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EXECUTIVE SUMMARY 

Grasslands are renowned for their socioeconomic, ecological and environmental functions, 

yet they remain the most contested biome that is also extensively impacted by climate change. 

Specifically, grasslands provide several ecosystem services, which include providing fodder 

for livestock while regulating elements of the hydrological cycle at various scales. In South 

Africa, grasslands are the third largest biomes incurring extensive spatiotemporal 

transformations. Their spatiotemporal dynamics are predominantly a result of anthropogenic 

activities and climate change. Climate change is associated with temperature and precipitation 

variations that in turn regulates grassland productivity. Meanwhile, competitive anthropogenic 

activities which include crop farming, development, overgrazing, and mining activities continue 

to transform grasslands.  

Optimal management of grassland resources requires spatially explicit information on their 

dynamics as well as an understanding of the drivers of that change. However, there is paucity 

of spatial information on the changes in grassland productivity. Past research efforts were 

mostly directed to specific and strategic localities, with limited spatial extents due to the tedious 

fieldwork and processing tools. Subsequently, accurate, perpetual, and constant monitoring 

of grasslands as well as the associate decisions made were somewhat compromised as they 

lacked spatial explicitness. Remote sensing technologies have emerged as the most 

convenient, accurate, time- and cost-effective approach in mapping and monitoring the 

dynamics of various grassland attributes at various spatiotemporal scales. The application of 

remote sensing technologies and data for monitoring grasslands has substantially progressed. 

The recent advances in satellite data provision as well as the introduction of big data cloud 

computing and storage facilities have availed opportunities to conduct research on grasslands 

at various spatial scales. In this regard, this project sought to map and monitor grassland 

ecosystem attributes using geospatial technologies. The application of wall-to-wall geospatial 

applications for monitoring grasslands in South Africa could contribute towards achieving and 

addressing Sustainable Development Goals on poverty and hunger alleviation, provision of 

clean water, contribute to climate action and life on land (biodiversity) by 2030, SDGs 1, 2, 13 

and 15, respectively. The focus of this project was on assessing the utility of geospatial data 

and techniques in providing spatially explicit information on grassland productivity suitable for 

reinforcing the decision-making process for sustainable utilisation of grasslands. In the long 

run, this could assist farmers in planning activities such as grazing rotation, fodder 

management, thereby sustainably utilising this natural capital resource with preparedness in 

the light of climate change. Specifically, the project contractual aims were: 
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(i) to conduct a comprehensive and state of the art literature review on the potential use 

of remote sensing-based models for grassland productivity monitoring in the light of 

climate change,  

(ii) to review the importance of grasslands as an ecosystem service, particularly the 

contribution of leaf area index (LAI), canopy storage capacity and biomass in water 

management,  

(iii) to characterise and model communal grassland productivity status in a changing 

climate at three sites within the uMgungundlovu District Municipality, and  

(iv) to assess intra- and interannual changes in grassland productivity and proportionate 

land use change within the catchment and explain the changes thereof.  

To address the contractual objectives, the project was sub-structured into four work packages. 

The first work package addressed objectives No 1 and 2 presented as two systematic literature 

reviews. Work package 2 addressed objective No 3 and 4 by first assessing the changes in 

the areal extent of grasslands between 2010 and 2020 using geospatial data acquired from 

free and readily available satellite-based archival sources. This was followed by mapping and 

modelling the intra- and interannual grassland productivity attributes (i.e. LAI, biomass, 

canopy storage capacity). Work package 3 partially addressed objectives No 3 and 4 by 

incorporating environmental factors in assessing the water-related ecosystem services. Work 

package 4 focussed on research dissemination to ensure that the research output informed 

practice, thereby maximising the benefit to key stakeholders. It provided a report on capacity 

development. The following specific objectives were drawn to address the outlined work 

packages and the contractual aims and objectives, 

(i) To review scientific peer-reviewed articles comprehensively and systematically on 

using remotely sensed data within the explicit theme of estimating grass productivity 

(GP) proxies, such as above ground biomass (AGB), leaf area index (LAI), canopy 

storage capacity (CSC). 

(ii) To systematically review the progress, emerging gaps, and opportunities on the 

application of remote sensing technologies in quantifying grasslands ecosystem 

services. 

(iii) To assess the spatiotemporal variability of rangelands within a typical southern African 

communal area from the year 2000 to 2020 using multi-temporal Landsat datasets in 

conjunction with the random forest. 

(iv) To predict the future spatial distribution of grasslands in communal rangelands using 

the CA-Markov model between the year 2020 and 2040. The project also compared 
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the magnitude of grass fragmentation in the forthcoming 20 years since the same year 

intervals were considered in generating input maps for modelling. 

(v) To compare the predictive performance of shallow artificial neural networks (ANNs) 

and deep convolutional neural networks (CNNs) in estimating aboveground grass 

biomass using Sentinel 2 MSI during the dry season. 

(vi) To predict inter-seasonal variations of grass biomass in using Sentinel 2 MSI remotely 

sensed data in conjunction with convolutional neural networks (CNNs). 

(vii) To test the utility of multi-source data in estimating LAI, CSC, CWC, and EWT within 

communal grasslands across wet and dry seasons. 

The study was supposed to focus on three areas in KwaZulu-Natal, namely, Swayimane 

(uMshwathi Municipality), Vulindlela (Msunduzi Municipality) and Nhlazuka (Richmond 

Municipality). Upon realising that in Swayimane, the dominant agricultural activity was crop 

farming with limited and fragmented rangelands, this study site was left out. All sites are within 

the uMgungundlovu District Municipality and the Greater Umgeni Catchment. A District model 

approach implemented by government was adopted in conducting this project. The project 

sought to build on action research approaches to ensure community participation and 

beneficiation in the target locations. Already, the UKZN team had been working within the 

target sites since 2012 and has built significant social capital within the communities. Thus, 

the project leveraged on such social capital. Specifically, the UKZN Project Facilitators and 

Community Mobilisation Officers who were already working within these communities 

supporting action learning were integrated into the project.  

 

GIS shapefiles of administrative boundaries (i.e. Provinces, Districts and Wards), were 

downloaded from the Department of Forestry Fisheries and the Environment websites. The 

districts and selected wards were utilised to generate random sampling points in ArGIS 10.8. 

The generated points were then used as general guide for the sampling procedure for different 

research inquiries addressing the contractual objectives. Specifically, data from the Landsat, 

Sentinel and Shuttle Radar Topographic Missions was accessed and utilised using the readily 

accessible big data cloud computing Google Earth Engine in conjunction with various machine 

learning algorithms. In terms of the systematic literature reviews, the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) approach and checklist were 

utilised to generate the key search words, for retrieving literature from databases such as Web 

of Science, Scopus, and Science Direct. 
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In conducting a comprehensive and state of the art literature review on the potential use of 

remote sensing-based models for grassland productivity (GP) monitoring in the light of climate 

change, results of the systematic literature review showed that the most used proxies of GP 

in ecological studies are aboveground biomass (AGB), leaf area index (LAI), canopy storage 

capacity (CSC), and chlorophyll and nitrogen content. The systematic review of research 

published between 1970 and October 2021 (n= 203) peer reviewed articles indicated the 

growing demand for high resolution hyperspectral sensors and computationally efficient 

image-processing techniques for the accurate and time-efficient prediction of GP at various 

scales of application. Further research is required to attract the synthesis of optical and radar 

data, multi-sensor data, and the selection of appropriate techniques for GP prediction at 

different scales. Results implied that there is a need to understand the major uncertainties 

associated with various algorithms employed for predicting GP and striving to reduce these 

errors. 

In reviewing the importance of grasslands as an ecosystem service, particularly the 

contribution of leaf area index (LAI), canopy storage capacity and biomass in water 

management, a systematic review of 178 peer-reviewed articles from Web of Science, Scopus 

and Institute of Electrical and Electronics Engineers were analysed. The findings showed that 

most of the studies were conducted in Asia with a particular focus on biomass and primary 

production being the major researched ecosystem services. Results demonstrated that 

biomass, CSC and LAI are prominent attributes in deriving insights on evapotranspiration, 

infiltration, run-off, soil water availability, groundwater restoration and surface water balance. 

Hence an understanding of such hydrological processes is critical for understanding water 

redistribution and balance within grassland ecosystems which is important for water 

management. 

To assess the proportionate land use change within the catchment and explaining the changes 

thereof, two specific objectives were drawn. The first assessed the land cover (LU/LC) 

changes and the spatial variation of communal rangelands (between the years 2000, 2010 

and 2020). The second specific objective predicted the future changes (2020 to 2040) in the 

spatial distribution of rangelands in communal areas using the CA-Markov model. 

 Results showed that the rangelands decreased at a rate of 37.52 hectares per year 

from 2000 to 2010 and at 76.46 hectares per year from 2010 to 2020 in Vulindlela. Meanwhile, 

in Inhlazuka they decreased at 40 hectares per year between the years 2000 and 2010 then 

increased at a rate of 45.28 hectares per year between 2010 and 2020 due to a decline in the 

forest class. These changes were detected at overall accuracies of 75%, 79% and 83% for 
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Inhlazuka and overall accuracies of 89%, 85%, and 89% for Vulindlela during the years 2000, 

2010 and 2020, respectively. In terms of fragmentation analysis, results showed that the 

rangeland mean patch sizes in Vulindlela decreased from 32 ha to 22 ha and then to 9 ha 

between 2000, 2010 and 2020, respectively, because of the increase in built-up areas. On the 

other hand, in Inhlazuka, the grasslands mean patch area decreased from 2 ha to a hectare 

between 2000 and 2010 and then it increased by 1 hectare between 2010 and 2020. 

 In predicting the future changes (2020 to 2040) in the spatial distribution of rangelands 

in communal areas using the CA-Markov model, results showed that the spatial extent of 

grasslands in Vulindlela will continue to decline from 6660.04 ha in 2020 to 5740.30 ha by 

2040, whereas in Inhlazuka, the grasslands are expected to increase from 2567.55 ha in 2020 

to 2987.03 ha by 2040. Results also showed that the patch area is anticipated to increase 

from 8.5 ha in 2020 to 55.94 ha by 2040 in Vulindlela and increase in Inhlazuka from 1.7 ha 

in 2020 to 7.20 ha by 2040. Meanwhile, patch isolation (Euclidean Nearest Neighbor Distance) 

is predicted to increase from 73.0 ha in 2020 to 172.20 ha by 2040 in Vulindlela and increase 

from 75.0 ha to 120.60 ha in Inhlazuka within the same period. These findings highlight the 

urgent need for the development of robust spatially explicit rangeland monitoring mechanisms 

for implementing sound conservation strategies. 

The final contractual objectives (iii) to characterise and model communal grassland 

productivity status in a changing climate at three sites within the uMgungundlovu District 

Municipality and (iv) to assess intra- and interannual changes in grassland productivity and 

proportionate land use change within the catchment and explain the changes thereof, were 

addressed in three specific objectives. The project compared the predictive performance of 

shallow artificial neural network (ANNs) and deep convolutional neural network (CNN) in 

estimating aboveground grass biomass using Sentinel 2 MSI. The second specific objective 

predicted inter-seasonal (dry season and wet season) fodder quantity in selected wards of 

Umgeni catchment area using high resolution satellite imagery. Finally, the project tested the 

utility of multi-source data in estimating leaf area index (LAI), canopy storage capacity (CSC), 

canopy water content (CWC), and equivalent water thickness (EWT) within communal 

grasslands across wet and dry seasons. It was hypothesized that integrating multi-source data 

with a robust machine learning algorithm would improve the prediction accuracies of GWC 

indicators as a step towards building spatially explicit communal rangeland monitoring 

frameworks. 

In comparing the predictive performance of shallow artificial neural network (ANNs) and deep 

convolutional neural network (CNN) in estimating aboveground grass biomass using Sentinel 
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2 MSI, results showed that deep CNN outperforms the ANN in estimating aboveground 

biomass with a best R2 of 0,83, RMSE of 3,36 g/m2 and RMSE% of 6,09. In comparison, the 

ANN produced a best R2 of 0,75, RMSE of 5,78 g/m2 and RMSE% of 8,90. The sensitivity 

analysis suggests that the blue band, Green Chlorophyll index (GCl) and Green normalised 

difference vegetation index (GBNDVI) were the most significant indices for model 

development by both neural network architectures. Subsequently, the CNN ensemble was 

adopted in predicting inter-seasonal (dry season and wet season) fodder quantity in selected 

wards of Umgeni catchment area using high resolution satellite imagery. 

Results showed that seasonal grass productivity trends could be predicted to a R2 of 0,83, 

RMSE of 3,36 g/m2 and a RMSE% of 6,09 in the dry season and a R2 of 0,85, RMSE of 2,41 

g/m2 and a RMSE% of 3,71 in the wet season, respectively using optimal spectral variables 

which included Band 2 (blue), Green Chlorophyll index (GCl) and Green normalised difference 

vegetation index (GNDVI). These findings suggested that grass biomass was substantially 

influenced by changes in rainfall and temperature as noted in other grassland studies abroad. 

In testing the utility of multi-source data in estimating LAI, CSC, CWC, and EWT within 

communal grasslands across wet and dry seasons based on the random forest regression 

ensemble in GEE results showed that LAI was optimally estimated in the wet season with an 

RMSE of 0.03 m-2 and R2 of 0.83, comparable to the dry season results which exhibited an 

RMSE of 0.04 m-2 and R2 of 0.90. Meanwhile, CSC was estimated with high accuracy in the 

wet season (RMSE = 0.01 mm and R2 = 0.86) when compared to an RMSE of 0.03 mm and 

R2 of 0.93 obtained in the dry season. r CWC, the wet season results yielded RMSE of 19.42 

g/m-2 and R2 of 0.76 which was lower than an accuracy of RMSE = 1.35 g/m-2 and R2 = 0.87 

obtained in the dry season. Finally, EWT was best estimated in the dry season yielding a 

model accuracy of RMSE = 2.01 g/m-2 and R2 = 0.91 as compared to the wet season (RMSE 

= 10.75 g/m-2 and R2 = 0.65). CSC was most optimally predicted amongst all grass water 

content (GWC) variable in both seasons. The most optimal prediction variables for estimating 

these GWC variables included the red-edge, near-infrared region (NIR), short-wave infrared 

region (SWIR) bands, their derivatives, and environmental variables such as rainfall and 

temperature across both seasons. The use of multi-source data significantly improved the 

prediction accuracies on GWC indicators across both seasons. 
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New knowledge and innovation 

Despite the impeccable progress on the application of advanced geospatial techniques and 

data in mapping and monitoring grassland productivity in general, there is paucity of such 

research efforts in developing countries such as South Africa. In this regard, the project sought 

to generate knowledge on the optimal remote sensing data and methods that can map the   

extent and spatial-temporal distribution of rangeland productivity in the communal grazing 

lands of Umgeni catchments. Specifically, new knowledge on the utility of Geospatial 

techniques in modelling the spatial distribution of biomass, leaf area index (LAI), equivalent 

moisture thickness (EWT), canopy storage capacity (CSC), foliar moisture content (FMC), and 

canopy water content (CWC) was generated through this project. The project quantitatively 

generated spatially explicit maps on various grassland productivity elements in communal 

rangeland areas. The project also demonstrated that there is promise in interpreting and 

simplifying the attained spatially explicit information on grassland productivity. Furthermore, 

the project notes that if this information is converted, simplified, and well interpreted, it is 

suitable for reinforcing the decision-making process for sustainable utilisation of the 

grasslands. In the long run, this could assist farmers in planning activities such as grazing 

rotation, fodder management, thereby sustainably utilising this natural capital resource with 

preparedness in the light of climate change. Meanwhile, this could also assist the policy 

makers in drawing informed decision on how to reduce the magnitude of rangeland 

degradation. 

 

Capacity Building 

The project comprehensively addressed its capacity building mandate by recruiting and 

mentoring three master’s students, a postdoctoral fellow, and three early career and emerging 

researchers, enhancing both the institutional and individual capabilities. Of these three 

master’s students, two completed Cum Laude. The project is still going to recruit one more 

master student by leveraging on other funding streams to address any other issues lurking in 

the objectives. In this project, the postdoctoral fellows played an active role in student 

supervision along with the early career researchers. This cohort of researchers benefited from 

the active mentorship by the mid-career and seasoned researchers in the project, specifically 

in terms of conceptualization and project management skills.  
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Conclusion 

The project’s findings underscore the importance of geospatial technologies and data in 

spatially quantifying changes in grassland productivity elements in the context of climate 

change and anthropogenic activities. Specifically, grassland productivity elements which 

include biomass, leaf area index, equivalent moisture thickness, canopy storage capacity, 

foliar moisture content, and canopy water content were all optimally estimated using the 

readily accessible Landsat and Sentinel 2 MSI data and robust machine learning techniques. 

This project is a pathway towards the development of an automated and real time geospatial 

model for Monitoring grassland ecosystems. This will provide actionable information services 

to grassland assessment and monitoring across different key land management areas. 

Specifically, the assessment and monitoring service will deliver satellite-based Earth 

observation spatiotemporal models that will assist users in their operational grassland 

management as well as policy and decision making in the target areas.  

 

Recommendations 

Several research gaps remain regarding the utility of geospatial technologies and data in 

mapping and monitoring the spatiotemporal dynamics of grassland productivity, especially in 

communal rangelands. 

• There is still a need to assess the utility of integrating deep Machine learning geospatial 

technologies and multi-source data in mapping and monitoring grass ecophysiological 

attributes such as the canopy chlorophyll content and crops' structural attributes.  

• The varying pixel size and radiometric resolutions of different earth observation 

sensors utilised in this project could have an impact on the accuracy estimates 

obtained in modelling grass productivity and water-related ecosystem services 

elements. In this regard, future research still needs to test and compare the utility of 

various sensors including the newly launched Landsat-9 OLI-2 and, EnMAP. 

• Research efforts should also be exerted towards understanding the general 

distribution, productivity, water-related ecosystem services and forage quality 

attributes of specifically the sourveld and sweetveld grasses in uMngeni catchment to 

improve and inform the sustainable utilisation of communal grasslands. 

• There is a need for advancing the theoretical and practical knowledge of machine 

learning techniques in assisting decision-making in both small-scale and large-scale 

grassland ecosystems. 
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• There is still an urgent need to increase research efforts on rangeland management 

strategies that can be implemented in the communal areas to create awareness on the 

vital importance of protecting these ecosystems. Future studies could also assess the 

impact of activities such as livestock production and grazing intensity/patterns as well 

as fire administration in the communal areas as individual agents impacting on the 

quality and quantity rangelands. 
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1. Introduction and Project Overview 

M Sibanda, O Mutanga, T Bangira, T Mabhaudhi, T Dube, and R Lottering 

 

1.1. Background and Rationale 

Grasslands provide various forms of ecosystem services at local, regional, and global scales. 

Other than offering agricultural services (i.e. fodder to livestock, and food), grasslands have a 

critical water regulatory role in the hydrological cycle by regulating interception, percolation 

and stream flows (Bengtsson, Bullock et al. 2019). Grasslands also play a significant role in 

soil erosion control, carbon sequestration and anthropogenic regulatory activities, including 

biological control.  

Meanwhile, grasslands support economic activities, such as smallholder and commercial 

livestock production systems and tourism activities. In southern Africa, these grassland 

services have been reported to be significant in raising the income per capita of rural 

communities. In South Africa, grasslands had a total economic value of R9.7 billion in 2006, 

which includes a consumptive value of R1.59 million as well as an indirect value of about R8 

million (De Witt and Blignaut 2006). Despite the ecological and socio-economic importance of 

grasslands, they are characterized by perpetual conflicts between conservation endeavours 

and anthropogenic activities such as agriculture (Franke, Keuck et al. 2012). 

However, much of the grasslands are showing signs of degradation and more recently, the 

ecosystem has declined significantly in size (FAO 2010). In South Africa, the grasslands are 

among the most threatened biomes yet they are the third-largest biome covering about 

336,544 km2 (de Wit, Blignaut et al. 2006, Egoh, Reyers et al. 2011). Specifically, 35% of the 

change in size of grasslands has been mainly due to competition from other land uses such 

as crop production and human settlements. Degradation has been linked mostly to agriculture, 

overgrazing, invasive alien plants, droughts and climatic change (Egoh, Reyers et al. 2011). 

Even though climate change is associated with uncertainties with regard to the extent and 

magnitude of changes in conditions that could occur, literature predicts that grasslands and 

livestock farming will be adversely affected (Rust and Rust 2013). An understanding of 

changes in the productivity of grassland ecosystems will provide insights into how the 

hydrological system is altered through variations of available biomass across space and time. 

This will in turn assist water resource managers and communities to prioritise hot spot areas 

for intervention and restoration. This will also improve the management of grazing resources 
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pertinent to the livelihoods of the disadvantaged communal smallholder farmers rearing 

livestock for subsistence purposes. Productivity here refers to the amount (biomass/Leaf Area 

Index) and areal extent of grassland ecosystems.  

From a livestock production perspective, modelling of grassland productivity provides 

communities and extension officers with relevant information on the amount of forage 

contained by the respective rangelands. This information is required in determining the 

optimum number of livestock to be kept on the veld without degradation. With robust predictive 

information on future climate variabilities and drought risk occurrences, farmers can take early 

decisions to reduce the population of their livestock in a systematic manner to reduce the 

overuse of grazing lands. The fodder bank of grass that is available during the dry season is 

the key determinant of the survival of livestock through the dry season.  

Meanwhile, characterising the variability of biomass, leaf area index, foliar water content as 

well as canopy storage capacity of grass could offer an effective method of assessing 

grassland health. This is because, biomass, leaf area index, foliar water content and canopy 

storage capacity are associated with plant physiological processes like stomatal conductance, 

transpiration, and photosynthesis. Also, these have a significant influence on the nutrient (e.g. 

nitrogen) concentrations, distribution, and palatability of grasses. For example, understanding 

grass Canopy Storage Capacity (CSC) is critical in deriving insights into soil water reserves, 

particularly in grassland areas. Wietzke and Zimmermann (2014) defined CSC as the amount 

of water retained in the canopy, which is an important parameter in modelling interception. 

Various studies have illustrated that CSC plays a critical role in wall-to-wall hydrological 

models (Keim et al. 2006; Wietzke and Zimmermann 2014). CSC alters infiltration, spatial 

distribution, and timing of rainwater input to the surface. This in turn has overarching 

implications on surface runoff and soil water availability, as well as the general water balance 

within the catchment over a long period. There is therefore a need to implement spatially 

explicit and time-efficient methods to understand the variations in grassland resource quantity 

if ecosystem services are to be maintained and livelihoods sustained. 

There is a paucity of spatial information on changes in the productivity of the grassland 

ecosystem in both space and time. Past research concentrated on specific and strategic 

localities, with limited spatial extents due to tedious fieldwork and lack of large spatial data 

and processing tools. This affected monitoring and decisions at a planetary scale.  

Until recently, lack of field data, satellite data and computing technology implied that spatial 

data would be refreshed after a few years and hardly done in developing countries where data 
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availability remains a challenge. With the recent advancement in satellite data provision, as 

well as Big data cloud computing and storage capabilities, there is a possibility to conduct 

planetary-scale analysis and consistently monitor the productivity of grasslands over time.  

We, therefore, propose the development of a geospatial Framework for Monitoring grassland 

ecosystems. For the first time, the study will monitor grasslands over broad spatial scales as 

well as at intra- and interannual temporal scales, informed by an understanding of the temporal 

relationships among measurements. The framework will provide actionable information 

services for grassland assessment and monitoring across different key land management 

areas. Specifically, the assessment and monitoring service will deliver satellite-based Earth 

observation spatio-temporal models that will assist users in their operational grassland 

management as well as policy `and decision-making in the target areas.  

 

1.2. Project aims and objectives. 

1. To conduct a comprehensive and state-of-the-art literature review and potential use 

of remote sensing-based models for grassland productivity monitoring in the light of 

climate change  

2.  To review the importance of grasslands as an ecosystem service, particularly the 

contribution of leaf area index (LAI), Canopy storage capacity and Biomass in water 

management  

3. To characterise and model communal grassland productivity status in a changing 

climate at sites within the uMgungundlovu District Municipality 

4.  To assess intra- and interannual temporal changes in grassland productivity and 

proportionate land use change within the catchment and explain the changes thereof. 

 

1.2.1. Specific objectives 

The above stated contractual objectives on the project were addressed by drawing the 

following specific objectives. 

1. To review scientific peer-reviewed articles comprehensively and systematically on 

using remotely sensed data within the explicit theme of estimating grass productivity 

(GP) proxies, such as above ground biomass (AGB), leaf area index (LAI), canopy 

storage capacity (CSC). 
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2. To systematically review the progress, emerging gaps, and opportunities on the 

application of remote sensing technologies in quantifying grasslands ecosystem 

services. 

3. To assess the spatiotemporal variability of rangelands within a typical southern African 

communal area from the year 2000 to 2020 using multi-temporal Landsat datasets in 

conjunction with the random forest. 

4. To predict the future spatial distribution of grasslands in communal rangelands using 

the CA-Markov model between the year 2020 and 2040. The project also compared 

the magnitude of grass fragmentation in the forthcoming 20 years since the same year 

intervals were considered in generating input maps for modelling. 

5. To compare the predictive performance of shallow artificial neural networks (ANNs) 

and deep convolutional neural networks (CNNs) in estimating aboveground grass 

biomass using Sentinel 2 MSI during the dry season. 

6. To predict inter-seasonal variations of grass biomass in using Sentinel 2 MSI remotely 

sensed data in conjunction with convolutional neural networks (CNNs). 

7. To test the utility of multi-source data in estimating LAI, CSC, CWC, and EWT within 

communal grasslands across wet and dry seasons. 

1.3. Scope and the Overview of the Report 

This report is presented as stand-alone chapters written by different authors. Each of these 

chapters fully or partially addresses at least one of the project’s contractual objectives based 

on the guidance of the WRC project managers, the technical reference group members, and 

the critical international peer reviewed system for some of the chapters published in peer-

reviewed journals. In this regard, the general methodology chapter is not included since the 

report is presented in a paper format. Considering that each of the objectives or stand-alone 

chapters are addressing the same overarching aim, and the paper approach adopted in 

presenting this report, there are inevitable overlaps or repetitions, especially in the methods 

and materials sections within the scope of this project report. This was deemed insignificant, 

since all these chapters present a seamless flow of methods and principles that underpin the 

current scientific setting to address the same overarching aim. Furthermore, some of the 

chapters were adapted from articles already published in internationally peer reviewed 

journals. The report is structured to address all the project’s contractual objectives in a logical 

framework. 

Specifically, the chapters in this report are as follows; 
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Chapter 1: offers a comprehensive introduction, background, and conceptualization of the 

entire study. It provides rationale for the overarching study outlined in the terms of reference, 

outlining the project's goals and specific objectives as stipulated in the contract. 

Chapter 2: is a comprehensive and state-of-the-art systematic review of the literature on the 

potential use of remote sensing-based models for grassland productivity monitoring in the light 

of climate change. This chapter directly addresses contractual objective number 1. 

Chapter 3: provides a systematic review of the literature on the utility of remote sensing, with 

a special focus on the importance of grasslands as an ecosystem service. It delves into 

specific contributions of leaf area index (LAI), Canopy storage capacity, equivalent Water 

thickness (EWT), canopy water content (CWC) and biomass in water management. The 

conclusions derived from these literature reviews informed the methodology followed by the 

application chapters (4 to 8). The chapter addressed contractual objective number 2. 

Chapters 4 to 8 addressed contractual objectives number 3 & 4. 

Chapter 4: assessed the spatiotemporal variability of rangelands within a typical southern 

African communal area from the year 2000 to 2020 using multi-temporal Landsat datasets in 

conjunction with random forest. This section of the project assessed the magnitude and extent 

of grassland fragmentation in these communal rangelands using fragmentation statistics. This 

chapter partially addresses contractual objectives number 4, wherein the proportionate land 

use change within the catchment and the changes thereof are assessed and explained. 

Chapter 5: assessed the current and future dynamics of the extent, spatial distribution and 

magnitude of grassland fragmentation using the CA-Markov model in conjunction with the 

random forest regression ensemble. This chapter also partially addresses contractual 

objectives number 4. 

Chapter 6: presents a comparative assessment of the performance of artificial neural networks 

(ANN) and convolutional neural networks (CNN) in estimating dry season aboveground grass 

biomass using Sentinel-2 MSI remotely sensed data. The findings in this chapter suggested 

that CNN could optimally estimate dry season aboveground grass biomass. Subsequently, 

the proceeding chapter adopted deep CNN in estimating grass biomass. This chapter partially 

addresses contractual objectives number 3 &4 which was to characterise AND assess intra 

seasonal changes in grassland productivity. 

Chapter 7: predicts the inter-seasonal grass biomass using deep CNN and Sentinel-2 MSI 

remote data in selected wards of the uMngeni catchment in KwaZulu-Natal. Also, this chapter 
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partially addresses contractual objectives number 3 &4 which was to characterise AND assess 

interannual changes in grassland productivity. The findings of this chapter highlight the 

significance of precipitation and temperature as key drivers regulating changes in grassland 

productivity. 

Chapter 8: involves the inter-seasonal estimation of grass water content indicators using 

multisource remotely sensed data metrics and cloud-computing google earth engine (GEE) 

platform. It focuses on estimating LAI, CSC, CWC, and EWT of communal grasslands using 

GEE random forest across wet and dry seasons, using Sentinel-2 MSI and topo-climatic 

variables. Additionally, this chapter partially addresses contractual objectives 3 & 4 by 

assessing seasonal changes in grassland productivity which in turn regulates seasonal spatial 

variations of the grass water-related ecosystem services. 

Chapter 9: presents a comprehensive discussion of the entire project, connecting all individual 

studies to fulfil the project objectives. The chapter also delivers conclusions and suggestions 

for future research.  
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2. Remote Sensing Grassland Productivity Attributes: A Systematic Review 

T Bangira, O Mutanga, M Sibanda, T Dube and T Mabhaudhi. 

2.1. Introduction 

Grasslands, covering at least one-third of the Earth’s land surface, provide different ecosystem 

services, including carbon sequestration, biodiversity conservation, forage, and opportunities 

for tourism and recreation (Franke, Keuck et al. 2012, Xu and Guo 2015, Ali, Cawkwell et al. 

2016, Bengtsson, Bullock et al. 2019). From a climate change perspective, grasslands, both 

in tropical and temperate regions, play a significant function in maintaining the carbon (C) 

cycle and balancing greenhouse gases (GHGs) (Jones and Donnelly 2004, Ali, Cawkwell et 

al. 2016). These ecosystems contribute roughly 12% of the total terrestrial carbon stocks, and 

any changes in their quality and quantity can potentially change their role in the C cycle (Smith, 

Powsoln et al. 1997, Jones and Donnelly 2004).  

Over 20% of the world’s grasslands appear to be threatened, and more than 7.5% of them 

appear to be disturbed (Yang, Hao et al. 2019). Over the past ten years, grassland degradation 

has been estimated to have cost the global livestock industry more than USD 7 billion. The 

impact on socioeconomic life is particularly alarming in underdeveloped areas, where most 

communities depend on grasslands for feeding livestock (Bardgett, Bullock et al. 2021). As a 

result, grassland degradation portrays a critical problem that has to be addressed to maximize 

their potential to provide ecosystem services in the future. 

To accurately assess grassland ecological status, certain traits and indicators need to be 

investigated (Théau, Lauzier-Hudon et al. 2021). Indicators are measurable parameters that 

can be used to assess the current state of key ecological attributes and provide warnings 

about potential threats to the ecosystem (Soubry, Doan et al. 2021). Grass quantity and quality 

are indicators of grassland productivity (GP), management practices, and the ecological 

processes that affect them. The quantitative and qualitative traits of GP monitoring include 

aboveground biomass (AGB), yield, leaf area index (LAI), canopy storage capacity (CSC), and 

photosynthetic activity. Recently, RS has been widely used to acquire information on the 

quality and quantity of grasslands over large areas and is relatively cheaper than conventional 

field surveys (Mutanga, Skidmore et al. 2005, Chen, Guerschman et al. 2021). These 

quantitative and qualitative proxies are frequently used, equally, for GP monitoring in RS 

studies. As a result, these grassland output monitoring attributes and indicators are also 

evaluated in this context. There have been several successful studies on the prospective and 

capability of RS systems for GP monitoring (Reichstein, Ciais et al. 2007, Kong, Yu et al. 2019, 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/greenhouse-gases
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Guerini Filho, Kuplich et al. 2020). For example, Naidoo, van Deventer et al. (2019) utilized 

random forest regression models, derived from WorldView space-borne sensors (WV3), to 

yield the highest AGB prediction accuracies (RMSE = 169.28 g/m2). Similarly, Guerini Filho, 

Kuplich et al. (2020) made use of Sentinel-2 data to predict biomass in the Brazilian Pampa 

using a multiple linear regression analyses approach and produced high modelling accuracies 

(R2 > 0.8). In another study, Quan, He et al. (2017) compared radiative transfer model (RTM) 

AGB estimation to those obtained using an exponential regression, a partial least square 

regression (PLSR), and artificial neural networks (ANNs). The RTM-based method (RMSE = 

41.65 gm−2) performed better than the exponential regression (RMSE = 42.67 gm−2) and the 

ANN (RMSE = 46.26 gm−2). However, to date, RS-based approaches for predicting proxies 

for GP are still in their infancy, not used extensively, and frequently implemented with 

undetermined accuracy (Ramoelo, Cho et al. 2015, Palmer, Samuels et al. 2016, Liu, 

Atzberger et al. 2020). There is a dearth of consistent approaches, particularly for grassland 

ecosystems (Yu, Wu et al. 2021). Robust and transferable techniques to estimate proxies for 

GP are still needed. Furthermore, the introduction of new and more sophisticated sensors 

demonstrates that RS data will continue to contribute significantly to studies on GP estimation 

(Dube, Shoko et al. 2021, Yu, Yao et al. 2021, Zumo, Hashim et al. 2021).  

This study presents a comprehensive systematic review of the scientific peer-reviewed articles 

on using remotely sensed data within the explicit theme of estimating GP proxies, such as 

AGB, LAI, CSC, yield, and chlorophyll content. The study presents examples from the 

literature that summarize the remote sensing of the GP landscape, chronicling the evolution 

of sensors and associated methodologies, and analysing the geographic distribution of studies 

at various spatial scales. In this instance, specific search terms were used to locate information 

on the RS platform used, the characteristics of the sensor used, the extent of the study, and 

the prediction accuracy of the algorithms used.  

2.2. Materials and Methods 

The phrases and definitions of grasslands differ from study to study, according to its scope 

and objectives. The tag, grasslands, is used to symbolize unidentified graminoids (Dixon, 

Faber-Langendoen et al. 2014) or as a broad term for different kinds of grasses (e.g. pasture 

lands) (Conant, Cerri et al. 2017, Wigley-Coetsee and Staver 2020). Terms such as 

rangelands, pasturelands, or savanna can be found in the pertinent literature (Bengtsson, 

Bullock et al. 2019) to represent the land use activities of grasslands, whether natural or man-

made. This study assessed natural grasslands that provide regulatory and provisioning 

ecosystem services. 
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This review used a systematic approach (Gough, Oliver et al. 2017) to identify peer-reviewed 

articles that published original research on estimating GP proxies using RS. This review is 

divided into two sections to accomplish its research objectives. The initial section focuses on 

the growth achieved, to date, in estimating and monitoring GP using remotely sensed data. 

The biophysical variable parameters, sensor characteristics, sensor platforms, approaches, 

and suitable spectral characteristics that have been utilized to date are reported in this section. 

The last section highlights the recommendations and the way forward for future studies 

focusing on GP. The detailed literature search and analysis were conducted in four stages:  

1. Stage 1: Literature search 

The preliminary stage of the relevant articles search was to compile a list of all key texts, 

words, phrases, and terms found in search strings. These terms must appear in the article title 

and keywords of the abstract. The preliminary literature was searched in Google Scholar, and 

the few top articles were downloaded and analysed for keywords. The following texts and their 

alternatives were used: “grassland productivity”, “remote sensing”, “GIS”, “grassland 

productivity monitoring”, “above ground biomass”, “leaf area index”, “yield”, “grassland 

nutrients AND Remote Sensing & GIS”, “grassland productivity AND remote sensing”, 

“grassland productivity monitoring”, “grassland above ground biomass AND Remote sensing 

& GIS”, “grassland LAI and Remote sensing & GIS”, “grassland canopy storage capacity and 

remote sensing”, and “grassland productivity AND yield AND remote sensing & GIS.” In some 

searches, the word grassland was replaced with any of the following terms: prairie*, meadow*, 

pasture*, savanna*, veld*, steppe*, ‘old field’*, and shrub*. The inclusion/exclusion criteria 

were restricted to title, abstract, and keywords. Table 2.1 shows the query strings used across 

the databases.  

The identified keywords were pasted in the SCOPUS, ScienceDirect, and the Web of Science 

databases to build the relevant literature database. The missing papers from Web of Science, 

Scopus, and ScienceDirect were located using Google Scholar. Pertinent articles were also 

found in the list of references of the relevant studies through a reverse reference list inspection 

(Gough, Oliver et al. 2017). The literature was further screened and filtered to ensure that the 

primary focus of the review was the RS of grassland productivity. Peer-reviewed articles 

published between 1975 and the end of November 2021 were considered.  

2. Stage 2: Screening 

Preliminary literature searches in SCOPUS, ScienceDirect, Web of Science, and Google 

Scholar yielded 1403, 2348, 869, and 135 studies, respectively (Figure 2.1 and Table 2.1). In 

preparation for screening, the abstracts and keywords from the retrieved papers were 
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exported to Endnote. The initial screening procedure included the removal of duplicate articles 

as well as those written in languages other than English. The next step involved a 

comprehensive examination of the articles based on the use of RS to estimate AGB, LAI, and 

grass nutrient and chlorophyll content as proxies of GP. Only full-length articles of the chosen 

abstracts were included for detailed analysis. The detailed information for each article was 

then captured in a spreadsheet. Two hundred and three articles were considered for the 

quantitative and qualitative analysis of this review.  

3. Stage 3: Data retrieval 

All articles retained from the preceding stage were used to comprehensively indicate the 

current development, gaps, problems, and strengths in using RS techniques to estimate GP. 

To answer the research questions of this study, the third stage extracted data from the 

identified articles. The data recorded included details on the year the research was conducted, 

the spatial extent of the study site, the sensor attributes (such as spatial, temporal, radiometric, 

and spectral resolution), the proxy used to estimate GP, vegetation indices used, prediction 

accuracies, and the algorithms used. The explicit attributes were then changed to measurable 

variables, in preparation for the data analysis phase. Concurrently, key bibliometric data, 

including author names, country, publication year, article title, and abstract, were also 

gathered during this stage. Missing studies not identified in previous stages were captured 

during this stage. Accordingly, the stage evaluated the systematic review’s applicability and 

quality assessment stage. 

Table 2.1: Key terms utilized in the literature search. 

Database Search Strings Studies Reserved 

SCOPUS 

TITLE-ABS-KEY ((“grassland”) AND (“remote sensing”) AND (“aboveground 
biomass”)) OR (“leaf area index”) OR ((“grass chlorophyll content “) AND 

(“remote sensing”)) OR ((“grassland yield”) AND (“remote sensing”) & AND 
GIS)) OR ((“grassland quality”) AND (“remote sensing” & GIS)) OR 

((grassland nitrogen) (“remote sensing” & AND GIS)) OR ((“grassland canopy 
storage capacity”) OR (“remote sensing”)) OR ((“grassland productivity”) AND 

(“remote sensing” & GIS)) AND (LIMIT-TO (LANGUAGE, “English”)) 

1403 

ScienceDirect 

“grassland” OR “remote sensing” AND “grassland chlorophyll content” AND 
“grassland canopy water storage” OR “grassland aboveground biomass” OR 
“yield” OR “grassland quality” AND “Remote sensing & GIS” OR “leaf area 

index” 

869 

Web of Science 
TS = ((“grassland”) AND (“remote sensing” OR “GIS”) OR (grassland “leaf 
area index”) OR (“canopy storage capacity”) OR (grassland “aboveground 

biomass”) OR (“grassland quality”)) 
2348 

Google Scholar No key terms were used. Articles from the reference list. 135 

 Full-text articles assessed for eligibility 1289 

 Articles 203 
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4. Stage 4: Data analysis 

The literature that was gathered and extracted was analysed both qualitatively and 

quantitatively. Regarding the quantitative analysis of studies focusing on the quantification of 

proxies of GP, a principal statistical analysis, such as trends, progress, and future projections, 

was conducted. A bibliometric survey was also performed to disclose the trends of principal 

words and phrases in monitoring GP. In addition, this aided in identifying research hotspots, 

development trends, the most cited authors, most relevant publications, and most frequently 

utilized keywords within a research area (Pritchard 1969, Zhang, Huang et al. 2017).  

VOSviewer software developed by van Eck and Waltman (2010) was used for text mining and 

presenting bibliometric maps of key terms used to estimate and monitor GP. The titles, 

keywords, and abstracts of the studies in the resultant database (203 articles) were entered 

into VOSviewer to investigate GP. Literature analyses can be biased but considering that only 

the existence and co-existence of important texts and frequency distributions were evaluated, 

a bias evaluation was not prepared. To avoid biased reporting, the PRISMA 

(http://www.prisma-statement.org/, accessed on Day Month Year) statement was used as a 

guide (Moher, Liberati et al. 2009).  

 

Figure 2.1: Steps followed for the articles considered in this review. 

The study area of each article was evaluated in terms of country and continent. The spatial 

scale of the analysis was also considered. The scale of the studies was grouped into five 

categories, namely, local (<1000 km2), landscape (≥1000 km2), national (entire country), 
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regional (multiple countries), and global. If the study included multiple countries, all the 

countries were listed.  

The detailed analysis of data usage included an extensive assessment of the different RS 

systems used in GP monitoring. Both microwave and optical sensors were considered in this 

review. These sensors can be on board either satellite, ground, or airborne platforms. The 

category of reference data used for the accuracy assessments was also identified. 

 

2.3. Results 

2.3.1. Searched Literature Traits: Published Trends 

The first publications for GP monitoring using remote sensing were made in 1976 (Pearson, 

Tucker et al. 1976, Tucker, Miller et al. 1976), considering that the first Earth-observing 

satellite launched to monitor and study terrestrial ecosystems became functional in 1972. 

Since then, the number of studies has increased steadily, with a significant number of articles 

published by the end of 2021 (Figure 2.2). The first steady increase in publication activity 

occurred in the early 2000s. Between 2010 and 2018, a span of eight years, the annual 

publication rate increased to at least one article per month on average. The period of 2018-

2020 is clearly noticeable since the publication amounts nearly doubled this period in contrast 

to the previous era.  

 

Figure 2.2: Evolution in the time of the published articles that used remotely sensed data for 
GP monitoring. 
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2.3.2. Keyword Analysis 

Figure 2.3 depicts the development and direction of research based on key terms taken from 

the published paper titles, abstracts, and keywords used in this study. Text mining makes it 

possible to discover the development of the occurrence of research phrases in the analysis 

period. Three clusters in purple, green, and yellow across the past four decades are visible. 

The purple cluster has the most centralized, historical terms and is characterized by words 

such as “avhrr”, “ndvi”, “savi”, “wavelength”, “biophysical parameter”, “nitrogen”, and 

“phytomass”. The co-occurrence of the coarse resolution AVHRR sensor and regional study 

sites, such as China and the Tibetan Plateau, implies the preference for a coarse resolution 

sensor when the study area is large.  

The green cluster, which covers the years from 1995 to 2005, has the terms “vegetation index”, 

“leaf area index (lai)”, “canopy chlorophyll content (ccc)”, “radiative transfer model (rtm)”, 

“MODIS”, “artificial neural network (ann)”, “vegetation index)”, “landsat”, “red-edge”, “quality”, 

and “quantity”. The studies conducted during this period were more based on the indicators of 

forage quantity (e.g. AGB and LAI) (Friedl, Michaelsen et al. 1994, Lamb, Steyn-Ross et al. 

2002, Samimi and Kraus 2004) rather than quality (canopy chlorophyll content and nutrients) 

parameters.  

The yellow cluster showed “sentinel”, “operational land imager (oli)”, “machine learning 

regression (mlr)”, “random forest regression (rfr)”, “worldview”, “unmanned aerial vehicle 

(uav)”, and “PLSR”. This indicates a noticeable shift from conventional classification 

techniques to more robust MLAs, such as the partial least squares regression (PLSR) and 

random forest (RF) ensembles, in predicting proxies of GP. The trend in the sensors illustrates 

the peak in the utilization of AVHRR and MODIS in the historical studies published before 

2015. This trend shifted towards the recently launched Landsat-8 OLI (launched February 

2013) and Sentinel-2 (S-2) MSI (launched June 2015) instruments associated with 

improvements in estimation algorithms.  
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Figure 2.3: Evolution of key terms in estimating grassland productivity using remote sensing, 
based on the data derived from the abstracts and titles of the selected literature. 

 

It is worth noting that many of the studies used AGB, LAI, and chlorophyll content as proxies 

for evaluating and monitoring GP. Few studies used the measurement of grassland quality 

traits, such as nutrient content, as indicators of GP. 

2.3.3. Geographic Patterns 

Figure 2.4 shows that the geographical distribution of the articles considered in this study is 

uneven across all continents. More research has been conducted in Asia, particularly in 

China’s “Tibetan Plateau” and “Inner Mongolia”. In particular, China has 54 articles relating to 

GP, followed by the USA, with 38 published articles. Canada, Italy, and Brazil are the other 

countries where considerable studies on GP have been conducted. Australia has conducted 

the least number of studies, followed by South America. Although considerable research has 

been conducted in Africa, many articles were conducted in South Africa. It is noteworthy that 

only eight studies were conducted across multiple countries. This shows that significant efforts 

are required for widespread GP surveillance.  
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Figure 2.4: Global distribution of studies (from 1975 to 2021) that used remote sensing data 
to estimate grassland productivity. 

Based on the articles considered in this study, it was observed that most research using RS 

techniques in GP was mostly conducted at the local scale (Figure 2.5). The least number of 

articles were those conducting analyses at the regional and landscape scales. While studies 

at the global and national scales do not demonstrate a trend, the overall number of landscape- 

and regional-scale articles has gradually increased over the temporal window examined in this 

research. 

 

Figure 2.5: Frequency of studies conducted at different spatial scales (i.e. the extent of the 
study areas). 
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2.3.4. Remote-Sensing Sensor Technologies in Mapping Grassland Productivity 

(Paying Particular Attention to Prediction Accuracies) 

Currently, various RS platforms with various image acquisition features are used for short-

term and long-term GP monitoring. Although some studies used ground-based readings (such 

as the LI-COR LAI-2000 Plant Canopy Analyzer and MSR5 field-portable radiometer) and 

airborne sensors (such as the ASPIS sensor and HyMap hyperspectral), satellite-borne 

sensors account for the majority of the RS data used (Figure 2.6). The most widely used 

sensors are Landsat-8 (OLI), AVHRR, MODIS, SPOT, and the S-2.  

 

Figure 2.6: Popularly used remote-sensing sensors used in GP monitoring. WV = WorldView, 
S-1 = Sentinel-1, S-2 = Sentinel-2, OLI = Operational Land Imager, ETM = Enhanced 
Thematic Mapper, and MSS = Multi-Spectral Scanner. 

The characteristics of the most frequently used satellite sensors are shown in Table 2.2. There 

is a sharp increase in the number of studies estimating GP using satellite-borne remotely 

sensed data. This is supported by the recent launch of new multispectral satellite sensors, 

such as the S-2 and Landsat-8, which can systematically acquire imagery at a high spatial 

resolution at no cost. However, few studies have used airborne data for estimating grassland 

productivity. As revealed in the literature analysis, Figure 2.7 shows that the few studies using 

radar data for grassland productivity monitoring only picked up in 2019 after the launch  

of S-1.  

The MODIS sensor was the most frequently used sensor, accounting for nearly 30% of all the 

studies, followed by Landsat 1-8 series data (23%) (Figures 2.6 and 2.7). The increasing 

availability of low-cost and free satellite data with moderate-coarse (100-1000 m) and 
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moderate (10-100 m) spatial resolutions means that these are the most frequently exploited 

data sources for GP algorithms in the 21st century. The dominant image spatial resolutions in 

GP algorithms are 10 m, 30 m, and 250 m, which correlate to the S-2, Landsat series, and 

MODIS data. The superiority of MODIS data is explained by its frequent revisit time and large 

pixel size, which is computationally inexpensive for large-scale studies. 

 

Figure 2.7: Temporal development of the remote-sensing systems used to analyse GP for the 
period between 1986 and the end of 2021. 

Although RS provides a profitable instrument for GP, the sensor characteristics (i.e. spectral, 

spatial, and temporal resolution) influence the exact retrieval of spectral reflectance 

observations, playing an important role in GP monitoring (Gupta, Vijayan et al. 2003, Mutanga, 

Adam et al. 2012, Dube, Mutanga et al. 2016). For instance, Bédard, Crump et al. (2006) 

highlighted that different sensors exhibit unique characteristics over time and space, which 

affect the spectral reflectance observed by the sensor. The fine spectral resolution allows 

discrimination between grass and other land covers to estimate GP accurately. In addition, 

the phenology of the plants determines the temporal variability of their productivity (Shoko, 

Mutanga et al. 2016), which can be clearly mapped by sensors with a short revisit time. 

Matongera, Mutanga et al. (2021) stated that, at distinct phenological stages, grasses show 

variations in their productivity and water storage for the entire growing season, affecting the 

quantity and quality of biophysical proxies for evaluating and monitoring GP. Considering the 

sensor characteristics and phenology of grass species, this review found that most studies 

used coarse to medium spatial resolution data with high temporal resolutions. This is 

supported by the studies of Xu, Yang et al. (2008) and Zhang, Zhang et al. (2019), which 
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highlighted that significant changes in GP need frequent, repeated monitoring to be 

noticeable.  

Figure 2.8 shows the overall accuracies of the sensors that appeared in five or more studies 

for estimating grassland vegetation attributes. In general, the sensors show a diverse range 

of median overall accuracies. Hyperspectral sensors, spectra radiometers, WorldView, and  

S-2, have the highest median overall accuracies. The sensors with the lowest median overall 

accuracies include MODIS and SPOT. MODIS, Hyperspectral, S-2, and AVHRR delivered the 

greatest range of results, while RapidEye and WorldView provided the smallest range. 

 

Figure 2.8: Overall accuracies of the various sensors used in monitoring grassland vegetation 
attributes. 

The Landsat and MODIS satellites have imaged Earth’s terrestrial surfaces for over forty and 

twenty years, respectively. This explains the extensive number of studies utilizing these 

datasets in estimating the proxies of GP. Extended temporal monitoring also increases the 

efficacy of GP and the exploration of appropriate management practices, which increases 

productivity (Atzberger, Klisch et al. 2014). For instance, Wang, Gamon et al. (2020) used 

MODIS data to determine the annual grassland productivity of North American grassland in 

the period from 2000 to 2010, covering a decade, whereas Zhang, Lal et al. (2016) covered a 

period of five (2004-2008) years.  

Although coarse spatial resolution sensors have a limitation of mixed pixels, this review has 

found that at least 90% of the studies used data with a low spatial resolution to estimate GP 

over regional or global scales. Higher-resolution hyperspectral sensors yield greater precision 

for estimating GP by producing finer details from every pixel generated in an image. The 

concurrent improvements in high-resolution remotely sensed data and computer hardware 
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and software have created an appropriate opportunity to effectively predict and map GP, 

regardless of the spatial and temporal extent. Thus recently, much attention has been paid to 

using high-resolution satellite sensors (e.g. RapidEye and WorldView-2). The study conducted 

by Naidoo, van Deventer et al. (2019) found that WorldView-3 produced the highest AGB 

estimation accuracies (R2  =  0.65 and RMSE  =  170.28 g/m2) when compared to S-1 (R2 = 

0.56 and RMSE = 186.56) and S-2 data (R2 = 0.60 and 175.08 g/m2) to estimate grassland 

AGB. On the other hand, Gao, Dong et al. (2020) found that utilising high-resolution 

multispectral and hyperspectral datasets has limitations mainly coupled with the saturation of 

the optical signal at a high biomass density, issues in pre-processing large datasets “big data”, 

and multi-regression and multi-collinearity problems. There are high computational costs 

incurred through the processing of large datasets. 

Table 2.2: Characteristics of the most frequently used sensors. 

Sensor Bands 
Spectral 

Range (nm) 
Swath 
(km) 

Pixel Size 
(m) 

Temporal 
Resolution 

(Days) 

Execution 
Scale 

Hyperspectral * >100 -  -  <1 User-defined Farm 

AVHRR 5 550-12,400  3000 1100 1 Regional-global 

HyspIRI * 
213 
8 

380-2500  
3000-12,000  

600 
150 

60  
19 
5 

Local-regional 

MERIS # 15 410-900  1150 300 3 
Local to 
regional 

Landsat TM 
ETM 
OLI 

7 
8 
11 

450-2350  
450-2350  

430-12,510  
185 30 16 

Local to 
regional 

MODIS 36 620-14,385 2330 
250, 500, 

1000 
1 

Regional to 
global 

RapidEye * 5 440-850  77 5 5.5 Local  

Sentinel-2 MSI 13 492-1373 290 10, 20, 60 5, 10 
Local to 
regional 

SPOT 4 480-890  120 6,10, 20 26 
Local to 
regional 

SPOTVGT 1 437-1695 2200 1150 1 
Regional to 

global 

Worldview 2,3 * 8 400-2245 16.4 <1 1-1.37 Local 

ALOS PALSAR * VV, HH L-band 70 10 14 Local 

Sentinel-1  HV, VHHH, VH C-band 250 5, 20 6, 12 
Local to 
regional 

COSMO-SkyMed * HH X-band ≥40 5 16 Local 

TerraSAR-X * VV, HH VH, HV  X-band 270 1 2.5 Local 
Note: The sensors with * and # have expensive acquisition costs, and the mission has ended. 

 

Although several researchers (Gao, Xu et al. 2013, Li, Huffman et al. 2013, Ardö, Tagesson 

et al. 2018) found strong biases caused by mixed pixels when using coarse resolution data for 
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the estimation of GP, this review found that a few studies (about 6%) have used hyperspectral 

sensors (Figure 2.6). This is mainly because such type of data is not freely available. Thus, 

GP techniques are focused mostly on moderate spatial resolution satellite data, such as 

Landsat, SPOT, and S-2. Using such sensors produced higher predictive accuracy  

(Figure 2.8) than MODIS and AVHRR, which have a low spatial resolution.  

The deployment of SAR sensors presents a state-of-the-art opportunity for retrieving 

biophysical parameters regardless of the weather conditions and time of day, thus holding 

greater potential for GP monitoring. However, few studies (<5%) have used radar data 

acquired by SAR sensors for GP (Figure 2.6). The success of SAR-based GP algorithms is 

reliant on the sensor (e.g. microwave frequency, polarization, and incident angle) and 

environmental characteristics (canopy structure, topography, soil moisture, and depth) (El 

Hajj, Baghdadi et al. 2019).  

A couple of SAR systems with different characteristics were placed in orbit during the 21st 

century, allowing radar RS' advancement on GP monitoring. Examples include X-band 

sensors, namely, TerraSAR-X with a very-small pixel size (up to 1 m) and COSMO-SkyMed, 

a constellation of four systems; Japanese ALOS and ALOS-2 L-band instruments; and C-band 

instruments on European Space Agency ASAR and S-1 sensors. Lately, systematically 

collected and freely available SAR datasets, such as that from the constellation of the S-1 

system (Berger et al., 2012), have been unavailable. As explained in the above presentation 

of literature, the trends of studies based on SAR data picked up not long ago, after the launch 

of the S1 satellite that provides SAR data at no cost.  

To date, the RS of GP using SAR data has focused on interpreting SAR backscattering 

observations and the polarimetric or interferometric attributes of individual or multiple scenes 

to estimate vegetation parameters using linear regression models (Svoray and Shoshany 

2002, McNairn and Brisco 2004, Wang, Ge et al. 2013, Abdel-Hamid, Dubovyk et al. 2021). 

For example, Wang, Ge et al. (2013) analysed the GP with COSMO-SkyMed, ASAR, and 

ALOS PALSAR datasets through the linear relationship between the SAR backscattering 

coefficient. The analysis showed that the X-band of the COSMO-SkyMed has the highest 

correlation (R2 = 0.71) for the spatial and seasonal vegetation biomass. In another study, 

Wang, Xiao et al. (2019) estimated the seasonal dynamics of LAI and AGB using S-1, OLI, 

and S2 data, individually and integrally. The results from that study indicated that S-1 data 

performed poorly (R2 = 0.44) in recording the seasonal changes in biomass, but the accuracy 

improved when SAR data were integrated with optical data.  
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Regarding the seasonal GP using SAR data, Hajj, Baghdadi et al. (2014) observed a lower 

sensitivity at the X-band compared to the C-band between the microwave backscatter and the 

vegetation biophysical parameters with restricted possibilities of the X-band to predict GP. 

Inoue, Kurosu et al. (2002) and Gao, Niu et al. (2013) undertook studies to compare the 

sensitivity of individual portions of the electromagnetic spectrum to plant biomass, while 

Barrett, Nitze et al. (2014) demonstrated how the most accurate monitoring of grasslands 

could be attained with the integrated use of L- and C-bands time-series. In addition to using 

multiple wavelengths, different polarimetric acquisition capabilities can be exploited. For 

instance, Pairman, McNeill et al. (2008) utilized TerraSAR-X dual polarimetric SAR multi-

images to estimate pasture biomass. In addition, using the multiple angles of Radarsat-2 quad-

polarization, Buckley and Smith (2010) monitored GP for prairie grasslands. Their comparison 

with a single incidence angle showed better results for grassland classification. 

While SAR data have many advantages, such as the ability to observe the ground even during 

cloudy conditions, there are also challenges related to SAR image analysis and its 

interpretation for estimating biophysical parameters for GP monitoring (Ali, Barrett et al. 2017). 

A further limitation associated with SAR imagery is the presence of speckles, which can affect 

observation accuracy and therefore cause a decrease in classification accuracy (Ali, Barrett 

et al. 2017). The backscatter signal from grasslands is governed by several variables, 

including the radar system, vegetation (i.e. stems and leaves), soil surface, and the biophysical 

parameters of the scatterers in the grass water content. Wang, Ge et al. (2013) concluded that 

the accuracy of SAR data in GP can be influenced by rain due to its sensitivity to water drops 

on leaves. To date, SAR data use in GP has remained rudimentary, except for a few studies 

(Chiarito, Cigna et al. 2021). Therefore, a few (<5%) studies have used these sensors. 

However, recently, Wang, Xiao et al. (2019) found the best performance from the integration 

of LS8, S1, and S2 (R2 = 0.76) than the S-1 backscatter signals (R2 = 0.04-0.44).  

Recently, the performance of light detection and ranging (LiDAR) technique was reported in 

estimating grassland biophysical parameters using RS data (Jansen, Kolden et al. 2019, 

Zhang, Bao et al. 2021). Meanwhile, Zhang, Bao et al. (2021) found that the ground-measured 

biomass was correlated (R2 = 0.54) with LiDAR estimates.  

2.3.5. Utility of Vegetation Indices as Proxy for Estimating Grassland Productivity 

An important and widely studied method of GP prediction is the use of RS-derived vegetation 

indices (VI) in conjunction with in-situ observations (Anderson, Hanson et al. 1993, Piao, 

Mohammat et al. 2006, Gu, Wylie et al. 2013). Most VIs uses the red, red-edge, and near-

infrared wavelengths (Piao, Mohammat et al. 2006, Clevers and Gitelson 2013, Guerini Filho, 
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Kuplich et al. 2020). Over 80% of the studies tested the utility of NDVI in estimating grassland 

productivity. NDVI is influenced by the soil background signature and is associated with 

saturation problems at high LAI (Mutanga and Skidmore 2004, Liu, Huang et al. 2007, Nestola, 

Calfapietra et al. 2016). This has meant that more studies have incorporated the modified 

version of NDVI and other red-edge-based vegetation indices to address saturation issues 

(Mutanga and Skidmore 2004, Vescovo, Wohlfahrt et al. 2012, Wang, Liu et al. 2018). 

According to Mutanga and Skidmore (2004), the integration of narrow bands in the shorter 

wavelengths of the red edge (700-750 nm) and longer wavelengths of the red edge (750-780 

nm) produce higher correlations (average R2 = 0.77 for the top 20 NDVI values) with grass 

biomass than the standard NDVI alone.  

The second most used VI for estimating grassland productivity is the enhanced vegetation 

index (EVI), which was formulated to improve biomass estimation in areas with elevated 

biomass by eliminating the canopy background signal and depletion in atmospheric influences 

(Yang, Fang et al. 2009, Meshesha, Ahmed et al. 2020, Villoslada Peciña, Bergamo et al. 

2021). EVI uses the blue band, which is absent in most sensors. This drawback has resulted 

in the development of the two-band EVI2 for sensors such as the AVHRR, which have a 

missing blue band (Jiang, Huete et al. 2007). The articles by Kim, Huete et al. (2010) and 

Jarchow, Didan et al. (2018) reported the similar performance of the EVI and EVI2 bands when 

estimating grassland productivity at large scales. The earlier study's accuracy was very high 

for EVI (R2 = 0.97) and EVI2 (R2 = 0.98). Therefore, EVI2 can provide the continuity of the 

monitoring of grassland productivity across sensors with different spectral bands.  

Transformed normalized difference vegetation index (TNDVI), perpendicular vegetation index 

(PVI), soil-adjusted vegetation index (SAVI), modified soil-adjusted vegetation index (MSAVI), 

transformed soil atmospherically resistant vegetation index (TSARVI), and transformed soil-

adjusted vegetation index (TSAVI) is another group of modified VIs used in GP monitoring to 

minimize the effects of the soil on the vegetation spectral profile. The evidence from the 

literature has shown that the applications of this group of VIs in GP are primarily appropriate 

for regions with reduced grass cover, where the influence of soil brightness is high (Liu, Huang 

et al. 2007, Psomas, Kneubühler et al. 2011, Ullah, Si et al. 2012). For instance, Ullah, Si et 

al. (2012) examined natural GP in the northern Netherlands, characterized by short grass 

cover, and found that SAVI (R2 = 0.54), TSAVI (R2 = 0.52), and NDVI (R2 = 0.51) have similar 

performances. In another interesting study conducted by Jin, Yang et al. (2014) over a large 

landscape (193,000 km2), the statistical analysis showed that the R2 of NDVI, SAVI, and 

MSAVI were 0.686, 0.702, and 0.69, respectively.  
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The renormalized difference vegetation index (RDVI) is another VI widely used for GP (Liu, 

Huang et al. 2007, Ghorbani, Dadjou et al. 2020, Pang, Zhang et al. 2020). RDVI combines 

the advantages of difference vegetation index (DVI) and NDVI for low and high vegetation 

cover, respectively. The literature shows that RDVI is sensitive to LAI changes, making it 

suitable for productivity monitoring in grasslands with a high LAI (Vescovo, Wohlfahrt et al. 

2012). For example, Tagesson, Ardö et al. (2017) found that RDVI (R2 = 0.90) performed 

better than NDVI (R2 = 0.79) in areas with a high LAI.  

VIs based on the red edge (680-780 nm) have been proposed to minimize the impacts of the 

bidirectional reflectance distribution function and background noise, resulting in a better 

performance when estimating grassland productivity (Gupta, Vijayan et al. 2003, Sibanda, 

Mutanga et al. 2016, Lin, Li et al. 2019). For instance, Lin, Li et al. (2019) evaluated the efficacy 

of using VIs based on red-edge reflectance from S2 over a small local area to estimate 

grassland productivity. The results showed a high correlation (R2 = 0.77). Recently, Imran, 

Gianelle et al. (2020) observed a strong correlation (R2 > 0.8) between VIs based on the red 

edge and grassland LAI in a local grassland using S2 data. The major problem in using the 

VIs obtained from red bands is the small sensitivity to over-story vegetation conditions (Chen 

1996).  

Lately, advances in hyperspectral and commercial multispectral sensors have facilitated the 

evolution of narrowband greenness VIs, which have become the most suitable approach for 

assessing GP (Naidoo, van Deventer et al. 2019, Shoko, Mutanga et al. 2019). These 

narrowband indices can successfully discriminate discrete grass biochemical properties, such 

as chlorophyll.  

Although VI remains the most used GP indicator, some vegetation biophysical parameters, 

such as LAI (Darvishzadeh, Skidmore et al. 2008, Kiala, Odindi et al. 2016, Wang, Xiao et al. 

2019), the fraction of absorbed photosynthetically active radiation (FAPAR) (Lin, Li et al. 

2019), canopy storage capacity (Xiong, Chen et al. 2021), canopy chlorophyll content 

(Darvishzadeh, Skidmore et al. 2008, Yin, He et al. 2016), and the greenness factor, have also 

been used to estimate productivity in grassland ecosystems. The evidence from the literature 

shows that these biophysical parameters provide detailed information about the grassland's 

physiological health, which is a very important indicator of photosynthetic potential 

(Darvishzadeh, Skidmore et al. 2008, Xiong, Chen et al. 2021).  

Although VI regression models have been reported in the literature to have very-high 

accuracies in estimating biomass (Bella, Faivre et al. 2004, Xu, Yang et al. 2007), their major 

limitation is that these models are site-specific and cannot deal with highly non-linear and 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bidirectional-reflectance
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complex patterns in the data. A major challenge in using VIs to assess GP is to minimize the 

influence of external factors and maximize the sensitivity of the relationship between VIs and 

biophysical parameters.  

2.3.6. Algorithms Used for Grassland Productivity Using Remote Sensing 

This study noted that the RS of GP can be performed using either physical-based (i.e. radiative 

transfer models (RTMs)) or empirical/statistical models (Table 2.3). Although 1-D and 3-D 

RTM inversion approaches have proven to be a promising way to retrieve the biophysical and 

biochemical variables of proxies of vegetation, such as the leaf area index (LAI), canopy water 

content, canopy or leaf chlorophyll content, and fuel moisture content (Darvishzadeh, 

Skidmore et al. 2008, Quan, He et al. 2017), this review found that only 6% of the studies used 

this technique for GP. RTM-based approaches have the benefit of reproducibility. These 

models are more general and are based on physical laws that establish explicit relationships 

between canopy properties and spectra. Outstanding results, with an R2 greater than 0.7, were 

reported for using RTMs (Darvishzadeh, Skidmore et al. 2008, Vohland and Jarmer 2010). 

For example, Quan, He et al. (2017) used the PROSAILH (PROSPECT + SAILH) model and 

reflectance from OLI product to derive LAI and AGB in a grassland wetland. The RTM-based 

approach yielded a higher accuracy (R2 = 0.64) than the exponential regression (R2 = 0.48) 

and the ANN (R2 = 0.43). Another example of a successful (R2 > 0.7) RTM-based estimation 

of GP is the function of the crop growth model by Bella, Faivre et al. (2004) in France. RTM 

approaches, on the other hand, are computationally demanding, particularly when complex 

models are used. This makes retrieving biophysical variables over vast geographic areas 

impossible (Darvishzadeh, Skidmore et al. 2008, Darvishzadeh, Skidmore et al. 2008). 

NDVI and in situ measurements of the empirical/statistical algorithms used to obtain a 

correlation between the spectral data or VIs with biomass are the widely used approaches in 

GP (Shoko, Mutanga et al. 2016, Sibanda, Mutanga et al. 2019). The empirical approach 

relates RS variables to in situ grass biomass via parametric or non-parametric regression 

models (Shoko, Mutanga et al. 2016). Linear regression, which has been used for decades, 

is the widely used algorithm for GP because of its simplicity and computational efficiency. 

However, the derived statistical relationships (R2 ranging from 0.25 to 0.70) are considered 

sensor-specific, site- and sampling-conditions-dependent, and are anticipated to change in 

space and time (Shoko, Mutanga et al. 2016). Using MODIS-derived grass biomass, Xu, Yang 

et al. (2010) compared three different regression models, and the best correlation was shown 

by an exponential algorithm (R2 = 0.80), followed by the PLSR (R2 = 0.79) and linear (R2 = 

0.67).  
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Table 2.3: Available algorithms for grass productivity prediction using remotely sensed data. 

Algorithm 
Remote-Sensing 

Datasets 
Performance GP Parameter(s) References 

Linear regression 

MODIS R2 varied between 0.25 and 0.68. AGB 
(Grant, 

Johnson et 
al. 2014) 

AVHRR R2 ranged from 0.39 to 0.47. AGB 
(Schino, 

Borfecchia 
et al. 2003) 

MERIS R2 ranged from 0.51 to 0.72. Nitrogen and AGB 
(Ullah, Si et 

al. 2012) 

Exponential 
regression 

Landsat 8 OLI 

The RTM-based algorithm yielded higher 
prediction values (R2 = 0.64) than the 

exponential regression (R2 = 0.48) and ANN 
(R2 = 0.43). 

LAI, leaf chlorophyll 
content, leaf water 
content, and AGB 

(Quan, He 
et al. 2017) PLSR 

PROSAILH 

SML Sentinel-2 
The RMSE was 10.86 g/m2, and the R2 

accuracy was 82.84%. 
AGB 

(Pang, 
Zhang et al. 

2020) 

SPLSR 
Sentinel-2 and 

HyspIRI 

HyspIRI data showed higher AGB prediction 
accuracies (RMSE = 6.65 g/m2, R2 = 0.69) 

than those from S-2 (RMSE = 6.79 g/m2, R2 = 
0.58).  

AGB 
(Sibanda, 

Mutanga et 
al. 2016) 

PLSR Hyperspectral 
Results showed that PLSR models could 
retrieve LAI on hyperspectral images with 
accuracy values ranging from 0.81 to 0.93. 

LAI 
(Kiala, 

Odindi et al. 
2017) 

RF 

WorldView-2 
Results showed that random forest and 

vegetation indices achieved >89%. 
Leaf nitrogen and 

AGB 

(Ramoelo, 
Cho et al. 

2015) 

S-2 and OLI R2 ranges from 0.84 to 0.87. LAI 
(Li, Zhou et 

al. 2021) 

SVM 

Radarsat-2 
The SVM yielded the best overall prediction 
(R2 = 0.98) for GP in central-north Brittany, 

France. 
LAI 

(Dusseux, 
Corpetti et 
al. 2014) 

MODIS SVM (R2 = 0.58 and RMSE = 5.6 g/m2). AGB 
(Zhou, Li et 

al. 2021) 

Hyperspectral 
SVM models yielded higher accuracies (R2 = 

0.90) than PLSR models (R2 = 0.87). 
LAI 

(Kiala, 
Odindi et al. 

2016) 

ANN Landsat 7 ETM+  
The study showed the AGB values modelled 
by ANN (R2 = 0.817) were not far from the 
observed values than MLR (R2 = 0.591). 

AGB 
(Xie, Sha et 

al. 2009) 

DT 
ENVISAT ASAR, 

ERS-2 
Overall accuracies R2 ≥ 88.7% were achieved 

for most datasets. 
AGB 

(Barrett, 
Nitze et al. 

2014) 

PROSAIL S-2 The R2 ranged from 0.22 to 0.76. 
LAI, AGB, and leaf 

chlorophyll and water 
content 

(Punalekar, 
Verhoef et 
al. 2018) 

 

While parametric models can yield moderate estimates for GP, they are associated with 

several challenges. For instance, Verrelst, Camps-Valls et al. (2015) indicated that parametric 

algorithms lack proficiency in expressing the complex relationships between RS variables and 

grass aboveground biomass. Furthermore, researchers have noted that parametric methods 
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suffer from multi-collinearity, overfitting, and produce unstable predictions, when working with 

small sample sizes and missing values (Sibanda, Mutanga et al. 2016, Li, Xin et al. 2017).  

Conversely, the new-fashioned and resilient non-parametric MLAs, including support vector 

machines (SVM), random forest (RF), partial least squares regression (PLSR), sparse PLSR 

(SPLSR), boosted regression trees (BRT), and artificial neural network (ANN), presents a 

robust tool for estimating GP. MLAs have been reported to be powerful, efficient, and less 

affected by the dimensionality of data than parametric algorithms (Ramoelo, Cho et al. 2015, 

Dube, Pandit et al. 2019). Furthermore, non-parametric algorithms overcome the challenges 

associated with using parametric algorithms, such as multi-collinearity, overfitting, handling 

small sample sizes, and missing values (Sibanda, Mutanga et al. 2015, Shoko, Mutanga et al. 

2016). Though these algorithms are increasingly replacing parametric algorithms for GP, they 

are still considered rudimentary in the domain of GP (Kiala, Odindi et al. 2016, Zhang, Lal et 

al. 2016, Gao, Dong et al. 2020).  

However, some inevitable limitations are associated with using MLAs for GP. The accuracy of 

the results is strongly determined by the quality of the training dataset. The existence of 

outliers and erroneous values in the training data may weaken the model performance (Shoko, 

Mutanga et al. 2016). Some MLAs, such as ANNs, are complex, computationally demanding, 

and require adjustments of several parametrizations, such as the kennel size (Ali, Greifeneder 

et al. 2015). In addition, some MLAs tend to be suitable for specific locations; hence, the 

models developed are not adapted to other environments, and in the case of RF, it has been 

documented that the algorithm tends to underestimate the high values and exaggerate the low 

values of AGB (Shoko, Mutanga et al. 2016). However, these issues are notable, and 

researchers try to minimize these limitations with precise strategies. For instance, the 

availability of vast datasets will aid remotely sensed data-driven models to achieve better 

generalization. 

2.4. Discussion 

2.4.1. Algorithms Used for Grassland Productivity Using Remote Sensing 

As discussed in the previous sections, GP monitoring has been widely studied in the last five 

decades. However, many studies have been conducted in Asia, and few attempts have been 

made to estimate grassland AGB using RS in African and Australian grasslands, especially 

on indigenous grasses (Naidoo, van Deventer et al. 2019, Zhang, Chen et al. 2020). The 

limited number of studies in estimating grassland productivity using RS in some countries 

undermines the appreciation of grasslands in the carbon cycle.  
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Currently, there is a great demand for GP information at larger scales. Therefore, the future of 

regional studies for GP is invested in using RS datasets with applicable pixel sizes, spectral 

resolution, and repeat cycles in conjunction with algorithms, which can improve performance 

accuracy. The progress in satellite RS and using UAVs for collecting images at fine resolutions 

have revived GP monitoring (Villoslada Peciña, Bergamo et al. 2021). Grasslands play a 

significant role in carbon sequestration and support ecosystem services; therefore, the use of 

RS in GP monitoring will be uninterruptedly enhanced in the next decades as climate change 

mitigations increase.  

Consequently, the availability of affordable and advanced sensors with a fine pixel size (e.g. 

RapidEye and WorldView 3), quick revisit time (e.g. Hyperspectral InfraRed Imager (HyspIRI) 

and the constellation of S-1A and 1B, S-2A and 2B, and S-3), fine spectral resolution (e.g.  

S-2 MSI), and radiometric resolution (e.g. Landsat 8 OLI) creates advanced opportunities for 

GP monitoring. We draw attention to the newly launched HyspiIRI sensor, which has 213 

spectral bands between 380 and 2500 nm, aiding the observation and characterization of 

exquisite contrast in grass species that are unnoticeable using broadband multispectral 

sensors (Shoko, Mutanga et al. 2016, Matongera, Mutanga et al. 2021). In addition, the OLI 

has finer spectral bands, sophisticated calibration and signal-to-noise characteristics, higher 

12-bit radiometric resolution, and more advanced geometry compared to its predecessors 

(Roy, Kovalskyy et al. 2016). Therefore, these sensors provide greater possibilities for future 

studies in quantifying grassland quantity parameters (i.e. biomass, LAI, and CSC).  

Studies that have used datasets acquired by new-generation sensors have shown that they 

have great potential to predict GP. For instance, Sibanda, Mutanga et al. (2017) and Naidoo, 

van Deventer et al. (2019) discovered that the WorldView-3 sensor has a special red-edge 

band, which has a high potential to estimate grassland productivity. In a related study, 

Sibanda, Mutanga et al. (2016) reported that the hyperspectral resolution of the HyspIRI 

imagery has a high potential to monitor grassland productivity, especially in heterogeneous 

environments. Given this, future research on the GP is enlightened. The advanced properties 

of new-generation datasets are more likely to offer an improved temporal characterization of 

grasslands to effectively manage grasslands and maintain ecosystem services. 

Studies that have used SAR datasets have proved they have the potential for estimating 

proxies of GP, especially in areas where cloud cover is very high most of the time, which limits 

the use of optical satellite data (Dusseux, Corpetti et al. 2014, Abdel-Hamid, Dubovyk et al. 

2021). Dusseux, Corpetti et al. (2014) found that the classification accuracy of SAR variables 

is significantly higher than those using optical data (0.98 compared to 0.81). The authors 
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highlighted that integrating optical and SAR remotely sensed data is of prime interest in 

distinguishing grass classes from other features.  

The use of advanced MLAs in GP has also been successful when compared to conventional 

algorithms, even when using broadband multispectral sensors. Advanced MLAs improve the 

use of RS data to quantify GP (Li, Xin et al. 2017, Vundla, Mutanga et al. 2020). Generally, 

studies conducted in grassland ecosystems have reported the potential of MLAs in estimating 

GP (Mountrakis, Im et al. 2011, Ramoelo, Cho et al. 2015).  

When satellite remotely sensed datasets are absent, it is also possible to collect remotely 

sensed data using UAVs to explore the potential of remotely sensed data in predicting GP 

(Villoslada Peciña, Bergamo et al. 2021). The resampling of hyperspectral images collected 

from UAVs is becoming a reliable alternative in testing the potential of available or upcoming 

sensors’ spectral configurations, especially considering the limitations linked with 

hyperspectral datasets.  

This study revealed that most research on estimating vegetation chlorophyll at the leaf and 

canopy scale has been for precision agriculture or forests, and few have been conducted for 

grassland ecosystems. There is a need to improve the generality and applicability of VIs for 

estimating GP at the leaf level. Studies at this scale can reveal key information applicable to 

ecosystem health, such as grass' physiological status, productivity, or phenology.  

2.4.2. State-of-the-Art Approaches for Improving GP Monitoring Using Remote-

Sensing Techniques 

While great progress has been made in sensor development and GP monitoring approaches, 

several important issues for improving estimating GP – especially in complex environments 

(e.g. woody grasslands and grasslands with mixed grass species) such as in many places – 

– need to be paid more attention to. Firstly, notwithstanding the extensive research on land 

use and land cover classification, few studies have focused on solving the issue of mixed 

pixels, which is relevant to the mapping of GP using coarse-spatial, high-temporal resolution 

imagery. There is a cut-off between studies on RS for GP in heterogeneous environments and 

the operationalization of remotely sensed data for grasslands application. A transformation 

from science-driven techniques to explicit, user-oriented approaches of RS is required for 

monitoring grasslands and the dynamics of grasses in heterogeneous environments.  

More research is required to assess the prospects of the SAR and hyperspectral datasets, 

specifically those from S1 satellite and airborne (e.g. unmanned aerial vehicles (UAVs)) 
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sensors. S-1 data sources hold much potential for GP as they are freely available, weather- 

and daylight-independent radar systems, have relatively high spatial resolutions and have 

short revisit periods. In addition, regarding the poor economic states of most countries, GP-

monitoring techniques should be robust, cheap, and autonomous. When it comes to GP at the 

farm scale, the use of UAVs proved to be useful. Farmers can plan their pasture management 

methods and grazing capacity accordingly. This economically viable and easy technique will 

greatly improve the sustainable management of grasslands. Eventually, the compilation of 

robust and fruitful local-to-regional frameworks and policies to ease sustainable grassland 

management practices are more likely to be accomplished.  

The emergence of remotely sensed datasets with a high temporal resolution has paved the 

way for near-real-time GP monitoring. Every day, a large number of space-borne and airborne 

sensors provide a considerable amount of remotely sensed data. These data are becoming 

an economic asset and a new important resource in estimating grassland productivity. There 

is, thus, a need to develop powerful data analysis techniques, such as MLAs, data fusion, 

multi-sensor approaches, and cloud-based storage and processing systems (e.g. Google 

Earth Engine) to handle large datasets.  

RTM inversion algorithms have been demonstrated to be a promising way to retrieve proxies 

of GP. These models are more adaptable as they are based on physical laws that provide 

straightforward connections between canopy and LAI properties and spectra (Quan, He et al. 

2017). Furthermore, these RTM-based approaches have the advantages of replicability and 

robustness at a large scale without the need to gather field samples. Consequently, there is a 

need to channel research towards using RTMs in estimating GP, especially in large areas. 

The recent study by Berger, Atzberger et al. (2018) proved that RTMs are computationally 

expensive and require high-end computers to perform quickly. This is no longer a drawback 

since computer technology is advancing rapidly, particularly with the advent of cloud 

computing platforms such as Google Earth Engine.  

2.4.3. Limitations and Future Expectations on Applications and Sensors 

Given the spatial and spectral variability of grass species, finding the correct dataset, with the 

optimal spectral and spatial resolution, remains a crucial drawback for estimating GP using 

RS data. Currently, GP estimates in light of climate change are required at the regional or 

national scale. These sensors must have the optimum spectral and spatial resolution sufficient 

to provide very-high spatial resolution data. However, the spatial resolution of current 

multispectral data products acquired in wide swaths have a low temporal resolution (10 days 
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at the equator with one satellite), negatively affecting the performance of techniques for 

explicitly estimating GP.  

The available data on predicting GP over large areas have been derived using coarse spatial 

resolution datasets, such as MODIS (Figure 2.5). Despite having global coverage, a short 

revisit time, and being in operation for more than five decades, which are prerequisites for 

prolonged monitoring, MODIS data have a low prediction accuracy (see Figure 2.8 and Table 

2.2), especially in heterogeneous grasslands. The limitations of the MODIS pixel size are 

inappropriate to adequately estimate GP in mixed grassland ecosystems (Jarchow, Didan et 

al. 2018). Although the coarse resolution sensors are associated with vast errors in the 

estimation of AGB, LAI, and CSC, they are still widely used for large-scale GP monitoring.  

Fine spectral and spatial resolution input data are crucial for GP estimation approaches. To 

date, space-borne hyperspectral data have not been easily accessible, constraining studies 

to the local scale using UAV data. Studies using broadband multispectral data have produced 

low prediction accuracies in contrast with hyperspectral datasets, for example, the research 

conducted by Jarchow, Didan et al. (2018). In this regard, the trade-offs between pixel sizes, 

image acquisition costs, swath width, and spectral resolution were reported by many authors 

as a major drawback of RS for estimating GP and their function in the C cycle (Dube, Mutanga 

et al. 2016, Shoko, Mutanga et al. 2016, Tong and He 2017).  

This review study showed several proposed RS techniques for GP monitoring. To date, there 

is not much information about which algorithm is superior in performance, because a limited 

number of the reported approaches have been validated for their accuracy. To date, few 

comparative studies have been undertaken. In addition, although Vis are successful in GP 

monitoring, it is not suitable in heterogeneous grasslands, particularly when scattered trees or 

shrubs are present. These indices are not robust and are site-specific. The conventional NDVI, 

developed from the red and NIR bands, have been reported to perform poorly in sparsely 

vegetated areas and associated with saturation challenges in thickly vegetated areas 

(Mutanga and Skidmore 2004, Pang, Zhang et al. 2020). This has led to the development of 

other indices with better accuracies than the NDVI, such as the red-edge NDVI (NDVI derived 

using red edge bands), EVI, SAVI, and MSAVI. Using the MODIS data, Zhou, Zhang et al. 

(2014) found that MSAVI, EVI, and SAVI indices outperformed the NDVI in quantifying the 

productivity of northern China grasslands.  

There is a need to adopt novel methods to enhance the accuracy of estimating proxies of GP. 

Deep learning has been widely used in many areas of image processing due to its effective 
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performance in processing high-dimensional data and non-linear relationships. Estimating GP 

proxies using time series of hyperspectral imageries over large areas takes significant effort 

using machine-learning regression approaches. This means that deep learning is an 

outstanding alternative. Deep learning can also deal with multi-source inputs and learn weights 

to combine important information from them. 

Despite the greater use of remotely sensed data in grassland monitoring, fewer studies have 

combined the several features of GP to develop an exhaustive, consistent biophysical 

monitoring system. In order to improve the eligibility and transferability of biophysical 

simulation models, it is also necessary to integrate multiple-source remote-sensing data.  

2.5. Conclusions 

The progress of RS systems and the introduction of new advanced classification algorithms 

have gained the attention of researchers to use these potential data and tools for GP 

monitoring. RS is fully used to obtain accurate information on GP proxies: AGB, LAI, CSC, 

and chlorophyll content. The present study analysed a substantial body of literature by 

gathering a comprehensive dataset (203 articles) for estimating grassland productivity using 

RS until the end of 2021. 

The number of studies on estimating GP using remotely sensed data has risen significantly, 

but most strongly in the last two decades. The prevalence of research on GP is unequally 

distributed globally, as China has the highest number of studies, followed by the USA. Few 

studies have been conducted in Africa and Europe.  

Multispectral satellite data was used in 88% of studies, especially in studies focusing on the 

retrieval of AGB. Few studies (10%) used microwave systems, and only 2% combined optical 

and radar data. Although hyperspectral data are associated with better accuracy than 

multispectral data, they have a small swath width, high acquisition costs, and high pre-

processing. These challenges have limited their use, enabling researchers to focus more 

extensively on unrestrained broadband multispectral datasets.  

The progress in techniques can further enhance the accuracy in estimating GP using the 

optimal RS datasets. The selection of the most appropriate image classification algorithm is 

one of the current topics of discussion in GP monitoring using RS data. Thus, there is a call 

for future research to test the applicability of broadband multispectral and hyperspectral 

sensors with state-of-the-art image acquisition traits, combined with powerful MLAs, such as 

DA, RF, PLSR, SVM, and ANN, for the well-informed management of grasslands.  
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3. A systematic review on the application of remote sensing technologies in 

grasslands ecosystem services 

A Masenyama, O Mutanga, T Dube, T Bangira, M Sibanda, and T Mabhaudhi 

3.1. Introduction 

Grasslands represent the most extensive land cover on the earth’s surface (Briske 2017). 

They are a mixture of grass, clover and other leguminous species, herbs and shrubs and are 

generally managed as natural ecosystems (Carlier, Rotar et al. 2009, Zerga 2015). Grasslands 

are particularly important because they occupy a large area of rangeland vegetation types, 

covering 31.5% of the global landmass and occurring naturally on all continents excluding 

Antarctica (Latham, Cumani et al. 2014). Globally, grasslands are recognized for their 

significant role in biodiversity conservation and the provision of a variety of ecosystem services 

(Habel, Dengler et al. 2013, Jin, Yang et al. 2014). 

The last decade has seen rapid progress in ecosystem services-related (ES) research 

activities. While the past research mostly focused on forests and wetlands, grasslands were 

largely neglected, yet they also provide a variety of provisioning (forage production, genetic 

resources), supporting (nutrient cycling, primary production), cultural (recreation, educational), 

and regulating (water regulation, climate regulation) ecosystem services (Havstad, Peters et 

al. 2007, Zhao, Liu et al. 2020). Grassland ES refer to physical and non-physical resources 

provided by ecosystem structure and functioning of grasslands to meet human survival as well 

as biodiversity maintenance (Lemaire, Hodgson et al. 2011, Sala, Yahdjian et al. 2017). This 

implies that accurate and timely information about the geographic extent and health condition 

of grasslands is of crucial importance for the management of this natural capital. 

One of the most valuable services provided by grasslands is that of water management. In 

terms of water flow regulation, grasslands mainly occur in the main catchment areas (Cadman, 

De Villiers et al. 2013). As such, they form an effective system for water capture by inducing 

high infiltration rates, reducing run-off and soil erosion while regulating stream flows (Egoh, 

Reyers et al. 2011, Cadman, De Villiers et al. 2013). However, grasslands are becoming more 

vulnerable to land-use changes (Alkemade, Reid et al. 2013), alien plant invasion (Seastedt 

and Pyšek 2011) and climate change (Bellocchi and Picon-Cochard 2021). Such threats 

compromise their ecosystem productivity resulting in the deterioration of the role of grassland 

biomes in water flow regulation. 

Grass biophysical parameters such as biomass, leaf area index (LAI) and canopy storage 

capacity (CSC) are prominent attributes that could offer valuable information to understand 
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hydrological processes and water balance within grasslands (Xu, Gichuki et al. 2006, Bulcock 

and Jewitt 2010). Biomass refers to the mass of plant organic matter per unit area (Pang, 

Zhang et al. 2020). It is a critical component of global carbon cycling and it directly influences 

hydrological processes such as surface run-off and infiltration (Duley and Domingo 1949, Jin, 

Yang et al. 2014). LAI is the ratio of a leaf area per unit ground surface area (Zheng and 

Moskal 2009). It is a major control of vegetation productivity, biophysical feedback on 

atmospheric energy and water exchanges (Law, Cescatti et al. 2001). CSC is the amount of 

water retained in plant canopies that controls rainfall interception, evaporation from vegetation 

canopy, throughfall, interception, infiltration, and ground water restoration (Bulcock and Jewitt 

2010, Zou, Caterina et al. 2015). 

Remote sensing has become a cost-effective tool for regional and global mapping (Feng, Fu 

et al. 2010), modelling (Andrew, Wulder et al. 2014) and quantifying ecosystem properties (de 

Araujo Barbosa, Atkinson et al. 2015). Several studies (Ustin, Darling et al. 2004, Jiang, Qin 

et al. 2007, Muraoka and Koizumi 2009, Vargas, Willemen et al. 2019, del Río-Mena, Willemen 

et al. 2020, Niu, He et al. 2021, Wang, Chen et al. 2021) have demonstrated the capability of 

remote sensing technologies in quantifying ES. A notable advantage of Earth observation 

technologies is their capability to provide synoptic, unlimited, spatially explicit and frequent 

information at varying spatial and temporal resolutions (Xu, Yang et al. 2008, Wachendorf, 

Fricke et al. 2018). With recent advances in remote sensing technology, there is a possibility 

that Earth observation data could contribute extensively to research on grasslands ES 

(Soubry, Doan et al. 2021).  

In terms of literature, grasslands ecosystem reviews have been carried out (Ceotto 2008, 

Prochnow, Heiermann et al. 2009, Prochnow, Heiermann et al. 2009, Modernel, Rossing et 

al. 2016, Zhao, Liu et al. 2020). However, most of the above-mentioned reviews did not focus 

on remote sensing applications in grassland ES. Within the remote sensing context, there are 

several reviews that look at the development and significant advances of remote sensing 

technologies within grassland studies (Ali, Cawkwell et al. 2016, Wachendorf, Fricke et al. 

2018, Reinermann, Asam et al. 2020). To the best of our knowledge, the aforementioned 

studies did not conduct any bibliometric analysis of the studies that focus on remote sensing 

of ES provided by grasslands, with particular attention to their accuracies. Additionally, few 

studies have assessed literature on the utility of remote sensing on deriving grasslands 

biophysical parameters with a special interest in characterizing water-related grassland ES 

(Soubry, Doan et al. 2021). The recent systematic review by Soubry, Doan et al. (2021) 

specifically looked at application of geospatial techniques in characterizing ecosystem health 

attributes, indicators, and measures of forest and grassland. Nevertheless, the study focused 

on ecological indicators and attributes derived from GIS and remote sensing data in the 
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context of ecosystem health assessment, not the application of Earth observation data in 

characterizing ES provided by grassland ecosystems, with particular attention to model 

accuracies.  

Therefore, the current study conducted a systematic literature review to understand the 

progress, emerging gaps and opportunities on the use of remote sensing technologies in 

quantifying grasslands ES including those that are related to water. The study seeks to further 

explore the contribution of variables such as biomass, LAI, and CSC in water management. 

An understanding of the contribution of such parameters will provide insights of their significant 

role in the hydrological cycle. This will, in turn, assist water resource managers to facilitate 

mapping hotspot areas for interventions within degraded grasslands. 

 

3.2. Materials and Methods 

3.2.1. Literature search, inclusion, and exclusion strategy 

The studies included in this systematic literature review were retrieved through an extensive 

search for peer-reviewed journal articles published in Web of Science (WOS), Scopus and 

Institute of Electrical and Electronics Engineers (IEEE). The following search terms 

combination were used in all the three databases: “grassland productivity AND remote sensing 

OR GIS”, “grassland productivity monitoring”, “grassland ecosystems AND remote sensing 

OR GIS”, “grassland ecosystem services AND remote sensing OR GIS”, “grassland LAI AND 

remote sensing OR GIS”, “grassland canopy storage capacity AND remote sensing”, 

“grassland productivity AND water management AND remote sensing OR GIS”. The literature 

search was conducted without any restrictions on the year of publication. 

A total of 784 references from WOS, 773 from Scopus and 89 references from IEEE were 

collected. Following the literature search, the retrieved references (n = 1646) were exported 

in Endnote for screening. The number of studies identified, included, or excluded were 

recorded following the Preferred Reporting Items for Systematic Reviews and Meta-analysis 

statement (Page, McKenzie et al. 2021) (Figure 3.1). The articles eligible for the meta-analysis 

had to meet the following criteria: 

(1) The study focuses on grasslands and no other vegetation types (e.g. forests, crops) 

are included since those will be denoting different ecosystems. 

(2) The study focuses on grasslands productivity concepts (biophysical and biochemical 

parameters of grasslands). 

(3) The study is based on GIS or remote sensing techniques in grassland productivity 

monitoring and management. 
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(4) Results or prediction accuracies of remote sensing technology (sensors or algorithms 

or vegetation indices) used in the study are stated. 

(5) The article is published in an accredited journal. 

(6) The article is written in English. 

From the retrieved literature searches, the study carried out the first exclusion process 

of removing all duplicates. In total, 641 records were excluded. Secondly, essential 

bibliography information (title and abstract) of the remaining articles (n = 1005) were examined 

to check whether the studies applied remote sensing to examine grasslands parameters. Upon 

title and abstract screening, irrelevant articles (n = 819) were excluded including studies that 

were not written in English. Of the 186 articles remaining, 45 of them were unavailable in 

portable document format (pdf), and inaccessible in full length. As a result, they were 

excluded. The remaining 141 articles were assessed for eligibility and additional articles (n = 

81) were identified through the reference lists of the included articles using the backward 

reference searching (Horsley, Dingwall et al. 2011). These were retrieved using the Google 

scholar web search engine. In total, 222 articles met the selection criteria and were used for 

data extraction. 

 

Figure 3.1: PRISMA flow diagram for selection of studies considered in the review. 
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3.2.2. Data Extraction 

The data from Endnote was exported into an excel spreadsheet. Endnote was set to export 

key bibliographic information such as author name, publication year, article title, journal name, 

keywords, abstract digital object identifier (DOI), uniform resource locator (URL). In addition 

to this, information on study area location (country and continent), Earth observation sensor 

technology utilized, type of vegetation indices, remote sensing algorithms with special 

attention on derived accuracies and biophysical or biochemical parameter(s) being 

investigated were extracted after reading through each article. With regards to accuracies, the 

root mean square error values were not used in this study because ES variables are measured 

in different SI units. Consequently, the coefficient of determination (R2) value was used in 

assessing the accuracies derived in estimating these grasslands ES. The R2 value is a 

common accuracy estimation parameter used to explain the magnitude of variation between 

the predicted and measured samples of a specific grassland variable also known as the 

goodness of the model’s fit (Cameron and Windmeijer 1997, Chicco, Warrens et al. 2021). 

The R2 ranges from 0 to 1, with values closer to 1  indicating a great model fit or a more 

accurate model depending on what is predicted (Singh, Mutanga et al. 2017). The frequency 

of articles was used in this study for quantification purposes. Specifically, the measures used 

for the extracted data included counts and percentages while the R2s were extracted from 

respective manuscripts. 

 

3.2.3. Data analysis 

The retrieved articles and extracted data were subjected to quantitative and qualitative 

synthesis and analysis. Firstly, bibliometric analysis was performed to visualize occurrence 

and co-occurrence networks of key terms from the retrieved literature. Bibliometric analysis is 

a widely used meta-analytical tool that can identify interconnections of key terms related to a 

given topic or field from published papers (Han, Kang et al. 2020). This was carried out using 

VOSviewer software (van Eck and Waltman 2010). VOSviewer provides network visualization 

of key terms in the form of linked clusters. Creating a map in VOSviewer include four steps 

which are: 

(1) Selecting a counting method (binary counting or full counting). 

(2) Selecting minimum number of occurrences for a term (calculating similarity index). 

(3) Calculating relevance score for the co-occurrence terms and based on this score, 

display most relevant items. 

(4) Displaying a map based on the selected terms. 
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The functionality of VOSviewer for bibliometric mapping and analysis is detailed in van Eck 

and Waltman (2010). The titles, abstracts, and keywords of the final database were used as 

input text data in VOSviewer to provide graphical visualization based on occurrence and co-

occurrence of key terms. To assess the progress of remote sensing technologies in grassland 

ES, basic statistical frequencies and trend analysis were conducted using Microsoft Excel 

(Carlberg 2014). ES provided by grasslands were categorized using the classification scheme 

proposed by the Millennium ecosystem assessment report (MA 2005) (Table 3.1). The 

Millennium Assessment (MA) classification scheme was chosen following its present wide 

recognition as a robust classification approach in distinguishing ecosystem functions into 

regulating, provisioning, supporting and cultural services. 

Table 3.1: Non-exhaustive grassland-related ecosystem services classification based on 
Millennium Ecosystem Assessment as explained in Leemans and De Groot (2003). 

Category Ecosystem service Explanation 

Provisioning 
services 

Food (fodder) Range of food products derived from plants, animals, and microbes.  

 Genetic resources Genes and genetic information used for animal and plant breeding and 
biotechnology. 

   
 Fresh water Water is obtained from different water ecosystems (dams, rivers, oceans).  
Regulating 
services 

Climate regulation Regulation processes related to the greenhouse effect, atmospheric 
chemical composition, ozone layer, and atmospheric weather conditions at 
both local and global scales. Regulation of both temperature and 
precipitation at a local scale. On a global scale, ecosystems play an 
important role in climate by Carbon sequestration storage. 

 Water regulation Regulation of hydrological flows, water storage and water retention (i.e. 
timing and magnitude of runoff, flooding, aquifer recharge and the system’s 
water storage potential) are regulated by changes in land cover. 

 Air quality regulation Sequestration and storage of carbon as well as the release of oxygen, 
influence air quality. 

 Erosion regulation Soil retention and regulation of soil erosion and landslides. 

 Water purification 
and waste treatment 

Purification of water through filtering out and decomposing organic wastes 
introduced into inland waters, coastal and marine ecosystems. 

 Natural hazard 
regulation 

Ecosystems can dramatically regulate the damage caused by landslides, 
wildfires, etc. 

Supporting 
services 

Nutrient cycling Nutrients such as nitrogen, and phosphorus cycle through ecosystems. 

 Primary production 
or photosynthesis 

Assimilation of energy and nutrients by biota. 
Production of energy required by most living organisms through 
photosynthesis. 

 Habitat Providing living spaces for animals or plants while maintaining biodiversity. 
 Soil formation Soil formation and changes in soil formation which impact human well-being  
Cultural 
services 

Recreation and 
ecotourism 

Provision of recreational parks and touristic attractions. 

 Educational values Provide a basis for both formal and informal education in societies. 
 Aesthetic values Provide aesthetic value in the light of urban development. 
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Grassland biophysical and biochemical parameters are key indicators of ecosystem 

services (Lavorel, Grigulis et al. 2011). Given this context, biophysical and biochemical 

parameters were used to identify ES within the reviewed studies. Additionally, biochemical 

parameters relating to chemical components such as chlorophyll content and nitrogen 

concentration are an indirect measure of vegetation nutrient status which in turn relates to 

nutrient regulation services (Tong and He 2017, Wang, Deng et al. 2017). Therefore, studies 

relating to the proportion of nitrogen and chlorophyll concentration were classified under 

nutrient regulation service. 

The review was then separated in two sections to address the research objectives. The first 

section explored the progress in remote sensing technologies applied in grassland ES. This 

section detailed the literature search characteristics, identified ecosystem services, trends in 

the distribution of studies and remote sensing technologies applied within grassland ES 

studies. The outcomes of the first phase were then used to articulate existing research gaps 

on the role of remote sensing in quantifying grassland water-related ES in the second phase. 

 

3.3.  Results 

3.3.1.  Literature search characteristics 

In analysing literature characteristics of the retrieved studies, the network map in Figure 3.2 

categorized the identified literature into four clusters of concepts. The green cluster had its 

key terms being “prediction accuracy”, “performance”, “ann”, “support vector machines”, 

“multiple linear regression”, “plsr”, “prospect”, “random forest” “biophysical parameters”. This 

cluster links accuracy assessment of algorithm performance with estimating biophysical 

parameters. The inclusion of terms such as “Landsat”, “hyperspectral data”, 

“spectroradiometer” in this cluster presents the linkage between satellite imagery, ground-level 

spectral reflectance, remote sensing modelling techniques and principal biophysical 

parameters which directly implies the utility of various remote sensing technologies in 

grasslands ecosystem services. 

The second cluster (yellow) had its key terms as “band”, “spectral bands”, “sensor”, “red-

edge”, “sentinel”, “worldview”. This relates to the influence of the spectral band settings 

(reflectance measured) on the sensor’s performance in estimating grass productivity (Wang, 

Xiao et al. 2019). The blue cluster had “synthetic aperture radar “and “soil moisture” as its key 

terms which directly implies the potential of synthetic aperture radar (SAR) sensors in 

estimating soil moisture content. Lastly, the red cluster connected terms such as “China”, 

“modis ndvi”, “carbon cycle”. This articulates the wide usage of MODIS derived NDVI as proxy 

for studying grasslands as major component of carbon cycling, with most studies carried out 
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in China (Fu, Tang et al. 2014, Liu, Cheng et al. 2017, Kong, Yu et al. 2019). The red cluster 

also categorized terms such as “climate change”, “net primary productivity”, “precipitation”, 

“temperature”. Precipitation and temperature are crucial variables in controlling net primary 

production which is a key measure of ecosystem functioning used in understanding global 

climate change (Jia, Xie et al. 2015).    

Figure 3.2: Topical concepts in grasslands ecosystem services studies derived using data 
from titles, abstract and keywords. 
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3.3.2.  Progress in the use of remote sensing technologies to monitor grasslands 

ecosystem services. 

3.3.2.1. Grassland ecosystem services identified in literature. 

Results of this study illustrate that nine-grassland ES were mentioned in the retrieved articles 

(Figure 3.3). A total of 79 studies utilized remote sensing in studying grassland provisioning 

services of which forage provision had the highest frequency of studies (n =75). Forty-three 

studies investigated grassland supporting services relating to primary production, seventeen 

studies focused on nutrient cycling and thirteen studies were based on habitat for wildlife 

species. Seventy-five studies focused on grassland regulating services, of which 51 studies 

focused on climate regulation. The results show that only one study (Ge, Yang et al. 2014) 

utilized Earth observation data to monitor grasslands tourist seasons which relates to cultural 

ecosystem services. 

For water regulation service, three studies (Davidson, Wang et al. 2006, Hajj, Baghdadi et al. 

2014, Sibanda, Onisimo et al. 2021) evaluated the utility of remotely sensed data in mapping 

moisture content elements related to biomass. In addition, studies by Pan and Shangguan 

(2006) and Kautz, Collins et al. (2019) used the spatial extent of vegetation cover derived 

using remotely sensed data to estimate run-off while Xing, He et al. (2014) use it to estimate 

soil moisture within grasslands. Meanwhile, 5 studies (Shimoda and Oikawa 2008, Vetter, 

Schaffrath et al. 2012, Schaffrath and Bernhofer 2013, Zhu, Su et al. 2013, Castelli, Anderson 

et al. 2018) utilized remotely sensed data to characterize LAI in the context of hydrological 

models linked to evapotranspiration. Remotely-sensed LAI was also used as input data to 

understand hydrological processes relating to water balance (Nouvellon, Moran et al. 2001, 

Sridhar and Wedin 2009), ecological water requirement  (Zhang, Yang et al. 2010) and 

precipitation use efficiency (Jia, Xie et al. 2015) within grasslands ecosystems. Qi, Murray et 

al. (2017) used process-based models which simulate LAI as a dynamic input in a grass 

growth model. The model was used to estimate evapotranspiration, drainage and water 

productivity within different grassland systems. 

In terms of CSC, one study (Yu, Pypker et al. 2012) utilized water budget balance and artificial 

wetting methods to model canopy rainfall storage capacity in relation to grassland degradation 

and its impact on the hydrological cycle. Additionally, a study by Sibanda, Onisimo et al. (2021) 

utilized remote sensing methods to assess grassland CSC. Three studies (Bertoldi, Della 

Chiesa et al. 2014, Baghdadi, El Hajj et al. 2015, El Hajj, Baghdadi et al. 2015) were based 

on the use of remotely sensed data to estimate soil moisture content in grasslands which is a 

key parameter for many hydrological processes. Paruelo, Lauenroth et al. (1999) used 

remotely sensed aboveground net primary production data as an estimate of water availability 
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within grasslands. Saatchi, van Zyl et al. (1995) used synthetic aperture radar (SAR) data to 

estimate soil moisture and canopy water content of natural grasslands which is of fundamental 

importance to understanding eco-hydrological processes. 

 

Figure 3.3: The number of studies that utilized remote sensing to assess grasslands 
ecosystem services. Studies with multi-ecosystem services were counted several times. 

 

3.3.2.2.  Geographic distribution and publication trends 

In terms of spatial distribution, the studies included in the meta-analysis were 

conducted in thirty-one different countries (Figure 3.4). Ten articles were large-scale studies 

conducted at a regional scale and two studies (Xia, Liu et al. 2014, Yang, Wang et al. 2017) 

were conducted on a global scale. These studies were included in the meta-analysis but could 

not be classified under a certain country in Figure 3.4. In assessing the frequency of 

publications per nation, it was observed that studies on grasslands ES were conducted across 

all continents excluding Antarctica. Thirty-three per cent of these studies were conducted in 

Asia, with China having most studies. 

Although 18% of the studies were conducted in Africa, (13%) were conducted in Southern 

Africa, mostly in South Africa. About 22% of the studies were conducted in Europe, 18% in 

North America, 5% in South America and 3% in Australia. 1% of the studies collected in this 
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study were conducted at a global-scale. From Figure 3.4, considerable gaps in the geographic 

distribution of published articles can be observed especially in South America, Australia and 

most parts of Africa. Interestingly, 11 out of 23 studies on water-related ecosystem services 

were conducted in the global south and 12 in the global north. More research efforts need to 

be exerted towards the utilization of remotely sensed data in assessing grassland water-

related ES globally.  

 

Figure 3.4: Spatial distribution of remote sensing studies in the context of grassland ecosystem 
services. Studies conducted at regional and global scales are not shown. 

The earliest publication of grassland ES was in 1983 (Figure 3.5). Meanwhile, few articles (n 

= 10) were published between 1983 and 1996. A constant number of publications occurred 

between 1997 and 2001 after which a considerable fluctuation in publications was observed. 

Since then, the use of remote sensing in grassland ES studies has been increasing steadily 

reaching a total of 222 published articles in 2021 (Figure 3.5). 
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Figure 3.5: Frequency of studies published on remote sensing applications in grassland 
ecosystem services. 

 

3.3.2.3.  Sensor technologies, spectral settings, and derived vegetation indices  

The use of Earth observation sensors used in remote sensing of grassland ES studies has 

considerably increased. Thirty-nine sensor types were noted in the literature reviewed (Figure 

3.6). As illustrated in the characterization of literature in Figure 3.2 (red cluster), Moderate 

Resolution Imaging Spectroradiometer (MODIS) had the highest frequency of studies (34%), 

followed by the Landsat system (25% (TM = 11%, OLI = 8%, ETM+ = 6%)).  

Meanwhile, a significant number of studies (18%) have used handheld hyperspectral devices 

for the in-situ acquisition of remotely sensed data for characterizing grass biophysical and 

biochemical parameters. The findings of this study also illustrate that 14% of the studies 

utilized digital elevation models (DEM) in estimating and mapping grassland ecosystem 

services. Of these studies, about 4% specifically used the Shuttle Radar Topography Mission 

(STRM) and 2% used the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) derived digital elevation models. 

The new generation of sensors such as Sentinel 2 multispectral instrument (MSI) has shown 

great potential in grassland ES studies (13%). High spatial resolution satellites such as 

Worldview-2 and Worldview-3 have also been utilized in 3% of the studies.  Although applied 

in a few studies, results from the searched literature showed that recent technologies in remote 

sensing such the Unmanned Aerial Vehicle (UAV) based sensors have also been utilized in 

grasslands ES studies (3%) (Figure 3.6).  
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Figure 3.6: Frequency of studies that utilized a specific sensor system within reviewed studies. 
Studies with multi-sensors were counted several times. 

 

Results show that the use of sensors such as Advanced Very High-Resolution 

Radiometer (AVHRR), spectroradiometer and platforms such as UAVs began to increase in 

the 1980’s (Figure 3.7). The 1990’s saw the introduction of sensors such as SPOT and 

Landsat TM sensor-system within the grassland ES research. The use of MODIS sensor can 

be observed from 2005 and it has been used almost in all years. Additionally, the use of 

Landsat ETM+ started trending in 2001 up until now. Although the results show that 

Worldview-2 had also been utilized in mapping grassland ES, it was observed to have been 

utilized for five years, from 2013 to 2018. The period from 2014 to 2021 witnessed a shift in 

the frequent use of Sentinel-2 and Landsat 8 OLI sensors. 
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Figure 3.7: Progression of Earth observation sensors used within the reviewed studies 
between December 1983 and September 2021. 

The sensors used in the grassland ES studies show a high range of average prediction 

accuracies with R2 values of 55% to 90.5% (Figure 3.8). The highest average R2 value (90.5%) 

was obtained from the utility of UAVs. Meanwhile, freely available moderate spatial resolution 

satellites such as Landsat TM, OLI and ETM+ had high mean prediction accuracies of 70, 76 

and 83%, respectively. Additionally, the high spatial resolution Sentinel 2 satellite data yielded 

a high mean prediction accuracy of 77%. Interestingly, SAR systems yielded considerable 

average prediction accuracies ranging from 58%-73% (Figure 3.8). 

 

Figure 3.8: Box plots showing average correlation coefficients values for Earth observation 
sensors used in the ecosystem services studies. Sensors utilized in less than three studies 
are excluded.  
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Numerous vegetation indices have been derived from Earth observation sensors for mapping 

and monitoring grasslands ES. Although a plethora of vegetation indices were identified in the 

literature considered in this study, Table 3.2 only shows the vegetation indices applied in more 

than three studies. Most indices were not captured because they were used in less than three 

studies. Subsequently, the study reports on the sections of the electromagnetic spectrum that 

have been widely utilized to derive those vegetation indices as in Loris and Damiano (2006), 

Boschetti, Bocchi et al. (2007), Lu and He (2019), Wang, Liu et al. (2019) and Sibanda, 

Onisimo et al. (2021). 

The widely used sections of the electromagnetic spectrum for the derived vegetation indices 

were the red and near-infrared regions (NIR). In this regard, the Normalized Difference 

Vegetation Index (NDVI) was utilized in 65% of the studies, the Enhanced vegetation index 

(EVI) in 13%, the Soil adjusted vegetation index (SAVI) in 10% and the Simple Ratio (SR) in 

6% of the studies. A considerable number of studies (6%) used red-edge based vegetation 

indices which are calculated based on the red-edge region of the electromagnetic spectrum 

(Guerini Filho, Kuplich et al. 2020). Although most studies used vegetation indices, the results 

of this review showed that about 8% of the studies assessed the utility of topographic indices 

derived from DEM in predicting and estimating grassland ecosystem services. 

In terms of water-related ES, the used sensors were COSMO-SkyMed, RADARSAT-2, 

MERIS, MODIS, Sentinel 2, SPOT, TerraSAR-X, Landsat fleet and hand-held spectral 

devices. Vegetation indices utilized in these studies were Soil Adjusted Total Vegetation Index 

(SATVI), NDVI and SR. Additionally, red-edge, NIR and short-wave infrared (SWIR) bands 

were reported to be critical in characterizing water-related ES. Moreover, only three studies 

(Saatchi, van Zyl et al. 1995, Bertoldi, Della Chiesa et al. 2014, Sibanda, Onisimo et al. 2021)  

used topographic indices in estimating water-related ES. 
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Table 3.2: Summary of the commonly used vegetation indices in grassland ecosystem 
services studies. 

Index name Abbreviation Formula R2 range Reference 

Enhanced Vegetation 

Index  

EVI 
𝐺

𝑁𝐼𝑅 −  𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1 ×  𝑅𝐸𝐷 −  𝐶2 × 𝐵𝐿𝑈𝐸 +  𝐿
 

0.44-

0.95 

(Liu and Huete 

1995) 

Normalized difference 

vegetation index 

NDVI 𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

0.22-

0.95 

(Rouse, Haas et 

al. 1974) 

Sentinel 2 Normalized 

difference red edge 

index  

NDRE 𝑁𝐼𝑅 − 𝑅𝐸𝐷 𝐸𝐷𝐺𝐸

𝑁𝐼𝑅 + 𝑅𝐸𝐷 𝐸𝐷𝐺𝐸
 

0.47-

0.84 

(Liu, Wang et al. 

2018) 

Soil adjusted 

vegetation index  

SAVI (1 + L)
𝑁𝐼𝑅 −𝑅𝐸𝐷

𝑁𝐼𝑅 +𝑅𝐸𝐷 + 𝐿
 0.49-

0.75 

(Huete 1988) 

Simple ratio SR 𝑁𝐼𝑅

𝑅𝐸𝐷
 

0.27-

0.83 

(Jordan 1969) 

G = gain factor; C1, C2 = coefficients of the aerosol resistance term, which uses the blue band 

to correct for aerosol resistance term; L = soil brightness correction factor (Liu and Huete 

1995). 

 

3.3.2.4.  The role of remote sensing prediction and modelling algorithms in 

grassland ecosystem services 

Results of this review show that there are thirty-seven algorithms that have been utilized in 

studying grasslands ES. These thirty-seven algorithms fall into three categories that are as 

follows: 

(1) production efficiency models (n = 18) 

(2) machine learning algorithms (n = 10)  

(3) multivariate analysis techniques (n = 9) 

Figure 3.9a shows the average coefficient of determination accuracies of production-efficiency 

models that were used in more than three studies. Fifteen of the eighteen production efficiency 

models were excluded from Figure 3.9a as they were used in less than three studies (Table 

3.11: Appendix). The included models yielded high average R2s ranging from 60.6% to 72.8% 

(Figure 3.9a). Results of this study show that PROSAIL was the most widely used model 

among the production efficiency models. Results also show that light use efficiency (LUE) 

models are utilized in estimating ecosystem primary production services. For LUE and 

Carnegie-Ames-Stanford approach (CASA), it was observed that the major inputs for the 
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models were a fraction of Photosynthetic Active Radiation (fPAR) derived from remote sensing 

data and meteorological data. 

Figure 3.9b shows the average coefficient of determination accuracies of three widely used 

machine-learning algorithms. Seven of the algorithms were excluded from Figure 3.9b 

because they were applied in less than three studies (Table 3A: Appendix). The average R2s 

of the algorithms ranged from 64.5% to 75%, showing considerable high prediction accuracies 

across all the algorithms used in estimating grassland ES. Random forest (RF) had the highest 

average prediction accuracy (75%) followed by artificial neural networks (ANN) and support 

vector machines (SVM) with average accuracies of 68% and 64.5%, respectively. These 

algorithms were detected using the network analysis in Figure 3.2 (green cluster) as topical 

elements of grassland ES mapping. Meanwhile, multivariate analysis techniques reported in 

most studies are illustrated in Figure 3.9c. The R2 average accuracies ranged from 54% to 

86.5%, indicating high model prediction accuracies (Richter, Hank et al. 2012). Discriminant 

analysis (DA) had the highest average prediction accuracy (86.5%) followed by sparse partial 

least square regression (SPLSR) and partial least square regression (PLSR) with average 

accuracies of 78% and 71% respectively. Exponential regression had the lowest average 

prediction accuracy of 54%. 

Algorithms reported in studies that focused on water-related ES include hydrological models 

(Soil-vegetation-atmosphere transfer (SVAT), Water cloud, Process-based model, NOAH 

Land Surface Model (LSM), Rangeland Hydrology and Erosion Model (RHEM), Two Source 

Energy Balance Atmosphere Land Exchange Inverse (TSEB ALEXI), GEOTop and BROOK90 

models), ordinary least square regression (OLSR), linear regression (LR), SPLSR and RF. 

However, most of these models are excluded from Figure 3.9 analysis because they were 

applied in less than three studies (Table 3.11: Appendix). Overall, it was observed that most 

multivariate techniques and machine learning algorithms (i.e. RF, SVM, ANN, PLSR, OLSR) 

performed well in literature considered in this study. Also, it was observed that they had a 

feature selection capability for identifying the most influential spectral features for estimating 

grass biophysical parameters. 
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Figure 3.9: Box plots showing average coefficient of determination (R2) values produced by 
remote sensing algorithms applied in the studies. Numbers in italics represent the number of 
times an algorithm was utilized. (a) CASA= Carnegie-Ames-Stanford Approach; LUE= light 
use efficiency; PROSAIL= prospect + sail, (b) ANN= artificial neural networks; RF= random 
forest; SVM= support vector machines, (c) DA= discriminant analysis; ER= exponential 
regression; LR= linear regression; MLR= multiple linear regression; OLSR= ordinary least 
square regression; PLSR= partial least square regression; PR= power regression; SPLSR= 
sparse partial least square regression. 
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3.4.  Discussion 

3.4.1.  Progress in remote sensing of grassland ecosystem services 

 

3.4.1.1.  Geographic distribution and publication trends 

Results in this study showed that most grassland ES were conducted in China. This could be 

explained by the fact that China possesses vast grassland ecosystems that include alpine 

steppe, meadow steppe, desert steppe, and typical steppe which accounts for 10% of the total 

grasslands area (Dai, Huang et al. 2016). Additionally, China has experienced relative 

scientific advancement of ecological science and technology (Li, Pei et al. 2020). As an 

example, China designed and launched environmental and disaster monitoring HJ-1 satellites. 

Such datasets have become operational in ecological monitoring, including grassland 

ecosystems (Xing, He et al. 2014, Meng, Ge et al. 2017). 

On the other hand, results also showed considerable gaps in the spatial distribution of 

published articles in Africa, Australia and South America. This is an interesting finding contrary 

to the notion that large areas in these continents are covered with tropical grasslands 

(Lehmann, Archibald et al. 2011). Overall, it was observed that studies on remote sensing of 

grassland ES are significantly increasing (Figure 3.5). Remote sensing technologies have 

rapidly developed, providing grassland researchers with multi-source and multiplatform 

remotely sensed data (Li, Cui et al. 2021). Additionally, remote sensing provides the possibility 

of complimenting ground truth data through remote sensing inversion and data assimilation 

(Li, Cui et al. 2021). This could possibly explain the increase in grassland remote sensing ES 

research. 

3.4.1.2. Earth observation sensors 

Results in this study showed that MODIS and the Landsat fleet had the highest utilization 

frequency. Soubry, Doan et al. (2021) also noted an extensive utilization of data from the 

MODIS and Landsat sensors fleets in grassland remote sensing research. The high utilization 

frequency of such sensors could be attributed to the fact that until recently, Earth observation 

imagery has been dominated by traditional optical sensors such as MODIS and Landsat 

(Thenkabail, Smith et al. 2002). Such sensors have been in orbit for the longest time, and they 

have global coverage, consistently supplying researchers with freely available remotely 

sensed imagery suitable for retrieving grass biophysical parameters. Meanwhile, the results 

of this study also showed that a significant number of studies have explored the utilization of 
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handheld hyperspectral devices. These findings are similar to those of Soubry, Doan et al. 

(2021) who also noted a significant number of studies (16.5%) that were conducted based on 

hyperspectral sensors. Such sensors provide a wide range of sections of the electromagnetic 

spectrum in relation to other sensors (i.e. Landsat and MODIS), hence they provide higher, 

and optimal accuracies in estimating and mapping biophysical and optical properties of 

vegetation (Cerasoli, Campagnolo et al. 2018). In this regard, the use of in situ hyperspectral 

sensors has the potential of minimizing several errors since data is acquired proximal to the 

canopy when compared to satellite and airborne sensors (Agapiou, Hadjimitsis et al. 2012). 

Results showed that the application of remote sensing technologies in grassland ecosystems 

draws back to the 1980s. Initially, this era was associated with aerial photography (Dancy, 

Webster et al. 1986). The changes in remote sensing techniques from aerial images to 

satellite-borne sensors have achieved a significant advancement in the grassland ES research 

community. Specifically, the launch of MODIS in 2000 marked a shift within the remote sensing 

field which may probably explain the constant frequency in the publications on grassland ES 

occurring in the 2000s decade (Kawamura, Akiyama et al. 2005, Li, Wang et al. 2013, Yu, Wu 

et al. 2021). More so, recent advancements in Earth observation sensors include the launching 

of Sentinel 2 MSI and the Landsat 8 OLI, offering data on free access policy. With such 

advancements, the number of studies on mapping and monitoring grassland ES has increased 

along with the associated accuracies. 

A considerable number of studies explored the possibility of using SAR sensors in estimating 

grassland ES; especially those related to water. SAR has several advantages which include 

an all-weather capability, independence from solar energy and the ability to select an 

appropriate wavelength for studying belowground properties and soil substrates (Holmes 

1992). Furthermore, changes in vegetation and soil moisture contents contribute to the total 

backscattered radar signal which influences the absorption, transmission and reflection of 

microwave energy (Wang, Ge et al. 2013, He, Xing et al. 2014). Being active sensors, 

acquiring data in all weather conditions and being sensitive to vegetation and soil moisture 

content explains their prospective utility in assessing water-related ES. 

 

3.4.1.3.  Spectral features (wavebands and vegetation indices) 

This review highlights that the widely used vegetation indices relied on near infrared and red 

bands with NDVI being the widely used index. NDVI is calculated through a normalization 

procedure using spectral reflectance from the red and the near-infrared bands which makes it 

simple to assess vegetation health and vigour (Xue and Su 2017). Despite the wide application 

of NDVI, it is sensitive to atmospheric effects, leaf canopy, soil brightness and cloud shadow 
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(Thenkabail, Smith et al. 2000, Xue and Su 2017). As a result, SR, EVI and SAVI have been 

proposed to reduce noise effects from non-vegetation matter (Zhengxing, Chuang et al. 2003, 

Xue and Su 2017). The application of such indices has greatly promoted the prediction of ES 

such as forage provision (Kawamura, Akiyama et al. 2005) and primary production (Zhou, 

Zhang et al. 2014). 

Additionally, the advent of Sentinel 2 MSI offers fine spatial and robust spectral resolution 

covering the red-edge section of the electromagnetic spectrum. This section is very important 

for characterizing vegetation attributes (Boochs, Kupfer et al. 1990, Curran, Dungan et al. 

1990, Pu, Gong et al. 2003, Mutanga and Skidmore 2007, Sibanda, Mutanga et al. 2019). In 

several studies (Ramoelo, Cho et al. 2015, Tong and He 2017, Munyati, Balzter et al. 2020), 

indices that utilized wavelengths from the red-edge region (i.e. NDRE) performed well in 

estimating grassland ES as compared to the normal broadband indices (i.e. NDVI), especially 

in relation to characterizing water-related ecosystems (Sibanda, Onisimo et al. 2021). The 

reflectance in the red-edge (680-780 nm) provides information on the rapid rise of vegetation 

reflectance at 680 nm with the highest absorption occurring at 780 nm which better estimates 

vegetation pigment, physical and chemical parameters (Gao, Wu et al. 2019). As such, red-

edge based indices have been suggested to effectively correct variations caused by 

atmospheric influence, bidirectional reflectance distribution function and background noise 

(Tong and He 2017).  

 

3.4.1.4.  Prediction, modelling and classification algorithms. 

In terms of remote sensing algorithms, the use of multivariate analysis techniques in grassland 

ES has been widely reported (Sakowska, Juszczak et al. 2016, Pang, Zhang et al. 2020). 

Multivariate analysis techniques were the most widely used algorithms probably because of 

their simplicity and ease of implementation. However, multivariate techniques are generally 

associated with data assumptions which are not always easy to attain based on ecological 

data (Finch 2005). For instance, to utilize multivariate techniques data must meet the 

assumptions of normality and homogeneous covariance matrices. Meanwhile, Arjasakusuma, 

Swahyu Kusuma et al. (2020) illustrated that multivariate techniques are susceptible to high 

data dimensionality and noted that they tend to overfit the models which reduce the model 

accuracies. 

More research has also been conducted based on machine learning algorithms (Mutanga and 

Skidmore 2004, Lehnert, Meyer et al. 2015, Gao, Dong et al. 2020). The successful application 

of machine learning algorithms can be explained by the notion that they are non-parametric 

and therefore do not rely on any assumptions about data distribution (Barrett, Nitze et al. 
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2014). In this regard, they are insensitive to over-fitting and could be the best option for 

modelling grasslands biophysical parameters (Cawley and Talbot 2010). Overall, the majority 

of the multivariate and the machine learning algorithms showed optimal performance in 

estimating grassland ES mainly due to their feature selection capability. In this regard, the 

development of accurate remote sensing models for predicting grass biophysical parameters 

seems to largely depend on the algorithm used in selecting optimal spectral features from 

remotely sensed data as noted by Verrelst, Malenovský et al. (2019) and Richter, Hank et al. 

(2012). 

Results of this study also showed that production efficiency models are prominent for 

monitoring ES such as primary production (Propastin, Kappas et al. 2012, Zhang, Lal et al. 

2016). A review by Reinermann, Asam et al. (2020) also showed that most studies used 

CASA, LUE and PROSAIL modelling approaches in analysing grassland production traits and 

management. Most of the production efficiency models take into consideration the LUE theory 

which states that there is a constant relationship between photosynthetic carbon uptake and 

radiation interception at the plant canopy level (Monteith 1972, Anderson, Norman et al. 2000). 

Results also showed that the major input for these models is fraction of photosynthetically 

active radiation (fPAR). This can be explained by the notion that production efficiency models 

require inputs of meteorological data and  satellite Earth observation derived fPAR in order to 

simulate the total primary production (McCallum, Wagner et al. 2009). The integration of 

remote sensing and production efficiency models represents an important approach for 

monitoring terrestrial carbon exchange across a wide range of spatial and temporal scales. 

The high average prediction accuracies obtained from these production efficiency models 

imply that they all exhibit robust techniques to evaluate remote sensing data that can 

effectively quantify and map grassland ES. 

 

3.4.2.  Remote sensing of biomass, LAI, and CSC to characterize water-related 

grassland ecosystem services 

Results of this present study have shown that various remote sensing technologies have been 

widely applied in characterizing ES such as forage provision, genetic resource, climate 

regulation, natural hazard regulation, primary production, nutrient cycling and habitat support. 

However, very few studies were noted that sought to understand the role of remote sensing 

in characterizing biomass, LAI and CSC in relation to water-related ecosystems services 

management. 

Results in this study showed that only three studies evaluated the utility of remotely sensed 

data in mapping the grass moisture content elements related to biomass. There is paucity of 
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literature that directly focus on the role of remote sensing in estimating grass biomass in 

relation to water resources even though grass prevalence has a considerable effect on some 

hydrological elements. For instance, dense biomass coverage has a direct impact on grass 

and soil water holding capacity through induced infiltration (Duley and Domingo 1949). This 

promotes soil water availability, groundwater restoration and surface water balance within 

grassland biomes. 

Meanwhile, results showed that few studies have sought to utilize LAI in the context of 

estimating evapotranspiration. Remote sensing provides spatial and temporal estimations of 

LAI which can be coupled with meteorological variables in hydrological modelling mostly in 

evapotranspiration processes (Tesemma, Wei et al. 2015, Gan, Zhang et al. 2018). 

Evapotranspiration is the combination of two ecohydrological processes which are plant-

mediated transpiration and evaporation (soil surface evaporation and evaporation of rainfall 

intercepted by plant canopies) (Smallman and Williams 2019). As such, it is a crucial terrestrial 

component of the hydrological cycle which impacts the magnitude of surface water and 

variability of catchment water yield and ultimately water balance (Zhang, Chiew et al. 2008). 

Although LAI is a critical variable in evapotranspiration, it should be noted that it is also an 

important structural parameter driving biophysical processes such as transpiration and 

precipitation interception which in turn influence hydrological processes such as the provision 

of water by stream flow, superficial runoff as well as the absolute water balance (Boussetta, 

Balsamo et al. 2013, Li, Wang et al. 2016).  

Results showed that two studies (Yu, Pypker et al. 2012, Sibanda, Onisimo et al. 2021) utilized 

remote sensing methods to understand the impact of CSC on the hydrological cycle. CSC is 

an important attribute in controlling actual canopy interception which determines the amount 

of water reaching the ground (Ochoa‐Sánchez, Crespo et al. 2018). It is an important 

component of the water balance influencing hydrological processes such as run-off, erosion, 

infiltration, and flood generation (Tsiko, Makurira et al. 2012). An understanding of such 

hydrological processes is crucial in understanding water redistribution within grassland 

ecosystems which is important for water management. Additionally, CSC is a prominent 

variable that depends on various canopy structural parameters including biomass and LAI 

(Xiong, Chen et al. 2021). The dense canopy coverage of grasslands biomass means high 

LAI which reduces surface run-off, thus leading to aquifer water recharge, water flow 

regulation and balance amongst other elements.  

Results in this study show that there are very few studies that considered the utility of DEM 

derived topographic metrics in estimating water-related grassland ES. DEM provide eco-

hydrological information on the profile of the terrain regarding its direct impact on nutrient 

resources and moisture availability for plants, its impact on hydrological components such as 
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runoff percolation and how these variables interact with each other (Lukyanchuk, Kovalchuk 

et al. 2020). The work by Sibanda, Onisimo et al. (2021) concluded that topographic variables 

such as Topographic Wetness Index, maximum curvature and aspect were important in 

characterising eco-hydrological proxies such as LAI and CSC that are associated with 

hydrological ES. There is, therefore, a need for more research efforts to be exerted towards 

understanding the impact and contribution of topographic variables in mapping and monitoring 

water-related grassland ES using remotely sensed data. 

3.4.3.  Limitation of the study 

In conducting the literature search, some studies were unavailable in full length, and others 

were not written in English. This may have a negative effect on quantifying all the studies 

which focus on grassland ES. More so, the exclusion of these studies has an impact on the 

spatial distribution of grassland ES studies. 

The fundamental basis of utilising remote sensing technologies is based on their reliability to 

provide accurate spatially explicit information. This implies that accuracy assessment and 

validation of remotely sensed data is essential for decision making and sustainable ecosystem 

monitoring. However, in this study R2 was used as the indicator of prediction accuracy since 

other accuracy assessment measures are based on different SI units of measurement. It is 

important to note that R2 is one performance value amongst other parameters such as RMSE, 

relative room mean square error (RRMSE), standard error of prediction (SEP). It also must be 

outlined that R2 assesses the goodness-of-model-fit. Furthermore, accuracy assessment 

parameters associated with remotely sensed data models, inclusive of R2, are impacted by 

many factors that include data sample size, sampling techniques, sensor type, vegetation 

indices or modelling approach being applied. That needs to be also considered in interpreting 

and contextualising the findings of this study.  

Considering that we intended to explore whether there were generally significant differences 

in the accuracies derived using different sensors, algorithms, or vegetation indices, we 

assumed that the international peer review system followed by each of the journals considered 

in this study was sufficient and robust in evaluating the credibility and verification of the 

accuracies presented in each article. 

 

3.4.4.  Research gaps and opportunities 

The following gaps and opportunities have been identified from the results of this study in the 

context of applications of remote sensing technologies in grassland ES studies: 

• Considerable gaps still exist around the world and more specifically in the African 

continent on the integration of remote sensing into grassland ES. 



56 

 

• Grasslands provide more ES than the ones stated in this review. For instance, 

grasslands offer ES that are related to the hydrological cycle such as the canopy 

storage capacity, facilitation of infiltration and underground water storage refills. There 

is paucity of literature on the application of Earth observation data in quantifying the 

full range of such grassland ES. Meanwhile, some of these ES such as CSC that are 

related to LAI, can be characterized using remotely sensed data. LAI is arguably the 

most important vegetation structural parameter responsible for water and carbon 

exchange of vegetated land surfaces. Spatial distribution of LAI has an impact on the 

total water interception by plant canopy which directly influence plant CSC. Remotely 

sensed LAI and CSC data combined with remote sensing algorithms have a clear 

advantage of modelling ecohydrological processes (evapotranspiration, run-off, 

precipitation interception, surface water variability) which are crucial for understanding 

water balance within grasslands. 

• The application of remote sensing technologies for estimating biomass in relation to 

water management has not attracted significant attention from the research 

community. Remote sensing-based modelling can be a useful tool for large scale 

prediction or estimation of surface water supply within grasslands. Remotely sensed 

biomass data can be used as an input in hydrological models. Such data can be 

simulated with run-off datasets to predict surface water supply.  

• Erosion regulation can be estimated using remote sensing-based vegetation indices 

such as modified normalised vegetation index (mNDVI), normalized difference soil 

index (NDSI) and tasselled cap transformation (TCT) based vegetation indices. These 

indices are frequently used to investigate soil exposure, assess soil properties and 

estimate soil erosion processes (Xu, Hu et al. 2019).  

• There is a paucity on studies that have sought to evaluate the influence of variations 

in topographic metrics on water-related grass ES. The integration of vegetation indices 

and topographic metrics may provide robust models capable of predicting water-

related grasslands ES especially at local scales.  

• Integration of remote sensing data and public participation geographic information 

systems (PPGIS) may be useful for quantitative evaluation of cultural services offered 

by grasslands. PPGIS pertains to the use of geographic information systems to 

produce local knowledge with the goal of including and empowering marginalized 

populations (Brown, Montag et al. 2012). Remote sensing of land use/land cover 

changes and local spatial knowledge may help in understanding how social and 

ecological systems are interacting over time. Also, PPGIS may help integrate people’s 

cultural values to grasslands ecosystems. The capabilities of PPGIS have been 
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successfully implemented to assess ES provided by wetlands (Loc, Park et al. 2021) 

and protected forests (Peng, Liu et al. 2019). 

• There is also need to consider the impact on newly launched sensors such as Landsat 

9 OLI in characterizing water-related grasslands ES. 

 

3.5.  Conclusion 

The objective of this study was to conduct a systematic review of literature, specifically 

assessing progress, identifying research gaps and opportunities on the application of remote 

sensing technologies in quantifying grassland ecosystem services, with particular attention to 

water-related services. Nine-grasslands ecosystem services were mentioned in the reviewed 

studies with forage provision, climate regulation and primary production having the highest 

frequencies. Over the past decade, grassland ES studies have experienced exponential 

growth, reaching a total of 222 published articles in September 2021. The results show that 

the integration of remote sensing technologies into grassland ES has been well incorporated. 

This is explained by the ability of Earth observation sensors-systems, vegetation indices and 

remote sensing algorithms to quantify and map several ES with considerable high prediction 

accuracies. Grass biophysical parameters such as biomass, LAI and CSC are prominent 

attributes for understanding hydrological processes and water balance within grasslands. The 

remote sensing-based estimation of such parameters in relation to water management is still 

in infancy. In this regard, there is room for more research efforts in understanding their 

effective contribution to the hydrological cycle which is important in water management. 
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Chapter 3 Appendix  

Table 3.3: Additional remote sensing algorithms applied in the studies. 

 Algorithm Application Results Reference 

Machine 
learning 
Algorithms 

Adaptive neuro-
fuzzy inference 
system (ANFIS) 

Grassland yield 
estimation 

R2 = 0.86 & RMSE = 11.07 kgDM / ha (Ali, Cawkwell et 
al. 2014) 

 
 
 
 

Extremely 
randomised trees 
(ETR) 

Classifying 
grassland types 

OA ˃ 87.4%  
Kappa ˃ 85% 

(Barrett, Nitze et 
al. 2014) 

 Classification and 
regression trees 

Species distribution 
modelling 

OA = 90.62%   
Kappa = 79.07% 

(De Simone, 
Allegrezza et al. 
2021) 

 Cubist regression 
trees 

Canopy cover 
Aboveground 
biomass 

R2 = 0.67 & RMSE = 14.4%  
R2 = 0.68 & RMSE = 76.9 g m-2 

(John, Chen et 
al. 2018) 

 Stochastic gradient 
boosting 

Grass nutrients R2 range of 0.65-0.72 
RMSE range of 2.42 to 3.11% DM  

(Singh, Mutanga 
et al. 2018) 

 Decision trees Pasture 
productivity 

90.9% prediction accuracy (Zhang, 
Valentine et al. 
2006) 

 High-Accuracy-
Surface-modelling 
(HASM) 

Aboveground 
biomass 

R2 = 0.8459 & RMSE = 29 g/m2 (Zhou, Li et al. 
2021) 

Production 
Efficiency 
models 

Alpine vegetation 
model (AVM) 

GPP R2 = 0.857 &  
Conversion co-efficient 19.91 g C m−2  

(Li, Wang et al. 
2013) 

 Vegetation 
photosynthesis 
model (VPM) 

GPP GPP predicted relative error range 1.4 to 
7.4% 

(Li, Yu et al. 
2007) 

 MODIS MOD 17 
Net Primary 
Production Product 

Aboveground NPP  Average NPP = 2163 kg ha−1 (paired t-test, 
t = 2.43, d.f. = 16, P2-sided = 0.027). 

(De Leeuw, 
Rizayeva et al. 
2019) 

 Soil-leaf-canopy 
radiative transfer 
model 

LAI 
BIOMASS 

R2 = 78% & NRMSE =30%  
R2 = 90% & NRMSE = 47%  

(Schwieder, 
Buddeberg et al. 
2020) 

 Plant canopy 
mortality model 

Biomass carbon 
storage 
Carbon density 

4.95Tg, 4.53Tg, 4.80Tg (1Tg=1×1012 g) in 
2002, 2005 and 2009 
43.41 g/m2, 39.69 g/m2, 41.36 g/m2 
respectively in 2002, 2005 and 2009.  

(Chen, Wu et al. 
2015) 

 Canopy height 
model 

Canopy height 
 
Aboveground 
biomass 

R2 = 0.90, RMSE = 19.79 cm & rRMSE = 
16.5%, p < 0.001) 
R2 = 0.89, RMSE = 91.48 g/m2, rRMSE = 
16.11%, p < 0.001)  

(Zhang, Sun et 
al. 2018) 

 MODIS GPP GPP Mean GPP = 353 and 375 g C m− 2 for 2000 
& 2001 respectively 

(Zhang, Wylie et 
al. 2007) 

 Piecewise 
regression GPP  

GPP r = 0.82-0.98 and d = 0.71-0.97 cross 
validation with tower-based GPP 
mean GPP = 402 and 431 g C m− 2 for 2001 
and 2001 

(Zhang, Wylie et 
al. 2007) 

 Biome BGC GPP  R2 = 0.94 & RMSE=0.95 gC/m2/da 
 R2 = 0.83 & RMSE=0.48 gC/m2/da 
 R2 = 0.68 & RMSE=1.66 gC/m2/da 

(You, Wang et al. 
2019) 

 GLOPEM-CEVSA NPP Adjusted R2 = 0.80 (p < 0.01). (Ye, Huang et al. 
2019) 
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 Algorithm Application Results Reference 

 Defoliation 
formulation model 

NPP Annual NPP predicted between 1982-2011 
= 179.41 gC·m-2yr-1. 
Increase rate per time period 1.18 gC·m-2 

yr-1 (Adjusted R2 = 0.63, p < 0.01) 

(Ye, Huang et al. 
2019) 

 Bayesian model 
data fusion (MDF) 

Biomass 
Carbon balance 

r = 87.5% (biomass harvest) 
r = 83% (biomass annual yields) 
r = 0.80 overlap = 90% (grazing intensity) 

(Myrgiotis, Harris 
et al. 2021) 

 LINGRA Grass yield Average normalised error between 
observed and predicted: 
14% for irrigated grass 
19% for non-irrigated grass 

(Schapendonk, 
Stol et al. 1998) 

 Boreal Ecosystem 
Productivity 
Simulator (BEPS) 

NPP 
 
GPP 

Total NPP = 2.235 GtC 
Mean NPP= 235.2 gC m−2 yr−1 
Total GPP = 4.418 GtC 
Mean GPP = 465 gC m−2 yr−1 

(Feng, Liu et al. 
2007) 

 Improved Solar-
energy efficiency 

NPP Total NPP = 2.9×1013 gC/a in 2006, with an 
average of 261.01 gC/m2•a. 

(Wang and Yang 
2012) 

Multivariant 
analysis 
techniques 

Principal 
Component 
regression 

Biomass R2 = 0.31 & RMSE= 2.48 g/m2 (Darvishzadeh, 
Skidmore et al. 
2014) 

Hydrological 
models 

Soil-vegetation-
atmosphere 
transfer (SVAT) 

Canopy 
evapotranspiration 
 
 
Transpiration 

Correlation between ET measured from 
Eddy covariance method and SVAT 
(r2 = 0.85; ET-SVAT = 0.91 × ET-
Eddy + 0.05). 
5 July = 
(0.39 × LAI + 4.3, r2 = 0.64, P < 0.001 
31 July = 
(0.15 × LAI + 4.0, r2 = 0.32, P < 0.001). 

(Shimoda and 
Oikawa 2008) 

 BROOK90 Evapotranspiration Explained model variance range R² = 0.54-
0.98 
Nash-Sutcliffe model efficiency (E NS) range 
= 0.53-0.82 

(Vetter, 
Schaffrath et al. 
2012) 

 BROOK90 Evapotranspiration BROOK90 mean coefficient of variance 
(CV) range = 25%-75%. 
Correlation between BROOK 90 and 
MODIS evapotranspiration data R2 = 0.63, 
n = 160 

(Schaffrath and 
Bernhofer 2013) 

 Rangeland 
Hydrology and 
Erosion Model 
(RHEM) 

Rainfall fun-off Total run-off volume R2 range = 0.53 to 
0.54 & PBIAS % range = -50.33 to -113.27 
Peak run-off R2 range = 0.50 to 0.53 & 
PBIAS % range = -2.71 to -56.56. 

(Kautz, Collins et 
al. 2019) 

 Two Source 
Energy Balance 
Atmosphere Land 
Exchange Inverse 
(TSEB ALEXI) 

Evapotranspiration TSEB RMSE = 0.421 mm day-1 

DisALEXI MOD RMSE = 1.877 mm day-1 

DisALEXI MOD vs TSEB RMSE = 1.75 mm 
day-1 

 

(Castelli, 
Anderson et al. 
2018) 

 NOAH Land 
Surface Model 

Soil moisture 
 
 
Evapotranspiration 
Energy balance 
components 

Predicted soil moisture range = 3-25Vol.% 
& Root zone moisture = 60-120 mm 
Predicted ET range = 0 mm-75 mm 
Predicted energy balance range = -10-150 
MJ/m2/day 

(Sridhar and 
Wedin 2009) 

 Water cloud model Soil moisture RMSE = 4.7 & 7.5 Vol.% 
Bias = 0.7 & -0.4Vol.% 

(El Hajj, 
Baghdadi et al. 
2015) 

 Water cloud model Soil moisture R 2 = 0.7075, RMSE = 3.3219 m 2 /m 2 ). (Xing, He et al. 
2014) 
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 Algorithm Application Results Reference 

 GEOTop 
Hydrological model 

Soil moisture 
content 

R2 = 0.2, RMSE = 0.13 m3/m3 & 
bias = −0.02 m3/m3 

(Bertoldi, Della 
Chiesa et al. 
2014) 

 Process based 
models 

Water productivity R2 range = 66.5-75.3 &Water productivity 
estimate range = 11.8-42.6 kg ha-1 mm-1. 

(Qi, Murray et al. 
2017) 
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4. Land use land cover changes in a typical communal area in Southern Africa 

X Zuma, O Mutanga, T Bangira and M Sibanda 

4.1. Introduction 

Rangelands around the world have become one of the most threatened ecosystems due to 

human activities and climate variability (Abdulahi, Hashim et al. 2016). These landscapes 

provide important ecosystem services such as the provision of food, carbon sequestration, 

biodiversity maintenance, fibre, clean water, recreational space, and wildlife habitat (Sala, 

Yahdjian et al. 2017, Boone, Conant et al. 2018, Zhao, Liu et al. 2020). The human population 

highly depends on rangelands for food production considering that several agricultural 

activities are conducted in grasslands. According to Bedunah and Angerer (2012) about 1.2 

billion people who are surviving on less than $1 per day depend on rangelands. The limited 

management of rangelands in developing countries makes it difficult to determine the level of 

grass degradation (Bedunah and Angerer 2012). As the human population increases, food 

production is also anticipated to increase by about 75% in the next 30 years (Ceballos, 

Davidson et al. 2010, Bedunah and Angerer 2012). This will exert a lot of pressure on 

rangelands as they will be converted into croplands to produce more food, similarly 

development of infrastructure and land use activities such as overgrazing and unmanaged 

farming practices will cause rangeland fragmentation and biodiversity loss (Palmer and 

Bennett 2013). Meanwhile, a large population depends on rangelands for livestock production, 

food and income generation (Abdulahi, Hashim et al. 2016). However, the limited monitoring 

and management strategies of rangelands in the communal areas of developing countries 

make it difficult to determine the level of grass degradation (Bedunah and Angerer 2012). In 

South Africa, about 60% of the grassland biome has been transformed while 25% has been 

degraded, with approximately 15% remaining unchanged and only 2% being protected (Little 

et al. 2015). The lack of management of grasses in unprotected areas exacerbates the 

degradation of rangelands as there are limited comprehensive criterions for assessing their 

condition and state of fragmentation (McGranahan and Kirkman 2013). Hence there is need 

for spatially explicit non-invasive techniques for assessing and monitoring the spatial extent 

and the magnitude of grassland fragmentation for sustainable utilisation of this natural capital.  

The advent of earth-observation (EO) facilities has offered fast, efficient and reliable spatially 

explicit techniques of monitoring the extent of fragmentation and the spatial distribution of 

grasslands (Jin, Yang et al. 2014). Furthermore, EO facilities offer data that is frequently 

acquired, with high spatial and spectral resolutions, suitable for monitoring  grassland 

attributes at local to regional scales (Ali, Cawkwell et al. 2016). In this regard, remote sensing 
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(RS) techniques have been widely used for monitoring rangelands attributes such as biomass 

(Sibanda, Mutanga et al. 2017), water content (Sibanda, Mutanga et al. 2019) and their 

phenology (Matongera, Mutanga et al. 2021). Other than monitoring grass attributes, remote 

sensing techniques have also been widely applied in characterising land use and land cover 

changes based on a variety of classification algorithms and datasets. The most widely used 

EO sensors in mapping LULC changes have been from the Landsat mission (Abd El-Kawy, 

Rød et al. 2011). This is attributed to the fact that Landsat boasts of being the world’s longest 

uninterruptedly mission serving remotely sensed data over the land and sea (Ul Din and Mak 

2021). Specifically, Landsat 1/2/3 Multi-Spectral Scanner (MSS), Landsat 5 MSS and 

Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper plus (ETM), and Landsat 8 

Operational Land Imager (OLI) provide remotely sensed data at a 30 m pixel size, 16 days 

intervals archived since 1972 to date making it suitable for historical mapping of LULC 

changes (Loveland and Dwyer 2012, Li, Dong et al. 2020). Subsequently, Landsat datasets 

offer better prospects of objectively detecting, mapping and monitoring the spatial and 

temporal variations of grassland fragmentation in communal rangelands (Xie, Phinn et al. 

2019). 

Literature underscores the importance of integrating multi-temporal datasets with robust 

algorithms in accurately mapping LULC changes (Ghayour et al. 2021, Kafy et al. 2021). 

Specifically, machine leaning algorithms are the most renowned techniques in image 

classification for assessing LULC changes due to their greater accuracy and 

efficiency(Ghayour, Neshat et al. 2021, Kafy, Shuvo et al. 2021). Random forest (RF) classifier 

is one of the machine learning algorithms that is widely renowned for its robustness in mapping 

LULC changes, especially in conjunction with multi-spectral and hyperspectral remotely 

sensed datasets (Talukdar, Singha et al. 2020). Specifically, RF widely recognised in the 

community of practice because of its excellent management of outliers and noisy datasets, 

great performance in dealing with high dimensional and multi-source datasets as well as its 

attainment of higher accuracies when compared to other classifiers such as the Support 

Vector Machine (SVM) and Maximum Likelihood Classifier (MLC) (Sheykhmousa, 

Mahdianpari et al. 2020, Cengiz, Budak et al. 2023). RF uses decision trees during 

classification, such that the trees with the most selections define the class. To date, the 

algorithm is the most widely used classifier in conjunction with Landsat data in assessing 

LULC changes (Rodriguez-Galiano, Ghimire et al. 2012, Thanh Noi and Kappas 2017, Phan, 

Kuch et al. 2020).   

Despite the optimal performance of RF and Landsat data in LULC change assessments for 

the sustainable management of natural resources, the provision of large-scale land cover 
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change maps of grasslands is often inhibited by elements such as spectral complexity due to 

the heterogeneity of the environment as well as the limitation of software/hardware resources 

to store and process large remotely sensed datasets (Rodriguez-Galiano, Ghimire et al. 2012, 

Wahap and Shafri 2020). The development of cloud computing platforms such as Google 

Earth Engine (GEE) has emerged as an invaluable resource for addressing data management 

challenges in applications such as mapping largescale LULC changes (Wahap and Shafri 

2020). GEE is a free cloud-based platform which can be used for large-scale environmental 

analysis or mapping (Tamiminia, Salehi et al. 2020). GEE, has vastly improved the access 

and processing of satellite imagery making it possible to conduct assessments on the spatial 

and temporal variations of community-shared natural resources such as the communal 

rangelands (Tamiminia, Salehi et al. 2020). The platform provides a large amount of satellite 

data including Landsat, dating back to the 1970s, while it is capable of administering renowned 

algorithms such as the RF on the available datasets (Gorelick, Hancher et al. 2017, Wang, 

Xiao et al. 2017, Kumar and Mutanga 2018). Single date Landsat remotely sensed data sets 

have been widely used in remote sensing LULC (Langley, Cheshire et al. 2001, Abd El-Kawy, 

Rød et al. 2011). However, grasslands are highly variable ecosystems which are greatly 

impacted by situational factors such as seasonality of precipitation, and variations in 

management practices (Cleland, Collins et al. 2013). This makes it challenging to characterise 

the spatial and temporal changes of grasslands based on single-date images (Price, Egbert 

et al. 1997). Considering the relative accessibility of high spatial and temporal Landsat data 

coverage and the robustness of the RF algorithm, all embedded in GEE, presents 

opportunities for establishing cheap and reliable grassland monitoring techniques. Therefore, 

the objective of this study was to assess the spatiotemporal variability of rangelands within a 

typical southern African communal area from the year 2000 to 2020 using multi-temporal 

Landsat datasets in conjunction with random forest. The study also sought to assess the 

magnitude and extent of grassland fragmentation in these communal rangelands using 

fragmentation statistics.  

4.2. Methods and Materials  

4.2.1. Study Site 

This study was conducted in Inhlazuka (centre coordinates 29° 55' 40" E and 30° 11' 34" S) 

and Vulindlela (centre coordinates 29⁰ .40′ 37.3584′′ S and 30⁰. 8′ 13.6572′′ E) communal 

rangelands located in the uMgungundlovu District Municipality under the uMngeni Catchment 

in the province of KwaZulu-Natal, South Africa (Figure 4.1). The catchment hosts the country’s 

second largest economic hub and its largest trade port (Hughes, De Winnaar et al. 2018). 
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Activities such as agriculture and urbanisation are causing immense pressure on the 

catchment’s natural resources (Hughes, De Winnaar et al. 2018). The catchment is mostly 

covered by grasslands, with much of its grasses being turned into cultivated land (Hughes, De 

Winnaar et al. 2018). Vulindlela is located in the west of Pietermaritzburg and northwest of the 

Greater Edendale area, while Inhlazuka is located under the Richmond municipality and is a 

mountainous area with an elevation of 1313 metres. The areas of Inhlazuka and Vulindlela 

are rural settings with high levels of poverty. Vulindlela experiences dry winters and hot wet 

summers and receives on average an annual rainfall of 979 mm (Sibanda, Onisimo et al. 

2021). The growing season in Vulindlela starts in October and ends in April, from late April to 

August frost conditions begin, where the growing season is restricted (Sibanda, Onisimo et al. 

2021, Royimani, Mutanga et al. 2022). The average rainfall received by Inhlazuka is 852 mm 

which starts in October and ends in April (Mncube 2022). Land use activities in Vulindlela 

include scattered settlements, grazing land, cultivated lands, pockets of indigenous forest and 

some major timber plantations while Inhlazuka is predominantly characterised by small and 

large-scale crop farming lands. Vegetation in Inhlazuka is also characterised by bushveld 

vegetation, which is heavily invaded by alien vegetation, such as bugweed (Solanum 

mauritianum), Lantana camara and bramble (Rubus spp) which are often cleared but 

persisting. 

 

Figure 4.1: Inhlazuka and Vulindlela communal areas In Pietermaritzburg, KwaZulu-Natal 

South Africa. 



65 

 

  

Figure 4.2: Typical communal rangeland areas in a) Vulindlela and b) Inhlazuka. 

4.2.2. Satellite Data 

The study utilised cloud-free and atmospherically corrected multi-temporal Landsat 7 and 

Landsat 8 Top of atmosphere (TOA) reflectance remotely sensed data to characterise land 

covers in the years 2000, 2010, and 2020. The GEE platform provides pre-processed images 

that will have gone through atmospheric correction. These images were selected  and used to 

conduct the classification in the GEE platform (Gorelick, Hancher et al. 2017). The study also 

used the median reducer for image processing. The median reducer applies a title by tile 

processing method where each scene is divided into several tiles, which results in each tile 

being sent to various Google servers, to be processed (Sidhu, Pebesma et al. 2018). The 

servers work in parallel and independently to one another and the end result of the processing 

method is the reduced image(s) which is the outcome of the reconstruction of the tiles (the 

median reducer produces a single image constructed from the different tiles of satellite 

images) (Sidhu, Pebesma et al. 2018). All images used in the study were projected to the 

Universal Transverse Mercator (UTM) coordinate system 1984, zone 36 south. 

The dry season/winter images were selected, downloaded, and used to characterise the 

rangelands. This is because during the summer season the sky is often overcast and there is 

a lot of crop farming occurring. To avoid the misclassification of the rangelands as croplands, 

the dry season images (June, July, and August) were. Specifically, available cloud free multi-

temporal images covering the dry season were selected and used in this study. 

4.2.3. Classification and Change Detection  

Classifications were conducted using a stack of multiple images on the GEE platform covering 

the dry season of each of the years 2000, 2010 and 2020. These images were acquired during 

dry season months (June, July, and August). A median reducer in the GEE platform was used 

a) b) 
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to compile and average all the images obtained during the dry season of each year. The GEE 

median reducer function reduces image collections by calculating the median of all values at 

each pixel across the stack of all matching bands to produce a single image. In addition, this 

process does not only reduce image data volume but equally produces high accuracies same 

as the time series data and improves classification accuracies (Carrasco, O’Neil et al. 2019, 

Phan, Kuch et al. 2020). The advantage of using the median reducer is that it significantly 

reduces the volume of data thus making it easier and faster to process and analyse the bulky 

remotely sensed data (Phan, Kuch et al. 2020). Above all, the utility of multi-temporal images 

avoids the possible impact of atmospheric influence on the spectral signatures while 

addressing the spectral variability of grasses induced by the variability of grass species and 

their management practices (Carrasco, O’Neil et al. 2019). The Random Forest Classifier was 

then used to discriminate and map rangelands from other LULC types. In utilising the RF, the 

three hyperparameters, ntree, mtry and nodesize were tuned accordingly (Odebiri, Mutanga 

et al. 2020). Specifically, the ntree, which is the number of regression trees used during 

observation performance was set to be at 500 (Mutanga, Adam et al. 2012). After iterations, 

the optimal ntree identified and used in this study was 100. The mtry which is the number of 

predictors tested at each node was set to a default value which was the square root of the 

number of variables considered in this study. Lastly, the node size which is the minimal size 

of the terminal nodes of the trees was set to 1 (Mutanga, Adam et al. 2012). Sampling points 

covering various LULC classes were collected during a field survey. However, sampled points 

for the previous years (2000 and 2010) were verified using Google Earth Pro (Ghorbani and 

Pakravan 2013, Pu, Sun et al. 2020). Feature classes that were used in the classifications 

were bare-land (areas that were not covered by any vegetation and were mostly bare soil), 

grasslands (areas that were covered by grasses only), forests (areas covered by indigenous 

forests or timber plantations), water (all water bodies such as rivers, and streams) and built-

up area (areas where there were buildings and concrete surfaces). Furthermore, vegetation 

indices were computed and used to characterise the spatial variation of the rangelands. 

Specifically, the Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation 

Index (SAVI), the Green Normalized Difference Vegetation Index (GNDVI), the Normalized 

Difference Water Index (NDWI), the Infrared Percentage Vegetation Index (IPVI), the Visible 

Atmospherically Resistant Index (VARI), the Ratio Vegetation Index (RVI), the Difference 

Vegetation Index (DVI) and the Enhanced Vegetation Index (EVI) were computed and used 

in this study. These indices were selected and used in this study based on their optimal 

performance in literature (Xue and Su 2017, Ranjan, Chandel et al. 2019, da Silva, Salami et 

al. 2020). Vegetation indices were also considered in this study because they have been 
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proven in literature to improve accuracies while resisting the noise from the sun, topography 

and clouds, atmospheric changes, and soil background signals (Xue and Su 2017). 

4.2.4. Rate of Change  

Using the classified image, the spatial extent of each land cover type was computed in a GIS 

environment. The Rate of change (ROC) in the spatial extent of grassland patches were 

calculated to understand the magnitude of change in their spatial extent in relation to other 

land cover types and across different years. The study also sought to assess the extent of 

grassland cover fragmentation as a measure of rangeland degradation. To conduct this, the 

classified maps were exported from GEE into ArcMap where the spatial extent (area) of each 

land cover class was calculated for the three periods. The grassland cover classes were then 

extracted for fragmentation analysis. Fragstats 4.2 was utilised to compute and characterise 

the extent of grasslands fragmentation. Fragmentation was calculated at the class level 

metrics. Specifically, landscape (PLAND), the number of patches (NP), patch density (PD), 

largest patch index (LPI), patch area (AREA_MN), Euclidean nearest neighbour distance 

(ENN_MN) and effective mesh size (MESH) were computed and used to assess the extent of 

fragmentation and as a proxy for rangeland degradation (Figure 4.3). To measure the degree 

of fragmentation within the rangelands, the NP, PD, LPI were specifically used and the 

AREA_MN, ENN_MN, PLAND and MESH were utilised to measure extent of grass patches 

spatial dispersion (Parker and Mac Nally 2002, Midha and Mathur 2010). These 

Fragmentation metrics were derived from each of the time periods considered in the study and 

were compared using the analysis of variance test after the data did not significantly deviate 

from the normal distribution. 

Table 4.1: Class level Fragmentation Metrics and their descriptions 

Name Abbreviation Description 

Percentage of 

Landscape 

PLAND PLAND is described as the ‘Area and Edge 

metric’. It represents the landscape percentage 

belonging to each class.  PLAND is 0 when the 

proportional class area is decreasing and is 

equal to 100 when one big patch is present.  

Number of 

Patches 

NP Determines the number of subpopulations in a 

spatially dispersed population. (Number of 

patches can be used to determine 

fragmentation; the higher the number of 

patches, the more fragmented the class) 
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Name Abbreviation Description 

Patch Density PD Refers to the number of patches of 

corresponding patch type divided by total area. 

(The higher the density of a particular class, the 

more fragmented it is) 

Patch Area Area MN Is the average size of patches in a particular of 

a specific land cover type. It can be computed 

at the class level, or at the landscape level. 

Largest Patch 

Index 

LPI Quantifies the percentage of the total 

landscape area compromised by the largest 

patch.  

Effective Mesh 

Size 

MESH Quantifies the degree of landscape 

fragmentation. The effective mesh size is based 

on the probability that two randomly chosen 

points in a region will be in the same non-

fragmented area of land. The higher the mesh 

size, the less fragmented a particular habitat is. 

Euclidean Nearest 

Neighbor Distance 

ENN_MN The sum of the distance (m) to the nearest 

neighboring patch of the same type, based on 

the nearest edge to edge distance, for each 

patch of the Corresponding patch type, divided 

by the number of patches of this same type. 

 

The study went on to utilize rainfall data to assess the influence of rainfall on the rangeland 

spatial distribution changes. Rainfall data was requested from the South African Weather 

Services (SAWS). The requested data from SAWS was of the years used for classifications 

(2000, 2010 and 2020) and nine weather stations surrounding the study areas were used by 

the study to calculate the rainfall patterns in Inhlazuka and Vulindlela by performing 

Interpolation with the use of ArcMap 10.6. The type of interpolation that was applied by the 

study was that of the Inverse Distance Weight (IDW). After the application of interpolation, 

grassland points collected on the field were then overlaid over the study areas to extract the 

rainfall data. After the extraction of the rainfall data in ArcMap, rainfall averages of the years 

2000, 2010 and 2020 in both study areas were calculated with the use of Excel. 
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4.3. Results 

4.3.1. Classifications  

The land use land cover changes were classified into five classes which are grasslands, water, 

forest, built-up area and bareland. In assessing the performance of RF classification models 

based on spectral bands, vegetation indices independently and the combination of both 

vegetation indices, the ANOVA test showed that there were no significant difference in the 

overall accuracies. Subsequently, the classification based on combined datasets were used 

in this study and all results presented were based on these models. In classifying grasslands 

from other land cover classes, overall accuracies of 75%, 79% and 83% were obtained in 

Inhlazuka while accuracies of 89%, 85%, and 89% were obtained in Vulindlela for the years 

2000, 2010 and 2020, respectively (Figure 4.3). Meanwhile, kappa accuracy scores of 65%, 

68% and 73% were exhibited by the Inhlazuka images classification while Vulindlela exhibited 

scores of 81%, 75% and 83% for the years 2000, 2010 and 2020, respectively (Figure 4.3). 

Following a variable importance analysis, the most frequently optimal discrimination spectral 

features selected by RF across all classifications were Bands 5 and 7, the near infrared (NIR) 

and the short-wave infrared bands (SWIR), respectively (Figure 4.4) 

  

Figure 4.3: Classification overall accuracies and kappa scores in the areas of a) Vulindlela 
and b) Inhlazuka
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Figure 4.4: Variable importance scores from the image classifications in Vulindlela for the year a) 2000, b) 2010, and c) 2020 as well as Nhlazuka 
for the year d) 2000, e) 2010, and f) 2020. (NDWI = normalised difference water index, EVI = enhanced vegetation index, GNDVI = green 
normalised vegetation index, SAVI = soil adjusted vegetation index, RVI = ratio vegetation index, NDVI = normalised vegetation index, DVI = 
difference vegetation index, IPVI = Integrated Polarization Vegetation Index, and VARI = Visible Atmospherically Resistant Index) 
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A general decrease in spatial extent of grasslands was observed in Vulindlela from the year 

2000 to 2020 while in Inhlazuka, a decrease in the areal extent of rangelands is observed 

between the years 2000 and 2010 and an increase between the years 2010 to 2020 (Figure 

4.5 and 4.6). In Vulindlela, between 2000 to 2020, when grasslands were reduced, built up 

areas increased rapidly. Specifically, grasslands decreased at a rate of 37.52 hectares per 

year between the 2000 and 2010. Then from 2010 to 2020, grasslands further decreased at a 

rate of 76 hectares per year while settlement development continued to increase. Meanwhile, 

the increase in built-up area from the year 2000 to 2010 was at a rate of 43.15 hectares per 

year and at a rate of 114.55 ha per year from the year 2010 to 2020. In addition, there was 

also a relative increase in bareland between these periods, although not at the magnitude of 

increase in spatial extent of built-up areas.  

Inhlazuka was mostly characterised by forests, shrubby vegetation and relatively less 

grasslands when compared to Vulindlela. The forest class increased between 2000 and 2010 

by 86.54 hectares per year thus causing a decline in rangelands. Between 2010 and 2020, 

there was an increase in rangelands due to a decrease in forests at a rate of 113.84 ha per 

year. The decrease in rangelands in Inhlazuka between the periods of 2000 to 2010 was at 

40.19 ha per year and the increase in rangelands experienced between 2010 and 2020 was 

at a rate of 45.27ha per year. In addition, in Inhlazuka there was also an increase in built-up 

areas at a rate of 41.7 ha/per year from 2010 to 2020. However, the increase of built-up area 

in Inhlazuka did not cause a significant decrease in rangelands when compared to Vulindlela. 

  

Figure 4.5: Changes in the mapped land cover types in a) Vulindlela and b) Inhlazuka  
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4.3.2. Changes in the Spatial Extent of Rangelands 

The Vulindlela grasslands in 2000 occupied 7799.8 ha, which decreased to 7424.6 ha in 2010 

then further decreased to 6660 ha in 2020 while in Inhlazuka, it decreased from 2516.7 ha in 

2000, to 2114.7 ha in 2010 then increased to 2567.5 ha in 2020 (Figure 4.6 and Figure 4.7).
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Figure 4.6: Spatial distribution of grasslands in a) Vulindlela and b) Inhlazuka from 2000 to 2020

a)_ 

b) 
a) 
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Figure 4.7: Changes in the rangeland spatial extent from 2000 to 2020 in Vulindlela and 
Inhlazuka. 

 

4.3.3. Patch Analysis at Class Level Metric  

Table 4.3 shows fragmentation statistics in Vulindlela and Inhlazuka. Percentage of 

Landscape (PLAND) decreased from 69.9, 59.6 between 2000, and 2020 indicating an 

increase in grassland fragmentation. The number of patches (NP) increased from 244 to 342 

in 2010 and then it rapidly increased to 780 patches in 2020. The increment in the number of 

patches therefore is an indication of increased rangeland fragmentation in Vulindlela. 

Meanwhile, patch density increased from 21 in 2000 to 31.0 in 2010, then increased again to 

6.9 ha in 2020 in Vulindlela. The mean patch area (AREA_MN) on the other hand decreased 

from 31.9 ha in 2000 to 8.5 ha in 2020. The largest patch index (LPI) decreased from 68.3ha 

in 2000 to 62.6ha in 2010. This further decreased to 43.0ha in 2020. The Euclidean nearest 

neighbour distance (ENN_MN) is an indicator of isolation within the patches that increased 

from 71.1 ha in 2000 to 74.7 ha in 2010 and finally increased to 8.5 ha in 2020. Lastly, the 

effective mesh size (MESH) decreased from 5204.4ha in 2000, to 4380.4 ha and subsequently 
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In Inhlazuka, the NP increased from 1392 in 2002 to 1581 in 2010, then declined to 1443 in 

2020. The PD was 15.4 in 2000, then it increased to 17.5 in 2010 then decreased in 2020 to 

16.0. Meanwhile, the AREA_MN was 1.8 ha in 2000, and then it decreased to 1.3 ha in 2010, 

and then increased in 2020 to 1.7 ha. On the other hand, the ENN_MN was higher in 2000 

and 2010 when compared to 2020, indicating that the grasses were more isolated in 2000 to 
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2020, while the PLAND and MESH of grassland were relatively lower in 2010. The MESH size 

results also show that the rangelands were more fragmented in 2010 and in 2020 as compared 

to 2000. 

Table 4.2: Vulindlela and Inhlazuka grassland patch metrics variations between 2000 and 
2020 

 GRASS PLAND NP PD LPI AREA_MN ENN_MN MESH 

Vulindlela 2000 69.9 244 2.1 68.3 31.9 71.1 5204.4 

2010 66.6 342 3.0 62.6 21.7 74.7 4380.4 

2020 59.6 780 6.9 43.0 8.5 73.0 2188.8 

Inhlazuka 2000 28.0 1392 15.4 7.1 1.8 79.5 55.5 

2010 23.5 1581 17.5 3.5 1.3 79.3 20.8 

2020 28.6 1443 16.0 5.4 1.7 75.0 35.4 

 

4.4. Discussion  

This study sought to assess the spatial variation in the areal extent of the rangelands as well 

as their magnitude of fragmentation using a Landsat time series in conjunction with random 

forest in a typical communal rangeland of southern Africa between the years 2000, 2010 and 

2020. Results of this study showed that the spatial variability of rangelands and other land 

cover types could be optimally mapped in Vulindlela and Inhlazuka, respectively based on the 

NIR (Bands 5) and short-wave infrared (SWIR) (Band 7) spectral variables in conjunction with 

RF in GEE platform. Specifically, overall accuracies (OA) of 75%, 79% and 83% in Inhlazuka 

as well as OAs 89%, 85%, and 89% in Vulindlela for the years, 2000, 2010, and 2020, 

respectively, were obtained in this study. The optimal performance of the NIR and short wave 

infrared (SWIR) bands could be attributed to their sensitivity to grass biochemical and physical 

properties such as foliar nitrogen, lignin and starch (Ramoelo, Cho et al. 2015, Zhao, Zhu et 

al. 2022). The NIR section of the electromagnetic spectrum is highly sensitive to the 

biochemical and biophysical properties of vegetation (Matongera, Mutanga et al. 2017, 

Mngadi, Odindi et al. 2021). Specifically, the foliar spongy mesophyll facilitates the high 

reflectance of the NIR energy by plants with a high vigour (Wang, Qu et al. 2008, Kumar, Arya 

et al. 2022). 

The study results also showed that in Vulindlela, rangelands were rapidly being fragmented 

and converted into built-up and bare areas and a significant change in the spatial configuration 

of the grasslands was observed. This could be explained by population growth and the 
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demand for land to develop residential areas as well as increasing agricultural production as 

the major drivers of rangeland fragmentation in rural areas (Abdulahi, Hashim et al. 2016). 

According to the Municipality (2016) the population of Vulindlela in 2013 was 161 562 with an 

estimate of 85 033 structures. The population was estimated to grow at 2% each year to about 

183 583, in 2020. The population increase could explain the rapid decrease in grasslands 

which are being converted into built-up areas (Figure 2.8) to accommodate the burgeoning 

population. There is growing body of literature which shows that activities such as housing 

development and overgrazing are the major anthropogenic activities that have extensively 

degraded rangelands globally (Lu, Kelsey et al. 2017, Dowdy, Ye et al. 2019). Also, the lack 

of effective livestock management practices, generally results in increased grazing activities 

with limited breaks given to the grassland ecosystem to self-regulate and recover from over 

grazing.  

Meanwhile, in Inhlazuka, the spatial extent of rangelands decreased while the areal extent of 

built-up areas increased between 2000 to 2010. The decrease in the spatial extent of forest 

between 2010 to 2020 could be attributed to the increase in population and demand for 

residential areas. The increase in rangelands in Inhlazuka in 2020 could be explained by 

clearance of shrubby and tree like alien invasive species which is a typical exercise in 

Inhlazuka. Specifically, Lantana camara is the most dominant alien invasive plant in the 

rangelands of Inhlazuka. Lantana is said to be the most widespread alien invasive plant which 

invades agricultural and natural ecosystems (Parveen, Ravinder et al. 2011). For instance, 

Dube, Maluleke et al. (2022) makes an example of the Bushbuckridge area where the 

grasslands have been replaced by the alien plant lantana thus decreasing available forage for 

livestock and wildlife (Terefe 2015). To circumvent this, uMgungundlovu district municipality 

implements continuous alien invasive plant removal programmes regulating the variation in 

the spatial extent of grasslands especially in Inhlazuka. This then explains in the decreases 

and increases associated with the rangelands in Inhlazuka (Figures 2.7 and 2.6) between 

2000, 2010 and 2020. If the alien plant species are not controlled, the communal rangelands 

of Inhlazuka may be at a risk of being replaced by the Lantana alien plant. 

Results also showed that barelands in Vulindlela were increasing. This could be explained by 

the limited rangeland management interventions which are conducive for unregulated 

administration of fires. Fire as a management tool in rangelands, is used to improve forage 

quality and production, to manipulate plant populations (plant composition and structure) and 

maintain habitats for grazing animals (Little, Hockey et al. 2015). However, if fire is frequently 

and improperly administered, it becomes destructive. Specifically, it reduces the seedling 

recruitment of grasses, while burning and depleting the seedbanks on the topsoil 
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(Ghasempour, Erfanzadeh et al. 2022). Subsequently, the ground is exposed as bareland. 

Community members in Vulindlela customarily burn grass during the winter season as a tool 

to promote its growth as feed for livestock (Cho, Onisimo et al. 2021). However, this results in 

grass failing to recruit seedlings and replenish its populations as the seed banks will be 

depleted and the topsoil crusted by regular burns (Fidelis, Delgado Cartay et al. 2010, 

Ghasempour, Erfanzadeh et al. 2022). Literature also illustrates that in the forest and 

grasslands biomes in Southern Africa, the dominancy of grasses or trees (forests) is a function 

of fire and precipitation (Accatino, De Michele et al. 2010, Baudena, Dekker et al. 2015). 

Rainfall plays a significant role in the growth of vegetation (Beier, Beierkuhnlein et al. 2012, 

Lipiec, Doussan et al. 2013). The lack of rainfall in rangelands results in the decrease of forage 

and rangeland resources therefore, negatively impacting biomass productivity (Derner and 

Augustine 2016, Sibanda, Onisimo et al. 2021). This means that the compromised growth of 

rangelands as a result of the decrease in precipitation causes a decline in the spatial 

distribution of rangelands, as there is not enough soil moisture to provide conditions for growth, 

due to rainfall being the main driver of rangeland vegetation dynamics (Palmer and Bennett 

2013, Polley, Briske et al. 2013). In Vulindlela, the spatial extent of the rangelands in the year 

2000 was 7799.8 ha and the average rainfall received was 61.79 mm. The rainfall received in 

the year 2000 may have played a role in rangelands in the year 2000. From the year 2000 to 

the year 2010, the rangeland area decreased to 7424.6 ha and the average rainfall received 

in 2010 was 61.74 mm, between the year 2000 and 2010 there is not much difference in the 

average rainfall received, however, there was a decrease of 375.2 ha in the rangelands. Then 

in 2020, the average rainfall received in Vulindlela was 67.09 mm which is an increase in the 

rainfall received in 2010. The increase in rainfall in 2020 did not result in the increase of 

rangelands, instead further decrease was experienced from 7424.6 ha in 2010 to 6660 ha in 

2020. Based on the rainfall patterns in Vulindlela, rainfall has limited influence on the declining 

rate of the communal rangelands. Therefore, the increase of bareland and built-up areas in 

Vulindlela are the main drivers of the depletion of the rangelands in combination with other 

land use activities taking place in Vulindlela. In the area of Inhlazuka, the average rainfall of 

the year 2000 was 65.6 mm, and the area of rangelands was 2516.7 ha. In 2010, rainfall 

received decreased to 52.34 mm and the spatial extent of rangelands in 2010 also decreased 

from 2516.7 ha in 2000 to 2114.7 ha in 2010. Rainfall received in the year 2000 in Inhlazuka 

decreased in 2010. The decrease in rainfall in 2010 may have played a role in the decrease 

of the spatial extent of rangelands in 2010 as the decrease in rainfall resulted in a decrease 

in the area of rangelands. In 2020, the average rainfall of 2020 was 69.63 mm, this is an 

increase from the rainfall received in 2010. The increase in rainfall resulted in an increase in 

the areal extent of rangelands in 2020 from 2114.7 ha in 2010 to 2567.5 ha in 2020. The 
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rainfall patterns in Inhlazuka from the year 2000 to 2020 suggest that in Inhlazuka rainfall has 

an influence in the spatial distribution of rangelands as there was a decrease in rainfall in the 

year 2010 which resulted in the decrease of rangelands in 2010 and the increase of rainfall in 

2020 resulted in the increase of the area of rangelands. However, the alien plants within the 

area of Inhlazuka may have played an additional role in the decrease of rangelands in the 

year 2010 especially if there were limited activities of alien removal in 2010. Then in 2020, the 

removal of the alien plants together with increased rainfall patterns could have created optimal 

growing conditions for the rangelands in Inhlazuka in the year 2020 therefore, an increase in 

the areal extent of rangelands.  

 

4.5. Conclusion  

The aim of this study was to characterise rangelands and quantify their variability in spatial 

extent and fragmentation over the period of 20 years in communal areas. Based on the 

findings of this study, it can be concluded that LULCCs can be optimally characterised using 

Landsat’s bands in combination with the vegetation indices. In addition, the NIR and the SWIR 

bands were the variables of importance thus, mapping the rangeland changes at high 

accuracies. Settlement expansion and an increase in crop fields are the main driver of 

rangeland decline. Fragmentation of rangelands is increasing with time as more grassland 

patches are getting more isolated and relatively smaller in spatial extent with the increase in 

built-up area. The findings of this study are a step towards building robust spatially explicit 

quantitative techniques for monitoring the spatio-temporal variations of grasslands. This is a 

very important step required if a geospatial Framework for Monitoring grassland ecosystems 

that will provide actionable information services for grassland assessment and monitoring 

across different key land management areas is to be realised. 
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5. Assessing current and future dynamics of landcover using the CA-Markov model in 

typical communal rangelands Southern Africa 

X Zuma, O Mutanga, T Bangira and M Sibanda 

5.1. Introduction  

Human activities have extensively altered the quality and quantity of grasslands through 

urbanisation and agricultural activities, exacerbated by climate change, high runoff, and soil 

erosion amongst others (Hicks, Parks et al. 2008, Clark and Tilman 2017, Mohamed, Anders 

et al. 2020). The continuous improvements in technology, changes in climate and the increase 

in human population is an indication that more land use changes are yet occur. This makes a 

study on LULCCs important to gain a better understanding of their patterns to manage and 

preserve grasslands as a natural capital (Mondal, Sharma et al. 2016, Hossen, Hossain et al. 

2019). Grasslands offer ecosystem services such as erosion control, climate regulation and 

food provision (Sollenberger, Kohmann et al. 2019, Zhao, Liu et al. 2020). In this regard, the 

degradation of grasslands results in the loss of these ecosystem services (Wen, Dong et al. 

2013, Bengtsson, Bullock et al. 2019). As a result, rangeland degradation urgently requires 

robust fast and effective frameworks for mapping and monitoring rangelands in a spatially 

explicit manner. Previously, traditional survey methods were utilised to assess rangeland 

degradation based on visual assessment at different points. 

Considering that traditional field surveys are inefficient and expensive, several researchers 

have recently resorted to remote sensing techniques that can uncover and analyse near-real 

time land cover patterns (Lawley, Lewis et al. 2016). RS methods are commonly used in LULC 

change detection studies due to high revisit frequency and data acquisition, of expansive 

spatially explicit data (Abd El-Kawy, Rød et al. 2011). Performing change detection studies 

using RS includes the use of multi-date images to assess the changes occurring between the 

acquisition dates of the satellite images as a result of environmental conditions and human 

activities within a specified period (Abd El-Kawy, Rød et al. 2011, Shen, Meng et al. 2016). 

For instance, Landsat remotely sensed data has been proven to be invaluable in LULCC 

studies (Alam, Bhat et al. 2020). This is due to their optimal moderate spatial resolution and 

historical data archives which date back to the 1970s until the current date (Hansen and 

Loveland 2012, Alam, Bhat et al. 2020).  

Landsat data have been widely used in classification studies (Zhu and Woodcock 2014, Phiri 

and Morgenroth 2017, Cai, Guan et al. 2018, Sawalhah, Al-Kofahi et al. 2018). For instance, 

DeVries, Pratihast et al. (2016) used Landsat data to characterise forest changes by assessing 

the use of local expert data in combination with Landsat Time Series to characterize forest 
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change processes. On the other Parihar, Sarkar et al. (2013) utilised Landsat data in a wetland 

post classification change detection study of East Kolkata Wetlands. The above-mentioned 

examples highlight the high prospects associated with Landsat remotely sensed data in 

detecting and mapping LCCs. 

Generally, Landsat is often used in conjunction with robust machine learning algorithms which 

optimise the classification accuracies. For instance Phan, Kuch et al. (2020) used Landsat 

data in conjunction with RF to analyse the effect of different composition methods and input 

images on classification results. RF has been widely engaged by the community of practice 

because of its simplicity, ability to utilise small sample size using it bagging mechanism and 

being able to avoiding overfitting models (Rodriguez-Galiano, Chica-Olmo et al. 2012, Thanh 

Noi and Kappas 2017). However, RF does not possess the capability to predict future 

changes. 

Models such as the artificial neural networks (ANN), Markov Chain model (MC), and the 

Cellular Automata (CA) have been widely used in LULC change predictions (Mondal, Sharma 

et al. 2016, Liu, Liang et al. 2017, Yirsaw, Wu et al. 2017). However, literature states that these 

models have limitations when being applied singularly as compared to when they are 

combined into a hybrid algorithm (Halmy, Gessler et al. 2015, Munthali, Mustak et al. 2020). 

For example, the Cellular Automata-Markov model (CA-Markov) is an example of a hybrid 

cellular based model, which is robust and widely used in predicting future Land use changes 

(Subedi, Subedi et al. 2013, Yirsaw, Wu et al. 2017). 

The CA-Markov model is said to be the most suitable model for LULC change prediction as it 

is a combination of the robust Cellular Automata and the Markov chain model (Yirsaw, Wu et 

al. 2017, Wu, Li et al. 2019). Furthermore, the model is effective in mapping future land use 

land cover changes  dynamic simulation capability, high efficiency, simple calibration, and 

ability to simulate multiple land covers and complex patterns spatially and temporally (Sang, 

Zhang et al. 2011, Gidey, Dikinya et al. 2017, Liping, Yujun et al. 2018, Jalayer, Sharifi et al. 

2022), thus making the model appropriate in mapping future rangeland land use land cover 

changes. 

The CA-Markov model has been proven to be robust, efficient and reliable for producing 

accurate spatio-temporal prediction of land cover types (Wu, Li et al. 2019, Khawaldah, Farhan 

et al. 2020, Ghalehteimouri, Shamsoddini et al. 2022). In this regard, this study sought to 

predict the future spatial distribution of grasslands in communal rangelands using the CA-

Markov model between the year 2020 and 2040. This study also compared the magnitude of 

grass fragmentation in the forthcoming 20 years since the same year intervals were 

considered in generating input maps for modelling. This was aligned with Agenda 2063 goal 
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number 1, which seeks to achieve a prosperous Africa based on inclusive growth and 

sustainable development. This goal prioritizes agricultural productivity and production, as well 

as the sustainable management of natural resources and biodiversity conservation such as 

land and rangelands. Furthermore, 20-year intervals were chosen and used in this study 

because they were deemed to be the minimum period when changes could be detected in a 

landscape. This was deemed to be a step towards assisting the developers in coming up with 

recommendations to preserve the rangelands within communal areas.  

 

5.2. Methods and Materials 

5.2.1. Study Site 

Refer to chapter four. 

5.2.2. Satellite Data 

This study made use of cloud free Landsat 7 & 8 Top f Atmosphere (TOA) reflectance images 

from Google Earth Engine (GEE). GEE is a cloud-based computing platform which has 

satellite imagery of over 40 years to the present time. GEE provides images which have been 

atmospherically corrected, however, original images are provided by the platform. Satellite 

images available for analysis can be retrieved from the google earth catalogue 

(https://developers.google.com/earth-engine/datasets/catalog/). In this study, pre-processed 

Landsat images were selected and used to conduct the classification. Then, the median 

reducer in the GEE platform was utilised to reduce the images into a portable cube. The 

median reducer reduces bulky images into one image for easier analysis. The reduced image 

is created through tile reconstruction. Tile reconstruction is a process where each tile for each 

image is processed by different google servers and the product is a single image made up of 

the rearranged tiles of the images for better and improved quality of the image (refer to chapter 

two).  

https://developers.google.com/earth-engine/datasets/catalog/
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Table 5.1: Image collections used in the study. 

 

 

 

 

 

 

 

 

 

 

 

 

Years Number of 
Satellite Images 

which were 
available 

Acquired date of images Years Number of 
Satellite Images 

which were 
available 

Acquired date of images 

VULINDLELA AREA NHLAZUKA 

  2010 16 1. 2010/06/08 
2. 2010/06/08 
3. 2010/06/24  
4. 2010/06/24 
5. 2010/07/10  
6. 2010/07/10  
7. 2010/07/17  
8. 2010/07/17  
9. 2010/07/26  

 

10. 2010/07/26  
11. 2010/08/02  
12. 2010/08/02 
13. 2010/08/18  
14. 2010/08/18 
15. 2010/08/27 
16. 2010/08/27  

 
 
 

2010 5 1. 2010/06/08 
2. 2010/06/24 
3. 2010/07/10 
4. 2010/07/26 
5. 2010/08/27 

 
2020 

 
22 

 
 
 
 
 
 
 
 
 
 
 

 
1. 2020/06/02 
2. 2020/06/02  
3. 2020/06/11       
4. 2020/06/11  
5. 2020/06/18  
6. 2020/06/18  
7. 2020/06/27 
8. 2020/06/27  
9. 2020/07/04  
10. 2020/07/04  
11. 2020/07/13  

 

 
12. 2020/07/13 
13. 2020/07/20 
14. 2020/07/20  
15. 2020/07/29  
16. 2020/07/29  
17. 2020/08/05 
18. 2020/08/05  
19. 2020/08/14  
20. 2020/08/14  
21. 2020/08/21  
22. 2020/08/21 

 

2020 5 1. 2020/06/11 
2. 2020/06/27 
3. 2020/07/13 
4. 2020/07/29 
5. 2020/08/14 
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5.2.3. Projections  

The study used already classified images from the years 2010 and 2020 from GEE to predict 

the spatial distribution of rangelands in the year 2040 (Figure 5.1). Images used for the 

classification were cloud free. The classified images were a combination of images (temporal 

images) available between the months of June, July and August reduced to one image by the 

use of the median reducer in GEE. The median reducer in GEE combines the values of 

available images, calculates the aggregate of those images, and produces a single image. 

The use of such an image is important in rangeland studies as rangelands are sensitive to 

environmental changes. Therefore, using an image that is the result of temporal images is 

useful in accurately mapping the changes taking place in rangeland ecosystems. In addition, 

the use of the median reducer improves the quality of an image hence producing high 

classification accuracies in LULC studies (refer chapter two). 

Classifications were performed with the use of the Random Forest (RF) classifier. Feature 

classes that were selected for the classified images were bare-land areas (which include areas 

in the study area with no vegetation cover), water bodies (being all water bodies within the 

study site such as dams, streams and rivers), built-up area (all areas of settlement 

development), the forest class (all forms of plants within the study site such as alien plant 

species, indigenous forest, plantations and woodland) and grasslands (being all areas 

covered with grass). Classifications were performed over a period of 10 years from 2010 to 

2020. The study collected sample points for various land cover classes during field 

observation. Included were the grass points in both the study sites with the use of the handheld 

Trimble GPS. The study then proceeded to make use of Google Earth Pro for the verification 

points of the previous years (Cha and Park 2007). The RF makes use of decision tress when 

performing classifications and in this study 100 decision trees were used which produced 

accuracies between 79% to 89%. The use of the decision trees, however, does not guarantee 

an increase in the overall accuracies. Optimal parametrization was set from a range of 10 to 

180 decision trees and at a 100-decision tress optimal parametrization was reached with 

overall accuracy being uniform thereafter (meaning that after 100 decision trees there was not 

much of a difference in the overall accuracies obtained). Vegetation indices were also 

computed during the LULCC classification process (refer to chapter two). The vegetation 

indices were utilized in image classifications in combination with the spectral bands as means 

to improve classification accuracies (Sinha, Sharma et al. 2015, Koley and Chockalingam 

2022).
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Figure 5.1: The already classified images of land use land cover changes in a) Vulindlela and 
b) Inhlazuka during the years 2010 and 2022

a) 

b) 

a) 

b) 
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5.2.4. CA-Markov 

The CA-Markov combines the functions of both the CA- and Markov chain analysis to optimize 

the outcome of the prediction, therefore, creating the opportunity of the model to perform long 

term predictions of any type of spatial patterns/changes (Mathanraj, Rusli et al. 2021).  

The study first calculated the gains and losses for each class by making use of the Land 

Change Modeler (LCM) Module in TerrSet, performed to get an insight of what was happening 

in each class from 2010 to 2020. Performing the gains and losses on the LCM in Terrset 

produced the drivers causing a change in rangelands. The study then used the CA-Markov 

module in Terrset to perform the predictions. Prior the predictions, transition probabilities were 

created which gave the percentages/probability of one class transitioning into another. The 

Markov transition estimator module in Terrset was used to create probability transitions. In 

creating the transition probabilities, the classified images of 2010 and 2020 were used. The 

output probabilities from the 2010 and 2020 images in combination with the originally classified 

image of 2020 was used for the predictions of the year 2040 in the CA-Markov module of Idrisi 

TerrSet with a contingency filter of 5 and 10 Cellular Automata iterations. 

5.2.5. Accuracy assessment 

For the accuracy assessment of the CA-Markov model predictions, three indicators were used 

(i.e. kappa for no ability (𝐾𝑛𝑜),  kappa for location (𝐾𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) and kappa for quantity (𝐾𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦.). 

The 𝐾𝑛𝑜 performs the accuracy of the simulation run (Hamad, Balzter et al. 2018), while the 

𝐾𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐾𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 validate the location and quantity between the original classified images 

and the prediction images (Hamad, Balzter et al. 2018). These indicators are said to be the 

best indicators for the validation of simulated maps and literature also states that 0.80% is an 

acceptable accuracy rate for the performance of future prediction maps (Eastman 2015). For 

further accuracy assessment of the model, the study predicted the year 2020 in both study 

areas using the classified images of the years 2000 and 2010. The predicted 2020 image was 

then compared with the originally classified image of 2020. Figure 5.2 shows the procedure 

followed in simulating future land-use and land cover types in the study area. 

 



87 

 

 

Figure 5.2: A flow chart of the simulation process. 

 

5.2.6. Rangeland Patch Analysis for the projected year 2040 

The study calculated fragmentation within the communal rangelands of Inhlazuka and 

Vulindlela using the Fragstats 4.2 software as a measure of rangeland degradation. To 

compare the rangeland fragmentation between the year 2020 and the year 2040, the 

rangeland patch analysis was performed for both years. This was done to compare the extent 

and level of fragmentation for the current year with that of 2040 to assess the changes in 

rangeland fragmentation after 20 years.  The projected images of 2040 of Vulindlela and 

Inhlazuka were exported from IDRISI TerrSet to ArcMap 10.6. In ArcMap the projected maps 

were extracted as GeoTiff images into Fragstats. The 2020 classified image was extracted 

from Google Earth Engine (GEE) to ArcMap 10.6 then extracted as a GeoTiff image to 

Fragstats 4.2. The measurement of fragmentation within both study areas was performed at 

a class level metrics. The class level metrics calculate the fragmentation of each feature class 

Ready pre-processed 
images from GEE for 

classification (years 2010 
and 2020)

The use of the median 
reducer for further 
processing and the 
combination of the 

temporal images to one 
image

Use of the RF classifier for 
rangeland change 

detection on the GEE 
platform (years 2010 and 

2020)

Use of the already 
classified images for the 
performance of the 2040 

predictions in IDIRISI 
TerrSet

The calculation of the 
gains and losses and 

contributions of change in 
rangelands using the LCM 

of IDIRISI TerrSet

The estimation of 
Transition Probabilities 
(Markovian Transition 

Estimator module in IDRISI 
TerrSet) 

CA-Markov Module for the 
simulation process on 

IDRISI TerrSet

Accuracy Assessment 
(Validation Module in 

IDRISI TerrSet)

2040 
Predictions
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of the classified map. The metrics used in performing the patch analysis were that of the 

Percentage of landscape (PLAND), patch area (AREA_MN), the number of patches (NP), 

largest patch index (LPI), patch density (PD), Euclidean nearest neighbour distance 

(ENN_MN) and effective mesh size (MESH) were used to measure the extent of fragmentation 

within the communal rangelands. However, the metrics of NP, PD and LPI were applied by 

the study to measure the extent of fragmentation within each of the feature classes. Then the 

metrics of ENN_MN, AREA_MN, PLAND, and MESH, were applied by the study to assess the 

patch area of each of the feature classes specifically the rangelands. The measurement of 

fragmentation in the study was performed for the projected year 2040 to be compared with the 

patch analysis of the year 2020 to compare the level of rangeland degradation between these 

years. 

 

5.3. Results 

5.3.1. Image Classifications  

The study performed classifications to monitor the rangelands changes using the Random 

Forest Classifier (RF). Classifications were performed using the combination of the spectral 

bands of the Landsat images with vegetation indices. Feature classes that were used during 

the classification process were that of water, bareland, built-up area, forest, and grasses. The 

overall accuracies (OAs) achieved during the classification of rangelands were that of 85% 

and 89% in Vulindlela and OAs of 79% and 83% were obtained in Inhlazuka for the years 

2010 and 2020 respectively (Table 5.2, Figure 5.3). The kappa coefficient was applied in the 

measurement of the classification accuracies and the Kappa scores were that of 75% and 

83% in Vulindlela and in Inhlazuka Kappa scores were 68% and 73% for the years 2010 and 

2020, respectively (Figure 5.3). The variables of importance obtained from the classifications, 

selected by the RF were that of bands 5 and 7 which represent the Shortwave Infrared bands 

(SWIR) and the Near Infrared bands (NIR) (refer to chapter two).    
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Figure 5.3: Classification overall accuracies and kappa scores in the areas of a) Vulindlela 
and b) Nhlazuka.  

 

5.3.2. Validation Results 

In addition to assessing the CA model prediction accuracy, the year 2020 was predicted using 

images of the years 2000 and 2010 in both areas of Vulindlela and Inhlazuka. The predicted 

images of 2020 in both study areas were compared with the original classified images of 2020. 

The high accuracies in the 𝐾𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐾𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 of both the study areas presents limited 

errors meaning the acceptance of the original classified image of 2020 and the validation of 

the 2040 prediction (Figure 5.4). 

 

Table 5.2: The kappa coefficient scores for quantity and location for the year 2020 prediction. 

2020 Projections for Vulindlela 2020 Projections for Nhlazuka  

Kno =    0.8391 Kno =    0.7371 

Klocation =   0.8562 Klocation =   0.7646 

Klocation strata =              0.8562 Klocationstrata =              0.7646 

Kstandard =   0.7814 Kstandard =   0.6908 
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Figure 5.4: Prediction images of 2020 for a) Inhlazuka and b) Vulindlela 

 

5.3.3. Projections  

The 2040 projections were performed using the CA-Markov model. Accuracy assessments of 

the model were performed using the Validation Model of IDRISI TerrSet. The kappa coefficient 

scores for the projected images are presented below in table form (Table 5.4).  

a) 

b) 
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Table 5.3: The kappa coefficient scores for quantity and location for the 2040 prediction. 

Projections for Vulindlela Projections for Inhlazuka  

Kno = 0.8741 Kno = 0.8374 

Klocation = 0.9208 Klocation = 0.9032 

Klocationstrata = 0.9208 Klocationstrata = 0.9032 

Kstandard = 0.8308 Kstandard = 0.8087 

 

Figure 5.5 below illustrates the CA-Markov model prediction changes in the areas of Vulindlela 

and Inhlazuka for the year 2040. In Vulindlela, the rangelands are predicted further decrease 

while the rangelands in Inhlazuka are predicted to increase. The area of rangelands in 

Vulindlela for the year 2020 was 6660.04 ha and the projected area of rangelands in 2040 is 

5740.30 ha. Therefore, in Vulindlela about 919.74 ha of rangelands are to be lost by the year 

2040 thus a loss of 46 ha per year of rangelands. The loss in rangelands will be caused by 

the further increase in built-up and bareland areas but mostly settlement development as it 

will increase at a higher rate than the bareland class. In the area of Inhlazuka, the spatial 

extent of rangelands for 2020 is 2567.55 ha and the projected area of the communal 

rangelands is 2987.03 ha, meaning that in Inhlazuka an increase of 419.48 ha in rangelands 

is expected in 2040 with an increase of 21 ha per year in rangelands.
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Figure 5.5: The projected changes in a) Vulindlela and b) Inhlazuka for the year 2040. 

 

a) 
a) b) 
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In Vulindlela rangelands are threatened by the continued increase in built-up area which is 

projected to increase in 2040 (Figures 5.6 and 5.7). The spatial extent of built-up area in Vulindlela 

for 2020 is 2821.88 ha and the projected areal extent in 2040 for built-up area is 4157.2 ha, 

therefore built-up area is expected to have grown by 1335.32 ha by the year 2040 and increase 

at a rate of 67 ha per year.  

 

Figure 5.6: A comparison in the rangeland distribution between 2020 and 2040 in (a) Vulindlela 
and (b) iNhlazuka. 

 

In Inhlazuka, the growth of rangelands and built-up area is causing a decline in the forest class 

(Figures 5.6 and 5.7). The area of the forest class for 2020 is 4632.09 ha and the projected area 

for the forest class in 2040 is 3462.18 ha thus, a loss of 1169.91 ha of the forest class by 2040. 

The forest class shall decrease at a rate of 58.45 ha per year. The built-up area in Inhlazuka for 

the year 2020 is 2567.55 ha and the project area is 2987.03 ha meaning, by the year 2040, built-

up area would have increased by 419.48 ha, therefore increasing at a rate of 21 ha per year. 

a) 

b) 
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Hence, the increase in rangelands and built-up area will cause a decrease in the forest class by 

2040. 

 

Figure 5.7: The changes in the distribution of rangelands between 2020 and 2040 in (a) Vulindlela 
and (b) iNhlazuka. 

 

Figure 5.8 presented the LULCCs variations taking place within Vulindlela and Inhlazuka between 

the years 2010 and 2020. From Figure 5.8, it can be observed that the rangelands are declining 

as a result of the increasing builtup area in Vulindlela, meaning that the communal rangelands in 

Vulindlela are declining as a result of the increasing population. In Inhlazuka, the builtup area 

increased, the forest class decreased and rangelands increased. Furthermore, the gains and 

losses were calculated using the LCM of TerrSet to present the changes within each class in 

Vulindlela and Inhlazuka (Figure 5.8) with Figure 5.9 presenting the changes in area of the 

mapped land cover classes. 

 

a) 

b) 



95 

 

 

Figure 5.8: (a, b and c) is presenting the gains and losses of each feature class and the Net 
changes in grasslands in Vulindlela between the years 2010 and 2010 and (d, e and f,) presenting 
the grassland changes in Inhlazuka, respectively. 

 

a d 

b e 

c f 

Vulindlela     Inhlazuka 
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Figure 5.9: The areal difference in the land cover types between 2020 and 2040 in the areas of 
a) Vulindlela and b) Nhlazuka 

5.3.4.  Rangeland Patch Analysis 2020 and 2040 comparison 

The rangeland patch analysis was performed to measure rangeland degradation comparing the 

year 2020 with the projected year 2040 (Table 5.7). The results of the Percentage of landscape 

(PLAND) in Vulindlela suggest that there shall be an increase in the fragmentation of rangelands 

in the year 2040 as the patch analysis presents a decrease in the PLAND from the year 2020 at 

59.6 ha to 51.35 ha. The number of patches (NP) in Vulindlela will decrease from 780 in 2020 to 

103 patches in 2040. The patch density (PD) in 2020 will also decrease from 6.9 in 2020 to 0.92 

in 2040. The Largest Patch Index (LPI) will decrease from the year 2020 from 43.3 ha to 18.37 

ha. The patch area (AREA_MN) shall increase from 8.5 ha to 55.94 ha suggesting an increase in 

the patch sizes from the year 2020 to the year 2040. The Euclidean nearest neighbour distance 

(ENN_MN) and the effective mesh size (MESH) propose that there will be an increase in the 

extent of fragmentation in 2040 due to the increase in the ENN_MN in Vulindlela from the year 

2020 from 73.0 ha to 172.20 ha in 2040. This suggests that the isolation of the rangeland patches 

will increase in 2040. The increase in isolation between the patches is further presented by the 

MESH as it is expected to decrease from the year 2020 at 2188.8 ha to 743.35 ha in 2040 

indicating that the rangeland patches in Vulindlela will lose connectivity. The rangeland patch 

analysis of Vulindlela therefore, suggests that the rangelands in Vulindlela will become more 
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isolated in 2040 compared to the year 2020 with larger rangeland patches in 2040 compared to 

2020.  

In Inhlazuka, the patch metrics results for the PLAND shall increase from 28.6 in 2020 to 32.89 in 

2040 therefore a decrease in fragmentation in the year 2040. The NP and PD shall also decrease 

from the year 2020 to the year 2040. The NP in Inhlazuka will decrease from 1443 to 414 and the 

PD shall decrease from 16.0 to 6.52. The AREA_MN in 2040 will increase from 1.7 ha to 7.20 ha 

in 2040 hence larger rangeland patches. However, the increase in the ENN_ MN by the year 2040 

suggests isolated rangeland patches. The ENN_MN presents an increase from 75.0 ha to 120.60 

ha by the year 2040, however the MESH shall increase from 35.4 ha to 58.89 ha in 2040 thus the 

rangeland patches being more connected in 2040 than in 2020. The results of the patch analysis 

in Inhlazuka therefore suggests that the rangelands shall increase in patch sizes in the year 2040 

however, the rangelands will become more isolated with an increased rangeland patch 

connectivity when compared to the year 2020. 

Table 5.4: Rangeland Patch Analysis of the year 2020 and 2040 

 GRASS PLAND NP PD LPI AREA_MN ENN_MN MESH 

Vulindlela 2020 59.6 780 6.9 43.0 8.5 73.0 2188.8 

 2040 51.35 103 0.92 18.37 55.94 172.20 743.35 

Inhlazuka 2020 28.6 1443 16.0 5.4 1.7 75.0 35.4 

 2040 32.89 414 4.57 6.52 7.20 120.60 58.89 

 

5.4. Discussion 

The overall aim of this study was to map the future spatio-temporal variations of communal 

rangelands with the use of Landsat imagery using the CA-Markov model of IDRISI TerrSet. The 

study used classified Landsat images in Google Earth Engine using the Random Forest classifier 

to characterise LULC types during the year 2020 based on Near Infrared bands (NIR) (Band 5) 

and Shortwave Infrared bands (SWIR) Band 7.  

The CA-Markov model results showed that rangelands will increase in spatial extent in Inhlazuka 

in the year 2040 (Figures 3.4 and 3.5) due to the decrease in forested areas whereas in Vulindlela, 

they were predicted to decrease as a result of the increase in settlement (Figure 3.5). The 

projected increase in built-up area in Vulindlela implies that there will be an increase in population. 
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This is supported by the Municipality (2016) which stated that the population is expected to 

increase in future. In addition, the population growth in the area of Vulindlela could be associated 

with a possible increase in livestock densities in the grazing lands. The increased number of 

grazing animals within Vulindlela could result in the rangelands being over grazed and eventually 

degraded. Furthermore, activities such as unmanaged fire practices for rangeland management 

and increased agricultural activities in Vulindlela may also contribute to the decline of rangelands 

in the year 2040. This calls for the practice of sustainable grazing patterns in Vulindlela for the 

preservation of rangelands.  

The increasing barelands in both the areas of Vulindlela and Inhlazuka are due to development 

which could take place in future alongside the increase in population. In Vulindlela, grasslands 

are being cleared for residential areas and the development of roads. In addition, activities such 

as rock mining are also taking place in Vulindlela causing increased bareland areas. In Inhlazuka, 

bareland could also be caused by the removal of the forest class for development, the construction 

of roads and the removal of plantations. this suggest that development activities in both study 

areas are the drivers of increased bareland in conjunction with activities of fire and grazing 

activities. As a result of the prediction models, the bareland class is projected to increase in 

Vulindlela and Inhlazuka (Figure 3.9), meaning the increasing barelands shall be as a result of 

increased development activities. Literature also states that activities of development, 

unmanaged fire and agricultural practices leave the soil exposed therefore causing an increase 

in bareland (Tsegaye, Moe et al. 2010, Lehnert, Meyer et al. 2014, Mussa, Teka et al. 2017). 

However, the changes in temperature and precipitation received could also contribute to the 

increase in the spatial extent of bareland.  

Climate change variabilities in Southern Africa, have brought about a marked seasonality in feed 

quantity and quality of rangelands which have been deteriorated as a result of the frequent dry 

seasons in certain parts of the region (Assan 2014). Therefore, the future patterns in temperature 

and rainfall will influence the growth of grass in these rangelands. The projected decline in 

rangelands in the areas of Vulindlela may also be attributed to the changing climates through 

reduced precipitation and increased temperature that restricts growth in rangelands as a result of 

increased temperatures and decreased rainfall patterns, however, if sufficient rainfall and 

moderate temperatures are received in the future, then rangelands shall be presented with 

growing conditions which will not hinder their growth and quality. This also applies to the 

rangelands of Inhlazuka, with suffice rainfall and moderate levels of temperature, the communal 
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rangelands will grow producing quality forage production. However, the increase in the communal 

rangelands in Inhlazuka depends on both the climatic conditions as well as the maintained and 

consistent removal of the alien plants, thus creating ideal conditions for growth. 

Fragmentation results showed that in both study areas, the grassland patch sizes shall increase 

meaning that the grassland patches of Vulindlela and Inhlazuka shall be larger compared to the 

rangeland patches of 2020. In Vulindlela, the patch area is to increase by an average of 32.22 ha 

by the year 2040 and in Inhlazuka the patch area shall increase by an average of 4.45 ha. 

Meanwhile the isolation extent (ENN_MN) predicted is to increase by an average of 122.6 ha in 

Vulindlela and by an average of 97.8 ha in Inhlazuka. However, results also showed a decrease 

in the of connectivity (The MESH) of patches in Vulindlela by the year 2040. In Inhlazuka 

rangeland connectivity is to increase by an average size of 47.14 ha by the year 2040 and 

decrease by an average size of 1466.07 ha in Vulindlela. The drivers behind the future isolation 

of the rangelands in Vulindlela are as a result the development activities, particularly that of 

residential development (Figure 3.4 and 3.6). Furthermore, the increase in development in 

Vulindlela is reducing the connectivity of rangeland therefore, increased fragmentation and loss 

of rangelands. In Inhlazuka, the increase in the AREA_MN of the rangelands could be caused by 

the increasing rangelands thus larger grassland patches however, the increase in the isolation of 

rangelands could be the result of increasing built-up and bareland areas and the decline in the 

forest class. This is because though the built-up, bareland and forest classes are not affecting the 

rangeland areal extent, the change in these classes has an influence over the distribution 

patterns. The increase in the fragmentation in the communal rangelands especially in Vulindlela 

suggests an urgent need for protecting rangelands due to fragmentation depleting them in 

Vulindlela. And with continued unmanaged activities of fire, grazing patterns and agriculture, 

rangeland fragmentation in Vulindlela is to increase causing further degradation and loss of 

rangelands (Soons, Messelink et al. 2005, Spanowicz and Jaeger 2019). 

Rangelands are important ecosystems which regulate our climate, control carbon emissions, 

produces medicines, fuel wood, is base for wildlife-based tourism and play an important role in 

water provision meaning that rangeland landscapes are important and should be protected 

(O’Connor and van Wilgen 2020). Rangelands also play a role of providing income to livestock 

owners therefore, contributing to the economy. As a result of the lack of management practices 

in communal rangelands, sustainable development methods within rangelands are important to 

ensure that the people, economy and the environment are all balanced and with the use of RS in 
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monitoring rangelands policies to protect rangelands can be put in place to manage the 

degradation of rangelands. The findings of this study can henceforth, assist the communities 

residing within these areas and the development planners to perform more sustainable practices 

of development as well as educate the residents of these areas on sustainable practices of 

grazing, crop farming and the use of fire as a management tool.  

 

5.5. Conclusion  

In conclusion the study successfully performed the 2040 simulations using the CA-Markov model 

of IDRISI TerrSet with high accuracy. The 2040 predictions illustrate that settlement will increase 

due to the increase in population. The increase in settlement in Vulindlela is to take place at 67 

ha per year and rangelands are to decrease at a rate of 46 ha per year. The patch metrics of 

Vulindlela and Inhlazuka presented the increase in rangeland fragmentation because of the loss 

of connectivity in rangelands and increased isolation particularly in Vulindlela as a result of 

development activities. The increase in settlement development in Vulindlela suggest an urgent 

need to develop rangeland management plans for the growing rangeland degradation because 

of rangeland fragmentation. To end off, the study results presented that land use land cover 

changes are consistently changing and for this reason the use of Remotely Sensed data is 

important in monitoring LULCC studies to capture all the changes taking place as a result of 

human or environmental conditions. The use of RS for the spatial monitoring of rangelands and 

land rehabilitation will also assists in the creation of rangeland conservation policies.  
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6. Comparing the utility of Artificial Neural Networks (ANN) and Convolutional Neural 

Networks (CNN) in tandem with Sentinel-2 MSI in estimating dry season aboveground 

grass biomass 

M Vawda, R Lottering, K Peerbay, M Sibanda and O Mutanga 

6.1. Introduction  

The study and observation of natural phenomena is increasingly becoming more imperative as 

the world faces unprecedented environmental change (Ali, Greifeneder et al. 2015). The 

consistent improvements made to both airborne and spaceborne platforms and sensors have 

resulted in the proliferation of remote sensing research (Mutanga, Dube et al. 2016). Remote 

sensing has enabled scientists to make earth observations in various facets of the natural world, 

ranging from weather to vegetation. Vegetation monitoring, in particular, has become an influential 

research topic in remote sensing academia due to the need for continuous, reliable data to assist 

in decision-making processes (Mutanga, Dube et al. 2016). The advent of remote sensing, from 

simple aerial photographs to current high-resolution imagery, has enabled scientists to conduct 

research at larger spatial and temporal scales (Mutanga, Dube et al. 2016). In recent times, there 

has been a significant increase of remote sensing data as well as ground data in vegetation 

studies which has established a solid foundation for vegetation monitoring, presently and in the 

future (Ali, Greifeneder et al. 2015).  

The inundation of remotely sensed data has directed scientists towards finding novel methods for 

data processing and analysis (Ali, Greifeneder et al. 2015). Remotely sensed data has proven to 

be voluminous, with data being captured at weekly, monthly and even hourly scales (Das, Ghosh 

et al. 2022). The heterogeneity of remotely sensed data, with a vast array of sensors with varying 

spatial, temporal and radiometric resolutions, has produced challenges in data processing and 

analysis (Ali, Greifeneder et al. 2015, Das, Ghosh et al. 2022). This challenge has ushered 

scientists into discovering new methodologies at discerning multi-dimensional data, which has 

resulted in a paradigm shift from conventional statistical methods towards machine learning 

solutions ((Das, Ghosh et al. 2022). The advancement of artificial intelligence, and subsequently, 

machine learning technologies has enabled scientists and practitioners alike to address pressing 

environmental issues due to their real-time processing of data and strong predictive abilities (Das, 

Ghosh et al. 2022).  
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Neural networks, which are considered a subset of machine learning, are algorithms that have 

been designed by mimicking the operation of a biological brain (Mas and Flores 2008). The 

artificial neural network (ANN), specifically, has been extensively used for remote sensing 

applications from the inception of the 1990s as they provided promising results (Mas and Flores 

2008). Mas and Flores (2008) state that ANNs have been reported to perform much more 

admirably as compared to traditional statistical methods due to their ability to learn complex 

patterns, study nonlinear relationships between variables, generalisation abilities and perform 

various analyses without necessitating the meeting of data assumptions (e.g. Normally distributed 

data). Jensen, Hardin et al. (2009) acknowledge that ANNs have been used relatively successfully 

in remote sensing for biophysical estimation and land classification, however, they do have their 

limitations. These include the complex architectures of ANNs and their demanding computational 

requirements, the need for large amounts of training data and supervised training of the algorithm 

to ensure better accuracy and output (Mas and Flores 2008, Jensen, Hardin et al. 2009).  

In the last decade, there has been another paradigm shift in the machine learning realm with the 

focus now being on deep learning approaches (Liu, Han et al. 2019). This is essentially a 

refinement and improvement on traditional ANNs with the aim of improving predictive accuracy 

and reducing the complexity of the previous algorithms (Zhu, Tuia et al. 2017). Zhu, Tuia et al. 

(2017) define deep learning as neural networks characterised by more than two deep layers in 

the neural network structure and that extract distinct feature patterns from input data. One such 

example of a deep neural network is the convolutional neural network (CNN), which has been 

specially engineered for image processing and analysis (Zhu, Tuia et al. 2017, Kattenborn, Leitloff 

et al. 2021). The increased number of layers and interconnections in CNNs have meant that more 

complex and intricate patterns and relationships can be deciphered, which is particularly useful 

for vegetation remote sensing studies (Kattenborn, Leitloff et al. 2021). CNNs have an advantage 

over ANNs in a sense that they require less computational time and power and produce higher 

predictive accuracies. However, they require vast amounts of training data to be able to make 

such accurate predictions and classifications (Brodrick, Davies et al. 2019). Even though the use 

of CNNs in remote sensing is trend-setting, it is currently only in its inception and has to be tested 

further to reveal its strengths and weaknesses (Kattenborn, Leitloff et al. 2021).  

Grasslands are biomes of high socio-economic and conservational value, particularly in southern 

Africa (Palmer, Short et al. 2010). Grasslands are highly sensitive to environmental change and 

are often moderated by biophysical factors such as rainfall and grazing (Vundla, Mutanga et al. 
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2020). Vegetation parameters are used to asses health and condition and can either be physically 

measured or remotely estimated by remote sensing (Mutanga, Dube et al. 2016). One such 

vegetation measure that is used to observe and monitor grassland productivity is aboveground 

biomass (Ali, Greifeneder et al. 2015). Neural networks, especially ANNs, have been used to 

assess and predict aboveground vegetation biomass for a considerable time (Ali, Greifeneder et 

al. 2015). In most cases, ANNs have outperformed typical Bayesian and iterative statistical 

methods for estimating biomass, as well as other machine learning algorithms such as support 

vector machines (Ali, Greifeneder et al. 2015). Recent grass biomass studies have gradually 

incorporated the utilisation of CNNs for biomass predictions, with varying results based on sensor 

resolutions and platform type (Kattenborn, Leitloff et al. 2021).  

There is a substantial lack of grassland biomass studies, in relation to remote sensing, in South 

African academia, as reported by (Masenyama, Mutanga et al. 2022). Furthermore, from a South 

African context, no research has attempted at investigating the performance of conventional 

ANNs and contemporary CNNs in estimating aboveground grass biomass. The study of 

grasslands are imperative in the face of climate change and hence the use of machine learning 

techniques to observe and assess grassland health would be inherently useful for both 

researchers and practitioners (Ali, Greifeneder et al. 2015, Masenyama, Mutanga et al. 2022). 

Therefore, the objectives of this study were to: 1) compare the predictive performance of shallow 

ANNs and deep CNNs in estimating aboveground grass biomass using Sentinel 2 MSI and 2) 

utilise both neural networks in tandem with Sentinel 2 MSI to predict dry season aboveground 

biomass for Vulindlela.  

 

6.2. Methods  

6.2.1. Study Area 

The Vulindlela area is situated in the greater Umgeni Catchment of the KwaZulu-Natal province, 

South Africa. The study area is part of the Umgungundlovu district and falls under the uMsunduzi 

Municipality (Figure 6.1). The local climate can be classified as a subtropical oceanic climate, with 

cool and dry winters as well as mild and wet summers (Sibanda, Onisimo et al. 2021). A mean 

annual rainfall of 979 mm with a median annual rainfall of 850 mm is received in the study area. 

Annual maximum and minimum temperatures are approximately 22°C and 10°C respectively 
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within the study area (Sibanda, Onisimo et al. 2021). Vegetation growth in the area is limited 

primarily by climate, with low precipitation, low temperatures and frost being the major factors 

(Sibanda, Onisimo et al. 2021). Vulindlela has a mean annual potential evaporation that ranges 

between 1580 and 1620 mm, which indicates a possible deficit in relation to mean annual rainfall 

(Sibanda, Onisimo et al. 2021). The edaphic factors of Vulindlela are characterised by shallow 

soils with moderate to poor drainage; this presents a potential soil erosion risk if not properly 

managed (Sibanda, Onisimo et al. 2021).  

 

 

Figure 6.1: Location of Vulindlela area relative to South Africa and KZN. 

 

Grasslands occurring within the study area are characterised as mesic grasslands and typically 

consist of species such as Themeda triandra,, Eragrostis tenuifolia, Tristachya leucothrix, 

Paspalum urvillei, Sorghum bicolour, Panicum maximum, Setaria sphacelate, Aristida junciformis 
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and Alloteropsis semialata amongst others (Fynn, Morris et al. 2011) ( Figure 6.2). According to 

Scott-Shaw and Morris (2015), the most palatable species to livestock from the abovementioned 

grasses are Themeda triandra, Tristachya leucothrix and Aristida junciformis, in order of 

palatability. Masemola, Cho et al. (2020) state that the dry season in KwaZulu-Natal usually spans 

between June and July whereas Roffe, Fitchett et al. (2020) state that the wet season in KwaZulu-

Natal typically spans between October and March. Grasslands in the study area are not formally 

managed using scientific management regimes and are considered as communal grasslands. 

These grasslands are managed using indigenous knowledge systems by the traditional 

authorities. The grasslands are utilised by locals for rearing livestock, in particular cattle, sheep, 

and goats. The locals use this as a means of subsistence as well as income generation.  

 

6.2.2. Sentinel 2 MSI satellite imagery 

Sentinel 2 is a multispectral imaging sensor operated by the European Space Agency and 

provides open, freely accessible data. Cloud-free Sentinel 2 data covering the study area was 

acquired on the 21 October 2021 from Land Viewer (https://eos.com/products/landviewer/). The 

image downloaded was a Sentinel 2B product which is an orthorectified and atmospherically 

corrected product. The Sen2Cor algorithm is used within the Sentinel Application Platform 

environment (SNAP) to perform atmospheric corrections and provide bottom of atmosphere 

reflectance data (Main-Knorn, Pflug et al. 2017).  The image was captured on the 22 June 2021 

and hence aligns with the days of field data collection. The Sentinel 2 mission acquires 12-bit 

images with a swath width of 290 km and has a temporal resolution of 5-19 days at spatial 

resolutions of 10, 20 and 60 m. The ortho-images have a UTM/WGS84 projection. 

 

6.2.3. Field data collection and measurements 

Grass biomass samples were collected between the 21 June 2021 and 23 June 2021 in the study 

area (Figure 6.2). A total of 120 10 m x 10 m quadrats, spaced approximately 100 m apart, were 

established within Vulindlela using a purposive sampling technique, as conducted by Royimani, 

Mutanga et al. (2022). A GPS reading was recorded using the Trimble GPS within each plot, 

which is a highly accurate sub-metre GPS system. Within each plot, two 1 m x 1 m sub-plots were 

https://eos.com/products/landviewer/
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established and grass clippings were taken, with the dry biomass mass being averaged within 

each plot (Ma, Li et al. 2019). Grass clippings were being cut approximately 5 cm from the ground 

and only tufts occurring within the sub-plot were taken. Only grasses were sampled, other 

vegetation such as forbs and sedges were discarded. Grass samples were placed into labelled 

brown paper bags and a calibrated digital scale was used to measure the fresh biomass weight 

on the day of collection, which is known as wet mass. Grass samples were then placed into an 

oven at 70°C for 48 hours to remove moisture. The samples were then reweighed after being 

dried to determine dry mass.  

  

Figure 6.2: (a) Aristida junciformis dominated grassland and (b) typical grassland within the study 
area during the dry season.  

 

6.2.4. Sentinel 2 spectral bands and variables 

The Sentinel 2 MSI consists of 13 spectral bands that covers the visible, NIR and SWIR sections. 

The three bands with a 60 m spatial resolution were excluded from the analysis as they are 

primarily used for atmospheric monitoring purposes (Shoko, Mutanga et al. 2018) (Table 6.1). 

  

a) b) 
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Table 6.1:  Sentinel 2B spectral bands (https://eos.com/find-satellite/sentinel-2/)   

Band Number Band Name Central 

Wavelength 

(nm) 

Bandwidth 

(nm) 

Resolution (m) 

1 Coastal aerosol 442.3 20 60 

2 Blue 492.1 65 10 

3 Green 559 35 10 

4 Red 665 30 10 

5 Red edge 1 703.8 15 20 

6 Red edge 2 739.1 15 20 

7 Red edge 3 779.7 20 20 

8 NIR 833 115 10 

8a Red edge 8a 864 20 20 

9 Water vapour 943.2 20 60 

10 SWIR-Cirrus 1376.9 30 60 

11 SWIR 1 1610.4 90 20 

12 SWIR 2 2185.7 180 20 

In addition to the abovementioned spectral bands, various vegetation indices (VIs) were 

computed utilising the spectral bands to assess aboveground biomass. The VIs used in this study 

were computed using ArcGIS 10.4 software (www.esri.com) (Table 6.2).    

Table 6.2:  Various vegetation indices (VIs) used in this study. 

Vegetation Index Abbreviation Formula Reference 

 Broadband 
VIs 

  

Enhanced Vegetation Index EVI 
2.5(

𝑁𝐼𝑅 − 𝑅

1 + 𝑁𝐼𝑅 + 6𝑅 − 7.5 × 𝐵
) 

 (Huete, Didan et 
al. 2002) 

Soil adjusted vegetation index SAVI (𝑁𝐼𝑅 − 𝑅) × (1 + 𝐿)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
 

 (Huete 1988) 

Normalised difference vegetation index NDVI (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

(Huete 1988) 

Renormalised difference vegetation 
index 

RDVI (𝑁𝐼𝑅 − 𝑅)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 + 𝑅)
 

(Roujean and 
Breon 1995) 

Simple ratio SR 𝑁𝐼𝑅

𝑅
 

(Chen 1996) 

Modified simple ratio MSR (𝑁𝐼𝑅 ÷ 𝑅 − 1)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 ÷ 𝑅) + 1
 

(Chen 1996) 

http://www.esri.com/
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Vegetation Index Abbreviation Formula Reference 

Green normalised difference vegetation 
index 

GNDVI (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 

(Fernández-
Manso, 
Fernández-Manso 
et al. 2016) 

Green-blue normalised difference 
vegetation index 

GBNDVI 𝑁𝐼𝑅 − (𝐺 + 𝐵)

𝑁𝐼𝑅 + (𝐺 + 𝐵)
 

(Santoso, 
Gunawan et al. 
2011) 

Chlorophyll green index CGM 𝑁𝐼𝑅

𝐺
− 1 

(Gitelson and 
Merzlyak 1997) 

Red-green ratio RGR 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

(Gamon and 
Surfus 1999) 

Atmospherically resistance vegetation 
index 

ARVI (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 

(Kaufman and 
Tanre 1996) 

Transformed difference vegetation 
index 

TDVI 

√0.5 +
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(Bannari, Asalhi et 
al. 2002) 

Difference vegetation index DVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Tucker 1979) 

 Red edge VIs   

Red edge 1 NDVI NDVIRE1 (𝑁𝐼𝑅 − 𝑅𝐸1)

(𝑁𝐼𝑅 + 𝑅𝐸1)
 

 
 
 
 
 
 
(Shoko, Mutanga 
et al. 2018) 

Red edge 2 NDVI NDVIRE2 (𝑁𝐼𝑅 − 𝑅𝐸2)

(𝑁𝐼𝑅 + 𝑅𝐸2)
 

Red edge 3 NDVI NDVIRE3 (𝑁𝐼𝑅 − 𝑅𝐸3)

(𝑁𝐼𝑅 + 𝑅𝐸3)
 

Red edge 8a NDVI NDVIRE8a (𝑁𝐼𝑅 − 𝑅𝐸8𝑎)

(𝑁𝐼𝑅 + 𝑅𝐸8𝑎)
 

Red edge 1 SR SRRE1 𝑁𝐼𝑅

𝑅𝐸1
 

Red edge 2 SR SRRE2 𝑁𝐼𝑅

𝑅𝐸2
 

Red edge 3 SR SRRE3 𝑁𝐼𝑅

𝑅𝐸3
 

Red edge 8a SR SRRE8a 𝑁𝐼𝑅

𝑅𝐸8𝑎
 

Normalised difference red edge 1 NDRE1 𝑅𝐸1 − 𝑅𝑒𝑑

𝑅𝐸1 + 𝑅𝑒𝑑
 

 
 
 
(Guerini Filho, 
Kuplich et al. 
2020) 

Normalised difference red edge 2 NDRE2 𝑅𝐸2 − 𝑅𝑒𝑑

𝑅𝐸2 + 𝑅𝑒𝑑
 

Normalised difference red edge 3 NDRE3 𝑅𝐸3 − 𝑅𝑒𝑑

𝑅𝐸3 + 𝑅𝑒𝑑
 

Normalised difference red edge 8a NDRE8a 𝑅𝐸8𝑎 − 𝑅𝑒𝑑

𝑅𝐸8𝑎 + 𝑅𝑒𝑑
 

Anthocyanin reflectance index ARI 1

𝐺𝑟𝑒𝑒𝑛
−

1

𝑅𝐸1
 

(Kobayashi, Tani 
et al. 2020) 

Red edge chlorophyll index RECl 𝑅𝐸3

𝑅𝐸1
− 1 

(Clevers and 
Gitelson 2013) 

Green chlorophyll index GCl 𝑅𝐸3

𝐺𝑟𝑒𝑒𝑛
− 1 

(Clevers and 
Gitelson 2013) 

Plant senescence reflective index PSRI 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝐸1
 

(Guerini Filho, 
Kuplich et al. 
2020) 
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Vegetation Index Abbreviation Formula Reference 

Browning reflective index BRI 1
𝐺𝑟𝑒𝑒𝑛

−
1

𝑅𝐸1
𝑁𝐼𝑅

 

(Kobayashi, Tani 
et al. 2020) 

6.2.5. Statistical analysis and machine learning 

This study utilised an artificial neural network (ANN) to predict aboveground biomass using a 

Sentinel 2 multispectral dataset. The ANN is a machine learning algorithm that has been based 

on the computational mechanisms of the human brain (Mas and Flores 2008). ANNs can be 

trained to recognise patterns, perform complex computations and even develop self-organising 

abilities (Mas and Flores 2008). ANNs are typically comprised of multiple layers (Figure 6.3): an 

input, output and one or more hidden layers (Yang, Feng et al. 2018). A greater number of layers 

is associated with a greater complexity of the model (Yang, Feng et al. 2018). In terms of remote 

sensing applications, ANNs have been utilised extensively and have proven to provide more 

reliable results as compared to conventional statistical methods (Mas and Flores 2008). In terms 

of aboveground biomass studies, Deb, Singh et al. (2017) and Yang, Feng et al. (2018) both used 

ANNs to predict aboveground grass biomass. 

 

Figure 6.3: The general architecture of an ANN  

 

Meanwhile, CNNs are an advancement to typical ANNs and have been specifically developed for 

analysing visual imagery (Pires de Lima and Marfurt 2020). CNNs have increasingly become 

useful and powerful tools in the remote sensing field, especially with image classification (Pires 
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de Lima and Marfurt 2020). Unlike ANNs that use weights or neurons to “learn” the data, CNNs 

use multiple layers that are casted on images to analyse them (Pires de Lima and Marfurt 2020). 

ANNs are more suited to concrete datasets, whereas CNNs are more suited for visual datasets. 

CNNs also provide a more automated approach to deep learning as it is able to detect important 

patterns and features in images with minimal human supervision (Ma, Li et al. 2019). Ma, Li et al. 

(2019) successfully utilised a deep CNN to estimate aboveground biomass for wheat  

(Figure 6.4).   

 

Figure 6.4: The general architecture of a CNN  

 

An ANN and CNN were run to determine the relationship between VIs and spectral data with 

aboveground biomass. By manually changing the number of nodes in the hidden layer, the model 

successfully determined the relationship between the variables. Table 6.3 lists the parameters 

used to train the different models.  

 

Table 6.3: Hyper-parameters used to train the ANN and CNN models. 

Model Hyper-parameters Value 

ANN Number of hidden layers 4 
Number of epochs 50 
Learning rate 0.001 

  

CNN Kernel number 32, 64,128, 256, 512 
Size 1*2 
Stride 2 
Number of epochs 30 
Learning rate 0.001 
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The models were run a maximum of five times with random initial weights. Model performance 

was analysed using the coefficient of determination (R2), root mean square error (RMSE) and 

RMSE% assessments. The coefficient of determination is a statistical measure of the accuracy 

of a regression by comparing actual versus predicted data points (Schreiber, Atkinson Amorim et 

al. 2022). The value of R2 ranges from 0 to 1 with a higher value insinuating a higher accuracy 

(Schreiber, Atkinson Amorim et al. 2022). The equation for R2 is found below (Li, Zhou et al. 

2021): 

𝑅2 = 1 −  
∑ (𝑦𝑗−𝑦)²𝑛

𝑗=1

∑ (𝑦𝑗−𝑌)²𝑛
𝑗=1

     Equation 6-1 

Where yj and y represents measured and estimated biomass values, respectively; Y is the 

average measured biomass over all samples and n denotes the number of samples (Li, Zhou et 

al. 2021). 

According to Shoko, Mutanga et al. (2018), the RMSE measures the difference between actual 

and predicted values, in this instance, actual biomass and predicted biomass values. The RMSE 

was calculated using the following formula as documented by Shoko, Mutanga et al. (2018):  

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)²𝑛

𝑖−1

𝑛
   Equation 6-2 

where measured value is the measured biomass in the field, predicted value is the predicted 

biomass by the model and i is the predictor variable included. The RMSE% was calculated using 

the following formula as expressed by Shoko, Mutanga et al. (2018):  

𝑅𝑀𝑆𝐸% =  
√

1

𝑛
∑ (𝑦𝑖−𝑌𝑖)²𝑛

1=𝑛

𝑦
     Equation 6-3 

Where n is the number of measured values, yi is the measured value, Yi is the estimated value 

and y is the average of the measured aboveground biomass (Shoko, Mutanga et al. 2018).  

Models yielding the highest R2 and lowest RMSE/RMSE% between predicted and measured 

levels of biomass, based on an independent test dataset (i.e. 30% of the dataset) were retained 

for predicting biomass levels. Using the ANN and CNN models with spectral data and VIs, an 

aboveground biomass distribution map was computed. A sensitivity analysis was also conducted 

to determine which variables were most important in model development for the ANN and CNN. 

All statistical analyses were conducted utilising R statistical software package version 3.1.3. 
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6.3. Results 

6.3.1. Descriptive Statistics 

Observed grass biomass (g/m2) during the dry season across 120 sample plots had an average 

of 47,82 g/m2 with a standard deviation of 23,38 g/m2. The highest biomass recorded was 123,8 

g/m2 whereas 8,2 g/m2 was the lowest (Table 6.4).   

Table 6.4: Descriptive statistics of the observed biomass (g/m2) over the dry season 

Period n Mean Std. Dev Min. Max. Range 

Dry 120 47.82 23.38 8.2 123.8 115.6 

6.3.2. Comparison of the performance of ANN and CNN  

Table 6.3 and Figure 6.5 show the training and validation process of both models with their set 

hyperparameters. The x-axis represents the number of epochs, and the y-axis represents the root 

mean square error in terms of biomass. An epoch is essentially one cycle of each of the forward- 

and back-propagation phases. The CNN model was more adept at learning as compared to the 

ANN, as the CNN required 30 epochs to minimise error whereas the ANN required 50 epochs to 

minimise error. The error remained more or less constant after the 30th epoch in the CNN and the 

50th epoch in the ANN. Determining a suitable number of epochs is essential to preventing the 

under or overfitting of models (Ali, Greifeneder et al. 2015, Ali, Cawkwell et al. 2016) (Figure 6.5).  

 

 

Figure 6.5: Number of epochs for each model. The arrows indicate that for the CNN and ANN 
models the number of epochs that gave the lowest error was 30 and 50, respectively. 
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In assessing the predictive performance of both the ANN and CNN machine learning algorithms 

in estimating aboveground biomass during the dry season, the ANN produced a R2 value of 0,75 

with a RMSE of 5,78 g/m2 and a RMSE% of 8,90 (Figure 6.6a). In comparison, the CNN produced 

a R2 value of 0,83 with a RMSE of 3,36 g/m2 and a RMSE% of 6,09 (Figure 6.6b).  

  

Figure 6.6: Scatterplots showing biomass over the dry season for a. ANN and b. CNN. 

 

Figure 6.7 illustrates the spatial distribution of aboveground grass biomass in the study area 

during the dry season, as predicted by both the ANN and CNN. It can be observed that the 

predictive map conjured by the CNN has slightly more accurate aboveground biomass 

representation as compared to the ANN, especially in the peripheral areas of the study site.  
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a. b.   

Figure 6.7: Biomass (g/m2) over the dry season for (a). ANN and (b). CNN 

 

In terms of a sensitivity analysis (Figure 6.8), whereby the importance of spectral bands and VIs 

are determined and ranked in relation to dry season biomass estimation for each model, the blue 

band (B02) from Sentinel 2 MSI was the most important band for the ANN, followed by the GCI 

and the GNDVI. In comparison, the GNDVI was the most important variable for estimating 

biomass for the CNN, followed closely by the GCI and the blue spectral band (B02) from Sentinel-

2. For both models, the GBNDVI was the least significant variable in biomass estimation. Only 

variables with an average impact of >0,1 were included in the models.   

(a) (b) 
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Figure 6.8: Ranking the importance of variables for developing the a. ANN and b. CNN models 
for biomass detection. 

 

6.4. Discussion 

This study has investigated the utilisation of two neural networks in predicting aboveground grass 

biomass and compared their respective performance in this regard. The advancement in machine 

learning has provided scientists with numerous opportunities to test their performance in real-

world applications, such as in remote sensing and vegetation monitoring (Ali, Greifeneder et al. 

2015). Comparing the accuracies of two different neural networks helps reveal the relationships 

between biomass and remote sensing variables (Dong, Du et al. 2020). To date, machine learning 

algorithms have proven to be much more complex and dynamic as compared to traditional 

statistical modelling, allowing for more complex modelling of biophysical parameters and more 

resounding findings and correlations (Das, Ghosh et al. 2022). This study specifically 

demonstrated the refinement in neural networks, as the contemporary convolutional neural 

network (R2=0,83) outperformed the conventional artificial neural network (R2=0,75) in 

aboveground grass biomass predictions. This is an indication of the onset of deep learning 

approaches in remote sensing applications (Zhu, Tuia et al. 2017). 

There have been numerous recent studies that have conducted a comparative analysis between 

different machine learning algorithms in remote sensing applications, particularly for vegetation 

monitoring. The ANN is one of the oldest machine-learning algorithms and has been used 

extensively for grassland biomass retrieval (Ali, Greifeneder et al. 2015). A study by Xie, Sha et 
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al. (2009) compared the performance of ANN to multiple linear regression (MLR) in estimating 

the aboveground biomass of grasslands in Mongolia. This study used Landsat ETM+ (NDVI, 

bands 1,3,4,5,7) data and results showed that the ANN (R2= 0.817, NRMSE= 42,36%) 

outperformed the multiple linear regression (R2= 0,591, NRMSE= 53,2%). Similarly, Yang, Feng 

et al. (2018) found that the ANN (R2= 0,75-0,85) outperforms MLR (R2=0,4-0,64) in estimating 

grass biomass. Their study utilised normalised difference vegetative index (NDVI), enhanced 

vegetation index (EVI), modified soil adjusted vegetation index (MSAVI), soil adjusted vegetation 

index (SAVI) and optimised soil adjusted vegetation index (OSAVI) derived from MODIS data. 

Xie, Sha et al. (2009) utilised a single date image whereas Yang, Feng et al. (2018) utilised a 

multi-temporal time series. This proved that machine learning techniques are indeed an 

improvement to typical regression analyses, even at different spatio-temporal scales (Ali, 

Greifeneder et al. 2015). 

Masenyama, Mutanga et al. (2022) have stated that the average R2 value for remote sensing-

grassland productivity studies ranges between 0,65 (65%) and 0,75 (75%). In comparison, the 

performance of both the ANN and CNN in this study is commendable with model accuracy of 75% 

for the ANN and 83% for the CNN. Furthermore, studies by Dong, Du et al. (2020) and Schreiber, 

Atkinson Amorim et al. (2022) found that ANNs were outperformed by CNNs in aboveground 

biomass estimation from remotely sensed data. Dong, Du et al. (2020) compared the performance 

of CNNs against three other machine learning algorithms, namely random forest, support vector 

regression and ANN, in estimating the aboveground biomass of bamboo. The Worldview-2 

platform was used in this study with both spectral bands and vegetation indices being used as 

input data. Overall, the CNN produced better results than the ANN with a R2 of 0,94 and RMSE 

of 23,1% whereas the ANN could only achieve a R2 of 0,86 and RMSE of 36,1%. The random 

forest and support vector regression obtained slightly better accuracy than the CNN, however, it 

must be noted that the CNN had limited input variables in this study, with only spectral bands 

being used as input data as compared to the other two algorithms that had spectral, VI and texture 

data (Dong, Du et al. 2020). Similarly, Schreiber, Atkinson Amorim et al. (2022) compared the 

performance of ANNs and CNNs in predicting aboveground biomass of wheat using UAV-based 

imagery (RGB imagery with 2,14 cm2 pixel size). Their findings show that the CNN reached a R2 

of 0,9065 whereas the ANN reached a R2 of 0,9056. In this case, the ANN was slightly 

outperformed by CNN. However, Schreiber, Atkinson Amorim et al. (2022) also acknowledge that 

the homogeneity of wheat cultivation could be a slight advantage to the ANN, whereas more 

heterogenous study environments could see the accuracy of ANNs diminish and the accuracy of 
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CNNs flourish. Furthermore, they also note that the use of hyperspectral data and vegetation 

indices could greatly improve the accuracy of CNNs, which was absent in their study.  

Kattenborn, Leitloff et al. (2021) state that since CNNs have been specialised for image analysis 

and processing, they are highly suitable for remote sensing applications. CNNs have proven to 

be extremely useful in extracting biophysical parameters of vegetation from remotely sensed data, 

such as species composition and biomass (Kattenborn, Leitloff et al. 2021). Deep learning 

approaches, which include CNNs, are gradually replacing shallow learning techniques such as 

ANNs, as they analyse, interpret and predict spatial data much more effectively (Zhu, Tuia et al. 

2017, Pires de Lima and Marfurt 2020, Kattenborn, Leitloff et al. 2021). There has been a steady 

influx of biomass estimation studies utilising CNNs and remotely sensed data in academic and 

research circles.  

Ma, Li et al. (2019) utilised a deep CNN in tandem with very high-resolution RGB digital imagery 

(spatial resolution= 5184 x 3456) to estimate the aboveground biomass of wheat. The CNN had 

a high coefficient of determination (R2= 0,808) and a low NRMSE (NRMSE= 24,95%) in predicting 

wheat biomass (Ma, Li et al. 2019). Karila, Alves Oliveira et al. (2022) utilised a drone with RGB 

and hyperspectral capabilities (pixel size= 1024 x 648, 36 bands in 500-900 nm range) to estimate 

grass sward quality and quantity. They compared the performance of multiple deep neural 

networks, a CNN included, to the random forest method. Overall, their findings show that the CNN 

model (NRMSE= 21%) fared better than the random forest model in estimating aboveground 

grass biomass, with the CNN being most consistent with hyperspectral data as compared to only 

RGB data. Varela, Zheng et al. (2022) predicted various key traits, one of them being 

aboveground biomass, of Miscanthus grass using UAV imagery (5 spectral bands – red, blue, 

green, red edge and near-infrared, spatial resolution= 1,4 cm) and two CNNs. The best R2 

achieved by the 2D CNN, which was multispectral input from a single image, was 0,59 with a 

RMSE of 180 g whereas the 3D CNN, which was multispectral and multi-temporal (imagery from 

different days), produced slightly higher R2 of 0,69 and a RMSE of 149 g.  

There have been numerous biomass estimation studies for grasslands using remote sensing and 

machine learning in a southern African context. However, none of these has attempted at utilising 

CNNs for biomass prediction (Masenyama, Mutanga et al. 2022). Ramoelo and Cho (2014) 

attempted to estimate dry season aboveground grass biomass using the random forest algorithm 

and by comparing Landsat 8 and RapidEye data. They only utilised band reflectance data to 
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estimate biomass, stating that VIs are not always plausible for biomass estimation during the dry 

season since there is a lack of “greenness” in vegetation (Ramoelo and Cho 2014). RapidEye 

yielded better results with random forest, with a R2 of 0,86, RMSE of 13,42 g/m2 and RRMSE of 

10,61% whereas Landsat 8 yielded a R2 of 0,81, RMSE of 15,79 g/m2 and RRMSE of 12,49%.    

Shoko, Mutanga et al. (2018) utilised the sparse partial least square regression (SPLSR) to 

estimate grass biomass using three different satellites: Sentinel 2 MSI, Landsat 8 OLI and 

WorldView 2 in the Drakensberg. They utilised seven spectral bands from Landsat 8, ten from 

Sentinel 2 and eight from WorldView 2 as well as various VIs. Their findings showed that 

WorldView 2 derived variables yielded the best predictive accuracies (R2 between 0,71 and 0,83; 

RMSE between 6,92% and 9,84%), followed by Sentinel 2 (R2 between 0,6 and 0,79; RMSE 

between 7,66% and 14,66%) and lastly Landsat 8 (R2 between 0,52 and 0,71; RMSE between 

9,07% and 19,88%). Vundla, Mutanga et al. (2020) assessed the aboveground biomass of 

grasslands in the Eastern Cape using Sentinel 2 MSI and the partial least squares regression 

(PLSR) algorithm. They utilised the visible, red-edge and shortwave infrared bands as well as 

NDVI and simple ratio (SR) as input data for the PLSR. Their results show that the PLSR 

performed well in estimating grass biomass, with a R2 of 0,83 and a RMSE of 19,11 g/m2.  

The sensitivity analysis for both models was conducted to determine which spectral bands and 

VIs were most important in estimating aboveground grass biomass. This is discerned by 

examining the correlation between aboveground biomass values and spectral/VI values (Li, Zhou 

et al. 2021). For both models, the vegetation indices and spectral bands proved to be relatively 

accurate proxies for estimating aboveground grass biomass, a finding that also concurs with 

Pang, Zhang et al. (2020). This contrasts the suggestions of Ramoelo and Cho (2014) that 

vegetation indices may not be suitable for dry season grass biomass estimation due to grass 

senescence, with only spectral data yielding better results during the dry season. For both the 

ANN and CNN models, five bands (blue, green, red, SWIR2, SWIR1), nine VIs (GNDVI, CGM, 

ARVI, NDVI, MSR, SAVI, TDVI, SR, GBNDVI) and six red edge VIs (GCI, ARI, NDRE8a, NDRE3, 

NDRE2, RECI) were considered important for model development. Other studies also showed 

that utilising both spectral data and VIs improved biomass predictions as opposed to using them 

independently (Shoko, Mutanga et al. 2018, Yang, Feng et al. 2018, Pang, Zhang et al. 2020, Li, 

Zhou et al. 2021). 
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By comparing the results of the sensitivity analysis in this study to other similar biomass studies, 

it is evident that direct comparisons cannot be established due to the diversity in platform and 

machine learning algorithms used. Shoko, Mutanga et al. (2018), using Sentinel 2 MSI and 

SPLSR, found that the SWIR1, SWIR2, green, red and red edge 1 were the most important sensor 

variables, whereas NDRE1 and NDVI were the most important VIs in predicting grass biomass. 

Parallels can be drawn between the spectral bands for this study and Shoko, Mutanga et al. 

(2018), however, this study provides substantially more VIs of significance. Vundla, Mutanga et 

al. (2020), using Sentinel 2 MSI and PLSR, discovered that simple ratio VIs had the highest 

importance whilst NDVI had the lowest importance in assessing grass biomass. Their findings on 

the simple ratio VIs contradict the findings in this study, with the simple ratio VI being of smaller 

importance in both the ANN and CNN models. However, NDVI was shown to have a reduced 

significance in both studies.   

NDVI, a widely used VI in remote sensing, was shown to have a moderate impact on biomass 

estimation in this study for both models. This concurs with the findings of Deb, Singh et al. (2017) 

who also found that other VIs produced better biomass estimates than NDVI when paired with 

neural networks. Ramoelo and Cho (2014) suggest that NDVI is susceptible to grass senescence 

during the dry season and hence will tend to underestimate biomass. This is due to NDVI 

essentially measuring vegetation “greenness”, which is primarily absent from grasses during the 

dry season (Ramoelo and Cho 2014). Deb, Singh et al. (2017) state that NDVI is often subjected 

to variations in atmospheric conditions, soil elements, plant phenology and external disturbances 

which hinder its efficacy in estimating biomass. The findings in this study also show a lesser 

impact of NDVI on biomass estimates as compared to other VIs.  

There are no known studies to date that have utilised Sentinel 2 data with CNNs to assess 

aboveground biomass. Hence, comparing sensitivity analysis results for the CNN is not plausible. 

Findings in this study come closest to findings by Li, Zhou et al. (2021) who predicted 

aboveground grass biomass using Sentinel 2 MSI in tandem with RF and XGBoost algorithms. 

They found that the GNDVI and GCI were the most important variables for developing the RF 

model. GNDVI and GCI were also highly impacting variables in this study for both the ANN and 

CNN models. According to Dusseux, Guyet et al. (2022), GNDVI has been well-documented and 

used in relation to vegetation biomass. GCI, and other red edge-based VIs, have also proven to 

be particularly useful in biomass studies due to their important relationship with chlorophyll 

content and nutrients present in plant cells (Vundla, Mutanga et al. 2020, Dusseux, Guyet et al. 
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2022). Ramoelo and Cho (2014) found that blue, green and red edge spectral data were important 

for predicting aboveground grass biomass during the dry season, albeit using RapidEye and RF. 

This study also shows the importance of blue and green spectra; however, shortwave infrared 

was deemed more significant in this study as compared to red edge spectra.   

In comparison to the abovementioned studies, the performance of both NNs in this study is 

relatively commendable. However, it must be acknowledged that all machine learning algorithms 

used in remote sensing studies are not comprehensive tools for classifying or predicting 

biophysical attributes (Dong, Du et al. 2020). They all have their benefits, strengths and limitations 

based on numerous factors such as sensor type, spatial resolution, temporal resolution and 

spectral resolution (Das, Ghosh et al. 2022). Dong, Du et al. (2020) state that both CNN and ANN 

are highly sensitive to the architecture and parameter settings and hence these aspects must be 

geared appropriately to avoid poor model performance. Model performance can either be too low, 

whereby the model’s predictive ability is poor, or too high, whereby the model begins to overfit 

the data (Kattenborn, Leitloff et al. 2021). Neural networks are typically known for their tendency 

to overfit data and hence preventative solutions must be implemented during data processing to 

mitigate this (Ali, Greifeneder et al. 2015).  

Furthermore, both types of neural networks used in this study require high computational power 

and are time-consuming (Dong, Du et al. 2020). Other machine learning techniques such as 

random forest are much more compatible with smaller sample sizes or input data as opposed to 

neural networks, and these factors must be accommodated (Ali, Greifeneder et al. 2015). It must 

also be noted that CNNs perform better with multi-temporal spatial data (3D CNNs) as compared 

to single-date imagery (2D CNNs) (Varela, Zheng et al. 2022). The utilisation of CNNs in remote 

sensing applications is still gaining momentum, and hence there is much need for future research 

to try and optimise the algorithm for vegetation remote sensing (Kattenborn, Leitloff et al. 2021). 

Much of the focus of CNNs in vegetation remote sensing has been on object identification and 

classification, however semantic segmentation applications, such as biomass and LAI 

predictions, must be explored further (Kattenborn, Leitloff et al. 2021). It is unlikely that CNNs will 

replace ANNs altogether in the remote sensing field as they both provide advantages and 

disadvantages, and the practicality of each is case-specific (Ali, Greifeneder et al. 2015). 

However, CNNs do have great potential for grassland biomass studies in future. 
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6.5. Conclusion 

This study compared the performance of two neural networks in estimating the aboveground 

biomass of grass, using Sentinel 2 space-borne spectral data and derived vegetation indices. 

Findings in this study suggest that the deep learning neural network, CNN, outperforms the 

traditional ANN. However, both algorithms performed satisfactorily in predicting grass biomass. 

This study can be considered pilot-scale research, particularly in a southern African context, as 

no known research has attempted to compare the performance of two different neural networks 

in grassland monitoring. Although each algorithm has pros and cons, with large training datasets 

and computational time being a common disadvantage of both, this pioneering research 

establishes a great potential for the utilisation of CNNs in remote sensing research in the future. 

Future research can improve upon this research by incorporating larger training datasets and 

utilising multi-temporal and higher-resolution data to enhance the performance of CNNs in 

biophysical remote sensing studies. The primary objective of this study was to determine which 

neural network would better predict grass biomass using open-access and freely available 

satellite data. The CNN model developed in this study can be considered an effective one for the 

accurate estimation of biomass in grassland monitoring and is evidence of the advancement in 

applied deep learning.  
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7. Predicting inter-seasonal grass biomass utilising satellite remote sensing in the 

Vulindlela area of the Umgeni catchment, KwaZulu-Natal 

M Vawda, R Lottering, K Peerbay, and O Mutanga 

7.1. Introduction  

Grasslands cover approximately 26% of the total land area with the majority of grasslands situated 

in tropical and sub-tropical developing countries around the world (Boval and Dixon 2012). 

Grasslands are defined by Mucina and Rutherford (2006) as grass-dominated biomes, with the 

majority of grasses being C4 plants in low to mid-altitudes and C3 plants being more prominent 

in higher altitudes. Woody species are controlled by frost, fire or grazing in grasslands which allow 

grasses to dominate (Mucina and Rutherford 2006). Grasslands are environmentally, socially and 

economically valuable biomes worldwide as they serve as water catchments, biodiversity 

reserves, carbon sinks, recreational areas and agricultural practices (Boval and Dixon 2012). The 

grassland biome is a major biome in South Africa and exists mostly in the eastern parts of the 

country from altitudes near sea level to around 2800 m above sea level (Mucina and Rutherford 

2006).  

Grasslands are used extensively in South Africa as a fodder source for livestock rearing in both 

commercial and rural contexts (Richardson, Hoffman et al. 2010). For livestock production, 

grasslands are more commonly termed rangelands (Richardson, Hoffman et al. 2010). South 

Africa consists primarily of two types of grasslands based on environmental factors such as 

precipitation and altitude: these are the sourveld and sweet veld grasslands (O’Connor, 

Martindale et al. 2011). The sourveld grasslands have higher fibre content and tend to withdraw 

nutrients from the leaves during winter or dry periods whereas the sweetveld grasses have lower 

fibre content and maintain a consistent conglomerate of nutrients during winter or dry periods 

(Ellery, Scholes et al. 1995). A significant portion of grasslands in South Africa is intensively 

managed for optimal foraging efficiency in livestock production, which in turn ensures that 

livestock remains in peak condition to maintain productivity (O’Connor, Martindale et al. 2011).   

The livestock and wildlife sectors in South Africa are heavily dependent on the grassland biome 

for maintaining productivity and functionality (Palmer, Short et al. 2010). Livestock production is 

essential for meeting the demand for high-quality meat and dairy in South Africa (O’Connor, 

Martindale et al. 2011). However, livestock is not only economically important but socially 
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important as well, as many rural communities depend on livestock for a sustainable livelihood 

(Palmer, Short et al. 2010, Richardson, Hoffman et al. 2010). This is particularly so in a South 

African context whereby indigenous peoples depend heavily on livestock for food, income, social 

status and overall well-being (Rasch, Heckelei et al. 2016). Grasslands are a cheap source of 

stock feed for many rural communities in which natural disasters and socio-economic challenges 

are prevalent (Sibanda, Mutanga et al. 2017). Hence, rangelands must be managed efficiently to 

ensure that livestock production remains viable and beneficial.  

For grazers like livestock, biomass is the main indicator of the quantity of fodder available to 

livestock for consumption (Ramoelo and Cho 2014). Biomass varies throughout the year based 

on seasonal fluctuations: the wet season in the summer months and the dry season in the winter 

months (Ramoelo and Cho 2014). Livestock is often limited by fodder availability during the dry 

season. However, in the KZN sourveld grasslands, livestock may be limited by quantity and 

quality during the dry season (Ramoelo, Cho et al. 2015). Rust and Rust (2013) emphasise that 

climate change poses a significant threat to rangelands and livestock production as increased 

variability in climatic conditions provides rangeland managers with a stern challenge to predict 

future fodder availability. Other threats to grassland productivity include infrastructural 

development, crop farming and overgrazing (Sibanda, Mutanga et al. 2017). On the contrary, 

O'Mara (2012) suggests that grasslands may play a significant role in food security and carbon 

sequestration in the future, despite the many threats. Therefore, the prediction of fluxes in 

seasonal fodder biomass is essential to inform planning and management strategies in 

grasslands (Ramoelo and Cho 2014).  

The technological advancements in remote sensing enable scientists to successfully predict and 

estimate biomass in both natural and agricultural contexts (Ramoelo and Cho 2014). Remote 

sensing allows managers to monitor the quantity and quality of fodder throughout the year to 

inform decision-making and maintain rangeland productivity (Ramoelo, Cho et al. 2015). 

Ramoelo, Cho et al. (2015) state that conventional methods of predicting biomass are time-

consuming and energy intensive. Mutanga, Dube et al. (2016) have documented how remote 

sensing has been applied to vegetation monitoring in South Africa with readily available and easily 

accessible satellite data. Remote sensing, also termed earth observation, has been used 

extensively to facilitate biomass monitoring at various spatio-temporal scales with satisfactory 

results of accuracy and precision (Sibanda, Mutanga et al. 2017). However, earth observation is 

a complex process and often produces varying degrees of success based on the different 
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methodologies used as well as the diverse biophysical and environmental traits in vegetation 

(Sibanda, Mutanga et al. 2017). 

The number of biomass estimation studies using remote sensing data is ever-growing. However, 

such studies are still limited in data-scarce countries such as those in southern Africa (Sibanda, 

Mutanga et al. 2017). The majority of historical biomass studies have focused on forests and have 

used Landsat data due to it being freely available (Samimi and Kraus 2004, Sibanda, Mutanga et 

al. 2017). However, Landsat data has its limitations with restricted spatial and radiometric 

capabilities (Shoko, Mutanga et al. 2018). Recent studies have gradually progressed to more 

high-resolution data, such as Sentinel 2 (Shoko, Mutanga et al. 2018), WorldView 2 (Shoko, 

Mutanga et al. 2018) and WorldView 3 (Sibanda, Mutanga et al. 2017). These satellites provide 

higher spatial and spectral resolution with faster revisit times and hence allow for much more 

refined biomass monitoring and estimation studies (Shoko, Mutanga et al. 2018).  

Furthermore, the complexity and multi-dimensionality of remote sensing data have proved to be 

a challenge in terms of data processing and analysis, especially when using traditional statistical 

methods (Ali, Greifeneder et al. 2015). Scientists have successfully applied the use of machine 

learning to remote sensing studies over the years for the classification, object identification or 

prediction of biophysical variables (Mas and Flores 2008). However, the ongoing improvement 

and refinement of machine learning techniques have resulted in numerous types of algorithms 

that can be applied to remote sensing (Ali, Greifeneder et al. 2015). Currently, there is a growing 

shift towards deep learning approaches, which have the potential to yield much more accurate 

results in remote sensing studies (Zhu, Tuia et al. 2017). One such example of a deep learning 

technique is convolutional neural networks (CNNs) which have been specifically geared for 

imagery (Kattenborn, Leitloff et al. 2021). The utility of CNNs for vegetation biomass has been 

investigated before by Ma, Li et al. (2019), Dong, Du et al. (2020) and Varela, Zheng et al. (2022). 

However, the practicality of CNNs for assessing aboveground grass biomass has yet to be 

determined.  

The advancement in multispectral scanners such as the introduction of Sentinel-2 provides great 

opportunities to build on and improve biomass studies in southern Africa (Sibanda, Mutanga et 

al. 2017). There is a lack of studies with regard to inter-seasonal changes in grasslands 

(Masenyama, Mutanga et al. 2022), particularly at larger spatial scales in both South Africa 

(Dingaan and Tsubo 2019) and Africa (Hunter, Mitchard et al. 2020). In this regard, this study 
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aims to fulfilling this research gap in the academic literature as well as in an applicational sense, 

that can assist rangeland managers and rural communities in making more informed decisions. 

This study sought to predict inter-seasonal variations of grass biomass in using Sentinel 2 MSI 

remotely sensed data in conjunction with convolutional neural networks (CNNs). It also explored 

potential measures that can be used to improve grassland management. 

 

7.2. Methods 

7.2.1. Study Area 

Vulindlela is located within the UMgungundlovu district and is considered a part of the greater 

Umgeni river catchment in the KwaZulu-Natal province (Figure 7.1). Sibanda, Onisimo et al. 

(2021) describe the local climate as sub-tropical, typical of cool, dry winters and mild, wet 

summers. The area receives a mean annual rainfall of approximately 980 mm and a median 

annual rainfall of around 850 mm. Recorded annual maximum and minimum temperatures are 

22°C and 10°C respectively (Sibanda, Onisimo et al. 2021). Soil factors within the area are 

shallow with moderate to poor drainage (Sibanda, Onisimo et al. 2021). Climatic factors such as 

temperature and precipitation are the main driving factors for vegetation in this area (Sibanda, 

Onisimo et al. 2021).  

Fynn, Morris et al. (2011) state that grasslands within the study area are categorised as mesic 

grasslands and are usually dominated by a few species, depending on grassland conditions. The 

grasslands were initially dominated by Themeda triandra grass (Royimani, Mutanga et al. 2022). 

However, due to anthropogenic transformation, the grasslands are now characterised by species 

such as Aristida junciformis, Panicum maximum and Paspalum urvillei, amongst others 

(Royimani, Mutanga et al. 2022). The study area experiences the dry season in June/July 

(Masemola, Cho et al. 2020) whereas the wet season usually stretches from October to March 

(Roffe, Fitchett et al. 2020) (Figure 7.1). Local communities utilise the communal grasslands as 

rangelands for their livestock as well as for cultural purposes. Livestock is a significant source of 

income for the locals and hence rangeland productivity affects them directly.  
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7.2.2. Sentinel 2 MSI satellite imagery 

Two Sentinel-2 Multi-Spectral Instrument (MSI) seasonal scenes were freely acquired from Land 

Viewer (https://eos.com/products/landviewer/). The images were downloaded on 21 October 

2021 and 14 April 2022 respectively. Both images were downloaded as cloud-free Sentinel 2B 

products which are orthorectified and atmospherically corrected products that are pre-processed 

in the Sentinel Application Platform (SNAP) using the Sen2Cor algorithm (Main-Knorn, Pflug et 

al. 2017). The dry season image was captured on 22 June 2021 whereas the wet season image 

was captured on 29 March 2022. The image acquisition dates, therefore, align with the field data 

collection periods. Sentinel-2 MSI acquires 12-bit images with a swath width of 290 km, a revisit 

time of 5-19 days and spatial resolutions ranging from 10 to 60 m. Sentinel-2 MSI has been highly 

recommended for grassland monitoring mainly due to its extensive coverage, high spatial and 

temporal resolutions and its ability to capture data in the Red Edge section of the electromagnetic 

spectrum (Royimani, Mutanga et al. 2022).  

 

7.2.3. Field data collection and measurements 

Dry season data collection was conducted between 21 June 2021 and 23 June 2021. Wet season 

data collection was conducted between 28 March 2022 and 1 April 2022. The sampling strategy 

remained uniform between the two seasons. In each data collection period, a total of 120 plots of 

10 m x 10 m in size at a distance of 100 m apart were established using the purposive sampling 

technique (Royimani, Mutanga et al. 2022). Within each plot, a GPS reading was recorded using 

a Trimble GPS which outputs coordinates at a sub-metre level. Within each plot, two sub-plots of 

1 m x 1 m in size were sampled for aboveground biomass, with the mean dry biomass being 

recorded for each plot (Ma, Li et al. 2019). Ma, Li et al. (2019) state that 1 m x 1 m quadrats are 

suitable for grasslands that are heterogenous, such as natural grasslands. Grass clippings were 

initially weighed using a calibrated scale and wet mass was recorded. The samples were then 

oven-dried for 48 hours at 70°C and were thereafter reweighed to determine dry mass.   

https://eos.com/products/landviewer/
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Figure 7.1: Images of the study area (a) during the wet season (b) in the context of grazing, (c 
and d). during the dry season (March 2022). 

 

7.2.4. Sentinel 2 spectral bands and variables 

Sentinel 2 MSI provides spectral data in 13 bands that range from visible to shortwave infrared. 

Blue, green, red and NIR have a spatial resolution of 10 m, whereas Red Edge and SWIR bands 

have a spatial resolution of 20 m. Coastal aerosol, SWIR Cirrus and water vapour have a spatial 

resolution of 60 m, however, these were excluded from this study as they are mainly used for 

atmospheric monitoring (Shoko, Mutanga et al. 2018).  

Numerous vegetation indices (VIs) were computed from the Sentinel 2 spectral data. All VIs were 

calculated in ArcGIS 10.4 (www.esri.com). A detailed description of all VIs and their associated 

formulas is given in the table below (Table 7.1). 

 

a) b) 

c) d) 

http://www.esri.com/


128 

 

Table 7.1: Vegetation indices used in this study derived from Sentinel 2 spectral data. 

Vegetation Index Abbreviation Formula Reference 

 Broadband VIs   

Enhanced 

Vegetation Index 

EVI 
2.5(

𝑁𝐼𝑅 − 𝑅

1 + 𝑁𝐼𝑅 + 6𝑅 − 7.5 × 𝐵
) 

 (Huete, Didan et 

al. 2002) 

Soil-adjusted 

vegetation index 

SAVI (𝑁𝐼𝑅 − 𝑅) × (1 + 𝐿)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
 

 (Huete 1988) 

Normalised 

difference vegetation 

index 

NDVI (𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

(Huete 1988) 

Renormalised 

difference vegetation 

index 

RDVI (𝑁𝐼𝑅 − 𝑅)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 + 𝑅)
 

(Roujean and 

Breon 1995) 

Simple ratio SR 𝑁𝐼𝑅

𝑅
 

(Chen 1996) 

Modified simple ratio MSR (𝑁𝐼𝑅 ÷ 𝑅 − 1)

𝑆𝑞𝑟𝑡 (𝑁𝐼𝑅 ÷ 𝑅) + 1
 

(Chen 1996) 

Green normalised 

difference vegetation 

index 

GNDVI (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 

(Fernández-

Manso, 

Fernández-Manso 

et al. 2016) 

Green-blue 

normalised 

difference vegetation 

index 

GBNDVI 𝑁𝐼𝑅 − (𝐺 + 𝐵)

𝑁𝐼𝑅 + (𝐺 + 𝐵)
 

(Santoso, 

Gunawan et al. 

2011) 

Chlorophyll green 

index 

CGM 𝑁𝐼𝑅

𝐺
− 1 

(Gitelson and 

Merzlyak 1997) 

Red-green ratio RGR 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

(Gamon and 

Surfus 1999) 

Atmospherically 

resistance 

vegetation index 

ARVI (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐵𝑙𝑢𝑒)
 

(Kaufman and 

Tanre 1996) 
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Vegetation Index Abbreviation Formula Reference 

Transformed 

difference vegetation 

index 

TDVI 

√0.5 +
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(Bannari, Asalhi et 

al. 2002) 

Difference 

vegetation index 

DVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (Tucker 1979) 

 Red edge VIs   

Red edge 1 NDVI NDVIRE1 (𝑁𝐼𝑅 − 𝑅𝐸1)

(𝑁𝐼𝑅 + 𝑅𝐸1)
 

 

 

 

 

 

 

(Shoko, Mutanga 

et al. 2018) 

Red edge 2 NDVI NDVIRE2 (𝑁𝐼𝑅 − 𝑅𝐸2)

(𝑁𝐼𝑅 + 𝑅𝐸2)
 

Red edge 3 NDVI NDVIRE3 (𝑁𝐼𝑅 − 𝑅𝐸3)

(𝑁𝐼𝑅 + 𝑅𝐸3)
 

Red edge 8a NDVI NDVIRE8a (𝑁𝐼𝑅 − 𝑅𝐸8𝑎)

(𝑁𝐼𝑅 + 𝑅𝐸8𝑎)
 

Red edge 1 SR SRRE1 𝑁𝐼𝑅

𝑅𝐸1
 

Red edge 2 SR SRRE2 𝑁𝐼𝑅

𝑅𝐸2
 

Red edge 3 SR SRRE3 𝑁𝐼𝑅

𝑅𝐸3
 

Red edge 8a SR SRRE8a 𝑁𝐼𝑅

𝑅𝐸8𝑎
 

Normalised 

difference red edge 

1 

NDRE1 𝑅𝐸1 − 𝑅𝑒𝑑

𝑅𝐸1 + 𝑅𝑒𝑑
 

 

 

 

(Guerini Filho, 

Kuplich et al. 2020) 

Normalised 

difference red edge 

2 

NDRE2 𝑅𝐸2 − 𝑅𝑒𝑑

𝑅𝐸2 + 𝑅𝑒𝑑
 

Normalised 

difference red edge 

3 

NDRE3 𝑅𝐸3 − 𝑅𝑒𝑑

𝑅𝐸3 + 𝑅𝑒𝑑
 

Normalised 

difference red edge 

8a 

NDRE8a 𝑅𝐸8𝑎 − 𝑅𝑒𝑑

𝑅𝐸8𝑎 + 𝑅𝑒𝑑
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Vegetation Index Abbreviation Formula Reference 

Anthocyanin 

reflectance index 

ARI 1

𝐺𝑟𝑒𝑒𝑛
−

1

𝑅𝐸1
 

(Kobayashi, Tani 

et al. 2020) 

Red edge 

chlorophyll index 

RECl 𝑅𝐸3

𝑅𝐸1
− 1 

(Clevers and 

Gitelson 2013) 

Green chlorophyll 

index 

GCl 𝑅𝐸3

𝐺𝑟𝑒𝑒𝑛
− 1 

(Clevers and 

Gitelson 2013) 

Plant senescence 

reflective index 

PSRI 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒

𝑅𝐸1
 

(Guerini Filho, 

Kuplich et al. 2020) 

Browning reflective 

index 

BRI 1
𝐺𝑟𝑒𝑒𝑛

−
1

𝑅𝐸1
𝑁𝐼𝑅

 

(Kobayashi, Tani 

et al. 2020) 

 

7.2.5. Statistical analysis and machine learning 

Convolutional Neural Networks are an emerging class of machine learning algorithms that have 

been used to interpret geospatial information in primarily two ways: object detection and semantic 

segmentation (Brodrick, Davies et al. 2019). Object detection is characterised as the identification 

of key components in an image and semantic segmentation is the classification of each pixel 

individually in an image (Brodrick, Davies et al. 2019). CNNs are a subset of deep learning models 

and are viewed as an advancement to typical ANNs (Brodrick, Davies et al. 2019). In the 

application of remote sensing for vegetation monitoring, input data in the form of spectral indices 

and texture metrics are the cornerstone of modelling (Kattenborn, Leitloff et al. 2021). However, 

these predictors are endless and it is difficult to define the most appropriate predictors for 

vegetation analysis as they are influenced by the biochemical and structural properties of plants 

as well as other environmental factors (Kattenborn, Leitloff et al. 2021). With deep learning, the 

CNN has the ability to learn and decipher which input variables are the best for analysis based 

on learning spatial features present in the data (Kattenborn, Leitloff et al. 2021).  

CNNs are made up of neurons that are organised in layers, with three main layers: input, hidden 

and output layers (Kattenborn, Leitloff et al. 2021). Neurons within the same layer and between 

different layers are connected by weights and biases (Kattenborn, Leitloff et al. 2021). CNNs 

contain at least one convolutional layer within the hidden layers. These convolutional layers 
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exploit patterns in the data using filters by convolving, which is the sliding of the filter over the 

layer and calculating the dot-product of the filter and layer values (Kattenborn, Leitloff et al. 2021). 

The product of convolving is called a feature map. The feature maps are simplified in a pooling 

layer which assists in data reduction, simpler model parameters, lower computational load and a 

reduction in overfitting (Kattenborn, Leitloff et al. 2021). Biomass prediction would be performed 

using a semantic segmentation variation of a CNN. Encoding layers within the convolutional layer 

cluster and aggregate information from the entire dataset. Decoding layers follow encoding layers, 

and these are responsible for increasing spatial resolution and decreasing convolution depth. In 

simple terms, this allows the CNN to make pixel-by-pixel predictions at the same spatial resolution 

as the input data. This would ensure that model predictions and ground truthing data can be 

compared directly (Brodrick, Davies et al. 2019). A typical structure of a CNN, known as CNN 

architecture, is depicted below (Figure 7.2):  

 

Figure 7.2: A general structure of a CNN. 

 

Dong, Du et al. (2020) give the formula of convolution as:  

𝑚𝑎𝑝𝑙,𝑗
𝑥,𝑦

= 𝑓 [∑ ∑ ∑ 𝑘𝑙,𝑗.𝑚
ℎ,𝑤𝑊𝑖−1

𝑤=0 𝑚𝑎𝑝(𝑙−1),𝑚

(𝑥+ℎ),(𝑦+𝑤)
+ 𝑏𝑙,𝑗

𝐻𝑖−1
ℎ=0𝑚 ]  Equation 7-1 

where 𝑘𝑙,𝑗.𝑚
ℎ,𝑤 represents the value at the position (h,w) of the kernel connected to the mth feature 

map in the (l-1)th layer, Hi and Wi are the height and width of the kernel, bl,j is the bias of the jth 

feature map in the lth layer and f is the activation function (Dong, Du et al. 2020). The CNN model 

was constructed and run using R statistical software version 3.1.3. The hyper-parameters of the 

CNN in this study can be found below in Table 7.2:  
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Table 7.2: Hyper-parameters used to train the CNN model. 

Model Hyper-parameters Value 

CNN-Dry Kernel number 32, 64,128, 256, 512 

Size 1*2 

Stride 2 

Number of epochs 30 

Learning rate 0.001 

  

CNN-Wet Kernel number 32, 64,128, 256, 512 

Size 1*2 

Stride 2 

Number of epochs 30 

Learning rate 0.001 

  

 

7.2.6. Accuracy Assessment 

Accuracy assessments are essential for understanding model performance and determining 

model practicality. Three standardised error metrics were used to asses model performance: 

coefficient of determination (R2), root mean square error (RMSE) and root mean square error 

percentage (RMSE%). Schreiber, Atkinson Amorim et al. (2022) define R2 as a statistical measure 

of accuracy by comparing observed versus predicted data points. R2 values tend to range from 0 

to 1 with a higher value translating into higher model accuracy and vice-versa. The equation for 

R2 is found below (Li, Zhou et al. 2021):  

𝑅2 = 1 −  
∑ (𝑦𝑗−𝑦)²𝑛

𝑗=1

∑ (𝑦𝑗−𝑌)²𝑛
𝑗=1

   Equation 7-2 

Where yj represents measured biomass, y is estimated biomass, Y is mean biomass across all 

samples and n is the sample number (Li, Zhou et al. 2021).  
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The RMSE measures the difference between actual and predicted values and is calculated by:  

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)²𝑛

𝑖−1

𝑛
  Equation 7-3 

as documented by Shoko, Mutanga et al. (2018). The measured value and predicted value is the 

actual biomass in the field and the predicted biomass, respectively.  

The RMSE% provides a magnitude of error in relation to actual values and can be expressed by 

the following formula (Shoko, Mutanga et al. 2018): 

𝑅𝑀𝑆𝐸% =  
√

1

𝑛
∑ (𝑦𝑖−𝑌𝑖)²𝑛

1=𝑛

𝑦
    Equation 7-4 

Where n is the number of samples, yi and Yi are measured and predicted values, respectively; 

and y is the average of the measured values. 

Following the general training/test rule, 70% of the dataset was used to train the CNN model 

whereas 30% was used to test the model. Models with the highest R2 and lowest RMSE/RMSE% 

were retained for predicting aboveground biomass in both seasons. Using Sentinel 2 spectral 

bands and derived VIs as input data, predictive biomass distribution maps were constructed for 

both seasons. A sensitivity analysis was also run to determine which input variables were the 

most significant in developing the CNN model.  

 

7.3. Results 

7.3.1. Descriptive Statistics 

The mean aboveground biomass recorded during the dry season was 47,82 g/m2 with a standard 

deviation of 23,38 g/m2. The range observed during the same period was 115,6 g/m2 with 123,8 

g/m2 and 8,2 g/m2 being the highest and lowest biomass values recorded, respectively. 

Aboveground biomass recorded during the wet season differed substantially, with average 

biomass of 195,67 g/m2 and a standard deviation of 72,04 g/m2. The wet season had a range of 

403,5 g/m2 with 477,3 g/m2 and 73,8 g/m2 being the highest and lowest biomass values recorded, 

respectively (Table 7.3). 
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Table 7.3: Descriptive statistics of the observed biomass (g/m2) over the wet and dry season 

Period  n Mean Std. Dev Min. Max. Range 

Dry  120 47.82 23.38 8.2 123.8 115.6 

Wet  120 195.67 72.04 73.8 477.3 403.5 

 

7.3.2. CNN Training History 

The CNN models for both seasons were run with a maximum of 140 epochs, however, this was 

stopped after 30 epochs as this was when model performance was optimal (Figure 7.3). An epoch 

can be defined as one complete cycle of the forward and back-propagation phases. The loss 

function for the models was RMSE.  

 

 

Figure 7.3: Number of epochs for each model. The arrows indicate that for the CNN-Dry and 
CNN-Wet models the number of epochs that gave the lowest error was both 30. 
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7.3.3. Dry season vs Wet season   

The CNN algorithm used to predict aboveground biomass produced an R2 of 0,83 with a RMSE 

of 3,36 g/m2 and an RMSE% of 6,09 in the dry season (Figure 7.4(a)). Comparatively, the CNN 

produced a R2 of 0,85, RMSE of 2,41 g/m2 and RMSE% of 3,71 in the wet season (Figure 7.4(b)).   

a.  b.  

Figure 7.4: Scatterplots showing observed and predicted biomass over the a. dry season and b. 
wet season using CNN. 

 

Figure 7.5 illustrates the spatial distribution of aboveground grass biomass during the dry and wet 

seasons. The difference in aboveground grass biomass can be observed between the two 

seasons with higher biomass indicated in the wet season as compared to the dry season. 

Although higher biomass was predicted in some areas of the study site during the dry season, 

these areas of high biomass are concentrated in certain parts of the study area. Overall, the wet 

season depicts higher biomass over a greater spatial scale, with biomass being more evenly 

distributed across the study area.  
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Figure 7.5: Predicted biomass (g/m2) over the a. dry and b. wet season using CNN. 

 

7.3.4. Sensitivity Analysis 

Deciphering which input variables are the most significant for model development is especially 

critical in ensuring respectable model performance. Figure 7.6 depicts which input variables, from 

Sentinel 2 spectral bands and derived VIs, were most important for model development in both 

seasons. It must be noted that only variables with an average impact of >0.1 were included in the 

model. The top three variables for the dry season included the GNDVI, GCI and the blue band 

whereas GCI, GNDVI and blue band were the three most important for the wet season. 

(a) (b) 
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Figure 7.6: Ranking the importance of variables for developing the CNN model for biomass 
detection in the (a) dry season and (b) wet season. 

 

7.4. Discussion  

This study has estimated and compared aboveground grass biomass between the dry season 

(April-July) and the wet season (November-March) in the greater UMngeni catchment. Overall, 

recorded grass biomass increased from ±48 g/m2 in the dry season to ±196 g/m2 in the wet 

season. The predicted biomass maps also depict a significant increase in aboveground biomass 

across the study area during the wet season, whereas biomass is primarily concentrated in small 

patches across the study area during the dry season.  

Grasslands are driven by external factors such as precipitation, temperature and fire 

(Masenyama, Mutanga et al. 2022). These factors maintain the ecological functionality of the 

grassland, however, these factors also fluctuate spatiotemporally (Shoko, Mutanga et al. 2018). 

It has been widely agreed that grassland productivity is directly and significantly related to 

changes in both rainfall and temperature (Shoko, Mutanga et al. 2018, Dingaan and Tsubo 2019, 

Magandana, Hassen et al. 2020) . Both rainfall and temperature variables fluctuate based on 

seasonal variations and hence play a significant role in influencing grassland productivity, 

particularly aboveground biomass (Magandana, Hassen et al. 2020). Van den Hoof, Verstraete 

et al. (2018) found that there is a statistically significant relationship between rainfall variability 

and grassland productivity. Furthermore, Magandana, Hassen et al. (2020) found statistically 
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significant relationships between changes in rainfall and temperature with changes in 

aboveground grass biomass.  

The findings in this study seem to concur with both Van den Hoof, Verstraete et al. (2018) and 

Magandana, Hassen et al. (2020), albeit this study originates from a remote sensing background. 

Average total rainfall from April 2021 to July 2021 had a downward trend with an average total 

rainfall of approximately 16,5 mm for the dry period (Figure 7.7(a)). Average rainfall across the 

wet season, from November 2021 to March 2021, had an overall increasing trend with average 

total rainfall for the wet period estimated to be 96,84 mm (Figure 7.7(b)). This indicates an almost 

six-fold increase in rainfall received in the wet season as opposed to the dry season. Furthermore, 

temperature data from the dry and wet seasons appear to follow the same trend, with average 

daily maximum temperature decreasing gradually during the dry months and increasing steeply 

during the wet months (Figure 7.8(a) and Figure 7.8(b)). Average daily maximum temperature 

across the dry and wet period was approximately 20,44°C and 27.42°C, respectively. Therefore, 

the increase in aboveground grass biomass can be linked to an increase in both rainfall and 

temperature, as also suggested by Van den Hoof, Verstraete et al. (2018) and Magandana, 

Hassen et al. (2020).  

 

Figure 7.7: Total monthly rainfall in Vulindlela during the (a) dry season and (b) wet season (Data 
provided by South African Weather Services) 
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Figure 7.8: Average maximum daily temperature in Vulindlela over the a. dry season and b. wet 
season (Data provided by South African Weather Services) 

 

Although rainfall and temperature are the major drivers of grassland productivity, the influence of 

other biophysical factors such as soil and rainfall type cannot be omitted (Van den Hoof, 

Verstraete et al. 2018). The type of rainfall received is as important as the quantity of rainfall 

received over time (Roffe, Fitchett et al. 2019). Gradual rainfall events allow for better water 

absorption into the soil column as opposed to erratic rainfall events, in which most of the rainfall 

is lost as surface run-off (Van den Hoof, Verstraete et al. 2018, Roffe, Fitchett et al. 2019). The 

edaphic factors of the grassland also play a significant role in productivity, particularly soil pH, 

texture and organic matter content (Van den Hoof, Verstraete et al. 2018). An increase in 

precipitation brings about an increase in plant production, which in turn increases soil organic 

matter (Van den Hoof, Verstraete et al. 2018). Soil type is also influential in plant productivity, with 

fine clay-like soils being more suitable for optimal production than coarse sandy soils (Van den 

Hoof, Verstraete et al. 2018). This is due to clay-like soils being more adept at nutrient exchange, 

holding organic content, better bulk density and higher soil organic carbon than sandy soils (Van 

den Hoof, Verstraete et al. 2018).  

The study area consists mainly of two soil types, Acrisols and Ferralsols, as deduced from Fey 

(2010). Acrisols are defined as brownish-reddish soils with fine granular structure and sandy-

loamy texture (Podwojewski, Janeau et al. 2011). Acrisols are generally unproductive soils that 

lack sufficient plant nutrients, have a high pH and usually form a substrate for grasslands or 

savannah (Podwojewski, Janeau et al. 2011). Acrisols are also highly porous soils and are 

especially susceptible to soil erosion (Podwojewski, Janeau et al. 2011). Ferralsols are 

characterised by reddish-yellow soils that have a high clay content (Mukangango, Nduwamungu 

et al. 2020). Ferralsols are structurally sound soils with good infiltration and drainage. However, 
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they are chemically poor soils with the majority of plant nutrients being stored in the biomass and 

can only be recycled back into the soil column by moribund (Mukangango, Nduwamungu et al. 

2020). Acrisols and Ferralsols are similar and can often be found together, with both soils being 

susceptible to dry periods and drought (Mukangango, Nduwamungu et al. 2020). Since both soils 

are well drained and are poor at water retention, they cannot provide enough moisture for grasses 

and vegetation, particularly on slopes (Mukangango, Nduwamungu et al. 2020). The lack of 

precipitation during the dry season can possibly account for changes in edaphic factors, which 

inherently affects biomass availability.  

Grasslands are naturally maintained by grazing and fire, two non-climatic factors that also 

influence plant productivity (Koerner and Collins 2014). The grassland in this study is utilised as 

a communal rangeland by the locals for their livestock (Cho, Onisimo et al. 2021). However, the 

lack of a formal rangeland management plan has resulted in adverse conditions within the 

grassland, and this mainly due to fire and overgrazing (Cho, Onisimo et al. 2021). Fire is 

administered by locals whenever deemed fit, even though it may be contrary to scientific 

guidelines. This not only affects the ability of grasses to regenerate, it affects the soil 

characteristics (nutrients, moisture content, organic content) which severely reduces productivity 

(Reinhart, Dangi et al. 2016). Furthermore, livestock are allowed to graze freely which has 

resulted in uneven forage distribution and soil erosion in some areas. This was evident and 

observed within the study area during data collection visits (Figure 7.1(a) and (b)). Continuous 

grazing by livestock hinders grass productivity as the grass does not have the ability to regrow, 

particularly in the dry season when stored nutrients are scarce (Koerner and Collins 2014). 

Grazing factors such as stocking rates are significant in maintaining grassland productivity, as 

high stocking rates affect grasslands negatively if not conducted in a controlled manner 

(O’Connor, Martindale et al. 2011). Cho, Onisimo et al. (2021) states that locals are facing 

challenges with effective rangeland management, which has resulted in a shortfall of forage, 

especially during the dry season. The need for an effective and collaborative rangeland 

management plan, with appropriate stocking rates and rotational grazing, is imperative to improve 

grassland productivity in Vulindlela (Cho, Onisimo et al. 2021).  

This study can be considered a pilot study as it is one of the first studies, to the best of the authors’ 

knowledge, to predict vegetation biomass using deep learning and Sentinel 2 MSI. Remote 

sensing has been extensively used in biomass studies, with relatively good levels of success 

(Mutanga, Dube et al. 2016). The advent of machine learning has enabled extensive and complex 
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data analysis in remote sensing, often producing more reliable and accurate results as compared 

to traditional statistical methods (Ali, Greifeneder et al. 2015). Machine learning, it itself, has 

advanced through time and contemporary deep learning approaches to data analysis appears to 

be the outlook for the foreseeable future (Zhu, Tuia et al. 2017). Neural networks are the 

foundation of deep learning approaches, and the CNN is one of the most promising deep learning 

algorithms for vegetation remote sensing applications (Kattenborn, Leitloff et al. 2021). Deep 

learning differs from typical shallow learning mainly by the way the algorithm processes data. In 

typical machine learning, a human has to ensure that structured data has to be organised and 

pre-processed in order for learning to take place, also termed as supervised machine learning 

(Yuan, Shen et al. 2020). However, with deep learning, the algorithm has the ability to learn and 

decipher which data components should be used for feature extraction, resulting in less 

dependency on supervised learning and pre-processed data (Zhu, Tuia et al. 2017).   

The use of deep CNNs for vegetation biomass studies are sparse, however, they are gaining 

momentum in academia (Yuan, Shen et al. 2020). Most of the studies utilising CNNs have an 

agricultural background and have used unmanned aerial vehicles (UAVs) data in small-scale 

spatial contexts. This study utilised a CNN to estimate grass biomass using open-access and 

readily available satellite data at a larger spatial scale. Karila, Alves Oliveira et al. (2022) state 

that there are two broad types of CNNs that can be used for vegetation monitoring: 2D and 3D 

CNNs. 2D CNNs are simple CNNs that only utilise a single image (mono-temporal) as an input 

whereas 3D CNNs have multiple images as input data (Karila, Alves Oliveira et al. 2022, Varela, 

Zheng et al. 2022). This study made use of a simple 2D CNN as only single images from 

respective dry and wet seasons were used. 

Karila, Alves Oliveira et al. (2022) used an UAV with a RGB and hyperspectral sensor (1024 x 

648-pixel size and 36 bands between 500-900 nm) to estimate grass biomass, amongst other 

variables. Their 2D CNN model recorded a NRMSE of 21% whereas their 3D CNN yielded a 

NRMSE of 10%. Karila, Alves Oliveira et al. (2022) only used NRMSE for model accuracy 

assessments hence R2 and RMSE values are not included. Similarly, Varela, Zheng et al. (2022) 

predicted aboveground biomass of Miscanthus grass using UAV imagery with RGB, near infrared 

and red edge bands (1,4 cm spatial resolution) using 2D and 3D CNNs. Their 2D CNN recorded 

a R2 of 0,59 and RMSE of 180 g whereas their 3D CNN produced a R2 of 0,69 and RMSE of 149 

g. Alves Oliveira, Marcato Junior et al. (2022) utilised UAV RGB data and 3D CNNs of different 

architectures to estimate aboveground grass biomass. Their best model recorded a R2 of 0,88 
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and RMSE of 482,12 kg/ha, with model performance being significantly influenced by the type of 

architecture. In comparison, the simple CNN model in this study performed well with R2= 

0,83/RMSE%= 6,09 and R2= 0,85/ in the dry and wet seasons, respectively. Taking into 

consideration that Sentinel 2 imagery was used in this study as opposed to high resolution UAV 

data, this study shows that CNNs have the potential to be used with freely available satellite data 

and can be used at regional spatial contexts.  

Chen, Guerschman et al. (2021) is arguably a study that can be directly compared to the findings 

in this study. Chen, Guerschman et al. (2021) used Sentinel 2 imagery paired with a deep 

sequential neural network (SNN), which is a subset of Recurrent Neural Networks (RNN), to 

estimate pasture biomass. Their study only used the ten applicable spectral bands, used in this 

study as well, and NDVI. However, they also included climate data in their models which could 

not be included in the CNN models in this study due to the lack of complete climate datasets for 

our study area, with data from the SAWS being relatively disjointed and incomplete to be able to 

be included in model development. According to Lakhal, Çevikalp et al. (2018), the main 

difference between CNNs and RNNs is that the latter is specialised in processing temporal 

information or information that follows a set sequence. This was apt for Chen, Guerschman et al. 

(2021) as they utilised time series Sentinel 2 data from 2017 to 2018 to study pasture biomass, 

albeit at a paddock-level spatial scale. Their SNN model performed adequately with a R2 of 0,6 

and a RMSE of 356 kg/ha. Furthermore, their study also observed that seasonal patterns in 

aboveground pasture biomass were distinct, with biomass increasing in the wet season and 

decreasing in the dry season. They also associate this with changes in climatic conditions, with 

water availability being highly influential to pasture biomass (Chen, Guerschman et al. 2021).  

Jin, Li et al. (2020) utilised mono-temporal Sentinel 2 imagery with a deep neural network to 

estimate maize biomass. Their study used fifteen VIs and leaf area index (LAI) data as input data 

to predict maize biomass. Their model performed well with best R2 of 0,91, RMSE of 1,49 t/ha 

and RRMSE of 20,05%. In terms of a sensitivity analysis, Jin, Li et al. (2020) found that the three 

band water index (TBWI), normalised difference infrared index (NDII) and normalised difference 

moisture index (NDMI) were the most important VIs for biomass estimation. In this study, the most 

important VIs for model development for both seasons were GNDVI, GCI and CGM. Théau, 

Lauzier-Hudon et al. (2021) study found that GNDVI has a high correlation with grass biomass, 

particularly in grasslands with low vegetation levels of <0,5 kg/m2, which was the case in our study 

particularly in the dry season. Hamada, Zumpf et al. (2021), also using Sentinel 2 for grass 
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biomass predictions, found that CGM, GCI and GNDVI all had a high correlation with biomass. 

Jin, Li et al. (2020), Chen, Guerschman et al. (2021) and Hamada, Zumpf et al. (2021) all found 

that NDVI was moderately to poorly correlated to biomass and hence was not a relatively 

important variable in model development. Findings in this study seem to concur as NDVI was 

moderately significant for both dry and wet seasons. Both Théau, Lauzier-Hudon et al. (2021) and 

Hamada, Zumpf et al. (2021) found that green and blue spectral bands were more important for 

biomass predictions than the red band, which was also found in this study.   

Many authors agree that the use of CNN models for biomass estimation are preliminary, novel 

and pioneering (Ma, Li et al. 2019, Dong, Du et al. 2020, Alves Oliveira, Marcato Junior et al. 

2022). The same sentiment can be iterated in this study as no known studies have attempted to 

use CNNs and satellite imagery for biomass predictions. CNNs require large amounts of training 

data to be able to operate accurately, and this may prove to be a limitation as large datasets are 

not always available (Kattenborn, Leitloff et al. 2021). Using CNNs for small datasets has been 

done before, as recorded by Narayanan, Saadeldin et al. (2021), however they may require some 

pre-training and transfer learning to ensure that they are optimised for biomass estimation 

(Narayanan, Saadeldin et al. 2021). Furthermore, the architecture and hyperparameters of CNNs 

are highly influential in model performance and these must be further studied to improve the 

generalizability of CNNs (Alves Oliveira, Marcato Junior et al. 2022). This study also was limited 

in using only single image as inputs for model training. Studies show that using multi-temporal 

imagery significantly improves CNN model accuracy (Karila, Alves Oliveira et al. 2022, Varela, 

Zheng et al. 2022). Future studies can perhaps attempt to improve on model performance using 

multi-temporal satellite data.    

 

7.5. Conclusion 

This study evaluated the change in aboveground biomass from the dry season to the wet season 

using Sentinel 2 remotely sensed imagery and simple convolutional neural networks. Sentinel 2 

MSI bands and derived VIs were used as input proxy data to train the CNN model for both seasons 

while ground data was used as a benchmark to assess model accuracy. A significant difference 

between dry and wet season grass biomass was discovered, with the wet season biomass 

increasing four times of dry season biomass. These changes can be primarily related to significant 

changes in rainfall and temperature which also bring about influential changes in other biophysical 
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factors such as soil. Overall, findings in this study concur with previous studies studying seasonal 

biomass changes.  

This study can also be considered a pilot study as it attempted to utilise a deep learning approach 

to predict grass biomass. Model performance produced promising results, albeit with a simple 

CNN and a limited dataset. This research could prove useful to farmers and rangeland managers 

in planning and decision-making as remote sensing allows for fast and accurate estimation of 

grassland productivity. However, future research can improve the reliability and practicality of 

CNN modelling by incorporating multi-temporal data and utilising larger datasets. Using more 

complex and intricate CNN models in future may also improve predictive performance.   
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8. Inter-seasonal estimation of grass water content indicators using multisource remotely 

sensed data metrics and cloud-computing Google Earth Engine platform 

A Masenyama, O Mutanga, T Dube, M Sibanda,  O Odebiri and T Mabhaudhi 

8.1. Introduction 

Plant water content (PWC) is one of the critical parameters of the land surface-atmosphere 

interactions, which considerably affects the seasonal terrestrial water cycle (KOIKE, NAKAMURA 

et al. 2004). This is because the quantity of water contained in vegetation canopy structure has 

profound effects on physiological processes such as evapotranspiration, and photosynthesis 

which directly affect an ecosystem’s water balance (Bonan 2008, Osakabe, Osakabe et al. 2014). 

Thus, vegetation water-related properties are critical for understanding key components of the 

hydrological cycle to derive insights on catchment water variation. 

Several interrelated physiological indicators have been used to assess vegetation water 

conditions at different structural levels. The commonly used indicators include relative water 

content (Cervena, Lhotakova et al. 2014), leaf water potential (Browne, Yardimci et al. 2020), 

equivalent water thickness (Ferreira, Asner et al. 2011), live fuel moisture content (Zhu, Webb et 

al. 2021), canopy water content (Ustin, Riaño et al. 2012), canopy storage capacity and stomatal 

conductance (Zhou, Duursma et al. 2013). Amongst these, canopy storage capacity (CSC) is the 

volume of water that can be retained in plant canopies (Bulcock and Jewitt 2010). The CSC 

directly influences hydrology through rainfall interception and altering infiltration, thus affecting 

water redistribution (Sibanda, Mutanga et al. 2019). Canopy water content (CWC) is the total 

amount of water content per unit area of a ground surface which depends on the balance between 

water losses from transpiration and water uptake from the soil (Ustin, Riaño et al. 2012). 

Equivalent water thickness (EWT) is the quantity of water content per unit leaf area. It plays a 

critical role in eco-hydrological processes such as evaporation and transpiration (Sibanda, 

Onisimo et al. 2021). The reflectance of vegetation water content is affected by many biophysical 

parameters, and it is challenging to separate the contribution of leaf area index (LAI) and water 

content from remotely sensed data at the leaf level (Pan, Chen et al. 2018). In this regard, LAI 

and the above-explained water content indicators are of interest in this study.  

In the past decades, water content indicators have been utilized as a proxy for crop water stress 

or drought assessment and monitoring (Gao, Wang et al. 2014, Zhang and Zhou 2019, Ndlovu, 



146 

 

Odindi et al. 2021), prediction of ecosystems susceptibility to wild-fire (Chuvieco, Riaño et al. 

2002, Danson and Bowyer 2004) and in forestry studies (Oumar and Mutanga 2010, Sibanda, 

Mutanga et al. 2019). However, more effort needs to be made to study the seasonal variability of 

vegetation water content indicators specifically in the context of grassland ecosystems. By virtue 

of their location mostly in catchment areas, GWC significantly impact on various hydrological 

processes since vegetation water content can be assumed to reflect the hydrological conditions 

of the antecedent hydrological year (Gómez-Giráldez, Aguilar et al. 2014). Moreso, since GWC 

indicators are closely related to hydrological variables, their estimation can be helpful for the 

hydrological modelling of surface run-off, recharge and groundwater processes, and soil moisture 

budget.  

Remote sensing has been widely recognized to be invaluable in providing effective, non-invasive, 

and reliable techniques for assessing water content indicators  (Zhang, Xu et al. 2010). Remote 

sensing sensors including multispectral (Rubio, Riaño et al. 2006, Yilmaz, Hunt Jr et al. 2008, 

Wang, Wang et al. 2011) and hyperspectral (Clevers, Kooistra et al. 2007, Bulcock and Jewitt 

2010, Neinavaz, Skidmore et al. 2017) sensors have been applied for vegetation water content 

monitoring. However, multispectral sensors such as Landsat and MODIS are associated with low 

spectral resolution, thus posing a challenge to optimally exploit the comprehensive water 

absorption features in the short-wave infrared region (SWIR) (Roberto, Lorenzo et al. 2016). 

Although hyperspectral sensors are renowned for their high accuracy in monitoring vegetation 

water conditions, they are coupled with exorbitant prices, yet they cover a small spatial extent 

(Zhang and Zhou 2018).  

Recent advancement in earth observation sensors has seen the advent of freely available data 

from Sentinel-2, equipped with a multi-spectral imager (MSI) and providing an opportunity for 

robust estimation of vegetation-water-related properties (Sibanda, Mutanga et al. 2019). Sentinel-

2 MSI offers the best combination of high spatial (i.e. up to 10 m pixel resolution), spectral (i.e. 13 

bands covering the critical red edge section), and an optimal temporal sampling resolution of 5 

days, making it suitable for characterizing the spatiotemporal variations of vegetation attributes 

(Zhang, Su et al. 2017). Specifically, Sentinel-2 MSI red-edge (RE) wavebands are critical in 

mapping vegetation attributes because they are sensitive to photosynthetic attributes such as 

chlorophyll, leaf area index, and foliar moisture content (Bramich, Bolch et al. 2021, Ndlovu, 

Odindi et al. 2021).  
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Meanwhile, literature underscores the performance of spectral derivatives such as vegetation 

indices in estimating vegetation attributes such as water content amongst others (Zhang and Zhou 

2019, Zhou, Zhou et al. 2022). The most widely used vegetation indices in literature are derived 

from the visible and near-infrared region (NIR) wavelengths (Zhang and Zhou 2019, Zhou, Zhou 

et al. 2022). Meanwhile, the SWIR which is heavily influenced by water in plant tissues also plays 

a significant role in mapping and monitoring moisture content (Ceccato, Flasse et al. 2001). Thus, 

the use of moisture-sensitive indices derived from longer wavelengths such as the NIR and SWIR 

reflectance could be more viable for monitoring vegetation water content (Ghulam, Li et al. 2007). 

Other than optical spatial data, site-specific spatial data such as topographic and climate-related 

data are critical and required to improve the accuracy of optical models. 

Topographic variables derived from digital elevation models such as the Shuttle Radar 

Topographic Mission (SRTM) can effectively increase the accuracy of vegetation monitoring 

(Zeng, Ren et al. 2019, Zhou, Li et al. 2021). Specifically, variations in topographic metrics such 

as the slope, topographic position index, state of curvature, and aspect are directly linked to 

vegetation aspects such as sunlight, temperature while indirectly linked to other aspects such as 

soil moisture, soil quality (Emran, Roy et al. 2018, Odebiri, Mutanga et al. 2020). For instance, 

Sibanda, Onisimo et al. (2021) showed that topographic variables such as slope, aspect, and 

altitude play a significant role in the spatial variability of GWC parameters. Furthermore, climatic 

variables such as rainfall and temperature are critical factors controlling photosynthetic activities 

in vegetation as well as foliar water content variation (Mouillot, Rambal et al. 2002). Specifically, 

seasonal precipitation and temperature result in soil moisture content variations which affect 

vegetation water content despite the impact of topographic variations (Zeppel, Wilks et al. 2014). 

However, the interacting influence of seasonal precipitation and temperature with topographic 

variations on GWC indicators has not been extensively researched, especially in communal 

grazing lands. Since topographic and climatic factors have been proven to be important variables 

in facilitating the spatial distribution of vegetation water content, there is a need to assess and 

understand the interacting influence of seasonality and topo-climatic variables on spatial 

variability of grassland water content indicators.  

This study sought to test the utility of multi-source data in estimating LAI, CSC, CWC, and EWT 

within communal grasslands across wet and dry seasons. It was hypothesized that integrating 

multi-source data with a robust machine learning algorithm would improve the prediction 
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accuracies of GWC indicators as a step towards building spatially explicit communal rangeland 

monitoring frameworks.  

8.2. Materials and methods 

Study site description 

This study was conducted in Vulindlela, a communal area located in Kwa-Zulu Natal province, on 

east coast of South Africa (Figure 8.1). The mean annual rainfall of the area is 979 mm. The 

maximum monthly rainfall occurs in January (Rouault and Richard 2003). Annual minimum and 

maximum mean temperatures are 10.3°C and 21.9°C respectively (Sibanda, Onisimo et al. 2021). 

The driest month with the lowest temperatures is July. The study site is located in a subtropical 

climate, characterized by a standard Southern Africa bimodal climate. The wet season occurs 

from September to March and the dry season from April to August (Ndlovu and Demlie 2020, 

Royimani, Mutanga et al. 2022). The study site is mainly a mesic subtropical grassland biome 

characterized by Aristida junciformis, Tristachya leucothrix, Eragrostis tenuifolia, Themeda 

triandra, Sorghum bicolour, Paspalum urvillei, Alloteropsis semialata, Panicum maximum and 

Setaria sphacelate grass species amongst others (Fynn, Morris et al. 2011). However, the 

dominant grass species are Aristida junciformis. The optimal growing period of these species 

occurs from October to April (Tsvuura and Kirkman 2013). Vulindlela is a good example of a 

predominantly rural community, in which land is managed using the communal ownership 

approach (Cho, Onisimo et al. 2021). The primary source of livelihood in Vulindlela is livestock 

farming and communities depend on grasslands as grazing grounds for their livestock. This 

highlights the need to provide an efficient and cost-effective strategy for managing this natural 

resource. 
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Figure 8.1: Location of the study area 

 

Field sampling strategy and water content indicators measurements  

Field data for the wet season was conducted between 27 and 31 March 2022. This was meant to 

capture the peak water content period after the grass had responded to maximum rainfall 

occurring in January. The dry season data was collected between 16 and 20 June when the GWC 
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was low due to senescence. Although the driest month with the lowest temperatures is July, the 

communities in Vulindlela initiate seasonal burning of grass in June to stimulate new growth for 

livestock, making it impossible for data collection to be conducted in July. 

Hundred and thirteen, 10 m × 10 m quadrats were established at 150 m distance apart using a 

purposive sampling strategy. A plot size of 10 m by 10 m was chosen in this study to ensure that 

all sampled areas are within the confines of Sentinel-2 MSI bands. Consequently, the 150 m 

distance was chosen to account for possible ground-truth-satellite image geolocation errors. 

Within each plot, two 1 m × 1 m sub-quadrats were randomly established within the 10 m plots 

for clipping grass. A handheld Trimble Global Positioning System (GPS) with a sub-meter 

accuracy was used to collect the centre co-ordinates of the sub-quadrats. The co-ordinate points 

were stored as waypoints and later used for navigation in the dry season data collection. Grass 

was clipped within each sub-quadrat, placed in brown paper bags, and correctly labelled. The 

fresh weight (FW) of sampled biomass was instantly weighed using a calibrated scale with a  

0.5 g measurement error. The samples were taken to the laboratory and placed in the oven at 

105˚C. For dry weight (DW), the samples were weighed consistently until a constant dry weight 

was reached (48-72 hrs).  

LAI was also measured within each sub-plot using a portable handheld ground-based and non-

destructive LAI 2200 plant canopy analyzer (Li-Cor, USA). Specifically, in measuring LAI five 

readings were conducted, one above the grass canopy and four below the grass canopy. Field 

measurements for LAI was conducted between 12:00 noon and 14:00 as this is the most optimal 

period of the day for vegetation photosynthetic activity (Yan, Hu et al. 2019).  

 

Measurement of grass water content elements 

The LAI (A), FW and DW were used as input variables to compute GWC indicators. CSC was 

computed using the von Hoyningen-huene (1981) model as follows: 

Sc
max (mm) = 0.935 + 0.498 (LAI) – 0.00575(LAI2)   Equation 8-1 

The von Hoyningen-huene (1981) model is an accurate, non-species-specific model for the 

estimation of maximum storage capacity (Kozak, Ahuja et al. 2007). The model was chosen for 
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this study following its successful application within South Africa (Bulcock and Jewitt 2009, 

Bulcock and Jewitt 2010, Sibanda, Mutanga et al. 2019, Sibanda, Onisimo et al. 2021). 

CWC was calculated based on the following equation: 

CWC (g/m-2) = FW – DW    Equation 8-2 

EWT was calculated as follows:   

EWT (g/m-2) = 
(𝐹𝑊−𝐷𝑊)

𝐴
      Equation 8-3 

After retrieving all the GWC variables, they were averaged and integrated with the GPS points on 

an Excel spreadsheet. The data was then converted into separate point map shapefiles using 

ArcMap. The shape files were then uploaded on Google Earth Engine (GEE) platform for 

overlaying them with spectral data for further analysis.  

 

Sentinel 2 MSI data acquisition  

Sentinel 2 MSI, Level 2A remotely sensed data was imported from Copernicus in GEE data 

catalogue. Sentinel 2 is a combination of twin satellites (Sentinel-2A and Sentinel-2B) in the same 

orbit, phased 180° apart, operating at an altitude of 786 km and designed to provide high spatial 

resolution imagery in global environmental monitoring (Wang, Shi et al. 2016). Both satellites are 

equipped with MSI deriving data in 13 spectral channels along a 290-km sun-synchronous orbital 

path (Gascon, Bouzinac et al. 2017). The two-satellite constellation provides a temporal resolution 

of 5 days (Jin, Azzari et al. 2019) which makes it suitable for detecting seasonal changes in grass 

productivity. Specifically, GEE provides Level 2A products derived from Sentinel-2A which are 

readily processed by Sentinel-2 atmospheric correction processor (Sen2Cor) as a default 

configuration to provide orthorectified atmospherically corrected surface reflectance (Sola, 

García-Martín et al. 2018). 

Remotely sensed imagery with dates which coincided with the field data collection dates for both 

seasons were acquired. The ee.filterDate function was used to acquire images in the date range 

which coincided with the time when field surveys were conducted. This is necessary since 

changes in atmospheric conditions between on-site data collection and satellite data acquisition 

may affect grass properties and might alter model accuracy (Gao 2006). Prior to image 
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downloading, the cloud pixel percentage was set to 10% to filter out Sentinel-2 scenes with a 

cloud cover that was more than 10%. Subsequently, the ee.Reducer.median function was applied 

to create a single image by calculating the median of all values at each pixel across the stack of 

all matching bands. The study area shapefile was imported and the ee.filterBounds filter was 

applied to narrow the image at the location of the region of interest. The ground sampling 

distance (GSD) of Sentinel-2 MSI is divided into spectral bands with 4 bands at 10 m, 6 bands 

(20 m) and 3 bands (60 m). Bands acquired at 60 m GSD (1, 9 and 10) were not included in this 

study because they are designed for detecting atmospheric characteristics and are unsuitable for 

vegetation analysis (Drusch, Del Bello et al. 2012). As a result, only 10 bands were selected using 

the ee.Feature.select a filter and utilized it in this study. The Sentinel-2 MSI bands were resampled 

to a spectral resolution of 10 m to give all the bands the same pixel size.  

 

Selection of spectral indices 

The prediction of water content in vegetation using spectral indices mostly depends on the 

reflectance behaviour of water molecules in the leaves to various sections of the electromagnetic 

spectrum (Wijewardana, Alsajri et al. 2019). For instance, the high foliar water content in 

vegetation is highly sensitive to water absorption features in the SWIR section which explains the 

reflectance of vegetation in these regions (Sims and Gamon 2003). Additionally, the RE region is 

sensitive to vegetation chlorophyll absorption which is directly related to water content (Adamczyk 

and Osberger 2015, Dong, Liu et al. 2019). In comparison to other indices, water-sensitive as well 

as RE-based vegetation indices may have an advantage of accurate estimation of grass leaf 

water-related elements. In this regard, this study specifically evaluates the potential of water-

sensitive spectral vegetation indices which provide the absolute measure of plant water content 

as well as the RE region-based spectral vegetation indices. The vegetation indices formulas were 

identified and selected from literature whereas the formulas were derived from an online Index 

Database (https://www.indexdatabase.de/) and computed in GEE platform (Table 8.1).  

 

 

https://www.indexdatabase.de/
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Table 8.1: Spectral vegetation indices used in this study. 

VI VI formula Sentinel-2 
Bands 

References 

Normalized Difference Water 
Index (NDWI) 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 +  𝑆𝑊𝐼𝑅
 

B8, B12 (Gao 1996) 

Modified Normalized 
Difference Water Index 
(MNDWI) 

𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 

B3, B11 (Xu 2006) 

Normalized Difference 
Infrared Index (NDII) 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

B8, B11 (Klemas and Smart 1983) 

Moisture Stress Index (MSI) 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅
 

B11, B8 (Hunt Jr and Rock 1989) 

Normalized Difference Red-
Edge (NDRE) 

𝑁𝐼𝑅 − 𝑅𝐸

𝑁𝐼𝑅 + 𝑅𝐸
 

B8, B5 (Barnes, Clarke et al. 2000) 

Red-edge Ratio Index 1 
(RRI1) 

 𝑁𝐼𝑅

𝑅𝐸
 

B8, B5 (Ehammer, Fritsch et al. 2010) 

Red edge 1 (Rededge1) 𝑅𝐸

𝑅𝐸𝐷
 

B5, B4 (Cloutis, Connery et al. 1996) 

Red edge 2 (Rededge2) 𝑅𝐸 − 𝑅𝐸𝐷

𝑅𝐸 + 𝑅𝐸𝐷
 

B5, B4 (Cloutis, Connery et al. 1996) 

Red edge Normalized 
Difference Vegetation index 
(NDVI705) 

 𝑅𝐸2 − 𝑅𝐸1

𝑅𝐸2 + 𝑅𝐸1
 

B6, B5 (Gamon and Surfus 1999) 

 

Topo-climatic variables 

Topographic variables are classified into three main groups: local (elevation, slope, land surface 

curvature) which examine surface geometry specific to a point on the land surface, non-local (flow 

accumulation, catchment area, relief) influenced by the relative location of a specific point on the 

land surface and combined topographic metrics (topographic wetness index) which integrate both 

the local and nonlocal topographic metrics (Speight 1968, Young 1972, Shary, Kuryakova et al. 

1991, Moore, Gessler et al. 1993, Gumede, Mutanga et al. 2022). Twenty-three topographic 

variables (Table 8.2) were derived from a 30 m×30 m DEM created from SRTM data in SAGA 

QGIS (2.3.2) and ArcGIS 10.6 software. The rainfall and temperature datasets were acquired 

from South African Weather Services (SAWS). The climatic datasets were averaged per season 

and resampled to 10 m spatial resolution to give them the same pixel size as the remotely sensed 
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imagery. The topo-climatic variables shapefiles were then imported into GEE as shapefiles for 

further analysis. 

Table 8.2: Topographic variables used in this study as explained in Odebiri, Mutanga et al. (2020). 

Topographic Variable Description 

Slope Degree of inclination of land surface 

Elevation Height above sea level 

Aspect Compass direction of a slope 

Minimum curvature Lowest deviation from slope curve 

Maximum curvature Highest deviation from slope curve 

Longitudinal curvature Explains the flowing speed of a substance downslope 

Cross-section curvature Explains the divergence or convergence of a flowing substance 

Profile curvature Represents morphology of the topography 

General curvature Total curvature of the surface 

Plan curvature Horizontal curvature of contour lines 

Catchment area Run-off water flow, forming a waterway 

Positive openness Dominance of a landscape location 

Negative openness Enclosure of a landscape location 

Standardized height Slope position and height 

Normalized height Slope position and height 

Valley depth Relative height of a valley 

Convergence index Calculates valleys and ridges 

Wind effect Effects of the direction and speed of wind on the surface 

Direct insolation Incoming solar radiation 

Terrain roughness index Surface heterogeneity 

Topographic wetness index Quantifies topographic control on hydrological processes 

Skyview factor Visible sky 

Mass balance index Terrain morphometry 
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8.2.1. Spatial analyses 

All statistical analyses in this study were performed using the GEE platform. A random forest (RF) 

ensemble was used to predict grass water content elements. RF is an ensemble learning 

technique first proposed by Breiman (2001). It is considered a robust regression technique that 

uses multiple decision trees to make predictions (Duro, Franklin et al. 2012). In RF, a large 

number of decision trees are randomly created (with replacement) from the original training data 

and variables (Rodriguez-Galiano, Sanchez-Castillo et al. 2015). Each node per regression tree 

is grown with a randomized subset of input variables considered for binary spitting (Wang, Zhou 

et al. 2016). The final output of RF regression is based on averaging the outputs of all decision 

trees to produce accurate predictions that do not overfit the data (LI, XIN et al. 2017). Generally, 

two user-defined parameters need to be optimized in RF regression namely Ntree which is the 

number of regression trees. The default value for Ntree is always set on 500. However, in this 

study, hyper parameter tuning was done and a Ntree of 400 was selected as being optimal. The 

second parameter is the Mtry which is the number of input predictor variables per node. In the 

case of RF regression, the default value of Mtry is that all variables are divided by 3 (Odebiri, 

Mutanga et al. 2020).  

RF was chosen and used in this study because it is fast, insensitive to overfitting, and effective in 

handling data multicollinearity and dimensionality (Belgiu and Drăguţ 2016). RF has been 

renowned for being more accurate and outperforming other regression algorithms (Shataee, Kalbi 

et al. 2012, Lu and He 2019, Yuan, Li et al. 2019, Elmahdy, Ali et al. 2020, Shen, Ding et al. 

2022). Above all, it offers variable importance matrices in its computation which provide valuable 

insights to explore the effects of each predictor variable on the response variable (Oshiro, Perez 

et al. 2012). RF variable importance scores are derived from assessing the lowest Gini Index (a 

variable selection measure which measures the error of a variable with respect to the output 

model) (Wang, Zhou et al. 2016, Singh, Sihag et al. 2017). In this regard, the variable importance 

from RF was used to select the most influential predictor variables with the high predictive power. 

In predicting the grass water content, RF regression models were built in 4 stages of analysis 

which are: 

1. Stand-alone Sentinel 2 MSI bands (Analysis stage 1) 

2. Vegetation indices only (Analysis stage 2) 

3. Environmental variables only (Analysis stage 3) 

4. Combined variables (Analysis stage 4) 
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Prior to each analysis, the sampled data was randomly split into 70% for training and 30% for 

assessing the accuracy of predictive models.  

 

8.2.2. Accuracy assessment 

An accuracy assessment was conducted to evaluate the performance of regression models in 

predicting grass water content indicators. The derived RF models were assessed for accuracy 

based on the coefficient of determination (R2), root mean square error (RMSE), and root means 

square error percentage (RMSE%). Specifically, the R2 was used to measure the variation 

between measured and predicted grass water content indicators. The RMSE was used to assess 

the prediction error between the actual field measurements and the modelled grass water content 

variables. The RMSE% was used to estimate the magnitude of error from the measured values, 

expressed as a percentage. To compute RMSE%, the RMSEs from each model were normalized 

using the mean of each field-measured variable and then expressed as a percentage (Richter, 

Hank et al. 2012). Based on the testing datasets, the model with the lowest RMSE and RMSE% 

across all models was selected as the most ideal model that explains more significant variables 

in predicting the GWC elements. These models were used to generate maps illustrating the 

spatial distribution of the estimated GWC elements within the study site.  

 

8.3. Results 

8.3.1. Estimating grass water content variables using spectral and topo-climatic 

 variables 

Table 8.3 shows the predictive accuracies exhibited in estimating LAI, CSC, CWC and EWT 

based on the 4 levels of analysis across wet and dry seasons. For the wet season, the spectral 

bands and vegetation indices models for estimating LAI showed high variations between the 

observed and predicted but both models exhibited the same RMSE. For instance, when 

estimating LAI, the spectral bands model yielded an RMSE of 0.03 m-2/ m-2 and R2 of 0.78. The 

vegetation indices model had an increased R2 of 0.86 but exhibited a similar RMSE of 0.03  

m-2/ m-2. On the other hand, results showed that there were insignificant differences between the 

spectral bands and vegetation indices predictive models for estimating CSC. When estimating 
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CWC and EWT, the spectral bands models yielded considerable high accuracies of RMSE = 

20.42 g/m-2 and R2 of 0.68, RMSE =10.98 g/m-2 and R2 of 0.69 respectively. The vegetation indices 

models for these water content variables showed a decrease in the accuracy to an RMSE = 21.5 

g/m-2 and R2 = 0. 55, RMSE of 11.4 g/m-2 and R2 = 0.55, respectively. The topo-climatic variables 

produced the lowest model accuracies across all GWC indicators.  

Meanwhile, RF regression results obtained in the dry season indicated that the spectral bands 

model for estimating LAI yielded a RMSE accuracy of 0.05 m-2 and R2 = 0.91. Results of the dry 

season also showed that the vegetation indices and topo-climatic models for estimating LAI 

retained the same RMSE of 0.09 m-2. The results obtained using bands and combined data 

models for estimating CSC yielded the same accuracies (RMSE = 0.03 mm and R2 = 0.93). 

Although the vegetation indices and the topo-climatic models for estimating CSC had significant 

variations of about 14% in terms of the R2, the two models still produced the same RMSE of 0.05 

mm. For CWC, the dry season results indicated that Sentinel-2 MSI bands and vegetation indices 

models yielded the same RMSE of 1.63 g/m-2, although the model’s R2 values had a slight 

difference of 2%. The topo-climatic variables model performed poorly in estimating CWC. In terms 

of estimating EWT, dry season results showed significant variations amongst the spectral bands, 

vegetation indices and topo-climatic variables models.  

Overall, the models that integrated bands, vegetation indices and topo-climatic variables exhibited 

the highest accuracies for estimating GWC indicators across both seasons except for LAI in a wet 

season where the vegetation indices model had a higher co-efficient of determination across all 

stages of analysis and CSC in the dry season where bands and combined data exhibited the 

same accuracies. Nevertheless, these differences were insignificant since the models yielded the 

same RMSE accuracies. 
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Table 8.3: Estimation accuracies of LAI, CSC, CWC, and EWT derived using spectral data and topo-climatic variables. 

   Wet season   Dry season 

Water content variable Explanatory variable R2 RMSE RMSE%  R2 RMSE RMSE% 

LAI (m-2) Bands 0.78 0.03 1.8  0.91 0.05 3.2 

 Vegetation indices 0.86 0.03 1.8  0.57 0.09 5.7 

 Topo-climatic 0.77 0.04 2.4  0.59 0.09 5.7 

 Combined 0.83 0.03 1.8  0.90 0.04 2.6 

CSC (mm) Bands 0.80 0.01 0.6  0.93 0.03 1.8 

 Vegetation indices 0.79 0.01 0.6  0.57 0.05 2.9 

 Topo-climatic 0.36 0.02 1.1  0.71 0.05 2.9 

 Combined 0.86 0.01 0.6  0.93 0.03 1.8 

CWC (g/m-2) Bands 0.68 20.42 10.6  0.77 1.63 1.8 

 Vegetation indices 0.55 21.5 11.2  0.75 1.63 1.8 

 Topo-climatic  0.34 24.52 13.2  0.09 3.07 3.4 

 Combined 0.76 19.42 10.1  0.87 1.35 1.5 

EWT (g/m-2) Bands 0.69 10.98 9.6  0.89 2.21 3.6 

 Vegetation indices 0.55 11.4 10  0.31 5.37 8.9 

 Topo-climatic 0.22 14.29 12.5  0.56 4.65 7.7 

 Combined 0.65 10.75 9.4  0.91 2.01 3.3 
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8.3.2. Comparing the optimal seasonal models of grass water content elements 

 between the dry and the wet seasons. 

LAI was better estimated during the wet season to a RMSE of 0.03 m-2 and R2 of 0.83 based on 

MNDWI, B7, B6, B11, B8A, B8, NDWI, Minimum curvature, Rainfall, Positive openness, 

Temperature and Direct insolation in their order of importance (Figure 8.2(a) and Figure 8.3(a)). 

During the dry season LAI was estimated to RMSE = 0.04 m-2 and R2 = 0.90 based on B2, B4, 

B12, B3, B11, B5 NDII, RRI, NDRE, NDVI705, MSI, Wind effect, Temperature, Elevation, 

Negative openness, Rainfall and Standardized height in order of importance (Figure 8.2(b) and 

Figure 8.3(b)).  

Similarly, CSC was also optimally estimated during the wet season than the dry season. 

Specifically, CSC was predicted with a RMSE of 0.01 mm and R2 of 0.86 based on MNDWI, B6, 

B11, B8A, B7, NDVI705, Rainfall, Elevation, Aspect, Temperature and Positive openness (Figure 

8.2(c) and Figure 8.3(c)) in the wet season. It was then estimated to a RMSE = 0.03 mm and  

R2 = 0.93 with B12, B2, B4, B3, B11, NDII, RR1, B5, MSI, Rainfall, Wind effect, Positive openness, 

Temperature, Direct insolation, and Negative openness being the most influential variables in the 

dry season (Figure 8.2(d) and Figure 8.3(d)). 

Contrary to the CSC and LAI, CWC was optimally estimated during the dry season to a RMSE = 

1.35 g/m-2 and R2 = 0.87 using B8, B6, B7, NDWI, B8A, MSI, NDII, NDVI705, RRI1, NDRE, 

Aspect, Wind effect, Slope, Rainfall, Skyview factor, Temperature, Positive openness as the best 

optimal predictor variables, also in order of importance (Figure 8.2(f) and Figure 8.3(f)). The wet 

season yielded relatively lower estimation accuracies of CWC of a RMSE of 19.42 g/m-2 and R2 

of 0.76 based on NDWI, NDRE, NDVI705, B4, RRI1, B2, Cross section, Maximum curvature, 

Elevation, Red edge2, B5, Negative openness, Red edge1, MSI, B8, B3, Rainfall, Temperature 

(Figure 8.2(e) and Figure 8.3(e )). 

Also, dry season EWT exhibited high accuracy of RMSE = 2.01 g/m-2 and R2 = 0.91 based on B3, 

B5, B6, B12, B4, B2, B11, B8A, B7, Aspect, Rainfall, Longitudinal curvature, MSI, Temperature, 

NDII and Skyview factor as optimal predictor variables in order of importance (Figure 8.2(h) and 

Figure 8.3(h)). During the wet season, EWT was to RMSE = 10.75 g/m-2 and R2 = 0.65 based on 

NDRE, NDWI, B8, NDVI705, B4, Negative openness, RRI1, Rainfall, Red edge 1, B8A, Elevation, 

B7 and Temperature (Figure 8.2(g) and Figure 8.3(g)). Overall, CSC was optimally estimated with 

high accuracies across both seasons as compared to other grass water content indicators. 
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Figure 8.2: Relationship between observed and predicted grass LAI (a and b), CSC (c and d), 
CWC (e and f) and EWT (g and h) derived using optimally selected predictor variables for the wet 
and dry seasons respectively.  
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Figure 8.3: Variable importance scores of selected variables in estimating (a and b) LAI, (c and d) CSC, (e and f) CWC and (g and h) 
EWT for the wet season and dry seasons respectively. 
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8.3.3. Spatial distribution of modelled grass water content variables 

The spatial distribution of GWC indicators was estimated based on the optimal models for 

each grass water content indicator. Figure 8.4 depicts the spatial distribution of estimated 

GWC for the wet season and dry seasons. Interestingly, the spatial distribution of LAI appears 

to correspond with that of CSC for both seasons. Again, the spatial distribution of CWC seems 

to coincide with that of EWT for both seasons. Overall, the GWC range values are relatively 

high for the wet season, and it can be observed that there is a decrease in the spatial variation 

ranges for all GWC variables in the dry season. Specifically, a drastic decrease of more than 

50% in CWC and EWT spatial variations can be noted. Interestingly, the spatial distribution of 

LAI does not correspond to that of CWC and EWT for both seasons. For instance, areas with 

high leaf area index are not corresponding to high CWC and EWT. 
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Figure 8.4: Spatial distribution of modelled LAI (a and b), CSC (c and d), CWC (e and f) and 
EWT (g and h) for the wet and dry seasons respectively.  
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8.4. Discussion 

The objective of this study was to test the utility of multi-source data in estimating GWC 

indicators across wet and dry seasons. In this study, RF was used to model GWC indicators 

based on remotely sensed data and topo-climatic variables. 

8.4.1. Predictive performance of spectral and environmental variables in 

 determining grass water content indicators 

Results of this study showed that Sentinel-2 MSI bands performed better than all the variables 

in estimating different grass foliar water elements across all seasons based on visible, NIR 

and SWIR bands 5, 6, 7 8, 8a 11 and 12. This could be explained by the fact that Sentinel-2 

MSI data is characterized by high spatial resolution bands (i.e. 10 m) which can capture 

distinct and discreet interaction between grass canopy and the reflected radiation (Sakowska, 

Juszczak et al. 2016). More so, the MSI sensor operates on a 12 bit radiometric resolution 

with a radiometric accuracy of  less than 5% which enables the distinction of differences in the 

reflected electromagnetic energy within the same band, making each bands more sensitive 

especially in mapping  and monitoring  vegetation attributes such as foliar moisture content 

(Frampton, Dash et al. 2013, Ose, Corpetti et al. 2016). Furthermore, the sensor is equipped 

with high spectral variability spanning from the VIS to the SWIR which are suitable for 

monitoring moisture content of grass. Specifically, the results showed that the red-edge, NIR 

and the SWIR bands were more influential in estimating LAI CSC, CWC and EWT.  

Although comparing bands and vegetation indices was not the key component of this study, 

results showed that spectral bands models yielded high accuracies as comparable to those 

derived based on vegetation indices models for all GWC indicators across both seasons. This 

is an interesting finding which is contrary to what is documented in literature. For instance, 

related studies (Datt 1999, Ceccato, Flasse et al. 2001, Gao, Walker et al. 2015, Sibanda, 

Mutanga et al. 2019, Sibanda, Onisimo et al. 2021) which utilized spectral indices in estimating 

vegetation water-related properties illustrated that vegetation indices outperform conventional 

bands. Spectral indices tend to effectively deal with scattering effects of single bands as well 

as noise such as that from the soil background, angle of the sun and  angle of the sensor, and 

topographic effects (Zhang, Xu et al. 2010). The optimal performance of bands which was 

comparable to vegetation in this study could be explained by the fact that the grass covered 

much of the ground surface hence there was limited background effect to influence the 

spectra. Also, the terrain was generally flat where most of the sampling points were located 
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such that there was also minimal impact of angle of the sun and angle of the sensor, and 

topographic effects. 

Results illustrates that topo-climatic variables exhibited low accuracies across all models. The 

results of this study  concur with those of Sibanda, Onisimo et al. (2021) who reported that 

environmental variables yielded poor model accuracies when estimating grass foliar moisture 

content as standalone variables. This could be explained by the notion that topographic 

indices are derived from digital elevation models which only represents the height above sea 

level. In this regard, they are not directly related to physical foliar moisture content such as the 

spectral reflection measured shown by Sentinel-2 MSI spectral bands. Furthermore, the 

SRTM DEM used to derive topographic variables in this study is characterized by a relatively 

coarse spatial resolution of about 30 m. This could further explain the low performance 

exhibited by the topographic variables. 

8.4.2. Comparing predictor variables for estimating grass water content indicators 

Results of this study illustrates that different set of predictor variables could be noted for 

estimating each GWC indicator across both seasons. This was expected as variations in GWC 

as a result of wet and dry season variations tends to affect the spectral properties of 

vegetation.  For instance, when estimating GWC indicators in the wet season, most optimal 

predictor variables were based on spectral variables derived from NIR and the red-edge. 

Similar results were obtained by Clevers, Kooistra et al. (2008) and Serrano, Ustin et al. (2000) 

who reported that spectral variables derived from the NIR were the best indicators for 

estimating vegetation with high water content. During the wet season, grass has a lot of 

moisture available to facilitate and optimize their photosynthetic activities as they draw more 

moisture and produce more chlorophyll content. Subsequently, the grass moisture elements 

become sensitive and optimally estimated using the NIR. It has widely been proven that 

healthy vegetation reflects highly in the NIR as a result of cellulose structure of vegetation 

leaves (Sims and Gamon 2003). Meanwhile the RE (680-780nm) spectral information has 

been widely proven to be sensitive to chlorophyll content variations which has been 

generalized to be directly proportional to the quantity of water present in vegetation (Gao, 

Wang et al. 2014, Lin, Li et al. 2019). As the amount of vegetation chlorophyll increases, major 

chlorophyll absorption features around 680nm are broadened, causing a shift in the slope and 

RE position towards longer wavelengths (Gholizadeh, Mišurec et al. 2016). The chlorophyll 

concentration changes with the changes in moisture content required to optimize 

photosynthetic activities. Subsequently, the RE is one of the optimal estimation variables of 

foliar content associated with the wet season. 
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Meanwhile for dry season, most optimal spectral variables were derived from the visible, SWIR 

and the RE. The importance of the blue (B2) and red (B4) bands can be attributed to the lack 

of pigmentation and photosynthetic activities of vegetation in the dry season (Roy 1989). A 

study by Caturegli, Matteoli et al. (2020) illustrates that the SWIR is effective in characterizing 

water stress in vegetation water attributes due to higher reflectance of dry vegetation when its 

water content decreases along spectral wavelengths of 1400nm and 2500nm (Ceccato, 

Flasse et al. 2001). More so, the RE portion is also considered useful in studying dry 

vegetation because water deficit changes vegetation foliar chlorophyll composition, resulting 

in a shift of RE reflectance toward shorter wavelengths. In this regard, RE can detect plant 

pigment changes and has been correlated with water stress variations in leaf photosynthetic 

rates, therefore could be used in assessing foliar moisture variability (Easterday, Kislik et al. 

2019). The strength of RE in estimating vegetation when it is in the condition of water stress 

was demonstrated by  Easterday, Kislik et al. (2019) and Eitel, Vierling et al. (2011) who 

illustrated that it can effectively detect changes in plant stress as indicated by changes in 

chlorophyll content. This could possibly explain the importance of the visible, SWIR and RE 

based spectral variables in determining GWC in the dry season. 

Overall, results showed that the combination of bands, vegetation indices and topo-climatic 

variables improved prediction accuracies and yielded the best models for estimating GWC 

indicators in the two seasons. Spectral bands offer data that can accurately provide the near 

real time state of the amount of water in vegetation, vegetation indices tend to surpass the 

influence of atmospheric and soil background noise (Zhao, Huang et al. 2007) while 

topographic indices bring forth the eco-hydrological attributes which facilitate the distribution 

of vegetation water content (Alexander, Deák et al. 2016). Although topographic variables 

yielded poor model accuracies as standalone estimation variables, it is important to note that 

they played a critical role in combined data estimation models. This could be explained by the 

fact that they are important in characterizing spatial heterogeneity of a landscape which affects 

nutrient resources and moisture availability for plants (Lukyanchuk, Kovalchuk et al. 2020). 

For instance, topographic indices such as slope and those related to terrain curvatures play 

an important role in catchment-related hydrological responses, driving soil moisture availability 

which influence the amount of water found in vegetation canopies (Amatulli, Domisch et al. 

2018). Also, the seasonal climate variations either facilitate plant root water uptake, leading to 

high GWC or cause water deficit within grasses which in turn influence its reflectance in the 

electromagnetic spectrum. Therefore, the use of multi-source data with various strengths 

tends to result in a more accurate estimation of parameters describing the amount of water in 

vegetation, hence the high overall accuracies obtained in this study. The models attained in 
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this study underscores the importance of combining variables in the estimation of GWC 

indicators.  

8.4.3.  Relevance of the study 

The findings of this study demonstrated the unprecedented opportunity for deriving reliable 

near real time information pertaining parameters describing the amount of water content in 

grasslands, presented by the interacting influence of environmental variables in concert with 

Sentinel-2 MSI data and the RF algorithm in GEE. Such information is crucial for rangeland 

managers in understanding GWC variations across different seasons as well as different 

ecological gradients. Since grasslands in Vulindlela are utilized specifically for livestock 

farming, the findings of this study are a step towards generating spatially explicit information 

that could be used in understanding the spatial variability of rangelands through the two 

seasons so as to inform sustainable grazing management strategies. Furthermore, the 

seasonal estimations obtained in this study could also offer water resource managers 

information and insight pertaining to catchment variation of hydrological elements such as 

CSC which are directly linked to hydrological system of these rangelands. This may be useful 

in understanding the hydrological cycle particularly surface water resource systems critical for 

management planning, while contributing towards the achievement of sustainable goals 1, 2, 

6 and 12 which advocate for the provision of clean water, responsible consumption and 

production as well as addressing hunger, prevent climate change through carbon 

sequestration. 

In conducting this study, the winter data collection was done earlier before the driest month. 

This might have an impact on depicting GWC variability across the two seasons. The grass 

species in the study area are mixed, although the dominant species is Aristida juncifomis. The 

canopy geometry of these species is a critical component which could have affected the 

spectral reflectance of the GWC variables. This could probably explain the mismatch of LAI 

spatial distribution to that of CWC and EWT obtained in this study. Additionally, the varying 

pixel size from the different data sources used might have an impact on the accuracy 

estimates obtained in this study. However, all GWC variables were estimated with acceptable 

accuracies regardless the influence of field conditions such as differences in canopy structure 

from the grass species in the study area. 

8.5. Conclusion 

This study sought to test the utility of multi-source data in estimating GWC variables across 

wet and dry seasons.  Based on the finding of this study, it can be concluded that: 
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• The use of multi-source data in conjunction with RF in GEE can model LAI, CSC, CWC 

and EWT with acceptable accuracies. LAI was best estimated in the wet season with 

an accuracy of RMSE = 0.03 m-2 and R2 = 0.83 as compared to the dry season (RMSE 

= 0.04 m-2 and R2 = 0.90). Similarly, CSC was estimated with a high accuracy in the 

wet seasons yielding a RMSE of 0.01 mm and R2 of 0.86 comparable to the dry season 

(RMSE = 0.03 mm and R2 = 0.93). For CWC the wet season results yielded RMSE of 

19.42 g/m-2 and R2 of 0.76 which was lower than the dry season results (RMSE = 1.35 

g/m-2 and R2 = 0.87). Finally, EWT was best estimated in the dry season (RMSE = 2.01 

g/m-2 and R2 = 0.91) as compared to the wet season (RMSE = 10.75 g/m-2 and R2 = 

0.65). 

• The optimal model for estimating LAI (RMSE of 0.03 m-2 and R2 of 0.83) had MNDWI, 

B7, B6, B11, B8A, B8, NDWI, Minimum curvature, Rainfall, Positive openness, 

Temperature and Direct insolation as the optimal predictor variables. 

• Overall, CSC performed optimally as an indicator of grass water content across both 

seasons based on MNDWI, B6, B11, B8A, B7, NDVI705, Rainfall, Elevation, Aspect, 

Temperature, Positive openness in the wet season and B12, B2, B4, B3, B11, NDII, 

RR1, B5, MSI, Rainfall, Wind effect, Positive openness, Temperature, Direct 

insolation, and Negative openness in the dry season. 

• CWC was best estimated in the dry season based on B8, B6, B7, NDWI, B8A, MSI, 

NDII, NDVI705, RRI1, NDRE, Aspect, Wind effect, Slope, Rainfall, Skyview factor, 

Temperature, Positive openness as the best optimal predictor variables, also in order 

of importance. 

• EWT was estimated with high accuracies in the dry season using B3, B5, B6, B12, B4, 

B2, B11, B8A, B7, Aspect, Rainfall, Longitudinal curvature, MSI, Temperature, NDII 

and Skyview factor as optimal predictor variables. 
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9. General discussion, conclusions and recommendations  

M Sibanda, O Mutanga, T Bangira, T Mabhaudhi, T Dube, and R Lottering 

 

9.1. General Discussion 

Grasslands constitute one of the most widely distributed terrestrial biomes globally, covering 

52.54 million km2 and 40.5% of land area (Zhao, Liu et al. 2020). Meanwhile, in South Africa, 

grasslands are the second largest biome. Communal rangelands cover approximately 13% of 

the country’s agricultural land, supporting 13 million people, in South Africa (Vetter 2013). 

These grasslands are important because they sustain livelihoods, provide ecosystem services 

while preserving biological diversity. However, communal grasslands are mainly utilised as 

grazing lands which are managed based on a communal tenure system. This tenure system 

has raised concerns relating to the degradation of these grasslands threatening their role of 

sustaining livelihoods, preserving biodiversity, and providing ecosystem services. Despite the 

tragedy of the commons in these grasslands, they still have not received sufficient recognition 

within the ecosystem services framework and received less attention in the ecosystem 

services global policy discussion (Bengtsson, Bullock et al. 2019). Following these unfortunate 

circumstances, the current extent and magnitude of productivity of these grasslands had not 

been extensively researched and remains unknown. This has been mainly due to the limited 

spatial explicit monitoring frameworks. Therefore, there has been an urgent need to develop 

spatially explicit frame works for monitoring grassland ecosystems especially in communal 

areas. This project aimed to contribute to the development of a framework that will provide 

actionable information services for grassland assessment and monitoring across different key 

land management areas. Recent advances in remote sensing technologies, data provision as 

well as big data cloud computing and storage capabilities have availed possibilities for spatially 

quantifying and mapping grassland ecosystem services. Specifically, the project aimed,  

(i) to conduct a comprehensive and state of the art literature review on thew potential 

use of remote sensing-based models for grassland productivity monitoring in the 

light of climate change,  

(ii) to review the importance of grasslands as an ecosystem service, particularly the 

contribution of leaf area index (LAI), canopy storage capacity and biomass in water 

management,  

(iii) to characterise and model communal grassland productivity status in a changing 

climate at three sites within the uMgungundlovu District Municipality and  
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(iv) to assess intra- and interannual changes in grassland productivity and 

proportionate land use change within the catchment and explain the changes 

thereof. 

To address these objectives, seven specific objectives were drawn as follows; 

• To conducting a comprehensive and state of the art literature review on the potential 

use of remote sensing-based models for grassland productivity (GP) monitoring in the 

light of climate change. 

• To systematically review the literature on the remote sensing of grassland ecosystem 

services, with a particular focus on the contribution of leaf area index (LAI), canopy 

storage capacity and biomass in water management services.  

• To assess the spatiotemporal variability of rangelands within a typical southern African 

communal area from the year 2000 to 2020 using multi-temporal Landsat datasets in 

conjunction with random forest. 

• To predict the future spatial distribution of grasslands in communal rangelands using 

the CA-Markov model between the year 2020 and 2040.  

• To compare the predictive performance of shallow artificial neural networks (ANNs) 

and deep convolutional neural networks (CNNs) in estimating aboveground grass 

biomass using Sentinel 2 MSI during the dry season. 

• To predict inter-seasonal variations of grass biomass in using Sentinel 2 MSI remotely 

sensed data in conjunction with convolutional neural networks (CNNs). 

• To test the utility of multi-source data in estimating LAI, CSC, CWC, and EWT within 

communal grasslands across wet and dry seasons. 

In conducting the systematic literature reviews After conducting two literature reviews to 

understand remote sensing of grass productivity and grassland ecosystem services, the 

following lessons were drawn. It was noted that in the southern African context, much of the 

studies used above ground biomass, LAI, and chlorophyll content as proxies for evaluating 

and monitoring grass productivity and ecosystem services. Also, it was concluded that there 

is need for more research efforts in characterising grassland senescence as it is linked to the 

availability and variations of all ecosystem services derived from grasslands. Results of the 

reviews also suggested that there is no clear-cut algorithm and specific vegetation indices that 

can be used to characterise grass productivity as a proxy for understanding grassland 

ecosystem services as optimal ones differed across different studies. The findings of the 

reviews underscored that the most suitable remotely sensed data sets for understanding 

changes in health, productivity, spatial extent, and quantitatively enumerating ecosystem 
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services at a landscape scale were the freely available sensors, including Landsat 8 OLI, and 

Sentinel-2 MSI. Meanwhile, deep machine learning algorithms such as CNN, and ANN as well 

as the GEE-based algorithms such as Random Forest and support vector machines, were 

amongst the most widely used robust and accurate procedures for developing grassland 

monitoring models. The findings of the reviews implied that the Integration of robust non-

parametric machine learning algorithms, freely available multispectral datasets, topographic 

metrics and UAVS derived datasets in GEE could yield an opportunity for designing an 

objective framework for mapping and monitoring rangeland productivity and other ecosystem 

services. Although very few studies have been conducted based on remote sensing-based 

models to characterise grass land ecosystem services, there are high prospects from the 

available advanced and robust computation infrastructure (i.e. GEE) and the freely available 

sensors covering critical sections of the electromagnetic spectrum in vegetation mapping and 

monitoring. These findings informed the methodological approaches used to address the 

contractual objectives and the projects specific objectives. 

In characterising and quantifying the variability in spatial extent and fragmentation of 

communal grasslands over the period of 20 years in the study area, the findings led to a 

conclusion that LULCCs can be optimally characterised using Landsat’s bands in combination 

with the vegetation indices. In addition, the NIR and the SWIR bands were the most influential 

variables for mapping the rangeland changes with high accuracies. Settlement expansion and 

an increase in crop fields were identified as the main drivers of rangeland decline and 

degradation. Fragmentation of rangelands was increasing with time as more grassland 

patches were getting more isolated and relatively smaller in spatial extent as built-up area 

increased. 

In assessing current and future dynamics of the spatial extent of grassland using the CA-

Markov model in typical communal rangeland of Southern Africa, the 2040 predictions showed 

that settlements (built-up areas) will increase due to an increase in population. In Vulindlela, 

built-up areas were predicted to increase by 67 ha per year while rangelands decrease at a 

rate of 46 ha per year. The patch metrics of grasslands in Vulindlela and Inhlazuka predicted 

an increase in rangeland fragmentation as a result of the loss of connectivity in rangelands 

and increased isolation, especially in Vulindlela as a result of development activities. The 

increase in settlement development suggests that there is an urgent need to develop 

rangeland management plans for the accelerating rangeland degradation through 

fragmentation.  
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In comparing the performance of deep convolutional (CNNs) and artificial neural networks 

(ANNs) in estimating the aboveground biomass of grass using Sentinel-2 MSI remotely 

sensed data, findings demonstrated that the CNNs outperformed the traditional ANN even 

though both algorithms performed satisfactorily in predicting grass biomass. This section of 

the project could be considered to be pilot-scale research, particularly in a southern African 

context of utilising the robust deep learning machine algorithms in monitoring grassland.  

Following its optimal performance, the CNN was then used to predict inter-seasonal grass 

biomass variations in conjunction with Sentinel-2 MSI. The findings demonstrated that there 

was a significant difference between dry and wet season grass biomass in the study area, with 

the wet season biomass being four times higher than that from the dry season. These changes 

were noted to be primarily related to significant changes in rainfall and temperature that in turn 

influenced changes in other biophysical factors such as soil. These findings demonstrated that 

deep neural network approaches are very robust to facilitate an accurate time-effective 

assessment of grasslands. 

Findings from this study also showed that geospatial technologies and can be optimally used 

to map and monitor the inter- and-intra-seasonal variability of communal grass productivity as 

well as water-related ecosystem services attributes. Specifically, grassland productivity 

elements, which include biomass, leaf area index, equivalent moisture thickness, canopy 

storage capacity, foliar moisture content, and canopy water content, as well as the variations 

in the extent and magnitude of fragmentation, were all optimally estimated using the readily 

accessible Landsat and Sentinel 2 MSI remotely sensed data in conjunction with robust 

machine learning techniques. 

9.2. Limitations of The Study  

In the context of systematic literature reviews, it is common that not all articles in their entirety 

are included in the analysis.  This is attributed to language bias, exorbitant article accessing 

charges and the perpetual advancement in earth observation facilities and technologies used 

to monitor grasslands. This suggest that more research efforts are required to 

comprehensively enhance our understanding of the existing works on the remote sensing of 

grassland productivity and associated ecosystem services. 

In Inhlazuka, there may have been some misclassifications between the rangelands and forest 

classes, making it difficult to discriminate these classes in certain areas using the Landsat 

remotely sensed data. This could be explained by the rapid emergence and clearance 
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activities of alien invasive species in the area, as well as the topographic variations which 

could have affected the spectral data through the shadow effect. Additionally, the impact of 

fire that was not extensively considered in this study could have impacted on the accuracies 

of models derived in this study. This suggest that a holistic model approach is still required to 

comprehensively monitor the productivity and ecosystem services elements of communal 

grasslands. 

The occurrence of various grass species entails that the resultant spectral information 

detected from the canopy was a function of variations in species specific canopy geometries. 

This could have relatively impacted the models derived from such mixed signals, suggesting 

the need to consider species specific quantifications when assessing and understanding grass 

productivity and water-related ecosystem services elements. Given the spatial and spectral 

variability of grass species, finding the correct dataset, with the optimal spectral and spatial 

resolution, remains a crucial drawback for estimating GP using RS data. Currently, GP 

estimates in light of climate change are required at the regional or national scale. These 

sensors must have the optimum spectral and spatial resolution sufficient to provide very-high 

spatial resolution data. However, the spatial resolution of current multispectral data products 

acquired in wide swaths have a low temporal resolution (10 days at the equator with one 

satellite), negatively affecting the performance of techniques for explicitly estimating GP. 

Also, given the time and resources constraints, the destructive sampling intervals of grass 

were limited to selected areas of uMngeni catchment and in terms of replication. This implies 

that there is need for more spatiotemporally intensive sampling strategies to building a robust 

database that could be used in generating site-specific models, considering the variability in 

terms of land use within the grasslands. 

9.3. Conclusion 

Based on this study's findings, it can be concluded that geospatial technologies can be 

optimally used to map and monitor the inter- and-intra-seasonal variability of communal grass 

productivity and water-related ecosystem services attributes. Specifically, grassland 

productivity elements, which include biomass, leaf area index, equivalent moisture thickness, 

canopy storage capacity, foliar moisture content, and canopy water content, as well as the 

variations in the extent and magnitude of fragmentation, were all optimally estimated using the 

readily accessible Landsat and Sentinel 2 MSI remotely sensed data in conjunction with robust 

machine learning techniques. Since, the project merely identified the optimal data and tools 

that could be effectively used as proxies to map the variability of grassland productivity in 
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communal areas, this project is a pathway towards the development of a geospatial system 

for monitoring grassland ecosystems. The system will provide actionable information services 

for grassland assessment and monitoring across different key land management areas. 

Specifically, the assessment and monitoring service will deliver satellite-based Earth 

observation spatiotemporal models that will assist users in their operational grassland 

management as well as policy and decision making in the target areas.  

 

9.4. Recommendations 

Several research gaps remain regarding the utility of geospatial technologies and data in 

mapping and monitoring the spatiotemporal dynamics of grassland productivity, especially in 

communal rangelands. 

• There is still a need to assess the utility of integrating deep Machine learning geospatial 

technologies and multi-source data in mapping and monitoring grass physiological 

attributes.  

• The varying pixel size and radiometric resolutions of different earth observation 

sensors utilised in this project could have impacted on the accurate estimation of grass 

productivity and water-related ecosystem services elements. In this regard, future 

research needs to test and compare the utility of various sensors including the newly 

launched Landsat-9 OLI-2 and EnMAP. 

• Research efforts should also be exerted towards understanding the general 

distribution, productivity, water-related ecosystem services and forage quality 

attributes of specifically the sourveld and sweetveld grasses in uMngeni catchment to 

improve and inform the sustainable utilisation of communal grasslands. 

• There is an urgent need to increase research efforts on rangeland management 

strategies that can be implemented in communal areas to create awareness on the 

vital importance of protecting the ecosystems. Future studies could also assess the 

impact of activities such as livestock production and grazing intensity/patterns as well 

as fire administration in communal areas as individual agents impacting on the quality 

and quantity rangelands. 

• Above all, there is still an urgent need to design and implement a Geospatial system 

for monitoring grassland ecosystems. This system will facilitate the smooth 

interpretation and simplification of the generated spatially explicit information on 

grassland productivity dynamics. The simplified information could assist the farmers to 
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fully exploit the generated information, thereby assisting them in reinforcing decision-

making processes for sustainable utilisation of the grasslands. In the long run, this will 

enhance the provision of ecosystem services and livestock production based on 

grassland productivity. 

• There is need for development of comprehensive rangeland management plans, 

tailored to the unique characteristics and challenges of communal grasslands in 

southern Africa. These plans should prioritise sustainable land management practices, 

including rotational grazing systems, controlled burning and restoration initiatives, to 

prevent further degradation and fragmentation of communal rangelands. 

• There is a need to strengthen existing land-use policies and regulatory frameworks to 

promote the conservation and sustainable utilisation of communal grasslands. This 

should integrate measures for addressing the drivers of rangeland degradation, 

including settlement expansion and agricultural intensification, through zoning 

regulations, land use planning, and enforcement mechanism. This could be 

strengthened by fostering community participation and collaboration in rangeland 

management decision-making processes. 
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Appendix F: Workshops  

1. The stakeholders’ workshop, 2022 (Two Days) – Purpose to analyse the problems 

affecting the rangeland for better understanding and in guiding the decision making on 

possible solutions to address the identified problems. Through stakeholders’ 

discussions and agreement, a rangeland management goal was set, and management 

actions were also decided. 

2. Vulindlela workshop, 15 February 2023, A focus Group discussion held with 

communities on explaining seasonal and long-term variability in grass productivity. 
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