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EXECUTIVE SUMMARY 
PROJECT BACKGROUND  

The AIDS pandemic is associated with a global increase in the incidence of mycosis, a disease caused 

by several opportunistic pathogenic fungi, which normally reside in the natural environment. Knowledge 

of the environmental prevalence and interactions of these opportunistic fungal pathogens is thus 

important to ameliorate their impact on humans, especially on the poor living in ever expanding informal 

settlements. The rapid expansion of these informal settlements on the outskirts of cities and towns has 

resulted in an increase in the volume of untreated polluted urban runoff that flows into various river 

systems. Although such polluted waters are known to harbour numerous opportunistic pathogenic fungi, 

including yeasts, relatively little is known about the occurrence and interactions of these fungi in South 

African urban river systems. A better understanding of the presence and environmental behaviour of 

these clinically relevant fungi is essential for the development of strategies to manage this threat. This 

study is therefore aimed at determining the presence, identity, and antifungal resistance of potentially 

pathogenic fungi, especially clinically relevant yeast species, in the Plankenbrug / Eersterivier system 

in Stellenbosch. In addition, the health risks associated with using the river water for domestic use and 

drinking is exemplified here through a provisional quantitative microbial risk assessment (QMRA).  

AIMS 

The aims for the project: 

1. To provide a literature review on existing knowledge of opportunistic fungal pathogens in South 

African surface waters and the potential effects of pollution and rising environmental 

temperatures on these fungi. 

2. To determine the presence and concentrations of opportunistic pathogenic fungi within different 

sections of the Plankenbrug / Eersterivier system as well as report on the level of water pollution 

by means of physicochemical and bacterial indicator data.  

3. To determine the antifungal sensitivity of opportunistic pathogenic fungi originating from the 

different sections in the river system, which are subjected to different levels of pollution.  

4. Carry out quantitative microbial risk assessment (QMRA) to determine the risk of yeast 

infections after exposure to the river water. 

5. Provide recommendations for routine monitoring for potential pathogenic fungi to serve as an 

early warning to the emergence of fungal infections. 

METHODOLOGY 

A literature review was compiled in order to report on the presence of opportunistic and pathogenic 

fungi present in surface water sources, such as rivers, both globally and in South Africa. The review 

also aimed at addressing the effects of pollution as well as rising environmental temperatures on the 

emergence and / or occurrence of these microorganisms in the aquatic environment. Additionally, this 

literature review was compiled in preparation for the experimental work that was carried out for this 

study.  



Opportunistic fungal pathogens in the Plankenbrug / Eersterivier system within the Stellenbosch region 

ii 
 

River water sampling was carried out in Stellenbosch, South Africa. River sections varying in pollution 

levels were selected in order to evaluate the potential associations between polluted environments and 

fungal contaminants. Membrane filtration and thermally selective incubation was employed to 

enumerate and isolate potentially pathogenic yeast species. Additionally, high throughput sequencing 

was applied on one occasion to investigate and compare the presence of pathogenic fungi in the river 

water using molecular and culture-based methods. Metagenomic analyses of the high throughput 

sequence results revealed the viable whole-community fungal composition of the river water, in which 

some pathogenic species were detected. Yeasts isolated from the river water were identified using 28S 

rDNA sequencing and phylogenetic analyses. Subsequently, the cultured yeasts identified as 

representatives of known pathogenic species were subjected to antifungal susceptibility testing to 

determine the level of antifungal resistance among the isolates against commonly used antifungal 

drugs, i.e. Amphotericin B (AmB) and Fluconazole (FLU). Finally, the concentrations of culturable 

pathogenic yeasts species in the river water were used to carry out a quantitative microbial risk 

assessment (QMRA) for yeasts present in the river system. This was achieved using the limited 

available literature detailing the pathogenic potential of a select few yeast species.  

RESULTS AND DISCUSSION 

The threats that opportunistic and pathogenic fungi pose due to their potential to acquire 

thermotolerance and proliferate in polluted environments (Figure 2.1) were discussed in the literature 

review. It was highlighted that a lack of knowledge exists on the occurrence and biology of fungi in 

polluted surface waters, especially in developing countries burdened with many immunocompromised 

individuals, who are known to be highly susceptible to fungal infections.  

Worryingly, using metagenomic analysis and culture-based methods, it was found that pathogenic 

fungal species occur in the river system that was studied. The resolution power of the culture-based 

methods was found to be higher for detection of pathogenic yeast species, compared to the 

metagenomic analysis. On the other hand, the metagenomic analysis revealed that the fungal 

composition between highly polluted and less polluted waters were significantly different, which was not 

observed when the thermotolerant culturable yeast populations were analysed. It was however 

observed that culturable yeast concentrations increase greatly during rainy seasons, concomitantly with 

the increase in predominance of specific yeast species. It was contended that natural factors, other 

than increased oxygen concentrations, could play a major role in fungal species predominance in these 

waters.  

The presence of clinically relevant yeast species prompted further investigation to determine their 

antifungal susceptibility profiles. As such a few isolates resistant to FLU were recovered suggesting that 

these isolates either acquired resistance within these polluted environments or originated from patients 

treated with antifungal drugs. Consequently, the presence of these fungi in the water necessitated 

further investigations into the potential risk of infections via river water ingestion. As such, a provisional 

QMRA study was carried out providing the first quantified risk of yeast infection from drinking river water. 

Overall, this study gave insight into the potential health risks associated with exposure to polluted 
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surface water, especially focussing on the threat that fungal species have on immunocompromised 

individuals.  

GENERAL 

All of the aims of this study were achieved by reporting the presence of opportunistic and pathogenic 

fungi in river water; evaluating the level of pollution in these waters and their possible associations with 

fungi; investigating the antifungal susceptibility profiles of the pathogenic yeasts detected in the river 

water; and finally highlighting the health risks associated with river water exposure through a provisional 

QMRA for yeast infections. Moreover, recommendations for future research highlighted methods that 

could be employed to strengthen the quantification and detection of pathogenic fungal species as well 

as improve on the QMRA of yeast infections.  

CONCLUSIONS 

Combinatorial effects of global warming and increasing pollution in river water might promote the 

emergence of mycoses cases in developing countries such as South Africa. This is especially 

concerning due to the large population of immunocompromised people residing in these countries. 

Moreover, many of these individuals form part of communities that live in rural areas which primary 

water sources are nearby rivers. These environments, due to pollution, have been burdened with 

microbial contaminants. This study revealed that various opportunistic and pathogenic fungi are present 

in these environments. Metagenomic analyses indicated that fungal composition differs between highly 

and less polluted waters. Furthermore, the isolation of yeast species from these waters have indicated 

that natural factors such as higher dissolved oxygen levels might affect the growth and distribution of 

yeast species. These observations prompt further investigation into the physiology and interactions of 

fungal species in polluted environments. Moreover, the correlation observed between opportunistic 

pathogenic species, such as C. glabrata and C. lusitaniae, and pollution indicators suggests possible 

pollution associated recurrence. The presence of fungal pathogens in these waters also suggests that 

there is a risk of fungal infection; however, this risk requires quantification in order to fully determine the 

level of the threat. This study therefore employed a QMRA for yeast infections when river water is used 

for drinking. Despite the limited data available to perform such an assessment, this study calculated the 

risk which indicated that the risk of infection is higher when consuming more polluted water. Overall, 

this study highlighted the risks associated with exposure to polluted river water, focussing on the impact 

of opportunistic and pathogenic fungi.  

RECOMMENDATIONS AND FUTURE RESEARCH 

The final objective of our study was to provide recommendations for the monitoring of opportunistic and 

pathogenic fungi in river water to evaluate any signs of health risks that should be considered. Based 

on the results reported in the experimental chapter, it became evident that a standard procedure for 

fungal pathogen detection is direly needed. We recommend that future studies focus on quantifying 

fungi on a species-specific level. With current available technologies, the most feasible approach is to 

employ molecular techniques. However, we also recommend conducting more studies similar to ours 

which employed both molecular and culture-based techniques in order to be able to study the 
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physiology of the opportunistic or pathogenic fungi occurring in the polluted water. This would lay the 

foundations for an improved QMRA focussing on clinically relevant fungi in future. These research 

opportunities would greatly contribute to future monitoring efforts for mitigating the threat that fungi pose 

in polluted river water.  
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_________________________________________________________________________________ 

GLOSSARY 
_________________________________________________________________________________ 

 

Allochthonous – denoting a microorganism that originated at a different environmental location.  

Anthropogenic environments – environments that were created by humans, such as buildings.  

Antifungal resistance – an acquired or intrinsic trait of a fungus that allows growth in the presence of an antifungal agent 

Chimeric sequences – artifacts in sequences that results due to faulty PCR  

Climate Change – change in global climate patterns such as unusual seasonal changes, natural disasters, etc.  

Dose response model – examines the response of an agent (microbial) within a host 

Exposure assessment – a process during which the route, frequency, and magnitude a specific agent is exposed host is 
evaluated 

Global Warming – increase in atmospheric temperatures induced by anthropogenic activities including industrialisation, 
urbanisation, and farming, all of which increase the release of greenhouse gasses into the atmosphere.  

High-throughput sequencing – parallel sequencing in order to investigate whole-community data sets 

Immunocompromised – lacking proper immune response to eliminate infectious propagules. 

Invasive infection – infection that enters blood stream and can disseminate to the rest of the body.  

Law of Parsimony – also known as Occam’s Razor, here interpreted to mean that investigating a less complex system would 
reduce the number of assumptions made.  

Mass-specific metabolic rate – the rate at which an organism uses energy per gram body weight.  

Metagenomics – study of genetic material that is of environmental origin 

Microevolution – changes in organisms over short period of time (decades instead of millennia).  

Multivariate correlations – linear correlations between a variable and a set of other variables 

Mycoses (singular, mycosis) – diseases caused by fungal species.  

Opportunistic (fungi) – ability of a microorganism generally regarded as safe to cause infection in immunocompromised 
individuals.  

Polyphyletic – a group of organisms with similar traits without common ancestor.  

Relative abundance – the abundance of a particular species / genus / phylum relative to the total number of the respective group 

Species richness – denotes the number of species identified in a sample / region.  

Subcutaneous infection – infection that breaches skin barrier but does not enter blood stream.  

Superficial infection – infection that primarily occurs on surface of skin.  

Thermal pollution (water) – increase in ambient temperatures of water sources caused by anthropogenic activities.  

Thermal restriction zone – a temperature threshold that prevents many fungal species from surviving within mammalian 
species.  

Thermotolerant (fungi) – ability of a fungus to grow at temperatures higher than or equal to mammalian body temperatures.  
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________________________________________________________________________________ 

CHAPTER 1: BACKGROUND 
_________________________________________________________________________________ 

1.1. PROBLEM STATEMENT 

The state of rivers in South Africa can have a negative impact on the health of many individuals who 

are dependent on river water for domestic purposes. Generally, health risks associated with polluted 

surface waters are determined by analysing the bacterial or viral load within these waters; however, 

very little focus is given to other microorganisms, such as opportunistic and pathogenic fungi. The 

information regarding clinically relevant fungi present in aquatic environments is therefore limited. 

Moreover, little is understood regarding the association between fungi and polluted water sources. 

Although a few studies have investigated the above-mentioned, more surveys are needed to draw any 

definitive conclusions about the association between fungal populations and pollution. In addition, 

research on the thermotolerant nature of fungal species identified in rivers and many other natural 

environments can provide insight on the potential for harmless fungi to emerge as human pathogens in 

the future. This entails studies on the effects of global warming on microevolution of fungi to gain 

thermotolerance and thus increase the chances for infection in mammalian species. Considering that 

higher temperatures are one of the major obstacles preventing fungi from causing infections, 

determining the potential of fungi to become thermotolerant is crucial. It is therefore important that the 

role of opportunistic pathogenic fungi in resource environments such as rivers be investigated in order 

to emphasise the potential for these microorganisms to exacerbate fungal disease rates in developing 

countries such as South Africa.  

1.2. AIMS 

The aims for the project: 

1. To provide a literature review on existing knowledge of opportunistic fungal pathogens in South 

African surface waters and the potential effects of pollution and rising environmental 

temperatures on these fungi. 

2. To determine the presence and concentrations of opportunistic pathogenic fungi within different 

sections of the Plankenbrug / Eersterivier system as well as report on the level of water pollution 

by means of physicochemical and bacterial indicator data.  

3. To determine the antifungal sensitivity of opportunistic pathogenic fungi originating from the 

different sections in the river system, which are subjected to different levels of pollution.  

4. Carry out quantitative microbial risk assessment (QMRA) to determine the risk of yeast 

infections after exposure (ingestion) to the river water. 

5. Provide recommendations for routine monitoring for potential pathogenic fungi to serve as an 

early warning to the emergence of fungal infections. 
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1.3. SCOPE OF STUDY 

1.3.1. Literature review – Chapter 2 

Reporting the presence of the clinically relevant fungi that have been identified in various water sources 

across the globe required extensive research. Two major points were considered while listing these 

fungi: specific water source from which the fungus was isolated (in this review focus was given to natural 

surface waters) and determining clinical relevance (based on clinical cases and literature). Additionally, 

the level of pollution of the studied water sources was noted to emphasise the current understanding 

concerning the association between pollution and fungal numbers. Regarding the impact on rising 

environmental temperatures, a holistic approach was applied to address various points of discussion 

such as: activities leading to increase in global temperatures, rising air temperatures linked to increased 

river water temperature, natural origin of thermally tolerant fungi and molecular processes within fungi 

allowing adaptation to increased temperatures. Lastly, the combinatorial effects of both global warming 

and polluted surface waters were interpreted and discussed. 

1.3.2. Experimental work – Chapter 3 

The large population of immunocompromised individuals in South Africa who are, susceptible to fungal 

infections, and dependant on river water for their livelihoods provided motivation for this study. The 

study therefore reported on the presence of potentially pathogenic fungi in polluted surface waters, 

specifically an urban river system. The sampling sites that were selected for the study included 

tributaries and main river sections that would provide a clear picture of the pollution levels, sources of 

pollution and the presence of clinically relevant fungi in the water. The latter was determined using both 

metagenomic analyses of the mycobiome and enumeration of culturable thermotolerant yeast strains. 

While results of both these methods was found to be informative, some limitations of the methodology 

can be highlighted. The first being that only culturable yeasts were enumerated and not culturable 

filamentous fungi, since the spreading growth of the latter on isolation plates renders counting of 

culturable filamentous fungi inaccurate. The second limitation was that compared to the culture method 

used, the metagenomic analysis provided quite limited resolution with regard to the number of clinically 

relevant species in the water. Nevertheless, our results revealed a wide diversity of fungal taxa in the 

waters.  

In addition to determining the fungal diversity in the river system, a provisional QMRA of yeast infections 

was conducted for the river water by using the culturable pathogenic yeast concentrations obtained in 

the calculations. The QMRA framework, however, was dependent on limited literature available on the 

pathogenic potential of only six pathogenic yeast species. Despite this, robust probabilities of infection 

were determined to pave the way for future yeast QMRA studies.  
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________________________________________________________________________________ 

CHAPTER 2: LITERATURE REVIEW 
This literature review titled has been published in the journal Water SA: Steffen HC, Bosch C, Smith K, Wolfaardt 
GM and Botha A (2022). Rising Environmental Temperatures and Polluted Surface Waters: The Prelude to the 

Rise of Mycoses in South Africa. Water SA 48 (2) 199-216 / Apr 2022 
https://doi.org/10.17159/wsa/2022.v48.i2.3918  

_________________________________________________________________________________ 

2.1. ABSTRACT 

South Africa’s rivers are frequently used by communities lacking proper sanitation infrastructure for 

domestic purposes; however, these surface waters may pose a health risk to immunocompromised 

individuals due to the presence of opportunistic pathogenic fungi in the polluted water. Although only a 

few studies have focused on the presence of clinically relevant fungal species in South African rivers, 

many known opportunistic pathogenic species were found to be predominant in these waters. 

Furthermore, strong evidence exists that increased numbers of clinically relevant species may be 

observed in future due to fungi acquiring thermotolerance in response to the global increase in 

temperature. Thermotolerance is a major factor contributing to pathogenesis in fungi, due to the 

generally low tolerance of most fungi toward mammalian body temperatures. It is therefore contended 

that combinatorial effects of water pollution and rising environmental temperatures could lead to an 

increase in the incidence of mycoses in South Africa. This is especially concerning since a relatively 

large population of immunocompromised individuals, represented mostly by HIV-infected people, 

resides in the country.  

Key words: River water; pollution; global warming; mycoses; thermotolerance 

2.2. INTRODUCTION 

Despite the global increase in the incidence of fungal infections, which affect 1 billion individuals and 

cause nearly 1.6 million deaths annually (Brown et al., 2012; Bongomin et al., 2017; Almeida et al., 

2019), only a few fungal taxa have been identified as causative agents of mycoses (Robert and 

Casadevall, 2009; Almeida et al., 2019). This phenomenon was ascribed to the relatively low maximum 

thermal tolerances of most fungi, which are lower than mammalian body temperatures (Robert and 

Casadevall, 2009). Nevertheless, fungi that can grow at mammalian body temperatures cause 

infections that may vary from being superficial, to subcutaneous to systemic (Dupont et al., 2000; 

Garber, 2001; Bicanic and Harrison, 2014; Almeida et al., 2019). Incidents of such mycoses are 

scrupulously reported in developed countries; however, the opposite is true for developing countries, 

where the statistics on fungal infections are likely underestimated to a great degree. Furthermore, the 

largest populations of individuals suffering from HIV / AIDS reside in developing countries (Vearey, 

2011; UNAIDS, 2017; Schwartz and Denning, 2019), which could potentially increase the incidence of 

fungal diseases in these regions, since such immunocompromised individuals are at greater risk of 

acquiring fungal infections (Dupont et al., 1994; Schwartz and Denning, 2019). This is especially 

relevant to South Africa, with its disproportionately large population of HIV-infected people (UNAIDS, 

2021; Schwartz and Denning, 2019; Weimann and Oni, 2019).  

https://doi.org/10.17159/wsa/2022.v48.i2.3918
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There are various mycoses known to be associated with immunocompromised individuals (Guarner, 

2017). Candidiasis, caused by ascomycetous yeasts belonging to the genus Candida, is the most 

common opportunistic fungal infection among HIV-infected patients (Garber, 2001; Moran et al. 2012; 

Guarner, 2017). Of the estimated 3.2 million fungal infections reported annually in South Africa, 

candidiasis represents nearly 2 million (Schwartz and Denning, 2019). Other important mycoses include 

invasive aspergillosis, cryptococcal meningitis, histoplasmosis, as well as Pneumocystis- and 

dermatophyte infections (Guarner, 2017). The causative agents of these infections are regularly 

isolated from natural and anthropogenic environments (Garber, 2001). 

Although mycoses may be obtained from nature, hospital-acquired fungal infections are most common 

and represent the majority of candidiasis and other fungal disease cases reported in literature (Garber, 

2001; Suleyman and Alangaden, 2016; Moazeni et al., 2018). These clinical cases often include fungal 

infections as a result of contaminated catheters, needles, and decreased immunity during organ 

transplants (Suleyman and Alangaden, 2016). Additionally, infections caused by members of the genus 

Aspergillus are acquired due to the exposure of airborne propagules associated with, among others, 

construction sites and ventilation systems of hospitals (Cortez et al., 2008; Benedict et al., 2017). 

Aspergillosis may also develop due to close interaction with certain contaminated foodstuffs and 

vegetation (Walsh and Dixon, 1989). Other habitats, such as decaying trees and pigeon guano, harbour 

notorious members of Cryptococcus, which can infect humans in proximity via inhalation (Restrepo et 

al., 2000; Garber, 2001). Additionally, representatives of pathogenic fungal species were recovered 

from polluted river systems (Luplertlop et al., 2016; Postma, 2016; Assress et al., 2019). Although 

pathogenic fungi are plentiful in nature, studies commonly focus on nosocomial mycoses (Jarvis, 1995; 

Guinea, 2014). The prevalence and interactions of opportunistic fungal pathogens within the natural 

environment, such as rivers, are rarely studied, despite indications that fungal virulence results from 

adaptations that have evolved for protection against adverse conditions in nature (Steenbergen et al., 

2001; Bosch et al., 2020). These conditions include rising environmental temperatures and other 

anomalies as a result of climate change and have been linked with increases in the prevalence of fungal 

diseases in mammals, including humans (Garcia-Solache and Casadevall, 2010; Araújo et al., 2017). 

Research on the ecology of opportunistic fungi in environments conducive to their proliferation, such as 

river systems, is therefore expedient. Focus should be given to developing countries such as South 

Africa, with its large population of immunocompromised individuals (UNAIDS, 2021) and inadequate 

infrastructure accompanied by rapid urbanisation (Schwartz and Denning, 2019). With the ultimate goal 

of obtaining an indication of the potential effects of climate change and anthropogenic pollution on the 

ecology of opportunistic pathogenic fungi in South African rivers, the aim of this literature review was to 

survey existing knowledge on the occurrence of these fungi in the river systems of the region. 

Additionally, this review reflects on the potential effect of increased environmental temperatures, in 

combination with pollution, on the biology of opportunistic pathogenic fungi occurring in these rivers.  

2.3. POLLUTED SURFACE WATERS 

Rivers may become polluted as a result of various anthropogenic activities: agricultural practices, 

industrial processes, expanding urban communities with poor sanitation infrastructure, as well as faulty 
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wastewater treatment operations (Vearey, 2011; Wang et al., 2012; Glińska-Lewczuk et al., 2016; 

Liyanage and Yamada, 2017; Cullis et al., 2019). These may largely contribute to the fungal load in 

water due to the nutrient-rich characteristics of most pollutants. For several decades, the quality of 

water, whether it be used for drinking, ablutions, or irrigation purposes, was evaluated by determining 

the microbiological load thereof (Havelaar et al., 1986). Bacterial indicators have been, and are being, 

extensively used to determine water quality, especially in relation to the level of faecal pollution 

(Havelaar et al., 1986; Haack et al., 2009). Only relatively recently were studies conducted linking fungal 

numbers to pollution levels in river systems (De Almeida, 2005; Brandão et al., 2010; Medeiros et al., 

2012; Stone et al., 2013). Previously the only indicators of fungal contaminants used were taste, odour 

and the number of culturable moulds in the water (Doggett, 2000). While very few studies were aimed 

at investigating the link between fungal numbers and pollution, several authors have studied fungal 

diversity in a wide range of surface water sources – including tap water, rivers, lakes and estuaries 

(Kwasnieskwa, 1988; Hageskal et al., 2009; Pereira et al., 2009; Magwaza et al., 2017; Assress et al., 

2019). Some of the fungi identified during these studies include known clinically relevant yeasts and 

filamentous fungi.  

2.3.1 Clinically relevant fungi 

Pathogenic and opportunistic pathogenic fungi are ubiquitous in the environment (Restrepo et al., 2000; 

Gostinčar et al., 2011; Babič et al., 2017). While the occurrence of some of these fungi has been studied 

extensively in atmospheric (Newbound et al., 2009) and terrestrial environments including animals, 

plants and soils (Restrepo et al., 2000; Gostinčar et al., 2011), relatively little knowledge exists on the 

ecology of clinically relevant fungi in aquatic environments, with only a few studies focusing on polluted 

water. Regardless of the lack of available information, some findings have allowed researchers to 

hypothesise that fungi, particularly yeasts, have the potential to be used as indicators of pollution in 

rivers and other water bodies (De Almeida, 2005; Brandão et al., 2010; Medeiros et al., 2012; Stone et 

al., 2013; Postma, 2016). However, it should also be made a priority to determine the pathogenic fungal 

taxa occurring in polluted rivers, since individuals utilizing these water sources are at risk of acquiring 

mycoses (Weimann and Oni, 2019).  

2.3.1.1. Filamentous fungi 

The most common water-borne filamentous fungi are members of the genera Penicillium, Trichoderma, 

Acremonium, Cladosporium, Aspergillus, Fusarium and Mucor (Babič et al., 2017). Representatives of 

the latter three genera are considered opportunistic, causing invasive fungal infections in immune-

deficient individuals. Members of the remaining genera cause allergies, as well as subcutaneous and 

superficial infections, especially among those suffering from immunodeficiency. Despite the low health 

risk, compared to invasive infections, superficial infections remain concerning due to the associated 

negative impact on quality of life (Weimann and Oni, 2019).  

To date, no substantial evidence exists on the presence of pathogenic filamentous fungi in the river 

systems of South Africa. This, however, does not negate the danger associated with the presence of 

these fungi in rivers, but rather encourages researchers to investigate neglected environments 

(Schwartz and Denning, 2019). Investigating such understudied environments is of particular 
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importance considering current evidence of disease-causing filamentous fungi detected in different 

European water sources – especially tap water (Novak Babič et al., 2018). It is well known that surface 

waters are sources for drinking and tap water (UN Water, 2006; WHO, 2017). These water sources are 

treated before distribution, but the treatment processes are not feasible for rivers, lakes and other 

surface waters that are used as primary water sources by some communities (Colvin et al., 2016; 

Edokpayi et al., 2018). Recent studies, however, have revealed that fungi can survive conventional 

treatment processes and persist in tap water, as was observed in some hospitals (Arroyo et al., 2020; 

Caggiano et al., 2020). Nevertheless, the fungal composition of treated surface water could be 

significantly different from untreated surface water and therefore in this review only fungi present in 

rivers and other natural water sources were evaluated.  

Globally, two major fungal groups were detected in the few river systems that were studied: 

Mucoromycota and Ascomycota (Arvanitidou et al., 2005; Pietryczuk et al., 2018; Machido et al., 2015). 

Mucoralean fungi were found to be the only representatives of the phylum Mucoromycota that occurred 

within rivers in Greece. These included members of Mucor, Absidia and Rhizopus (Arvanitidou et al., 

2005). Species within these genera cause mucormycosis – an invasive fungal infection which can 

manifest in the lungs, cutaneous and subcutaneous dermis, nose cavities, brain, intestines and 

bloodstream (Spellberg and Maertens, 2019). Recently, cases of mucormycosis have increasingly been 

reported among patients suffering from Covid-19 (Garg et al., 2021; Werthman-Ehrenreich et al., 2021). 

Members of Absidia have also caused infections in individuals suffering from burn wounds (Christiaens 

et al., 2005). These infections are invasive, invading organs and the bloodstream, with detrimental 

health outcomes (Harrison and Brouwer, 2009).  

It must be noted that although immunosuppressed individuals are especially susceptible to invasive 

fungal infections, rare cases of rhinocerebral mucormycosis, as well as other mycoses, have been 

observed in immunocompetent patients (Hussain et al., 1995; Leyngold et al., 2014). In contrast, non-

invasive superficial fungal infections caused by a variety of different fungi are very common among 

patients with immune deficiencies (Huang et al., 2004), and noticeable superficial infections on 

epidermal regions are considered a presenting feature of individuals diagnosed with AIDS (Lohoué 

Petmy et al., 2004; Benedict et al., 2017).  

Some fungi that are known to occur in rivers are capable of causing both invasive and superficial 

infections (Arvanitidou et al., 2005). These include members of the genera Aspergillus and Penicillium 

belonging to the orders Eurotiales; Alternaria and Curvularia of the order Pleosporales; as well as 

Fusarium and Verticillium belonging to Hypocreales. Representatives of the genera Aspergillus and 

Penicillium spp. were among the most frequently isolated filamentous fungi found during a survey of 

rivers in Greece. Although many beneficial strains representing Penicillium exist that are used in the 

food and pharmaceutical industries (Sousa et al., 2001; Elander, 2003), it is known that some members 

of this genus can cause keratitis, pneumonia, endocarditis, necrotising esophagitis, endophthalmitis, 

urinary tract infections and peritonises (Hu et al., 2013). Aspergillus fumigatus and Aspergillus niger 

that were found in Polish rivers (Pietryczuk et al., 2018) are both associated with aspergillosis, which is 
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one of the leading causes of death among AIDS individuals (GAFFI, 2017). Recently, cases of Covid-

19 associated pulmonary chronic aspergillosis have also been reported (Arastehfar et al., 2020).  

Verticillium, another genus harbouring waterborne fungi (Schiavano et al., 2014; Novak Babič et al., 

2018), is represented by species associated with peritonises, as well as subcutaneous infections. The 

latter ensues when a microorganism breaches the epidermal barrier and migrates into the innermost 

layer of skin where blood vessels and nerves are located (Kujath and Kujath, 2010). While it is known 

that some bacteria produce proteins that enable infiltration of blood vessels, little information is available 

for fungi presenting the same mechanisms (Lipke, 2018). Nonetheless, in the probable event that some 

pathogenic fungi harbour these proteins, the proximity between the microorganisms and blood vessels 

in subcutaneous tissue could lead to systemic infections where the infectious agents are disseminated 

to other parts of the body. The subcutaneous tissue is also found directly on top of the musculoskeletal 

tissue, an area that some representatives of Fusarium are known to infect (Koehler et al., 2016). Both 

Fusarium and Verticillium spp. have been associated with superficial and invasive infections (Kujath 

and Kujath, 2010; Koehler et al., 2016), while other members of the Hypocreales from rivers, such as 

species of Acremonium and Cylindrocarpon, are more commonly known to cause superficial infections, 

such as mycetoma (Welsh et al., 2007; Arvanitidou et al., 2005; Pietryczuk et al., 2018).  

Of the pleosporalean fungi that were found in Greek rivers, members of Curvularia and Pyrenochaeta 

were rarely encountered, whereas representatives of Alternaria were frequently isolated (Arvanitidou et 

al., 2005). Curvularia and Pyrenochaeta harbour species associated with cutaneous infections and 

invasive fungemia. Alternaria species, however, are involved in other less invasive infections such as 

rhinosinusitis, onychomycosis and oculomycosis (Pastor and Guarro, 2008). Additionally, in a recent 

study done by Pietryczuk et al. (2018), Alternaria alternata was identified in 4 out of 5 rivers surveyed 

in Poland.  

Onygenalean fungi, which represent members that cause tineas, were also detected in natural surface 

waters (Arvanitidou et al., 2005; Machido et al., 2015; Novak Babič et al. 2018). Two genera, Emmonsia 

and Chrysosporium, were frequently encountered in Greek rivers (Arvanitidou et al., 2005) and 

represent fungi typically associated with disseminated- or superficial infections, respectively (Kenyon et 

al., 2013; Mijiti et al., 2017). Other members of the Onygenales which were isolated from river systems 

in Europe and Africa were representatives of Microsporum and Trichophyton (Arvanitidou et al., 2005; 

Machido et al., 2015), genera that include keratolytic fungi and are frequently associated with tineas 

(Schwinn et al., 1995; Brito-Santos et al., 2017). For example, Microsporum canis, which has been 

isolated from surface waters, as well as Trichophyton tonsurans and Trichophyton violaceum that have 

been isolated from rivers (Machido et al., 2015; Pietryczuk et al., 2018; Novak Babič et al., 2018), are 

all known to cause tinea capitis (Sombatmaithai et al., 2015; Pasquetti et al., 2017; Morales et al., 2019).  

Other ascomycetous filamentous fungi occurring in surface waters that have mostly been associated 

with cutaneous infections are members of the order Chaetothyriales (Novak Babič et al., 2018; 

Pietryczuk et al., 2018). A chaetothyrialean fungus, Exophalia dermatitidis, associated with both 

cutaneous infections, as well as with respiratory infections in cystic fibrosis patients, was isolated from 

Polish rivers (Pietryczuk et al., 2018). Also isolated from these rivers were microascalean fungi 
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belonging to the genus Scopulariopsis. Representatives of this genus are known to be the causative 

agents for different mycoses, ranging from superficial, to pulmonary and systemic infections (Iwen et 

al., 2012; Sandoval-Denis et al., 2013). It is important to mention that Microascales also harbours 

emerging pathogens such as members of the genus Scedosporium, which are commonly associated 

with wastewater sources (Skiada et al., 2017). Considering that wastewater is a major component of 

the pollution in rivers, further investigation into the diversity of Scedosporium spp. and other 

opportunistic filamentous fungi in natural surface waters is imminent.  

2.3.1.2. Yeasts 

The majority of fungal infections are caused by yeasts (Miceli et al., 2011; Bongomin et al., 2017; 

Lamoth et al., 2018; Ocansey et al., 2019; Schwartz and Denning, 2019). These opportunistic unicellular 

fungi usually belong to genera such as Candida and Rhodotorula, which were among the prevalent 

yeasts occurring in polluted surface waters (Sláviková and Vadkertiová, 1997; De Almeida et al., 2005; 

Gadanho et al., 2006; Coelho et al., 2010; Medeiros et al., 2012; Pietryczuk et al., 2014; Monapathi et 

al., 2020). The invasive infections caused by these yeasts often have devastating effects on human 

organs, including the liver, heart, lungs, and brain. These infections, however, are rare among 

immunocompetent individuals and occur mostly among immunocompromised patients, such as those 

suffering from HIV / AIDS (Low and Rotstein, 2011).  

Compared to filamentous fungi, more literature is available on the prevalence and presence of 

unicellular fungi in surface waters (Buzzini et al., 2017). This can be attributed to the non-spreading 

nature of yeast colonies on microbiological media, enabling researchers to more readily enumerate 

yeasts and link their numbers to environmental factors (Sláviková and Vadkertiová, 1997; De Almeida, 

2005; Gadanho et al., 2006; Coelho et al., 2010; Medeiros et al., 2012; Stone et al., 2012; Van Wyk et 

al., 2012). Additionally, more yeast-related surveys could have been conducted in water sources than 

what were carried out for filamentous fungi, due to the disproportional disease burden associated with 

yeasts and the implicated higher health risk (Miceli et al., 2011; Bongomin et al., 2017; Lamoth et al., 

2018; Ocansey et al., 2019; Schwartz and Denning, 2019).  

A number of surveys on yeasts occurring in rivers was conducted across the globe (Table 1), yet there 

is still a paucity of published information available on yeasts associated with river systems in South 

Africa (Table 2). Limited data originating from only two provinces have been published thus far: Western 

Cape and North-Western Province (Stone et al., 2012; Van Wyk et al., 2013; Monapathi et al., 2017; 

Monapathi et al., 2020).   
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Table 2.1: List of clinically relevant yeast and yeast-like fungi found in surface waters of countries 
other than South Africa. 
Yeast Species (Synonym) Infections Water Source Reference 

Ascomycetes   
Aureobasidium pullulans Fungemia, subcutaneous 

infections, disseminated 
infections 1, 2, 3 

Sláviková & Vadkertiová 
(1997) 

Candida albicans Candidal vulvovaginitis, 
candidemia, candidiasis 

Buck & Bubucis (1978); 
Arvanitidou et al. (2005); 
Yamaguchi et al. (2007); 
Pietryczuk et al. (2018) 

Candida blankii Fungemia 4 Medeiros et al. (2012) 
Candida catenulata Superficial- and invasive 

infections 5, 6 
de Almeida (2005); Medeiros 
et al. (2012) 

Candida glabrata Candidiasis (urogenital tracts), 
candidemia 7, 8, 9 

Yamaguchi et al. (2007); 
Coelho et al. (2010); Medeiros 
et al. (2012) 

Candida inconspicua Candidemia 10 Sláviková & Vadkertiová 
(1997) 

Candida intermedia Fungemia 11 Sláviková & Vadkertiová 
(1997); de Almeida (2005) 

Candida lambica Fungemia, polyarthritis 12, 13 Sláviková & Vadkertiová 
(1997) 

Candida palmioleophila Endophthalmitis, Fungemia 
14, 15 

Coelho et al. (2010); Medeiros 
et al. (2012) 

Candida parapsilosis Sepsis, wound and tissue 
infections (subcutaneous and 
cutaneous) 9 

Sláviková & Vadkertiová 
(1997); de Almeida (2005); 
Yamaguchi et al. (2007); 
Coelho et al. (2010); Medeiros 
et al. (2012) 

Candida pararugosa Fungemia 16 Medeiros et al. (2012) 
Candida rugosa Candidemia (burn patients) 17 Medeiros et al. (2012) 
Candida tropicalis Candidemia 9 Sláviková & Vadkertiová 

(1997) 
Candida zeylanoides Fungemia, endocarditis 18, 19  Arvanitidou et al. (2005); 

Coelho et al. (2010) 
Clavispora lusitaniae 
(Candida lusitaniae) 

Intra-abdominal candidiasis 20 de Almeida (2005); Coelho et 
al. (2010) 

Debaryomyces hansenii 
(Candida famata) 

Invasive fungemia, central 
nervous system infections, 
fungemia 21, 22, 23, 24, 25 

Sláviková & Vadkertiová 
(1997); de Almeida (2005); 
Gadanho et al. (2006); Coelho 
et al. (2010); Medeiros et al. 
(2012) 

Geotrichum candidum Disseminated infections, 
superficial infections 26, 27 

Sláviková & Vadkertiová 
(1997) 

Kluyveromyces marxianus 
(Candida kefyr) 

Candidemia 28 Coelho et al. (2010); Medeiros 
et al. (2012) 

Metschnikowia pulcherrima 
(Candida pulcherrima) 

Fungemia 29 Sláviková & Vadkertiová 
(1997) 

Meyerozyma guilliermondii 
(Candida guilliermondii, Pichia 
guilliermondii) 

Onychomycosis (tinea), 
invasive infections (rare), 
Fungemia 30 

Sláviková & Vadkertiová 
(1997); de Almeida (2005); 
Coelho et al. (2010); Medeiros 
et al. (2012) 

Meyerozyma caribbica 
(Candida fermentati) 

Fungemia 31 Coelho et al. (2010) 

Pichia anomala (Candida 
pelliculosa, Hansenula 
anomala) 

Fungemia (paediatric), urinary 
tract infection 32, 33, 34 

Sláviková & Vadkertiová 
(1997); Coelho et al. (2010) 
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Table 2.1 (continued): List of clinically relevant yeast and yeast-like fungi found in surface waters of 
countries other than South Africa.  
Yeast Species (Synonym) Infections Water Source Reference 

Ascomycetes  
Pichia kudriavzevii (Candida 
krusei, Issatchenkia orientalis) 

Fungemia 35 Sláviková & Vadkertiová 
(1997); Coelho et al. (2010); 
Medeiros et al. (2012) 

Saccharomyces cerevisiae Fungemia 36 Sláviková & Vadkertiová 
(1997); Coelho et al. (2010) 

Yarrowia lipolytica (Candida 
lipolytica) 

Fungemia, superficial 
infections 37 

Coelho et al. (2010); Medeiros 
et al. (2012) 

Basidiomycetes   
Cryptococcus albidus 
(Naganishia albida) 

Cryptococcaemia, superficial 
infections 38, 39 

Sláviková & Vadkertiová 
(1997); Pereira et l. (2009); 
Coelho et al. (2010); Medeiros 
et al. (2012) 

Cryptococcus laurentii 
(Papiliotrema laurentii) 

Superficial infections, lung 
abscesses, fungemia, 
endophthalmitis 39 

Sláviková & Vadkertiová 
(1997); Coelho et al. (2010); 
Medeiros et al. (2012) 

Cryptococcus luteolus Diffuse infiltration of lungs, 
tenosynovitis 40 

Medeiros et al. (2012) 

Cryptococcus magnus Vulvovaginitis, cryptococcosis 
in cats 41, 42 

Medeiros et al. (2012) 

Filobasidium uniguttulatum 
(Cryptococcus uniguttulatum) 

Meningitis 43 Coelho et al. (2010) 

Rhodotorula glutinis Fungemia, meningitis, 
onychomycosis (tinea) 44, 45, 46 

Sláviková & Vadkertiová 
(1997); Coelho et al. (2010); 
Medeiros et al. (2012) 

Rhodotorula minuta Endophthalmitis, 
onychomycosis (tinea), 
fungemia 47, 48, 49 

Sláviková & Vadkertiová 
(1997) 

Rhodotorula mucilaginosa 
(Rhodotorula rubra) 

Fungemia, meningitis, 
endocarditis, peritonises, 
endophthalmitis, 
onychomycosis (tinea) 45, 50, 51, 

52, 53 

Sláviková & Vadkertiová 
(1997); de Almeida (2005); 
Gadanho et al. (2006); Coelho 
et al. (2010); Medeiros et al. 
(2012); Pietryczuk et al. (2018) 

Sporobolomyces 
salmonicolor 

Pseudomeningitis, dermatitis, 
endogenous endophthalmitis, 
fungemia 54, 55, 56, 57 

Sláviková & Vadkertiová 
(1997) 

Trichosporon cutaneum Disseminated infections, 
endocarditis, superficial 
infections 58, 59, 60 

Sláviková & Vadkertiová 
(1997) 

Trichosporon mucoides Onychomycosis, fungemia 61, 62 Pietryczuk et al. (2018) 

References to yeast epidemiology: 1 Kaczmarski et al. (1986); 2 Joshi et al. (2010); 3 Bolignano et al. (2003); 4 
Nobrega de Almeida et al. (2018); 5 Radosavljevic et al. (1999); 6 Ha et al. (2018); 7 Leaw et al. (2007); 8 Jarvis et 
al. (1995); 9 Silva et al. (2012); 10 Guitard et al. (2013); 11 Ruan et al. (2010); 12 Trowbridge et al. (1999); 13 Vervaeke 
et al. (2008); 14 Datta et al. (2015); 15 Sugita et al. (1999); 16 El Helou & Palavecino (2017); 17 Pfaller et al. (2006); 
18 Levenson et al. (1991); 19 Whitby et al. (1996); 20 Vergidis et al. (2016); 21 Carrega et al. (1997); 22 Prinsloo et al. 
(2008); 23 Beyda et al. (2013); 24 Wong et al. (1982); 25 Wagner et al. (2005); 26 Kassamali et al. (1987); 27 
Sfakianakis et al. (2007); 28 Taj-Aldeen et al. (2014); 29 Bereczki et al. (2012); 30 GŘler et al. (2017); 31 Lockhart et 
al. (2009); 32 Baron et al. (1988); 33 Qadri et al. (1988); 34 Chakrabarti et al. (2001); 35 Scorzoni et al. (2013); 36 

Muños et al., (2005); 37 Boyd et al. (2017); 38 Hoang & Burruss et al. (2007); 39 Kordossis et al. (1998); 40 Hunter-
Ellul et al. (2014); 41 Ghajari et al. (2018); 42 Poth et al. (2010); 43 Pan et al. (2012); 44 Shinde et al. (2008); 45 Hsueh 
et al. (2003); 46 Wirth & Goldani (2012); 47 Goldani et al. (1995); 48 Pinna et al. (2001); 49 Zhou et al. (2014); 50 Lo 
Re et al. (2003); 51 Gyaurgieva et al. (1996); 52 Eisenberg et al. (1983); 53 Merkur et al. (2002); 54 Sharma et al. 
(2006); 55 Bross et al. (1986); 56 Bergman & Kauffman (1984); 57 Tang et al. (2015); 58 Gold et al. (1981); 59 Marier 
et al. (1978); 60 Madhavan et al. (1976); 61 Rizzitelli et al. (2016); 62 Colombo et al. (2011) 
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The most dominant of the opportunistic pathogenic yeasts identified in rivers of South Africa (Table 2), 

as well as other countries (Table 1), were found to be ascomycetous yeasts, especially members of the 

genus Candida (De Almeida, 2005; Coelho et al., 2010; Medeiros et al., 2012; Van Wyk et al., 2012; 

Monapathi et al., 2017). Whether the predominance of these clinically relevant ascomycetes is 

associated with certain environmental parameters is still unclear. Considering the positive correlation 

observed between pollution indicators and yeast numbers, as well as the prevalence of ascomycetes 

in some studies, research on the link between yeasts and physicochemical parameters is imminent 

(Sláviková and Vadkertiová, 1997; Gadanho et al., 2006; Coelho et al., 2010; Medeiros et al., 2012; 

Stone et al., 2012; Van Wyk et al., 2012). Thus far, when researchers analysed the pollution levels of 

river water, results varied: some authors reported higher than normal concentrations of nitrogen and 

phosphate (Sláviková and Vadkertiová, 1997; Medeiros et al., 2012), others reported that yeast 

numbers correlate with temperature and pH (Gadanho et al., 2006; Van Wyk et al., 2012) or that yeast 

prevalence is related to faecal coliform numbers (Coelho et al., 2010; Stone et al., 2012).  

The South African rivers that were investigated were considered to be diffusely polluted, contaminated 

with exceedingly high levels of dissolved solids, nitrates and phosphates (Van Wyk et al., 2012; 

Monapathi et al., 2017), as well as faecal matter (Stone et al., 2012). The latter is of considerable 

concern since members of clinically relevant species including Pichia kudriavzevii (syn. Candida 

krusei), Candida tropicalis, Candia parapsilosis, Candida rugosa, Papiliotrema laurentii (syn. 

Cryptococcus laurentii), Cyberlindnera jadinii (syn. Candida utilis), Meyerozyma guilliermondii (syn. 

Candida guilliermondii), Rhodotorula glutinis and Rhodotorula mucilaginosa (syn. Rhodotorula rubra) 

have previously been associated with sewage and sewage-polluted water (Cooke et al., 1960). In South 

Africa, many municipalities have neglected the maintenance of sewage treatment infrastructure, 

causing the release of raw and partially treated sewage into river systems (Herbig, 2019). The heavy 

load of excrement and other pollutants in sewage is well known to increase the quantity of organic 

carbon, including chemicals and other substrates that sustain growth of potentially harmful 

microorganisms (Liu et al., 2015). In tandem, anthropogenic waste depository from individuals residing 

near riverbanks extends the list of pollutants entering surface waters. Among the anthropogenic 

pollution entering river systems are chemicals such as antibiotics and even antifungals (Chitescu et al., 

2015). While the above-mentioned aberrations with regard to physicochemical parameters are known 

to indicate pollution in river systems, no attempt was made thus far to correlate these parameters with 

the numbers of pathogenic yeast species in these polluted waters.   
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Table 2.2: List of clinically relevant yeast and yeast-like species found in surface waters of South 
Africa. 

Yeast Species (Synonym) Infections Water Source Reference 

Ascomycetes  
Candida albicans Candidal vulvovaginitis, 

candidemia, candidiasis 
Stone et al. (2012); Monapathi 
et al. (2017); Monapathi et al. 
(2020b) 

Candida bracarensis Candidemia 1 Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Candida catenulata Superficial- and invasive 
infections 2, 3 

Van Wyk et al. (2012) 

Candida glabrata Candidiasis (urogenital tracts), 
candidemia 4, 5, 6 

Belford (2013); Postma (2016); 
Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Candida globosa Candidiasis 4, 5 Van Wyk et al. (2012) 
Candida haemulonii Candidiasis 7 Monapathi et al. (2020b) 
Candida parapsilosis Sepsis, wound and tissue 

infections (subcutaneous and 
cutaneous) 6 

Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Candida rugosa Candidemia (burn patients) 9 Van Wyk et al. (2012) 
Candida sake Endocarditis, peritonises, 

candidemia 10 
Van Wyk et al. (2012); 
Monapathi et al. (2020b) 

Candida tropicalis Candidemia 6, 11 Van Wyk et al. (2012); Belford 
(2013); Bezuidenhout (2013); 
Postma (2016); Monapathi et al. 
(2017); Monapathi et al. 
(2020b) 

Clavispora 
lusitaniae (Candida lusitaniae) 

Intra-abdominal candidiasis 12 Van Wyk et al. (2012); 
Bezuidenhout (2013); Postma 
(2016); Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Cyberlindnera fabianii Pneumonia, fungemia, 
endocarditis, prostatitis 13 

Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Cyberlindnera jadinii 
(Candida utilis) 

Candidemia 14, 27 Belford (2013); Postma (2016); 
Monapathi et al. (2020b) 

Kluyveromyces marxianus 
(Candida kefyr) 

Bloodstream infection 15 Monapathi et al. (2020b) 

Meyerozyma guilliermondii 
(Candida guilliermondii, Pichia 
guilliermondii) 

Fungemia 16 Van Wyk et al. (2012); 
Bezuidenhout (2013); 
Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Meyerozyma caribbica 
(Candida fermentati) 

Fungemia 16 Monapathi et al. (2020b) 

Pichia anomala (Candida 
pelliculosa, Hansenula 
anomala) 

Candidemia 8  Van Wyk et al. (2012) 

Pichia kudriavzevii (Candida 
krusei, Pichia guilliermondii)  

Fungemia 17, 18 Belford (2013); Bezuidenhout 
(2013); Postma (2016); 
Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Saccharomyces cerevisiae Fungemia 19 Belford (2013); Postma (2016) 
Monapathi et al. (2020b) 

Wickerhamomyces 
anomalus 

Fungemia (neonates) 20 Bezuidenhout (2013); 
Monapathi et al. (2017); 
Monapathi et al. (2020b) 

Yarrowia lipolytica (Candida 
lipolytica) 

Fungemia, superficial 
infections 21 

Monapathi et al. (2020b) 
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Table 2.2 (continued): List of clinically relevant yeast and yeast-like species found in surface waters 

of South Africa. 

Yeast Species (Synonym) Infections Water Source Reference 

Basidiomycetes  
Cryptococcus laurentii 
(Papiliotrema laurentii) 

Superficial infections, lung 
abscesses, fungemia, 
endophthalmitis 22 

Van Wyk et al. (2012) 

Rhodotorula glutinis 
 

Fungemia, meningitis, 
onychomycosis (tinea) 23, 24, 25 

Van Wyk et al. (2012); 
Bezuidenhout (2013) 

Rhodotorula mucilaginosa 
(Rhodotorula rubra) 

Fungemia, meningitis, 
endocarditis, peritonises, 
endophthalmitis, 
onychomycosis (tinea) 25 

Van Wyk et al. (2012); 
Bezuidenhout (2013) 

Trichosporon ovoides White Piedra (tinea) 26 Postma (2016); Monapathi et al. 
(2020b) 

References to yeast epidemiology: 1 Warren et al. (2010); 2 Radosavljevic et al. (1999); 3 Ha et al. (2018); 4 Leaw 
et al. (2007); 5 Jarvis et al. (1995); 6 Silva et al. (2012); 7 Coles et al. (2020); 8 Jung et al. (2018a); 9 Pfaller et al. 
(2006); 10 Juneja et al. (2011); 11 Zuza-alves et al. (2017); 12 Vergidis et al. (2016); 13 Park et al. (2019); 14 

Scoppettuolo et al. (2014); 15 Seth-Smith et al. (2020); 16 GŘler et al. (2017); 17 Scorzoni et al. (2013); 18 
Nagarathnamma et al. (2017); 19 Muñoz et al. (2005); 20 Yılmaz-Semerci et al. (2017); 21 Boyd et al. (2017); 22 
Molina-Leyva et al. (2013); 23 Shinde et al. (2008); 24 Hsueh et al. (2003); 25 Wirth & Goldani (2012); 26 Colombo et 
al. (2011); 27 Treguier et al. (2018) 

To enumerate and isolate clinically relevant fungi, including yeasts, from surface waters, an incubation 

temperature of 37˚C was employed by some authors, (Buck and Bubucis, 1978; De Almeida, 2005; 

Yamaguchi et al., 2007; Coelho et al., 2010). Others incubated their isolation plates at room temperature 

to determine overall yeast numbers in surface waters. Interestingly, Coelho et al. (2010) identified 

yeasts incubated at both room temperature and 37˚C and found that the numbers of the predominant 

species cultivated at the latter temperature correlated with E. coli numbers and therefore with the level 

of faecal contamination. Yeast numbers occurring on isolation plates that were incubated at room 

temperature, however, showed no significant correlation with faecal coliform numbers.  

The positive correlation between faecal coliform numbers and yeast counts obtained after incubation at 

37°C, further suggests that these unicellular fungi are allochthonous – originating from other sources 

and subsequently introduced to the river water (Weimann and Oni, 2019; Arvanitidou et al., 2002). A 

potential source of these yeasts can be anthropogenic pollution (Dynowska, 1997; Coelho et al., 2010; 

Herbig and Meissner, 2019; Weimann and Oni, 2019). While the inhabitants of rural communities may 

be one of the sources of river pollution, they also tend to be at risk, especially individuals predisposed 

to infection because of immune deficiencies (Vearey, 2011).  

It is disconcerting that some of the most clinically relevant species of Candida were isolated from South 

African rivers (Table 2): C. albicans, C. tropicalis, C. glabrata and C. parapsilosis (Miceli et al., 2011). 

The same representatives were isolated from surface waters in other countries such as Portugal, 

Greece, Poland and Brazil (Arvanitidou et al., 2005; De Almeida, 2005; Coelho et al., 2010; Medeiros 

et al., 2012, Pietryczuk et al., 2018). The occurrence of renowned clinically relevant yeasts in different 

geographical regions of the world emphasises the need for more ecological surveys for the presence 

of these unicellular fungi in ecosystems. To understand why these yeasts, persist and grow within 

ecosystems, such surveys should be accompanied by analyses of anthropological activity including 
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assessment of pollution indicators and measurement of physicochemical parameters. The latter 

includes parameters such as the nutrient levels, pH, as well as the temperature of surface waters. 

2.4. RISING ENVIRONMENTAL TEMPERATURES  

Life on Earth is sustained by the natural greenhouse gases found in the atmosphere; however, 

industrialisation and other anthropogenic activities involving fossil fuel combustion have impinged on 

the natural environment and largely contributed to climate change (IPCC, 2018; IPCC, 2021). Since the 

industrial revolution that started in 1760, the increased emissions of greenhouse- and other deleterious 

gases have contributed to a rise in global temperature. In addition, the exponential increase in the 

population caused agriculture to expand in order to meet the high food demand. Livestock farming, for 

instance, is now recognised as another contributor to global warming due to deforestation (land to farm) 

as well as an increase in released methane (Ilea, 2009). This has led to the total increase of an 

estimated 1°C in global temperatures and a further increase of up to 2°C has been hypothesised for 

future decades (IPCC, 2018; IPCC, 2021). In accordance with global predictions, South Africa has seen 

a 2°C increase since the industrial revolution (1760) and it is projected that a 0.12-0.5°C/decade rise 

will be observed in future (USAID, 2015).  

This world-wide rise in temperatures has been collectively referred to as global warming (Lineman et 

al., 2015). Disastrous consequences of this anthropogenically influenced phenomenon include the loss 

of ice in Antarctica and Greenland, accompanied by a rise in sea levels (Hansen et al., 2016; IPCC, 

2021). Thus far, global warming has had detrimental effects on ecosystems and biomes across the 

globe. Increased temperatures were found to heighten the threat of species extinction within many 

habitats, such as montane forests and other terrestrial environments (Malcolm et al., 2006). Recent 

studies have shown that climate change also increases the temperature of freshwater aquatic 

environments (Morrison et al., 2002; Van Vliet et al., 2011; Chen et al., 2016; Nusslé et al., 2015; Pohle 

et al., 2019; Kedra, 2020; Liu et al., 2020). The rising river water temperatures in some of these studies 

were found to be congruent with the rise in air temperatures, suggesting a direct link between thermally 

altered waters and global warming (Van Vliet et al., 2011; Chen et al., 2016; Pohle et al., 2018; Kedra, 

2020; Liu et al., 2020). As such, excess heat because of anthropogenic activities – also referred to as 

thermal pollution – may therefore be one of the main causes for increased water temperatures (Nordell 

et al., 2003; Verones et al., 2010; Liu et al., 2020).  

The effects on the microorganisms present in thermally altered waters have not been fully described, 

despite their crucial roles in biogeochemical cycling and other processes essential for a fully functional 

and diverse ecosystem (Sigee, 2005). Fungi, in particular, are largely understudied in aquatic 

ecosystems, with little to no knowledge available on how thermal pollution in water affects these 

microbes (Grossart et al., 2019). However, potential links between the emergence of pathogenic fungi 

and rising ambient temperatures have been discussed by some mycologists (Garcia-Solache and 

Casadevall, 2010; Casadevall et al., 2020), and positive correlations have been observed between the 

presence of fungal pathogens in river systems and water pollution levels (De Almeida, 2005; Brandão 

et al., 2010; Medeiros et al., 2012; Stone et al., 2012; Postma, 2016). Thus, a holistic approach is 
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needed to investigate the combinatorial effects of both water pollution and global warming on the 

emergence of fungal pathogens. 

2.4.1. Global warming and emerging mycoses 

Fungi are well known infectious agents of various organisms, including plants and mammals as well as 

amphibians (Garber, 2001). Batrachochytrium dendrobatidis is a good example of a notorious causative 

agent of chytridiomycosis among many frog species. Since the emergence of this fungus, researchers 

have contended that the decline in frog species due to this pathogen is linked to the global rise in 

temperature (Longcore et al., 1999; Wake and Vredenburg, 2008; Fisher et al., 2009). Although the 

correlation analysis linking global warming to the decline of amphibian species has been queried by 

some (Rohr et al., 2008), many other researchers have emphasised the role of rising temperatures in 

species extinction (Pounds et al., 2006; Alford et al., 2007; D’Amen and Bombi, 2009). These studies 

employed statistical models to determine correlations between rising temperatures and declining 

species numbers (Pounds et al., 2006; Alford et al., 2007; Rohr et al., 2008; D’Amen and Bombi, 2009), 

but failed to consider other biological factors. Recently, however, researchers have begun to study the 

specific relationship between host and pathogen during climate changes (Cohen et al., 2017; Neely et 

al., 2020). The thermal mismatch theory was formulated, which states that as environmental conditions 

deviate from the optimal conditions required for host survival, susceptibility towards infectious agents 

will increase (Chen et al., 2011; Cohen et al., 2017). Although this theory is limited to cold-adapted 

hosts, it has provided opportunities to discover important traits of the associated pathogens. For 

example, it was found that microbial symbionts, specifically pathogens, have a broader thermal breadth 

than their hosts (Neely et al., 2020), due to the higher mass-specific metabolic rates of smaller 

organisms, thus allowing for a more rapid adaptation to environmental change (Cohen et al., 2017). 

Understanding these and similar microbial characteristics provides opportunities to determine how 

environmental fungi may adapt to climate change and evolve to survive the conditions of a mammalian 

host. It must be noted, however, that little research has been conducted on intraspecies differences in 

thermal breadth, between pathogenic fungi recovered from natural environments and that of laboratory 

or clinical strains. Such studies may provide better insight into how environmental stressors like 

elevated temperatures could facilitate adaptation.  

Garcia-Solache and Casadevall (2010) presented an important hypothesis averring that mammalian 

fungal infections will increase as a result of global warming. This hypothesis requires an understanding 

of how pathogens adapt to specifically overcome the restrictions associated with the mammalian body. 

In humans, fungal infections have mainly occurred in individuals with immune deficiencies, while 

relatively few cases were recorded among immunocompetent persons (Badiee and Zare, 2017). This 

is largely owing to the complex and effective immune systems unique to jawed vertebrates, which 

provide extensive protection against fungal pathogens (Shoham and Levitz, 2005). In addition, an 

equally effective preventative mechanism is the thermal restriction zone. Endothermic animals can 

regulate body temperature in response to infection during which basal temperatures increase in a 

process known as fever. Microorganisms such as unicellular- and filamentous fungi have a relatively 

low tolerance to high temperatures and therefore deteriorate during fever conditions (Robert and 
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Casadevall, 2009). The high thermal susceptibility, in addition to the intolerance of the already high 

body temperature, effectively prevents fungal pathogens from frequently causing invasive infections. 

Thus, with the increase in ambient temperatures, and the potential ability of fungi to adapt to increased 

environmental temperatures, global warming threatens to expedite the emergence of mycoses by 

introducing more thermally tolerant fungi. 

Two major restrictions prevent an exponential increase of mycoses cases in humans: a complex, highly 

adaptable immune system (Blanco and Garcia, 2008) and elevated body temperatures. The law of 

parsimony (Sober, 1981; McMeekin et al., 2008) would dictate that investigating the microorganism’s 

ability to adapt to the thermal restrictions in mammals could provide a better indication of potential 

virulence than investigating its ability to evade host immunity. Therefore, this review will continue by 

discussing available fundamental knowledge on fungal thermotolerance.  

2.4.2. Thermally tolerant fungi 

For microorganisms to be considered thermotolerant, they should be able to withstand temperatures 

that exceed the population’s optimal growth temperature (Robert et al., 2015). The upper thermal limit 

can range from 35°C to 62°C depending on the type of microorganism (Tansey and Brock, 1972; 

Maheshwari et al., 2000). Many bacterial species have been identified as thermally tolerant and some 

groups have also been recognised as thermophilic. Most fungi, however, have failed to attain this 

characteristic and remain susceptible to higher temperatures (Robert and Casadevall, 2009). 

Exceptions to this include some industrially important yeasts that tolerate high temperatures, which is 

essential for the success of some processes. Understanding the mechanisms of thermotolerance in 

these yeasts is crucial for industries to optimise bread and wine fermentation as well as biofuel 

production (Parapouli et al., 2020). These mechanisms have thus been scrupulously investigated due 

to their economic value. Conversely, studies investigating thermotolerant fungi associated with infection 

and disease are lacking.  

Robert et al. (2015) investigated thermotolerance among a wide range of yeast species (CBS Culture 

Collection, Netherlands) and highlighted that many were able to grow at temperatures above 35°C. 

Although these thermotolerant species represented a polyphyletic group of fungi, it was noted that 

thermotolerance was significantly more common among the ascomycetous yeasts than among the 

basidiomycetes. However, the maximum temperature of growth (Tmax) for basidiomycetous yeast 

species has increased over the past decades. This suggests that basidiomycetes could be increasingly 

implicated in future novel fungal infections. Regardless, increasing Tmax trends were observed for all 

yeasts investigated over the past few decades, potentially due to adaptation to the global change in 

temperature (Robert et al., 2015). Environmental stressors, such as temperature, are common agents 

in the evolution of microorganisms (Baquero, 2009) and it was contended that acquired thermotolerance 

among fungi could increase the incidence of infections (Araújo et al., 2017). In knowing the original 

environmental habitats of potentially pathogenic fungi and gaining a fundamental comprehension of 

their thermotolerant nature, researchers could in future determine the risk of these microorganisms 

becoming emerging pathogens (Araújo et al., 2017; Jackson et al., 2019). Well-known examples of 
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such thermotolerant fungi that are contended to have emerged from the environment as pathogens are 

Candida auris, as well as the pathogenic cryptococci and aspergilli. 

2.4.2.1. Candida auris 

Candida auris is a multidrug-resistant pathogen, which is also known for its nosocomial transmission 
(Rhodes and Fisher, 2019). The simultaneous rise of infections caused by four genetically discrete 
clades of C. auris, in distinct geographical regions, has raised questions regarding the cause of the 
emergence of this pathogen (Kean et al., 2020). It was proposed that C. auris could be the model 
organism explaining emergence of novel mycoses as a result of global warming (Casadevall et al., 
2020). Candida auris sp. nov. was first isolated from a hospitalised patient’s ear (Satoh et al., 2009), an 
organ that represents cooler environments compared to the rest of the human body. It was therefore 
contended that the yeast could have gradually gained temperature tolerance while inhabiting the ear, 
possibly enabling invasive infection and subsequently causing many outbreaks of C. auris-related 
candidiasis (Casadevall et al., 2020; Jackson et al., 2019; Kean et al., 2020). Alarmingly, the frequency 
of these outbreaks and severity of C. auris infections has highlighted this yeast’s epidemic potential 
(Meis and Chowdhary, 2019). Recently, cases of C. auris infections have increasingly been reported 
among patients suffering from Covid-19 (Rodriguez, et al., 2020; Almeida et al., 2021; Villanueva-
Lozano et al., 2021). 

With little knowledge available on the natural origin of C. auris, determining the cause of this yeast’s 

emergence remains cumbersome. Studies have suggested that C. auris is of environmental origin and 

emerged as a pathogen only after being introduced to healthcare systems by patients carrying the yeast 

(Casadevall et al., 2020; Kean et al., 2020). Some hypothesise that, as observed for certain pathogenic 

cryptococcal species (Moschetti et al., 2017), C. auris may have initially inhabited birds (body 

temperature of 42°C) where it consequently attained its thermotolerance. The migration of these 

animals to areas where they are in close contact with humans could also explain the emergence of 

C. auris at distinct geographical regions (Moschetti et al., 2017; Kean et al., 2020). Another proposed 

habitat for this yeast is wetland systems (Casadevall et al., 2019) that are known to have anaerobic 

zones, in which C. auris would be able to exist. This species also tolerates elevated salt concentrations, 

which may explain why C. auris was recently isolated from a salt marsh (Arora et al., 2021). Except for 

one isolate, most of the environmental isolates were found to be antifungal-resistant and grew well at 

37°C and 42°C. Subsequent phylogenetic analyses revealed the existence of single nucleotide 

polymorphism differences between the environmental isolates and clinical isolates belonging to the 

same clade. The authors suggested that, once introduced into anthropogenic habitats, C. auris is 

capable of rapid adaptation to obtain both antifungal resistance and thermotolerance. They concurred, 

however, that more research is required to obtain a better understanding of the genetic diversity of this 

species in natural habitats. To date this species has not been detected in any other aquatic 

environment; however, frequent isolations of Candida spp. from aquatic environments (Table 1) as well 

as the recent findings of Arora et al. (2021) indicate that C. auris will potentially be found in more of 

these environments. 
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2.4.2.2. Cryptococcus spp.  

Of the wide diversity of Cryptococcus spp. identified so far, infection is mainly caused by representatives 
of the Cryptococcus gattii / Cryptococcus neoformans species complex (Hagen et al., 2015; May et al., 
2016). Their ability to withstand the mammalian core body temperature and to evade the immune 
response are key characteristics that facilitate systemic infections in humans and other mammals 
(Perfect, 2006) and it is known that cryptococcosis is one of the leading causes of mortality among 
immunocompromised individuals (UNAIDS, 2021). This infection is acquired after exposure to 
pathogenic cryptococci present in natural environments (May et al., 2016). Common natural habitats 
for these microorganisms are decaying plant material, such as trees, as well as the bodies and excreta 
of avian species (Ellis and Pfeiffer, 1990; Ellis and Pfeiffer, 1992; Lazera et al., 1996; Nielsen et al., 
2007). The latter suggests that birds can serve as vectors for these cryptococci and subsequently 
distribute the pathogen to urban areas where interaction with humans might occur. These yeasts are 
introduced to the mammalian body through inhalation of aerosolised propagules (Perfect, 2006).  

Recently, transcriptional regulation and signalling pathways were uncovered in pathogenic cryptococci 

that increase the virulence of these yeasts; many of these pathways are also up regulated at higher 

temperatures (Juvvadi et al., 2014; Chatterjee and Tatu, 2017; Oliveira et al., 2020; Toplis et al., 2020; 

Bosch et al., 2021). Typical virulence factors observed in these yeasts include capsule enlargement 

and melanin production, which enable successful evasion of host immunity. Some of these virulence 

factors were also observed in non-pathogenic species (Petter et al., 2001; Watkins et al., 2017). For 

example, the basidiomycetous yeast, Saitozyma podzolica (syn. Cryptococcus podzolicus), produces 

virulence factors but is unable to cause disease in mammals due to its sensitivity towards higher 

temperatures (Petter et al., 2001). With the increased Tmax observed among basidiomycetes (Robert et 

al., 2015), it is plausible that more non-pathogenic species of the basidiomycetous yeasts will cause 

fungal diseases in future in the event of acquired thermotolerance. Similar phenomena may also be 

observed for other fungal species; however, without establishing the level of thermotolerance of these 

potential pathogens, one cannot determine the risk of such a fungus becoming an emergent pathogen.  

2.4.2.3. Aspergillus spp.  

For most fungi, the thermal limit for survival is low and rarely breaches the basal temperatures of 

mammalian species (Robert and Casadevall, 2009). An exception, however, is the upper limit of some 

species of Aspergillus, a genus of filamentous fungi of which some representatives cause respiratory 

diseases among both immunocompromised and immunocompetent individuals (Kousha et al., 2011; 

Badiee and Zare, 2017). Members of this genus, such as A. fumigatus, can survive up to 70°C and 

actively grow at 37°C (Albrecht et al., 2010). The ability to grow at such high temperatures would 

suggest that this organism might be considered thermophilic; however, A. fumigatus and other species 

within this genus are capable of rapidly growing at mesophilic temperatures, allowing them to be 

predominant in natural environments (Paulussen et al., 2017). This characteristic distinguishes 

Aspergillus from thermophilic groups and delineates aspergilli as thermotolerant, with a broad thermal 

range. The ability to grow at mammalian body temperature enables the above-mentioned aspergilli, 

such as A. fumigatus, to infect humans even during fever conditions (Bhabhra and Askew, 2005). 

Aspergillosis is known for manifesting in the respiratory system, similar to what is seen for 
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cryptococcosis. The spores of Aspergillus spp. are ubiquitous in nature, found in soil, air (both in natural 

environments and in buildings) as well as in natural water sources (O’Gorman and Fuller, 2008; 

Paulussen et al., 2017). Human contact with these fungi is therefore inevitable and poses a great risk 

to individuals predisposed to fungal infection because of defective immune systems. Additionally, 

antifungal resistance among Aspergillus spp. continues to complicate the treatment of aspergillosis. 

This resistance has also been observed in environmental isolates that have not yet been implicated in 

clinical situations (Hoda et al., 2019). Such intrinsic resistance towards antifungals adds further 

pathogenic potential to these aspergilli and poses a great threat to immunocompromised individuals 

who encounter these thermotolerant fungi in the environment.  

2.4.3. Molecular aspects of thermotolerance 

Temperature-related stress largely affects the physiology of an organism (Buckley and Huey, 2016). 

Alterations in a cell responding to elevated temperatures can be studied by investigating proteomic and 

genomic functionality under stressful conditions. In doing so, researchers identified stress response 

pathways that overlap among distinct fungal groups (Tereshina, 2005; Fuchs and Mylonakis, 2009; 

Leach et al., 2012; Juvvadi et al., 2014). The most common response pathway that is associated with 

thermotolerance is the heat shock response (HSR; Tereshina, 2005), which responds to sudden high 

increases in external temperature. It is a complex adaptation mechanism that focuses on 

downregulating housekeeping genes and upregulating cytoprotective genes in order to prevent or 

restore any damage due to the imposing heat shock (Verghese et al., 2012). The products and cofactors 

of these regulatory processes are proteins or chaperones known as heat shock proteins (HSPs). Their 

functions, in addition to gene regulation, include the denaturing, folding, refolding and transport of 

cytosolic proteins affected by the external stress (Tereshina, 2005). Additionally, HSPs assist in the 

transcriptional regulation of the cell wall integrity (CWI) and environmental stress response (ESR) 

pathways (Fuchs and Mylonakis, 2009; Verghese et al., 2012), both of which play a role in 

thermotolerance. The ESR involves many other signalling transductions responding to external 

changes in the microorganism’s environment such as oxidative-, osmotic-, and pH stress (Verghese et 

al., 2012). The HSR, for instance, represents a subset within the ESR, since all of the genes involved 

in this pathway are included in the ESR regulon. The CWI pathway, on the other hand, harbours many 

other functions separate to environmental stress, despite having overlapping pathways with both the 

ESR and HSR (Dhar et al., 2013). Nevertheless, multiple regulatory proteins and genes in the CWI 

pathway have been identified and linked to thermotolerance. Within all these pathways and stress 

responses, a plethora of proteins and transcriptional factors all cooperate and cross-communicate to 

provide the microorganism with the proper machinery to adapt to thermal stress (Fuchs and Mylonakis, 

2009; Verghese et al., 2013; Dhar et al., 2013).  

2.4.3.1. Long term thermotolerance and microevolution 

Yeasts and other fungi adapt to environmental stress using several mechanisms which depend on the 

degree of stimulation as well as the duration thereof (Causton et al., 2001; Berry and Gasch, 2008; 

Dhar et al., 2013; Pereira et al., 2018). As for cells undergoing heat shock, the harsh stimulus is 

perceived, and various signals are sent to the rest of the cell to initiate repair as well as prevent further 
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anticipated damage caused by the heat shock (Tereshina, 2005). During this process, housekeeping 

genes are paused while the cell rapidly responds to the external threat via HSR upregulation. However, 

during prolonged exposure to stressful conditions other signalling transductions occur simultaneously 

which aid in long-term adaptation, including regulatory factors of the CWI pathway and ESR (Causton 

et al., 2000; Berry and Gasch, 2008; Fuchs et al., 2009; Chen et al., 2012; Dunayevich et al., 2018; 

Sanz et al., 2018). Although most studies focused on industrially important yeasts, some researchers 

have investigated the molecular signalling constituents of thermotolerance in clinically relevant fungi 

(Argüelles, 1997; Juvvadi et al., 2003; Chang et al., 2004; Nichols et al., 2007; Chen et al., 2012; Chen 

et al., 2013; Chow et al., 2017; Yang et al., 2017; Brandão et al., 2018; Jung et al., 2018; So et al., 

2018; Bloom et al., 2019). While the regulatory mechanisms of thermotolerance may vary among fungi, 

the underlying response pathways are similar (Alonso-Monge et al., 2009; Brown et al., 2020). 

Generally, signalling pathways are induced by stimuli received through proteins located on the surface 

of a cell (Levin, 2005). These proteins or sensors can differ among species and rarely have singular 

roles. In fungi, precursors that form part of the CWI pathway mostly initiate signalling linked to 

thermotolerance (Verna et al., 1997; Zu et al., 2001; Verghese et al., 2012; Huang et al., 2018). The 

messages that these precursors receive are sent to other proteins that are part of various pathways, 

including the mitogen-activated protein kinase (MAPK)-, RAS-cAMP- and calcineurin signalling 

pathways (Fuchs et al., 2009; Parts et al., 2011; Verghese et al., 2012; Juvvadi et al., 2014). These 

pathways are also involved in many other cellular processes and are therefore not exclusively 

responsible for thermal stress adaptation (Causton et al., 2001; Berry and Gasch, 2008; Fuchs et al., 

2009; Chen et al., 2012; Dunayevich et al., 2018; Sanz et al., 2018). Particular genes and proteins that 

form part of these pathways were linked to thermotolerance. However, the genome and transcriptome 

of yeasts were investigated only at severe heat shock conditions which might not provide an adequate 

representation of adaptation to gradual temperature increase (Fuchs et al., 2009; Parts et al., 2011; 

Verghese et al., 2012; Juvvadi et al., 2014). To gain a better perspective of fungi adapting to prolonged 

temperature increases, the genetic changes that occur over generations should be investigated.  

Huang et al. (2018) carried out experimental evolution on a laboratory strain of S. cerevisiae by initiating 

adaptation through a stepwise increase in temperature, after which the genome was sequenced to 

investigate acquired thermotolerance. Considering that global temperatures increase gradually (IPCC, 

2018), the approach of Huang and co-workers might provide an adequate representation of 

microevolution in fungi occurring in natural environments with temperature increases. The goal of their 

study was to experimentally evolve a yeast to obtain a high temperature growth phenotype (Htg+), as 

well as determining major contributing factors by investigating the mutations that occurred during the 

experimental evolution (Huang et al., 2018). The authors found mutations such as single nucleotide 

variants (SNVs), insertions and deletions (INDELs) and segmental duplications / deletions that could 

be associated with the Htg+ phenotype. Many of these mutations were nonsynonymous which altered 

the amino acid sequence of some proteins. Moreover, the mutations were multiple and sometimes 

parallel, increasing the significance of the mutation and thus the probability of association with the Htg+ 

phenotype. As a result of their study, genetic mutations were identified that can contribute to long-term 

fungal thermotolerance. In addition, a combination of non-essential gene mutations was examined and 



 
 

21 
 

it was determined that a genetically modified thermotolerant strain can be attained (Huang et al., 2018). 

Although this might seem like a breakthrough for industrial purposes (Amore and Faraco, 2012), it 

becomes increasingly concerning when considering the implications that global warming might have on 

fungal microevolution and consequently the emergence of novel fungal pathogens.  

2.4.3.2. The dirty river, the fungus and the heat 

So far, studies aimed at investigating microevolutionary changes in clinically relevant fungi have mainly 

focused on virulence and physiological reactions within the host (Magditch et al., 2012; Wartenberg et 

al., 2014; Ene et al., 2018). However, the combined contribution of pollution and global warming on 

fungal evolution has not been studied. Apart from the regulatory pathways or physiological reactions to 

environmental changes, little is known regarding fungal adaptation on a genetic level (Causton et al., 

2001; Dhar et al., 2013). Moreover, studies often fail to consider the microevolutionary effects that result 

from interactions with other biotic and abiotic factors, e.g. other organisms, including plant life, and 

environmental conditions. The latter, for example, might include anthropogenic pollutants and climate 

change. Studies investigating pollution-associated microevolution are lacking despite the valuable 

insight that can be gained from understanding the effects of pollution on fungal growth. This is especially 

concerning since the pollutants may include antifungals released into the rivers (Chitescu et al., 2015). 

Thus, during the process of acquiring thermotolerance with the aid of global warming, fungi in polluted 

aquatic environments could potentially gain resistance towards antifungals, due to the presence of 

these compounds in surface waters. Future emerging pathogens could therefore be resistant to 

treatment before even causing infections. Pollution, such as organic pollution, also promotes the growth 

of fungi by serving as a rich source of nutrients (Wen et al., 2017), which might allow some species to 

outcompete more fastidious microorganisms and consequently disturb the natural mycobiome (Ortiz-

Vera et al., 2018). Certain pollutants may also initiate virulence phenotypes in fungi, e.g. as seen for 

persistent organic pollutants (POPs) such as pentachlorophenol (Martins et al., 2018). Increasing 

anthropogenic activities resulting in polluted river water could therefore potentially cause a rise in fungal 

numbers, particularly pathogenic species. Considering the wide range of factors that may impact on 

fungi in natural environments, it is prudent to employ not only genomics but also more traditional 

techniques, such as biochemical, ecological, genetic, morphological, and ontological approaches 

(Naranjo‐Ortiz and Gabaldón, 2019), to delineate the complex synergetic effect of climate change and 

increased pollution levels on fungal biology. 

2.5. CONCLUSIONS  

With the ever-increasing urbanisation to accommodate the equally growing population, increased 

environmental temperatures and pollution of rivers will have detrimental outcomes on human health 

(Fig. 1). South Africa is a developing country experiencing rapid urbanisation in informal communities 

with municipalities struggling to keep up and failing to implement proper sanitation infrastructure, 

causing communities to be dependent on natural water sources for their livelihoods (Colvin et al., 2016). 

Although little research has been conducted for South Africa, there is growing evidence that a wide 

diversity of fungi, including opportunistic species that can tolerate the mammalian body temperature, 

occur in South African rivers. The extent of the risk posed by waterborne fungi to community health 
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therefore needs to be determined, especially in view of the fact that opportunistic yeasts, such as 

Candida spp., that infect individuals suffering from HIV / AIDS appear to be common in polluted rivers. 

Furthermore, rising river water temperatures will most probably induce increased thermotolerance 

amongst waterborne fungi. Worryingly, the fungal metabolism can adapt to these increases and current 

evidence indicates that more fungi will become thermotolerant as global temperatures rise. This, 

together with the fact that sewage-polluted rivers contain elevated concentrations of fungi, points to an 

imminent increase in the incidence of mycoses in the not-so-distant future. Important to note is that non-

clinical isolates implicated in mycoses might represent antifungal-resistant fungi due to the various 

chemicals derived from agricultural-, industrial- and anthropogenic waste that end up in surface waters. 

However, few studies have been conducted to elucidate the resistance acquired from antifungal 

exposure in water sources. Nonetheless, the combinatorial effects of pollution (organic or inorganic) 

and global warming could be drivers in fungal microevolution and potentially lead to a rise in emergent 

pathogenic fungi, for which there is a limited range of anti-fungal drugs available. Efforts to better record 

the occurrence and delineate the ecology and antifungal resistance of clinically relevant fungi in South 

African river systems should therefore be a priority.  

 
Figure 2.1: The illustration above signifies the contributing factors that may have an impact on humans susceptible 
to mycoses. Many individuals are dependent on river water due to rapidly growing urban areas with poor sanitation 
infrastructure. As pollution enhances the proliferation of fungi in the water and induces adaptation to chemicals 
such as antifungals, global warming simultaneously promotes long-term thermotolerance which aids in fungal 
pathogenesis. Together the increased temperatures and polluted water may lead to an increase of mycoses cases 
among immunocompromised people. This figure was created using BioRender.com 
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________________________________________________________________________________ 

CHAPTER 3: POTENTIALLY PATHOGENIC FUNGI IN THE 
PLANKENBRUG / EERSTERIVIER SYSTEM WITHIN THE 

STELLENBOSCH REGION  
_________________________________________________________________________________ 

3.1. INTRODUCTION 

Nine percent of South Africans are directly reliant on natural water sources for drinking and domestic 

use (Colvin et al., 2016). Unfortunately, these waters are often polluted with sewage, agricultural, 

industrial, and other anthropogenic waste which poses a threat to human health (Glińska-Lewczuk et 

al., 2016; Liyanage & Yamada, 2017; Cullis et al. 2019; Herbig & Meissner, 2019). A major contributor 

to this threat is the presence of infectious microbial species in the water (Bezuidenhout, 2013; Tubatsi 

et al., 2015). While the bacteria, viruses and protists that are associated with water pollution have been 

extensively studied, only a modicum of information is available on the occurrence of opportunistic and 

pathogenic fungi in surface waters (Monapathi et al., 2020a; Steffen et al., 2022).  

The lack of information on clinically relevant fungi in aquatic environments can be attributed to the 

limited number of fungal taxa identified as pathogenic species (Robert & Casadevall, 2009). Most fungi 

are incapable of infection due to the human body’s advanced immune system and thermal restriction 

zone. The latter is of concern as thermotolerance among fungal species is a major virulence trait, and 

it was contended that rising environmental temperatures could gradually drive acquired 

thermotolerance among naturally occurring fungi (Garcia-Solache & Casadevall, 2010; Casadevall et 

al., 2020; Steffen et al., 2022), which would eventually render these fungi clinically relevant. Apart from 

selecting for thermotolerance no standard procedure has been established to isolate clinically relevant, 

opportunistic or pathogenic fungal species from the environment.  

Understanding the ecology of clinically relevant fungi in the natural environment is essential for the well-

being of the immunocompromised population suffering from HIV / AIDS, who are most susceptible to 

fungal infections (Ellis et al., 2000). Although this target group could globally be considered minor, the 

proportion of the immunocompromised population is likely underestimated due to the exclusion of 

individuals with immunosuppressive conditions such as diabetes, cancer, obstructive pulmonary 

disease, and hospitalization (Low & Rotstein, 2011; Fernández-Ruiz et al., 2017; Schwartz & Denning, 

2019). Nevertheless, the proportion of individuals in Southern Africa living with HIV / AIDS is dauntingly 

large compared to other countries (UNAIDS, 2021). In addition, the availability of antifungal drugs to 

treat mycoses among this population is mostly restricted to Amphotericin B and Fluconazole (Kneale et 

al., 2016). Another worrying phenomenon is the increasing reports of antifungal resistance, against 

these drugs, among clinically relevant fungi (Pfaller et al., 2010; Pfaller et al., 2012; Silva et al., 2012). 

It is clear these microorganisms occurring in the environment pose a threat to public health; however, 

very little information exists on the risk of infection when being exposed to harmful fungi.  
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In developing countries, including South Africa, immunosuppressed individuals may reside in rural 

settlements that lack proper water infrastructure, thus increasing dependency on nearby surface waters 

such as rivers (Colvin et al., 2016). The presence of pathogenic fungi within rivers could therefore place 

these communities at high risk of contracting infections, which are becoming increasingly difficult to 

treat as a result of antifungal resistance. The frequent detection of antifungal resistant strains from 

South African rivers raises further concern because of the high risk of severe infections and fatal 

outcomes caused by these microorganisms (Monapathi et al., 2017; Monapathi et al., 2018; Monapathi 

et al., 2021). The aim of this study was therefore to evaluate the risk of potentially pathogenic fungi 

present in polluted water from a South African river system in close proximity to human activity. The 

objectives of the study were as follows: i) to investigate the fungal diversity of the river water subjected 

to different levels of pollution and to isolate, enumerate and identify potentially pathogenic yeasts using 

thermally selective isolation; ii) investigate the antifungal resistance profiles of the isolated yeasts; and 

iii) conduct a provisional quantitative risk assessment on yeast infections following river water ingestion. 

Overall, we provide insight into fungal diversity and the prevalence of certain yeast pathogens in 

polluted river water, and demonstrate the potential risks associated with river water use in developing 

countries.  

3.2. MATERIALS AND METHODS 

3.2.1. Study area 

River water sampling was conducted in and around Stellenbosch, Western Cape, South Africa. Ten 

sampling sites were selected forming part of the Eersterivier River Catchment (ERC). Tributaries such 

as Plankenbrug river, Krom river and the Veldwagters river were included in this study (Figure 3.1), 

representing waters frequently met with human influence due to their proximity to urban and industrial 

areas.  

 
Figure 3.1. Map of a section of Stellenbosch (South Africa) and the various sampling sites from which water 
samples were collected for analysis. This map was constructed using South Africa’s ArcGIS online software 
(https://www.esri.com/en-us/arcgis/products/arcgis-online/capabilities/make-maps). 
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3.2.2. Sampling and water quality analysis 

Samples were collected every second month (when feasible) for a period of one year to encompass all 

seasons (Table 3.1). Thirty 200 mL water samples (three samples per site) were collected at 

approximately 30 cm depth (when feasible) and poured into sterilized 200 mL Schott bottles. Additional 

water samples were collected in August 2021 as required for metagenomic analyses. Measurement of 

pH, conductivity and temperature was carried out on site using a multi-parameter instrument 

(PCTestr35™; Eutech, Paisley, UK) and dissolved oxygen (DO) was measured using a DO meter 

(ProODO; YSI, Yellow Springs, USA). Chemical oxygen demand (COD) and ammonia (NH3) 

concentration were determined in the laboratory using a kit (Supeclo, Bellefonte, USA) and the phenol-

hypochlorite assay (Weatherburn, 1967), respectively. COD and NH3 measurements were carried out 

within 6-10 hours of sampling. Faecal contamination was evaluated by determining the numbers of 

Escherichia coli and coliforms using dilution plates prepared with membrane lactose glucuronide agar 

(MLGA; Sigma-Aldrich, St. Louis, USA) and an incubation period of 18 h at 37°C. 

Table 3.2. Sampling dates and details.  
Sampling Date Season Notes 
7 September 2020 Spring No data obtained for E. coli and coliform counts 
18 February 2021 Summer No COD data obtained: values estimated using site average 
15 April 2021 Autumn N.A. 
19 June 2021 Winter (heavy rainfall*) Access to site S9 was restricted, no data obtained for this site 
14 August 2021 Winter (heavy rainfall*) Additional water samples used for metagenomic analyses 
27 October 2021 Spring Heavy rainfall* occurrence in the seven days prior sampling 
15 January 2022 Summer N.A.  
* Based on data obtained from weather forecasting websites (http://www.weather.lcao.co.za/; 
https://www.worldweatheronline.com/). 

3.2.3. Metagenomics: sample preparation and analyses 

River water samples collected in one sampling event (Table 3.1) were aseptically filtered through 

membrane filters (0.45µm pore size; GN-6 Metricel® filters, Pall Corporation, New York, US). 

Preparation for DNA extraction followed a method described by Waso and colleagues (2016) during 

which the biological matter on the membrane was dislodged using citrate buffer and vortexing. Cells 

were harvested by centrifugation and the resulting cell pellets were suspended in 200 µL phosphate-

buffered saline (PBS). The samples were subsequently treated with ethidium monoazide (EMA) as 

described previously (Reyneke et al., 2017) to exclude the detection of DNA from non-viable cells. Total 

DNA was extracted using the ZymoBIOMICS™ DNA Miniprep Kit (Zymo Research Corporation, Irvine, 

USA), and sent for PacBio metagenomic sequencing at Inqaba Biotec (Pretoria, South Africa). Analysis 

of ITS1F gene amplicons was performed on the Sequel system by PacBio (www.pacb.com). Raw 

subreads were processed through the SMRTlink (v8.0.0.80529) Circular Consensus Sequences (CCS) 

algorithm to produce highly accurate reads (>QV40). To enable further insights into the fungal 

communities across the river sites, the data was analysed both individually and in two groups, one 

considered highly polluted (HP) and the other less polluted (LP). The grouping was based on the river 

water’s overall average water quality parameters DO, COD, NH3, and conductivity as described above 

(Table S1 & Figure S1).  

The raw sequence data were analysed using Mothur (v.1.44.1), following a tutorial (available at 

http://www.mothur.org/wiki/), with some modifications for the fungal ITS region (Schloss, 2009). In short, 
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sequences that were between 100-1000 bps in length, with an average quality score of 25 and higher, 

no ambiguous bases, and containing homopolymer regions shorter than eight base pairs, were selected 

for further analysis. Chimeric sequences and sequences with errors were removed to ensure that only 

high-quality sequences were classified using the latest available UNITE reference database (Abarenkov 

et al., 2021). Sequences were clustered into operational taxonomic units (OTUs) with a 97% similarity 

and classified using a cut-off value of 80%. All samples were normalized to contain the same number 

of sequences. 

3.2.4. Isolation and enumeration of yeasts 

Up to 100 mL water from each sample was filtered (polycarbonate filter-holder; Sartorius Stedim 

Biotech, Göttingen, Germany) through a nitrocellulose membrane (0.45 µm; Sartorius Stedim Biotech) 

that was subsequently placed onto Sabouraud dextrose agar (SDA; Atlas, 2010) supplemented with 

500 mg chloramphenicol (Sigma-Aldrich). Agar plates were incubated at 37°C for 20-24 hours after 

which yeast colonies were counted and recorded.  

3.2.5. Identification of yeasts 

Up to six yeast isolates per sampling site were randomly selected from observable yeast colonies on 

isolation plates using the Harrison’s Disc method (Harrigan & McCance, 1976). Following pure culture 

preparation, yeast isolates were streaked onto yeast malt extract agar (YMA; Atlas, 2010) to be 

identified using sequence analysis of taxonomic informative gene sequences that were amplified using 

the polymerase chain reaction (PCR). For this purpose, a single yeast colony of each isolate was 

suspended in 50 µL sterile milliQ, after which the cells were disrupted by incubating at 99°C for 5 

minutes to obtain DNA. The D1-D2 domain of the 28S rDNA from each isolate was subsequently 

amplified with the forward primer F63 5ʹ-CATATACAATAAGCGGAGGAAAAG-3ʹ and the reverse 

primer LR3 5ʹ-GTCCGTGTTTCAAGACGG-3ʹ using an Applied Biosystems 2720 thermal cycler. 

Reaction tubes contained the following components: 12.5 µL Taq Ready Master Mix (New England 

Biolabs, Ipswich, USA), 1.25 µL of each of the primers, 8 µL milliQ water and 2 µL DNA. PCR conditions 

were as follows: initial denaturation step (94°C for 5 min), 25 cycles of denaturation (94°C for 30 s), 

annealing (60°C for 30 s) and extension (72°C for 30 s) and lastly a single final extension (72°C for 7 

min). PCR products were evaluated using gel electrophoresis prior to being submitted for Sanger 

Sequencing at the Central Analytical Facilities (Stellenbosch University, South Africa). Sequences were 

analysed using FinchTV (Finch TV 1.4.0, Geospiza, Inc.) prior to BLAST identification on the NCBI 

database (http://www.ncbi.nlm.nih.gov/). Briefly, the 28S ribosomal RNA sequences (LSU) from the 

fungi type and reference material database on NCBI were compared to the amplified sequences of the 

isolates, and hits with the highest maximum score and an E value of zero were recognised as positive 

identifications. The identities of the isolates were subsequently confirmed by drafting phylogenetic trees 

using MEGA11 (version 11; Tamura et al., 2021; Figures S2-6).  

3.2.6. Sequence accession numbers 

The D1/D2 rDNA gene sequences of the yeast isolates identified during this study were deposited in 

the Genbank database under the following accession numbers: OK618557-OK618604, OK618606-
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OK618664, OL721678-OL721730, OL721839-OL721863, OL774708-OL774765 and OM883947-

OM883970. 

3.2.7. Storage and quality control of yeast isolates 

Stock cultures of the identified yeast isolates were stored at −80°C in 25% (v/v) glycerol and deposited 

in the yeast culture collection of the Department of Microbiology, Stellenbosch University (Stellenbosch, 

South Africa). Quality control of the yeast isolate collection was conducted by recording colony 

morphology on a chromogenic medium, i.e. molybdate agar (Table S2; MBA; MacLaren, 1960). It must 

be noted that the chromogenic agent solution used in this medium was 6.75% (w/v) phosphomolybdic 

acid (PMA; H3PMo12O40; analytical reagent, Sigma-Aldrich), which resulted in the same concentration 

of molybdenum in the medium as was obtained by others using the original chromogenic agent 

(20MoO3•2H3PO; MacLaren, 1960). Changes in the yeast cultures were detected by selecting cultures 

to prepare yeast cell suspensions in physiological saline solution (single colony suspensions), which 

was then spotted onto the chromogenic medium and incubated at 37°C for 5 days. The colony pigment 

and morphology of both the top and underside of the agar plates where subsequently recorded to 

evaluate any change that may have occurred in the working as well as stock cultures.  

3.2.8. Antifungal susceptibility of yeasts 

Fluconazole (FLU; Sigma-Aldrich) and amphotericin B (AmB; EMD Millipore Corp., Burlington, USA) 

were tested against the clinically relevant yeasts identified during the study. The minimum inhibitory 

concentration (MIC) of yeast strains was determined using the broth microdilution method as stipulated 

by the Clinical and Laboratory Standards Institute (M27-A2; NCCLS, 2002). Antifungal concentrations 

ranged from 0.063-64 mg/L and 0.031-16 mg/L for FLU and AmB, respectively. All strains were 

subjected to antifungal susceptibility testing in triplicate and incubated for 48 hours at 35°C. The FLU 

MIC was determined as the lowest concentration at which ≥50% of growth was inhibited, whereas the 

AmB MIC was determined as the lowest concentration which inhibited ≥99% of growth.  

3.2.9. Statistical analysis 

3.2.9.1. Water quality and potentially pathogenic yeasts 

All data collected from sampling events were statistically analysed using XLSTAT (version 2021.4, 

Addinsoft Inc., New York, USA) to determine means, standard errors, and correlations between 

parameters. Due to the non-normality of the data (as determined by a Shapiro-Wilk test) the Kruskal-

Wallis and multiple pairwise comparisons (Steel-Dwass-Critchlaw-Flinger method) tests were used to 

evaluate significant differences between sampling sites. Significance was determined at a confidence 

level of 95% (p<0.05). Furthermore, multivariate correlations were investigated between microbiological 

and physicochemical data through redundancy analysis (RDA). A permutation test was included to 

confirm whether response variables and explanatory variables were linearly related.  

3.2.9.2. Metagenomics 

All statistical analyses were performed in Mothur (v.1.44.1) and R (v.4.1.0, R Core Team 2021) using 

the microeco-package (Liu et al., 2021). Non-parametric Kruskal-Wallis H-tests were calculated for all 
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alpha diversity metrics. Multidimensional scaling plots (Principal Coordinate Analysis; PCoA) were 

drawn in R using the Bray-Curtis dissimilarity matrix. Further statistical evaluations of the PCoA plots 

were conducted using Permutational Multivariate Analysis of Variance (PERMANOVA). Spearman 

correlation tests were performed between environmental measures and PCoA ordinations based on the 

Bray-Curtis dissimilarity matrix. Differences in pathogenic abundance between pollution groups was 

assessed using the Mann-Whitney test. For all statistical evaluations, a p-value of 0.05 was considered 

significant. 

3.2.10. Development of yeast quantitative microbial risk assessment (QMRA)  

Various parameters are used when conducting QMRA, namely contaminant concentrations, exposure 

routes, microorganism survival probability and contaminant concentration at which 50% of a population 

are killed (http://qmrawiki.canr.msu.edu/). The latter two parameters are determined using clinical data 

obtained from species-specific pathogenicity studies in animal hosts. Studies focusing on these 

characteristics of pathogenic fungi including yeasts are, however, either lacking or insubstantial. 

Nevertheless, the pathogenicity of Candida albicans, Candida tropicalis, Candida glabrata, Clavispora 

lusitaniae (syn. Candida lusitaniae), Pichia kudriavzevii (syn. Candida krusei) and Meyerozyma 

guilliermondii (syn. Candida guilliermondii) has been investigated (Hasenclever et al., 1959; Wingard 

et al., 1982; Fromtling et al., 1987; Arendrup et al., 2002). Thus, we used data from these studies to 

calculate the pathogenic potential (PP) of the yeast species as described by Casadevall (2017) to be 

used as a proxy for the dose response model parameters. We then employed the @RISK software by 

Palisade (version 8; New York, USA), and the PP of the yeasts (as absolute values), to determine the 

risk of yeast infection after exposure to the river water. 

3.2.10.1. Exposure assessment 

Ingestion was identified as the direct exposure route for infection of pathogenic yeasts occurring in river 

water. Species specific exposure doses (1) were calculated, assuming an average ingestion rate (Kahn 

& Stralka, 2009), using the following equation:  

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖  ×  𝐶𝐶𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖        (1) 

The total daily ingestion of the water source is represented by the volume of ingestion (𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖), while 

the species-specific yeast concentration is represented by the contaminant concentration (𝐶𝐶𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖). 

The latter was calculated by first determining total thermotolerant yeast counts on the filter disks that 

were incubated on the SDA plates, then by identification of random isolates from the disks (Tables S3-
9). Yeast cell concentrations were subsequently calculated (with the assumption that one yeast colony 

would represent 1×106 cells; Joseph & Hall, 2004) and log-transformed to normalize the data 

(McDonald, 2014; Table S10). Furthermore, yeast concentration results obtained from HP and LP sites 

were pooled, respectively.  
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3.2.10.2. Dose response parameters 

Since no dose response model, as well as the parameters to be used in the model, exist for pathogenic 

yeasts, the above-mentioned PP was used as a proxy to determine the probability of infection. The PP 

was calculated according to the method of Casadevall (2017) using the following equation: 

𝑃𝑃𝑃𝑃 =  𝐹𝐹𝑠𝑠
𝐼𝐼

 ×  10𝑀𝑀           (2) 

The term (𝐹𝐹𝑒𝑒) refers to the fraction of affected individuals that show symptoms of infection after being 

exposed to a representative of a specific pathogen. Therefore, data obtained by others on the fungal 

burden, i.e. the fraction of infected kidneys in murine models after being intravenously exposed to 

representatives of the relevant yeast species, was used for 𝐹𝐹𝑒𝑒. (Arendrup et al., 2002). The equation 

𝐹𝐹𝑒𝑒  = 1 was used for a yeast species where previous studies reported the lethal dose that killed 50% of 

the population (LD50) after being exposed to the particular yeast species (Hasenclever et al., 1959; 

Wingard et al., 1982; Fromtling et al., 1987). The term (𝐼𝐼) represents the infecting inoculum, i.e. the cell 

concentration that was intravenously injected into the animal model to induce infection. The fraction of 

mortality (𝑀𝑀) represents the death outcomes among infected individuals. Using the abovementioned 

parameters, and data available from literature (Hasenclever et al., 1959; Wingard et al., 1982; Fromtling 

et al., 1987; Arendrup et al., 2002), we determined the PP of seven clinically relevant yeasts (Table 1).  

Table 3.3: Dose response parameters of clinically relevant yeasts. 
Species PP‡ Study type(s) References 
Candida albicans 2.44 × 10−4 LD50 and Fungal burden Hasenclever et al. (1959); 

Wingard et al. (1982); 
Arendrup et al. (2002) 

Candida glabrata 3.80 × 10−6 Fungal burden Arendrup et al. (2002) 
Candida parapsilosis 2.18 × 10−6 Fungal burden Arendrup et al. (2002) 
Candida tropicalis 1.93 × 10−4 LD50 and Fungal burden Hasenclever et al. (1959); 

Wingard et al. (1982); 
Fromtling et al. (1987); 
Arendrup et al. (2002) 

Clavispora lusitaniae 2.14 × 10−6 Fungal burden Arendrup et al. (2002) 
Meyerozyma guilliermondii 1.76 × 10−8 Fungal burden Arendrup et al. (2002) 
Pichia kudriavzevii 3.70 × 10−8 Fungal burden Arendrup et al. (2002) 
‡ Pathogenic Potential – represents a mean and was calculated as described by Casadevall (2017)  
LD50 – Lethal Dose at which 50% of the population died 

To determine the daily risk of fungal infection (𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖,𝑑𝑑; Weiskerger & Brandão, 2020) a modification 

of the exponential dose response model (3) was used in this study, whereby 𝑘𝑘 was replaced by PP (4): 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖  = 1 −  𝑒𝑒−𝑘𝑘(𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒)         (3) 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖,𝑑𝑑  = 1 −  𝑒𝑒−𝑃𝑃𝑃𝑃(𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒)         (4) 

The annual risk of infection (𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖,𝑐𝑐) was subsequently determined to evaluate the health risks faced 

by individuals who are dependent on a natural water source for drinking. The following equation was 

used: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖,𝑐𝑐  =  1 − [1 −  𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑐𝑐𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖,𝑑𝑑]365        (5) 

The following assumptions were made while conducting the QMRA during this study: (a) individuals 

drinking natural surface water do so on a daily basis, (b) wild type and clinical yeast strains would react 
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similarly upon exposure to host, (c) isolation at 37°C mimics the immediate stress a yeast is exposed 

to inside the host, (d) translocation of the yeast from the intestines into the bloodstream occurs post-

ingestion in order to cause infection (Hirayama et al., 2020; Zhai et al., 2020), and (e) the murine model 

adequately mimics human host conditions. For the purpose of this study, risk of infection was 

determined for river water of varying quality and could not be compared to previous risk estimations, 

since no such estimations existed at the time of this study.  

3.3. RESULTS  

3.3.1. Water quality analysis 

Several biological and physicochemical parameters of the river water, some of which are known 

pollution indicators, were found to differ between the sampling sites (Figures 3.2 and 3.3) The mean 

values obtained for the physicochemical parameters that were measured over the experimental period 

are presented in Figure 3.2. Water temperature ranged from 12.4-26.4°C and site S8 showed 

significantly higher temperatures than site S1 (p<0.05). The average pH of the river water was found to 

be 7.94 and no statistical differences were observed between any of the sampling sites. Dissolved 

oxygen was lowest at sites S3 (1.26-5.47 mg/L) and S4 (0,79-8,48 mg/L). All sampling sites (except 

S4) showed significantly higher (p<0.05) DO values than site S3. A DO range of 3.16-8.46 mg/L was 

observed for site S8 which had significantly higher O2 concentrations than sites S1, T1, T2, T3, S3 

(p<0.001), S5 (p<0.01) and S9 (p<0.05). Three sites (S1, T1, T2) showed mean DO values >10 mg/L 

ranging from 10.28-10.37 mg/L. 

The conductivity measurements at all ten sites ranged from 81 to 944 µS/m, with the highest mean 

observed at site S3 (787 µS/m) and the lowest at site S1 (92 µS/m). The largest variation was observed 

at site S4 with a mean conductivity ranging from 155 to 856 µS/m. Mean conductivity was <110 µS/m 

at sites S1, T1 and T2; >200 µS/m at sites S9, S5, T3 and T4; and >600 µS/m at sites S3, S4 and S8. 

Significant differences were observed between most sites (Figure 3.2C; p<0.05). Chemical oxygen 

demand at all sites ranged from 1-117 mg/L and site S3 showed the highest mean of 79.17 mg/L, 

whereas S1 had the lowest mean of 27.08 mg/L. Site S3 showed significantly higher COD values than 

all sites (p<0.001) except site S4. The latter site also presented significantly higher COD values than 

sites S1, T1 and T3. Furthermore, site S1 also showed significantly lower COD values than sites S8 

and S9 (p<0.05). Ammonia concentrations ranged from 0.001 to 1.050 mg/L, with the highest means 

observed for sites S3 (0.365 mg/L) and S4 (0.143 mg/L). Concentrations <0.05 mg/L were observed for 

sites S1, T1, T2, T3, T4 and S9, whereas concentrations >0.05 mg/L were observed for sites S4, S3, 

S5 and S8. The mean NH3 concentration of site S3 was significantly higher than that of all the other 

sites (p<0.01) except for site S4. Furthermore, site S4 had significantly higher NH3 concentrations than 

what was observed at sites S1, S9, T1, T2, T3 and T4 (p<0.05). The microbiological load and hence 

the level of faecal pollution was determined by quantifying the numbers of Escherichia coli and total 

coliforms in the river water (Figure 3.3). Escherichia coli was detected at all sampling sites and ranged 

from 1.70×10 to 2.74×106 CFU/100mL. The highest mean E. coli concentrations were observed at site 

S3 (4.64×105 CFU/100mL) and the lowest mean was observed at site S1 (1.88×102 CFU/100mL). 
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Figure 3.2. Physicochemical parameters of river water measured at the different sampling sites, Stellenbosch, 
South Africa: A) pH, (B) temperature, (C) conductivity, (D) NH3 concentration, (E) DO and (F) COD. The bars 
represent the site averages of seven sampling events during which both dry and rainy seasons are included. Error 
bars represent standard error of means (SEM) and statistically significant differences (p<0.05) between sampling 
sites are denoted with different lettering above bars (bars that share letters are not significantly different from each 
other).  

Similarly, the coliform counts ranged from 1.02×102 to 5.87×106 CFU/100mL and the highest mean of 

1.13×106 CFU/100mL was observed at site S3, whereas site S1 showed the lowest mean (4.80×102 

CFU/100mL). Both E. coli and coliform counts obtained at site S3 was significantly higher (p<0.05) than 

that of the other sites. Site S1 had significantly lower E. coli concentrations than all sites (p<0.05) 
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excluding sites S9, T1 and T2. Similar results were observed for coliform counts, with the exception that 

site S1 also showed significantly lower values than site S9.  

 

Figure 3.3. Microbiological load (colony forming units (CFU)/100 mL) of the river water at the different sampling 
sites as determined by enumeration of (A) E. coli and (B) coliforms. The bars represent the means of six sampling 
events during which both dry and rainy seasons were included. Error bars represent SEM and significant 
differences (p<0.05) between sampling sites are denoted with different lettering above bars (bars that share letters 
are not significantly different from each other).  

3.3.2. Fungal diversity 

The relationships of fungal community composition (represented by relative abundance as determined 

from metagenomic data) among different sites is presented in Figure 3.4.  

 
Figure 3.4. Principal coordinate analysis plot (PCoA) of the fungal communities in water samples from river sites 
of varying levels of pollution: less polluted (LP); highly polluted (HP). 
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The fungal communities of less polluted (LP) and highly polluted (HP) sites differed significantly 

(p=0.007).  

 
Figure 3.5. Relative abundance (%) of phyla at ten sampling sites across rivers in the Stellenbosch region (Cape 
Town, South Africa). 

Metagenomic analyses indicated that the most predominant phylum detected at all sampling sites was 

Ascomycota (Figure 3.5). Three other major phyla were also detected, namely Rozellomycota 

(previously Cryptomycota), Basidiomycota, and Chytridiomycota (Figure 3.5). Twenty genera among 

these phyla, that may harbour opportunistic and pathogenic fungal strains, were detected at an overall 

relative abundance of 0.91% (Figure 3.6). A significantly higher (p=0.038) relative abundance of 

pathogen representing genera was observed at HP sites compared to LP sites (Figure 3.6).  

 
Figure 3.6. Results obtained using metagenomic analysis: Average relative abundance (%) of genera which 
harbour opportunistic and pathogenic species, detected in river water of varying quality: HP, highly polluted; LP, 
less polluted. Genera: (1) Acremonium, (2) Aspergillus, (3) Candida, (4) Cladosporium, (5) Clavispora, (6) 
Coniochaeta, (7) Cryptococcus, (8) Cutaneotrichosporon, (9) Cyberlindnera, (10) Debaryomyces, (11) Exophiala, 
(12) Fusarium, (13) Meyerozyma, (14) Microsphaeropsis, (15) Penicillium, (16) Pichia, (17) Rhodotorula, (18) 
Saccharomyces, (19) Talaromyces and (20) Trichosporon. 
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3.3.3. Occurrence of thermotolerant yeasts in river water 

Thermotolerant yeast concentrations in the river water were determined by enumerating yeast colonies 

on filter disks that were incubated at 37°C on chloramphenicol-supplemented SDA. The mean yeast 

concentration (CFU/100mL) for each site is presented in Figure 3.7. The experimental period 

encompassed all seasons (Table 3.1). Mean yeast concentrations did not differ significantly between 

any of the sampling sites (Figure 3.7). However, significantly lower yeast concentrations were observed 

during September 2020, February 2021, and April 2021 compared to the observed yeast concentrations 

of the remaining sampling months (Table 3.1). Aside from a slightly negative correlation to COD 

(r=−0.103), overall thermotolerant yeast concentrations did not correlate with any of the other measured 

physicochemical parameters in this study.  

 

Figure 3.7. Yeast numbers (CFU/100mL) in river water as determined after enumeration at 37°C. The bars 
represent the means of seven sampling events including months with high and low rainfall. Error bars represent 
SEM and significant differences (p<0.05) between sampling sites are denoted with different lettering above bars. 

3.3.4. Yeast identification  

Thermotolerant representatives of 42 different species were isolated from the river water during the 

experimental period; 41 of these species were ascomycetous fungi, while Cutaneotrichosporon 

mucoides (syn. Trichosporon mucoides) is known to be a basidiomycetous yeast (Table 3.2). Species 

that were frequently isolated (>10 isolates) were M. guilliermondii (syn. C. guilliermondii), P. kudriavzevii 

(syn. C. krusei), C. glabrata, Clavispora lusitaniae (syn. Candida lusitaniae) and Saccharomyces 

cerevisiae. Sites T1, T2 and S1 show the highest species richness (S=12), whereas the lowest was 

observed at site S3 (S=5). Members of M. guilliermondii were frequently isolated from all sites.  

Several clinically relevant yeasts were isolated representing well-known pathogens (Table 3.3): 

Candida albicans, C. glabrata, Candida tropicalis, Lodderomyces elongisporus (syn. Candida 

parapsilosis), and P. kudriavzevii (Cooper, 2013). Opportunistic pathogenic species isolated from the  
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Table 3.3. Yeast species identified in river water of Stellenbosch, South Africa 

Species  Pathogenicity ᵅ Sampling site  Number of 
isolates ᵇ 

Candida albicans P S9, S8 4 
Candida blankii OP T2 1 
Candida ethanolica NP S9, S5 3 
Candida glabrata P S9, S8, S5, T1, S1, S4, T4, S3, T3 20 
Candida melibiosica OP S1 1 
Candida pseudoaaseri OP S4 1 
Candida pseudoglaebosa NP S4 1 
Candida pseudolambica NP T4 1 
Candida silvanorum NP T1, S1 2 
Candida tropicalis P S5, S4, T3 6 
Clavispora lusitaniae (syn. Candida 
lusitaniae) OP S9, S5, T1, T4, S3, T3 11 

Coniochaeta hoffmannii NP (P, canine) T1 1 
Cutaneotrichosporon mucoides (syn. 
Trichosporon mucoides) OP T2, S1 2 

Cyberlindnera jadinii (syn. Candida utilis) OP S9, S8, S5 7 
Cyberlindnera rhodanensis NP (P, bovine) S4 1 
Debaryomyces subglobosus NP S1 1 
Hanseniaspora guilliermondii NP T1 1 
Hanseniaspora pseudoguilliermondii NP T1, T4 4 
Hanseniaspora thailandica NP T2 1 
Kazachstania bovina (syn. Candida bovina) NP (P, bovine) S1 2 
Kazachstania servazzii (syn. 
Saccharomyces servazzii) NP T1 1 

Kluyveromyces marxianus (syn. Candida 
kefyr) OP S8, S3 2 

Kodamaea ohmeri (syn. Yamadazyma 
ohmeri)  OP T1, T4 2 

Kuraishia molischiana (syn. Candida 
molischiana) NP T2 1 

Lodderomyces elongisporus (syn. Candida 
parapsilosis) P T2 1 

Meyerozyma carpophila (syn. Candida 
carpophila) NP T2 1 

Meyerozyma caribbica (syn. Candida 
fermentati) OP T4 1 

Meyerozyma guilliermondii (syn. Candida 
guilliermondii) OP S9, S8, S5, T1, T2, S1, S4, T4, S3, 

T3 221c 

Ogataea henricii NP T2 1 
Pichia bruneiensis NP T2 1 
Pichia kluyveri OP S9, S5, S1 4 
Pichia kudriavzevii (syn. Candida krusei) P S9, S5, T1, S1, S4, T4, S3, T3 64 
Pichia manshurica NP S9, S8, T3 4 
Pichia occidentalis NP S9 2 
Saccharomyces cerevisiae OP S9, S5, T1, T2, T3 12 
Saccharomycopsis fibuligera NP T2 2 
Saturnispora silvae (syn. Candida silvae) NP T2 2 
Schwanniomyces polymorphus NP S1 3 
Suhomyces ambrosiae (syn. Candida 
ambrosiae) NP S1 1 

Trichosporiella flavificans (syn. Candida 
flavificans) NP T1 1 

Wickerhamomyces onychis OP S8 1 
Yamadazyma mexicana NP S1, T4 3 

P – Pathogen; OP – Opportunistic pathogen; NP – Non-pathogen.  
ᵅ Based on clinical cases reported in literature of the species (Al-Sweih et al., 2011; Kurtzman, 2011; Pfüller et al., 2011; Cooper, 
2013; Rizzitelli et al., 2016; Aslani et al., 2018; Nobrega de Almeida et al., 2018; Hirayama et al., 2018; Treguier et al., 2018; Lim 
et al., 2020; Seth-Smith et al., 2020). 
ᵇ Randomly selected from the chloramphenicol-supplemented SDA isolation medium (Harrigan & McCance, 1976). 
c Represent isolates that were identified as M. guilliermondii based on MBA morphology as observed in Table S2. 
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river water were members of Candida blankii, Candida melibiosica, Candida pseudoaaseri, 

C. lusitaniae, Cutaneotrichosporon mucoides (syn. Trichosporon mucoides), Cyberlindnera jadinii (syn. 

Candida utilis), Kluyveromyces marxianus (syn. Candida kefyr), Kodamaea ohmeri (syn. Yamadazyma 

ohmeri), Meyerozyma caribbica, M. guilliermondii (syn. Candida guilliermondii), Pichia kluyveri, 

S. cerevisiae, and Wickerhamomyces onychis (Al-Sweih et al., 2011; Kurtzman, 2011; Pfüller et al., 

2011; Cooper, 2013; Rizzitelli et al., 2016; Aslani et al., 2018; Nobrega de Almeida et al., 2018; 

Hirayama et al., 2018; Treguier et al., 2018; Lim et al., 2020; Seth-Smith et al., 2020).  

Colony morphology on MBA, used for quality control of the yeast isolate collection, is presented in Table 
S2. Representatives of some species were unable to grow on MBA and these species were therefore 

omitted from the results presented in Table S2. These species are C. lusitaniae, K. marxianus, 

Kazachstania servazzii, Pichia bruneiensis, Candida pseuodolambica, Yamadazyma mexicana, Pichia 

occidentalis, Candida ethanolica, C. pseudoaaseri, and Saturnispora silvae.  

3.3.5. Multivariate correlation analysis 

Redundancy analysis was carried out on microbiological and physicochemical data collected during this 

study. The microbiological data included E. coli and total coliform counts, total thermotolerant yeast 

concentrations, as well as the concentrations of the most frequently (>10) isolated yeast species. The 

analysis involved multiple linear regression and principal component analysis to construct an ordination 

biplot indicating the associations between the different parameters (Figure 3.8). The biplot collectively 

represents 87.14% of the variation in the data. Variation was highest for microbiological data.  

Conductivity and COD values were weakly associated with P. kudriavzevii whereas S. cerevisiae 

concentrations appear to have a strong positive association with pH (Figure 3.8). However, Pearson 

correlation analysis revealed that the latter association is weak. The pollution indicators NH3, COD, and 

conductivity clustered with E. coli, coliform, C. lusitaniae, and C. glabrata concentrations (Figure 3.8). 

These microbial parameters, including P. kudriavzevii, further had a moderate to strong negative 

association with DO which was confirmed with correlation analyses. Conversely, total thermotolerant 

yeasts numbers and M. guilliermondii concentration were found to be negatively associated with NH3, 

COD, and conductivity whereas it had a weak positive association with DO. Similar results were 

observed following Pearson correlation analysis. Furthermore, a possible trend was observed between 

thermotolerant yeast concentration and DO values for some sampling sites (Figures S7-9).  

3.3.6. Antifungal susceptibility 

Yeast isolates recovered from the different sampling sites and identified as representatives of clinically 

relevant species were subjected to antifungal susceptibility testing. Consequently, the FLU (Table 3.4) 

and AmB (Table 3.5) MICs were determined for these yeasts. Two yeast isolates representing Candida 

blankii and Pichia kluyveri had MICs of 16mg/L and 32mg/L, respectively (dose-dependent/intermediate 

category; Pfaller et al., 2010). Furthermore, most isolates identified as P. kudriavzevii had FLU MICs of 

16 mg/L and 32 mg/L (dose-dependent category; Pfaller et al., 2010).  
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Potential FLU resistance was observed for one C. albicans isolate (S8), one Cutaneotrichosporon 

mucoides isolate (T2), one M. guilliermondii isolate (T3), four P. kluyveri isolates (S9, S8, S5, and S1), 

and four P. kudriavzevii isolates (S4, T4, and S3) (Tables S11-12). All isolates tested during our study 

were susceptible to AmB. The highest AmB MIC (4mg/L) was observed for a C. glabrata isolate (site 

S8), two isolates of P. kudriavzevii (S5 and S4), and one C. tropicalis isolate (T4; Table 3.5) 

 

Figure 3.8. Redundancy analysis of (▲) total thermotolerant yeast concentrations, Candida glabrata, Clavispora 

lusitaniae, Meyerozyma guilliermondii, Pichia kudriavzevii and Saccharomyces cerevisiae counts, (∆) E. coli and 

coliform concentrations, as well as the (●) pH, temperature, DO, conductivity, COD and NH3 levels in the water. 

Both axes collectively represent 87.13% of the variability in the data. A permutation test confirmed a linear 

relationship between response and explanatory variables.  
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Table 3.4. Fluconazole minimum inhibitory concentration (MIC) modes and ranges of clinically relevant yeast species isolated from river water sites.  

 Fluconazole MIC Mode (Range) (mg/L) 

 Sampling Sites 

Yeasts S9 S8 S5 T1 T2 S1 S4 T4 S3 T3 
Candida albicans 0.25ᵅ (0.25-64)ᶜ - - - - - - - - 
Candida blankii - - - - 16ᵅ - - - - - 
Candida glabrata 4 (2-4) 2 (2-8) (1-4)ᵇ 2ᵅ - 2ᵅ 4 (2-4) 1ᵅ 4 (2-4) 4ᵅ 
Candida melibiosica - - - - - 0.25ᵅ - - - - 
Candida pseudoaaseri - - - - - - 0.5ᵅ - - - 
Candida tropicalis - - (0.25-0.5)ᵇ - - - 0.25ᵅ - - (0.5-1)ᵇ 
Clavispora lusitaniae 0.25 - 0.5ᵅ (0.5-1) - - - (0.13-0.25)ᵇ 0.25 0.25ᵅ 
Cutaneotrichosporon mucoides - - - - >64ᵅᶜ 4ᵅ - - - - 
Cyberlindnera jadinii - 1 (1-4) 2 (1-2) - - - - - - - 
Kluyveromyces marxianus - 1ᵅ - - - - - - 0.25ᵅ - 
Kodamaea ohmeri - - - 4ᵅ - - - 2ᵅ - - 
Lodderomyces elongisporus - - - - 0.13ᵅ - - - - - 
Meyerozyma caribbica - - - - - - - 1ᵅ - - 
Meyerozyma carpophila - - - - 4ᵅ - - - - - 
Meyerozyma guilliermondii 1ᵅ 4 (2-4) 4 4 (2-4) 4 (2-8) 4 4 4 (2-4) 4 4 (4-64)ᶜ 
Pichia kluyveri >64ᶜ - 32ᵅ - - >64ᵅᶜ - - - - 
Pichia kudriavzevii - - 32 32 - 32 32 (32-64)ᶜ 32 (32-64)ᶜ 32 (8-64)ᶜ 32 (16-32) 
Wickerhamomyces onychis - 2ᵅ - - - - - - - - 

ᵅ - Represents only one isolate; ᵇ - No mode; ᶜ - Include potentially resistant isolates 
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Table 3.5. Amphotericin B minimum inhibitory concentration (MIC) modes and ranges of clinically relevant yeast species isolated from river water sites. 

 Amphotericin B MIC Mode (Range) (mg/L) 

 Sampling Sites 

Yeasts S9 S8 S5 T1 T2 S1 S4 T4 S3 T3 
Candida albicans 1ᵅ 1 - - - - - - - - 
Candida blankii - - - - 1ᵅ - - - - - 
Candida glabrata 1 (1-2) 1 (0.5-4) 2 2ᵅ - 1ᵅ 2 1ᵅ 1 (1-2) 2ᵅ 
Candida melibiosica - - - - - ᵅ - - - - 
Candida pseudoaaseri - - - - - - 0.5ᵅ - - - 
Candida tropicalis - - (0.5-2)ᵇ - - - 2ᵅ - - (0.5-4)ᵇ 
Clavispora lusitaniae 1 (0.5-1) - 1ᵅ (0.5-1)ᵇ - - - (0.5-1)ᵇ 0.5ᵅ 0.5ᵅ 
Cutaneotrichosporon mucoides - - - - 1ᵅ 0.5ᵅ - - - - 
Cyberlindnera jadinii - 0.5 1 (1-2) - - - - - - - 
Kluyveromyces marxianus - 1ᵅ - - - - - - 1ᵅ - 
Kodamaea ohmeri - - - 0.5ᵅ - - - 0.5ᵅ - - 
Lodderomyces elongisporus - - - - 0.13ᵅ - - - - - 
Meyerozyma caribbica - - - - - - - 1ᵅ - - 
Meyerozyma carpophila - - - - 1ᵅ - - - - - 
Meyerozyma guilliermondii 1ᵅ 0.5 (0.5-1) 0.5 1 (0.5-2) 1 0.5 0.5 0.5 (0.5-1) (0.5-1)ᵇ 0.5 (0.5-2)ᵇ 
Pichia kluyveri 0.5 - 0.25ᵅ - - 0.5ᵅ - - - - 
Pichia kudriavzevii - - 2 (2-4) 1 - 1 0.5 (0.5-4)ᵇ 1 (0.5-1) 2 (0.5-2) 1 (0.5-1) 
Wickerhamomyces onychis - 1ᵅ - - - - - - - - 

ᵅ - Represents only one isolate; ᵇ - No mode 
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3.3.7. QMRA 

The risk of obtaining a yeast infection via river water ingestion was estimated for six clinically relevant 

species: C. albicans, C. glabrata, C. tropicalis, C. lusitaniae, M. guilliermondii, and P. kudriavzevii. The 

annual probabilities of infection via ingestion for four of the six yeast species are presented in Figure 

3.9; C. albicans and C. tropicalis were detected only in HP sites and were therefore excluded from this 

figure.  

 

Figure 3.9. Estimated annual risk of yeast infection from drinking water of less polluted (LP) and highly polluted 
(HP) river water, South Africa.  

The annual risk of obtaining C. albicans and C. tropicalis infections through drinking river water (HP 

sites) was 0.26 (25.98%) and 0.23 (23.29%) respectively. These values were considerably higher than 

those of C. glabrata, C. lusitaniae, M. guilliermondii and P. kudriavzevii (Figure 3.9). Among the four 

species presented in Figure 3.9, C. glabrata posed the greatest threat. On the other hand, the lowest 
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risk of infection was observed for M. guilliermondii followed by P. kudriavzevii. Furthermore, risk of 

infection from ingesting river water from LP sites was lower than that of ingesting water from HP sites.  

3.4. DISCUSSION 

The pollution levels of the Eerste and Plankenbrug rivers in the Western Cape Province, South Africa, 

have been under investigation for the past three decades during which several research groups 

assessed the water quality (Barnes, 2004; Ngwenya, 2006; Ackermann, 2010; Britz et al., 2013; 

Postma, 2016). The results of these studies indicated that the upstream sections of the Eerste river 

were unpolluted, while the downstream sections were contaminated due to confluence with the 

notoriously polluted Plankenbrug river (Figure 3.1). While some of these observations were similar to 

our study’s findings, it is important to note that our results indicated that the waters upstream of the 

Eerste river were polluted, albeit moderately. The E. coli and coliform levels in these waters exceeded 

the limits for drinking water set by the South African National Standard (SANS) 241 drinking water 

guideline, as well as the limits set by guidelines of the Department of Water Affairs and Forestry (DWAF) 

for domestic water use (DWAF, 1996; SANS, 2015). Both sets of guidelines are frequently referred to 

when investigating South African polluted waters. In addition to microbial load, these guidelines list 

certain pollution indicator parameters such as NH3 concentration, conductivity, and COD, all of which 

allowed us to discriminate between the less polluted upstream section of the Eerste river (LP sites), and 

the highly polluted waters of Plankenbrug, Krom, and downstream Eerste river sections (HP sites; Table 
S1 & Figure S1).  

Exposure to polluted waters has negative effects on human health, especially due to harmful 

microorganisms proliferating in the nutrient rich conditions (Schwarzenbach et al., 2010). Various 

disease-causing bacteria were previously identified in Plankenbrug and surrounding rivers, illuminating 

the health risks associated with these waters (Barnes, 2004; Ackerman, 2010). The presence of 

pathogenic fungi in the rivers, however, was only considered by a few (Stone et al., 2013; Postma, 

2016). Using metagenomics and culture-based methods our study revealed the presence of various 

pathogenic fungal species (Table 3.3; Table S13), in addition to many strains that could only be 

identified up to genus-level (Figure 3.6). Relatively few of the pathogenic species identified using the 

metagenomic analysis represented filamentous fungi while most represented ascomycetous yeasts; 

however, these observations relied on the highest quality of DNA for species-specific identification, and 

therefore excluded any DNA possibly damaged or lost during extraction protocols. Therefore, it is 

possible that more representatives of opportunistic fungal species could have been present in the rivers, 

but the resolution of the metagenomic analysis was not high enough to identify these fungi in the water. 

This contention is supported by the fact that numerous fungal genera, known to harbour pathogenic 

species, were detected with the metagenomic analysis (Figure 3.6), and fewer yeast species were 

detected using this method than with the selective isolation procedure for culturable thermotolerant 

yeasts (Table 3.3; Table S13).  

Interestingly, some of the fungal genera that were also detected through culture-based methods, 

showed higher relative abundance at HP sites (Figure 3.6) compared to LP sites: i.e. Candida, 

Clavispora, Cutaneotrichosporon, Cyberlindnera, Debaryomyces, Pichia, and Saccharomyces. 
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Moreover, fungal communities from HP sites differed significantly from that of LP sites (Figure 3.4), 

supporting claims that these environments affect fungal diversity (Ortiz-Vera et al., 2018). The 

association between fungal presence and water pollution has been an ongoing investigation without 

drawing definite conclusions. Some researchers found yeast numbers to correlate with pollution 

indicators (Medeiros et al., 2012; Brandão et al., 2010; Pietryczuk et al., 2018; Monapathi et al., 2020b), 

while others observed no such correlations (Samah et al., 2014; Monapathi et al., 2017). The results 

obtained during our study indicated that total thermotolerant yeast concentrations also did not correlate 

with any indicator parameters. In fact, either negative or independent associations were observed 

between thermotolerant yeast concentrations and pollution indicators (Figure 3.8). The most probable 

reason for this is that high concentrations of yeasts were observed at all sites irrespective of pollution 

level (Figure S10).  

The increased yeast concentrations correlated strongly with the presence of M. guilliermondii, an 

ascomycetous opportunistic yeast that dominated the thermotolerant culturable yeast populations in the 

water and was sometimes almost exclusively isolated from the isolation medium (Savini et al., 2011; 

Figures S11-13). Apart from the possibility that increased dissolved oxygen and rainfall occurrences 

promote growth of this species (Figure S7-9), very little is understood of this phenomenon. Additional 

experimentation did however indicate that the growth rate of M. guilliermondii is considerably higher 

when the cultures thereof is being agitated on a rotary shaker, as opposed to conditions when the 

growth medium is kept static (Figure S14). The conditions on a rotary shaker could mimic turbulent and 

oxygen rich waters which are most frequently observed during rainy seasons, providing a possible 

explanation for the increased numbers of M. guilliermondii. Nevertheless, many other environmental 

factors may play a role in the bloom of M. guilliermondii during the rainy season, such as the versatile 

metabolism of this yeast which could provide competitive advantages under these conditions (Mo et al., 

2021). Studying the physiology and niche specific interactions of fungal species in such environments 

could be enlightening.  

Important to note, however, is that the presence of pathogenic yeast species such as C. glabrata and 

Clavispora lusitaniae (syn. Candida lusitaniae) did associate with polluted river water; positive 

correlations were revealed between the concentrations of these species and conductivity, COD, and 

NH3 levels whereas negative correlations were observed toward DO (Figure 3.8). Additionally, the 

genus Clavispora was not detected in LP sites using metagenomic analysis, further motivating the 

indicator potential of C. lusitaniae (Figure 3.6). Previous studies observed similar results for pathogenic 

fungi associated with polluted ground water and rivers (Samah et al., 2014; Pietryczuk et al., 2018; 

Monapathi et al., 2020b). We therefore contend that while total thermotolerant yeast counts cannot be 

considered as pollution indicators, particular yeast species which inevitably associate with pollution 

factors should be considered, similar to the bacterial indicator Escherichia coli, and its established 

association with faecal matter (Saxena et al., 2015).  

The presence of renown pathogenic yeast species such as C. albicans, C. tropicalis, C. glabrata, 

P. kudriavzevii, and L. elongisporus (syn. Candida parapsilosis) in the rivers of Stellenbosch is cause 

for concern. Additionally, reports of antifungal resistant strains of C. glabrata, C. tropicalis, 
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C. parapsilosis, and P. kudriavzevii (syn. C. krusei) in clinical samples recovered from Stellenbosch 

residents (2018-2019) were alarming (Louw et al., unpublished). Antifungal resistance is frequently 

involved in detrimental mycoses outcomes and have had devastating effects on livelihoods (Perlin et 

al., 2017). We found resistance towards one of the most affordable antifungals (FLU; Kneale et al., 

2016) among isolates representing C. albicans, C. mucoides, M. guilliermondii, P. kluyveri and 

P. kudriavzevii (Table 3.4). These isolates, excluding representatives of C. mucoides, were recovered 

from HP sites (Table 3.4), which suggested that the isolates either acquired antifungal resistance due 

to the presence of pharmaceuticals in these polluted waters, or via sewage pollution originating from 

infected individuals. It remains unclear which of these explanations holds true and further investigation 

is therefore required.  

Our study further illuminated the threats regarding the presence of potentially pathogenic yeasts in river 

water, by determining the annual risk of infection via ingestion (posed by six clinically relevant yeasts) 

through a provisional QMRA (Figure 3.9). It was observed that species with higher pathogenic potential 

presented considerably higher risk of infection despite low concentrations. It also became evident during 

this study that increased risk of infection associates with contaminated river water (Figure 3.9). While 

these estimations remain rudimentary due to a lack of fungal QMRA studies and epidemiological data 

(Weiskerger & Brandão, 2017), they highlight the health threats faced by immunocompromised 

individuals when being exposed to polluted waters.  

3.5. CONCLUSION 

South Africa has a disproportionally large population of immunocompromised people, primarily due to 

the number of individuals living with HIV / AIDS (UNAIDS, 2021). In addition, about 32% of South 

Africa's population live in rural / informal areas (https://www.macrotrends.net) and are frequently 

dependent on natural surface water for domestic purposes, including drinking (Colvin et al., 2016; 

Edokpayi et al., 2018). Understanding the risks these individuals face daily is of dire importance, our 

study highlights these issues through identifying the pathogenic fungi present in the river water. 

Moreover, our study revealed that antifungal resistant strains of some yeast species occur in these 

waters and provide confirmation that polluted waters pose a greater mycoses-related health threat than 

clean waters do, thereby highlighting the crucial need for environmental remediation. There is still much 

left to investigate regarding environmental fungi: the ecology and interactions of pathogenic fungi in 

polluted surface waters, the origins of antifungal resistance as well as the epidemiology and 

pathogenesis of opportunistic fungi. Exploring these research fields would aid in future risk 

assessments, knowledge dissemination, and risk management—all of which are crucial to ensure the 

safety of susceptible individuals.   
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________________________________________________________________________________ 

CHAPTER 4: GENERAL CONCLUSIONS, 
RECOMMENDATIONS AND FUTURE RESEARCH  

_________________________________________________________________________________ 

4.1. GENERAL CONCLUSIONS  

This study underscored the latent threat to public health posed by opportunistic, clinically relevant fungi 

occurring in South African river systems. The overarching aim of the study was to expand on the 

knowledge of opportunistic and pathogenic fungi present in rivers and to highlight the associated health 

risks (Chapter 1). The first objective was to review existing literature on the presence of pathogenic 

fungi in rivers (Chapter 2). Subsequently, the presence of clinically relevant fungi in a South African 

urban river system, as well as the risks posed by these fungi, were reported on in Chapter 3.  

The literature review in Chapter 2 revealed that opportunistic and pathogenic fungi can be found in all 

environments, however, their presence in aquatic ecosystems remain relatively unexplored. Literature 

also showed that although pathogenic fungi were frequently detected in polluted water sources, the 

direct relationship between these fungi and pollutants has not been elucidated. The literature also 

highted the lack of surveys on the presence of pathogenic filamentous fungi in river systems. Fungal 

identification in these cases were often limited to genus-level, restricting the recognition of pathogenic 

filamentous fungi present in these environments. Conversely, various unicellular fungi were detected in 

surface waters, and notorious pathogenic yeast species were recurrently observed in rivers of South 

Africa and other countries across the globe. The dominant opportunistic and pathogenic yeast species 

found during these studies were Candida albicans, Candida glabrata, Candida. parapsilosis, Candida 

tropicalis, Candida lusitaniae, Meyerozyma guilliermondii and Pichia kudriavzevii, all of which are 

ascomycetes. Basidiomycetous yeasts were seldomly detected in rivers, and when they were found, 

they were identified as either Cryptococcus albidus (syn. Naganishia albida), Cryptococcus laurentii 

(syn. Papiliotrema laurentii) or Rhodotorula mucilaginosa.  

Furthermore, Chapter 2 explored the roles of thermotolerance in pathogenesis and how fungi might 

attain this trait in response to rising environmental temperatures because of climate change. It was 

highlighted that the inability of many fungal species to survive elevated temperatures would be the 

primary obstacle, excluding the immune system, preventing them to infect and cause harm to the human 

body. It was also argued that fungal species harbouring virulence traits which cannot survive at 

mammalian body temperatures, might gain advantage through acquired thermotolerance. The 

increasing environmental temperatures could therefore drive microevolution among fungal species, 

resulting in the emergence of novel pathogens. It was stated that existing pathogenic as well as newly 

thermotolerant opportunistic species might proliferate in a nutrient-rich environment such as polluted 

river water. 

Rivers are used as primary water sources for many individuals in informal settlements, especially in 

developing countries such as South Africa. The water may be used for drinking, cooking, ablutions, and 

other domestic uses. Exposure to polluted river water through these activities could therefore pose 
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health risks. Experimental evidence for these risks was presented in Chapter 3, which focused on the 

presence of opportunistic and pathogenic fungal species in highly polluted (HP) and less polluted (LP) 

river water. Both high-throughput sequencing and culture-based methods were used to detect 

pathogenic fungal species. The latter method involved thermally selective isolation of yeast species on 

agar medium followed by random selection. The metagenomic analysis reported on in this chapter 

revealed that fungal communities differed significantly between HP and LP environments. This finding, 

together with the correlations observed between the pathogenic yeast species (C. glabrata and C. 

lusitaniae) and pollution indicators, indicated that some fungi might be associated with polluted water. 

However, the total number of thermotolerant yeasts did not correlate with any of the pollution indicator 

parameters used in this study. The predominance of M. guilliermondii, which correlated with high yeast 

concentrations, further raised questions regarding the impact of non-anthropogenic (natural) factors on 

the growth of fungi in river ecosystems.  

While it was important to determine the fungal diversity of the polluted river water, further investigation 

into the health risks these fungi pose was necessary. Thus, Chapter 3 also reports on the antifungal 

susceptibility profiles of the culturable yeasts recovered from the river water. While the majority of the 

yeast isolates were found to be susceptible to the two most readily available antifungals (FLU and AmB), 

some isolates did present resistance towards FLU. These isolates were representatives of C. albicans, 

C. mucoides, M. guilliermondii, P. kluyveri, and P. kudriavzevii. Exposure to such antifungal resistant 

yeasts could be detrimental to immunocompromised individuals, especially considering the 

inaccessibility of alternative antifungals in low-income countries. Using the results obtained during this 

study, as well as pre-clinical data obtained from literature, a provisional QMRA was subsequently 

performed to determine the probability of yeast infection via river water ingestion. The assessment 

ultimately revealed that the probability of becoming infected is higher when ingesting more polluted 

water and that certain yeast species pose a greater threat due to their higher pathogenic potentials.  

4.2. RECOMMENDATIONS AND FUTURE RESEARCH 

An increase in mycosis cases is anticipated, due to a rapid growing population, increasing pollution, 

and increased environmental temperatures as a result of climate change. Future studies are therefore 

required to obtain more comprehensive data on the fungal taxa in polluted rivers, as well as the 

ecophysiology of the clinically relevant fungi in these waters.  

4.2.1. Detection of pathogenic fungi  

Detection and enumeration of microorganisms in natural environments are essential to investigate the 

microbial diversity and observe any causes for imbalances within the microbial communities of these 

environments. Metagenomic analysis of the mycobiome (Chapter 3) revealed that pollution influences 

fungal communities in the water. These methods also allowed us to detect pathogenic species. The 

resolution of the metagenomic analysis, however, was mostly limited to genus-level, while the culture-

based techniques employed during this study could confidently identify up to species-level. DNA 

recovery and sequencing techniques with better resolution should be attempted in future (Lindahl et al., 

2013). Moreover, our metagenomic study evaluated the fungal communities of only one sampling 
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event’s data. In future, samples from different seasons should be included and separately analysed, 

during which seasonal occurrences might be observed.  

Thermally selective isolation of yeasts provided higher resolution with regard to the detection of 

pathogenic species than did the high throughput sequencing conducted during our study. This was 

owing to the fact that thermotolerance, used as selective measure during the isolation procedure, is one 

of the main pathogenic traits among fungi (Robert & Casadevall, 2009). However, many other non-

pathogenic thermotolerant species of yeasts and filamentous fungi may also be present in these 

environments. These less pathogenic / non-pathogenic species might have been able to outcompete 

the species of interest during isolation. This could mean that slower growing pathogenic species were 

not recorded. Nevertheless, the isolation of these non-pathogenic thermally tolerant fungi from the 

polluted river water should be viewed as an indication of their potential virulence in future clinical cases.  

The thermal selective procedure used during this study selected for both pathogenic and non-

pathogenic fungi. Thus, it is clear that more selective procedures should be developed to improve the 

selective enumeration and identification of pathogenic species in this habitat. To develop a method for 

selective isolation of yeast species for instance, comprehensive information regarding the physiology 

of these microbes is needed. An example of such an approach is the selective medium that was 

developed to identify C. auris strains (Das et al., 2021). To achieve their goal, the authors tested various 

environmental stressors against C. auris strains to determine the conditions and medium composition 

that would promote growth of only those strains that represent C. auris. Another approach would be to 

detect species specific molecular markers in the metagenome extracted from the water samples (Tu et 

al., 2014). The process would be similar to the methods employed for metagenomic analyses in Chapter 

3, except it would involve higher specificity during sequencing. A disadvantage of using such molecular 

techniques is, however, that physiological studies of the detected fungal species cannot be conducted: 

The microbe’s virulence factors, antifungal susceptibility profile, and growth characteristics would 

therefore remain unexplored.  

4.2.2. Quantification of pathogenic fungi 

Since no selective pressure was exerted on the viable mycobiome when high-throughput sequencing 

was used to analyse the metagenome (Chapter 3) the method did provide a fairly unbiased view of the 

relative abundance of the different fungal taxa (mesophilic and thermotolerant) in the rivers. It was 

anticipated that the mesophilic fungi would predominate, considering the average temperature of the 

river water. Unsurprisingly, the relative abundances of pathogenic fungi were therefore much lower and 

did not necessarily coincide with the frequency at which pathogenic yeasts were detected using the 

thermally selective isolation procedure. To the best of our knowledge, no universal genetic marker has 

been reported for thermotolerance among fungal species. The quantification of thermotolerant 

(presumably opportunistic and pathogenic) fungi using molecular techniques therefore requires 

extensive evaluation before it is deemed feasible. Currently a combination of molecular and culture-

based techniques serves as the best option; however, as observed in our study and that of others’ 

(Langarica-Fuentes et al., 2014), differences between the results of the two techniques are inevitable.  
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In our study we determined the concentrations of pathogenic yeasts using the calculated frequency at 

which species were randomly isolated. While these results enabled us to investigate the respective 

associations between different species and the environmental parameters, the calculations included 

estimations that were most likely skewed by the bloom of M. guilliermondii witnessed during four of the 

sampling months. Future studies should therefore only focus on the quantification of clinically relevant 

species of interest such as those with higher pathogenic potential: C. albicans, C. tropicalis, C. 

neoformans, and A. fumigatus (Casadevall, 2017). However, very few selective media are available for 

the selective enumeration of these species. As an alternative, a chromogenic medium can be used to 

preliminarily identify yeast species following enumeration, isolation, and culturing on a relatively non-

selective medium, as was done in this study albeit with limited success (Chapter 3). This method, 

however, is time-consuming and still requires routine analyses of taxonomic informative gene 

sequences for quality control.  

Considering that target-gene sequencing and real-time quantification options are available, 

quantification of known pathogenic species is currently more feasible using molecular techniques than 

the above-mentioned culture-based techniques, (Ogata et al., 2015; Martínez‐Murcia et al., 2018; 

Shirvani et al., 2020; Wang et al., 2020). These molecular techniques are closed format technologies 

due to the pre-existing knowledge of the microbial diversity of the environment (Zhou et al., 2015). 

Without prior knowledge of the ecology of pathogenic species, gathered either through culture-based 

or metagenomic methods, molecular quantification can be cumbersome. Our study therefore serves as 

foundation for future investigations into the quantification of pathogenic species in river water.  

4.2.3. Pollution and pathogenic fungi 

The results from our metagenomic analysis indicated that fungal communities differ significantly 

between less polluted and highly polluted river water; and a possible correlation exists between 

physicochemical pollution indicators and the pathogenic yeast species, C. glabrata and C. lusitaniae. 

These observations, together with the results of others (Samah et al., 2014; Pietryczuk et al., 2018; 

Monapathi et al., 2021), suggest that either these fungi are present within the water due to 

anthropogenic pollution or that the pollutants within the water offer a means for proliferation of these 

taxa. Nevertheless, we did detect pathogenic yeast species and moderately high bacterial loads at 

sampling sites that were assumed to be clean. One such sampling site (S1), representing the best 

quality water compared to other sites, was situated near formal housing and nature trails: a possible 

source of anthropogenic pollution. In future, sampling sites free of anthropogenic influences should be 

included in studies, to serve as pollution-free control groups. However, it should be noted that these 

control sites would likely represent upstream mountain rivers that could potentially have vastly different 

natural microbial compositions due to climatic and physicochemical differences (Zeglin, 2015).  

The predominance of M. guilliermondii in the polluted river water during and following the rainy season 

was peculiar and warrants further investigation. Due to the lack of a pollution-free control site as well 

as limited tests for pollution indicators, our study cannot confirm that M. guilliermondii (an opportunistic 

pathogen) is not associated with polluted environments. However, it remains unclear how this yeast 

was capable of growing to such high concentrations other than its high growth rate that seemed to 
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associate with agitation. Such an occurrence is important to understand; should other species with 

higher pathogenic potential have similar growth characteristics. It is therefore crucial to study the niche-

specific physiology and interactions of predominant yeasts present in aquatic environments.  

In addition to studying the interactions between fungal species, inter-kingdom interactions between 

bacterial and fungal communities are of interest. The increased nutrient levels in polluted water also 

promote the growth of bacterial species which possibly interact with pathogenic yeast species. Some 

of these interactions can be cause for concern, such as quorum sensing between Pseudomonas 

aeruginosa and C. albicans (Bandara et al., 2020), especially since it was reported that P. aeruginosa 

induces FLU resistance in C. albicans. Moreover, studies reporting on biofilm associated yeasts in river 

systems, where inter-kingdom interactions are most likely to occur, are lacking.  

4.2.4. Emerging pollutants 

Antifungals are among the many emerging environmental pollutants currently gaining attention 

(Richardson & Kimura, 2017). Our study investigated the antifungal susceptibility profiles of isolated 

yeast species but did not quantify the levels of antifungals present in the river water. Doing so could 

allow researchers to determine whether the presence of an antifungal might promote resistant 

phenotypes among species. Risk assessments, however, have previously been conducted to determine 

the effects of antifungals in surface waters on both human health and antifungal resistance (Assress et 

al., 2020). Similar studies could be beneficial and enlightening when conducted in tandem with isolation 

and antifungal susceptibility testing of fungal species.  

4.2.5. Quantitative microbial risk assessment  

We reported on a provisional QMRA for yeast infection via river water ingestion. Various assumptions 

were made in order to perform this assessment, and therefore many limitations exist. The results from 

this assessment suggested that probability of infection relies more upon the pathogenic potential than 

the concentration of yeasts in the exposure dose. While it is logical that lower concentrations of a more 

virulent species are required to elicit infection, these estimations might not be entirely reliable for inter-

species comparisons of infection risks. Moreover, the clinical data used to determine the PP of 

C. glabrata, C. parapsilosis, C. lusitaniae, M. guilliermondii and P. kudriavzevii originated from one 

study only.  

The lack of clinical studies that provide insight into both the survival and pathogenesis of yeast species 

became obvious as our study progressed. Moreover, existing studies focussing on C. albicans and 

C. tropicalis date back to the 1950’s. As exemplified by Weiskerger and Brandão (2020) extensive 

research is required in the clinical fields of yeast research to continue QMRA of yeast infections. Future 

research into these fields is crucial to standardise QMRA, which in turn is an essential component in 

raising awareness for mycoses. Currently, estimated fungal disease burdens provide the only 

encouragement to investigate mycoses. However, these estimations do not represent the actual 

disease burden since most cases are unreported due to many individuals lacking the proper funds for 

treatment or accessibility to such health facilities (Ibe, 2021). Quantifiable risks of fungal infection would 

provide validated and reputable motivation to prioritise fungi in epidemiology as well as develop 



 
 

50 
 

improved disease diagnostics and proper treatment solutions (Weiskerger & Brandão, 2020). Risk 

assessments also allow for relevant risk management and communication to the public (Brown & 

McClure, 2006).  

4.2.6. The way forward 

In South Africa, one of the major contributing factors to river water pollution is inadequate sewage 

treatment operations. More than half of the wastewater treatment operations of South Africa release 

water of unacceptable standard, which end up in water bodies such as rivers (Herbig, 2019). Moreover, 

nearly 9% of South Africans directly rely on water from streams, rivers, and wells (Colvin et al., 2016). 

It is, therefore, clear that polluted river water poses health risks to humans. However, our understanding 

of the quantifiable risk that fungal pathogens in these waters pose is, however, limited. Nevertheless, 

our study illuminated the risks, but more importantly the knowledge gaps that indisputably require 

attention.  

The suggested steps needed to be taken to raise awareness, through QMRA, of clinically relevant fungi 

in polluted source water are:  

1) standardise the quantification methods for established pathogenic species such as C. albicans, 

C. tropicalis, C. glabrata, C. lusitaniae, P. kudriavzevii, and any others frequently recovered from the 

environment;  

2) investigate alternative exposure routes that might introduce these fungi to its host, such as dermal 

contact leading to oral exposure (mouth to hand movements) in addition to performing community 

surveys detailing the usage of nearby water sources in rural settlements;  

3) validate the pathogenic potentials of these and other fungi of interest by conducting pre-clinical trials, 

to establish accurate and reliable dose response model parameters.  

It is important to note that “back-to-basics” principles are followed when executing these steps above. 

Modern day technologies have come very far and have allowed researchers to unravel the smallest of 

details in science; however, knowledge might get lost in translation when skipping crucial basic 

investigations, such as classic virulence assays which were used to determine dose-response model 

parameters of most pathogens known to us today—excluding fungi (Peleg, 2020). It is foreseen that a 

well-established knowledge foundation, laid using reputable data, would reduce the assumptions made 

in calculations and increase the validity of future QMRAs. This will enable researchers to investigate 

fungal pathogenic potential more elaborately using transcriptomic analyses and surrogate biomarkers 

during environmental and clinical studies (Brul et al., 2012; Kämmer et al., 2020; Thompson et al., 

2022). Considering the current global deterioration of the environment because of anthropogenic 

activities, in-depth studies into the occurrence and pathogenicity of fungi in polluted river systems are 

expedient. 
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