpz 
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(green hotspot) and very low GDVpz. These points were separated into two sets, 80% training 

set and 20% testing set, which was used for model validation.  

4.2.2 Identification of potential groundwater-dependent vegetation  

To identify potential GDVpz within the study area, the process involved the following 

sequential steps: conducting a literature review, performing a field survey for data collection 

and training dataset generation, creating a GIS database, predicting GDVpz, and validating the 

outcomes. The literature highlighted the importance of geomorphology, vegetation 

productivity (multi-spectral indices and their derivatives), topography and climate as the major 

factors influencing the spatial distribution of GDVpz  (Rohde et al., 2017; Klausmeyer et al., 

2018; Brim Box et al., 2022; Duran-Llacer et al., 2022; Fildes et al., 2023; Rampheri et al., 

2023). Thus, the selected GDVpz predictor variables were drainage density, elevation, and 

lineament density, slope, proximity to water bodies, topographic wetness index, normalised 

difference vegetation index, normalised difference vegetation index standard deviation, land 

cover, vertical curvature, and soil texture.  

The long-term dry season trend in rainfall for the KNP was acquired to determine which years 

were dry and suitable for GDVpz delineation. The long-term annual dry season rainfall trends 

for the area of interest were acquired from the Climate Hazards Group InfraRed Precipitation 

with Station data (CHIRPS), which is a 30+ year quasi-global rainfall dataset. This dataset 

incorporates 5.3km spatial resolution satellite data with ground data to produce gridded rainfall 

time-series data. From this data, a 30-year rainfall mean (1993-2023) was calculated, and the 

annual dry-season rainfall averages were subtracted from the long-term dry-season mean. This 

was done to calculate the yearly rainfall deviation trend.  

The computation of various topographic and hydrological parameters was conducted within 

the ArcMap environment utilising the 30m Shuttle Radar Topography Mission (SRTM) 

imagery sourced from the GEE repository, with the designated path (ee. 

Image((USGS/SRTMGL1_003)). Drainage density, indicative of groundwater availability, 

was derived by calculating the total stream length divided by the overall area. Areas exhibiting 

high drainage density are presumed to undergo groundwater recharge. Lineament density, 

associated with fractures and fault zones, reflecting enhanced secondary porosity and 

permeability, and consequently greater groundwater availability, was determined through 

visual and manual analysis of variable hillshade images in ArcGIS. Proximity to water bodies 

(Pwb) was assessed to gauge groundwater availability, wherein water areas, likely recharged 
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by groundwater, were identified. The Euclidean distance tool in ArcGIS was employed to 

ascertain the proximity of vegetation to these water bodies. The topographic wetness index 

(TWI) was used to discern water availability based on terrain profiles, with areas prone to water 

accumulation inferred as likely recipients of groundwater recharge.  The TWI was calculated 

according to Beven and Kirkby (1979) in ArcMap.  

Slope, elevation, vertical curvature and Gaussian curvature were derived from a 30m SRTM 

image in the GEE repository with the path (ee. Image((USGS/SRTMGL1_003)). These 

parameters were derived on the GEE platform according to the code by Safanelli et al. (2020). 

Areas with gentle slopes (< 3m) at low elevations are low-flow zones with high groundwater 

availability. Vertical curvature is a form attribute indicating groundwater availability for water 

bodies and vegetation, as depressions are accumulation zones.  

Landcover features were obtained from the Copernicus Global Land Cover Layers: CGLS-

LC100 Collection 3, with a 100m spatial resolution and 80% accuracy. The layer was derived 

from Sentinel-2 images (2015-2019) accessed through the GEE path, ee. ImageCollection 

("COPERNICUS/Landcover/100m/Proba-V-C3/Global"). The built-in function for the 

selection of images in GEE to select the “discrete classification” to obtain the final landcover 

layer. Landcover affects hydrological features such as runoff and, percolation, subsequently, 

groundwater availability and provides information on the spatial distribution of surface features 

such as vegetation, wetlands, and rivers, hence included in this study. 

Soil characteristics such as soil texture affect water percolation and soil permeability, 

subsequently influencing groundwater availability for GDVpz. Therefore, soil texture was also 

considered as a predictor variable for GDVpz.  The iSDAsoil USDA Texture Class dataset 

provided soil USDA texture class information at depths of 0-20 cm and 20-50 cm, which was 

obtained and utilised as a predictor variable. The soil texture was derived at 30m pixel size 

using machine learning techniques coupled with remotely sensed data (Sentinel 2 and Landsat 

7/8 images) and a training set of over 100,000 analysed soil samples.  

 

The Sentinel-2 dataset from years 2018, 2019, and 2022 was acquired from the GEE repository. 

These years were chosen because of the low annual rainfall, which was below the annual mean 

precipitation for the area over the past 30 years. A total of twenty-one (21) cloud-free images 

were obtained and averaged using the mean reducer function to produce a single image with 

23 bands. The Near Infrared (NIR), and Red bands were then selected to calculate the NDVI). 
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The standard deviations were also derived by applying the in-built function for computing 

standard deviation in GEE. These were computed on the previously computed NDVI layer.  

4.2.3 A classification framework for delineating groundwater-dependent vegetation 

potential zones  

To delineate GDVs potential zones, the remotely sensed images were first re-projected to the 

WSGS 1984 coordinate reference system and resampled to 20 m using the in-built reprojection 

function as well as the Nearest Neighbour approach in GEE. This was done to ensure that all 

layers had the same pixel size and coordinate system before creating an image stack. The 20m 

pixel size was used instead of 10m because of the computational limitations on the number of 

pixels when exporting an image on GEE. The composite image was created using the add bands 

function in the GEE. After that, three machine learning classifiers were employed for modelling 

the GDVpz; these included Random Forest (RF), Support Vector Machine (SVM) and 

Stochastic Gradient Tree Boosting (SGTB) (Figure 4.1). These classifiers were trained using 

the training function in GEE, and these were then used to classify the composite image in GEE. 

The SRF and SGTB classification models had 300 trees. Subsequently, a stacked ensemble 

comprising three models (SRF, SVM, and SGTB) was generated to create a robust model for 

GDVpz, enabling comparison with the AHP model. The binary classification results were 

converted into probabilities, using then the probability maps were further reclassified into five 

classes of probabilities, namely, very Low, low, medium, high and very high. The area of each 

probability was also calculated during this process.  
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Figure 4.1 Process flowchart for mapping GDVpz within the Makuleke and Letaba regions 
of KNP 

 

4.2.4 Analytical hierarchy process classification framework  

To implement the AHP approach, the eleven variables (i.e. NDVI, NDVIsdev, vertical 

curvature, slope, elevation, TWI, drainage density, lineament density, soil texture, proximity 

to water bodies, and land cover) were employed in the machine learning models for 
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reclassification into five classes using natural breaks in the ArcGIS environment. Weights were 

then assigned to these predictor variables based on their respective degrees of influence on the 

potential for an area to be GDV, utilising the AHP. The AHP method was chosen due to its 

reliability as a multi-criteria decision-making tool, particularly in GDE research. The AHP 

scale, ranging from 1 to 9 according to Rampheri et al. (2023), was applied. The weights were 

modified and allocated in a manner that ensures an appropriate consistency ratio. A pairwise 

comparison was conducted between variables to assess their influence on GDV potential zones 

(GDVpz). Subsequently, all thirteen explanatory variables were amalgamated into a weighted 

sum overlay and each variable was assigned a weight (Table 4.1).  

Table 4.1 Pairwise comparison matrix for assigning variable weights 

Factors  NDVIsdev DD VC ST PwB LC LD TW
I S E MeanNVD

I 

NDVIsdev 1.00 1.00 1.00 1.00 1.00 1.00 7.0
0 1.00 1.00 1.00 1.00 

DD 1.00 1.00 1.00 2.00 1.00 1.00 5.0
0 1.00 2.00 2.00 1.00 

VC 0.50 1.00 1.00 1.00 1.00 0.50 7.0
0 1.00 2.00 0.50 0.50 

ST 1.00 1.00 1.00 1.00 0.33 1.00 5.0
0 1.00 2.00 5.00 1.00 

PwB 1.00 1.00 1.00 3.00 1.00 1.00 7.0
0 1.00 3.00 2.00 1.00 

LC 0.33 1.00 2.00 1.00 1.00 1.00 5.0
0 1.00 2.00 1.00 1.00 

LD 0.14 0.20 0.14 0.14 0.14 0.11 
1.0
0 0.14 0.33 0.20 0.14 

TWI 1.00 1.00 1.00 1.00 1.00 1.00 
5.0
0 1.00 1.00 2.00 1.00 

S 0.50 0.50 0.50 0.50 0.20 0.50 
3.0
0 1.00 1.00 1.00 1.00 

E 0.50 0.50 2.00 0.20 0.20 1.00 
5.0
0 0.50 1.00 1.00 1.00 

MeanNDV
I 1.00 3.00 2.00 1.00 1.00 3.00 

7.0
0 1.00 2.00 2.00 1.00 

Criteria 
weight 

(%) 
9.00 11.0

0 8.00 11.0
0 

13.0
0 10.00 1.0

0 
10.0

0 6.00 7.00 14.00 

Principle Eigen value (L.max) =11.74 
Number of variables (n) =12 
L.max - n = 0.74 
n - 1 = 10 
Consistency Index (CI) = 0.07 
Consistency Ratio (CR) = 0.049 

Random Index (RI) = 1.51 

** E: elevation, LC, landcover, S; slope, VC: vertical curvature, DD: drainage density; S: soil 

texture, TWI: topographic wetness index, PwB; proximity to water bodies  
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4.2.5 Model accuracy assessment for the groundwater-dependent vegetation potential zones  

To evaluate the performance of the classifiers, four accuracy assessment measures were 

quantified. These are the Overall Accuracy (OA), Kappa coefficient of agreement, F-Score, 

producers’, as well as users’ accuracy. The OA is quantified as the ratio of correctly classified 

points to the total number of test sample points. The producer’s accuracy illustrates the 

probability that the reference sample is correctly classified on the map, while the user’s 

accuracy indicates the probability of the reference sample being true on the ground. The Kappa 

coefficient indicates the level of agreement between the classification and the reference data. 

The accuracy assessments were executed on the GEE code editor using the ground control 

points representing GDVs zones from field analysis were used to extract regions corresponding 

to the locations of those points, and these were then used to compute the confusion matrix in 

GEE. The confusion matrix was then used to calculate the producers’ and users’ accuracies, 

Kappa coefficient, as well as F-Scores.   

4.3 Results  

4.3.1 Annual dry season rainfall trends from 1993 to 2023  

The mean annual rainfall during the dry seasons from 1993 to 2023 was 39.67mm per year. 

Therefore, years with annual rainfall averages below the observed mean were considered dry 

years suitable for predicting GDVpz. Specifically, the years 2018 (with 38.9mm per year), 

2019 (with 27.7mm per year), and 2022 (with 32.3mm per year) experienced rainfall below 
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this long-term mean and fell within the range of Sentinel 2 data (Figure 4.2). This period of ow 

rainfall coincided with the 2016-2022 drought, which was induced by the El Niño phenomenon. 

 

Figure 4.2 Long-term dry season rainfall trend in the Makuleke and Letaba regions of the 
KNP, South Africa 

4.3.2 Classification accuracy results  

The overall classification accuracy results ranged from 97% to 99%. The ensemble stack (ENS-

stack) model performed the best with an overall accuracy of 99% followed by the SRF and 

SGTB models, which obtained an OA of 98%. The NB produced the lowest OA of 97%. In 

terms of the Kappa coefficient (Figure 4.3). The SGBT and ENS-stack models showed the 

highest level of agreement with a kappa of 97%, followed by the SRF (96%), and SVM model 

(93%). The F-score, producers and consumers classification accuracies were also computed for 

the GDVpz models; these were based on the two classes: very low GDVpz, and very high 

GDVpz. In terms of the producer’s accuracy, all four models performed the same, with 96% 

accuracy for predicting the very high GDVpz and 100% accuracy for very low GDVpz (Table 

4.2). Consumer accuracies for the very low GDVpz differed, with the ENS-stack model 

performing the best (98%), followed by both the SGTB and SRF models (97%), and then the 

SVM model (95%). Users’ accuracies were 100% for the GDVpz classes across all the models. 

F-scores were similar for the SGT, SRF and ENS-stack models, with 98% for the very high 

GDVpz class and 99% for the very low GDVpz class. The SVM model had different results 

with an F-score of 96% and 97% for the very high and very low GDVpz models, respectively 

(Table 4.2).  
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Figure 4.3 Overall accuracy, and Kappa for the GDVpz classifications. SRF- Smile 
random forest, SGTB- smile gradient tree boosting, SVM- support vector 
machines, ENS-STACK-ensemble stack, AHP- analytical hierarchal processing 

 

Table 4.2 Producers' and users' accuracy for the groundwater-dependent vegetation 
potential zone classifications 

 Producers’ accuracy Consumers’ accuracy 
SRF Very high GDVpz 96 100 

 Very low GDVp 100 97 
SGTB Very high GDVpz 96 100 

 Very low GDVpz 100 97 
SVM Very high GDVpz 92 100 

 Very low GDVpz 100 95 
ENS- stack Very high GDVpz 96 100 

  Very low GDVpz 100 98 
AHP Very high GDVpz 97 78 

  Very low GDVpz 82 97 
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4.3.3 Variable Importance  

The SGBT and SRF algorithms provide valuable information highlighting variable 

contributions to the GDVpz model (Figure 4.4). For the SGBT model, the top three important 

variables were NDVI (26%) and PWB (17%) and DD (11%). The important variables for the 

SRF model were NDVI (28%), LC (11%) and NDVIsdev (12%). The mean NDVI emerges as 

the primary variable across all three models, likely due to the training data being obtained from 

green areas. Conversely, soil texture appears to have minimal impact on the machine learning 

models but significantly influences the AHP model. The overall assessment of variable 

importance reveals distinctions and similarities that impact the output of the models. 

 

Figure 4.4 Classification variable importance for the GTB and RF classifications. Were, E: 
elevation, LC, landcover, S; slope, VC: vertical curvature, DD: drainage 
density; S: soil texture, TWI: topographic wetness index, PwB; proximity to 
water bodies  

4.3.4 Spatial extent and distribution of groundwater-dependent vegetation potential zone 

The very low GDVpz class is dominant for all the models. The very high GDVpz areas cover 

6.9-9.5% of the study area. The ENS-stack model predicted high GDVpz area coverage 

compared to the other three models. Indicating that the model favoured the extreme classes of 

very low GDVpz and very high GDVpz. This is attributed to that the ENS-stack model 

integrates the outputs from all three machine-learning models. The four models indicate a 

similar trend in class distribution, with the very low GDVpz class dominating, followed by the 
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low GDVpz class, then the very high GDVpz class, the medium GDVpz class and lastly the 

high GDVpz class (Table 4.3).  

Table 4.3 The spatial extent of different groundwater-dependent vegetation potential zone 
probability classes 

 SRF SGTB SVM ENS AHP 
Area (km2)      
Very Low 1407 1594 1214 1887 295 

Low 360 295 518 64 607 
Medium 174 78 202 24 700 

High 96 65 105 7 446 
Very High 151 157 150 207 136 
Total Area 2189 2189 2189 2189 2184 

 

Variations exist in the spatial distribution of GDVpz across different spatial class categories for 

the SRF, SGTB, and SVM models (Figure 4.5). For instance, in the central-eastern area of the 

Mahuluke region, zones categorised as low GDVpz by the SGTB model are classified as 

moderate GDVpz according to the SFR model and fluctuate between very low and moderate 

GDVpz based on the SVM model. These differences stem from variations in the importance of 

variables used in each model. In the Makuleke region, areas with very high GDVpz are 

concentrated along the riparian zones. Conversely, in the Letaba region, very high GDVpz 

zones are situated in the southeastern and central northern regions. The class distribution 

indicated by the SRF model suggests a gradual decrease in GDVpz probability as it extends 

from the areas with very high GDVpz. On the other hand, the SVM model displays less distinct 

class discrimination for both the Letaba and Makulule areas, appearing to be vaguer in its 

classification. 
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Figure 4.5 Machine Learning predictions of groundwater-dependent vegetation potential zones 

along the Makuleke and Letaba region of KNP 

Visually, noticeable distinctions are apparent in how the AHP and ensemble stack models depict 

the spatial distribution of GDVpz (Figure 4.6). The ensemble stack model determined the very 

low GDVpz class as dominant, whereas the AHP model emphasises the dominance of the 

moderate GDVpz class. In general, the AHP model overestimated areas with very high to high 

GDVpz when compared to the ensemble model. According to the ensemble model, regions 

with very high GDVpz are primarily situated along riparian areas, with sporadic patches in the 

southwestern region of Makuleke. In contrast, the AHP model places very high GDVpz along 

riparian zones, and the GDVpz probability decreases with distance from rivers in both the 

Letaba and Makuleke regions situated along riparian areas, with sporadic patches in the 
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southwestern region of Makuleke. In the Letaba region, very high GDVpz are concentrated 

along riparian zones in the southeastern region.  

 

Figure 4.6 Comparison of the analytical hierarchal and process and ensemble stack 
probabilities of GDV potential zones along the Makuleke and Letaba regions of 
KNP 

4.4 Discussion  

4.4.1 Groundwater-dependent vegetation potential zones classification accuracy  

This study aimed to assess the potential for GEE machine learning algorithms for modelling 

groundwater-dependent vegetation potential zones. In addition, the study evaluated the 

ensemble stacked machine learning model against the more subjective multicriteria decision-

making tool, the AHP technique. The model performance for predicting the spatial distribution 

of GDVpz was high for all three ML models, with overall accuracies above 95%, with limited 

differences in terms of the producers' and consumers' accuracies, and kappa results. Among the 

three individual ML classifiers, the SVM model performed the least in terms of all the accuracy 

tests. This is also illustrated by higher errors of omissions (8%) for the very high GDVpz class 

exhibited by SVM in comparison to the 4% of the SRF and SGTB classifiers.  
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The errors of omission are easily observed in the southeastern regions of the Makuleke wetland 

system as well as the eastern region of the Letaba area. This may be because SRF and SGTB 

can capture complex, non-linear relationships in the data. They can handle intricate interactions 

and dependencies among various features, which is essential when dealing with the nuanced 

and multifaceted nature of GDV. Moreover, the GDV data is imbalanced; SRF and SGTB 

handle imbalanced data better than SVMs, which may require additional techniques like class 

weighting or resampling to address the imbalance. The machine learning stacked ensemble has 

been proven to improve classifications by merging models from primary classifiers into a more 

accurate secondary classifier (Adede et al., 2019). Thus, the ensemble model of the SRF, SGTB 

and SVM models was produced and compared against the AHP classification model. The 

ensemble model performed better than the primary classifiers in terms of the overall accuracy 

and consumer accuracy; however, in terms of the kappa coefficient and producer accuracy, the 

ensemble models had similar results to the SRF and SGTB models. These model results are in 

line with previous research. As an example, the outcomes of the AHP model align with findings 

in the study conducted by Fildes et al., (2023), demonstrating an 87% agreement between the 

modelled groundwater-dependent vegetation (GDV) and identified phreatophytes. The AHP 

classification results were the lowest when compared to the primary ML classifiers and the 

ensemble classifier. This may be attributed to that the model was based on the weighted 

variables with no input from the training data, while the ML classifiers incorporated the 

variables as well as model training. In general, all the models exhibited strong performance, 

however, the results suggest that machine learning represents a superior option for delineating 

potential groundwater-dependent vegetation. 

4.4.2 Groundwater-dependent vegetation  potential zones spatial distribution and areal 

coverage  

The very low GDVpz class dominates the ML classifications, while the AHP classifier 

distributes the area between the low, moderate and high GDVpz classes. Differences in model 

areal distribution may be attributed to the classification technique employed. The ML models 

were based on binary training data (very high GDVpz and very low GDVpz) based on 

vegetation greenness during the dry season, as well as GDVpz indicator variables. The AHP 

method, however, relied on the weight of the GDVpz indicator variables, which allowed the 

GDVpz prediction to be varied between classes, while the ML classifications are likely to 

favour the two extremes. The spatial distribution of very high GDVpz is concentrated along 

the rivers, suggesting that groundwater-dependent vegetation may be riparian. The ML models 
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were also able to capture some isolated GDVpz scattered along the eastern side of the Letaba 

River. This shows that the models may be efficient in mapping GDVpz in extremely dry areas. 

In the Makuleke wetland system, GDVpz are of the Lowveld riverine forest, Subtropical 

alluvial Vegetation and Limpopo Ridge Bushveld vegetation types. Vegetation diversity was 

high within the GDVpz with Phragmites mauritianus, Vachellia xanthophloea, Hyphaene 

coriacea, Eragrostis observed along the Nhlangaluwe natural pan and Hyphaene coriacea, 

Eragrostis, Philenoptera violacea, Acacia nigrescens, Boscia mossambicensis, Cyperus, 

Adansonia digitata observed along the Makwadzi natural pan in the Makuleke wetland system.  

For the Letaba regions, GDVpz are of the Northern Lebombo Bushveld, Tsende Mopaneveld, 

Makuleke sandy bushveld and Mopane Basalt Shrubland vegetation types.  The vegetation was 

not as diverse as that of the Makuleke vegetation, with Mopane (Colophospermum) 

dominating. Sedges and grasses: Panicum deustum, P. maximum, and other wetland species 

trees and shrubs: Acacia albida, A. karoo, A. nigrescens, Combretum, Diospyros species, 

Euclea species are plant species indicating a groundwater-dependent ecosystem within a 

savannah landscape (Colvin et al., 2003). In a study conducted by Taylor (2003), stable water 

isotopes were employed to evaluate the depth of water utilisation by various sizes of savannah 

trees in KNP. The findings revealed that distinct savannah plant species accessed water at 

different depths, a pattern influenced by factors such as growth stage and physiological 

characteristics, including rooting depth. Thus, further research on the physiological 

characteristics of vegetation and isotope studies could validate the results of the GDVpz 

models. These vegetation species provide vital ecosystems supporting wildlife and socio-

economic development through wildlife tourism. Thus, it is important to understand the 

ecohydrology of dryland environments. Holistic management efforts that are well-informed 

will ensure the sustainability of vital ecosystems and achieve the sustainable development 

goals, more specifically 15, 6, and 8, which are linked in terms of wildlife conservation.  

4.4.3 Limitations of the findings  

However, limitations to the study were observed. Firstly, Sentinel 2 images were used because 

of the moderate spectral resolution (10m) to discriminate smaller isolated clusters of GDVpz. 

This limited the dry NDVI data to 2018, 2019 and 2022, which were not as dry as previous 

years. Moreover, since data acquisition and analysis were conducted on the GEE platform, the 

20m spatial resolution was used instead because of the pixel size limitations when exporting 

data for analysis in ArcMap. It is recommended that Landsat data should be utilised to capture 

extremely dry periods to easily discriminate green islands that may be GDVpz. Furthermore, 
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indicator variables had coarser spatial resolutions, which may have increased generalisations 

of the models and contributed to the commission and omission errors. It would be interesting 

to see how machine learning single-criterion models perform against multiple-criterion models. 

The main limitation is that training data was produced from a high-resolution image matching 

the dry period and field survey, based on the green islands. Thus, there is a need for further 

ground studies that may be used to validate the GDVpz model.  

4.5 Conclusion  

Remote sensing techniques have shown great efficiency in delineating and assessing 

groundwater-dependent vegetation globally. This chapter assessed the performance of various 

machine learning techniques and AHP in predicting the potential zones in the Kruger National 

Park using Sentinel-2 remotely sensed data coupled with other ancillary data such as Digital 

Elevation Model, as well as field vegetation survey data, amongst others. The key findings of 

the chapter revealed that amongst all the machine learning models used in the study, the ENS 

approach outperformed the AHP approaches in delineating GDV zones in the area with an 

acceptable accuracy. The results further revealed that the very low GDVpz class dominated the 

ML classifications, while the AHP classifier distributed the area between the low, moderate 

and high GDVpz classes. These underscored the relevance of machine learning techniques and 

multi-source remote sensing data in delineating groundwater potential zones. This finding is 

critical as it provides robust methodologies to geolocate these systems, therefore enhancing the 

protection of GDEs in semi-arid regions. 
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CHAPTER FIVE 

AQUIFER CHARACTERIZATION FOR IMPROVED HYDROGEOLOGICAL 

MODELLING OF GROUNDWATER DEPENDENT ECOSYSTEMS IN THE 

KRUGER NATIONAL PARK, SOUTH AFRICA 

 
5.1 Introduction 

Groundwater serves as a reliable source of water to the ecosystems that depend on it (Eamus 

et al., 2015; Perez Hoyos et al., 2016; Rampheri et al., 2023). However, reports show that due 

to climate change and poor management, groundwater levels continue to decline, which may 

in turn affect the dependent ecosystems (Shadwell & February 2017; Holloway, 2022; Sappa 

et al., 2023). Ecosystems that depend on the consistent or intermittent connection to 

groundwater for their continued existence and functioning are referred to as GDEs (Klove et 

al., Orellana et al., 2012; Perez Hoyos et al., 2016; Rampheri et al., 2023). GDEs provide 

several socio-ecological benefits, including carbon sequestration, mitigation of floods, 

droughts and water purification. However, GDEs are threatened due to the over-abstraction of 

groundwater and hence the services they provide (Khorrami & Malekmohammadi, 2021, 

Dyring et al., 2023; Fildes et al., 2023). It is therefore important to manage groundwater 

resources to obtain the maximum value from this resource and to ensure sustainable 

characteristics. To effectively manage groundwater, there is still much that needs to be studied 

in understanding aquifer recharge dynamics due to climate variations and the long-term 

impacts of anthropogenic activities on aquifer sustainability. 

Large parts of sub-Saharan Africa are underlain by crystalline basement aquifers, which are 

distributed extensively in the semi-arid KNP, South Africa (Holland, 2011). Groundwater 

occurrence in crystalline aquifers is spatially highly variable because of their complex 

geological, structural and geomorphological features (Holland, 2011; Akanbi, 2018), thereby 

making it important to identify high-yielding hydrogeological zones that can be targeted for 

water supply in areas where there are limited water sources. Understanding aquifer 

characteristics is crucial as it forms the initial stage in comprehending various aspects such as 

groundwater quantity, yield capacity, storage capacity, and transmission properties within an 

aquifer system (Gomo, 2018). This knowledge provides valuable insights into the intricate 

hydrogeological processes governing groundwater movement and storage. It involves 

determining groundwater flow, groundwater productivity and sustainability of aquifers, using 
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satellite imagery, pumping tests, geophysics and modelling (Zahid et al., 2018; Ndubuisi, 

2021).  

For complex aquifer systems, the hydrogeological investigation needs all available data and 

the use of different investigation techniques, especially geological, geophysical, piezometric, 

and hydrochemical methods (Kamel et al. 2005; Moral et al. 2008; Ayenew et al. 2008; Mjemah 

et al. 2011; Jellalia et al. 2015). The ability of an aquifer to transmit and store water is 

influenced by hydraulic properties, which include Transmissivity, Storativity, and specific 

capacity. These hydraulic properties are important in developing a groundwater flow model to 

predict available groundwater for future use (Mjemah et al., 2011). Pumping tests are the most 

effective method available to assess the hydraulic properties of an aquifer (Cardiff et al., 2013; 

Moharir et al., 2017). Pumping tests can also highlight other features disturbing groundwater 

flow, like lateral flow boundaries, hydraulic continuity, constraints of fracture flow, and 

recharge. All these features are essential in understanding the nature of the aquifer and will 

enable effective management of groundwater. 

The study sought to accurately characterise the groundwater flow systems within the southern 

region of KNP, aiming to significantly enhance the precision of hydrogeological modelling 

pertaining to groundwater-dependent ecosystems within this specific geographical area. To 

achieve this goal, the study delineated several key objectives. Firstly, it sought to establish the 

preferential groundwater flow paths and comprehensively define the boundary conditions of 

the investigated system. This was accomplished through the analysis of borehole core loggings 

and the detailed examination of geological cross sections across the study area. Subsequently, 

the study aimed to accurately estimate essential aquifer properties, including Transmissivity 

and Storativity, by utilising sophisticated analytical solutions in conjunction with constant-rate 

aquifer test data. Finally, the study assessed groundwater recharge dynamics within the study 

area utilizing the Rainfall Infiltration Breakthrough method. Through the systematic pursuit of 

these objectives, the study aimed to significantly contribute to the advancement of 

hydrogeological understanding and modelling precision in the context of the Southern region 

of KNP. 

5.2 Materials and methods  

5.2.1 Borehole lithological core-logging  

To achieve the objectives of this study, pre-existing boreholes that were drilled by the 

Department of Water Affairs (now referred to as the Department of Water and Sanitation) 

drilling rigs from May to October 2012 were used. Boreholes were drilled into both the shallow 
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weathered material and the consolidated hard rock, each of which was characterized by 

constant discharge tests, recovery tests, and slug tests to determine aquifer properties. To 

understand the lithological conformation of the boreholes, the sub-surface material was drilled 

every meter and brought to the surface by means of compressed air and placed in rows (Riddell 

et al., 2014; Van Niekerk, 2014). Once the drilled logs were brought to the surface, grab sub-

samples were collected and transported to the Geology department laboratory at the University 

of Pretoria for identification and analysis. The analysis process involved using the Guidelines 

for Soil and Rock Logging in South Africa, which followed the methodology outlined in the 

South African National Standard (SANS) 633 profiling and percussion, as well as core 

borehole logging for engineering purposes (Brink and Bruin, 1990). These guidelines 

considered properties such as texture, soil, colour, and mineral composition of the lithological 

log samples, to categorize both weathered and hard rock material.  

The location of the boreholes and the geological cross sections of the KNP area are shown 

below (Figure 5.1). The cross sections were constructed to understand the subsurface geology 

thus identifying groundwater preferential flow paths, establishing thickness of the 

hydrogeological units found in the area, potential groundwater recharge zones and potential 

groundwater discharge zones which were assumed to represent potential GDE zones as well as 

lithological conformation for the area to establish hydraulic conductivities (K) of the 

lithological units found in the area and boundary conditions. 

 

Figure 5.1 Borehole lithology log of weathered material (green highlighted section) and 
hard rock material (yellow highlighted section) (van Niekerk, 2014) 
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5.2.2 Estimating aquifer properties  

Pre-existing data from the pumping test that was conducted in the boreholes within the lower 

KNP were used to characterize the aquifers in the area to gain insights on groundwater flow 

and aquifer hydraulic properties (Transmissivity, Storativity, and hydraulic conductivity). The 

boreholes were drilled by the Department of Water Affairs using the air percussion drilling 

approach, and the borehole sites were determined using the electrical resistivity geophysical 

traverses. This method permitted the collection of detailed information on each subsurface 

material, and data collected included depth to weathering, hard rock and water strikes amongst 

others (Van Niekerk, 2014). Lithological characteristics of the KNP were also established from 

these methods. After the drilling of boreholes, a single-well pumping test was conducted 

through the application of stress to the aquifer by pumping water at a controlled rate of …l/s 

and for … hours and subsequently monitoring changes in depth to water in intervals during 

pumping and after the pump has been switched off. Before the pumping, static water levels 

were also measured, and these were used to calculate drawdown, which was used in an 

appropriate analytical solution to derive aquifer properties such as Transmissivity (T), 

Storativity (S), and Hydraulic Conductivity (K).      
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Figure 5.2 Surface and subsurface geology of the KNP 

After the conductance of the aquifer test, the data collected was used to calculate drawdown, 

which is the difference between the static water levels and the depth to water measured during 

the pumping and recovery period. The calculated drawdown was then used in Theis and Cooper 

Jacobs Analytical solutions within the Flow Characteristic (FC) platform by Van Tonder et al. 
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(2001) to derive Transmissivity (T) and Storativity (S). These parameters were derived using 

equations (5.1, 5.2 and 5.3) in this platform. The Cooper-Jacob analysis was used for the 

constant drawdown test analysis, while the Theis analytical solution was used for the analysis 

of the recovery test data. The use of the Theis or Cooper-Jacob solutions are limited to confined 

aquifer conditions and homogeneous systems. In this study, the Cooper-Jacob analytical 

solution was selected, provided that the correction factor was applied for the determination of 

T values for a pumping test.  

𝑺𝑺(𝒓𝒓, 𝒕𝒕) = 𝑺𝑺(𝒓𝒓, 𝒕𝒕)− 𝑺𝑺𝑺𝑺(𝒓𝒓,𝒕𝒕)
𝑺𝑺𝟐𝟐

                              (5.1) 

 

Where, Sc(r, t) is the corrected drawdown in meters, S(rat) is the observed drawdown in meters, and 

2D is the saturated thickness in meters prior to pumping. 

𝑻𝑻 =  𝑺𝑺.𝟑𝟑𝟑𝟑
𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

                                                        (5.2) 

 

Where T= Transmissivity (m2 d-1), Q = Discharge (m3 d-1), and ∆s= Change in drawdown per log 

cycle. 

𝑺𝑺 =  𝑺𝑺.𝑺𝑺𝟐𝟐𝑻𝑻𝒕𝒕0
𝒓𝒓𝑺𝑺

                                                (5.3) 

 

Where S= Storativity, T =Transmissivity (m2 d-1), t0 =Time at which the straight-line intercepts zero 

drawdown, and r = Distance (m) between the pumping borehole and observation borehole. 

5.2.3 Estimating Evapotranspiration  

The actual evapotranspiration for KNP was estimated based on the water productivity through 

open access of remotely sensed derived data (WaPOR) developed by the Food and Agriculture 

Organization of the United Nations (FAO). WaPOR actual evapotranspiration and interception 

are estimated by the ETLook algorithm (Bastiaanssen et al., 2012). In the ETLook algorithm, with 

some changes in the Penman-Monteith equation, including (I) using remote sensing data such 

as precipitation, humidity, wind speed, temperature, NDVI, surface albedo, soil moisture, 

ground cover and digital elevation model (DEM) and (II) calculating evaporation, transpiration 

and interception separately (FAO, 2020), ETIa is estimated and the results are available through 

open access (Blatchford et al., 2020; Geshnigani et al., 2021).   
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5.2.4 Recharge Estimation  

This study assumes that groundwater recharge is only occurring naturally in the aquifer systems 

of the study area. This study utilized daily rainfall data obtained from the South African 

Weather Services (SAWS) from 2015-2020. SAWS rainfall stations report 24-h accumulated 

rainfall in the morning (0800 South African Standard Time). All the rainfall stations in the 

Southern region of the KNP were investigated for their suitability for use in this study. Firstly, 

the rainfall stations that were considered were the stations near the boreholes that have been 

used in this study and only stations where data were available for at least 75 % of the period 

were considered. The groundwater level data were obtained from the Department of Water and 

Sanitation (DWS) for the selected southern granite boreholes within KNP for a period of 8 

years (2007-2017). The selected boreholes for the study were selected based on the length of 

the monitoring period and the availability of the study. Data gaps in monitoring records were 

also considered. Where there were gaps, the mean groundwater level for the selected period 

was used.  The study used the Rainfall Infiltration Breakthrough (RIB) method Id by Xu and 

van Tonder (2001) to estimate naturally occurring recharge. This method utilizes the 

relationship between the water level fluctuations and the cumulative rainfall departure (CRD) 

from the mean rainfall of the preceding times. Groundwater recharge using RIB method is 

computed using equation 5.4: 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖)𝑚𝑚𝑛𝑛 = 𝑟𝑟 �∑ 𝑃𝑃𝑖𝑖 − (2 − 1
𝑃𝑃𝑎𝑎𝑎𝑎(𝑛𝑛−𝑚𝑚)

∑ 𝑃𝑃𝑖𝑖)∑ 𝑃𝑃𝑡𝑡𝑛𝑛
𝑖𝑖=𝑚𝑚

𝑛𝑛
𝑖𝑖=𝑚𝑚

𝑛𝑛
𝑖𝑖=𝑚𝑚 �                              (5.4) 

(i= 1,2,3,………I) 

(n= i, n-1, n-2, ……N) 

(m= i, m-1, m-2,……M) 

m<n<I 

Where: 𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖)𝑚𝑚𝑛𝑛  Cumulative recharge from rainfall event of m to n, I = total length of the 

rainfall series, r = is the fraction of cumulative rainfall departure, Pi  = rainfall amount at the 

inth   time scale (daily, monthly or annually), Pav =  mean precipitation of the whole time series 

and Pt  = is a threshold value representing the boundary conditions (Pt ranges from 0 to Pav). 

Value of 0 represents a closed aquifer system, which means that the recharge at ith time scale 

only depends on preceding rainfall events from Pm to Pn ; while value of Pav represents an open 
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system, which means that the recharge at the 80har time scale depends on the difference 

between the average rainfall of preceding rainfall events from Pm to Pn and the average rainfall 

of the whole time series. Both r and Pt values are determined during the simulation process. 

The RIB method assumes that groundwater recharge has a linear relationship with water level 

fluctuations under natural conditions. 

5.3 Results  

5.3.1 Stratigraphic analysis  

Figure 5.3 shows the lithological correlation between the 5 selected boreholes. The 

SG_1st_C_61m and SG_1st_c_103m boreholes form part of the southern Nelspruit formation, 

characterised by granite first-order boreholes, which exhibit a low permeability weathered 

granite aquifer and relatively high permeability hard granite rock aquifer at the crest. This is 

evident in the lithological logs shown in Figure 5.3. In particular, the SG_1st_C_103m borehole 

comprises two distinct layers of granite, highly weathered granite, and hard rock granite. The 

uppermost unit of the borehole, with a thickness of 1m is the clayey fine-medium grained sand. 

This type of soil is associated with low porosity. Underlying is the highly weathered granite 

with a thickness of 79 m, followed by the hard rock granite. Two water strikes are observed in 

this borehole at 55 m and 75 m, which indicate high high-yielding borehole. The uppermost 

part of the SG_1st_C_61m borehole consists of silty clay, fine-medium grained sand, colluvium 

and residual granite with a thickness of 2m. Underlying is the hard rock granite with a thickness 

of 55 m, followed by the closely jointed, slightly weathered granite with a thickness of 4m. 

The water strike in this borehole is observed at a depth of 55m. The water strikes observed at 

the boreholes may be an indication of the presence of a fracture or a flow/recharge zone. The 

SG_3rd_R_43m, SG_3rd_M_49m and SG_3rd_C_55m form part of the southern granite third 

order. The SG_3rd_R_43m borehole consists of dark brown, medium-coarse-grained sand with 

scattered gravel, with a thickness of 2m. Underlying is the highly weathered micaceous granite 

with a thickness of 30m, followed by the highly porphyritic granite. The lower part of this 

borehole consists of gneiss with a thickness of 4m. All the boreholes in the southern granite 

third-order hillslope have similar lithological structures, with SG_3rd_C_55m having a thick 

layer of highly weathered granite. 
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Figure 5.3 Lithological logs for boreholes located within the southern granite formation of 
KNP 

5.3.2 Aquifer properties results  

The constant discharge and recovery test results are presented in Tables 5.1 and 5.2, 

respectively. It is evident from the results below that the aquifers in the KNP have low 

hydraulic conductivities, which may be due to the soil being impermeable and hence water will 

move slowly through it. The results in the tables below also show that Transmissivity and 

Storativity values were obtained from boreholes drilled in sites with variable geological 

features. 
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5. SG _3rd _R _43m

1 2 3 4 5

SG _3rd order _M 49m

SG _1st order _C 61m

SG _3rd order _C 55m

SG _1st order _C 103 m

S _3rd order _R 43m
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Table 5.1 Transmissivity and Storativity results obtained from Cooper-Jacob time 
drawdown for the constant discharge test 

Borehole Formation Analytical Model Transmissivity (m2/day) Storativity 

SG_1st_C_103m Nelspruit Basic FC 11.2 2.22 × 10-3 

SG.1st_R_61m Nelspruit Cooper Jacob 0.5 2.56 × 10-1 

SG_3rd_R_43m Nelspruit Cooper Jacob 4.8 × 10-3 4.12 × 10-8 

SG_3rd_M_49m Nelspruit Cooper Jacob 3.3 3.10 × 10-3 

SG_3rd_C_55m Nelspruit Basic FC 9 1.28 × 10-3 

 

The results in Table 5.1 show that SG_1st_C_103m yielded T and S values of 11.6 m2 d-1 and 

2.22 × 10-3, respectively. SG.1st_R_61m yielded T and S values of 0.5 m2 d-1 and 2.56 × 10-1, 

respectively. The SG_3rd_R_43m yielded T and S values of 4.80 × 10-3 m2 d-1 and 4.12 × 10-8, 

respectively. The SG_3rd_M_49m yielded T and S values of 3.3 m2 d-1 and 3.10 ×-4, 

respectively. SG_3rd_C_55m yielded T and S values of 9 m2 d-1 and 1.28 × 10-6, respectively. 

The drawdown plots of these boreholes are presented in Figure 5.4 below. Most of these 

boreholes have a low Transmissivity with only a few comprising slightly higher 

Transmissivity, which are boreholes drilled into the fractured and highly weathered 

granite/gneiss aquifer.  

Figure 5.4 shows the drawdown versus time curve resulting from the observed boreholes. As 

shown in figure 5.4a (SG_1st_C_103m), the drawdown increased from around 1 m in 4 minutes 

after the onset of the pumping test. The borehole did not reach a steady-state drawdown; this 

may be an indication of the pumping rate exceeding the natural groundwater rate of the aquifer. 

Figure 5.4b (SG.1st_R_61m) and 5d (SG_3rd_M_49m) portrays a linear flow regime aquifer 

behaviour. A linear flow indicates fractured and horizontal wells. Figure 5.4c (SG_3rd_C_55m) 

shows that the drawdown increased around 1 m in 4 minutes after the onset of the pumping 

test. When the pumping of groundwater had been undertaken for 75 minutes, the drawdown 

showed little change leading to a steady-state drawdown of 3.5m.  
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Figure 5.4 Cooper-Jacob plots showing line of best fit for, a) SG_1st_C_103m, b) 
SG_1st_R_61m, c) SG_3rd_55m, d) SG_3rd_M_49m, and e) SG_3rd_R_43m 

 

Table 5.2 Transmissivity and Storativity obtained from Theis's recovery test for constant 
discharge test 

Borehole Formation Transmissivity (m2/day) Storativity 

SG_1st_C_103m Nelspruit 9 1.6 × 10-2 

SG.1st_R_61m Nelspruit  1 8.03 × 10-3 

SG_3rd_R_43m Nelspruit 1 1 × 10-6 

SG_3rd_M_49m Nelspruit 3 4.83 × 10-4 

SG_3rd_C_55m Nelspruit 9 1 × 10-6 
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The Theis Recovery method was applied to evaluate the adequacy of the results obtained from 

the constant rate pumping test. Figure 5.5 shows the shows the recovery of water level versus 

time plots resulting from the observed boreholes. Figure 5.5a (SG_1st_C_103m) shows early-

time recovery, where drawdown is rapidly decreasing as water flows back into the borehole. 

The residual drawdown from 65-1000 minutes suggests that the water level has stabilised and 

is no longer rising significantly. This shows that the borehole has reached a near-equilibrium 

state, where the rate of water inflow into the borehole equals the rate of any residual outflow. 

Figure 5.5b (SG.1st_R_61m) shows no recovery in water level from 0-10 minutes immediately 

after pumping has stopped this may be due to low permeability and resistance to water flow 

near the borehole. The constant residual drawdown from 11 to 1000 minutes suggests that the 

water level has stabilized and is not recovering further. This indicates that the borehole has 

reached a state of equilibrium very quickly and that the aquifer is not contributing additional 

water to the well. Figure 5.5d (SG_3rd_M_49m) shows similar results to figure 5.5b. Figure 

5.5e (SG_3rd_R_43m) shows a linear recovery, which suggests moderate permeability, 

allowing water to flow back into the borehole steadily but not rapidly. The recovery starts after 

9 minutes, which might suggest an initial delay due to delayed response in the recharge process.  

 

Figure 5.5 Recovery plots for, a) SG_1st_C_103m, b) SG.1st¬¬_R_61m, c) 
SG_3rd_C_55m, d) SG_3rd_M_49m and e) SG_3rd_R_43m 
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5.3.3 Evapotranspiration estimation  

Actual evapotranspiration per catena unit, derived from the WAPOR product for the 2014 to 

2015 hydrological year, is shown in Figure 5.6. The results show that there is a varying demand 

for water in the different southern granite catena units for water due to differences in soil 

moisture and proximity to water sources. The southern granite riparian (SG_R) catena shows 

greatest demand with actual ET up to 815mm. The maximum estimated actual ET for the mid-

slope and crest catena units is 788 mm and 765 mm, respectively. During the wet season 

(October – November), there was no distinct difference in the mid-slope and the crest catena 

units. Actual ET rises mostly from mid-summer till the autumn season (January to May) as 

shown in the Figure below. This may be due to the residual soil moisture from the wet season 

and active vegetation growth. 

 

Figure 5.6 Actual evapotranspiration derived from WAPOR for the southern granite cres, 
riparian, and mid-slope catena unit 

5.3.4 Groundwater Recharge results  

The total monthly recharge estimates for the year 2007 up to 2015 are presented in Table 5.3. 

The results indicate that the recharge rate for the study site ranges between 20,55 mm/a (2,3 % 

of annual rainfall) and 29,4 mm/a (4,8% of annual rainfall) in 2007 to 2015. The results in table 

5.3 suggest that most of the rainfall is lost through evapotranspiration due to the warm climate 

and extensive vegetation in the area. From Table 5.3, it can also be observed that a sporadic 

recharge pattern is evident in the area.  
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  Table 5.3 Groundwater recharge from July 2007- May 2015 

Borehole Rainfall 

(mm/a) 

Recharge (mm/a) Recharge (% of annual 

rainfall) 

SG_1st_C_103m 579 1,4 0,2 

SG.1st_R_61m 537 10,6 2,0 

SG_3rd_R_43m 579 11,6 2,0 

SG_3rd_M_49m 447 21,4 4,79 

SG_3rd_C_55m 537 3,8 0,7 

 

The results shown in Figure 5.7 of groundwater levels against the simulated CRD and RIB 

groundwater head, show that groundwater levels respond to a one-month cumulative series of 

preceding rainfall events. There are several periods where groundwater head does not respond 

to high rainfall events, suggesting a delay in groundwater infiltration. As a result, a poor 

correlation was observed between groundwater fluctuations/recharge and rainfall. 

SG_3rd_M_49m (Figure 5.7b) borehole groundwater levels experience rapid response to 

rainfall events, which may be caused by the fractures and coarse grain material found in the 

area where the borehole was drilled. Another possibility would be the geological intrusion of 

the Timbavati Gabbro to the Nelspruit formation which is 4m away from where the borehole 

was drilled. The intrusion may create new groundwater flow paths within the Nelspruit 

formation, which may potentially increase or decrease the rate of recharge, causing fluctuations 

in water levels. The simulated groundwater levels at SG_3rd_C_55m (Figure 5.7d) borehole 

are relatively stable. 
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Figure 5.7 Monthly observed water level and groundwater recharge obtained from the RIB 
model and CRD method for a) SG_3rd_R_43, b) SG_3rd_M_49m, c) 
SG_1st_c_103m, d) SG_3rd_C_55m and e) SG_1st_C_61m 

The groundwater level responds to a cumulative 12-month series of preceding rainfall events, 

as shown by the CRD interpretation. SG_1st_C_61m (Figure 5.7e) and SG_1st_c_103m (Figure 

5.7c) show similar trends and response to rainfall. The SG_1st_c_103m borehole has a 2-month 

lag in response to rainfall events in September 2012, while SG_1st_C_61m showed no response 

to rainfall events. The water levels observed in these boreholes show direct response to rainfall 

for the first two months of the rainy season and then show gradual response thereafter. These 

trends in water level indicate a piston recharge process as a sequence of rainfall events is 

required for the water levels to rise. 
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5.4 Discussion  

According to Vivier and Van Tonder, (1997), fractures have high Transmissivity and low 

Storativity while matrices have low Transmissivity and high Storativity. The geological 

analysis and pumping test results in the KNP indicate a fractured and unconfined aquifer. The 

Transmissivity here is greatly influenced by the density and connectivity of fractures. Borehole 

SG_1st_C_103m had the highest Transmissivity value which could be due to the dominant 

weathered granite in the area, while SG_3rd_R_43m had the lowest Transmissivity. This may 

be caused by the fact that this borehole is dominated with fine-grained clayey sand with low 

permeability that restricts the flow of water, which results in the borehole having the lowest 

Transmissivity.  Fischer et al. (2009) stated that crystalline rocks are likely to be characterized 

by low Transmissivity or hydraulic conductivity (K) values, which is evident in the results 

presented above. The acquired Transmissivity values also correlate with the recovery 

Transmissivity values hence the constant discharge test results can be considered reliable. 

These results also correlate with the findings by Van Niekerk (2014), which stated that the 

southern granite supersite is characterized by low to moderate storage capacity, due to the 

presence of fractured bedrock, which is why the Storativity in these boreholes is relatively low. 

Fractured aquifers have complex hydrogeological characteristics (Krásny & Sharp, 2007), 

which make modelling GDEs occurring within these aquifers difficult. Fractured aquifers 

display high heterogeneity in hydraulic conductivity, Storativity, and groundwater flow paths 

(Comte et al., 2019). This heterogeneity further complicates the accurate representation of 

groundwater flow and its interaction with GDEs. The spatial distribution of GDEs in fractured 

aquifers follow groundwater preferential flow paths determined by the fractures. Based on 

groundwater levels within the southern granite supersite, groundwater will not follow the 

topography and flow down gradient but rather run parallel to the surface drainage network with 

groundwater flow (Ridell et al., 2014). Additionally, groundwater occurrence/storage is mainly 

in water filled joints, faults, zones of weathering and structures such as dyke intrusions. The 

hydrogeological conceptual model of the KNP is presented in Figure 5.8. 
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Figure 5.8 A hydrogeological conceptual model of the southern granite supersite in KNP 

 

Recharge is an important parameter for any hydrological model, especially in groundwater 

modelling (Suryanarayana & Mahammood, 2019). Groundwater recharge in KNP primarily 

occurs through the infiltration of rainfall and surface water interactions, with most recharge 

occurring during periods of heavy rain. Recharge occurs both in the vertical and horizontal 

direction (Petersen, 2012). The RIB and CRD analysis of groundwater level fluctuations in the 

southern KNP shows that recharge to the aquifers responds to dry and wet cycles that last for 

over several years. The simulated groundwater level shows delayed response to increases in 

water levels due to rainfall, this is due to the very low Transmissivities and Storativity inherent 

in basement aquifers, which slows down the infiltration of water. Therefore, the water levels 

observed at SG_3rd_M_49m, SG_1st_C_103m and SG_3rd_R_43m suggest that these boreholes 

are situated in discharge zones and SG.1st_R_61m and SG_3rd_C_55m are potential recharge 

areas.  

5.4.1 Implications and limitations of the study  

This study holds significant prospects for groundwater management and modelling GDEs. The 

study provides detailed information on aquifer parameters, recharge rates and geological 

formation of aquifers, which enhances the accuracy of groundwater models used to assess 

GDEs and understand their connectivity to aquifers. This improved understanding of the 

hydrogeological processes allows for precise groundwater flow paths, which can be used to 
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assess potential impacts of groundwater abstraction to GDEs. Moreover, the identification of 

high groundwater recharge zones assists in prioritizing conservation efforts and guide the 

monitoring and management of GDEs to ensure long-term sustainability. However, this study 

only focused on the southern region of the KNP, and therefore the interpretations of this study 

may not be applicable to the other regions of the park. Additionally, this study only focused on 

Transmissivity and Storativity aquifer parameters to characterize the aquifers in the study site 

and does not provide a full characterization of aquifers.  

5.5 Conclusion 

The current chapter aimed at characterizing the aquifers at the KNP for improved 

hydrogeological modelling of groundwater-dependent ecosystems. This was done by 

establishing preferential groundwater flow paths of the studied system using borehole core 

loggings and geological cross sections of the area, estimating aquifer parameters from pre-

existing pumping test data using the Cooper-Jacobs analysis and estimating recharge in the 

studied area. Results show that the aquifers in the KNP have low hydraulic conductivities, with 

groundwater mostly occurring in dykes and fault zones. Groundwater flow in the Southern 

KNP flows downslope from the first order hillslope down to the third order hillslope. However, 

this study was only conducted on a small scale and more research at a larger scale is needed to 

effectively characterise aquifers in KNP and effectively manage the groundwater resource. 

This study showed that aquifer characterisation can be useful in the management of 

groundwater resources by identifying areas where groundwater is likely to occur and how much 

groundwater is available at a given area. To manage GDEs much still needed to be achieved, 

however aquifer characterisation results can be useful in informing hydrogeological models for 

improved results and accuracy. 
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CHAPTER SIX 

MACROINVERTEBRATE DIVERSITY WITHIN PAN WETLANDS IN 

RELATION TO GEOLOGICAL TYPE AND HYDROPERIOD  

6.1 Introduction 

Ephemeral wetlands or pan ecosystems are an important but poorly understood component of 

the natural world, particularly within tropical regions (Dube et al., 2017; de Necker et al., 2023; 

Munyai et al., 2023a). Despite being vital to aquatic life, it was not until the last two decades 

that they were recognized as significant habitats (Mabidi et al., 2017; Dalu et al., 2022). While 

wetlands provide numerous ecological benefits, they have historically been undervalued and 

subjected to widespread destruction due to a lack of conservation and protection (Matlala, 

2010). Pérez et al. (2016) state that increased knowledge about their location, size, 

ecohydrological condition and biodiversity is critical before robust protection can be afforded 

to these ecosystems (Perez et al. 2016). Furthermore, notwithstanding their small size, wetland 

pan systems play a crucial role as natural water purifiers, effectively filtering and absorbing 

numerous pollutants from surface water. They provide essential ecosystem services such as 

phytoremediation and bioremediation, while also serving as habitats of considerable diversity 

for flora and fauna, thereby attracting tourism (Helson, 2012; Dube et al., 2020).  

 

Aquatic macroinvertebrates refer to a diverse group of larger invertebrates, measuring over 500 

μm, that inhabit various brackish, saline, and freshwater environments such as oceans, rivers, 

lakes and reservoirs, wetlands, and estuaries (Bonacina et al., 2023). They are highly diverse 

and locally abundant organisms, that play a crucial role in the functioning of aquatic 

ecosystems (Hendrey, 2001; Dalu et al., 2017; Hauer and Resh, 2017). These organisms are 

essential to the proper functioning of aquatic ecosystems as they regulate primary production, 

decomposition, and nutrient cycling (Allan et al., 2021; Stephenson et al., 2020; Dalu and 

Wasserman, 2022). They are widely acknowledged as a crucial food source for amphibians, 

fish, and other macroinvertebrates, making them indispensable elements of aquatic food webs 

(Colnurn et al., 2008; Hölker et al., 2015; Dalu et al., 2017; de Necker et al., 2023). 

Additionally, macroinvertebrate diversity flourishes in pan ecosystems because many of the 

taxa are opportunistic and possess specific adaptations that enable them to withstand seasonal 

drying every year (Necker et al., 2016). 
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Freshwater macroinvertebrates can be categorised as either semi aquatic or fully aquatic, 

meaning they complete their entire life cycle within the water (Wasserman et al., 2018; Dube 

et al., 2020). Their restricted mobility in freshwater habitats constrains their dispersal, making 

them suitable taxa for biomonitoring activities (Ollis et al., 2006; Chi et al., 2022). Following 

this, Dalu and Wasserman (2022) showed that macroinvertebrates are one of the most regularly 

employed biological indicators when assessing aquatic habitats, especially temporary pans. 

Despite being key indicators of ecological integrity and ecosystem health within wetland 

ecosystems they are among the most vulnerable animals in aquatic ecosystems (Ferreira et al., 

2012; Dalu et al., 2021; Kafula et al., 2023). Aquatic macroinvertebrates are specialized to 

certain habitats, substrate types, temperatures, and dissolved oxygen concentrations, and can 

serve as indicators of disturbance (Victor, 2013). In wetland systems, their abundance and 

diversity are highly influenced by hydroperiod, water and sediment chemistry variables (Dalu 

and Wasserman, 2022, Munyai et al., 2023). Several studies (e.g., Schäfer, 2019; Dalu et al., 

2021; Bonacina et al., 2023) have shown that macroinvertebrate taxa can respond to changes 

in water levels and quality, which alters community composition and impacts aquatic 

ecosystem functioning. Fluctuations in water levels can also have a direct impact on 

macroinvertebrate communities causing changes in water and sediment chemistry properties 

including physical factors (Rosenberg and Resh, 1993).  

 

The current study aimed to assess (i) water and sediment chemistry variation in pan wetlands 

across different geological types and hydroperiods (i.e., low and high hydroperiod), and (ii) 

spatiotemporal macroinvertebrate diversity and abundances across geological regions, 

geological types and hydroperiods in pan wetlands in relation to water and sediment chemistry 

variables. We hypothesized that pans’ (i) water and sediment chemistry concentrations will 

vary spatially and temporally, with high concentrations associated with low hydroperiod. (ii) 

macroinvertebrate diversity and abundances will be higher during the high hydroperiod than 

the low hydroperiod due to increased habitat availability. 

 

6.2 Materials and Methods  
 

In situ measurements were taken for the following parameters at each pan and hydroperiods: 

electrical conductivity (µS cm–1), salinity (ppt), pH, water temperature (°C), salinity (ppt), 

resistivity (Ω) and total dissolved solids (TDS) (mg L–1) from two distinct locations on either 
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side of the pan, using a Cyberscan Series portable handheld multiparameter meter (Eutech 

Instruments, Singapore). Without disturbing the sediment, two 250 mL polyethylene bottles 

were used to collect water from each site and hydroperiods for nutrient (i.e., phosphate, nitrate 

and ammonium) analysis and chlorophyll–a concentration determination in the laboratory. The 

250 mL water samples collected from each pan were placed on ice until further processing. 

Water depth (m) and area (m2) were measured using a graduated measuring rod and a handheld 

Garmin GPS (GPSMAP 64), respectively. 

 

In the laboratory, the water samples were vacuum filtered (vacuum < 5 cm Hg) through 0.7 µm 

(diameter 47 mm) GIC Scientific glass fibre filters for total pelagic chlorophyll–a (chl–a) 

concentration, with the resultant filtered water being used for nutrient analysis. The ammonium 

concentration was determined using a HANNA freshwater ammonia high-range test kit 

(HI3824) with a range of 0–100 mg L−1 and a resolution of 0.1 mg L−1 based on the adaptation 

of the American Society for Testing and Materials (ASTM) Manual of Water and 

Environmental Technology D1426, Nessler method. Phosphate concentration was measured 

using the HANNA phosphate high range (HI717) test kit, with a range of 0–30 mg L−1 and 

resolution of 0.1 mg L−1 based on the adaptation of the ammonia acid method for the Standards 

Methods for the Examination of Water and Wastewater, 18th edition. Nitrate concentration was 

measured using nitrate test kit with range of 0–30 mg L–1 and resolution of 0.1 mg L–1 based 

on the adaptation of the cadmium reduction method. All nutrients were analysed using a 

HANNA HI83300 multiparameter photometer (HANNA Instruments Inc., Rhode Island). 

 

The pelagic chl–a concentrations were determined as a proxy for quantifying phytoplankton 

biomass by filtering the water samples through a 0.7 µm GIC Scientific glass fibre filters. After 

filtration, the filters were placed individually in 15 mL centrifuge tubes containing 10 mL of 

90 % acetone solution and then stored in a freezer for at least 24 hours to allow for chl–a 

extraction (see Lorenzen, 1967 methodology). After 24 hours, the samples were removed from 

the freezer and centrifuged at 3000 rpm for 10 minutes before 2 mL was extracted from each 

sample to measure absorbance at the wavelength of 665 nm and 750 nm before and after 

acidification by 0.01 M hydrochloric acid using a SPECTRO star NANO (BMG LabTech 

GmbH, Ortenberg). 
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6.2.1 Sediment chemistry variables  

At each pan and hydroperiods, two sediment samples were collected randomly, using a plastic 

hand shovel and then carefully transferred into labelled Ziplock bags. The bags were then 

packed on ice in a cooler box to maintain their integrity during transportation to the laboratory 

for subsequent analysis. In the laboratory, the sediment samples were oven-dried at 70 °C for 

72 hours. The sediment samples were then subjected to disaggregation using a porcelain 

mortar, followed by straining through a sieve (mesh 0.05 mm) to remove plant roots and other 

debris from the samples. The sediment samples were then sent to BEMLAB, a South African 

National Accreditation System (SANAS) accredited laboratory for pH, resistivity, H+, stone 

proportion (%), sediment organic carbon (SOC) nutrient (P), non–metals (K, Ca, Na, Mg, B, 

S) and metals (Mn, Zn, Cu, Fe) analysis. 

 

Benthic algal core samples (volume = 16.1 cm3) were collected from each pan (n = 2) per 

hydroperiod, using a Perspex sediment corer of 20 mm internal diameter inserted by hand into 

the sediment. About 20 mL of 90 % acetone was introduced into the container with the 

sediment sample, swirled in the vortex, and the container with the sample was put in a freezer 

for 24 h for chl–a extraction. After 24 hours, samples were removed from the freezer and 

centrifuged at 3000 rpm for 10 minutes before 2 mL was extracted from each sample to measure 

absorbance at the wavelength of 665 nm and 750 nm before and after acidification by 0.01 M 

hydrochloric acid using a SPECTRO star NANO (BMG LabTech GmbH, Ortenberg) following 

Sartory and Grobbelaar (1984) and Human et al. (2018). 

 

6.2.2 Macroinvertebrate sampling  

Two macroinvertebrate samples were obtained at each pan and hydroperiod, using handheld 

net aluminium rim (30 × 30 cm dimensions, mesh 500 µm) and 1.5 m length. The net was fully 

immersed in the pan, and the collection of macroinvertebrates was conducted by systematically 

sweeping a defined transect measuring 10 m in length by disturbing any available vegetation, 

substratum, and rocks. This action was undertaken to displace macroinvertebrates that attached 

to any substratum. The net was expeditiously retrieved from the aquatic environment to 

minimise the potential loss of live and agile organisms before the sample was transferred into 

a tray to remove any organic material. The macroinvertebrates were then transferred into 500 

mL plastic containers and preserved in 70 % ethanol. In the laboratory, an Olympus dissecting 

microscope (up to ×200 magnification) was used to identify macroinvertebrates to at least 



95 
 

genus or species level for most taxa according to Gerber and Gabriel (2002) and Fry (2021). 

The relative percentage abundances of each taxon were determined, and macroinvertebrate 

metrics were evaluated for each hydroperiod.  

 

6.2.3 Data analysis  

Before multivariate analysis, sediment metal and non–metal concentrations and water physics–

chemical variables (except for pH) were log–transformed to meet two basic assumptions of an 

ANOVA (i.e., homogeneity and normality). The differences in sediment metal and non–metal 

concentrations, environmental variables, and macroinvertebrate diversity metrices between 

hydroperiods (i.e., high and low) and geological types (i.e., sandstone, granite, basalt and 

rhyolite) were assessed using a two–way ANOVA analysis, after testing for homogeneity of 

variance and normality of distribution using SPSS version 25. Tukey’s post–hoc analysis was 

employed to assess the significant values that were different for water and sediment chemistry 

variables. 

A distance–based permutational analysis of variance (PERMANOVA; Anderson, 2001) was 

conducted, using Bray–Curtis and Euclidean distance dissimilarities based on 9 999 

permutations with Monte Carlo tests to examine differences in macroinvertebrate community 

structure across geological types and hydroperiods. Furthermore, the differences in 

macroinvertebrate community structure between hydroperiods and geological types were 

analysed using a two–way analysis of similarity (ANOSIM; Clarke, 1993). The ANOSIM 

statistic R is derived from comparing mean ranks between groups and within groups. The range 

of values for this variable is between –1 and +1, with a value of 0 indicating random grouping. 

SIMPER analysis was conducted to assess the key taxa driving community differences among 

hydroperiods and geological types. PERMANOVA+ for PRIMER version 6 software 

(Anderson et al., 2008) was used for these analyses. 

 

Macroinvertebrate community data was used to calculate diversity matrices (i.e., Evenness, 

Abundance, Simpson, Shannon–Weiner) to assess for differences in species diversity among 

pans and hydroperiods in PAST version 2.0 (Dalu et al., 2020). Furthermore, the following 

metrices were determined; the Ephemeroptera, Plecoptera, and Trichoptera (%EPT), 

Ephemeroptera, Trichoptera, Odonata, and Coleoptera (%ETOC), Diptera (%Diptera), and 

Chironomidae + Oligochaeta (%Chironomidae + Oligochaeta).  
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An initial detrended canonical correspondence analysis (DCCA) was conducted to investigate 

the potential relationship between water and sediment chemistry variables on 

macroinvertebrate communities. This analysis aimed to determine whether linear or unimodal 

analysis methods should be utilised, following the approach outlined by Šmilauer and Leps 

(2014). The gradient lengths obtained from the DCCA output were analysed, and the longest 

gradient exceeded 4; hence, a linear canonical correspondence analysis (CCA) model was 

chosen (Šmilauer and Leps, 2014). A CCA was implemented to show how the significant 

variables jointly influenced macroinvertebrate community structure across pans in different 

geological types and hydroperiods. The macroinvertebrate and water and sediment chemistry 

variables data were square–root and log (x + 1) transformed, respectively, to reduce the effects 

of extreme values, (pH was excluded from this). Monte Carlo permutation tests (9 999 

unrestricted permutations, p < 0.05) were used to test the significance of the axis.  

 

6.3 Results 

6.3.1 Water chemistry 

Chlorophyll–a concentration during the high hydroperiod was similar (mean 0.1 mg m–3) 

across the geological types (Table 6.1). The water temperature varied across geological types. 

In granite and basalt pans, the temperatures measured were relatively similar between low and 

high hydroperiod while in the sandstone and rhyolite pans, the temperature varied greatly 

between the low and high hydroperiod (Table 6.1). The pH levels across the various geological 

types were relatively consistent, falling within a mean range of 6.7 to 7.1 during the high 

hydroperiod, while the low hydroperiod showed more variation between geological types with 

a high mean range of 5.9–7.4 (Table 6.1). The total dissolved solids (TDS) levels showed 

significant variations across geological types and hydroperiods, with elevated values during 

the low hydroperiod (Table 6.1). Conductivity levels were relatively similar across geological 

types during the low hydroperiod (mean range: 281.8 - 312.8 µS cm–1) with substantially higher 

conductivity means in the low hydroperiods in both the Granite and Rhyolite pans.  Salinity 

levels varied widely across geological types and hydroperiod (Table 6.1). While ammonium 

concentrations were relatively similar across geological types in the high hydroperiod, they 

varied greatly in the low hydroperiod with a substantially higher concentration of ammonium 

in the rhyolite pans during this period. A similar pattern was observed when analysing the 

phosphates, but with more variation among geological types in the hydroperiod (Table 6.1). 
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Water temperature, pH, TDS, conductivity, phosphates, and salinity showed significant 

differences (ANOVA, p < 0.05) among hydroperiods (Table 6.2), with significant differences 

(ANOVA, p < 0.050) among geological types being observed for water temperature and 

ammonium (Table 6.2). Based on the Tukey’s posthoc analysis, only water temperature was 

found to be significantly different (p < 0.001) among sandstone vs granite, sandstone vs basalt, 

granite vs sandstone, granite vs rhyolite and basalt vs rhyolite (Table 6.3). 

6.3.2 Sediment chemistry 

During the high hydroperiod, most of the sediment chemistry variables had high values in the 

rhyolite (i.e., H+, stone, K, Ca, Mg, Na, Zn, Mn, B, Fe, SOC, S) and granite (i.e., benthic chl–

a, pH, resistivity, P, Cu) pan systems (Table 6.1). Whereas during the low hydroperiod, the 

rhyolite pan systems had high values for H+, stone, K, Na, Zn, B and Fe (Table 6.1). Most of 

the sediment variables were found to be statistically significant (ANOVA; p < 0.05) across 

hydroperiods and geological types (Table 6.2). Benthic chl–a, K, B, Fe, S, stone and resistivity, 

SOC, Cu, Zn, Mn and P concentrations were found be significantly different among 

hydroperiods (Table 6.2). However, only pH, H+, P, Na, Mn, and B, C, S, Zn, stone and 

resistivity were statistically significant (ANOVA, p < 0.05) among geological types (Table 

6.2). Based on Tukey’s posthoc analysis, most of the sediment variables, pH, resistivity, H+, 

stone, P, Na, Zn, Mn, B, SOC and S were found to be significantly different among the 

geological pan types (Table 6.3). 
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Table 6.1 Mean (± standard deviation) for water and sediment variables recorded from 12 pan wetlands across four geological types 
(sandstone, granite, basalt, and rhyolite) during high and low hydroperiods in the central KNP, South Africa. Abbreviations: chl–a 
– chlorophyll–a, TDS – total dissolved solids 

Variables Units 
High water period Low water period 

Sandstone Granite Basalt Rhyolite Sandstone Granite Basalt Rhyolite 

Water 
         

Pelagic chl–a mg m–3 0.1 ± 0 0.1± 0 0.1 ± 0.1 0.1 ± 0 0.2 ± 0.1 0.2 ± 0.2 0.1 ± 0 0.4 ± 0.4 

Ammonium mg L–1 1.8 ± 0.5 2.0 ± 0.6 1.8 ± 0.4 1.8 ± 0.3 1.3 ± 0.4 2.2 ± 0.5 1.4 ± 0.4 3.1 ± 0.2 

Phosphates mg L–1 1.1 ± 0.2 0.8 ± 0.8 1.4 ± 1.4 0.6 ± 0.8 2.0 ± 0.6 1.6 ± 0.6 4.1 ± 2.2 2.7 ± 0.9 

Nitrate mg L–1 2.2 ± 1.7 1.9 ± 1.2 2.3 ± 1.1 1.6 ± 0.6 3.7 ± 3.7 4.9 ± 5.7 2.4 ± 1.7 1 ± 0.2 

Temperature °C 26.3 ± 1.3 28.3 ± 0.7 27.2 ± 0.8 26.0 ± 1.3 21.9 ± 1.2 27.7 ± 2.2 28.1 ± 2.3 20.9 ± 0.3 

pH  
 

6.8 ± 0.1 7.1 ± 0.2 6.9 ± 0.2 6.7 ± 0.6 5.9 ± 0 5.9 ± 0.1 6.0 ± 0.1 7.4 ± 2.1 

TDS mg m–2 200.7 ± 17.5 160.8 ± 108.9 148.5 ± 126.7 262.9 ± 226.5 331.3 ± 217.9 410.5 ± 76.8 185.5 ± 29.2 341.3 ± 19 

Conductivity µS cm–1 287.8 ± 29.7 281.8 ± 188.9 287.8 ± 250.7 312.8 ± 329 228.8 ± 103.2 743.6 ± 131.5 334.3 ± 73.5 774.1 ± 2.8 

Salinity ppm 188.2 ± 13.9 138.3 ± 93.4 139.8 ± 125.8 229.7 ± 209.1 372.2 ± 239.7 427.9 ± 169.4 171.0 ± 28.3 401.6 ± 31.7 

Resistivity Ω 4135.0 ± 477.8 3979.0 ± 1654.6 5374 ± 3078.1 3767.1 ± 3407.3 2507.5 ± 1326.7 3499.5 ± 4474.8 2682.0 ± 629.5 1478.5 ± 75.6 

Area m2 8975.4 ± 1012.6 867.4 ± 1203.3 2120.2 ± 2005.7 25817.2 ± 54917.7 2227.7 ± 3589.8 455.3 ± 267.7 233.5 ± 157 797.5 ± 662.5 

Sediment 
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Benthic chl–

a 

mg m–2 115.0 ± 23.0 131.9 ± 164.5 29.2 ± 27.1 11.1 ± 4.6 413.1 ± 234.3 101.5 ± 107.3 509.3 ± 520.3 185.5 ± 113.8 

pH KCl 5.0 ± 0.5 5.1 ± 0.1 5.0 ± 0.3 4.8 ± 0.4 5.4 ± 0.1 5.3 ± 0.2 4.9 ± 0.2 4.2 ± 0.1 

Resistivity Ω 1573.8 ± 560.6 2316.7 ± 1266.1 1358.3 ± 484.1 926.7 ± 245.4 1522.5 ± 1038.1 1005.0 ± 173.6 1002.5 ± 282 650 ± 0 

H+ cmol kg–1 1.0 ± 0.2 0.7 ± 0.2 0.8 ± 0.3 1.7 ± 1.4 0.7 ± 0.3 0.7 ± 0.2 1.0 ± 0.1 2.7 ± 0.3 

Stone % 6.9 ± 0.7 5.1 ± 3.2 6.4 ± 13.2 11.7 ± 11.9 1.6 ± 1 8.8 ± 0.8 21.8 ± 17.5 22.2 ± 0.8 

P mg kg–1 36.3 ± 39.1 44.5 ± 10.1 18.9 ± 15.6 13.4 ± 10.7 112.4 ± 26.5 54.2 ± 3 46.8 ± 5.5 10.8 ± 1.2 

K mg kg–1 302.6 ± 85.1 286.0 ± 100.1 249.2 ± 65.5 325.5 ± 36.4 440.5 ± 355.6 535.8 ± 138.5 531.3 ± 91 878.5 ± 6.3 

Ca cmol kg–1 4.7 ± 2.3 4.5 ± 2.4 4.5 ± 1.4 5.5 ± 1.3 4.8 ± 4.2 5.1 ± 1.3 7.4 ± 2 5.4 ± 0.1 

Mg cmol kg–1 3.0 ± 1.9 2.3 ± 1.3 2.9 ± 1 4.4 ± 3.2 2.3 ± 1.6 2.6 ± 0.6 5.6 ± 1.2 3.0 ± 0.1 

Na cmol kg–1 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.2 0.5 ± 0.2 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.7 ± 0.1 

Cu mg kg–1 6.2 ± 3.4 7.7 ± 5.4 4.4 ± 1.6 5.6 ± 0.3 8.6 ± 6.7 12.2 ± 6.7 10.3 ± 1.3 11.1 ± 1.4 

Zn mg kg–1 1.6 ± 0.2 1.3 ± 0.6 0.8 ± 0.6 2.7 ± 3.1 2.1 ± 1.1 2.6 ± 0.5 1.1 ± 0.2 5.3 ± 0.8 

Mn mg kg–1 155.5 ± 40.7 171.4 ± 67.5 103.2 ± 53.7 211.9 ± 147.9 125.4 ± 107.1 306.5 ± 96.2 130.0 ± 20 298.5 ± 0.7 

B mg kg–1 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.4 ± 0 0.2 ± 0.1 0.3 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 

Fe mg kg–1 453.3 ± 180.1 284.5 ± 147.8 185.3 ± 78.5 534.4 ± 649.7 1358.5 ± 754.5 1079.2 ± 246.2 878.5 ± 162.7 1390 ± 183.8 

C % 0.8 ± 0.3 0.5 ± 0.1 0.7 ± 0.1 1.3 ± 1.1 0.7 ± 0.4 0.8 ± 0.2 0.8 ± 0.1 2.1 ± 0 
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S mg kg–1 7.7 ± 0.7 4.3 ± 1 5.6 ± 2 12.1 ± 9.6 12.7 ± 7.3 17.3 ± 2.7 7.4 ± 1.8 19.8 ± 6.5 
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Table 6.2 Two–way analysis of variance (ANOVA) results for water and sediment 
variables across geological types (i.e., granite, sandstone, basalt, rhyolite) and 
hydroperiods (i.e., high, and low) measured from 12 pan wetlands located in the 
central KNP. The bold values emphasise significant differences at p < 0.05 

Variables 
Hydroperiods Geological type Hydroperiods × Geological type 

df F p df F p df F p 

Water                   

Pelagic chl–a 1 4.220 0.049 3 0.553 0.650 3 1.501 0.234 

Ammonium 1 0.717 0.404 3 3.326 0.033 3 8.514 <0.001 

Phosphate 1 26.834 <0.001 3 2.738 0.061 3 0.611 0.613 

Nitrate 1 0.440 0.512 3 0.866 0.469 3 0.689 0.566 

Temperature 1 32.383 <0.001 3 23.242 <0.001 3 12.051 <0.001 

pH  1 14.261 0.001 3 2.640 0.068 3 5.467 0.004 

TDS 1 11.102 0.002 3 1.451 0.248 3 0.401 0.753 

Conductivity 1 5.471 0.026 3 0.648 0.590 3 1.542 0.224 

Salinity 1 16.808 <0.001 3 1.747 0.179 3 0.545 0.655 

Restivity 1 0.292 0.593 3 0.681 0.571 3 0.162 0.921 

Area 1 1.787 0.191 3 1.121 0.356 3 0.595 0.623 

Sediment                   

Benthic chl–a 1 29.556 <0.001 3 0.734 0.540 3 2.681 0.065 

pH 1 2.578 0.119 3 12.314 <0.001 3 1.849 0.160 

Resistivity 1 6.422 0.017 3 3.059 0.043 3 0.921 0.443 

H+ 1 3.869 0.058 3 10.184 <0.001 3 0.769 0.520 

Stone 1 6.372 0.017 3 4.546 0.010 3 1.530 0.227 

P 1 4.487 0.043 3 15.855 <0.001 3 1.560 0.220 

K 1 23.562 <0.001 3 2.543 0.075 3 2.136 0.116 

Ca 1 1.342 0.256 3 1.358 0.274 3 0.562 0.644 

Mg 1 0.693 0.412 3 2.736 0.061 3 1.287 0.297 

Na 1 1.174 0.287 3 8.634 <0.001 3 0.429 0.734 

Cu 1 11.300 0.002 3 0.960 0.424 3 0.329 0.805 

Zn 1 10.804 0.003 3 5.258 0.005 3 0.872 0.466 

Mn 1 5.508 0.026 3 8.005 <0.001 3 0.195 0.899 

B 1 18.603 <0.001 3 11.726 <0.001 3 2.900 0.051 

Fe 1 38.230 <0.001 3 1.246 0.310 3 0.359 0.783 

C 1 4.592 0.040 3 7.679 0.001 3 0.766 0.522 

S 1 26.120 <0.001 3 4.281 0.013 3 2.858 0.054 

Taxa richness 1 4.155 0.050 3 2.094 0.122 3 7.801 0.001 

Abundances 1 10.539 0.003 3 4.305 0.012 3 4.777 0.008 

Shannon–Wiener 1 0.001 0.976 3 0.328 0.805 3 2.310 0.096 
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Simpson 1 0.042 0.839 3 0.362 0.781 3 0.754 0.529 

Evenness 1 2.872 0.101 3 1.196 0.328 3 2.415 0.086 

%Ephemeroptera 1 1.304 0.262 3 1.448 0.248 3 1.448 0.248 

%Trichoptera 1 15.433 <0.001 3 2.013 0.133 3 2.013 0.133 

%Diptera 1 8.297 0.007 3 2.366 0.091 3 2.464 0.082 

%EPT 1 9.556 0.004 3 2.977 0.047 3 0.852 0.477 

 

Table 6.3 Tukey’s post–hoc results highlighting environmental variables that were found 
to be significant (p < 0.05) across four geological types (sandstone, granite, 
basalt and rhyolite) in pan wetlands located in KNP, South Africa 

Variable Geology p 

Temperature Sandstone vs Granite <0.001 

Sandstone vs Basalt 0.001 

Granite vs Sandstone <0.001 

Granite vs Rhyolite <0.001 

Basalt vs Rhyolite 0.001 

Sed–pH Sandstone vs Basalt 0.001 

Sandstone vs Rhyolite <0.001 

Rhyolite vs Granite 0.016 

Sed–Resistivity Granite vs Rhyolite 0.020 

H+ Basalt vs Rhyolite 0.023 

Rhyolite vs Sandstone <0.001 

Rhyolite vs Granite 0.002 

Rhyolite vs Basalt 0.023 

Stone Sandstone vs Rhyolite 0.023 

P Sandstone vs Basalt <0.001 

Sandstone vs Rhyolite <0.001 

Granite vs Basalt 0.050 

Granite vs Rhyolite <0.001 

Na Granite vs Rhyolite <0.001 

Basalt vs Rhyolite 0.001 

Rhyolite vs Sandstone 0.002 

Zn Basalt vs Rhyolite 0.015 

Mn Sandstone vs Granite 0.002 

  Sandstone vs Rhyolite 0.004 

B Sandstone vs Basalt 0.020 

  Sandstone vs Rhyolite 0.001 

  Granite vs Basalt 0.024 
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  Granite vs Rhyolite 0.001 

SOC Sandstone vs Rhyolite 0.002 

  Granite vs Rhyolite 0.003 

  Basalt vs Rhyolite 0.018 

S Basalt vs Rhyolite 0.017 

 

6.3.3 Macroinvertebrate community structure  

Based on PERMANOVA analysis, significant differences in macroinvertebrate community 

structure among geological types (Pseudo–F = 11.925, df = 1, p < 0.001) and hydroperiods 

(Pseudo–F = 1750 df = 3, p = 0.027) were observed. However, no significant (p > 0.05) pairwise 

combinations were observed for the geological types of macroinvertebrate communities. A 

total of 5 145 individual macroinvertebrates belonging to 41 genera/taxa and 9 orders (i.e., 

Hemiptera, Coleoptera, Crustacea, Mollusca, Annelida, Diptera, Odonata, Trichoptera, 

Ephemeroptera) were identified from the 12 pan wetlands across both hydroperiods (29 taxa– 

high hydroperiod, 12 taxa – low hydroperiod). The Annelida, Crustacea, Hemiptera, Mollusca 

and Trichoptera represented most of the taxa during the high hydroperiod, and Crustacea, 

Diptera, Hemiptera, Odonata and Mollusca were among the most dominant groups in the low 

hydroperiod. 

Two–way ANOSIM results indicated significant differences among hydroperiods (Global R = 

0.80, p < 0.001) and geological types (Global R = 0.39, p < 0.001). The SIMPER analysis 

indicated the main drivers for the dissimilarity (86.9 %) between high and low hydroperiod 

were Anisops sp. (16.4 %), Enithares sp. (15.0 %) and Cypridoidea (12.9 %). These drivers 

were similar between high (42.0 %) and low (42.1 %) hydroperiods. For the high hydroperiod, 

Cypridoidea (28.3 %), Enithares sp. (18.7 %), Ecnomus sp. (16.9 %) and Laccotrephes sp. 

(10.2 %) were the dominant taxa, whereas for the low hydroperiod, Enithares sp. (32.2 %), 

Anisops sp. (29.3 %) and Chironominae (10.9 %) were the dominant taxa contributing to 

differences in community structure.  

 

For the different geological types, the dominant taxa were Laccotrephes sp. (28.5 %), Enithares 

sp. (25.0 %), Cypridoidea (22.0 %) and Branchiopodidae (11.7 %) in sandstone, Enithares sp. 

(34.7 %), Cypridoidea (22.8 %), Ecnomus sp. (15.9 %) in granite,, Cypridoidea (30.8 %), 

Ecnomus sp. (20.2 %), Enithares sp. (15.3 %), Anisops sp. (12.6 %) and Lymnaea truncatula 
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(10.2 %) in basalt, and Potamonautes sp. (32.1 %) and Lepidurus apus (21.0 %) in rhyolite 

pans. The ANOSIM analysis indicated significant (p < 0.05) pairwise comparisons for all 

geological types of combinations, with SIMPER analysis highlighting important taxa driving 

the dissimilarities (Table 6.5). 

In general, the %EPT were high during the high hydroperiod (Table 6.4). Species abundance 

was high during the low hydroperiod, with the granite pans having high particularly high 

abundance when compared to the other geological types.  Two–way ANOVA analysis 

indicated significant differences (p < 0.05) among hydroperiods for taxa richness, abundances, 

%Trichoptera, %Diptera and %EPT and significant differences (p < 0.05) among the geological 

types for abundances and %EPT (Table 6.5). Tukey’s posthoc analysis highlighted significant 

differences (p = 0.015) in %EPT between sandstone and basalt pans. 

Table 6.4 Mean (± standard deviation) of macroinvertebrate abundances and community 
metrices observed in high and low hydroperiods across pan wetlands with 
different geological types (sandstone, granite, basalt and rhyolite) located in the 
central KNP, South Africa 

Taxa Abbrevi

ations 

High hydroperiod Low hydroperiod 

Sands

tone 

Grani

te 

Basalt Rhyol

ite 

Sandsto

ne 

Granite Basalt Rhyoli

te 

Annelida                  

Salifidae Salifida 8.4 ± 

16.6 

  1.6 ± 

2.5 

          

Aliolimnatis sp. AliolSp 1.2 ± 

2.5 

5.1 ± 

12.5 

    0.5 ± 

1.1 

0.5 ± 

0.9 

3.8 ± 

2.9 

0.3 ± 

0.4 

Oligochaeta  Oligocha               2.1 ± 

0.3 

Crustacea                  

Streptocephalus 

sp. 

Branchio 15.5 ± 

26.6 

3.7 ± 

9.2 

11.5 ± 

16.6 

22.2 ± 

35.8 

24.3 ± 

28.1 

2 ± 4     

Cypridoidea Cyprid 31.2 ± 

30.1 

39.2 ± 

32.8 

42.9 ± 

28.2 

18.1 ± 

28.5 

31.1 ± 

23.6 

4.2 ± 

8.2 

  18.7 ± 

10.8 

Lepidurus apus LepiApu

s 

  1.2 ± 

3.1 

0.8 ± 

2.1 

13.7 ± 

16.1 

        

Triops sp. PotamSp       25.8 ± 

28.4 

        

Coleoptera                  

Acidocerinae Acidocer   0.6 ± 

1.5 

0.2 ± 

0.5 
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Hydrocanthus 

sp. 

HydrcSp     0.4 ± 

1.0 

          

Hydrochus sp. HydroSp 0.5 ± 

0.8 

1.2 ± 

3.1 

            

Rhantus sp. RhantSp 1.1 ± 

2.2 

2.9 ± 

3.3 

1.4 ± 

2.2 

  0.3 ± 

0.6 

0.6 ± 

0.5 

  0.3 ± 

0.5 

Regimbartia sp. RegimSp   3.0 ± 

4.8 

0.4 ± 

0.9 

1.2 ± 

2.1 

0.5 ± 

1.1 

0 ± 0.1     

Copelatus sp. CopelSp       0.1 ± 

0.3 

        

Hydrophilus 

aculeatus 

HydrAcu

l 

  0.4 ± 1 0.4 ± 

1.1 

          

Berosus sp. BerosSp     0.8 ± 

1.2 

          

Stenelmus sp SteneSp     0.2 ± 

0.5 

          

Spercheus sp. SpercSp     0.2 ± 

0.4 

          

Cybester sp. CybesSp                 

Hydaticus 

exclamations  

HydrExc

Sp 

            2.1 ± 

4.1 

  

Diptera                  

Ochthera sp OchthSp       0.8 ± 

2.1 

      0.3 ± 

0.5 

Culex sp. CulexSp             0.3 ± 

0.6 

  

Chrysops sp. ChrysSp         9.5 ± 19       

Chironominae Chirono

m 

        9.7 ± 

12.9 

36.4 ± 

41.7 

2.1 ± 

3.7 

3.2 ± 

0.9 

Ephemeropter

a 

                 

Afroptilum 

sudafricanum 

AtrpSudf             5.2 ± 

10.4 

  

Hemiptera                  

Appasus sp. AppasSp   1.3 ± 

1.6 

  0.3 ± 

0.7 

0.1 ± 

0.2 

0.1 ± 

0.1 

    

Enithares sp. EnithSp 14.2 ± 

12.1 

24.6 ± 

22.2 

1.6 ± 

1.3 

6.7 ± 

13.2 

9.7 ± 

12.2 

33.4 ± 

26.6 

37.9 ± 

8.3 

14.1 ± 

15.5 
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Hydrometra sp. HydrmS

p 

  0.5 ± 

1.3 

            

Laccotrephes 

sp. 

LacctSp 20.6 ± 

21.2 

1.6 ± 

1.8 

            

Ranatra sp. Ranatra 0.6 ± 

1.5 

            0.3 ± 

0.4 

Sigara sp. Sigara 0.5 ± 

1.3 

        1.1 ± 

0.7 

0.3 ± 

0.6 

1.2 ± 

1.8 

Anisops sp. AnispSp         10.2 ± 

9.4 

17.7 ± 

19.7 

48.2 ± 

13.2 

38.6 ± 

47.4 

Neomecrocons 

sp. 

Neomecr

c 

              0.6 ± 

0.9 

Mollusca                  

Galba 

truncatula 

LymnTr

un 

  2.1 ± 

5.1 

18.1 ± 

19.1 

1.8 ± 

2.9 

        

Pisidium sp. PisidSp 3.1 ± 

7.6 

    1.0 ± 

2.5 

        

Pseudosuccinea 

columella 

PseuCol

m 

    0.4 ± 

1.1 

  2.6 ± 

4.3 

3.6 ± 

4.5 

    

Melanoides 

tubercullata 

MelnTub

r 

              9.8 ± 

11.6 

Bellamya 

capillata 

BellCapl         0.2 ± 

0.4 

      

Trichoptera                  

Ecnomus sp. EcnomS

p 

2.4 ± 

5.1 

11.6 ± 

8.3 

17.9 ± 

9.4 

6.8 ± 

11 

        

Odonata                  

Anax speratus  AnxSprS

p 

  0.3 ± 

0.8 

0.2 ± 

0.5 

0.9 ± 

2.2 

        

Pseudogrion sp. PseudSp     0.4 ± 

0.9 

  0.7 ± 

1.5 

    8.6 ± 

7.7 

Pinheyschna sp. PinheSp               1.0 ± 

0.3 

Metrices                   

Taxa richness  5.7 ± 

1.6 

6.0 ± 

1.7 

6.8 ± 

2.0 

4.5 ± 

1.8 

5.8 ± 

2.4 

6.8 ± 

1.5 

4.5 ± 

0.6 

11.0 ± 

1.4 

Abundances  45.3 ± 

37.9 

37.2 ± 

15.0 

59.8 ± 

21.7 

38.8 ± 

37.1 

205.5 ± 

242.9 

682.3 ± 

580.8 

56.8 ± 

45.6 

140.5 ± 

20.5 
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Shannon–

Wiener 

 1.19 ± 

0.31 

1.23 ± 

0.31 

1.27 ± 

0.42 

0.97 ± 

0.33 

1.21 ± 

0.16 

0.93 ± 

0.12 

1.04 ± 

0.28 

1.49 ± 

0.55 

Simpson  0.58 ± 

0.15 

0.59 ± 

0.13 

0.6 ± 

0.19 

0.52 ± 

0.15 

0.64 ± 

0.03 

0.50 ± 

0.08 

0.59 ± 

0.11 

0.64 ± 

0.24 

Evenness  0.62 ± 

0.16 

0.61 ± 

0.14 

0.55 ± 

0.08 

0.67 ± 

0.23 

0.63 ± 

0.13 

0.39 ± 

0.08 

0.65 ± 

0.16 

0.42 ± 

0.17 

%Trichoptera  2.4 ± 

5.1 

11.6 ± 

8.3 

17.9 ± 

9.4 

6.8 ± 

11 

        

%Ephemeropter

a 

             5.2 ± 

10.4 

  

%EPT  2.4 ± 

5.1 

11.6 ± 

8.3 

17.9 ± 

9.4 

6.8 ± 

11 

    5.2 ± 

10.4 

  

%Diptera        0.8 ± 

2.1 

19.3 ± 

31.9 

36.4 ± 

41.7 

2.4 ± 

4.3 

3.6 ± 

1.5 

 

Table 6.4 Two–way ANOSIM and SIMPER testing groups on macroinvertebrates 
communities during high and low hydroperiods in pan wetlands across four 
geological types located in the central KNP 

Groups Global 

Test R 

Pairwise 

test R 

p Dissimilarity 

distance 

Main dissimilarity contributes 

taxa 

+-Hydroperiods 0.80 
 

<0.001 
  

High water × Low water 
 

0.8 <0.001 86.9 Anisops sp. (16.4 %), Enithares 

sp. (15.0 %), Cypridoidea (12.9 

%) 

Geological types 0.39 
 

<0.001 
  

Sandstone × Granite 
 

0.2 0.032 66.1 Cypridoidea (15.2 %), Enithares 

sp. (14.1 %), Branchiopodidae 

(11.0 %) 

Sandstone × Basalt 
 

0.62 <0.001 70.6 Cypridoidea (16.2 %), 

Branchiopodidae (12.4 %), 

Enithares sp. (10.7 %), 

Sandstone × Rhyolite 
 

0.41 0.004 78.9 Cypridoidea (15.0 %), 

Branchiopodidae (13.0 %), 

Laccotrephes sp. (11.11 %), 

Potamonautes sp. 10.7 %) 

Basalt × Granite 
 

0.36 0.001 62.2 Enithares sp. (16.5 %), 

Cypridoidea (11.9 %) 
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Rhyolite × Granite 
 

0.3 0.009 74.9 Cypridiodea (16.2 %), Enithares 

sp. (13.9 %), Potamonautes sp. 

(11.1 %) 

Rhyolite × Basalt 
 

0.53 <0.001 72.8 Cypridoidea (20.4 %), Lymnaea 

truncatula (10.3 %), 

Branchiopodidae (10.0 %) 

 

6.3.4 Relationship between macroinvertebrate community structure and environmental 

variables  

The canonical correspondence analysis (CCA) axes 1 and 2 explained 35.8 % of the fitted 

cumulative variation in the macroinvertebrate community structure and environmental 

variables across different hydroperiods and geological types. The macroinvertebrate 

communities were distinguished between high and low hydroperiods across axis 2 (Figure 6.1). 

About nineteen sediment (i.e., resistivity, pH, nitrate, Mn, Zn, S, Fe, stone, K, Cu, benthic chl–

a, B, SOC, H+) and water (i.e., temperature, nitrate, TDS, salinity, P, phosphate) variables were 

significant in structuring macroinvertebrate community (Figure 6.1a). The low hydroperiod 

pans were negatively associated with CCA axis 1. They were characterised by benthic chl–a, 

phosphate, stone, Cu, Fe, C, B, P, and H+, and associated taxa such as Oligochaeta, Hyditicus 

exclamationis, Cybester sp., Ranatra sp., Atroptilum Sudafricanum, Pinheyschna sp., 

Enithares sp., and Melanoids tubarcellata (Figure 6.1a). Macroinvertebrate taxa from the 

different geological type pans did not show clear separation patterns and had substantial 

overlaps (Figure 6.1b). High hydroperiod pans were associated with CCA axis 1 and were 

characterised by sediment–pH, temperature, nitrate, salinity, TDS, Mn, Zn and S (Figure 6.1a). 

These pans were associated with taxa such as Ecnomus sp., Anax speratus, Pseudosuccinea 

columella, Sigara sp., Laccotrephes sp., Appasus sp., Hydrochus sp., Cypridoidea, Hydrometra 

sp., and Galba truncatula (Figure 6.1b). During the high hydroperiod, macroinvertebrate taxa 

showed substantial overlaps in the sandstone, granite and basalt pans, with the rhyolite pans 

clearly separating from the other geological types (Figure 6.1b). 

Using Pearson correlations, a significant and weak negative relationship between 

macroinvertebrate abundances and water pH (r = –0.34, p = 0.040) was observed. In contrast, 

a weak positive relationship was observed between macroinvertebrate abundances and 

conductivity (r = 0.32, p = 0.049), salinity (r = 0.33, p = 0.044), Cu (r = 0.32, p = 0.050), Fe (r 

= 0.35, p = 0.033) and S (r = 0.40, p = 0.012). 
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Figure 6.1 Canonical correspondence analysis of macroinvertebrate community structure 

with sediment and water variables across hydroperiods and geological types for 
pan wetlands found within the central KNP: (a) samples, water, and sediment 
variables, and (b) taxa, water and sediment variables. Abbreviations: L – low 
hydroperiod, H – high hydroperiod and the letters next to L and H indicates the 
geological types i.e., G – granite, B – basalt, S – sandstone and R – rhyolite, sed 
– sediment, TDS – total dissolved solids, chl–a – chlorophyll–a, and taxa 
abbreviations are highlighted in Table 6.4 
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6.4. Discussion  

The study showed that hydroperiod played a significant role in structuring or determining the 

macroinvertebrate diversity and abundances within the different pan systems. 

Macroinvertebrates were more diverse during high hydroperiod except for rhyolite pans, and 

more abundant during the low hydroperiod. These results partly supported the study’s 

hypothesis, because while macroinvertebrate diversity was higher in the high hydroperiod, 

macroinvertebrate abundances was found to be higher during the low hydroperiod. This may 

be the result of reduced habitat suitability and increased reproductive rates, in response to 

limited water. Furthermore, increased reproduction rates may result in the production of resting 

eggs or propagules that will disperse to new environments/habitats (Wasserman et al., 2018). 

The findings of this study are supported by previous research indicating that changes in water 

and sediment quality can have a significant impact on the macroinvertebrate composition and 

community (Dalu and Chauke, 2020; Halabowski and Lewin, 2021; Dalu et al., 2022; Munyai 

et al., 2023). According to Masina et al. (2023), various macroinvertebrate taxa exhibit distinct 

preferences for specific ranges of environmental variable characteristics.  

Several water and sediment variables during both the low and high hydroperiod were found to 

have influenced macroinvertebrate community structuring. This supports the findings of 

Masina et al. (2023), which found that water (i.e., temperature, dissolved oxygen, pH, salinity, 

conductivity), physical (i.e., stone composition) and sediment (i.e., sulphur, Na) parameters 

were found to have a significant impact on the macroinvertebrate communities. Moreover, 

Dalu and Chauke (2020) found that variables such pH, phosphate, temperature, ammonium, 

macrophyte cover, conductivity and water depth were significant in structuring 

macroinvertebrate communities in a subtropical wetland system.  

 

Significant differences in macroinvertebrate community metrices were observed across 

different geological types, and across hydroperiods. Both Shannon–Wiener and Simpson 

diversity index values were higher during high hydroperiod. The EPT metric index refers to 

Ephemeroptera, Plecoptera, and Trichoptera, three distinct orders that have been demonstrated 

to have a heightened susceptibility to environmental changes within the habitat (Hickey and 

Clements, 1998; Girgin et al., 2010; Masina et al., 2023). According to Ab–Hamid and Rawi 

(2017), the presence of EPT species denotes that water and sediment parameters in the habitat 

are within the tolerance limit of the taxa. In our study EPT values could be calculated at all 
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geological types during high hydroperiod, whereas in the low hydroperiod, the EPT values 

were only recorded in the basalt pans. This suggest that’s the water quality is comparatively 

better in the high hydro period when compared to the low hydro period.  

The diversity of Diptera was found to be low in this study, with Chironominae being only 

identified during the low hydroperiod. These results correspond with Masina et al. (2023) who 

observed Diptera during low hydroperiods in the Khakhea Bray pan wetlands, South Africa. 

However, they contrast with the findings of Odume and Muller (2011) and Dalu and Chauke 

(2020), who found Chironomidae in the summer months (i.e., high hydroperiod). 

Macroinvertebrate diversity was significantly different between the high and low hydroperiod, 

potentially due to each taxa’s response to environmental change (Ferreira et al., 2014; 

Aschalew and Moog, 2015).  

 

Although a weak negative relationship between macroinvertebrate abundances and water pH 

was observed, a weak positive relationship was observed between macroinvertebrate 

abundances and conductivity and salinity. The pH sensitivity of macroinvertebrates was taxon-

specific, with certain taxa such as the Afroptilum sudafricanum (Ephemeroptera) and Ecnomus 

sp (Trichoptera) being adversely affected by acidic conditions. These results are consistent with 

Courtney and Clements (1998) who found that the primary cause of decline in mayflies 

(Ephemeroptera) abundances was due to their sensitivity towards highest acid concentration. 

 

The high benthic chl–a concentration observed during the low hydroperiod may be a result of 

eutrophication, as was alluded to by Dalu and Chauke (2020). This could potential harm aquatic 

biota resulting in the reduction biodiversity. Although these chl-a concentrations were high 

during the low hydroperiod, there were generally low when compared to other studies in the 

region (e.g., Nhiwatiwa et al., 2019; Dalu et al., 2022; de Necker et al., 2023). Moreover, high 

nutrient concentration (i.e., ammonium, phosphate, nitrate) was observed in the low water 

period and these results were consistent with the findings by Dalu and Chauke (2020) 

indicating an increase of chl–a concentration along a nutrient gradient.  

 

Based on the findings, it is apparent that a uniform strategy for wetland protection may not 

yield desired outcomes. Hence, an understanding that macroinvertebrate diversity is influenced 

by various geological types and hydroperiods might provide valuable insights for informing 

policy decisions to optimise the preservation of biodiversity by formulating conservation 
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strategies that are tailored to the unique requirements of individual wetland types. Moreover, 

policy makers may incorporate the research findings of the impact of geological type and 

hydroperiod on macroinvertebrate diversity into land use planning procedures. This approach 

will consider the of protection of various wetland habitats in zoning restrictions as well as in 

development plans. However, despite the influence the study may have on policy development. 

It only considered the geological type and hydroperiod, were other significant environmental 

factors such as vegetation cover, and anthropogenic influences may have a great influence on 

the variety of macroinvertebrates. Moreover, the accuracy of the results may have been 

compromised due to limitations in the sample duration. A study conducted over a long period 

of time may have the potential to yield more accurate results and a better understanding of the 

seasonal shifts in macroinvertebrate diversity.  

 

6.5 Conclusion  

The findings of the study revealed that macroinvertebrate communities were influenced by 

hydroperiod and geological types in pans. Moreover, the results indicated that hydroperiod, 

which refers to the duration and frequency of inundation, has a substantial influence on the 

diversity of macroinvertebrates. Specifically, low hydroperiods tend to result in a decline in 

biodiversity within pan wetlands. With sediments having a crucial role in providing sustenance 

and habitat, particularly for organisms such as chironomids and other benthic invertebrates. 

Sediment chemistry being influenced by geological types, had an impact on the nutrient content 

and substrate features that were essential for the habitats of macroinvertebrates. Furthermore, 

the quality of water was a crucial factor, with parameters such as pH, DO, and nutrient 

concentrations having a direct impact on the diversity, abundance, and health of 

macroinvertebrates. The research underscores the necessity of implementing conservation 

approaches that are not a one-size fit all. An understanding of these complex interconnections 

between geological type, hydroperiod, sediment chemistry, and water chemistry necessitates 

the implementation of site and hydroperiod specific conservation and management strategies, 

providing wetland managers proactive solutions to proficiently safeguard these ecological 

systems, guaranteeing the enduring existence of varied macroinvertebrate populations and the 

overall well-being of pan wetlands.
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CHAPTER SEVEN 

CHLOROPHYLL-A CONCENTRATION DYNAMICS IN THE LETABA 

SECTION, KRUGER NATIONAL PARK, SOUTH AFRICA 
 

7.1 Introduction 

Phytoplankton is a critical component of primary production in wetlands (Molinari et al., 2021) 

as it contributes to aquatic foodweb dynamics (Thuy et al., 2018). Phytoplankton dynamics 

using chlorophyll-a concentration as a proxy for biomass within wetland systems are a critical 

indicator of primary productivity and overall ecosystem health (Dalu et al., 2020). As the 

primary pigment in phytoplankton, chlorophyll-a reflects the abundance of photosynthetic 

organisms, which form the base of aquatic food webs. In groundwater-dependent wetlands, 

these dynamics are influenced by a complex interplay of factors, including nutrient availability, 

light penetration, water temperature, and hydrological fluctuations. Seasonal variations, 

anthropogenic impacts, and climatic changes further modulate these patterns. Additionally, 

chlorophyll variations in groundwater-dependent wetlands have not been extensively 

researched, yet they are critical proxies of productivity. 

Phytoplankton also play important roles in the biogeochemical cycles of many elements in 

these systems through uptake, incorporation, or production during photosynthesis and nitrogen 

fixation. (Basu and Mackey, 2018). As unicellular photosynthetic organisms, phytoplankton 

growth is primarily driven by light and nutrients (Dalu and Wasserman, 2018; Hopkins et al., 

2021). One of the primary reasons for measuring phytoplanktonic biomass is to estimate 

primary production rates. The total chlorophyll-a (chl-a) concentration is the most widely used 

proxy of phytoplankton biomass because it is coloured, specific to, and shared by all primary 

producers (Huot et al., 2007). The study of chl-a in relation to sediment chemistry dynamics in 

floodplain wetlands is important because sediments can potentially indicate the status of 

contamination in various floodplain pans across different hydroperiods (Dalu et al., 2020). 

Sediments can also provide information about different human activities that are taking or have 

taken place in a particular catchment where floodplain wetlands are located (Taylor and Owens, 

2009). In natural aquatic environments, sediments are the main sink for various metals, but due 

to changes on environmental conditions such as pH, water temperature, and oxygen redox 

potential, sediments can potentially act as a source of metals (Chon et al., 2012; Li et al., 2020). 
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Metal elements entering the aquatic systems can be accumulated at the bottom, subject to the 

absorptive capacity and textural composition of sediments (Kuriata-Potasznik et al., 2016).    

Therefore, understanding chlorophyll-a dynamics is essential for assessing water quality, 

managing wetland resources, and predicting responses to environmental stressors, making it a 

key focus in ecological and conservation studies. 

 

7.2 Materials and methods 

7.2.1 Pelagic chlorophyll-a concentration 

Without disturbing the sediment, two 250 mL polyethylene bottles were used to collect water 

from each site and hydroperiods for and chlorophyll–a (chl–a) concentration determination in 

the laboratory. The pelagic chl–a concentrations were determined as a proxy for quantifying 

phytoplankton biomass by filtering the water samples through a 0.7 µm GIC Scientific glass 

fibre filters. After filtration, the filters were placed individually in 15 mL centrifuge tubes 

containing 10 mL of 90 % acetone solution and then stored in a freezer for at least 24 hours to 

allow for chl–a extraction (see Lorenzen, 1967 methodology). After 24 hours, the samples were 

removed from the freezer and centrifuged at 3000 rpm for 10 minutes before 2 mL was 

extracted from each sample to measure absorbance at the wavelength of 665 nm and 750 nm 

before and after acidification by 0.01 M hydrochloric acid using a SPECTRO star NANO 

(BMG LabTech GmbH, Ortenberg). 

7.2.2 Benthic chlorophyll-a concentration 

Benthic algal core samples (volume = 16.1 cm3) were collected from each pan (n = 2) per 

hydroperiod, using a Perspex sediment corer of 20 mm internal diameter inserted by hand into 

the sediment. About 20 mL of 90 % acetone was introduced into the container with the sediment 

sample, swirled in the vortex, and the container with the sample was put in a freezer for 24 h 

for chl–a extraction. After 24 hours, samples were removed from the freezer and centrifuged 

at 3000 rpm for 10 minutes before 2 mL was extracted from each sample to measure absorbance 

at the wavelength of 665 nm and 750 nm before and after acidification by 0.01 M hydrochloric 

acid using a SPECTRO star NANO (BMG LabTech GmbH, Ortenberg) following Sartory and 

Grobbelaar (1984) and Human et al. (2018). 
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7.2.3 Data analysis  

Before multivariate analysis, pelagic and benthic chlorophyll-a concentrations were log–

transformed to meet two basic assumptions of an ANOVA (i.e., homogeneity and normality). 

The differences in pelagic and benthic chlorophyll-a concentrations between hydroperiods (i.e., 

high and low) and geological types (i.e., sandstone, granite, basalt and rhyolite) were assessed 

using a two–way ANOVA analysis, after testing for homogeneity of variance and normality of 

distribution using SPSS version 25. Tukey’s post–hoc analysis was employed to assess the 

significant values that were different for water and sediment chemistry variables.  

7.3 Results 

Pelagic chlorophyll–a concentration during the high hydroperiod was almost similar (mean 0.1 

mg m–3) across the geological types, with the basalt pans having a pelagic chlorophyll-a 

concentration (Figure 7.1a). The low hydroperiod had high chlorophyll-a concentrations 

compared to the high hydroperiod with the rhyolite pans having high chlorophyll-a 

concentrations (Figure 7.1a). No significant differences (ANOVA, F = 0.553, df = 3, p = 0.650) 

were observed for geology types, however, hydroperiods were found to be significantly 

(ANOVA, F = 4.220, df = 1, p = 0.049) different in terms of chlorophyll-a concentrations.  

Benthic chlorophyll–a concentrations were significantly high during the low hydroperiod in 

the sandstone, rhyolite and basalt pans, with almost similar concentrations being found in the 

granite pans (Figure 7.1b). We found be significantly different (ANOVA, F = 29.556, df = 1, p 

< 0.001) chlorophyll-a concentrations among hydroperiods, with similarities being observed 

for geological types (ANOVA, F = 0.540, df = 3, p = 0.065). 
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Figure 7.1 (a) Pelagic and (b) benthic chlorophyll-a concentration recorded in pans across 
different geological types during the low and high hydroperiod 

 

Using Pearson correlations, we found significant and positive relationship between pelagic 

chlorophyll-a concentration with Zn (r = 0.44, p = 0.006), Fe (r = 0.37, p = 0.024), C (r = 0.38, 
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p = 0.020) and S (r = 0.35, p = 0.031) (Figure 7.2). Pelagic chlorophyll-a concentration is a 

key indicator of phytoplankton biomass, is critically influenced by the availability of trace 

metals such as Zn and Fe, as well as elements such as C and S as indicated by the study results. 

These relationships underpin aquatic primary productivity and biogeochemical cycles, shaping 

freshwater ecosystems and carbon sequestration. Zinc (Zn) and Fe act as micronutrients 

essential for phytoplankton physiology. Iron is a cofactor in enzymes involved in 

photosynthesis (e.g., cytochrome complexes) and nitrogen assimilation, often limiting 

productivity in high-nutrient, low-chlorophyll regions such as pan systems. Zinc though less 

studied, is crucial for carbonic anhydrase, an enzyme facilitating CO₂ hydration, thereby 

enhancing carbon fixation (Sunda, 2012). Similarly, Zn and Fe can alleviate co-limitation, 

boosting chlorophyll-a concentrations when both are available (Twining and Baines, 2013). 

Carbon (C) forms the structural backbone of organic matter. Phytoplankton assimilate 

dissolved inorganic carbon via photosynthesis, directly linking C availability to chlorophyll-a 

production. Elevated CO₂ levels can stimulate growth, particularly under nutrient-replete 

conditions, though responses vary by species (Riebesell, 2004). Organic carbon exudates also 

foster microbial loops, indirectly supporting phytoplankton communities.  

Sulphur (S) contributes to amino acids (cysteine, methionine) and dimethylsulfoniopropionate, 

a compound implicated in osmoregulation and antioxidant defence. DMSP breakdown 

products influence cloud formation and climate feedback, while intracellular S availability 

supports protein synthesis and cellular integrity, enhancing phytoplankton resilience and 

biomass (Stefels et al., 2007). Collectively, these elements drive phytoplankton dynamics. Fe 

and Zn enable metabolic functions, C provides energy and structure, and S supports stress 

adaptation. Their interplay underscores the sensitivity of pelagic chlorophyll-a concentrations 

to biogeochemical cycles, with implications for ocean productivity and climate regulation. 

Understanding these relationships aids in predicting responses to anthropogenic changes, such 

as trace metal deposition or ocean acidification. 
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Figure 7.2 Relationship between pelagic chlorophyll-a concentration with selected 
environmental variables among pans 

 

Based on Pearson correlation, water phosphate (r = 0.50, p = 0.002), total dissolved solids (r = 

0.36, p = 0.027), salinity (r = 0.40, p = 0.014), sediment phosphorus (r = 0.41, p = 0.010), K (r 

= 0.32, p = 0.050) and Fe (r = 0.43, p = 0.008) were found to significant and positively related 

to benthic chlorophyll-a concentration (Figure 7.3a, c, d, f, g, h). However, pH (r = -0.33, p = 

0.042) and pan surface area (r = -0.37, p = 0.023) were found to be significantly negatively 

correlated with benthic chlorophyll-a concentration (Figure 7.3b, e).  
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Figure 7.3 Relationship between pelagic chlorophyll-a concentration with selected 
environmental variables among pans 

 

Benthic chlorophyll-a concentration is a key indicator of phytoplankton biomass in wetland 

sediments and is influenced by multiple physicochemical factors that enhance primary 

productivity. Phosphorus availability, particularly water phosphates are a critical driver and are 
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often considered to be a limiting nutrient for phytoplankton growth (Smith and Schindler, 

2009). Elevated phosphate concentrations directly stimulate benthic algal proliferation, 

increasing chlorophyll-a synthesis. Similarly, sediment phosphorus acts as a reservoir, 

releasing soluble reactive phosphorus into the water column under anoxic conditions, further 

fuelling phytoplankton biomass (Reddy et al., 1999). 

Total dissolved solids (TDS) and salinity also exhibit positive correlations with benthic 

chlorophyll-a concentration. The TDS encompasses ions such as calcium and magnesium, 

which can enhance nutrient bioavailability. In wetlands, moderate salinity (a component of 

TDS) supports halotolerant phytoplankton species, fostering community shifts that boost 

productivity (Wetzel, 2001). Salinity-driven ion gradients may additionally stabilise cell 

metabolism, optimising photosynthetic efficiency. Sediment-derived K and Fe further 

contribute to chlorophyll-a dynamics. Potassium is a macronutrient which regulates enzyme 

activation and osmotic balance in phytoplankton, promoting growth under high sediment 

concentrations. Iron is integral to chlorophyll synthesis and electron transport in photosynthesis 

(Sunda and Huntsman, 1995). Moreover, Fe mediates phosphorus cycling; under reducing 

conditions, Fe (III) oxides dissolve, releasing adsorbed phosphate into the water column, 

indirectly stimulating phytoplankton biomass (Reddy et al., 1999). These interlinked factors 

underscore the synergistic role of nutrients and ions in sustaining benthic phytoplankton. 

Wetlands, as dynamic interfaces, thus rely on sediment-water exchanges and ionic composition 

to modulate primary production. Understanding these relationships aids in managing 

eutrophication and conserving wetland ecosystems. 

In freshwater wetlands, benthic chlorophyll-a concentration exhibits negative relationships 

with both pH and pan surface area, influenced by ecological and physicochemical dynamics. 

Elevated pH often correlates with reduced benthic chlorophyll-a concentration, potentially due 

to nutrient limitation. In alkaline conditions, phosphorus (P) binds to calcium and/or 

magnesium, forming insoluble complexes (Wetzel, 2001), thereby limiting bioavailability for 

benthic phytoplankton. Additionally, high pH may favour submerged macrophytes over 

phytoplankton, intensifying competition for light and nutrients (Vadeboncoeur et al., 2002). In 

contrast, in lower pH environments, organic matter decomposition releases dissolved organic 

carbon and nutrients, potentially enhancing benthic phytoplankton growth (Stevenson et al., 

1996). Pan surface area, representing open water extent, also inversely relates to benthic 

chlorophyll-a concentration. Large pans experience greater wind-driven turbulence, 

resuspending sediments and reducing benthic phytoplankton stability (Smith et al., 2015). 
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Increased surface area may dilute nutrient concentrations, limiting phytoplakton proliferation, 

while expanded photic zones favour phytoplankton over benthic communities (Vadeboncoeur 

et al., 2018). Small, vegetated pans reduce wind disturbance and provide organic substrates, 

fostering benthic phytoplankton growth. Furthermore, larger pans often undergo fluctuating 

water levels, disrupting benthic habitat continuity (Coops et al., 2003). Thus, these 

relationships underscore the sensitivity of benthic phytoplankton to abiotic factors. 

Management strategies aiming to preserve wetland biodiversity or regulate phytoplankton 

biomass should consider pH moderation through buffering and maintaining heterogeneous 

wetland morphometry to balance open water and vegetated areas. Future research should 

explore the interactive effects of pH, hydrology, and nutrient fluxes to refine predictive models 

for wetland ecosystems. 

 

7.4 Conclusion 

Sediment quality variables were found to be significant drivers of both the pelagic and benthic 

chlorophyll-a concentrations within the pans. The chlorophyll-a concentration tended to vary 

across hydroperiods, highlighting the importance of seasonal changes in the water as important 

drivers for chlorophyll-a concentration. Hydroperiod significantly influences chlorophyll-a 

concentrations more than geological type, with higher levels observed during the low 

hydroperiod. Trace elements (Zn, Fe) and nutrients (C, S, P, K) play a crucial role in 

phytoplankton productivity. Benthic chlorophyll-a is positively linked to salinity and TDS but 

negatively affected by high pH and large pan surface areas due to nutrient binding and sediment 

resuspension. Effective wetland management should focus on maintaining nutrient balance, 

stable hydrology, and optimal pH conditions to support productivity and prevent 

eutrophication. Further studies using GIS/remote sensing are required to quantify and map 

chlorophyll-a concentration over large spatiotemporal scales. 
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CHAPTER EIGHT 

MAPPING AND MONITORING OF VEGETATION SPECIES DIVERSITY, 

STRUCTURAL, AND PHENOTYPICAL TRAITS IN GROUNDWATER-

DEPENDENT ECOSYSTEMS 

 

8.1. Introduction  

Vegetation biodiversity in dryland ecosystems is crucial for ecological integrity, human well-

being, and global sustainability. Drylands account for 41% of the Earth’s land area (UNCCD, 

2019) and provide habitat to 35% and 20% of the global diversity hotspots, respectively, 

underscoring the significance of vegetation biodiversity in sustaining essential ecosystem 

functions. Dryland areas are defined by their aridity index (AI < 0.65), consisting of low and 

unpredictable precipitation and high evapotranspiration rates (Zhang et al., 2023). The 

significance of diverse vegetation in arid regions extends to vital aspects such as soil fertility, 

water regulation, adaptation to climate variability, and the provision of essential resources for 

local communities facing environmental challenges spurred by global changes (Díaz et al., 

2019). In conservation areas like the KNP, the ecological value of varied vegetation is 

amplified, as these areas serve as biodiversity hotspots offering forage, water, and habitat to 

wildlife, particularly during prolonged dry periods (Mpakairi et al., 2022; Rampheri et al., 

2022). These vegetation hotspots usually form part of GDEs (Alaibakhsh et al., 2017), sources 

of sustenance for regionally confined species and endangered wildlife (Mpakairi et al., 2022). 

Apart from the implementation of hydrological surveys, identifying GDEs poses challenges, 

especially when assessing the vegetation reliant on groundwater, which further complicates the 

process (Pérez Hoyos et al., 2016). In dryland areas, natural pans rely on groundwater; thus, 

the vegetation surrounding them is likely dependent on groundwater (Mpakairi et al., 2022). 

The presence of a high-water table around these natural pans replenishes them and supplies 

soil water, supporting the ecological functions of the surrounding vegetation (Albano et al., 

2020; Lamontagne et al., 2005; Mpakairi et al., 2022).  

Vegetation near natural pans tends to exhibit high density and diversity, which may decrease 

as the distance from the pans increases. Climate change and groundwater pollution are 

increasing the reliance on groundwater, posing threats to the quantity and quality of available 

water essential for maintaining the ecological functions of GDEs (Hultine et al., 2020). This 

could result in the degradation of GDEs, leading to biodiversity loss, bush encroachment, and 
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deforestation (Rampheri et al., 2022). Landscape alterations such as disturbance, 

fragmentation, and changes in land cover influence the abundance of rare and endangered 

species, consequently impacting biodiversity (Liu et al., 2021). Indicators such as functional 

diversity loss, habitat loss, population declines, and species invasions highlight the challenges 

in preserving vegetation diversity. To mitigate biodiversity loss, effective management plans 

should rely on comprehensive and timely information regarding the status and trends of 

vegetation diversity within these conservation hotspots (Glanville et al., 2023; Link et al., 2023; 

Liu et al., 2021). This includes an assessment of vegetation species diversity, alpha diversity 

(local species richness), beta diversity (community difference), and gamma diversity (regional 

diversity) (Baldeck and Asner, 2013; Lausch et al., 2020; Luz de la Maza et al., 2002; Rocchini 

et al., 2010). In this regard, robust methodologies suitable for monitoring and assessing 

vegetation biodiversity in GDEs across various scales are essential.  

Generally, vegetation biodiversity studies heavily rely on field survey techniques, which offer 

detailed insights into species richness, abundance, and phenological characteristics of plants. 

While these field surveys accurately quantify alpha diversity (species diversity at local scales), 

works that demonstrate their utility in quantifying beta diversity (differences between two sites) 

are limited even in relation to the quantification of gamma diversity over a broader geographic 

area (Andermann et al., 2022). Furthermore, field survey techniques are time-consuming, 

expensive, and prone to biases when scaled up. Notably, vegetation species sampling in the 

field can often be impacted by observer bias, spatial errors, and historical biases in species 

distribution records (Wang and Gamon, 2019). Alternative methods for estimating diversity, 

such as using occurrence records, floras, and checklists to tally the total number of species 

within large biogeographic regions, exist. Although these approaches do not entail modelling 

distributions of individual species, they are susceptible to biases in data collection. Certain taxa 

may be disproportionately represented in specific checklists and biodiversity repositories, 

potentially skewing estimates. Moreover, this method assumes a uniform diversity value within 

each analysed region, overlooking potential diversity variations within these extensive areas 

(Andermann et al., 2022).  

Estimates of vegetation diversity using remote sensing, particularly those based on the spectral 

variation hypothesis (SVH), offer a rapid and precise means to evaluate vegetation diversity 

across vast and complex landscapes. The SVH suggests that the spectral patterns of diversity 

across extensive landscapes are indicative of vegetation diversity. In landscapes characterised 

by spectral heterogeneity, diverse ecological niches are expected, indicating a correlation 
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between environmental variability and ecological diversity (Rocchini et al., 2004). Based on 

this hypothesis, diversity is inferred from spectral variation, requiring datasets capable of 

capturing subtle differences in spectral patterns. Consequently, data from high spatial and 

hyperspectral sensors have been successful in accurately estimating spectral diversity, whereas 

data from coarse sensors like MODIS have shown poorer performance in this regard (Cleemput 

et al., 2018; Anand et al., 2022).  Zhang et al. (2023) demonstrated that datasets from moderate 

spatial resolution (<30m) could effectively estimate alpha and beta diversity in drylands. The 

applicability of spectral variation in diversity still lacks attention is still limited in drylands. 

However, multispectral sensors such as Sentinel 2 MSI have helped bridge this gap by 

accurately discerning spectral variations due to their moderate spatial resolution and inclusion 

of unique spectral bands like the red edge band, renowned for its optimal influence in 

vegetation mapping applications. Sentinel 2 has displayed considerable promise in mapping 

forest diversity by capturing phenology-related information of tree species through Multi-

Temporal and Spectral-Temporal-Metric data, thereby substantially enhancing the accuracy of 

plant diversity predictions (R2 ranging from 0.37 to 0,68) (Liu et al., 2023; Chrysafis et al., 

2020; Kumar et al., 2022). Nevertheless, computation of gamma diversity at large scales is 

constrained by the computational and financial costs involved. 

Various techniques are commonly used to measure vegetation diversity based on the SVH. 

These include (i) distance from the spectral centroid in spectral space (Rocchini, 2007), (ii) 

variation in NDVI (Gould, 2000), (iii) convex hull volume in principal component space 

(Dahlin, 2016), and (iv) Rao’s Q (Torresani et al., 2019). However, there is still no consensus 

on which SVH technique is superior. Additionally, studies suggest that the spectral coefficient 

of variation is a reliable predictor of vegetation biodiversity. While each technique for 

estimating vegetation diversity has its advantages and limitations, combining multiple 

approaches and fostering interdisciplinary collaboration can enhance the accuracy and 

comprehensiveness of vegetation diversity assessments. Therefore, this study aims to evaluate 

models of vegetation species diversity derived from spectral CV, topographic features, and soil 

moisture to predict Alpha and Beta diversity in potential groundwater-dependent vegetation 

zones. The study also seeks to investigate the effects of distance from pans on vegetation 

diversity and examine temporal trends in vegetation diversity during dry years in the KNP, 

South Africa. 
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8.2 Materials and Methods  

8.2.1 Data collection methods  

Twelve of the Makuleke wetland system natural pans located in the Pafuri area were sampled, 

and the second set of sample plots was within the Letaba region of KNP. The field survey was 

conducted in September 2022 (late dry season), when the pans were mostly dry with a few 

inundated from the Makuleke area. The sampling period was selected to easily discriminate 

vegetation species and pans maintained by groundwater from those that are not. Pans with 

water and green vegetation surrounded by dry vegetation late dry season are likely to be 

receiving groundwater, and thus the green vegetation was groundwater dependent. During the 

field survey, dominant vegetation was identified by a biologist, and pictures were taken to 

validate with information from the iNaturalist plant identification programme. Field plots were 

randomly sampled within the identified potential groundwater-dependent ecosystem zones 

(pGDEZ). These sample plots were distributed along natural pans at the Makuleke area and 

Letaba area within the KNP. The centre of the plot was navigated using a handheld GPS with 

less than 5m. The north-oriented plots were set to measure 100m2 (10m × 10m), moreover, 

this corresponds to the Sentinel-2 imagery. Vegetation surveys were conducted in the plots to 

determine plant species composition and abundance across the pGDEZ and note the 

phenological characteristics. During the field surveys, a total of 23 plots were considered in 

this study for sampling vegetation data in the Maluleke and Letaba regions. The different 

vegetation species at each plot were identified and recorded at each plot location to prepare the 

data matrix for computing alpha and beta diversity. The species were further grouped into 

genera. The spectral Coefficient of variation (CV) was used to calculate vegetation diversity.  

8.2.2 Predicting vegetation diversity  

During the prediction of vegetation diversity, the spectral coefficients of variations were used, 

and these were derived for a harmonised Sentinel-2 data available in the Google Earth Engine 

catalogue. The data was selected because of its improved spatial and temporal resolutions. 

During the analysis, the data were initially filtered by the KNP boundary, and then by date and 

cloud cover. The images selected were collected during the dry season (May-September 2022) 

and had a cloud cover proportion of less than 5%. A total of 7 images were collected, and these 

were composited using the median composite approach to reduce the image stack rather than 

selecting a single date image, which is prone to atmospheric influences. The resulting 

composite image was then used to create a cloud mask at 0.1 as well as a built-up area mask at 

0.5 to eliminate features such as built-up areas as well as water features, amongst others. The 
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thresholds were based on literature and an understanding of the landscape (Mpakairi et al., 

2022). Vegetation diversity has been shown to correlate with CV (Madonsela et al., 2021; 

Oldeland et al., 2010). The coefficient of variation was calculated as the mean CV for each 

wavelength from all the bands within the Sentinel 2 image in GEE using equation 7.1. 

CV=∑2200𝜆𝜆=442(𝜎𝜎(𝜌𝜌𝜆𝜆)µ(𝜌𝜌𝜆𝜆))/ number of bands                          7.1 

Where 𝜌𝜌𝜆𝜆 represents the reflectance at wavelength 𝜆𝜆m and 𝜎𝜎(𝜌𝜌𝜆𝜆) and µ(𝜌𝜌𝜆𝜆) denote the standard 

deviation and average value of reflectance at wavelength 𝜆𝜆 across all the pixels in the image. 

Topographical data, including slope and elevation, were retrieved from a 30m SRTM image 

sourced from the Google Earth Engine (GEE) repository using the specified path (ee. 

Image((USGS/SRTMGL1_003)). These parameters were computed on the GEE platform 

following the methodology outlined by Safanelli et al. (2020). Areas characterised by gentle 

slopes (<3m) and lower elevations are identified as low-flow zones with increased groundwater 

availability. 

Subsurface soil moisture (SUSM) served as an input indicator for vegetation diversity. The 

SUSM data were obtained from the Google Earth Engine repository (ee. 

ImageCollection("NASA_USDA/HSL/SMAP10KM_soil_moisture")). The SUSM was 

extracted for the 2018, 2019 and 2022 dry periods. The SUSM data has a spatial resolution of 

10 km and was resampled to 20m to match that of the CV dataset. This dataset integrates soil 

moisture observations from the satellite-derived Soil Moisture Active Passive (SMAP) Level 

3 into the adapted two-layer Palmer model using a 1-D Ensemble Kalman Filter (EnKF) data 

assimilation method. This assimilation of SMAP soil moisture observations enhances the 

accuracy of model-based soil moisture predictions, particularly in regions with insufficient 

precipitation data and limited instrumentation. The spatial resolution of the SUSM data is 

originally 10 km, but it was resampled to 20m to align with the resolution of the CV dataset. 

The CV was later used to compute alpha and beta vegetation diversity.  

8.2.3 Calculating alpha and beta vegetation diversity and spatial regression 

During the computation of alpha and beta vegetation diversity, the Shannon-Weiner Diversity 

Index (H’) was used for each plot. H’ is a qualitative measure that reflects different types of 

species within a sample or community and their frequency of occurrence. The H’ ranges 

between 0 and 5. This index was chosen because it accurately measures species richness when 

the frequency of occurrence is standardised. Each species was given an abundance value of 1.  
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H = −∑i=1 pi ln pi                                       (7.2) 

Where S is the total number of species in the window, and pi is the proportion of species i to 

S. Another diversity measure observed was beta diversity, the measure of species 

difference/similarity between neighbouring plots. The Sorensen similarity index measures the 

overlap in species composition between two populations, relative to the number of species in 

both populations. The index varies between zero (no overlap) and one (perfect overlap). The 

equation follows. 

Sørensen-similarity= 2×(A×B)/(A)+(B)                (7.3) 

Where A×B represents the number of species common to both sites A and B, A represents the 

number of species in A, and B represents the number of species. 

Further, the Hellinger method was used to calculate species’ contribution to vegetation 

diversity, local beta, richness, and diversity for each plot. The Hellinger distance between the 

probability distributions of species composition at different sites was calculated using this 

formula (Hellinger, 2012).  

                      (7.4) 

Where the summation is over all the elements in the probability space, pi are the probabilities 

under distribution P, and qi are the probabilities under distribution Q. 

The multicollinearity test was conducted to determine appropriate variables for predicting 

alpha and beta diversity for the plots. The spectral indices, spectral bands, CV, slope, elevation 

and subsurface soil moisture vegetation indices were used as predictor variables for the 

diversity regressions. However, the results indicated high perfect collinearity between the 

variables. However, models with low multicollinearity included CV, slope, elevation, SUSM, 

thus, these variables were used to model alpha and beta diversity in the KNP. The relationship 

between the predictor variables and species diversity as the response variable was further 

evaluated by the multi-linear regression analysis techniques. Multi-linear regression results 

determined the corrected Akaike’s Information Criterion (cAIC), Spearman correlation and 

Coefficient of determination (R2), adjusted R2 and f-statistic, which were used to determine the 

strength of the relationship between each predictor variable and the field diversity values. First, 

the Shapiro-Wilk test was computed to determine the normality of the datasets. The datasets 
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were not normally distributed; thus, the non-parametric, Pearson correlation was computed to 

evaluate the linear relationship between alpha and beta diversity and the predictor variables. 

To model the 2022 distribution of alpha and beta diversity, the linear regression function in 

GEE with four predictor variables and one response variable was used. The predicted alpha 

and beta values were then extrapolated across the KNP. The framework for modelling 

vegetation diversity within the KNP is outlined in Figure 8.1. This method was repeated for 

the 2018 and 2022 datasets to account for the temporal dynamics of alpha and beta diversity. 

From the 2022 extrapolated alpha and beta images, the predicted alpha and beta values were 

extracted to compute and plot the correlation between field alpha and predicted alpha using the 

Scipy stats functions and seaborn in Jupiter Notebook.   
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Figure 8.1 Framework for modelling alpha and beta diversity in KNP 
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8.3 Results  
 

8.3.1 Alpha (species richness) and beta diversity (differences in species composition) for 

the selected sites 

Vegetation alpha diversity ranged between 0.69 to 1.95 for both the Makuleke and Letaba 

regions. In terms of beta diversity, the Makuleke region has greater total beta biodiversity than 

the Letaba Region of KNP (Table 7.1). The beta diversity at the Makuleke (75%) and Letaba 

(51%) sites is related to species turnover between the different windows, as opposed to 

nestedness (variation in composition).  

Table 7.1 Beta diversity partitioning for the Makuleke and Letaba vegetation 

 Beta 

diversity 

Replacement Richness 

difference 

Replacement/beta 

total 

Richness 

difference/beta 

total 

Makuleke  0.33 0.24 0.08 0.75 0.25 

Letaba  0.28   0.14  0.14  0.51  0.49 

 

8.3.2 Macroinvertebrate contribution to beta diversity at the Letaba and Makuleke sites 

The identified vegetation genera and their contribution to beta diversity at the Makuleke and 

Letaba sites are displayed in Figure 8.2. For the Makuleke sites, Diospyros, Eragrostis, and 

Hyphaene were the three most contributors to beta diversity. For the Letaba area, beta diversity 

was mostly contributed by Combretum, Eragrostis, and Philenoptera.  
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Figure 8.2 Genus contributions to beta diversity for the Makuleke and Letaba regions of 
the KNP 

8.3.3 Predicting alpha and beta diversity using multiple linear regression 

In examining the association between vegetation diversity and the predictor variables, Pearson 

correlation results showed a negative correlation between alpha diversity and the variables CV, 

slope, elevation, and SUSM, while a positive correlation was observed between beta diversity 

and elevation as well as SUSM (Table 7.2). Specifically, alpha diversity showed a moderate 

negative relationship with slope (-0.37) and CV (-0.17). On the other hand, beta diversity 

exhibited a stronger negative correlation with CV (-0.44) and moderate positive correlations 

with elevation (0.28) and SUSM (0.20). 

Based on the Ordinary Least Squares (OLS) regression analysis, approximately 15.1% of the 

variability in alpha diversity and 30.9% of the variability in beta diversity could be attributed 

to the variations of predictor variables considered in this study, as indicated by the R-squared 

values. However, the low adjusted R-squared values suggest that the models explain very little 

of the variability in both alpha and beta diversity. Additionally, the F-statistics indicated that 

the results of the beta diversity model were more statistically significant than those of the alpha 

diversity model. Furthermore, the lower value of the Akaike Information Criterion (AIC) in 
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the beta model suggests that it was a better-fitting model when compared to the alpha diversity 

model. 

Table 7.2 Details Person correlation between predictor variables the estimated alpha and 
beta diversity. Model performance is also evaluated using r2. adjusted r2, f-
statistic and AIC 

Pearson's Correlation with Alpha: Alpha Beta 

CV -0.17 -0.44 

Slope -0.37 -0.29 

Elevation -0.07 0.28 

SUSM -0.10 0.20 

OLS Regression Results:   

R-squared: 0.16 0.31 

Adjusted R-squared 0.02 0.15 

F-statistic 1.12 1.90 

AIC 19.30 -97.95 

 

8.3.4 Correlation between field-based and predicted alpha and beta diversity 

The correlation analysis between field-based and predicted alpha and beta diversity yielded a 

value of -0.07 (Figure 8.3a). This indicated that the association between field-based and 

predicted alpha and beta diversity was negative and very weak. However, this correlation was 

not statistically significant, as indicated by a p-value of 0.75. Meanwhile, the correlation 

analysis between the observed and predicted beta diversity exhibited a significant (p = 0.041) 

coefficient value of -0.44, indicating a moderate negative correlation between the observed 

beta diversity and the predicted beta diversity. An R-squared value of 0.19 suggested that 

approximately 19% of the variance in the observed beta diversity could be explained by the 

predicted beta diversity (Figure 8.3b). 

 



133 
 

 

Figure 8.3 (a) Plot of the correlation between alpha diversity and the predicted alpha 
diversity, and (b) correlation between beta diversity and the predicted beta 
diversity 

8.3.5 Spatial variation of alpha and beta diversity  

Vegetation alpha diversity was notably elevated in the Maluleke woodlands forest situated 

along the floodplains of the Limpopo and Luvhuvhu rivers. The Makuleke region is 

predominantly marked by areas exhibiting moderate levels of alpha diversity. Comparatively, 

the Letaba area demonstrated moderate to high levels of alpha diversity in contrast to the 

Makuleke region. Furthermore, vegetation diversity was prominently heightened in the western 

sector of the Letaba area, extending beyond the confines of riparian zones. Additionally, the 

southeastern segment of the KNP showcased notably high alpha diversity. Alpha diversity 

ranges from 0-2.96, which is moderate compared to the general range of 0-5 (Figure 8.4) 

 

Figure 8.4 Alpha Diversity within the Kruger National Park 
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Meanwhile, the spatial distribution of vegetation beta diversity was noted to align with the 

spatial patterns of alpha diversity. The highest levels of beta diversity were observed in the 

southeastern part of the KNP and along the floodplains of the Limpopo and Luvhuvhu rivers 

within the Makuleke conservation area. In the Letaba section, vegetation diversity was 

moderately high and extended beyond riparian areas. The beta diversity values ranged from 

6.24 x 10-5 to 0.06, indicating a notable reduction in diversity compared to the general spectrum 

of 0-1 (Figure 8.5). Additionally, beta diversity is moderately high in the vicinity of the 

sampled pans. 

 

Figure 8.5 Beta Diversity within the Kruger National Park 

8.3.6 Relationship between alpha and beta diversity and distance from wet and dry pans  

The inverse AICc curves were found to be more suitable for modelling the relationship between 

alpha diversity and the distance from wet pans, while polynomial AICc curves effectively 

captured the relationship between dry pans and both alpha and beta diversity. This suitability 

is evidenced by the low AICc values of the curve estimates (Table 7.3). 
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Table 7.3 The estimated values from the six AICc curve estimates 

 Alpha Wet Beta Wet Alpha Dry Beta Dry 
Linear AICc: -65,56 -143,33 -75,78 -153,55 
Cubic AICc -63,49 -141,26 -77,88 -155,65 
Quadratic AICc -64,18 -141,95 -77,03 -154,80 
Logarithmic 
AICc 

-68,43 -146,20 -75,07 -152,84 

Polynomial 
AICc 

-63,07 -140,84 -78,24 -156,01 

Inverse AICc -72,56 -150,33 -75,88 -153,64 
 

The polynomial fit was used to estimate the relationship between vegetation diversity and 

distance from dry pan. Alpha diversity is estimated to increase with the increase in distance 

from the dry pans (Figure 8.6). The increase is exponential around 350m from dry pans.  

 

Figure 8.6 Alpha and beta relationship between diversity and distance from dry pans 

 

Inverse curves were employed to analyse the relationship between distance from wet pans and 

both alpha and beta diversity. Alpha diversity declined with an increase in distance away from 

the wet pans. The highest alpha diversity was observed within a 100-meter radius of the wet 

pan. Similarly, beta diversity decreased with the increase in distance away from the pan. A 

notable decline in diversity was observed within the 150-meter range before levelling off. Peak 

diversity values are observed near the pans (Figure 8.6). 
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8.3.7 Changes in the spatial distribution of alpha and beta vegetation diversity within the 

KNP, South Africa 

Figure 8.7 illustrates the time series of alpha and beta diversity for the years 2018, 2019, and 

2022. Alpha diversity ranged from 1.0 to 1.31 across the three years. The highest mean annual 

alpha diversity was observed in 2019 (1.31), followed by 2018 (1.07), while 2022 had the 

lowest (1.01). Regarding beta diversity, the highest value was observed in 2022 (0.03), 

followed by 2018 (0.02), with the lowest recorded in 2018 (0.01). An inverse relationship 

between annual alpha and beta diversity is evident across the observed three years. 

 

Figure 8.7 Annual dry year alpha and beta diversity means for the KNP, South Africa 

 

It was observed that the spatial patterns of beta diversity closely resembled those of alpha 

diversity. Minimal changes in the spatial distribution of both alpha and beta diversity were 

observed between 2018 and 2019. However, notable changes in the spatial patterns of alpha 

and beta diversity were noted in 2022, particularly with an intensified diversity observed in the 

southern regions of the KNP (Figure 8.8). 
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Figure 8.8 Temporal changes in the spatial extent of alpha and beta diversity in the KNP 
for the years 2018, 2019 and 2022 

 

8.4 Discussion  

The KNP stands as a vital conservation area in South Africa, playing a pivotal role in the 

country's economic and social development due to its exceptional floral and faunal diversity 

(Fynn and Bonyongo, 2011). It is imperative to conduct regular assessments and monitoring of 
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vegetation diversity to uphold sustainable conservation practices (van der Mescht and Codron, 

2023). Therefore, the objective of this study was to map the multi-temporal diversity of 

vegetation and determine dominant vegetation types within GDEs.  

 

8.4.1 Alpha and beta diversity predictions 

The combination of CV, slope, elevation, and SUSM model proved to be more effective in 

predicting beta diversity when compared to alpha diversity. This is attributed to these variables 

providing insights into the spatial distribution patterns and environmental gradients that drive 

variations in beta diversity across different habitats or locations. However, their utility in 

predicting alpha diversity may be limited due to the intricate interplay of various factors 

influencing species richness at finer spatial scales linked to alpha diversity. In a study 

conducted by Hejda et al. (2022), it was found that local factors significantly influenced species 

richness within the KNP. Factors such as bedrock type, proximity to seasonal rivers influencing 

water availability, and grazing pressure were identified as key determinants affecting species 

diversity and composition. For instance, areas situated on granite bedrock exhibited higher 

herbaceous shrub species richness when compared to those on basalt bedrock. Furthermore, 

disturbance events such as drought and fire were identified as additional factors impacting 

species richness within the KNP (Trotter, 2022). As a result, species richness in the KNP may 

be closely associated with and influenced by localised factors.  

 

8.4.2 Alpha and beta diversity along the pans  

Species richness indicated by the alpha diversity ranged from 0.80 – 1.95, suggesting that the 

sites had low to moderate diversity. Environmental and biogeographic determinants, such as 

slope, elevation and soil moisture, influence community alpha diversity.  For instance, Sabatini 

et al. (2022) determined that alpha diversity was mostly influenced by plot size, warmest mean 

temperature, temperature at the warmest, wettest quarter, type of ecoregions and percentage of 

soil fragments. Soil moisture was determined to be significantly and positively correlated with 

vegetation diversity and productivity in semi-arid regions like the KNP (Deng et al., 2016; 

Wang et al., 2021). Madonsela et al. (2021) also indicated that species richness is mostly 

influenced by precipitation and water availability in arid regions such as the KNP. In terms of 

beta diversity, the similarity between vegetation communities, the Makuleke sites had a higher 

similarity index (shared species between sites) when compared to the Letaba sites. Richness 

differences contribute the most to the observed beta diversity for both the Letaba and Makuleke 
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sites. High species turnover in vegetation communities indicates dynamic ecological processes 

and environmental heterogeneity between the vegetation sites, especially for the Makuleke 

sites. High species turnover suggests that the vegetation community is responding to spatial 

and temporal variations in environmental conditions such as climate change, elevation and 

moisture gradients, intense competition, facilitation, or other biotic interactions may contribute 

to species turnover as different species thrive under varying conditions (Chase and Myers, 

2011; Theron et al., 2020). Based on the simple regression results, CV, slope, SUSM, and 

elevation model for beta diversity was better than that of alpha diversity. This could be because 

beta diversity is at a community level, aligning with the moderate resolution of the predictor 

variables utilised in this study. Conversely, alpha diversity could be better modelled using 

detailed, finer-resolution data. Overall, the models successfully captured the spatial distribution 

of alpha and beta diversity within the KNP. 

 

8.4.3 Analysis of alpha and beta diversity spatiotemporal dynamics  

The western part of the park exhibited the highest alpha and beta diversities, while the western 

portions consistently display lower diversity levels during the years 2018, 2019 and 2022. The 

favourable conditions contributing to high alpha and beta diversity in certain areas may be 

linked to factors such as humid conditions, warm temperatures, proximity to water bodies, and 

access to groundwater (Gillson and Ekblom, 2009; Madonsela et al., 2021; Rampheri et al., 

2022). The interannual variations observed in alpha and beta diversity trends suggest potential 

associations with various climatic influences such as temperature, evapotranspiration, and 

precipitation (Santini et al., 2017). Areas exhibiting high alpha diversity are critical zones. The 

areas of high species diversity contribute to ecosystem stability and resilience from 

disturbances such as invasive species, habitat degradation and climate change. Moreover, they 

support the conservation of wildlife and endemic species and provide ecosystem services such 

as forage, habitat, nutrient cycling, and soil formation. Thus, they should be continuously 

monitored and managed. The inverse model demonstrates the relationship between alpha and 

beta diversity with the increase in distance from dry pans. Alpha and beta diversity were highest 

close to wet pans and decreased with increasing distance from the wet pans.   
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8.4.4 Dominant vegetation genera observed at the Letaba and Makuleke sites 
 

The dominant vegetation genera at the Letaba area are Combretum, Eragrostis, and 

Philonoptera while for the Makuleke region, the Diospyros, Eragrostis and Hyphaene. The 

genera Combretum, Eragrostis, Philonoptera, Diospyros, and Hyphaene play significant roles 

in the ecological dynamics of the KNP. They provide habitat and food for various wildlife 

species, including browsing mammals. These genera collectively contribute to the biodiversity, 

habitat structure, and ecological balance within the KNP. The park's diverse plant life supports 

a variety of herbivores, contributes to soil stability, and plays a vital role in maintaining overall 

ecosystem health. Understanding the importance of these genera is crucial for effective 

conservation and management strategies within the park (van Aardt et al., 2020). For instance, 

Combretum and Hyphaene species, such as the Ilala palm (Hyphaene petersiana), are iconic in 

the park. They provide food and nesting sites for various animals, and their presence 

contributes to the unique landscape. Eragrostis species, commonly known as lovegrasses, are 

crucial components of the grass layer. They contribute to the diet of grazers and provide cover 

for smaller fauna (Theron et al., 2020; van Aardt et al., 2020). Moreover, other observed genera 

such as Boscia and Combretum are listed as priority species in the park. Philonoptera and 

Diospyros species are woody plants, with deep tap roots that may reach into groundwater and 

their reliance on groundwater can vary depending on species and local environmental 

conditions (Dzikiti et al., 2017). Hyphaene species, particularly palms like the Ilala palm, are 

generally adapted to a variety of moisture conditions. Palms can have extensive root systems, 

but their reliance on groundwater may depend on factors such as soil type and the availability 

of surface water. Groundwater use can be influenced by factors such as soil characteristics, 

seasonal variations, and the overall hydrological context of the region in the water limited park 

(Antunes et al., 2018).   

 

8.5 Conclusions and study limitations  

The objective of this study was to assess the utility of remotely sensed data in mapping 

vegetation species diversity, assessing their spatial and temporal dynamics, and dominant 

vegetation species within potential groundwater-dependent vegetation zones. The findings 

reveal a negative correlation between alpha and beta diversity measured in the field and those 

extrapolated through regression models, indicating that more variables should be further 

investigated to determine if they could improve the models; however, these techniques can 
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effectively estimate both beta and alpha diversity. A limitation of the study lies in its reliance 

on a limited number of sampling points; the spatial resolution of predictor variables was higher 

than that of the Sentinel 2 image and sampling plots. To enhance understanding, future research 

could investigate how plant phenology, based on the growth stages of vegetation, influences 

the correlation between predictor variables and vegetation diversity. The study outcomes could 

facilitate the identification of priority conservation areas within the KNP, providing resource 

managers with a strategic pathway to meet national and regional biodiversity targets, including 

Sustainable Development Goal (SDG) 15. Consequently, the methodology developed in this 

work holds promise for future studies seeking a priori knowledge applicable to various global 

ecosystems, including groundwater-dependent ecosystems.  
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CHAPTER NINE 

DEVELOPMENT OF SOIL MOISTURE PRODUCTS FOR GROUNDWATER 

DEPENDENT ECOSYSTEMS 

 

9.1 Introduction  

Soil moisture variability is crucial in GDEs, influencing hydrological dynamics, vegetation 

composition, and overall ecosystem health. It affects the water cycle by controlling processes 

such as infiltration, runoff, and plant transpiration, while also impacting nutrient cycling, 

microbial activity, and carbon sequestration rates. Although traditional methods for measuring 

soil moisture, such as ground-based sensors and remote sensing, provide valuable data, 

challenges arise due to the complex interactions of ecohydrological and geological factors. The 

Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) missions 

offer global soil moisture data at coarse scales, but Sentinel-1 Synthetic Aperture Radar (SAR) 

provides higher spatial resolution, making it more suitable for local analysis. Recent studies 

have shown the effectiveness of machine learning algorithms in predicting soil moisture using 

Sentinel-1 data, enhancing predictions and enabling the upscaling of values. This chapter aims 

to integrate soil moisture data from SMAP with machine learning models based on Sentinel-1 

SAR data to evaluate temporal and spatial trends in soil moisture and vegetation productivity 

in GDEs, thereby supporting informed environmental management strategies in KNP. 

9.2 Materials and methods  

Soil moisture data for the KNP were obtained from the SMAP level (L4) soil moisture product, 

encompassing surface soil moisture (0–5cm), vertical surface moisture, root zone soil moisture 

(0–100 cm), and additional research products. The dataset boasts a spatial resolution of 9 km, 

with a revisit time of 2–3 days, making it suitable for mapping frequently changing soil 

moisture conditions. Root zone soil moisture data was specifically extracted and reprojected. 

To interpolate soil moisture dynamics for the years 2020, 2021, and 2022, kriging interpolation 

functions within the GEE were utilized. These years were selected due to their representation 

of low rainfall periods within the study areas, thereby shedding light on areas likely to be 

groundwater dependent. 

To establish a correlation between field–measured soil moisture and simulated soil moisture 

from SMAP, the measured soil moisture values, initially calculated as percentages, were 

converted to volume fraction (cm3/cm3) by dividing the observed soil moisture by 100. 
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Additionally, given that the root zone soil moisture encompasses depths from 0 to 100 cm, the 

field–measured values obtained within 20–meter intervals, spanning from 0 to 100 cm, were 

averaged. Soil moisture values were extracted from the SMAP soil data at the locations of the 

sampled pans. This normalisation of the data facilitated a direct comparison between the two 

datasets. A scatter plot of field-based soil moisture vs simulated soil moisture was done to 

assess the linear relationship between the two datasets. The r2 was used to assess the strength 

of the relationship between the two datasets. 

In addition to the SMAP product, Sentinel 1 data were also used to compute soil moisture for 

the GDEs in the KNP. During this process, surface reflectance data were acquired from the 

GEE repository using the dataset ‘COPERNICUS/S1_GRD’. This data was filtered for the 

period from September 1, 2022, to September 30, 2022, to match the timeframe when soil 

moisture samples were taken at KNP. The Sentinel-1 mission provides data from a dual-

polarization C–band SAR instrument at 5.405 GHz (C band). This collection includes Sentinel-

1 Ground Range Detected (GRD) scenes, processed using the Sentinel-1 Toolbox to generate 

a calibrated, ortho–corrected product. The collection is updated daily, with new assets ingested 

within two days of availability. 

The VV and VH bands were selected as predictor variables for estimating soil moisture at the 

pans. Ground estimates of soil moisture were imported and divided into 70% training and 30% 

testing datasets. A Smiple Random Forest regression model with tuned hyperparameters was 

then trained. This model consisted of 100 trees, with two variables per split, a minimum leaf 

population of 1, and no maximum nodes. The correlation between the observed and predicted 

soil moisture values was evaluated using a scatter plot and the R2. The spatial trend in predicted 

soil moisture on the pans was analysed using a linear plot. 

To assess the spatial and temporal variations in response to soil moisture, satellite images from 

the COPERNICUS/S2 collection were acquired for the wet seasons (October–May) of 2020–

2022 and the dry seasons (May–September) of 2020–2022. The Sentinel dataset provides 

imagery with a spatial resolution ranging from 10 to 20 meters and a revisit time of 16 days. 

Seasonal image collections were processed to obtain average images for each year. NDVI 

(Normalized Difference Vegetation Index) was computed using the formula developed by 

Rouse et al. (1974) within the Google Earth Engine platform. NDVI values were then extracted 

from each pixel to assess changes in vegetation vigour, which is an indicator of moisture 
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availability. Additionally, the average seasonal NDVI values for each year were extracted to 

examine the temporal impact of soil moisture within the broader area of the KNP. 

9.3 Results  
 

9.3.1 Observed soil moisture versus simulated soil moisture 
 

The surface soil moisture measured in situ data was compared to simulated soil moisture data 

at 18 natural pans in the KNP. A correlation coefficient of 0.59 suggests a moderate positive 

correlation between the observed and simulated soil moisture data. This suggested that the 

simulated soil moisture has predictive capability for in situ soil moisture (Figure 9.1). Soil 

moisture levels within the measured natural pans varied from 10 % to 17 %. Comparatively, 

the predicted soil moisture has a weaker negative (0.51) correlation with the observed soil 

moisture. According to the Sentinel 1 model, soil moisture values within the measured natural 

pans varied from 9 % to 13 %.  

 
Figure 9.1 (a) Linear correlation between observed and simulated soil moisture values, and 

(b) Linear correlation between the observed and S1 predicted soil moisture 
values  
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9.3.2 Linear temporal dynamics of soil moisture of the natural pans  

The simulated soil moisture was utilised to assess the temporal dynamics of soil moisture 

among the different pans. In comparison, 2021 exhibited high soil moisture values, indicating 

a wetter year, whereas 2020 experienced the driest conditions with a notable decrease in soil 

moisture levels across the observed natural pans (Figure 9.2). During the wet year, soil moisture 

was notably high along the Makuleke riparian pan (13–18) and low along the pans in the Letaba 

region (1–12). In 2022, classified as a moderate year, the Letaba pans appeared to retain more 

soil moisture compared to the Makuleke riparian pans. There was no clear distinction in soil 

moisture trends between the Letaba and Makuleke pans in 2020. The influence of soil types on 

soil moisture can be observed when comparing the moisture trends of pans 1–12. Transitions 

between different soil types, such as granite (pans 1–3), sandstone granite (pans 4–6), basalt 

granite (pans 7–9), and rhyolite granite (pans 10–12), reveal observable changes in soil 

moisture. An interesting finding is that the granite pans exhibit elevated soil moisture levels 

during the driest year, despite being associated with soils featuring poorer drainage and fertility. 

Conversely, these pans demonstrate the highest soil moisture content during the wettest year. 

Comparing Sentinel-1 predicted soil moisture with the 2022 simulated soil moisture, both lines 

indicate similar patterns of moisture distribution across the pans, suggesting that the Sentinel-

1 data is capturing the overall trend of soil moisture for 2022. There are some pans (1–3 and 

14–18) where the Sentinel-1 predicted values are slightly higher or lower than the simulated 

values, indicating areas where the Sentinel-1 data either overestimates or underestimates soil 

moisture compared to the model simulation. The close alignment between the Sentinel- 

predicted and simulated 2022 soil moisture data highlights that the potential of using Sentinel- 

1 SAR data for soil moisture estimation at a local scale is comparable to that of the simulated 

products. 
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Figure 9.2 Simulated soil moisture values across the observed natural pans in the KNP 

9.3.3 Derived temporal and seasonal NDVI trends – a proxy for soil moisture content 

variability 

High NDVI values are observed for the 2021 wet season across the pans (Figure 9.3); these 

results are in accordance with the observed high soil moisture values (Figure 9.3). Generally, 

vegetation across pans 14–17 has higher NDVI and is associated with Eutric Leptosols and the 

Eutric Cambrisols (16 and 17), which are deep, well-drained and have good fertility because 

of the presence of high organic matter.  

 

 

Figure 9.3 NDVI temporal trends across the sampled natural pans 
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The dry season NDVI trends follow those of the wet season, whereby NDVI values are highest 

in 2021. Vegetation density is highest across the Makuleke Eutric Leptisols and Eutric 

Cambrisols where the soil moisture was observed to be highest in 2021. Low NDVI values are 

observed for the 2022 year (Figure 9.4).  

 

Figure 9.4 NDVI temporal trends across the sampled natural pans 

 

9.3.4 Spatio–temporal dynamics of soil moisture in the KNP 

Soil moisture exhibits both temporal and spatial variability annually based on SMAP and 

Sentinel-1 (Figures 9.5 and 9.6). In 2020, soil moisture levels were generally low, ranging from 

0.03 to 0.10, with the southern regions of KNP experiencing the driest conditions. 2021 

recorded the highest soil moisture levels, with both southern and northern regions exhibiting 

higher moisture content, while the central regions displayed moderate levels. In comparison, 

2022 saw moderate soil moisture levels, with the central and southern regions showing 

moderate moisture content. Throughout the study period, the soil moisture trend in KNP 

fluctuated from dry to wet and then drying.  
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Figure 9.5 Spatial and temporal patterns in soil moisture in the KNP. 

 

Figure 9.6 Spatial and temporal patterns in soil moisture in the KNP based on the Sentinel–
1 data 



149 
 

9.3.5 Seasonal patio–temporal dynamics of NDVI in the KNP 

The year 2020 had low vegetation productivity for both the wet and fry seasons (Figure 9.7). 

An increase in vegetation diversity in 2022 across the KNP was observed, where soil moisture 

has increased throughout the Park.  

 
Figure 9.7 Spatio–temporal patterns of NDVI across KNP, South Africa 

 

9.4 Discussion and conclusions  

The primary objective of this chapter was to create a soil moisture map of KNP and analyse 

the spatial and temporal soil moisture patterns during dry years. Comparing Sentinel-1 

predicted soil moisture with in situ measurements revealed a moderate correlation (r2 = 0.51). 

These findings align with those of (Heckel et al., 2021; Urban et al., 2018), who conducted a 

similar comparison between Sentinel-1 derived soil moisture and field–based observations in 

KNP. However, limited accessibility to field soil moisture data posed a challenge. Machine 

Learning algorithms are optimal with a larger training dataset; the limited soil moisture data 

points resulted in lower model accuracy. While the coarser spatial resolution of the SMAP may 

lead to generalisations and introduce uncertainties when comparing simulated and observed 

soil moisture, as noted by Stradiotti et al. (2024) it was a better model. Incorporating a larger 

in situ soil moisture dataset would enhance the analysis of the agreement between Sentinel-1 
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predicted and observed soil moisture. Nonetheless, the results affirm the capability of remotely 

sensed soil moisture in assessing soil moisture patterns within KNP. 

The simulated soil moisture effectively captured the interannual changes in pan dynamics, 

mirroring observed spatial variations in soil moisture throughout KNP. 2021 emerged as the 

wettest year, followed by 2022, with 2020 being the driest in terms of soil moisture levels. Soil 

moisture dynamics are associated with precipitation intensity, highlighting that intense rainfall 

events replenish surface and subsurface soil moisture, whereas low–intensity rainfall events 

facilitate gradual infiltration and percolation, augmenting subsurface water availability (Berry 

and Kulmatiski, 2017; Urban et al., 2018). Moreover, areas with dense vegetation tend to 

exhibit more stable soil moisture compared to regions with sparse vegetation, which display 

greater variability in soil moisture content (Urban et al., 2018). Soil water content values enable 

the derivation of soil moisture retention curves, aiding in the estimation of soil water potential. 

Soil moisture within KNP is influenced by soil types; for instance, soil moisture characteristics 

of basalt soils differ from those of granite soils (Buitenwerf et al., 2014). 

The impacts of climate change are expected to escalate, leading to an increase in the frequency 

and intensity of extreme droughts and heat waves. These drought events are characterised by a 

scarcity of soil moisture, stemming from limited water infiltration into the soil and heightened 

evapotranspiration. For example, Kennenberg et al. (2024) have demonstrated that soil 

moisture plays a pivotal role in driving carbon and water fluxes in dryland ecosystems. Hence, 

there is a pressing need to enhance model representations to elucidate how soil moisture 

constrains ecosystem fluxes and how atmospheric drivers influence vegetation in dryland areas 

(Hsu and Dirmeyer, 2023; Zhou et al., 2021). The anticipated effects of climate change are 

poised to induce significant alterations in savannah ecosystems, necessitating the 

implementation of adaptation management strategies to mitigate impacts on wildlife 

conservation and socio–economic development. To address these challenges, innovative 

approaches for monitoring and forecasting soil moisture at higher spatial and temporal 

resolutions are imperative. 
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CHAPTER TEN 

 

SYNTHESIS, CONCLUSION AND RECOMMENDATIONS 
 

10.1 Introduction and Project Overview 

Groundwater is important for freshwater supply, supporting socio-economic development and 

GDEs, which are essential for biodiversity and climate resilience. However, GDEs are being 

significantly threatened by altered hydrological cycles, rising temperature and land-use 

changes. Effective management of these ecosystems is hindered by limited information on their 

spatial distribution, vegetation diversity, soil moisture, and water quality, particularly in Africa. 

The southern Kruger, which relies on groundwater due to low rainfall, illustrates this challenge. 

Its status and interactions between its GDEs, including vegetation species and water quality, 

face environmental stressors such as salinisation. Traditional field-based mapping approaches, 

which were previously utilised to understand them, while they are informative, are limited by 

cost, time and spatial coverage. Then the advent of Earth observation technologies provided 

significant advantages, enabling broad spatial coverage, regular monitoring, cost efficiency, 

access to remote areas and integration of different datasets for comprehensive GDE insights. 

In concert with hydrogeological methods, these tools offer valuable information for informed 

biodiversity conservation decisions. In this regard, this project aimed to develop a geospatial 

framework for monitoring GDEs in southern KNP, using satellite-based spatiotemporal models 

to support effective management and decision making. Specifically, the project aimed: 

1. To conduct a comprehensive and state-of-the-art literature review and the potential use 

of remote sensing-based models for GDE monitoring in the light of climate change. 

2. To develop remote sensing-based methods for delineating GDEs specifically in 

vulnerable areas such as KNP, South Africa. 

3. To assess the use of spatial explicit techniques in measuring species diversity in GDE 

4. To assess the soil moisture potential of GDEs in the southern tip of KNP, South Africa 

5. To assess water quality and chlorophyll variability in the selected GDEs in the southern 

tip of KNP, South Africa 
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To address these contractual objectives, the project was categorised into seven specific 

objectives. Subsequently, the following specific objectives were established to address the 

outlined work packages and contractual goals. 

1. To develop a detailed synthesis on the progress and development of remote sensing 

integrated with geographic and information systems in assessing GDV over fine 

spatial and temporal scales. 

2. To provide a comprehensive overview of the progress and applications of groundwater 

flow models coupled with advanced geospatial tools to understand the ecohydrology 

GDEs and their extent of connectivity to underlying aquifers. 

3. To assess the efficacy of machine learning (ML) classifiers in predicting groundwater-

dependent vegetation potential zones (GDVpz) within KNP, South Africa. 

4. To accurately characterise groundwater flow systems in southern KNP and improve 

hydrogeological modelling of groundwater-dependent ecosystems. 

5. To assess (i) variations in water and sediment chemistry in pan wetlands across different 

geological types and hydroperiods (low and high) and (ii) spatiotemporal 

macroinvertebrate diversity and abundance across geological regions, geological types, 

and hydroperiods in relation to water and sediment chemistry. 

6. To evaluate models predicting Alpha and Beta diversity in potential groundwater-

dependent vegetation zones using spectral coefficient of variation (CV), topographic 

features, and soil moisture. 

7. To integrate soil moisture data from SMAP with machine learning models based on 

Sentinel-1 SAR data to evaluate temporal and spatial trends in soil moisture and 

vegetation productivity in GDEs, thereby supporting informed environmental 

management strategies in KNP. 

In conducting the state-of-the-art literature review, the findings indicated that, although there 

were studies that utilised freely available remotely sensed data products in assessing and 

monitoring GDEs, there were some inaccuracies in these assessments, which were attributed 

to the sensor characteristics of these utilized missions. The review noted that advancements in 

data analytics, such as the introduction of cloud computing platforms like Google Earth Engine, 

could offer an unprecedented opportunity to address issues associated with the gathering and 

analysis of data in GDEs monitoring from remote sensing data, with their advanced data 

filtering, integrations and processing tools. The findings of the second review highlighted 

concerns regarding the mismatch in spatial and temporal scales between remotely sensed data 
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and groundwater models, which makes it difficult to integrate them in the delineation of GDEs. 

Additionally, it noted that there is a lack of ground truth data, particularly in remote areas, 

which further complicates GED validation efforts. This review then identified the need to 

integrate spatial data with groundwater numerical modelling to improve the accuracy of the 

model results by providing more detailed information about the area’s geology and 

hydrogeology.  

In assessing the utility of remote sensing data in mapping Vegetation Species Diversity, 

Structural, and Phenotypical Traits in GDEs using the Shannon-Wiener Diversity Index and 

Simpson Diversity Index coupled with vegetation indices like the NDVI, the findings revealed 

a negative correlation between the coefficient of variation (CV) and vegetation diversity. 

Overall, the results highlighted that these techniques can effectively estimate both beta and 

alpha diversity.  

In assessing the variability of chlorophyll-a concentrations in groundwater-dependent 

wetlands, results demonstrated that hydroperiod influences chlorophyll-a concentrations more 

than geological type. The low hydroperiod exhibited increased levels, particularly for benthic 

chlorophyll-a. Additionally, trace elements, including Zn and Fe and nutrients (C, S, P, K), 

played an important role in sustaining pelagic and benthic phytoplankton communities by 

enhancing metabolic functions, nutrient cycling, and photosynthesis. Higher TDS and salinity 

positively contributed to benthic chlorophyll-a concentrations, suggesting that moderate ionic 

presence supports productivity in groundwater-dependent wetland systems. Finally, pH and 

pan surface area were demonstrated to negatively affect benthic chlorophyll-a, likely due to 

nutrient limitation, competition with macrophytes and sediment resuspension in larger pans. 

Then, in assessing water quality indicators for the mapped GDEs within the KNP through field 

surveys of physicochemical as well as biological analysis, the findings highlighted that 

macroinvertebrate communities were influenced by hydroperiod and geological types in pans. 

Results particularly implied that the duration and frequency of inundation have a substantial 

influence on the diversity of macroinvertebrates. Sediment chemistry influenced by geological 

types had an impact on the nutrient content and substrate features that were essential for the 

habitats of macroinvertebrates. Furthermore, the quality of water was a crucial factor, with 

parameters such as pH, DO, and nutrient concentrations having a direct impact on the diversity, 

abundance, and health of macroinvertebrates, while chlorophyll-a concentrations for the pan 

varied spatially and temporally, with high concentrations observed during the low hydroperiod. 
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These findings underscore the necessity of implementing conservation approaches that are not 

a one-size-fits-all all.  

Finally, in assessing the applicability of SMAP and Sentinel-1 SAR coupled with field-

measured soil moisture data for monitoring variations in soil moisture within selected GDE 

pans of the KNP, the study underscored the reliability of satellite-based soil moisture estimates. 

The findings highlighted the influence of soil moisture on vegetation productivity and its close 

association with soil type. These insights are crucial for eco-hydrogeologists seeking to 

understand soil moisture and carbon dynamics within GDEs, thereby contributing to their 

conservation of GDEs and the sustainability of wildlife.  

10.2 Limitation of the Study 

The study was more aligned to Earth observation data and did not engage more physical 

measured data sets and techniques, such as the Stable and Radioactive Isotope Tracers, to 

confirm the GDEs in this study. Another limitation of the study lies in its reliance on a limited 

number of sampling points and offering a snapshot of the relationship between CV and 

vegetation diversity. Regarding the aspects of chlorophyll content variability, there is still a 

need for robust assessment and mapping to understand its impact on water invertebrates’ 

species diversity.  

10.3 Conclusions 

This project offered a comprehensive framework for monitoring groundwater-dependent 

ecosystems by integrating remote sensing technologies with field data, enhancing our 

understanding of their ecological health. By assessing the interactions among geological, 

hydrological and biological factors, the project provides a model for sustainable ecosystem 

management in climate-sensitive regions. These established techniques and insights are 

anticipated to contribute extensively to conservation efforts, providing a scalable approach 

applicable to GDEs in other vulnerable ecosystems globally.  These outcomes facilitate the 

identification of priority conservation areas within the KNP, providing resource managers with 

a strategic pathway to meet national and regional biodiversity targets, including SDG 15. 

Consequently, the methodology developed in this project holds promise for future studies 

seeking a priori knowledge applicable to various global ecosystems, including GDEs. 
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10.4 Recommendations 

Several research gaps persist in the utilisation of geospatial technologies and data for mapping 

and monitoring GDEs, particularly in developing countries where fine spatial resolution data 

availability is limited. 

• There is a need for extending the research efforts combining deep machine learning 

techniques, multisource spatial datasets and groundwater hydrogeological modelling 

techniques to enhance the delineation of the spatial extent of GDEs.  

• Also, fins spatial resolution of remotely sensed data needs to be assessed for mapping 

soil moisture potential in GDEs to better understand flora and fauna abundance, diversity 

and distribution within these GDEs. 

• Future studies should consider engaging Stable and Radioactive Isotope Tracers in 

concert with GIS techniques in identifying geological interactions unique to groundwater 

across the hydrological season to verify GDEs. 

• Water quality parameters, including chlorophyll content variability and its relationship 

with species diversity in GDES, require more comprehensive assessments. 

• Because the findings of this study established the relationship between the species 

diversity and variations in hydrographs, future studies could consider the potential of 

utilising waterborne invertebrates in confirming whether certain pools maybe GDEs and 

in assessing their state at any time. 

• To enhance understanding of vegetation species diversity in GDEs, future research could 

investigate how plant phenology, based on the growth stages of vegetation, influences 

the correlation between CV and vegetation diversity. 

• Future studies should focus on integrating geological type, hydroperiod, sediment 

chemistry, and water chemistry to develop site-specific conservation and management 

strategies for GDEs. This approach will provide ecosystem managers with proactive 

solutions to effectively protect these ecological systems, ensuring the long-term survival 

of diverse macroinvertebrate populations and the overall health of GDEs. 
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