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Motivation

In southern Africa1, rainfall is the element of climate most influential in

determining the variety and abundance of flora and fauna, land use, eco-

nomic development and practically all aspects of human activity. The major

climatic and agricultural regions of southern Africa are based largely on the

areal distribution and seasonality of rainfall. Most studies have focused on

the simplest characteristic of the rainfall process such as annual and monthly

means. However, as was pointed out by Tyson (1986):

"... it is clear that rainfall over Africa is a highly variable quantity,

particularly over the dry western parts of South Africa. Conse-

quently the concept of mean annual rainfall at any one locality

must be treated with caution."

The same comment holds for monthly means. Furthermore monthly means

provide little or no information on many properties of the rainfall that are

relevant to the wide variety of rainfall-related activities. For example, the

risk and severity of storms, the risk, severity and duration of drought and

the timing of rainfall within each year are all aspects of rainfall that are of

importance to decision making.

It is of course possible to make a special study of any particular property

of daily rainfall. For example, Adamson (1981) tabulated and mapped the

risk and severity of ra-day storm depths (for n = 1,2,3,7) at 2200 sites in

southern Africa. However the variety of statistics that might be of interest to

different decision makers is effectively infinite, which renders that approach

problematic.

An alternative and more flexible approach is to model the daily rainfall

process itself and thereby encapsulate all the properties of daily rainfall by

throughout this report, 'southern Africa' is defined to include South Africa, Lesotho

and Swaziland.



means of a small number (in our case 16) of model parameters. Until the

advent of cheap fast computers this approach would have been fruitless be-

cause it is difficult or impossible to determine properties of interest purely

analytically, based on such a model. For example it is doubtful that one

could derive a formula for the probability of events such as 'there will be at

least 50 mm rainfall at Pretoria in July but not more than 20mm on any one

day'.

Computers have made it easy to evaluate the probability of any such event

or sequence of events, regardless of complexity. Once calibrated, the model

can be used to generate long artificial rainfall sequences (typically 1000-2000

years) which preserve all the statistical properties of rainfall; not merely the

means and variances, but also the frequency of occurrence of any sequence

of values.

The point of being able to generate sequences of artificial rainfall is that

it enables one to estimate statistics relating to rainfall events. For example,

suppose that we require an estimate of the probability that Stellenbosch will

have less than 20 mm rainfall in February. This can be done by using the

model to generate a 1000-year daily rainfall sequence at Stellenbosch and

counting the number of years in which this event occurred. Suppose that in

689 out of the 1000 years the February rainfall total was less than 20 mm.

Then an estimate of the required probability is 689/1000 = 0,689 .

In effect one estimates probabilities of this type by simply regarding the

artificial rainfall sequence generated as a very long real rainfall record. One

can do this because the model used to generate the sequences preserves the

properties of real rainfall sequences, for example the averages, standard de-

viations and in fact the entire probability distribution of daily, monthly and

annual rainfall totals, as well as the correlation between rainfall totals on

consecutive days, the seasonal distribution of wet and dry runs, and so on.

One can use the artificial sequences generated to estimate a wide variety



of quantities that may be of interest, for example

• What is the probability of having no rain between two specified dates,

e.g. between 15 July and 30 July ?

• What is the probability of having a run of 20 consecutive dry days

starting sometime in November ?

• Which day (week, month, 50-day period, . . . ) of the year has the highest

(or lowest) average amount of rainfall ?

• What is the distribution of monthly rainfall (mean, median, standard

deviation, . . . ) for any given month of the year ?

• What is the probability that, between 15 October and 31 December,

there will be at least 200 mm, and that there will be no 10-day run

having less than 5 mm ?

One can answer any of these and similar questions by simply averaging

over the generated sequence, that is treating the generated sequence as if it

were a very long real rainfall record.

The Water Research Commission project by Zucchini and Adamson enti-

tled 'The Occurrence and Severity of Drought in South Africa' (WRC Report

No. 91/1/84 - 91/3/84) described a daily rainfall model for South Africa.

The model, which was calibrated at 2550 sites across the country, captures

all the probabilistic properties of the daily rainfall process at those sites. It

can be used to quantify the daily, monthly and annual statistics of rainfall,

its seasonality, the risk of storms and the probabilities of droughts of various

durations and intensity. In fact it can be used to estimate the probability of

any rainfall event or sequence of events with a resolution of one day or longer.

Thus the model provides a versatile decision support tool enabling hydrolo-

gists, water resources managers, natural resource planners and other decision



makers to assess the probable consequences of decisions whose outcome de-

pends on the amounts and timing of rainfall. Some applications of the model

are described, for example, in Zucchini, Adamson and McNeill (1992). The

model is now used routinely by various institutions in Forestry, Agriculture,

Nature Conservation, Agricultural and Civil Engineering and Hydrology, as

well as by researchers at a number of South African universities, by some

farmers, and by a number of companies and financial institutions, such as

the Standard Bank of South Africa. It is offered as one of the products of the

Computing Centre for Water Research (CCWR), according to whose records

it has been used -over 2000 times, mainly to infill missing values of daily

rainfall prior to the data being run through daily rainfall budgeting models.

Although the model was calibrated at a large number of sites, the sites

having sufficiently long records to allow for accurate calibration are concen-

trated in and around urban centres. Many parts of the country, notably the

north-western Cape, the north-eastern Transvaal and Lesotho, are poorly

covered, due to the shortage of rainfall records. Consequently users of the

model have been obliged to base their estimates and conclusions on the rain-

fall properties of calibrated sites, which are often quite distant from the

location of interest. Thus, whereas the usefulness of the model has been

established, its application has been limited to those sites for which it has

been calibrated.

Direct estimation of the model parameters is possible using as few as

five years of daily rainfall data, although the accuracy of estimates based

on so little data would be questionable. However, to establish and service

sufficiently many rain gauges to accumulate records of even such relatively

modest length is obviously not practical. It is therefore necessary to make

do with the data that are available.



Objectives

The main objective of this project has been to produce estimates of the

parameters of the daily rainfall model of Zucchini and Adamson (1984) for

sites throughout South Africa at which there is little or no rainfall data

available, thereby making it possible to use the model to generate artificial

rainfall sequences and study rainfall characteristics at any given location or

over any given area in South Africa. Parameter estimates were to be made

available in the form of:

1. Isoline maps.

2. Digitised values at a regular grid of points one minute of degree square

throughout southern Africa, (that is, at a resolution of about 1,5 kilo-

metres), to be made available on magnetic tape.

3. An algorithm for generating parameters at any point.

These constitute three different ways of presenting the same information.

During the course of the project, the Project Steering Committee recognised

that the maps stipulated under item 1 and the algorithm stipulated in item

3 above would be of limited use once the digitised values were available and

recommended that the project team focus on item 2.

A second objective was to develop methodology and computer software for

the type of interpolation problem investigated in the project with a view to its

future use in the interpolation of other climate variables, such as temperature

and relative humidity.



The Database

Rainfall data from a number of sources, including the South African

Weather Bureau, the Department of Forestry, the Department of Agricul-

ture, the South African Sugar Association, as well as data collected by farm-

ers and other members of the public, are held by the Computing Centre for

Water Research (CCWR), and this data set was used as the data base for

this project. Dent et al. (1989) describe the data base and its quality in

more detail.

In order to fit a reasonably accurate model of daily rainfall at any loca-

tion, it is necessary to have a fairly long record of daily rainfall at that site.

Zucchini and Adamson (1984) fitted their daily rainfall model to some 2550

stations throughout southern Africa, which, in 1981, had at least 30 years of

daily data available.

In 1992, there were some 3397 stations with at least 30 years of data in

southern Africa (including Lesotho and Swaziland). As the major objective

of this project was to extend the geographical coverage of the model, it was

decided to include also all stations with between 20 and 30 years of data.

The first phase of the project was thus to re-fit the model at each of these

stations. Figure 1 shows the location of these sites.

It is clear from this map that there are a number of areas with, a very

low density of data points, in particular the western, north-western and cen-

tral Cape, Lesotho, and an area in the north-east of the country around, the

Kruger National Park. For these areas, it was decided to include those sta-

tions having at least five years of data, giving an additional 512 stations.

While models fitted at such sites might not be very accurate in themselves,

they would contribute useful information to the estimation process described

in the report. The accuracy of the fitted model was incorporated into the

final estimation process in such a way that stations where the fitted model

had low accuracy would be appropriately down-weighted. In all, there were



Figure 1: Stations with at least 20 years of data.

5070 stations finally selected. Their locations are shown in Figure 2. Despite

the incorporation of the additional stations, some areas of the country are

still poorly represented in the data set. In addition, the station locations

tend to be clustered around areas of human habitation, so that in mountain-

ous areas there may be a bias towards the lower altitudes, which could give

rise to a corresponding downward bias in rainfall estimates for those areas.

The rainfall data-base was complete up to the end of February 1992,

except for a few stations where record-keeping had been discontinued prior

to this date. Thus the actual time period covered varies from one station to

another; for example, a 10 year record covers the period 1982-1992 while a 20



Figure 2: Stations used in this report.

year record covers the period 1972-1992. In analysing the data any possible

long-term trends have been ignored; the magnitude of any such trends is in

practice very small in comparison with the typical year-to-year variation in

the rainfall values.

The data held by CCWR have been screened as far as possible for record-

ing and coding errors. Missing or doubtful values are appropriately flagged

in the data base, although there seem to be occasional inconsistencies in the

coding of some of the older stations in that missing values are sometimes

coded in the same way as zero rainfall. While the model fitting program is

designed to deal with missing values in an appropriate way, it is difficult to
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quantify the effect of coding and recording errors in the data on the fitted

parameters.

Identifying suspect data values is not a trivial task since each value must

be considered both in the light of the time of year and the geographical

location; a value that is reasonable at one site at a given time of year might

be most unlikely in another situation. Fortunately, the majority of rainfall

records are unaffected by this problem and, furthermore, many of those that

are, contain a only few such anomalies. With this in mind, a number of

checks were performed at various stages of the project to identify suspect

values, such values were re-coded as missing values

Apart from possible errors in the daily rainfall values another potential

source of error is the station locations. Although the locations of a few sta-

tions are recorded to the nearest second of a degree of latitude and longitude,

the majority are recorded to the nearest minute. This means that locations

are accurate to within 1 to 2 km at best. In most parts of the country the

pattern of daily rainfall will change very little over such a distance, however

in coastal and mountainous areas the changes can be quite significant. This

variability must be viewed as a limitation imposed by the resolution of the

data; it cannot be removed but must be taken into account in the estimation

process.

The Model

In the recent literature the process of daily rainfall is described by a model

comprising two components; the first describes the occurrence of wet and dry

days while the second describes the distribution of the amounts of rain on

wet days, and the parameters of the model are allowed to vary seasonally.

Woolhiser (1992) gives a recent review. In modelling the occurrence of wet

and dry days a first order Markov chain was found to be appropriate. That is,

the rainfall process exhibits a one day 'memory'. Thus the model estimates



the probability of a wet day given that the preceding day was also wet. and

the probability of a wet day following a dry day. Clearly these probabilities

also vary seasonally in a smooth way. The model incorporates the seasonal

effect by fitting a 5-term Fourier series to the data at a given site.

The method of maximum likelihood was used to fit the Fourier parameters

to the sequence of historical daily rainfall at a given site. Figure 3 illustrates

the model fitted to the probability of a wet day following a dry day at Stellen-

bosch in the south-west Cape, together with the actual frequencies observed

over a 104-year rainfall period.

0.4
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X
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Figure 3: Empirical probabilities and Fourier series model for the probability

of a wet day following a dry day at Stellenbosch.

The amount of rain on wet days was found by Zucchini and A dam son

(1984) to show a seasonally varying mean but a constant coefficient of vari-
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ation. A 5-term Fourier series was again used to model the mean amounts.

Given the estimated mean, the method of moments can then be used to fit

any two-parameter distribution to the data. The Weibuil distribution was

found to provide a good fit for stations throughout southern Africa.

The first stage of this project was therefore to re-fit the model outlined

above to the 5070 stations shown in Figure 2.

As mentioned above, in order to improve the spatial coverage of the sites

we had to make use of a number of sites with quite short rainfall records

which can therefore be calibrated relatively imprecisely. Thus the accuracy

of the parameter estimates at the calibrated sites varies substantially. In

fact the accuracy depends not only on the length of the rainfall record, but

also on various aspects of the timing and amount of rainfall at the site. For

example, the model parameters for sites in arid areas with highly seasonal

rainfall can be estimated less accurately than parameters in areas of high

rainfall with less marked wet and dry seasons.

These discrepancies in the accuracy of the parameter estimates at the

calibrated sites need to be taken into account in the interpolation process.

More specifically it is necessary to have a reasonably accurate measure of

the standard errors of the estimates in order to assign appropriate weights to

each of the available data points. A substantial portion of the work done on

this research project was focused on finding ways to quantify the accuracy of

the parameter estimates at calibrated sites. Initially the standard theoretical

approach to the problem was attempted, but this led to unacceptable levels of

bias. The reasons why this approach fails are discussed in an appendix to the

report. An alternative approach was based on the so-called bootstrap method,

and this proved successful. This method requires an enormous amount of

computation, and its implementation would not have been possible without

the co-operation of the CCWR who made their computer facilities available

to us and kindly assisted with software implementation.
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Interpolat ion of the Parameters

Having re-ca!ibrated the model at the 5070 sites, the major objective of

the project was to interpolate the model parameters, (16 at each site), to a

grid of 1 minute of a degree of latitude and longitude throughout southern

Africa, or some 500 000 points in all.

The key theoretical issue in this project was to identify the most appro-

priate method of interpolating the calibrated parameter values. All existing

methods of interpolation that we could find in the literature were considered;

the main ones are briefly reviewed in the report. For a variety of reasons de-

tailed in the report, we decided to make use of the method known as kriging.

However, as outlined below, the standard kriging techniques (and software)

are not directly applicable to our problem so it was necessary to develop

new variations on the kriging methodology and to write the corresponding

software.

The parameters of the daily rainfall model fall neatly into two types,

the 'amplitude parameters' and the 'phase parameters1. Roughly speaking,

the former encapsulate information relating to the amount of rainfall at a

site and the latter provide information relating to the timing of the rainfall.

The coefficient of variation, which is somewhat anomalous, being neither

an amplitude nor a phase parameter, can be regarded as being of the first

type. The amplitude parameters are scalar quantities (in our case either

probabilities or millimetres) but the phase parameters are what are known

as circular variables (in our case the days of the year). The magnitude of a

scalar variable is determined on an ordinary linear scale but the magnitude

of a circular variable is a somewhat subtler concept which needs to be mea-

sured as a direction on a circle. As an example, consider the fact that the

time interval between day 364 of the year (30 December) and day 365 (31

December) is the same that between day 365 and day 1 (1 January). Even

the 'mean' of two circular values has to be defined in a special way; it is

12



not the simple arithmetic average of the two values. The main consequence

of this is that circular variables need to be modelled entirely differently to

scalar variables. Furthermore kriging techniques for circular variables were

not available and had to be derived; the theory for kriging circular variables

which was developed in this project has recently been published in a scientific

journal (McNeill, 1993).

The phase parameters of the model do have one property that is not

enjoyed by the amplitude parameters, namely they do not depend to any

significant extent on local topographic features. Thus one can find pairs of

sites, only a few kilometres apart, which have substantially different mean

rainfall (typically in mountainous areas), but the seasonality of the rainfall

will be approximately the same (they will tend to receive rain at the same

time of the year). This property allows one to interpolate the phase param-

eters directly, without taking local features into account.

The interpolation of the amplitude parameters, by contrast, has to take

account of local topographic features. Altitude measurements were available

to us on a grid of 1 minute of degree of latitude and longitude throughout

southern Africa. In effect this determined the finest resolution that we could

achieve for interpolating the model parameters. The question of how best to

make use of this altitude information occupied much of our attention. We

considered a variety of interpolation techniques which incorporate additional

information. A brief review of the main techniques is given in the report. The

literature on the interpolation of other aspects of rainfall, such as the mean

annual precipitation, describes a variety of measures derived from altitude

data, the main ones being gradient, aspect, roughness and exposure. The

precise definition of each these measures is, of course, somewhat arbitrary

so that there are many variations on how one might define, for example,

exposure. One of the main advantages of the kriging technique that we

finally adopted is that it is not required to specify such measures in advance

13



- the method can be used to determine which functions of altitude are most

important for the interpolation.

Another of the problems that we had to consider was the magnitude of

the data set with which we were dealing. Some techniques are not applicable

to such large data sets with the currently available computers - they simply

require too much computing. We also required a methodology which would

take account of the varying accuracy of the data points. This was important

in our application because, as mentioned above, some of the parameter esti-

mates were based on very short rainfall records. The method finally selected

was the so-called kriging with external drift ; the 'external drift' in this case

being the functions of altitude. All computations were done on a local basis;

that is, the parameters at each grid point were interpolated using only data

values in the vicinity of the grid point; this relieves one of the necessity of

first partitioning the country into homogeneous regions, interpolating each

region separately and then dealing with the subsequent problem of patching

together the estimates from the disjoint regions in a smooth way.

Validation

The rainfall model itself was extensively tested and validated by Zucchini

and Adamson (1984). In the present report we focused on the validation

of the interpolated parameter estimates. This was carried out by 'hiding'

a number of the available data points, using the remaining data points to

obtain interpolated estimates at the locations of the hidden points and then

comparing the interpolates to the 'true' values. (It needs be kept in mind that

the 'true' values are in fact also estimates.) The agreement was found to be

within the limits of accuracy indicated by the bootstrap variance calculations.

Another way to validate the results is to to calculate derived charac-

teristics, such as the mean annual precipitation, based on simulated data

generated by the model; this enables us to test the model as a whole in the

14



form in which it will be used in practice, and also allows comparison with the

same statistics derived from other sources. We therefore calculated a mean

annual precipitation (MAP) at the location of each of 373 selected test sites

using four different methods:

• Using a 100 year simulation based on the daily rainfall model parame-

ters estimated for that station.

• Using a 100 year simulation based on the daily rainfall model parame-

ters estimated by the kriging procedure at the grid point with the same

latitude and longitude as the station.

• Using the MAP calculated directly from the daily rainfall data for that

station held by CCWR.

• Taking the value of MAP from the CCWR data base of gridded MAP

values, as estimated by Dent et al. (1989).

There are a number of reasons to expect differences between the four

values; these are discussed in the report. In general, however, the agreement

between the four sets of figures is very close (Figure 4), which helps to confirm

that the interpolated model parameters produce realistic simulated rainfall

sequences.

S u m m a r y

The main objective of the project described in this report was to pro-

duce estimates of the parameters of the daily rainfall model of Zucchini and

Adamson (1984) for sites throughout southern Africa at which there is little

or no rainfall data available, thereby making it possible to use the model to

generate artificial rainfall sequences and study rainfall characteristics at any

given location or over any given area in southern Africa.

The parameters of the daily rainfall model have been interpolated on a

regular grid one minute of degree square throughout southern Africa, that

15
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is, at a resolution of about 1,5 kilometres, making the parameter estimates

of the model available for approximately 500 000 sites.

The daily rainfall model is routinely used by researchers and decision

makers in a wide variety of applications. It is hoped, now that the model

is now applicable at practically any site in southern Africa, that it will find

even wider application.

It needs to be emphasised that although the theory behind the model

is rather technical, the model is easy to use by anybody who can operate a

micro-computer. No statistical or other specialist knowledge is required to

apply the model. The feedback that we have received, during the last eight

or nine years, from users with very different mathematical backgrounds, has

been encouraging; no-one has indicated that they found the model difficult to

apply. We are not aware of any user who has misunderstood "what it is that

the model provides or who has misinterpreted the estimates derived from the

model.

One of the by-products of the project has been the contribution to the

theory of kriging, namely the development of a technique for the kriging

of circular variables, described in McNeill (1993). The report also briefly

reviews kriging and other interpolation techniques and comments on their

suitability in the context of hydrological data. This provides a convenient

starting point and an up-to-date list of references for researchers wishing to

interpolate other values.

Recommendat ions

The daily rainfall model has 16 parameters. We have generated estimates

of these parameters for approximately 500 000 grid points, covering southern

Africa on a grid of 1 minute by 1 minute. This information is currently stored

at the CCWR; the data file occupies 3 megabytes of computer disc space for

each, of the 16 parameters or almost 50 megabytes in total. As this quantity

17



of information is too large to be conveniently distributed in its entirety to

individual researchers and other interested parties, we recommend that the

CCWR be approached to:

• store the data file of estimated parameter values.

• extend their present service of supplying artificially generated rainfall

sequences via the 'DRAINGEN' program to incorporate an option for

using the grid point data. (They currently supply generated sequences

for the 2550 stations covered in the Zucchini and Adamson (1984) re-

port.)

• maintain an archive of the interpolation software which was used to

estimate the grid point values so that it will be possible to re-run the

programs at some future date to update the parameter estimates.

We also recommend that some consideration be given to finding appro-

priate means of publicising the existence of the model and its potential uses.

We believe that the number of current users is much smaller than the num-

ber of potential users, who are either unaware of the model or who might

be mistakenly under the impression that it is a complicated tool requiring

specialist knowledge. With this in mind, a PC compatible diskette contain-

ing a small data set and sample programs will be made available on request.

Further software development, aimed at providing application tools to make

optimum utilisation of the generated data, would be a valuable addition.

Further research is required to develop methodology for generating sim-

ulated sequences of daily rainfall for an area rather than a single point, in

such a way as to preserve the appropriate spatial correlation of individual

rainfall occurrences.
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List of Symbols: Model Parameters

Section 3.3 explains the meaning of each of the individual model parameters.

Throughout the text the following abbreviations are used for the parameters:

WWAO Zero'th amplitude:

WWA1 First amplitude:

WWA2 Second amplitude:

WWP1 First phase:

WWP2 Second phase:

DWAO Zero'th amplitude:

DWA1 First amplitude:

DWA2 Second amplitude:

DWP1 First phase:

DWP2 Second phase:

DEPAO Zero'th amplitude:

DEPA1 First amplitude:

DEPA2 Second amplitude:

DEPP1 First phase:

DEPP2 Second phase:

Piob{Wt\Wt-i)

Prob(Wt\Wt-i)

PTob{Wt\Wt-i)

Prob(Wt|A-i)

Prob(Wt|A-i)

Pvob{Wt\Dt-i)

Prob(W,|A-i)

Prob(Wi|A-i)

Mean depth on wet days (mm x 10"1)

Mean depth on wet days (mm x lO^1)

Mean depth on wet days (mm x 10"1)

Mean depth on wet days (mm x 10~:)

Mean depth on wet days (mm x 10"1)

CV Coefficient of Variation: Depth on wet days

IV
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Chapter 1

Introduction

In southern Africa1, rainfall is the element of climate most influential in de-

termining the variety and abundance of flora and fauna, land use, economic

development and practically all aspects of human activity. The major cli-

matic and agricultural regions of southern Africa are based largely on the

areal distribution and seasonality of rainfall. (See for example, Dove (1988),

Schumann and Thompson, (1934), Schumann and Hofmeyr (1938), Schulze

(1947), (1958), Jackson (1951), Wellington (1955).) Most studies have fo-

cused on the simplest characteristic of the rainfall process such as annual

and monthly means. However, as was pointed out by Tyson (1986):

"... it is clear that rainfall over Africa is a highly variable quantity,

particularly over the dry western parts of South Africa. Conse-

quently the concept of mean annual rainfall at any one locality

must be treated with caution."

The same comment holds for monthly means. Furthermore monthly means

provide little or no information on many properties of the rainfall that are

relevant to the wide variety of rainfall-related activities. For example, the

risk and severity of storms, the risk, severity and duration of drought and

throughout this report, 'southern Africa' is defined to include South Africa, Lesotho

and Swaziland.

1
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the timing of rainfall within each year are all aspects of rainfall that are of

importance to decision making.

It is of course possible to make a special study of any particular property

of daily rainfall. For example, Adamson (1981) tabulated and mapped the

risk and severity of n-day storm depths (for n = 1,2,3,7) at 2200 sites in

southern Africa. However the variety of statistics that might be of interest to

different decision makers is effectively infinite, which renders that approach

problematic.

An alternative and more flexible approach is to model the daily rainfall

process itself and thereby encapsulate all the properties of daily rainfall by

means of a small number (in our case 16) of model parameters. Until the

advent of cheap fast computers this approach would have been fruitless be-

cause it is difficult or impossible to determine properties of interest purely

analytically. For example it is doubtful that one could derive a formula for

the probability of events such as "there will be at least 50 mm rainfall at

Pretoria in July but not more than 20mm on any one day".

Computers have made.it easy to evaluate the probability of any such event

or sequence of events, regardless of complexity. Once calibrated, the model

can be used to generate long artificial rainfall sequences (typically 1000-2000

years) which preserve all the statistical properties of rainfall; not merely the

means and variances, but also the frequency of occurrence of any sequence

of values.

The point of being able to generate sequences of artificial rainfall is that

it enables one to estimate statistics relating to rainfall events. For example,

suppose that we require an estimate of the probability that Stellenbosch will

have less than 20 mm rainfall in February. This can be done by using the

model to generate a 1000-year daily rainfall sequence at Stellenbosch and

counting the number of years in which this event occurred. Suppose that in

689 out of the 1000 years the February rainfall total was less than 20 mm.
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Then an estimate of the required probability is 689/1000 = 0,689 .

In effect one estimates probabilities of this type by simply regarding the

artificial rainfall sequence generated as a very long real rainfall record. One

can do this because the model used to generate the sequences preserves the

properties of real rainfall sequences, for example the averages, standard de-

viations and in fact the entire probability distribution of daily, monthly and

annual rainfall totals, as well as the correlation between rainfall totals on

consecutive days, the seasonal distribution of wet and dry runs, and so on.

One can use the artificial sequences generated to estimate a wide variety

of quantities that may be of interest, for example

• What is the probability of having no rain between two specified dates,

e.g. between 15 July and 30 July ?

• What is the probability of having a run of 20 consecutive dry days

starting sometime in November ?

• Which day (week, month, 50-day period,...) of the year has the highest

(or lowest) probability of having non-zero rainfall ?

• Which day (week, month, 50-day period,...) of the year has the highest

(or lowest) probability of having at least 25 mm of rainfall ?

• Which day (week, month, 50-day period,...) of the year has the highest

(or lowest) average amount of rainfall ?

• What is the average rainfall for any given period of the year, e.g. be-

tween 29 February and 13 April ? What is the corresponding standard

deviation, median, mode, 90% confidence interval ?

• What is the distribution of monthly rainfall for any given month of the

year ?
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• What is the distribution of annual rainfall ?

• What is the least amount of rainfall that can be reasonably expected

(for example, with probability 0,9) between 15 December and 15 Febru-

ary ?

• What is the probability of having more than 200 mm in any 3 consec-

utive days between 1 September and 31 January ?

• What is the probability that, between 15 October and 31 December,

there will be at least 200 mm, and that there will be no 10-day run

having less than 5 mm ?

One can answer any of these and similar questions by simply averaging

over the generated sequence, that is treating the generated sequence as if it

were a very long real rainfall record.

Zucchini and Adamson (1984a) described a daily rainfall model for sites

in southern Africa. The model, which was calibrated at 2550 sites across the

region, captures all the probabilistic properties of the daily rainfall process

at those sites. Some applications of the model are described, for example, in

Zucchini, Adamson and McNeill (1992).

The model is now used routinely by various institutions in Forestry, Agri-

culture, Nature Conservation, Agricultural and Civil Engineering and Hy-

drology, as well as by researchers at a number of South African universities,

by some farmers, and by a number of companies and financial institutions,

such as the Standard Bank of South Africa. It is offered as one of the products

of the Computing Centre for Water Research (CCWR), according to whose

records it has been used over 2000 times, mainly to infill missing values of

daily rainfall prior to the data being run through daily rainfall budgeting

models.
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Although the model was calibrated at a large number of sites, the sites

having sufficiently long records to allow for accurate calibration are concen-

trated in and around urban centres. Many parts of the country, notably the

north-western Cape, the north-eastern Transvaal and Lesotho, are poorly

covered, due to the shortage of rainfall records. Consequently users of the

model have been obliged to base their estimates and conclusions on the rain-

fall properties of calibrated sites, which are often quite distant from the

location of interest. Thus, whereas the usefulness of the model has been

established, its application has been limited to those sites for which it has

been calibrated.

Direct estimation of the model parameters is possible using as few as

five years of daily rainfall data, although the accuracy of estimates based

on so little data would be questionable. However, to establish and service

sufficiently many rain gauges to accumulate records of even such relatively

modest length is obviously not practical. It is therefore necessary to make

do with the data that are available.

The main objective of this project has been to produce estimates of the

parameters of the daily rainfall model of Zucchini and Adamson (1984a) for

sites throughout southern Africa at which there is little or no rainfall data

available, thereby making it possible to use the model to generate artificial

rainfall sequences and study rainfall characteristics at any given location or

over any given area in southern Africa.

This report describes the theory and methods used to reach this objective,

namely to obtain estimates of the model parameters on a regular grid one

minute of degree square throughout southern Africa, that is, at a resolution

of about 1,5 kilometres. Thus the parameter estimates of the model are now

available for approximately 500 000 sites.

To achieve this objective, the model was first calibrated at a total of

some 5070 sites for which data are available. (A brief description of the
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data that were available to us is given in Chapter 2, details of the model

are given in Chapter 3.). As many sites as possible were used in order to

increase the density of coverage, especially in areas with a low density of

data points, such as the western, north-western and central Cape, Lesotho

and the north-western and north-eastern Transvaal. The 2550 sites covered

in the Zucchini and Adamson (1984a) report were re-calibrated so as to

take advantage of the additional data that have become available since the

release of that report. The resulting estimates formed the raw material for

the interpolation procedure.

In order to increase the number of sites we had to make use of a number

of sites with quite short rainfall records which can therefore be calibrated

relatively imprecisely. Thus the accuracy of the parameter estimates at the

calibrated sites varies substantially. In fact the accuracy depends not only on

the length of the rainfall record, but also on various aspects of the timing and

amount of rainfall at the site. For example, the model parameters for sites in

arid areas with highly seasonal rainfall can be estimated less accurately than

parameters in areas of high rainfall with less marked wet and dry seasons.

These discrepancies in the accuracy of the parameter estimates at the

calibrated sites need to be taken into account in the interpolation process.

More specifically it is necessary to have a reasonably accurate measure of

the standard errors of the estimates in order to assign appropriate weights to

each of the available data points. A substantial portion of the work done on

this research project was focused on finding ways to quantify the accuracy of

the parameter estimates at calibrated sites. Initially the standard theoretical

approach to the problem was attempted, but this led to unacceptable levels

of bias. The reasons why this approach fails are discussed in Appendix A.

An alternative approach (described in Chapter 4) was based on the so-called

bootstrap method, and this proved successful. This method requires an enor-

mous amount of computation, more than would have been possible 20 years
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ago.

The re-fitting of the model parameters and the estimation of their stan-

dard errors has not been without problems. A number of stations were found

to have isolated data values which were clearly questionable. Identifying sus-

pect data values is not a trivial task since each value must be considered both

in the light of the time of year and the geographical location; a value that

is reasonable at one site at a given time of year might be most unlikely in

another situation. Fortunately, the majority of rainfall records are unaffected

by this problem and, furthermore, many of those that are, contain a only few

such anomalies. As far as possible, suspect data values were identified and

either corrected or re-coded as missing values.

The key theoretical issue in this project was to identify the most appro-

priate method of interpolating the calibrated parameter values. This is the

subject of Chapter 5. All existing methods of interpolation that we could

find in the literature were considered; the main ones are briefly reviewed

in the report. For a variety of reasons detailed in the report, we decided

to make use of the method known as kriging. However, as outlined below,

the standard kriging techniques (and software) are not directly applicable

to our problem so it was necessary to develop new variations on the kriging

methodology and to write the corresponding software.

The parameters of the daily rainfall model fall neatly into two types, the

'amplitude parameters' and the 'phase parameters'. Roughly speaking, the

former encapsulate information relating to the amount of rainfall at a site

and the latter provide information relating to the timing of the rainfall. The

coefficient of variation, which is somewhat anomalous, being neither an am-

plitude nor a phase parameter, can be regarded as being of the first type.

The amplitude parameters are scalar quantities (in our case either probabili-

ties or millimetres) but the phase parameters are what are known as circular

variables (in our case the days of the'year). The magnitude of a scalar vari-
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able is determined on an ordinary linear scale but the magnitude of circular

variable is a somewhat subtler concept which needs to be measured as a di-

rection on a circle. As an example, consider the fact that the time interval

between day 364 of the year (30 December) and day 365 (31 December) is

the same that between day 365 and day 1 (1 January). Even the 'mean' of

two circular values has to be defined in a special way; it is not the simple

arithmetic average of the two values. The main consequence of this is that

circular variables need to be modelled entirely differently to scalar variables.

Furthermore kriging techniques for circular variables were not available and

had to be derived; the theory for kriging circular variables which was de-

veloped in this project has recently been published in a scientific journal

(McNeill, 1993).

The phase parameters of the model do have one property that is not

enjoyed by the amplitude parameters, namely they do not depend to any

significant extent on local topographic features. Thus one can find pairs of

sites, only a few kilometres apart, which have substantially different mean

rainfall (one site might be in a rain shadow area), but the seasonality of the

rainfall will be approximately the same (they will tend to receive rain at the

same time of the year). This property allows one to interpolate the phase

parameters directly, without taking local features into account.

The interpolation of the amplitude parameters, by contrast, has to take

account of local topographic features. Altitude measurements extracted by

Dent et at (1989) were available to us on a grid of 1 minute of a degree of

latitude and longitude throughout southern Africa. In effect this determined

the finest resolution that we could achieve for interpolating the model pa-

rameters. The question of how best to make use of this altitude information

occupied much of our attention. We considered a variety of interpolation

techniques which incorporate additional information. A brief review of the

main techniques is given in the report. The literature on the interpolation
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of other aspects of rainfall, such as the mean annual precipitation, describes

a variety of measures derived from altitude data, the main ones being gra-

dient, aspect, roughness and exposure. The precise definition of each these

measures is, of course, somewhat arbitrary so that there are many variations

on how one might define, for example, exposure. One of the main advantages

of the kriging technique that we finally adopted is that it is not required to

specify such measures in advance - the method can be used to determine

which functions of altitude are most important for the interpolation.

Another of the problems that we had to consider was the magnitude of

the data set with which we were dealing. Some techniques are not applicable

to such large data sets with the computers currently available - they simply

require too much computing. We also required a methodology which would

take account of the varying accuracy of the data points. This was important

in our application because, as mentioned above, some of the parameter esti-

mates were based on very short rainfall records. The method finally selected

was the so-called kriging with external drift; the 'external drift' in this case

being the functions of altitude. All computations were done on a local basis;

that is, the parameters at each grid point were interpolated using only data

values in the vicinity of the grid point; this relieves one of the necessity of

first partitioning the country into homogeneous regions, interpolating each

region separately and then dealing with the subsequent problem of patching

together the estimates from the disjoint regions in a smooth way.

The rainfall model itself was extensively tested and validated by Zucchini

and Adamson {1984a). In the present report we focused on the validation

of the interpolated parameter estimates. This was carried out by 'hiding'

a number of the available data points, using the remaining data points to

obtain interpolated estimates at the locations of the hidden points and then

comparing the interpolates to the 'true1 values. (It needs be kept in mind

that the 'true1 values are in fact also estimates.) The agreement was found
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to be quite close.

Chapter 6 gives an outline of the algorithm needed to generate artificial

rainfall sequences using the model. Our conclusions and recommendations

are given in Chapter 7.



Chapter 2

The Data

2.1 The Database

Rainfall data from a number of sources, including the South African Weather

Bureau, the Department of Forestry, the Department of Agriculture, the

South African Sugar Association, as well as data collected by farmers and

other members of the public, are held by the Computing Centre for Water

Research (CCWR), and this data set was used as the data base for this

project. Dent et at. (1989) describe the data base and its quality in more

detail.

2.2 Selection of Stations

In order to fit a model of daily rainfall at any location, it is necessary to

have a fairly long record of daily rainfall at that site. Zucchini and Adamson

(1984a) fitted their daily rainfall model to some 2550 stations throughout

southern Africa, which, in 1981, had at least 30 years of daily data available.

In 1992, there were some 3397 stations with at least 30 years of data in

southern Africa {including Lesotho and Swaziland). As the major objective

of this project was to extend the geographical coverage of the model, it was

11
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decided to include also all stations with between 20 and 30 years of data.

The first phase of the project was thus to re-fit the model, as described in

Chapter 3, at each of these stations. Figure 2.1 shows the location of the

sites. It is clear from this map that there are a number of areas with a

very low density of data points, in particular the western, north-western and

central Cape, Lesotho, and an area in the north-east of the country around

the Kruger National Park. For these areas, it was decided to include those

Figure 2.1: Stations with at least 20 years of data.

stations having at least five years of data, giving an additional 512 stations

(Figure 2.2). While models fitted at such sites might not be very accurate

in themselves, they would contribute useful information to the estimation
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Figure 2.2: Stations with between 5 and 20 years of data.

process described in Chapter 5. The accuracy of the fitted model was incor-

porated into the final estimation process in such a way that stations where

the fitted model had low accuracy would be appropriately down-weighted.

In all, there were 5070 stations finally selected. Their locations are shown in

Figure 2.3. Despite the incorporation of the additional stations, some areas

of the country are still poorly represented in the data set. In addition, the

station locations tend to be clustered around areas of human habitation, so

that in mountainous areas there may be a bias towards the lower altitudes,

which could give rise to a corresponding downward bias in rainfall estimates

for those areas. This point will be addressed in Chapter 5.
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Figure 2.3: Stations used in this report.

Figure 2.4 shows the distribution of the number of years of available

rainfall record at each of the 5070 stations. The data was complete up to

the end of February 1992, except for a few stations where record-keeping had

been discontinued prior to this date. Thus the actual time period covered

varies from one station to another; for example, a 10 year record covers

the period 1982-1992 while a 20 year record covers the period 1972-1992.

In analyzing the data any possible long-term trends have been ignored; the

magnitude of any such trends is in practice very small in comparison with

the typical year-to-year variation in the rainfall values.
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Figure 2.4: Distribution of length of rainfall record.

2.3 Accuracy of the Data

The data held by CCWR has been screened as far as possible for recording

and coding errors. Missing or doubtful values are appropriately flagged in

the data base, although there seem to be occasional inconsistencies in the

coding of some of the older stations in that missing values are sometimes

coded in the same way as zero rainfall. While the model fitting program is

designed to deal with missing values in an appropriate way, it is difficult to

quantify the effect of coding and recording errors in the data on the fitted

parameters.

With this in mind, a number of checks were performed at various stages of

the project to identify suspect values. One of the first checks was to construct

histograms (see Figure 3.1) of each of the fitted model parameters and to
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investigate any outliers. In addition, 200 year simulations (based on the fitted

daily rainfall model) were carried out to estimate mean annual precipitation

(MAP) values at each site, which were compared with those obtained directly

from the CCWR data. Some 89 sites were found to be discrepant, apparently

mainly as a result of the inconsistencies in coding of missing and zero data

described above. The data for these sites were re-checked by the CCWR,

and suspect values were re-coded as missing values where necessary. After

bootstrapping the data to estimate the variances as described in Chapter 4, a

further check was made by comparing the bootstrap means with the original

estimates. This led to the exclusion of some additional stations, as described

in Section 4.3.

Apart from possible errors in the daily rainfall values another potential

source of error is the station locations. Although the locations of a few sta-

tions are recorded to the nearest second of a degree of latitude and longitude,

the majority are recorded to the nearest minute. This means that locations

are accurate to within 1 to 2 km at best. In most parts of the country the

pattern of daily rainfall will change very little over such a distance, however

in coastal and mountainous areas the changes can be quite significant. As an

example, Table 2.1 lists the fitted model parameters at three stations on the

slopes of Table Mountain in Cape Town which all have the same recorded

location. It can be seen that for some parameters1 the differences are quite

considerable. This is also reflected in the 'nugget effect' apparent in the

semi-variograms discussed in Chapter 5. This variability must be viewed as

a limitation imposed by the resolution of the data; it cannot be removed but

must be taken into account in the estimation process.

lSee symbol list on page iv for an explanation of the parameter codes.
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WWAO

WWA1

WWA2

WWP1

WWP2

DWAO

DWA1

DWA2

DWP1

DWP2

DEPAO

DEPA1

DEPA2

DEPP1

DEPP2

CV

020719 W

-0.847

0.622

0.140

195.40

131.09

-1.614

0.292

0.051

216.67

49.42

203.40

88.63

25.23

173.44

164.90

1.265

Station Code

020719AW

-1.018

0.576

0.183

204.56

127.22

-1.646

0.258

0.067

216.34

53.02

192.38

91.82

27.12

173.40

163.71

1.278

020719BW

0.183

0.634

0.085

191.87

132.51

-1.175

0.395

0.033

211.50

97.74

114.20

37.90

11.77

176.81

175.26

1.233

Table 2.1: Fitted parameters: stations coded 020719.



Chapter 3

The Daily Rainfall Model

The sequences of rainfall values exhibit a number of distinctive features.

In particular the distribution of daily precipitation depths varies seasonally,

rainfall depths on consecutive days are not independently distributed, that

is, the probability that a wet day will follow a wet day is higher than the

probability that a wet day will follow a dry day, and finally the distribution

of rainfall is partly discrete and partly continuous. Any useful model for

the description of precipitation sequences must of course preserve all these

properties.

Several models have been proposed for simulating daily precipitation.

(Gabriel and Neumann, 1962; Richardson, 1981; Roldan and Woolhiser, 1982;

Stern and Coe, 1984; Zucchini and Adamson, 1984a. For a recent review,

see Woolhiser, 1992.) Most precipitation models are specified by a discrete

occurrence process describing the sequence of wet and dry days, and a con-

tinuous distribution function for the amount of precipitation of days with

rain. The parameters of the model are allowed to vary seasonally.

18
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3.1 A Model to Describe the Occurrence of

Wet and Dry Sequences of Days

A first-order Markov chain is used to describe the occurrence of wet and dry

days. By this one assumes that the state of day t depends on the state of the

previous day, t—1. This does not imply that the state at time t is independent

of the state on day t — 2, t — 3, etc . . . , but rather that the information given

by t — 1 is equivalent to all the information given by t — 1, t — 2, etc . . . . One

also assumes that, except for the seasonality, the process is stationary.

A first-order Markov chain has been found to be an adequate model for

precipitation occurrence in many different regions. (See, for example, Gabriel

and Neumann, 1962; Caskey, 1963; Weiss, 1964; Hopkins and Robillard,

1964; Haan et a/., 1976; Smith and Schreiber, 1973; Woolhiser and Pegram,

1979; Richardson, 1981; Roldan and Woolhiser, 1982; Zucchini and Adam-

son, 1984a, Woolhiser,1992.) The order of the Markov chain may of course

be increased, but this has to be done at the cost of increasing complexity

and the number of parameters in the model. A further problem arises if one

attempts to increase the order of the Markov chain in arid areas, namely the

estimation of the probability that a rain day follows two or more consecutive

rain days. In arid areas there are relatively few runs of three or more consec-

utive rain days and thus there is hardly any data on which to base estimates

of this conditional probability. (Note that this has to be estimated for each

day of the year.) Finally, it was demonstrated in Zucchini and Adamson

(1984a) that a first order Markov chain provides an adequate description of

the occurrence of wet and dry sequences of days in the complete range of

southern African conditions.
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3.1.1 Notation and Preliminaries

The day will be used as the time unit. That is, the year is divided into

NT(= 365) equal intervals, denoted by t = 1,2, ...,NT. A day with total

rainfall greater than 0 mm is considered as a wet day.

The following notation will be used:

R represents the occurrence of rain (i.e. wet day).

R represents the non-occurrence of rain (i.e. dry day).

Forf = l ,2 , . . . , iVT

NR(t) is the number of times it was wet in period t.

NR(t) is the number of times it was dry in period t.

NRR(t) is the number of times it was dry in period t — 1 and wet in period t.

NRR(i) is the number of times it was wet in period t — 1 and dry in period t.

NRR(t) is the number of times it was dry in period t — l a n d dry in period t.

NRR(t) is the number of times it was wet in period t — I and wet in period t.

ND(t) = NRR(t) + NRR(t) is the number of times that it was dry in period

t — 1 and there was an observation (wet or dry) in period t.

NW(t) = NRR(t) + NRR{t) is the number of times that it was wet in period

t — 1 and there was an observation (wet or dry) in period t.

the probability that period t is wet given that period i — 1 is wet.

the probability that period t is dry given that period i — 1 is wet.

the probability that period t is wet given that period t —'• 1 is dry.

the probability that period t is dry given that period t — 1 is dry.
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Then TrR/R(t) + TrRfR(t) = 1

Therefore the transition probabilities are fully denned given TVR/R(t), Tr

and the wet or dry state on day t — 1, and one only needs to estimate these

two probabilities.

From elementary probability theory we have

NRR{t) ~ B(NW(t), irR/R(t))

NRR(t) ~ B(ND(t), n

where B(N,ir) denotes the binomial distribution with parameters N and w.

3.1.2 Estimation

The functions KR/R{t} and TrR/R(t) are estimated using the same method but

different data. To simplify the notation in what follows, one makes use of

the following generic names:

Let M(t)~B(MM{t), ir(i)), t = 1,2,..,,NT.

First we note that the binomial distribution belongs to the exponential

family. Therefore we have a set of independent random variables M(t),t =

1,2,.. . , NT, each with a distribution from the exponential family; each M(t)

depends on a single parameter ir(t) and the distributions of all M(t), t —

1,2,.. . , NT, are of the same form (i.e. all binomial). Thus the properties of a

generalized linear model are satisfied, and estimates of w(t) may be obtained

by using the theory for estimation for generalized linear models. (Dobson,

1983.)
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The probabilities Tr(t) are represented as functions of a linear combination

of parameters 71,72, • • •, fNT- That is

where g is the link function and X(t) is a linear combination of the 7,-.

To ensure that the estimated values of TT(£.) are restricted to the interval

[0,1], one uses the logit link function, given by

To obtain the linear combination of the 7;, X(t), we look at some of the

properties of 7r(t), namely that it is a smooth, periodic and approximately

sinusoidal shaped function. Transforming T(£)> using the logistic transforma-

tion, to a logit A(i) given by

one obtains a representation which has the similar properties to ir(t), and thus

we can approximate X(t) by the first few terms of its Fourier representation.

This approximation has been used by Stern and Coe (1984) and Zucchini

and Adamson (1984a).

The exact Fourier representation of X(t) is given by

NT

*(*) = £ 7W(*J, t = 1,2,...,NT
i=i

where
J CQB(W(4 - l)i/2) i = 2,4,...

[ s in(w(*-l)( i- l) /2) i = 3,5,...

Vi(t) = l i t = 1,2,...,NT,

and
2TT

NT



The Model 23

Define the function X(t, L) by

L

where <fi(i) is denned as before and L is the order of the Fourier series

approximation. One is thus making the following approximation:

For some L < NT

A ( t , £ ) « A ( O , t = 1,2,...,NT.

A procedure to choose the order of the Fourier series approximation (i.e.

the value of L) will be discussed later. Generally this approximation is ac-

curate for small values of L. The number of parameters, L, is always chosen

to be an odd number. This restriction is made partly for programming con-

venience and partly for the following reason:

If we rewrite the Fourier representation of X(t, L) by its polar form, we

get

a0 + 2J;_1 Q» cos (^ ; ( ( i — 1) — pi)) , L odd

ao + X ÎLi a ' c o s (Wfift ~ ^) ~ ft)) "̂ ap c o s ffjyr" > -̂  e v e n

where

o;o = 7i

—^ arctan ( ^ - i - )
27T2 V 72i /

and p is the integer part of —~. The a,- is called the amplitude and /?,• is

called the phase of the ith harmonic.

If L is even, then the highest harmonic does not have a phase parameter.

Thus the quality of the fit of the model depends on the time origin selected.

If L is odd we obtain the same degree of approximation for all time origins.
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We have used the Fourier representation of A(£) as the basis for obtaining

approximations. Other representations are also feasible, e.g. polynomials

or rational functions. There are several reasons for selecting the Fourier

representation rather than other possibilities. Firstly, A(£) is known to be

approximately sinusoidal in shape and consequently we can expect that even

for small values of L, the approximation A(£, L) ss \{t) will be reasonably

accurate. Secondly, A(£, L) is periodic, which is a property that A(f) is known

to have. Thirdly, the individual components in the representation are orthog-

onal, which is a convenient mathematical property.

The log-likelihood function of the observed values as a function of the

probabilities 7r(i), is given by

)i M(t)) =
" r r ' '^ x /MM(t)V

Therefore, the log-likelihood function of the observed values as a function of

the parameters 71,72, • • •, 7L is given by

The score vector U with respect to 71,72,... , JL, has elements given by

NT

Y^ [M(t) - MM{t)x(t)]Vj(t)
t=i

e ( , )
since Var(M(t)) = MM(t) + ^ ^ ^ a and

E{M{t)) = (1 + e W)) andso
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Similarly, the information matrix XLXL has elements given by

Since :,. r.,_ = ir(i)(l — 7r(<)) it follows that
(1 + &X\^L))2

NT

The maximum likelihood estimates for 71,72, • • •, 7L a r e then obtained by

solving the iterative equation

where m indicates the mth approximation and 7 is the vector of estimates.

Some initial approximation 7 ^ is used to evaluate 1 ^ and U^°\ then

the iterative equation is solved to give 7 ^ which in turn is used to obtain

better approximations for I and [/, and so on until adequate convergence is

achieved. When the difference between successive approximations 7 ^ ' and

7^m~1' is sufficiently small, 7'™) is taken as the maximum likelihood estimate

vector.

3.1.3 Model Selection

Whenever a model is fitted to observed data, two types of discrepancy arise.

The discrepancy due to approximation (the fewer the number of parameters

fitted, the higher the value of this discrepancy) and the discrepancy due to

estimation (the more parameters fitted, the higher the value of this discrep-

ancy). When choosing the number of parameters to be fitted, one attempts

to minimize the combined effect arising from the two discrepancies.

Selection of the number of parameters, i , may be done by using the cri-

terion of the Kullbach-Leibler measure of discrepancy (Linhart and Zucchini,

1986; Zucchini and Adamson, 1984a.)
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Under the assumption that for some Lo, X(t) is exactly fitted by LQ

parameters, i.e.

A(O = A{f,Io), L0<NT,

the above method leads to the Akaike Information Criterion where

AIC = ~£{r,M{t)) + L

where £{7;M(i)) is the log-likelihood function given before.

Each value of L leads to a different approximating model. The criterion

is computed for L = 1,3,5,... and the model which leads to the smallest

value of the criterion is selected.

The AIC criterion is much easier to compute than the full Kullbach-

Leibler discrepancy and leads to almost identical results if the discrepancy

due to approximation is small, which it is in this application. (Linhart and

Zucchini, 1986)

3.2 The Distribution of Rainfall on Days when

Rain Occurs

Several models have been proposed for the distribution of precipitation amounts

given the occurrence of a wet day. These include the exponential (Todorovic

and Woolhiser, 1975; Richardson, 1981); gamma (Ison et al, 1981; Buishand,

1977; Stern and Coe, 1984); two-parameter gamma (Buishand, 1978); three-

parameter mixed exponential (Woolhiser and Pegram, 1979); kappa (Mielke,

1973); lognormal and Weibull (Zucchini and Adamson, 1984a).

Woolhiser and Roldan (1982b) found that out of the exponential, gamma

and mixed exponential distributions, the latter fitted the model of precipita-

tion amounts best. Zucchini and Adamson (1984a) found that for stations in

southern Africa, the lognormal distribution did not fit some stations, while

the Weibull seemed to provide better fits.
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It is known that the distribution of precipitation depths when rain occurs

is positively skewed (i.e. smaller amounts occurring more frequently than the

larger amounts) and that it exhibits the same seasonal variability as found

with the probabilities ?r(i). To account for this seasonally, the simplest

solution is to fit a family of distributions and then to allow the parameters

to change over the year, where these parameters are expressed in terms of its

Fourier series approximation.

The method of modelling precipitation amounts is based on Zucchini and

Adamson (1984a). Here one does not fit any model initially, the first two

moment functions of the distribution are fitted instead. These are then used

to estimate the parameters (by the method of moments) to any desired two-

parameter model. Different families can be fitted to a single record, e.g. one

for the rainy season and a second for the dry season.

3.2.1 Notation

The year is divided into NT equal intervals denoted by t = 1, 2 . . . , NT.

M{t) represents the number of times that it rained in period t.

R(i, t) represents the rainfall depth on the ith year that it rained in period i,

where i = 1,2,..., M(t).

C represents the coefficient of variation which we assume to be constant

for all t (Zucchini and Adamson, 1984a).

ft(t) represents the mean rainfall per rainy day in period 2 = 1,2,..., NT.



28 CHAPTER 3

3.2.2 Estimating the Mean and Coefficient of Varia-

tion

As observed before fi(t) can be approximated by its truncated Fourier series

representation thus reducing the number of parameters to be estimated. That

is, we make the approximation:

t = 1,2,..., NT; L < NT

where fi(t) is defined as

NT

!i(t) = J2 / W ( ' ) t = 1,2,..., NT

and

fi(t,L) = Y, WCO t = l,2,...,NT; L<NT

and <Pi(t) is defined as before.

Define m(t) to be the observed means for each period, i.e.

M{t)

J ] i i ( i i ) i l 2 J V T ; i = 1 ,2 , . . . , M ( i ) ; M{t) > 0m(i) = J]

where m(t) is not defined when M(i) = 0, i.e. it never rained in period t.

We use the method of least squares on m(t) to estimate /Ji,^2, • • • (J-L,

that is, minimize
NT

(3.1)

with respect to the /*,•, i = 1, 2 , . . . , L. Approximations to the least squares

estimators when some of the M(t) = 0, something which occurs often in arid

regions, are given by

NT

t = i
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where
NT

Af(l)>0

The m(t) in ( 3.1) are given the same weight and so periods which had

very little rainfall have a large influence in the estimates of /^(i)- To overcome

this difficulty, the following criterion is used instead:

Minimize
NT M{t)

E
with respect to//,-, i = 1,2,..., L.

By adding and subtracting m{t) inside the squared term of ( 3.3), S([i)

can be rewritten as

NT

S(fi) = S + J2 M(t)(m(t) - (i(t, L))2 (3.4)

where
NT M{t)5 = E E
( = 1 1 = 1

and m(t) is defined as before if M(t) ^ 0 and m{t) = 0 if M(t) = 0.
To minimize ( 3.4) its first partial derivatives are set equal to zero:

NT

°'Ui t=i

These L equations can be solved using the Newton-Raphson iteration

method. For this, we need the second partial derivatives:

0^
Denote the ith element of the vector f^ by

NT

/ ; f c)=J] Jf(t)(m(t)-/*«*)(*,i))W(*), 1 = 1,2,...,! (3.5)
£ = 1
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and the (i, j ) th element of the matrix

NT

by

hi = l,2, (3.6)

where A; denotes the kth iteration.

Then an algorithm to estimate /i,-, i = 1,2,... , L is given by:

Step 1: Obtain initial estimates fi\ , . . .,/ijr, using (2) and compute

Step 2: Compute /<*) using (5) and F<*> using (6).

Step 3: Compute the vector 5 ^ which is the solution to the system of L linear

equations given by

Step 4: Set

Step 5: Test for convergence, e.g. if the elements of f^ are sufficiently close

to zero. If the convergence criterion is met, stop, otherwise increase

k by 1 and go to Step 2.

Note that F^ is symmetric. This fact can be used to reduce the number

of computations performed.

An estimator of C is given by:

EiS Effi" »',*)-?(*))a]
(3.7)

3.2.3 Selecting the Number of Parameters
NT

A(L) = , I)))2 , L = 1,3,5,... (3.8)

would be a suitable discrepancy on which to base the selection, except that

some M(t) are zero and so only approximately unbiased estimators are avail-

able. The reliability of this criterion is therefore difficult to determine.

If one is prepared to make distributional assumptions, then selection cri-

teria are relatively easy to derive, for example based on the Kullbach-Leibler

discrepancy.
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A reasonable procedure is to select L for a parametric family of models

and then use the same L in the estimation of

3.2.4 Fitting the Weibull Family

Zucchini and Adamson (1984a) found the Weibull family to fit the rainfall

depth models for stations in southern Africa and so this family was used to

model the observed rainfall amounts on days that rain was recorded.

Having estimated the mean value function /i(i) and the coefficient of

variation, C, one can apply the method of moments to estimate the parameter

functions of the Weibull distribution.

Denote the scale parameter by a(t), t = 1,2, ...,NT and the shape

parameter by /3.

Now

+ 2//3) 1 *
1! (3-9)

To obtain /3 as a function of C a rational function approximation has to

be derived as no closed expression of this function is available.

The following approximation has been obtained from Zucchini and Adam-

son (1984a):

2 _ 339.5410 + 148.445C + 192.7492C2 + 22.4401C3

p — _ _ _ < (o.lu)

1 + 257.1162C + 287.8362C2 + 157.2230C3

Using the relationship

fi{t) = a(t)T(l + 1//?) t = l ,2 , . . . , JVr

we obtain the estimator
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3.3 The Amplitude-Phase Representation

Up until now we have used the representation
L

7W). t = 1,2,...,NT; L<NT

where L is an odd integer, and where

cos(«(t-l)i/2)

and
2TT

Although this representation is convenient for computational purposes since

the terms <pi(t) need only be computed once, it is not a very convenient repre-

sentation for purposes of interpretation of the parameters and for comparing

the parameters of different stations. For this the amplitude-phase represen-

tation is more appropriate. For example the first phase parameter represents

the time of year of maximum probability of rain, or of maximum rain depths,

while the zero'th amplitude represents the average rainfall depth, or the aver-

age probability of rain throughout the year and the first amplitude describes

the range of rainfall depth, or of the probability of rainfall. The phase pa-

rameter has the further advantage in interpolating rainfall parameters in

that they are not affected by altitude. The amplitude-phase representation

is given by

i, L) = a0

1=1

where OQ = 71 and

—7arctan ( - ^ )
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where P = ^ .

Obtaining maximum likelihood estimates for the amplitude-phase repre-

sentation is equivalent to obtaining the maximum likelihood estimates for

the parameters 7,-, i = 1,2,..., L and then transforming them as above.

In order to obtain phases that are always between 0 and NT we use the

following convention to compute the <j>it i = 1,2,..., P

, . . , . - - then (j>i = C[A + 2TT]
If 72,- > 0 then {

then ^j = CA

. if 72i+i < 0 then
If 72)- = 0 then _

if 72»+i > 0 then

If 72; < 0 then

where C = —? and A = arctan( :^±^) and the range of arctan is defined to

be in the interval (—7r/2,7r/2].

With this convention we in fact have that the phases <£,- G (0, NT/i], i =

1,2,. . . , L .

The model described above was fitted to the daily rainfall data at each

of the stations selected as discussed in Chapter 2. Thus, for each station we

estimated the sixteen model parameters as listed on page iv. Histograms of

each of the parameters are shown in Figure 3.1, while Figure 3.2 maps the

mean value of each parameter, averaged over all rainfall stations within each

Weather Bureau block.

3.4 Rainfall Model Validation

In order to ensure that simulated sequences of daily rainfall data generated by

the model preserve those properties of the process which are of interest to the

user, Zucchini and Adamson (1984a) tested the model at six stations which
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broadly represent the various rainfall/climate regions of southern Africa. The

properties which they tested included

• The annual mean and variance and the distribution of annual totals

and sums of annual totals.

• The monthly means and variances.

• The expected number of wet days, and its seasonal variation.

• The runs characteristics of daily rainfalls and their seasonal variation,

for example the 5 or 10 day rainfall total at various times of the year.

• The distribution of n-day extreme rainfalls.

Their tests showed that the relevant properties were faithfully reproduced by

the model at each of the test sites. In view of the fact that the model used

here was identical to that used by Zucchini and Adamson (1984a) the model

validation process was not repeated.
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Chapter 4

Variances of Model Parameters

To apply the kriging method for the interpolation of the rainfall model pa-

rameters, it is necessary to estimate the standard errors of the parameter es-

timates. Initially a classical methodology was applied to solve this problem.

Although we were successful in deriving suitable formulae for the parameters

of the Markov chain module of the model, maximum likelihood estimation of

the Weibull distribution that relates to rainfall depths on rainy days leads to

difficulties. The theory of the maximum likelihood estimation method and

the reasons why we had to abandon this approach are discussed in Appendix

A.

4.1 The Parametric Bootstrap Method

Efron (1979) proposed a methodology called the bootstrap by which for a ran-

dom sample X = (Xi, X2 , . . . , Xn) from an unknown probability distribution

F, one can estimate the sample distribution of a specific random variable V,

on the basis of the observed realizations of X, x = (xi, T2, . . . , xn), where V

possibly depends on both X and F. The bootstrap method is explained here

as it has been applied to our situation.

In Chapter 3 we discussed fitting models to the occurrence and non-
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occurrence of rainfall (the discrete part of the model) as well as to rainfall

depths on days when rain occurs {the continuous part). Parameter estimates

for the probability that a wet day follows a wet day and that a wet day

follows a dry day, for mean rainfall and for the coefficient of variation are

then obtained. The problem to be solved is to get some measure of accuracy

of these estimates, namely their standard errors. The bootstrap method gives

us a way to do this. We have a special case of the bootstrap method in that

we know that the probability distribution of the number of times a wet day

follows a wet day is the binomial as is the probability distribution that a wet

day follows a dry day and that rainfall depths follow a Weibull distribution.

We therefore apply a parametric bootstrap procedure.

Let /3 = {/?i, /?2> • • • i /?ie) denote all the parameter estimates of the rainfall

model, that is the parameter estimates for the probability that a wet day

follows a wet day, the probability that a wet day follows a dry day, for the

mean rainfall and for the coefficient of variation. Denote the probability

distributions that describe the rainfall model by F = (F\,F2), that is, F\

is the binomial distribution and F2 is the Weibull distribution. Then the

bootstrap algorithm is given by:

Algorithm

Step 1: Generate NY years of daily rainfall observations given the parameter es-

timates (3 and probability distribution F. Denote this by Xm(i,t), i =

1,2,.. . , NY and t = 1,2,..., NT. This is called the bootstrap sample.

Step 2: Estimate the model parameters for the bootstrap sample in the same

manner as /3 was obtained. Denote these parameter estimates by /3*.

Step 3: Repeat Step 1 and Step 2 NB times.

Step 4: From the repeated Monte Carlo sampling in Step 3 we obtain a random



48 CHAPTER 4

sample of parameter estimates

/3 , p , . . . , / 3

which can be used to estimate the bootstrap distribution of (3 .

Step 5: Approximate the sampling distribution of j3 by the bootstrap distri-

bution of /3 . In our case we are estimating the standard error of the

parameter estimates by the standard deviation of j3".

4.2 Implementing the Bootstrap Method

The first step in implementing the bootstrap procedure is to choose the num-

ber of years (NY) of daily rainfall sequences to generate in each bootstrap

sample and how many bootstrap repetitions to perform (NB). For this

project it is appropriate to set NY equal to the number of years of the daily

rainfall record at any given station so as to reflect the variance of parameter

estimates based on a sequence of this length. NB is usually chosen to be

a large number, say 1000, so as to obtain an accurate estimate of the vari-

ance. However, having to perform 1000 bootstraps for every single rainfall

station would be an immense task. That is, for every one of the ±5000 rain-

fall stations one would have to generate NY (in the region of 60) years of

daily rainfall sequences 1000 times, and for each of these sequences, compute

16 parameter estimates as well as their mean and variance. On the other

hand, too few bootstrap replicates will not give the accurate results. Thus,

a decrease in the number of bootstrap samples generated must not be at the

cost of accuracy of the final results. We used the following strategies.

For a subset of rainfall stations, referred to as test stations, standard

errors were obtained with NB set to 50, 100, 200, 300, . . . 1000. The re-

sulting standard errors were compared and a decision was taken to perform
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100 bootstraps in all subsequent runs as the standard errors did not differ

significantly for values of NB between 100 and 1000.

Secondly, we investigated the possibility that the standard error at each

station could be related to the number of years of rainfall data available.

If such a relationship existed it would indicate that the bootstrap standard

errors for parameter estimates could be derived as a function of the number

of years of rainfall data; that is, it would not be necessary to perform the

bootstrap procedure for every rainfall station in southern Africa. For the test

stations, the bootstrap variance was plotted against the number of years in

the historical rainfall record. No clear pattern was found; it appeared that

other factors such as the geographical location, which in turn determines

the variability of rainfall, also have a major effect on the variance of the

parameter estimates. It was therefore decided that the bootstrap procedure

had to be performed for all rainfall sites. Figure 4.1 shows the plot of the

bootstrap variances versus the number of years for all model parameters, at

all sites. The plots show that the variance of the parameter estimates does

decrease as the number of years of data increase. It is also interesting to note

that there is levelling off, that is, beyond about 60 years there is relatively

little decrease in the variance for most parameters.

4.2.1 Checking the Bootstrap Method

As already mentioned, we were successful in obtaining standard errors for the

Markov chain part of the rainfall model from approximations to large sample

theory, that is, the inverse of the negative matrix of second derivatives of

the log-likelihood function provides information relating to the accuracy of

the parameter estimates. This provides us with a way of testing the ability

of the bootstrap method to give satisfactory standard errors of the rainfall

model parameter estimates. The standard errors obtained from the bootstrap
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samples for the Markov chain model were compared to those obtained by the

classical approach. These compared very favourably and since, at least for

the model for the occurrence of wet and dry days, the bootstrap method is an

acceptable method to obtain standard errors for the parameter estimates, we

assumed that it will also give appropriate estimates for the standard errors

for the rainfall depth parameters. In order to have standard errors of all the

parameter estimates computed in a uniform way, bootstrap standard errors

were used for the Markov chain model as well as for the rainfall depth model

in the subsequent interpolation of model parameters.

4.3 Conclusion

The bootstrap method was examined as a possible way to obtain standard

errors for the rainfall model parameter estimates. The procedure was found

to give satisfactory results and therefore bootstrap variances and means for all

parameter estimates were computed for all the selected stations mentioned

in-Chapter 2. The bootstrap method not only produced variances for the

parameter estimates, but it also provided us with a further check on how

well the rainfall model behaves. For each station, 100 bootstrap samples

were generated and the model parameters estimated. One would expect the

mean of the parameters from the bootstrap samples to be very close to the

parameter estimates obtained from the historical record. There were a few

stations that showed a significant difference between the bootstrap means

and the original parameter estimates. Cut-off points were established for

the maximum permissible difference between the bootstrap mean and the

original parameter estimates with the aid of histograms and the scatterplots

for the various parameter estimates. The few stations that exceeded this

maximum difference were considered as outliers and were removed from the

data set. The final number of rainfall stations included in the remaining
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analyses was 5070. Figure 4.2 shows the mean of the parameters from the

bootstrap samples plotted against the original parameter estimates. As can

be seen from this plot, once outlying stations were removed, the bootstrap

means compare favourably with the original parameters.
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Chapter 5

Estimating the Model

Parameters

Having fitted the daily rainfall model at all stations at-which sufficient daily

data are available it is necessary to turn to the problem of estimation of

the parameters at points where no data, or too little data, are available.

Specifically, our objective is to estimate the parameters on a grid of 1 minute

of a degree of latitude and longitude throughout South Africa, Lesotho and

Swaziland.

The map of selected rainfall stations (Figure 2.3) shows that in some areas

of the country there is a high density of stations while in others, notably

the north-western Cape, the data is very sparse. Available data tends to be

clustered around areas of human habitation. One consequence of this is that,

in mountainous regions of the country, the higher lying areas tend to be less

well covered by rain gauges, so that to ignore this in the analysis would tend

to give rise to under-estimation of rainfall.

Large-scale spatial patterns are clearly observable in most of the model

parameters (Figure 3.2). These large scale trends may be attributed to gen-

eral circulation patterns affecting the climate of southern Africa and involv-

ing the movements of large masses of air, giving rise to frontal rainfall. On a
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smaller scale rainfall patterns are affected by the local topography and other

physical features; in particular orographic rainfall is induced by the forced

ascent of air on the windward side of mountain barriers, while convectional

rainfall is due to updraughts caused by localized heating and can thus be

affected by ground cover and land use. In all types of rainfall, rising air is

cooled so that it approaches saturation; a further factor in the formation of

actual rain droplets is the presence of suitable nuclei; these may be provided

by ice crystals in the clouds or by other particles such as occur in dust or

man-made air pollution so that, for example, large cities may have higher

rainfall than the surrounding rural areas. It is clear that local anomalies

can be accurately estimated only if the rainfall data is sufficiently dense in a

given locality or if information on local explanatory variables is incorporated

into the estimation process.

Elevation data is available on a grid of 1 minute by 1 minute through-

out southern Africa (Dent et a/., 1989), and one would expect that local

estimation of model parameters could be improved by incorporating this in-

formation. In addition, by making use of elevation data we would hope to

overcome the bias in the station locations towards the lower-lying parts of

each region.

One might expect that the amplitude parameters, which relate to rainfall

amounts, would be more susceptible to topographic effects than the phase

parameters which relate to seasonality of rainfall. This is exemplified by a

comparison between the models for Tamboerskloof in Cape Town (station

code 020716 W, elevation 100m) and the station at Woodhead Dam on the

slopes of Table Mountain (station code 020719BW, elevation 747m) as shown

in Figure 5.1. These two sites are only about five kilometres apart but show

a large difference in the average level of the mean depth of rain on wet

days (DEPAO), while the other parameters are very similar at the two sites.

It was therefore decided to make use of the altitude information only in the



60 CHAPTER 5

Prob(W/W): station 020716 W

100 ISO 200 290 300 390 400

Prob(W/W): station 020719BW

100 150 200 230 300 350 400

Prob(W/0): station 020716 W

100 190 200 290 300 330 400

Prob(W/D): station 020719BW

100 ISO 200 290 300 390 400

180

Moan Depth: station 020719BWMean Depth: station 020716
100 190 200 290 300 390 400

Figure 5.1: Comparison of two stations on Table Mountain.
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estimation of the amplitude parameters. Further justification for this decision

is provided by the semi-variogram models of the parameters, described in

later sections of this chapter.

In the following section we review some of the approaches taken by pre-

vious researchers in the field of rainfall modelling to the incorporation of the

effects of topography into the modelling process. We then review a number

of methods for the interpolation and smoothing of spatial data and motivate

the selection of kriging for the estimation of the rain model parameters.

5.1 Rainfall and Topography: A Review

As mentioned in the previous section, orographic rain results when air rises

over mountains, so that one may expect the highest rain to occur on the

windward slopes; for narrow mountain ranges the tops of the mountains and

leeward slopes may also experience relatively high rain, however for more

extensive mountain ranges the leeward slopes may be in a rain shadow area.

This suggests that using only the altitude at a given point to predict the rain

anomaly at that point will in general not be very successful, and this has been

found to be the case by a number of researchers, for example, Armstrong

(1992) and Creutin and Obled (1982). Thus a considerable body of research

has been directed at deriving functions of the altitude at surrounding points

which will be more suitable for predicting local rainfall patterns.

An early study is that of Spreen (1947) who investigated the relationship

between elevation, slope, orientation (aspect) and exposure (defined below).

Using a graphical regression technique Spreen found that 88% of the varia-

tion in mean winter precipitation in western Colorado could be explained by

these four variables, compared with 30% for elevation alone. Other studies,

using the same measures, plus a number of others such as 'roughness', have

been carried out in other parts of the world, for example in New Zealand by
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Hutchinson (1968), in Israel by Wolfson (1975), and in South Africa by Whit-

more (1968), Schulze (1976), Hughes (1982) and Dent, Lynch and Schulze

(1989).

Most of these authors have used multiple regression techniques to in-

corporate the topographic variables into the rainfall modelling process; a

difficulty of this approach is that if the area under study is large it may first

need to be segmented into homogenous sub-regions within each of which the

relationship between rainfall and the topographic variables is approximately

constant. Dent et al. (1989) initially delineated some 712 regions in their

study of mean annual and monthly rainfall in southern Africa, but experi-

enced considerable difficulty in patching together the resultant estimates at

the sub-region boundaries.

All the topographic variables used by these authors are based on grid-

ded altitude data, using a local grid centered on a given point to calculate

the relevant variates at that point. Definitions of the most commonly used

measures are given below.

Gradient and Aspect Given a tangent plane to the surface at any point,

the gradient is the maximum rate of change in altitude on this plane and

the aspect is the compass direction of this maximum (decreasing) rate

of change (Skidmore, 1989). The estimate of these values will depend

on the grid size and limits used, as well as the algorithm used; Skid-

more compares six possible algorithms. Some authors (Spreen (1947),

Hutchinson (1968)) define aspect as the direction in which the exposure

(defined below) is a maximum. Aspect is a circular variable, and thus

cannot be used directly in a standard regression model.

Roughness In view of the fact that the roughness of the terrain may cause

updraughts and turbulence which may in turn influence the occurrence

and longevity of storms (London and Emmitt, 1986) a number of re-
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searchers have included a measure of roughness. Hobson (1972) gives

three methods for the calculation of roughness: one based on 'bump

frequency', one based on comparing estimated surface area with the

corresponding planar area and a third based on the variation in the

direction of normals to planar surfaces denned by adjacent groups of

three elevation readings.

Exposure A number of authors have attempted to define directly a function

of topography which encapsulates the fact that windward slopes tend

to get higher rain due to their higher 'exposure1 to the rain bearing

winds. Dent et ol. (1989) used the definition of exposure suggested

by Seed (1987) which involves counting the number of points in a 5

minute by 5 minute mask which have a lower elevation than the point

at the centre. Spreen (1947) used as his definition of exposure the

number of one-degree sectors of a 20 mile radius circle centered on

the station in which there is no land higher than 1000 feet above the

station. Hutchinson (1968) used a similar definition but with a five mile

radius. Hughes (1982) used an index based on the (weighted) sum of

areas of grid squares with elevation higher than the gauge, taken over

all squares of area 0,25 km2 lying in a 45 degree sector oriented south-

west and of radius 10 km. The weighting used was the logarithm of

the excess elevation. The south-west orientation was chosen to coincide

with the main rain-bearing wind direction in the area, the other aspects

of the measure were chosen after a number of trials with exposure

indices of varying complexity, and Hughes comments that 'the choice

of a measure of exposure proved to be very difficult'. It is clear from

these different definitions that, apart from the difficulty of finding a

satisfactory definition of exposure, there is almost certainly a need to

'customize' the measure for different geographical regions.
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In practice all these measures are calculated as a function of the a,- where the

(i{ are the local values of altitude, usually available at a grid of points, and

are thus influenced by the grid spacing and also by the extent of the local

area or mask used in the calculation. Many of the measures can be expressed

in the form ^2 iu,a,-, that is, a linear function of the local altitudes. In view

of the fact that researchers have noted the difficulty in finding a suitable

measure of 'exposure' based on a priori considerations, it is appropriate to

ask whether it may not be possible to use the data itself to determine, on a

local basis, that function of the a,- which best explains the rainfall anomalies,

and let this function provide a local definition of 'exposure1 which can then be

calculated at ungauged locations to predict the anomalies there. By defining

a single measure in this way we could also avoid the difficulty that arises

when a number of correlated measures are used as the explanatory variables

in a multiple regression and also the need to consider the possible interacting

effects of such variables. This approach is discussed further in Section 5.3.3.

5.2 Methods of Interpolation and Smooth-

ing

In this section we outline the commonly used methods for fitting a surface to

data available at points in two dimensions. In the case of exact interpolation,

the fitted surface is required to coincide with the original values at the data

points. This can be viewed as a limiting case of the more general smoothing

problem, in which the fitted surface need not match the original values. For

the rainfall model data, which consist of estimated model parameters, we

know that there is error in the data values, as measured by the bootstrap

variance, and thus exact interpolation is not appropriate.

Throughout this section we use the notation that the variable u,- (in our
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case V{ represents one of the rainfall parameters) is measured at locations

Zt = (a-'t,J/i)' where i = 1,2, . . . n , and x and y represent appropriate co-

ordinates such as longitude and latitude. The location of the point to be

estimated is given by Zo = (ioj Vo)''•> and d{j represents the distance between

Z; and Zj, while d,o represents the distance between z,- and z0.

5.2.1 Trend Surface Analysis

In trend surface analysis a simple, polynomial function such as a plane or

quadratic surface is fitted to the data using ordinary least squares (Grant

(1957), Krumbein (1959), Watson(1971, 1972)). For example, if the fitted

function is quadratic in the x and y coordinates of the data locations, then

the fitted surface has the form:

f(x,y) = !30 + fax + 02y + fox2 + (]4xy

While this method may be appropriate when the trend has a relatively sim-

ple functional form, this is rarely the case in practice in the earth and atmo-

spheric sciences, except perhaps over fairly small areas. The degree of the

polynomial must be selected by the user, and in fact this is the only way in

which the user can control the degree of smoothing; interpolation is possible

for most data sets only by allowing the number of terms in the model to

equal the number of data points. When the residuals from the trend, or local

'anomalies', are spatially correlated, as they generally are in spatial appli-

cations, use of the usual F-tests will often lead to the fitting of a surface

of too high an order which is perceived by the user as 'too wavy'. Ripley

(1981, Chapter 4) illustrates this effect. In addition, clustering of the data

points tends to give excessive weight to the fit of the surface in the vicinity

of the clusters. In the presence of spatial correlation of the residuals it would

be more appropriate to use generalized (weighted) least squares (Draper and

Smith, 1981).
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The fitting of polynomial models lends itself readily to the inclusion of

information on covariates, and thus the method of trend surface analysis has

been popular for interpolating rainfall values, incorporating information on

continentality, altitude, and other topographic features as described in the

previous section. However, a problem often encountered is that the relation-

ship with the covariates may change across the study area, and this may

necessitate partitioning the area, which is in itself a major problem in that

homogeneous areas must first be delineated, and also leads to the subsequent

problem of patching together the various fitted equations in a smooth way,

as described by Dent et al. (1989).

5.2.2 Smoothing Splines

The idea of fitting local polynomial functions leads naturally to the concept of

smoothing splines. There are a number of generalizations of spline smoothing

to two dimensions, but the most commonly used is the thin-plate smoothing

spline (two-dimensional Laplacian smoothing spline) which can be viewed as

the function / which minimizes the penalized least-squares expression

where

(Duchon, 1976; Wahba and Wendelberger, 1980). The degree of smooth-

ing is controlled by the smoothing parameter A; if A is set to zero, the solution

will interpolate the data points. If there is measurement error in the data

the smoothing parameter is usually selected by generalized cross-validation;

software for this is available in GCVPACK (Bates et al, 1987).

Unequal error variance in the data points could be accommodated into

the spline smoothing method by weighting the fit differently at individual
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points. It is less clear how spline smoothing applied to the rainfall parameter

values could incorporate concomitant information on topography.

5.2.3 Kriging and Optimal Interpolation

The technique of kriging was developed by Matheron (1963); the almost

identical but less well known method of optimal interpolation was developed

at about the same time by Gandin (1963). In these methods the data is

modelled as a realization of a stochastic process with a covariance function

which is assumed stationary, that is, dependent only on distance, at least

locally, and the kriging estimate is derived as the minimum variance un-

biased linear predictor. By explicitly modelling the covariance of the data

points, the method is especially suited to clustered data exhibiting spatial

autocorrelation.

If we use the general mode!

Vi = Ti + r)i + e; (5.1)

where r represents large-scale trend, J\ represents the local spatially correlated

component, and e represents measurement error, then kriging provides an

estimator of i?o of the form

1=1

where the weights W{ are chosen to minimize the expected squared error of

estimation of the measurement-error free values, that is, to minimize

E

In the case of so-called simple kriging, the data are assumed to be de-

trended so that the r terms may be assumed to be zero. In this case the

solution is given (Cressie, 1991) by

Kw = c (5.2)
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where the matrix K has elements kjj = cov(u,-,i?j) and c,- = cov(i>,-,7/0) =

More generally, the trend term is either assumed to be a constant ('ordi-

nary kriging'), or else modelled as a simple deterministic trend function, for

example, a quadratic function of the x and y coordinates ('universal kriging').

Thus we have, at any location z,

p

'(z)A + Vz + ez (5.3)

where the //(z) are functions of x and y and the 0i are coefficients to be

determined. The problem is then equivalent to a generalized least squares

prediction problem, and we can write, in the usual regression notation,

V = X/3 + 7J + €

By using the Lagrange multiplier technique to introduce a constraint to en-

sure unbiasedness, the solution for the w can be shown to be (Cressie, 1991)

(5-4)

where A is a p x 1 vector of Lagrange multipliers and 0 is a p x p matrix

of zeros, the matrix K has elements k,j — cov(^,- + e;,7/j + 6j) and Q =

COV(T/,- -f- e,,77o) = cov(?7i, ;?o)- The elements of the vector Xo are the values

/;(zo). By partitioning the left-hand matrix in equation 5.4 as shown the

solution for VQ can also be written (Goldberger, 1962 or Stein and Corsten,

1991) as

t)o = x[)/9 + c ' K - 1 ( v - X / 3 ) (5.5)

where (3 is the generalized least squares estimate of /3. We see that this

is equivalent to generalized least squares regression estimate of TO combined

with a simple kriging prediction of the value of the local component n0, based

on the regression residuals.
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If the trend is assumed to be constant, then the matrix X above reduces

to a vector of l's and [3 is simply an estimate of the mean. Although it

is unlikely to be reasonable to assume a constant mean throughout a large

study area, it is common practice to use local or moving-window kriging, in

which only the data points in the vicinity of the point to be estimated are

used in the estimation process. In this case the constant mean assumption

is more likely to be realistic, and Journel and Rossi (1989) have shown that

local kriging with a constant mean model gives results essentially the same

as those given by a more complex trend model, while avoiding some of the

difficulties associated with the latter.

In many applications of kriging the measurement error term e in equa-

tion 5.1 is ignored, that is, the data are assumed to be error-free. In this case

kriging acts as an interpolator, so that if z0 = z ; then vo = Vi-

The method of kriging can be extended to the situation where data on

covariates is also available, using either co-kriging, in which the estimate is

given by VQ = ]T)UJ;UJ + XJ^J ' U J
 w n e r e the Uj are the covariate values, or

alternatively by incorporating the covariates as part of the trend function.

These two options are discussed further in Section 5.3

More detailed accounts of the theory and practice of kriging are given by

Clark (1979), Cressie (1991) and Isaaks and Srivastava (1989).

5.2.4 Moving Average Methods (Kernel Smoothing)

These methods use a simple weighted average of the neighbouring data

points, with the weights being chosen as some (inverse) function of distance

or kernel function. Thus to estimate the value u0 at the location z0 based on

values u,- at locations z,- we have
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where the weights W{ are given by

Co Jr ( dio
Wi = TA [T

where K is the chosen kernel function (a decreasing function of distance) and

A is known as the bandwidth. The constant CQ is usually included to ensure

that the weights sum to unity (Hastie and Tibshirani, 1990). Interpolation

of the data points is achieved by choosing a weighting function which tends

to infinity as the distance tends to zero. In general, the degree of smoothing

is determined by the bandwidth and the rate of decay of the kernel function.

Kernel smoothing methods are computationally simple and do not require

the assumption of any functional form for the underlying trend. They are

however inappropriate for clustered data which exhibit short-scale spatial

correlation, since in this case the clusters tend to dominate the smooth in

their vicinity, leading to bias.

Another disadvantage of using moving average methods for estimating

the parameters of the rainfall model is that there is no obvious way to incor-

porate covariate information. It is also not clear how one would incorporate

information on heterogeneity of the measurement error into these methods,

although a possible approach might be to multiply the weight of each data

point by some inverse function of the variance.

5.2.5 Multiquadric Surfaces

A predictor for two-dimensional data based on the fitting of multi-quadric

surfaces was proposed by Hardy (1971). The surface to be interpolated is

represented by the summation of the heights of a series of n quadric surfaces,

where the i'th surface has its vertex at the i'th data point. The parameters

of the individual surfaces, which may be circular hyperboloids of two sheets,

paraboloids or cones, are determined in such a way as to ensure that the final

surface interpolates the data points. Lee et al. (1974) tested several types
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of quadric surface for the estimation of areal rainfall and concluded that the

cone was the most appropriate choice of surface, giving good estimates and

being simple to compute. For the circular cone with vertex at (x,-,j/,-) given

by v2 = c^((x — Xi)2 + (y — yi)2)J the height at a point with coordinates ( i j , j/j)

is given by

Vj = C{d{j

where <£,-_,• is the distance between (x,-, y,-) and (XJ, j/j). Thus if the sum of the

heights of the cones is to interpolate the data points, the constants c,- must

be determined by the equations

v = Dc

where the elements of the matrix D are the inter-point distances, and the

elements of the vector v are the data values. From this we see that c = D - 1 v

and hence

v0 = d ' D - V

where d is the vector of distances d{Q.

The method is specifically designed to interpolate the data points exactly

and is thus not a general purpose smoother. In fact, the equation above

shows that the solution is in fact a special case of simple kriging, with a

linear function of distance used for the covariance function.

5.2.6 Selecting a Smoothing Method

A number of researchers have compared some or all of these methods on real

and simulated data. Creutin and Obled (1982) tested splines, optimal inter-

polation and kriging, amongst other methods, to estimate rainfall amounts

in southern France, while Tabios and Salas (1985) used trend surface anal-

ysis, kriging, optimal interpolation, multi-quadric interpolation and inverse-

distance averaging to estimate annual precipitation in Nebraska and Kansas.
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Both studies used a number of known sites as test sites to evaluate the var-

ious methods being tested. Generally the more sophisticated methods gave

better results. In their conclusions, Creutin and Obled recommended optimal

interpolation while Tabios and Salas recommended optimal interpolation or

kriging.

Despite the apparent differences between these approaches, there are nu-

merous connections between them. Some of these have already been men-

tioned in the discussion above but some further points are worth noting.

Firstly, kriging can be seen as an extension of trend-surface analysis which

uses generalized least squares in place of ordinary least squares to take ac-

count of the spatial correlation in the residuals, and also uses a local smooth-

ing of the residuals to extract further predictive value from them.

There is also a formal equivalence between kriging and splines; as shown

by Kimeldorf and Wahba (1970) and Watson (1984). More practical aspects

of the relationship between the two methods are also discussed in some detail

by Wahba (1990) and Cressie (1990).

Silverman (1985) discusses the relationship between splines and kernel

smoothers and shows that the one-dimensional cubic smoothing spline is

(approximately) equivalent to a kernel smoother with a bandwidth which is

varied according to the local density at each data point used in the estimation,

so that more clustered points are thus down-weighted.

In view of the discussions above the choice of an appropriate methodol-

ogy for smoothing the rain model parameters would appear to be essentially

between a spline-based approach or a geostatistical approach. While the

computational techniques used in splines have perhaps been better devel-

oped than those in kriging, the geostatistical approach was selected for the

following reasons:

• The model based formulation of kriging makes it suitable for the ac-
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commodation of a varying error variance.

• A technique for including information on covariates via 'cokriging1 or

'kriging with external drift' already exists. In fact, as discussed in Sec-

tion 5.3, these approaches make it possible to relate the rainfall at one

point to the altitude at a number of neighbouring points, thus largely

obviating the need to try to pre-define functions such as 'exposure'

which have previously been used for this purpose.

5.3 Estimation of the Amplitude Parame-

ters

In this section we consider the estimation of the nine amplitude parameters

of the daily rainfall model and the coefficient of variation. Estimation of the

phase parameters, which are circular in nature, and thus need to be treated

rather differently, is discussed in Section 5.4

The approach taken is univariate; that is, each of the parameters is es-

timated independently of the others. Although there will probably be some

spatial correlations between the parameters, which might suggest some ad-

vantage to be gained from a multivariate approach, possibly using co-kriging,

it has been found in practice that co-kriging is generally only beneficial when

the covariates are sampled more densely than the variable of interest. For

the rainfall model, the data locations are the same for all parameters, so

that a multivariate kriging is unlikely to give much advantage, and would be

considerably more complex.

In order to use the kriging approach it is necessary first to model the

spatial covariance function of each parameter; if co-kriging is to be used to

incorporate the topographical information then the relevant cross-covariances

are also required. Alternatively, if one is using kriging with external drift,
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then one must select appropriate topographical variables to be included in

the drift function. We consider each of these aspects in turn.

5.3.1 Estimation of the Spatial Covariance Function

The spatial covariance defines the covariance of two points as a function of

the distance between them. That is,

<r(h) = E[{vz - fiz){vz+h - fiz+h)]

where fj, denotes the mean value at a given location. In kriging applications

it is more common to work with the semi-variogram function, defined as

= l/2E[(vz~vz+h)
2} (5.6)

The term semi-variogram is due to Matheron although its use had been

recommended earlier in a time series context by Jowett (1952). There are a

number of advantages in working with the semi-variogram, using the estima-

tor

where the summation is over all N^ pairs which are a vector distance h

apart. In practice, for non-gridded data, the summation is calculated over

all pairs belonging to a number of distance intervals, for example, 0-1 km, 1-2

km, 2-3 km etc. If the spatial continuity is more marked in some directions

than others, then it is necessary to calculate separate semi-variograms for

each direction, but often there is no directional effect so that we need only

consider the distance h =|| h ||.

One of the advantages of working with the semi-variogram is that its

estimation does not require any prior estimate of the mean; in addition,

the estimate is relatively little affected by trend for small values of h, these

being the more critical values for the kriging process, since in practice it is
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usual to obtain the kriging estimate at a given location using only the data

points which are in the vicinity of that location. Other reasons for preferring

to use the semi-variogram rather than the covariance function are given by

Srivastava (1988) and Cressie (1991).

In the case where the mean is constant there is a simple relationship

between the semi-variogram and the covariance, given by

j(h) = <r(0) - cr(h)

so that, having estimated the semi-variogram, one may readily obtain the

corresponding covariance required for the solution of the kriging equations.

a n a a n a a n D a a a n

0 2 4 6 8 10 12 14 16 18 20

+ sv a SV+MTOT

Figure 5.2: Effect of error on the semi-variogram.

When there is measurement error in the data it is necessary to break down

the semi-variogram into components corresponding to the original model

components given in equation 5.1 In the case where E(ti) = 0, varfe,) — a\

and the e,- are uncorrelated with one another and with the T;,- then it is easy
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to show that

E[({m + ti) - (TK

and thus we have

2a]

(5.7)

so that the error term increases the semi-variogram by a constant amount

equal to a\ (Figure 5.2).
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Figure 5.3: Effect of trend on the semi-variogram.

The effect of trend on the semi-variogram is dependent on the exact form

of the trend. If the trend is constant then it is clear from equation 5.6 that

it will cancel out of -y(h). In general the trend will vary little over small

distances, so that the effect of the trend will be relatively minor for small lag

distances. Figure 5.3 shows a typical semi-variogram for a data set containing

trend.
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Figure 5.4: Estimating the nugget effect.

Unless there are repeated measurements at some locations, or some other

way of independently estimating of, the error variance can only be estimated

from the empirical semi-variogram by extrapolating the fitted model to the

point h = 0. As it is quite possible that there is also significant short-scale

variation in T/, commonly referred to as the nugget effect, such extrapolation

may be quite inaccurate (Figure 5.4).

For the rain model parameters there are three sources of apparent small-

scale variation. Firstly there is the measurement error term of equation 5.1,

whose variance was estimated by the bootstrap procedure. Secondly we have

the inaccuracy in the measurement of the station locations, and thirdly the

small-scale variation in the local component, T/, of equation 5.1 which will

typically be the result of topographic variability. Because the value of erf

is not constant across all data points we cannot use equation 5.7 directly in

this case, but since the bootstrap procedure provides individual measurement
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error variances of. corresponding to each datum u,-, i = 1, 2 , . . . n we can use

the fact that

to calculate an adjusted semi-variogram estimator by using

%(k) = l/(2Nk) { J > - vtf - d* - a

where the summation is, as usual, over all Nh pairs which are a distance h

apart.

Figure 5.5 shows the unadjusted and adjusted semi-variograms for the

nine amplitude parameters and the coefficient of variation of the daily rainfall

model. For most of the parameters, the unadjusted values suggest a definite

nugget effect, while in many of the graphs the adjusted values appear to pass

approximately through the origin, that is, 7^(0) = 0. Those which still show

a nugget effect after adjustment (notably DEPAO, DEPA1, CV, WWAO, and

DWAO) suggest that the corresponding parameters are sensitive to local to-

pographical changes, or possibly other sources of small-scale variation. For

one parameter, WWA2, the adjustment seems to have over-corrected, re-

sulting in negative values throughout the empirical semi-variogram. This is

probably due to the somewhat skew distribution of this parameter, and also

the fact that the error variance of this parameter is relatively high compared

to the actual parameter values, which are typically quite small.

Models were fitted to the semi-variograms of each of the amplitude pa-

rameters and to the coefficient of variation. The method of fitting, based

on the weighted least squares method of Cressie (1985), gives more weight

to those points on the semi-variogram which are based on a larger number

of data pairs, and also gives more weight to those points corresponding to

smaller values of h. In each case the model fitted was the sum of a spherical

model for the local component JJ plus a linear model for the trend component

r.
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Figure 5.5: Semi-variograms: amplitude parameters.
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ISO 200

Figure 5.5: Semi-variograms: amplitude parameters (contd.).

The spherical model is given by

a[{S/2)(h/r)-(l/2)(h/ry\ Q<h<r

a h> r

where a, the asymptote, is commonly known as the s:7/, while r, the range,

indicates the maximum extent of the spatial correlation.

The linear model is given by

where s is a slope parameter.
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The fitted values a, r, and s, for each rainfall model parameter, are listed

in Table 5.1. The ranges of the local component vary between 10 and 40

kilometres. All the models fit well up to a distance of at least 240 km, which

corresponds to the maximum distance used in the local kriging calculations.

These fitted models are used to provide the covariances required for the

kriging calculations.

parameter

WWAO

WWA1

WWA2

DWAO

DWA1

DWA2

DEPAO

DEPA1

DEPA2

cv

sill

0.0530

0.0035

0.0027

0.0790

0.0030

0.0007

389

47

5

0.0180

range

15

36

19

10

10

12

10

30

40

10

slope

0.000140

0.000036

0.000007

0.000300

0.000140

0.000010

0.0400

0.0002

0.0020

0.000064

Table 5.1: Fitted semi-variogram models: amplitude parameters.

5.3.2 Cokriging of Rain and Altitude

One possible approach to the incorporation of altitude into the kriging pro-

cess is to use co-kriging (Matheron, 1971) in which the covariates are essen-

tially treated as an extension of the data vector so that the solution {for a

single covariate) is a weighted sum of values of the variate to be interpolated

and the values of the covariate. Thus we have

= 2 ^ w<vi
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with constraints ^ W{ = 1 and ^ uij = 0.

Assuming a no-trend model for the data, the co-kriging weights are given

by

C v u 1

^—'111] *J 1

0 0

\

1'

0'

0'

1' 0 0

w

w

-K
- A ,

\
CvO

1

0 1
where the matrix Cuu is now the nxm matrix of cross-covariances, Cutr = Cvu

and the vector cu0 also contains cross-covariances (of the U{ with v0), while

Xv and Au are Lagrangian parameters. More generally, a polynomial trend

model may be included, as in universat kriging. Stein and Corsten (1991)

show how co-kriging with a polynomial trend function may be expressed as

a generalized least squares predictor.

In using co-kriging, the covariates need not be available at the same

points as the variate of interest, nor at the sites to be estimated, although

the locations of the covariate information do affect the method of estimation

of the cross-covariance function (see below). Co-kriging is generally most

valuable when the covariates are sampled more intensely than the predictand.

An application of co-kriging to the estimation of rainfall data is described by

Krajewski (1987).

In order to use the co-kriging approach it is necessary to model the cross-

covariance of u and v in addition to their respective covariances. The spatial

cross-covariance of two variate v and u is defined as

truu(h) = E[(vz - /Xj)(uz+h - 1%.

where y? and /xu denote the mean values, of v and u respectively, at the

relevant location.

While the cross-covariance function may be estimated directly it is nat-

ural, in view of the advantages of the semi-variogram over the ordinary co-
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variance function to look for an appropriate way of defining a cross semi-

variogram. The traditional definition (see for example Journel and Hui-

jbregts, 197S) is

7<m(h) = -E[(vz - vz+h){uz - uz+h)]

In order to estimate this function the variables v and u must be available

at a number of common locations. The function is also symmetric in v and

u. This implies that 7uu(h) = 7UU(—h) and this is not always appropriate;

for example, in studying the relationship between rain and altitude, it is

generally the windward slopes of mountains which receive higher rain, so

that the direction of a mountain in relation to a point at which rainfall is to

be estimated cannot be ignored.

Myers (1982) proposes an alternative definition which involves modelling

the semi-variograms of v, u and v + u, and then using these to estimate the

corresponding covariances, from which the cross-covariance of u and v may

be obtained. This method also requires a number of common data locations

and is also symmetric in v and ii, and thus suffers from the same problem as

the previous definition in that it does not cater for directional effects.

Clark et ai. (1987) have suggested that a better definition of the cross

semi-variogram is

lvu{h) = -E[(vz-uzi.h)
2]

Use of this definition does not require common data locations; further-

more the definition is not symmetric in v and u. It is recommended that the

two variables first be standardized to zero mean and unit variance so that val-

ues are commensurate, since gross differences in scale could adversely affect

the precision of computations.

For our application, where the cross-covariance will certainly show direc-

tional effects, it was decided to try modelling the cross-covariance directly. In

exploring this approach the cross-covariance of the parameter DEPAO with
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altitude was studied for the south western Cape region (approximately west

of Mossel Bay and south of Calvinia). Calculations were done for eight di-

rections, and the results are shown in Figure 5.6 (in which the distance units

are minutes of a degree of latitude or longitude). Figure 5.7 displays the

same information in the form of a contour map. It is clear from the figures

that the cross-covariance is generally positive and decreases with distance,

but there is a distinct group of negative values at a lag distance of approxi-

mately 20 units (about 35 km) in a north-west direction. This corresponds

with the knowledge that the main rain-bearing wind direction in this area

is approximately north-west, so that it is likely that rain gauges which are

sited so as to have points of high elevation to the north-west will be in the

rain shadow of that higher ground and thus have reduced rain.

It is clear, however, that in order to take account, for example, of lo-

cally varying directional effects, the cross-covariance models would have to

be re-calculated and fitted regionally, or perhaps, to avoid discontinuities at

regional boundaries, re-computed in a neighbourhood of each point being

estimated as suggested by Haas (1990). This would necessitate an enormous

amount of computation. Further, there is then a need to parameterize appro-

priate cross-covariance models which could be used as part of an automatic

fitting procedure, since it would be impractical for the user to interactively

model cross-covariances at the half a million or so locations being estimated

in this project. Some further research was done to investigate the feasibility

of such automatic modelling, but the results were generally disappointing

(Sedupane, 1992).

5.3.3 Kriging with External Drift

An alternative to the co-kriging approach is to include the covariates as part

of a trend function, which is essentially similar to the kriging formulation
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Figure 5.6: Cross-covariance of rain and altitude: SW Cape.
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Figure 5.7: Contoured cross-covari an ce: SW Cape.
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given in Section 5.2.3 so that, in equation 5.3, some of the functions /( may

be functions of the covariates. Thus, for example, the functions /; might

be functions of altitude as well as latitude and longitude. This approach

requires firstly that the form of the relationship between predictand (rainfall

parameter) and covariate (altitude or function of altitude) is known or can

be approximated by a simple function such as a polynomial, and also that

the covariate information is available at all the sites at which the predictand

is known and also at all those points at which an estimate of the predictand

is required. This method, which Matheron has described as kriging with ex-

ternal drift, was applied by Ahmed and De Marsily (1987) to the estimation

of aquifer transmissivity, assuming a linear dependence on specific capac-

ity. It has also been used by Armstrong (1992) to estimate monthly rainfall

in Lesotho, using (sometimes estimated) annual rainfall as the covariate or

'drift', and by Hudson (1992) to estimate monthly temperatures in Scotland

using elevation as the covariate.

The use of this approach means, in effect, that we would be using a

generalized least squares multiple regression of rain on some function of al-

titude, together with ordinary kriging of the residuals. This would appear

to bring us back to the problems previously mentioned for the multiple re-

gression approach, namely the need for restricting the regression calculations

to homogenous sub-regions and also the need to pre-define the appropriate

functions of topography to be included in the regression model. The use of a

moving-window (local) kriging approach as discussed in Section 5.2.3 avoids

the first of these problems by re-calculating the estimates at each point using

only data points within a limited neighbourhood, thus effectively re-fitting

the regression at each point. While computationally intensive, the process

is computationally stable, and does not produce the sharp discontinuities in

the output that can occur at regional boundaries when regional regression

models are used.



88 CHAPTER 5

To avoid the need to pre-define functions of topography it was decided to

first calculate a number of orthogonal functions of elevation at each gridded

altitude point, which together would account for all possible patterns up to

a third degree surface. This would effectively incorporate a number of the

functions defined in Section 5.1; for example, both slope and aspect can be

measured in terms of first degree functions, while some of the definitions

of roughness and exposure could also be expressed as low-order polynomi-

als of the gridded altitude values. It should be emphasised, however, that

what is proposed here is more general than the use of a pre-defined function

of altitude such as slope, in that no particular polynomial is chosen a pri-

ori, but rather, a set of functions is used, which effectively encompasses all

possible patterns that can be described by third degree functions, while the

moving-window kriging process estimates appropriate weightings to give to

the component functions in the neighbourhood of each point being estimated.

An advantage of defining orthogonal functions is that they are by defini-

tion uncorrelated and thus we avoid the multicollinearity problems commonly

associated with multiple regression.

For gridded data the calculation of the orthogonal functions is a sim-

ple matter. If we write the altitude values at a grid of points in an q x q

matrix, D, and then calculate the matrix M'DM where M is the q x 4 ma-

trix whose columns give the coefficients for orthogonal polynomials of degree

0,1,2,3 respectively, then the resultant matrix has as its elements the required

orthogonal functions.

We illustrate the procedure using a 5 x 5 grid of altitude points. Let the
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altitude values at a grid of points be given by:

D =

au au «i3 au a1 5

^21 ^22 #23 a24 ^25

^31 032 «33 a34 a35

a 41 #42 O43 044 045

051 #52 a53 a54 ^55

Then the matrix M of orthogonal polynomial coefficients is given by:

M-

1

1

1

1

1

- 2

- 1

0

1

2

2

- 1

- 2

- 1

2

2

0

- 2

1

and M'DM can be written as

M'DM =

£00 £01 £02 £03

60 6 l fl2 63

£20 &21 62 &3

where £0o is simply the sum of the elements of D, while £Oi is the linear

contrast of the columns of D, which corresponds to a plane with E-W slope,

and £10 corresponds to a plane sloping N-S. By including both £10 and £01 in

the external drift function we allow for a plane of any inclination to form the

'drift' function. By including also £02, £11 and £20 we allow for an arbitrary

second degree surface and so on. We decided to include all terms up to third

degree, thus allowing for a cubic surface, and using 10 orthogonal functions

in all. This allows for reasonably complex topographical patterns.

Tables of orthogonal polynomial coefficients for various values of q, to-

gether with formulae for their computation in the general case, are given in
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•°
O is point to be estimated

A,B,C are data points

Figure 5.8: Calculating the functions of topography.

a number of books of statistical tables, for example, Pearson and Hartley

(1962).

Thus the full external drift function has the form:

where the B coefficients will be selected optimally by the kriging program to

model the relationship between the rainfall model parameter and the compo-

nents of the pattern of topography in the neighbourhood of the point being

estimated.

The values £oo, • • • foa are calculated at each data point and at each point

to be estimated. Figure 5.8 illustrates this, using a 3 x 3 grid. In practice, a
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3 x 3 grid is too small to allow the calculation of independent functions up

to third degree; a grid of at least 5 x 5 is required, but it is not immediately

obvious how to choose the optimal size of the grid. In addition, the optimal

choice may depend on whether the data has been de-trended. If one is work-

ing with de-trended residuals, then they will probably only reflect relatively

local topographic effects, while the effects of larger mountain features will

have been absorbed by the trend. On the other hand if no prior smooth-

ing has been used then the data will possibly reflect the effects of mountain

features some distance away, so that a larger mask should probably be used

for the altitude function calculations. A disadvantage of using a larger mask

would be that as the number of points in the mask increases, so does the

potential complexity of possible topographic patterns, so that it might be

necessary to use orthogonal functions of higher degree to obtain a realistic

approximation to the surface. Another problem with using a large mask is

that the gridded altitude data is not currently available for some of the areas

north of the South African border, so that as the grid size increases, there

are an increasing number of data sites for which we cannot calculate the

necessary functions without some additional estimation.

5.3.4 Cross-Validation

In order to decide on the optimal grid size and also on the optimal degree of

the <f functions to be used in the external drift kriging procedure, a number of

test sites were selected as described below, and the values at these sites were

estimated from the remaining sites using a range of grid sizes and functions.

The sum of the squared estimation errors at the test sites was then used to

compare the various options.

Thus, for a given grid size, the corresponding orthogonal altitude func-

tions were first calculated and stored for each point within southern Africa.
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Then the kriging estimation process was carried out firstly using no topo-

graphical information, then using only the term £00, that is, the average

altitude, then using only first degree functions, that is, including £10 and £01,

then using first and second degree functions, and finally using the full set of

third degree functions. For any sites where the external drift matrix X in

equation 5.4 was singular, (this could happen for example if all the altitude

values in the mask were identical) a drift of lower order was substituted until

a non-singular matrix was obtained.

The whole process was repeated twice; once using the de-trended param-

eters, (the trend estimation procedure is described in Appendix B), and once

with the original parameters. In all cases, a moving window version of kriging

was used, such that the closest 33 points (within a maximum search distance

of 120 km ) were selected. In those parts of the country where the stations

are fairly dense the closest 33 points were generally all within a radius of not

more than 60 km. If the number of points found within the maximum search

distance of 120 km was insufficient for estimation with the chosen degree of

orthogonal functions then a drift of lower order was used at that site. For

example, if a cubic drift was selected, but less than 30 data points were found

within 120 km of a given location to be estimated, then a quadratic drift was

used, if less than 20 data points were found, then linear drift was used, while

if less than 10 data points were available, then only £00 was used.

In selecting a set of data points as test sites to cross-validate the various

options it must be remembered that the data, that is, the rain parameter

values, are themselves estimated values subject to error, so that we do not

have 'true' data values with which to compare our estimates. It was therefore

decided to select from each Weather Bureau block the rainfall station at which

the variance of the estimate of DEPA0 was a minimum, and to use these

points as the test points. No test point was selected from blocks having less

than five data points, as this could make the resultant data set rather sparse
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grid size

5 x 5

15 x 15

25 x 25

35 x 3 5

no altitude

degree of orthogonal function

with

0

363

366

374

378

381

no de-trending

1

378

373

385

400

not

2

437

410

391

413

3

568

466

437

465

applicable

with prior de-trending

0

373

377

1

38T

383

2

443

417

3

558

466

not calculated

not calculated

386 not applicable

Table 5.2: Mean squared estimation error: DEPAO.

around that point. Apart from these omitted blocks the 373 test points are

thus roughly on a grid across the country, with one in each Weather Bureau

block. The decision to use the variance of the parameter DEPAO as the

selection criterion was based on the fact that this parameter is probably the

one most sensitive to topography.

The levels of the various factors used in the cross-validation exercise were:

• grid size: (5 x 5, 15 x 15, 25 x 25, 35 x 35 minutes of a degree)

• degree of orthogonal functions: (0,1,2,3)

• prior de-trending / no prior de-trending

For each rain model parameter the mean squared estimation error, averaged

over the 373 test points, was calculated for various possible combinations

of the factors shown above. The optimal factor combination could vary

depending on the specific rain parameter under consideration. In practice,

results were very similar for all parameters and thus only results for the

parameter DEPAO are given here (Table 5.2).

It is clear from the results that prior de-trending of the data gives no

improvement. The spurious correlations at short lags which were induced by
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the smoothing process (see Appendix B) may well be responsible for this.

Also, the fact that local kriging was used throughout means that the effects

of trend are likely to be small, and thus the de-trending only introduces an

extra level of complexity into the kriging process, apparently without any

compensating gain in accuracy.

A rather surprising feature of the results is that fitting the more complex

topographical models produces poorer results, although the deterioration

is less marked for the larger grid sizes. The estimation using the average

altitude £Oo does however give a small improvement over estimation ignoring

altitude.

These results are made clearer if we graph the absolute values of the

errors at individual test sites, as in Figure 5.9. We see from these graphs,

which are based on a grid size of 9 x 9, that, although the models using

average, linear or quadratic altitude generally give rise to smaller absolute

error than the model ignoring altitude, the quadratic model gives rise to one

very poor estimate, and the cubic model gives two. Bearing in mind that

we may be extrapolating the altitude functions; that is, the values of the £

at the point being estimated could be outside the range of the £ values at

the neighbouring data locations, it is not so surprising that we occasionally

get rather poor estimates. Thus the more complex models are less robust.

The fact that the models which do not include altitude at all do almost as

well as the models with altitude is probably due to the fact that the test

points, which were chosen for their low variance, are typically stations with

many years of data and not necessarily at high altitude, so that a simple

interpolation from the neighbouring data points gives fairly accurate results.

In order to show more clearly the effect of including altitude in the mod-

els, parameter estimates were calculated at one minute intervals along two

transects; Figure 5.10 shows the estimates of DEPAO along the two tran-

sects, together with the altitude values. In the first, running west to east in
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10 20 30 40 50 SO 70 80
mode) with no altitude

10 2 0 3 0 4 0 5 0 6 0 70 80
model with no altitude

10 20 30 40 50 60 70 80
modet with no attitude

10 20 30 40 SO 60 70 80
modal with no altitude

Figure 5.9: Estimation errors at individual test sites.
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Jonkershoek: latituda 33" 59' S

1130 1140
longitude (minutes)

2000

K. Bokkevald: latitude 32*50'S

1130 1140 1150 1160 1170
longitude (minutas)

1180 1190

attitude kriging + altitude * kriging only

Figure 5.10: Predicted DEPAO and altitude.
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the Jonkershoek mountains near Stellenbosch, there are a number of rainfall

stations within the mountains, so that the ordinary kriging model without

any altitude functions follows the shape of the mountains quite well. In the

second transect, running west to east across the mountain ranges just north

of Porterville, the model without altitude does not pick up the individual

mountain peaks at all as there are few rainfall stations in the area, while the

model including £00 shows a small rise in DEPAO as each peak is crossed.

By contrast, the values of DWAO, which is a measure of the probability of

rain, taken along the same transect (Figure 5.11), show almost no response

to altitude; the values decrease steadily as one moves west, away from the

coast.

2000

1800H +-w.+ K. Bokkeveld; latitude 32"50'S

1130 1140 1150 1160 1170
longitude (minutes)

1160 11

-2

-2.1

-2.2

-2.3

-2.4

altitude + kriging + altitude * kriging only

Figure 5.11: Predicted DWA0 and altitude.

On the basis of these results it was decided that the final estimates should
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be done without prior de-trending and including only the term <fOo in the drift

function, Further checking of grid sizes suggested that a grid of 9x9 would be

optimal, and this was used for the final estimation at a grid of sites covering

the country at 1 minute by 1 minute intervals. Maps of the estimates at

intervals of 30 minutes by 30 minutes, that is, at the centre of each Weather

Bureau block, are shown in Figure 5.12.
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Figure 5.12: Estimated parameter values at centres of Weather Bureau blocks

(amplitude parameters).
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Figure 5.12: Estimated parameter values at centres of Weather Bureau

blocks (amplitude parameters) (contd.).



Estimation of the Amplitude Parameters 101

& A A A A AAA A A AA AAAAAAAA A A
A & A A A AAAAAAAAAAAA<*i/y\AAA
i A A A A ̂ A^AA^A A.AAAAAAA/\A A/
i <i i i i A & A & A i A A A A A A A/N/f\ A, A/
i A A A A AAAAA&AA.A. AAAAAAA/H*

iAAAAAAAAAA. A A A A A/
— - - * •

i A i i A A A A A A A A A A A /

dwal

min
1 .717
0.089

A \
A

A~A A A i i i\
A AA A J. i i J. j

A A A A A A i i i

AAAAAAAAA/<\A A
d̂V A A A ̂  A A A A A A A A

/^/t\. /\ /\ /^ fl\ /\ fa j \ A &. ^^ A Ẑ  A A A A A A & A A
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Figure 5.12: Estimated parameter values at centres of Weather Bureau

blocks (amplitude parameters) (contd.).
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Figure 5.12: Estimated parameter values at centres of Weather Bureau

blocks (amplitude parameters) (contd.).
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Figure 5.12: Estimated parameter values at centres of Weather Bureau

blocks (amplitude parameters) (contd.).
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5.4 Estimation of the Phase Parameters

The phase parameters of the daily rainfall model are circular in nature. In

particular the first phase parameters take values between 0 and 365 while the

second phase parameters take values between 0 and 365/2. Given two sites,

one with 0i = 364 (December 30) and the other with 4>\ = 3 (January 3), say,

an obvious estimate of the value of this phase parameter at a site situated

midway between the two sites would be given, not by the arithmetic average

(364 + 3)/2 = 183.5, but by the value <f>\ = 1 (January 1). From this simple

example it is clear that normal methods of calculation are inappropriate for

circular data. Such data arise in a number of fields. The most common

examples arise either from directional data in two-dimensional space, such as

in studies of wind direction or direction of magnetization of rock specimens,

or else from periodic phenomena, such as the time of day or the time of year

of the occurrence of certain events. The phase parameters of the rainfall

model are of the latter type. Many other examples are given in the texts by

Mardia (1972), Batschelet (1981) and Upton and Fingleton (1989).

Statistical techniques for circular data tend to be more computationally

complex than their counterparts for data taking values on the real line. No-

tions of correlation, regression and bias are still the subject of discussion

(Mardia (1975), Jupp and Mardia (1989)). In particular, the development of

smoothing techniques for spatially distributed circular data is very much in

its infancy.

5.4.1 Smoothing Methods for Circular Data

Watson (1985) is perhaps the first to discuss the problems of interpolat-

ing and smoothing circular data available at a number of spatial locations,

and he outlines a couple of possible approaches. For the interpolation prob-

lem he suggests the use of a weighted average of the data points, with the
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weights chosen proportional to the inverse of the square of the distance from

the point to be estimated. He goes on to outline a possible method for

smoothing spatial directional data, represented by angles 9\,...8n, based on

calculating estimated values /(zi) to / (z n ) at the given spatial locations z,,

(i = 1, 2 , . . . n) to maximize

cos(/(z,-) -

where &,- is some inverse function of the measurement error variance of the z'th

data point, d,j is some monotonic increasing function of distance between the

i'th and j ' t h data points and r is a smoothing parameter. Watson does not

give full details of the method; in particular, the discussion does not explain

how the method generates estimates at points other than the original data

locations z,. Also, if the original data locations are clustered in space, then

excessive weight will be given to 'high density' areas. This criticism applies

also to the simple weighted average method.

Mendoza (1986) has subsequently implemented a method of smoothing

circular data available at locations on a plane and illustrates its use to smooth

data on the cross-bedding directions of sandstone. His method, which is

rather similar to Watson's except that it uses a spline-based measure of

smoothness, finds / ( z ) to minimize

XR2(f)

where 6{ is the observed angle and /(z,) the smoothed angular value at the

Tth location, W{ is a weighting factor for the z'th data point and R2H) is a

measure of roughness of the function / . The roughness criterion is similar to

that used in spline-smoothing and is given by

> 2 + < & » " * *
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' ' i
14

_ _ — • - " • ~ ~ ~ * " •

, ' 381

Figure 5.13: Re-labelling of circular values.

Whereas for most calculations involving directional data only trigonomet-

ric functions of the data values are used, so that 0,- and 0; + 360 (in degrees)

are equivalent, in the calculation of Ri{f) such values are not equivalent, so

that it is first necessary to choose the value 9% to represent each data point.

Mendoza suggests that these values should be chosen 'so that observations

are not rougher than they should be\ Thus, for example, a sequence of adja-

cent values (in degrees) of 240 300 350 30 is re-expressed as 240 300 350 390.

This may not be easy to achieve consistently for spatial data. For example,

Figure 5.13 shows some data values in the south-western Cape, taken from

the values of WWAO (converted to degrees), in which smoothing the data

along the path indicated by the dotted line from the point A (192 degrees)

to the point B leads to a labelling of 381 degrees for point B whereas smooth-

ing the data along the path indicated by the dashed line leads to a value of

21 degrees for the same point; the lack of a natural ordering of points in
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Figure 5.14: Vector distance and angular distance.

two dimensional space-means that appropriate values may not be uniquely

defined.

Young (1987) extends the technique of kriging to vector data in a natural

way, using the Euclidean norm as a measure of distance, and suggests that

the resulting technique will be appropriate for directional or circular data.

This is not the case however, since there is no guarantee that the vector esti-

mate resulting from the vector kriging process will in fact be of unit length,

and thus it may minimize the vector distance but not the angular distance.

Thus, for example, in Figure 5.14 the vector B is closer (as measured by the

Euclidean norm distance) to vector 0 than is vector A. However, in terms

of angular distance, A is closer to 0 than B is. To get an estimate which

minimizes the angular distance it is necessary either to constrain the solution

to lie on the unit circle, or else to try to minimize angular distance directly.

In the next section we explore the feasibility of extending kriging in this

way.
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5.4.2 Kriging for Circular Data

We start by reviewing some basic notation and summary statistics for circular

data.

Means and Variances for Circular Data

Circular data can be represented by points on a circle of unit radius. Where

the data are not directions, as in the present application, the range of values

can easily be mapped on to the circle; for example, in the case of the first

phase parameters of the rainfall model, which take values between 0 and 365,

we can multiply the values by 2TT/365 to get an equivalent value in radians.

The mean of the data is then defined to be the direction of the resultant

vector. That is, if we represent the data points by the unit vectors ei,e2,

. . . en, with polar coordinates (1, 8i), (1, 02)t . . . (1, 9n) then the mean vector

of the sample is given by
n

m = V^ e,/n

If we assign a unit mass to each data point in Figure 5.15, then m represents

the centre of gravity of the data. The cartesian coordinates of m are ~x —

9i/n and y = ^ s i n 0 , / n and the polar coordinates are (R, 9) where

R2=x2 + f

and

tan 6 = 2 s in 0»7 T j cos

This has a singularity if £ sin #,- = £ cos 0,- = 0, so that the centre of gravity

is at the origin, and thus the resultant direction is not uniquely defined.

It can be shown that
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e3

Figure 5.15: Mean of circular data.

and thus the measure [1 — R] provides a measure of the variance, with prop-

erties which are in many ways analogous to those of the variance for non-

circular data (Mardia, 1972)

To obtain a weighted mean with weights w\, ...wn it is natural to de-

fine this as the direction corresponding to the point with coordinates ~x =

^2 W{ cos &i/n and y = ^ Wi sin 0,/n, which is equivalent to assigning the

weights as masses to the data points and finding the centre of gravity as

before. Note that multiplying all the weights by a non-zero constant, /, does

not affect the direction of the weighted mean, but changes the length of the

mean vector R by a factor /.

The Kriging Equations

We consider a model equivalent to that used in ordinary kriging, that is, we

assume the data are a realization of a stochastic process with common mean

and variance, and that the covariance, to be denned below, is a function of

distance only.
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Given unit vectors ei,e2,. . . en, at spatial locations Zi,z2,... zn, we seek an

estimator, based on the weighted sum ^ wiei> °f the value at some location

z0. Specifically, if ^u^e,- ls written in polar form as (RQ,0Q) then we seek w

to minimize

- cos(0o - BQ)] (5.8)

where 60 is the unknown angular value at location ZQ. The use of the function
A.

1 — cos((9 — 9) as a measure of estimation error is common in circular statistics,

and is analogous to the usual least squares criterion (Fisher and Lewis, 1985).

We show in Appendix B that an approximate solution is given by:

w = . = (5.9)
V?K1 r

where fc,-j = £?[cos{0; — #_,)], st- = E[cos(8i — 9Q)] and r = y/s'K~ls is a scalar

normalizing constant.

For the case where the data include measurement error, as is the case

with the rainfall model parameters, so that we observe i9; = #,- + £,• instead

of 9ii a similar argument shows that the approximate solution to obtaining

an optimal estimate of 80 is given by the same expression but with kij =

E[cos{-8{ - i?j-)] and s{ = E[cos(di - 0Q)].

The form of the solution given by equation 5.9 is, apart from the normal-

izing constant r, exactly analogous to the solution of the usual (non-circular)

problem of simple kriging. The form of this solution is intuitively appealing,

in that it gives more weight to those data values which are close (in space)

to the point to be estimated (via s) and gives less weight to points which

are clustered with other data points (via K~l). Thus, although equation 5.9

gives only an approximate solution to the minimization of equation 5.8, it

can be justified in its own right as a form of weighted average which caters

specifically for clustered data, and can also cater for varying error variances.

It is thus of interest to see how well such a method performs in practice.
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The performance of the method was therefore compared with the simple

weighted average method described in Section 5.4.1, using a number of test

sites. Before carrying out the estimation it is first necessary to model the

spatial covariance so as to have values for fi'fcosftf,— dj)] and E[cos($i — 8Q)}.

Modelling the Spatial Covariance

A number of measures of association have been proposed for circular data,

and reviews can be found in Jupp and Mardia (1989) and Breckling (1989).

For our purposes here it suffices to find a measure of the relationship between

two circular variables with the same distribution, and, in particular, with the

same mean, since, in using local kriging, trends can be ignored. In view of

the form of the kriging equations an obvious choice is

ffy = E[cos{9i - 6j)]

This is in fact equivalent to the measure proposed by Breckling (1989) in the

case where the means of #,- and 8j are the same.

If we assume that the covariance is a function of distance only then we

can estimate the covariance function from the data by plotting cos(0,- — Bj)

as a function of d,j. Alternatively we may prefer to define a circular semi-

variogram as

i{h) = ty^fyl - coa(9t - Oj))]

as a circular analogue of the usual semi-variogram, where the expectation

is over all locations i and j with separation distance h. The circular semi-

variogram as thus defined takes values between 0 and 1.

In order to study the empirical circular semi-variogram as a function of

separation distance we can plot the average of the values (1 — cos(0,- — 0j))/2

for all pairs of points with a given separation distance as a function of the

separation distance. When the data is measured with error, this empiri-

cal semi-variogram will be increased by an amount depending on the error
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variance. Specifically, suppose that we observe angular values t?,- such that

where the angles e,- represent measurement error, so that we may assume that

the values of e,- at different sites are independent of one another and also of

the values 6{. We also assume that the distribution of ti is symmetric with

mean zero so that £J[sine,] = 0. Then we show in Appendix B that

£?[cos(i?,- - ii»j)] = £[cos(0,- - Bi)\E[cos e,]£[cos es] (5.10)

Similarly

?i - 90)} - E[cos(Bi -

Estimates of the terms £[cos e,-] are available for each parameter at each

rainfall station from the bootstrap variance calculations described in Chapter

4, and thus it is possible to estimate the covariance of the underlying 9 values

using the estimator

where the summation is over all JV/, pairs of points a distance h apart. A

similar adjustment may be made to the semi-variogram calculated from the

observed i? values to get an estimate of the semi-variogram of the 9 values.

Figure 5.16 shows the unadjusted and adjusted semi-variogram for each

of the phase parameters of the daily rainfall model. The effect of the adjust-

ment is less marked for the first phase parameters than for the second phase

parameters, indicating that the former are subject to relatively less estima-

tion error. After adjustment, the graphs show little evidence of any residual

nugget effect, which means that the phase parameters do not change signif-

icantly over short distances. This confirms our earlier suggestion that while

the amplitude parameters would be sensitive to local topography, the phase

parameters would not. The few negative values in some of the adjusted
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Figure 5.16: Semi-variograms: phase parameters.
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graphs result from the measurement error adjustment; clearly, in fitting a

model to such data one would require all the fitted values to be positive.

Using the weighted least squares method discussed in Section 5.3.1, an ex-

ponential model, given by the equation

= s{l -exp(-3A/r) ) (5.11)

was fitted to each of the adjusted semi-variograms. In this equation s is the

sill and r is the effective range, that is, the range at which the value of 7

reaches 95% of the sill. Table 5.3 gives the sill and effective range for each

rain model parameter.

parameter

WWP1

WWP2

DWP1

DWP2

DEPP1

DEPP2

sill

0.0112

0.1110

0.0157

0.0078

0.0659

0.2790

r

10

22

11

28

29

13

Table 5.3: Fitted semi-variogram models: phase parameters.

5.4.3 Validation and Discussion

To test the circular kriging method proposed in the previous section, the

method was compared with the simpler method of inverse distance weighting

using a test set of 101 rainfall stations and a data set of 325 rainfall stations

selected from the full data set. The test sites selected lie approximately

on a regular grid, with one station having been selected at random from

every alternate Weather Bureau block, while the test sites were selected at

random from the remaining stations in such a way as to have a similar spatial

distribution to the full data set (Figure 5.17).
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day 0-365

aay 91.25

day 182 S

Figure 5.17: Map of data sites used in circular kriging validation.

The data sites are rather sparse; while this can be expected to result in

rather poor estimates, it should also help to highlight the difference between

the two methods, since, if too dense a data set is used, almost all smoothing

methods will give good results. In both methods a search radius of 300

kilometres was used, that is, only points within 300 kilometres of the point

to be estimated were included in the calculation.

The average of the error terms, [1 — cos(i?,- — 0t)] (averaged over the 101

test data points), was compared for the two methods, and the results for the

parameter WWP1 are shown in Table 5.4 below, from which it is clear that

the kriging method has resulted in considerably lower errors on average.

There are several reasons why the kriging method may give better results
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method

inverse distance

kriging

av. error

0.1318

0.0988

Table 5.4: Comparison of prediction errors: WWP1.

than the inverse distance method. One is, of course, that in using the inverse

distance method we have made no attempt to optimize the particular inverse

distance function used; it would be possible to use a parametric function

of distance, with the parameter value controlling the effective bandwidth

selected, for example, by cross-validation, but this to some extent reduces

the main advantage of the inverse distance method, namely its simplicity.

Another possible reason for the superiority of the kriging method is that

the inverse distance method does not take account of clustering in the data;

however, a study of Figure 5.17 suggests that this is probably not of great

consequence for this particular data set, as the clustered data points generally

have similar values to the more isolated points around them. A third reason

for the superiority of the kriging method is its explicit use of the error variance

of the data; the inverse distance method will give relatively high weight to

the few points which are closest to the point to be estimated even if those

data points have high measurement error, whereas the kriging method will

adjust for this; this is quite important in the present application where the

error variance, as measured via the bootstrap procedure, was relatively high

at some sites.

In comparing individual estimated values with the original values in the

test data set one must bear in mind that even the values in the test data

set are not entirely accurate but are subject to the parameter estimation

errors as estimated by the bootstrap procedure. Therefore, in plotting a

map of the values estimated by the kriging method (Figure 5.18) we have

included for comparison, not the original data values, but a range of values
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aay Q-365

91.25

day 182.5

Figxire 5.18: Map of kriging estimates at test sites.
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(indicated by the two short lines emanating from each site in the figure) which

represent a range of i?,-±£,-, where i?,- is the original data value at that site and

c,- — arccos(^™] cos(i?,j- — $ij}), where the T9,J are the individual bootstrap

estimates described in Chapter 4. For our data set this range corresponds

roughly to an approximate 95% confidence interval for data having a von

Mises distribution, based on the formulae given in Section 9.6 of Upton and

Fingleton (1989).

It can be seen in Figure 5.18 that the fit of the estimated values is gen-

erally good, except for five sites which lie in the area of change-over between

the winter rainfall area in the south west and the summer rainfall area fur-

ther to the north and east. The test data set is relatively sparse in this area;

clearly more data points are needed for accurate estimation in this region.

In practice, of course, the full data set has over 5000 points compared with

the 325 used here, which should give much more accurate results throughout

the country.

In the comparison described above the semi-variogram parameters were

estimated directly from the empirical semi-variogram. However, since the

solution given by equation 5.9 is only approximate there is no reason why

these parameters should be optimal and it is likely that better results would

be obtained if the parameters a and r were estimated via cross-validation.

However, the cross-validation approach is more computationally intensive

and it is thus of interest to test the sensitivity of the kriging method to the

semi-variogram parameters. The estimation process was therefore repeated

with a range of values of these parameters, but the results suggested that

average estimation error was fairly insensitive to variation in the sill and

range parameters (McNeill, 1993). Thus it would seem that, for this data set

at least, using cross-validation to estimate optimal parameters is not likely to

give much improvement over the computationally quicker method used here,

based on modelling the empirical semi-variogram.
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Another possible method of improving the accuracy of estimation would

be by re-estimating the semi-variogram locally, as suggested by Haas (1990).

For example, it is likely that the effective range of the spatial covariance

would be smaller in the change-over region between the winter and summer

rainfall area than it is in the middle of the summer rainfall area. However,

as mentioned in Section 5.3.2, such a moving-window approach is excessively

computationally intensive and thus effectively impractical in a project such

as this. In addition, the advantage of a locally-calibrated semi-variogram

model must be offset against the fact that relatively few data points will be

used to estimate each local model and thus the model-fitting procedure will

be less robust.

For the final estimation of the phase parameters throughout southern

Africa, the semi-variograms for all parameters were estimated using the full

data set, with the fitted semi-variogram models given in Table 5.3. Fig-

ure 5.19 shows maps of the resultant estimates at the centre of each Weather

Bureau block.
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blocks {phase parameters) (contd.).
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Figure 5.19: Estimated parameter values at centres of Weather Bureau

blocks (phase parameters) (contd.).
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5.5 Validation

The validation of the original daily rainfall model by Zucchini and Adamson

(1984a) was discussed in Section 3.4. Briefly, the relevant characteristics of

simulated daily rainfall data generated by the model at individual rainfall

stations were compared with the corresponding values deduced directly from

the original data. The kriging process described in this chapter extends the

original 5000 stations at which the model is available to some 500000 points

throughout southern Africa. Since most of these points do not coincide with

the location of rain gauges, it is not possible to validate them in the same

way. In addition, at those grid points which do coincide with rainfall stations

we do not expect the estimated model parameters for the grid point to be

equal to the values fitted to the original data at the station, since the kriging

process takes into account the estimation error in the fitting of the original

parameters and also the error introduced by the limited accuracy of the

station locations. However, a comparison of grid point and station values

will give some indication of the validity of the kriging process.

Rather than comparing individual model parameter values, it is more

meaningful to compare derived characteristics, such as the mean annual pre-

cipitation, based on simulated data generated by the model; this enables us

to test the model as a whole in the form in which it will be used in prac-

tice, and also allows comparison with the same statistics derived from other

sources. We therefore calculated a mean annual precipitation (MAP) at the

location of each of the 373 test sites described in Section 5.3.4 using four

different methods:

• Using a 100 year simulation based on the daily rainfall model parame-

ters estimated for that station.

• Using a 100 year simulation based on the daily rainfall model parame-
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ters estimated by the kriging procedure at the grid point with the same

latitude and longitude as the station.

• Using the MAP calculated directly from the daily rainfall data for that

station held by CCWR.

• Taking the value of MAP from the CCWR data base of gridded MAP

values, as estimated by Dent et al. (1989).

The results are shown in Table 5.5. There are a number of reasons for

the differences between the four values; in particular, sampling variability

introduced by the simulation process, uncertainty in the exact station loca-

tion relative to the grid point, estimation error in the daily rainfall model

parameters, estimation error in the kriging procedure, estimation error in the

CCWR gridded MAP value calculations, outliers in the daily rainfall data,

and also the use of data for a different time period (the grid values estimated

by Dent et al. (19S9) include data up to May 1987 and thus exclude the

most recent rainfall data. In general, however, the agreement between the

four sets of figures is quite close.

The MAP estimates based on the kriged values are also compared with the

other three sets of values in Figure 5.20- As might be expected, the agreement

with the values based on the daily rainfall model fitted to the station data

(diagram A) is the closest; any discrepancy is due to the allowance for model-

fitting error and the influence of neighbouring rainfall stations and of the

altitude data in the kriging process. In diagram B, where the kriged values

are compared with those calculated directly from the CCWR rainfall data

at the station, the discrepancies incorporate also any inherent 'lack of fit'

of the seasonal Markov chain model described in Chapter 3. In diagram C,

the discrepancies are generally greater, as they now include also the effects

of estimation errors inherent in the regression procedure used by Dent et al.

(1989).
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Station
Code

2B85W

3032 W

4691 W

5605 A

6733 W

7698 A

8136A
9615 W

11065W
12215W

17582 A
21055W
22038W
23678W

24197W

25599W
26510W

27302W
ZB83SW

29805 W

30090W

31237W
32209W

33384W

34767W

35179 A
36729W

37696W
40653 W

41417W
42227W

43109W

44050 W

45134W

46479W
47718W
48043 W

49060W

50887W
51430W

52590 W
53432W

54805W
55300W
56709W
57048AW

58192W
59722W
60620 W

61296W

624*4W

63538 A
688S7W

69553 W
70033 W

71264 W

72712W
73871W

74298W

75215W

76884W

77522W

Latitude

-34
•34
-34
•34
•34

-34
-34
•34
•34
-34
-34
-33
-33
-33
-33
-33
-34
-33
•33
•33
-34
•33
-33
-33
-33
-33
-33
-33
-33
-33
-33
-33
-33
-33
•33
-33
-33
-33
-33
-33
-33
-33
-33
-33
•33
-33
-33
-33
-32
-32
-32
-32
-32
-32
-32
-32
-32
-32
-32
-32
-32
-32

45
32
21
5
13

a
16
5
5
5
12
55
38
4S
47
59
0
32
58
55
0
57
59
54
47
59
39
36
23
27
17
19
20
14
29
26
13
30
17
10
20
12
25
30
19
18
12
2
50
58
54
58
47
48
33
54
52
31
56
35
44
42

Longitude

20
20
ia
18
19
19
20
20
21
22
24
ia
19
13
20
20
21
21
22
22
23
23
24
24
25
25
28
26
IS
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
17
18
16
19
21
22
22
23
23
24
24
25
2fl
26

0
2
30
51
25
54
5
58
33
8
50
32
2
53
7
50
17
41
2B
57
3
38
7
43
26
36
25
54
22
44
6
34
2
35
16
54
2
32
30
45
20
45
27
40
24
32
7
55
51
10
45
18
59
19
32
9
54
30
40

a
0
is

Yaara
of data

77
112
30
34
112
53
60
90
42
24
94
85
87
106
79
93
55
112
107
99
80
105
98
43
28
39
105
89
96
112
113
33
85
98
112
63
96
76
78
63
98
60
29
31
101
110
110
72
30
17
111
36
106
67
64
72
47
98
80
90
86
97

DRmodel

(stn)
464
473
370
654
534
438
404
408
450
451
671
481
766
333
315

1026
654
200
684
838
916
1011
1145
508
435
615
640
666
479
462
487
589
227
167
320
415
166
321
209
201
232
238
385
330
607
708
527
844
248
284
489
022
124
163
1S1
180
193
281
273
320
477
439

DRrnodel
(grid)
468
478
373
648
538
436
3S9
407
452
454
657
483
783
317
312
1016
644
196
894
B39
920
1008
1145

564
425
634
653
667
479
456
485
584
228
166
321
414
166
321
272
260
233
238
385
334
610
695
527
820
242
290
487
623
118
164
189
181
199
270
273
324
480
432

ccwn
(stn)
471
467
368
650
529
431
402
412
451
466
657
472
751
322
321
1019
642
194
S7B
621
900
994
1140

550
449
604
641
660
475
453
473
605
222
158
318
424
169
333
262
263
236
247
384
332
605
704
510
832
236
278
484
614
120
167
195
186
202
276
271

465
428

CCWR
(grid)
483
466
363
642
473
430
393
401
428
391
857
484
767
320
269

1015
645
198
778
830
953
1003

1144

642
400
611
637
672
481
452
415
577
223
165
368
415
169
324
233
255
208
231
355
328
693
696
523
757
235
263
410
529
117
169
193
184
214
284
268
327
480
438

Table 5.5: Comparison of MAP values (in mm).
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Station
Code

78227 A
79632 W
80694W
B1007W
83572 A
B4159W
85112W
87186W
B8293W
89385 W
90196W
91B35W
92141 W
93314W
94730W
95119W
96101W
97239W
9B190W
99811 W
100029W
101604W
102762W
103516W
104762W
106850W
107396W
109215W
110385W
111373W
112346 W
113025W
114747W
116063 W
117447W
118395W
119208W
120338W
121518W
122480 W
123304 W
125150W
127485 A
128032 W
134478 A
137337W
136041W
139658W
140616W
141329W
142805W
143579W
144900W
14502SA
146588W
147409W
148352 A
149082 A
150065W
151604W
1521 SOW
157035W

Latitude

-32
-32
-32
-32
-32
•32
-32
•32

-32
-32
-32
-32
-32
•32
-32
-32
-32
-32
-32
-32
-32
-32
-32
-32
-32
•31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-32
-31
-32
-31
•31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-31
-30

47
32
34
37
2
9
22
6
23
25
16
25
21
14
10
29
11
29
10
1
29
24
12
6
12
40
36
35
55
43
46
55
57
53
57
35
59
38
38
0
34
0
35
32
28
7
11
28
16
29
25
9
30
29
18
19
22
22
25
4
10
35

Longitude

26
27
27
26
18
18
19
20
20
21
21
22
22
23
23
24
24
25
25
26
26
27
27
28
28
18
ta
19
20
20
21
21
22
23
23
24
24
25
25
26
26
27
28
29
19
21
21
22
22
23
23
24
25
25
25
26
26
27
27

za
2B
17

38
22
54
1
20
36
4
7
40
13
37
28
35
11
55
4
34
8
37
28
41
27
56
IS
56
29
44
38
13
43
12
31
25
3
45
14
37
12
40
16
41
35
47
2
46

n
32
22
51
11
57
20
0
1
50
14
42
3
33
21
37
32

Yoara
of data

112
104
105
72
14
55
82
52
61
57
71
67
96
101
59
100
104
68
86
84
106
102
101
60
89
23
97
55
76
65
53
83
76
95
87
81
95
97
78
111
90
S3
61
72
100
61
77
67
76
76
113
78
67
75
110

es
101
99
100
93
87
30

DRmoda!
(sin)
522
977
73B
321
232
240
704
366
246
295
173
189
237
213
406
2B6
284
362
321
446

1033
780
716
813

1145
147
146
215
143
123
167
181
205
225
280
327
336
350
358
448
545
668
620
784
222
171
162
233
245
226
325
296
325
368
433
502
561
622
722
772
1115
110

ORmodef
(grid)
524
970
738
819
221
234
694
355
276
294
173
188
238
213
416
276
285
363
323
447
1018

779
720
615
1146

143
146
214
143
127
167
178
204
224
2B1
331
335
349
359
443
537
664
825
817
213
169
162
235
245
228
326
299
321
371
434
500
5S1
620
725
785
1099

103

CCWH
(stn)
514
952
724
799
227
230
692
371
240
296
172
192
239
218
392
282
279
346
315
438
997
765
694
597

1133
130
149
214
144
126
168
176
207
229
282
318
330
348
361
444
526
653
604
775
218
168
157
237
243
226
323
291
322
361
426
505
550
596
695
746

10S1
145

CCWR
(grid)
513
956
647
693
223
240
457
369
339
293
176
194
238
219
408
285
281
346
312
431
1026

733
702
605
1116

136
147
206
185
131
169
181
212
229
257
323
345
323
332
445
496
649
595
812
210
165
160
234
243
224
323
2B5
322
356
422
483
542
592
710
757
1091

133

Table 5.5: Comparison of MAP values (contd.).
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Station Latitude Longitude Yearn DRmodal DRmodel CCWR CCWR
Cods

lesaeaA
166238 W

167665W

168250W

169090W

170009 A

17175BW
172163W

173497 W
174SS0W

17S371W
176631AW

177178 A
178689W

179790W

180032W
181073W

182379 A
1B5023W

193561 A
196375W

198838W

199107W

200486W
201361W

202S75W

203657W
ZO4138W

205385W

206843W
207560W

208406 W
209033 W
210002W

211661 A
214«70W

223344W
224430W

225679W
226327W

227127W

228507W
229556 A

230816W

231279W
232823W

233044W
236677W

237471W
238837 A
239482 A
240891W

241019W

251261W
252894W

25364BW

255202W

256453W

257645W
258458W

259727W

260678W

•30
-30
-30
-30
-31
r30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-00
-30
-30
-30
-30
-30
•30
-30
-30
-30
-30
-30
-30
•29
-29
-29
-29
-29
-29
•29

-29
-29
-29
•29

-29
-29
•29
-29
-29
-29
-29
..29
•29

-29
-29
•29
-29
-29
-29
-29

58
56
35
40
0
39
36
43
47
40
41
31
58
59
40
32
43
49
23
21
15
26
17
16
1
5
Z7
1B
ZS
3
20
16
9
2
1
40
44
40
49
57
37
57
46
36
39
43
44
47
51
57
32
51
49
21
24
16
22
3
5
8
7
18

22
22
22
23
23
24
24
25
25
26
26
27
27
28
28
29
29
30
17
21
23
24
Z4
ZS
25
26
26
27
27
28
20
29
29
30
30
17
22
22
23
23
24
24
25
25
26
26
27
28
29
29
30
31
31
21
22
22
23
23
24
24
25
25

0
B
53
9
33
1
56
6
47
19
43
22
36
23
57
2
33
13
31
49
13
28
34
16
43
20
52
5
43
29
49
14
32
1
53
53
12
45
23
41
5
49
19
58
10
58
2
53
16
58
17
0
1
9
0
22
7
46
29
46
25
53

of data
BO
45
B7
61
71
94
81
112
B4
106
72
73
106
29
67
64
77
62
2B
65
72
112
68
97
76
33
80
81
42
43
76
75
aa
75
39
114
24
57
79
85
86
82
41
46
65
77
70
18
53
49
73
111
56
78
63
69
89
103
77
97
83
61

(stn)
204
196
216
230
2B9
298
348
400
435
483
522
678
621
820
912
817
954

1231
113
171
213
332
315
401
437
523
636
715
830
617
707
750
1156
881
1042
219
235
250
267
244
321
383
438
515
500
618
537
819
1207

881
900
1032

905
138
181
216
223
340
380
395
443
405

(grid)
205
195
216
Z38
292
294
351
400
438
486
509
695
618
808
911
620
951
1214
99
177
203
332
316
400
436
531
641
714
824
621
711
754
1133

873
1047
210
238
243
269
248
324
390
458
506
4S6
619
559
654
1199

866
889
1025
1000

144
184
222
221
334
386
400
441
500

(stn)
Z09
188
Z21
234
302
2B7
344
393
419
473
507
640
590
804
697
618
923
1195
105
179
215
327
313
390
421
489
623
686
834
609
673
733
1130
810
1019

216
235
250
264
248
311
367
428
509
483
585
430
506
1192

864
875
1020
986
144
191
227
229
331
364
376
426
467

(grid)
204
201
216
221
286
303
324
383
408
451
524
622
588
813
912
773
832
1206
102
175
210
335
307
395
428
487
587
685
707
585
682
743
1108
925
1019

218
202
228
271
243
302
369
422
469
479
562
503
582
1184
862
876
1020

967
141
196
223
235
330
366
381
420
47B

Table 5.5: Comparison of MAP values (contd.).
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Station
Code

261722W
262129W
263859 A
264022 W
268640 A
269532 A
270544 W
271099W
272121W
282823W
283098 W
2B6824W
287441W
2B852BW
2B9102W
290463 W
291899 A
292461 W
293597 A
294847W
295408W
296379 W
297694 W
298301 W
299419W
300567 A
301692 A
302687W
303633W
304822 W
305037W
317447 A
320348 W
321110W

322071W
323649 W

32*607 W
325670W

326668 W

327883W
328628W
329215W

330750 W
331056W

332663W
333226W

334825W
335550 A

336283W

337148W
339354 A

356285W

358049W
350808W
360597 A

361354 W
362862W

363651W
364322W

365400 W

366710W

367768W

Latitude

•29

-29
-23
•29
-29
•29

-29
-29
-29
-28
•28

-28
-28
•28

-28
•28
-28
-28
-28
-26
-28
-28
-2B
-28
•28

-28
-28
-28
-28
•28
-2B
-28
-28
-28
-2B
-28
-28
-28
-28
-28
-28
-28
-ZB
-28
-28
-28
-28
•28

-28
-28
-28
-27
•27
•27
-27
-27
-27
-27
-27
-27
-27
-27

2
9
19
22
10
22
4
9
1
43
38
44
51
48
42
43
59
41
57
37
48
49
34
31
59
57
32
57
33
42
37
27
18
20
11
19
7
30
8
13
28
5
30
28
3
18
15
10
13
28
24
45
49
58
57
54
52
51
52
40
50
48

Longitude

26
26
27
27
29
30
30
31
31
20
21
22
23
23
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
31
32
21
22
23
23
24
24
25
25
26
26
27
Z7
28
28
29
29
30
30
31
32
22
23
24
24
25
25
26
26
27
27
28

25
35
29
31
52
18
4S
4
35
58
4
58
15
48
4
46
30
48
20
59
14
43
24
41
14
49
24
53
22
SB
2
15
42
4
33
22
51
29
53
30
51

a
55
2
53
8
58
19
40
5
12
40
32
27
50
12
59
22
41
14
54
26

Years
of data

86
66
47
50
80
88
63
66
78
47
70
IB
89
71
55
51
77
65
64
62
66
78
42
68
20
86
82
43
28
70
71
66
92
74
70
95
79
3d
60
73
45
80
65
81
53
78
72
60
61
53
66
70
40
88
51
65
53
66
83
65
47
86

DRmodel
(»tn)
566
564
755
820
894

1221
1085
1089
1077
169
149
308
294
340
334
419
431
436
575
590
654
710
777
838

1292
761
804
938
827
1145
1026

163
339
332
388
412
443
367
522
503
602
540
666
810
685
646
922
806
804
848
935
389
509
466
4S2
447
551
478
512
607
650
715

DRmodel

(grid)
568
556
745
B19
901
1215
1072
1066

1073
163
151
313
299
343
332
418
422
444
581
588
652
706
780
836
1260

761
803
917
822
1142

1022

182
347
336
390
414
448
376
510
504
596
550
683
805
680
643
915
7M
796
839
924
35S
516
450
462
449
544
473
514
606
653
71B

ccwa
(stn)
S40
554
717
776
B77
1184
1092
1083

1025

185
151
297
296
323
328
406
410
433
542
570
635
691
752
B25
1356

724
754
883
833
1102
994
151
326
327
384
407
424
388
496
491
580
545
656
790
663
618
909
778
7B2
826
886
368
490
450
441
414
548
450
502
590
626
892

CCWR

(grid)
487
516
714
735
877
1195
1081
1060

1063

159
155
310
293
329
333
410
410
447
529
583
631
711
761
822
1262

723
772
758
911
1109
1002

174
334
328
371
383
426
400
470
482
545
548
643
781
660
61B

907
778
853
994
884
339
463
415
430
436
532
451
497
580
628
698

Table 5.5: Comparison of MAP values (contd.).
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Station Latitude Longitude Yeara ORmodeJ DRmodol CCWR CCWR

Code
368634 W
369238 W
3704B6 W
371579W
372S52 W
373680W
374264W
375366 W
392148W
393778W
394874W
395855W
396813W
397086 W
398556W
399667 W
400203W
401738W
4020B1W
403886W
404316W
405753W
406607 W
407639W
408798W
409375W
410133 W
411175W
430354 W
431896W
432237 A
433858W
434020W
435400W
436747W
437134 A
438315W
439764W
440157W
441777 W
442781 A
443451W
444746W
446741 S
468318W
471480W
472175 W
473686W
474188W
475881W
476072W
477309 W
478360W
478545W
480889W
481167W
482357W
483053W
504838 W
505834W
508649W
509759W

-27
-27
-27
•27

-27
•27
•27
-27
•27
-27
-27
•27
-27
-27
-27
-27
-27
-27
-27
-27
-27
-27
-27
-27
-27
-27
•27
•27
-26
-26
•26

-26
-26
-26
-26
-26
-26
-26
•26

-26
-26
-26
-26
•26
-20
-26
-26
-29
-26
-26
-26
-26
-26
-26
-26
-26
-26
-26
-25
-25
-25
-25

34
58
36
33
42
50
54
38
28
28
4
15
3
26
16
7
23
18
21
18
16
3
7
9
18
15
13
25
54
56
57
48
50
40
57
44
45
44
37
57
31
31
56
51
1B
10
25
26
18
11
12
9
30
5
19
17
27
23
58
54
49
39

2B
29
29
30
30
31
31
32
22
23
24
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
31
32
23
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
24
25
26
26
27
2B
28
28
29
29
30
30
31
31
23
24
25
26

52
8
47
20
59
23
39
13
35
26
0
29
58
3
49
23
37
27
33
30
41
26
51
22
57
13
35
6
42
30
3a
29
31
14
55
5
41
26
36
26
57
16
55
55
11
47
6
53
7
0
3
41
12
4S
30
36
12
32
58
28
52
26

of data
80
84
67
73
75
63
71
41
65
34
14
36
74
21
84
42
BO
75
74
51
79
56
84
S3
66
84
40
45
37
42
71
67
65
61
69
77
75
76
78

&a
49
63
49
67
78
54
62
69
78
91
96
S3
62
68
38
78
65
52
20
34
74
79

(stn)
758
717
80S
762
799

1559
933
680
327
475
359
329
474
419
526
575
558
608
644
658
566
727
776
795
B55
805
934
645
349
462
466
535
541
627
607
644
699
720
737
729
755
813
782
580
44S
573
607
620
659
817
880
702
750
680
83B
900
1137
687
407
407
580
599

(grid)
750
717
804
766
801

1544
929
680
320
443
362
352
474
418
526
559
554
BOS
654
672
570
728
768
804
864
BOB
914
633
349
473
465
532
535
633
598
631
681
718
727
723
764
BOB
776
580
451
573
611
608
662
807
798
706
739
686
831
882

1129
884
390
397
5BS
60S

(stn)
721
691
78S
736
781

1531
883
642
332
436
346
325
466
413
511
568
526
586
613
623
546
731
768
770
820
768
894
603
345
452
445
509
529
622
800
622
694
B95
718
697
724
797
742
553
437
571
595
60S
638
814
844
692
740
645
838
885
1126

658
394
397
589
596

(grid)
760
631
663
743
764
1547

887
622
314
480
400
332
427
460
512
557
541
575
625
847
536
705
760
798
B20
783
896
603
343
463
437
504
526
614
597
618
657
884
721
692
723
786
825
553
407
565
590
574
603
807
839
678
731
663
837
881
1121

703
421
368
547
599

Table 5.5: Comparison of MAP values (contd.).
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Station
Code

510712W
511469W
512613W
5133B2W
514613W
515826 W
516285 A
517430W
516859W
519017W
520450W
545626W
546082W
549354W
550567W
551120W
552610W
553651W
5547B6W
555487W
556110W
557029W
58552HW
586441W
587350W
588406W
589594W
590307W
591538 W
593015W
594141W
595202 W
630511 W
631011W
632465 W
633503 W
634011W
635076W
636308 W
637720 W
638748 W
63S504W
673284W
675117W
678523W
677834 W
878725W
879268W
680354 W
681069W
718874 W
719370 A
720727W
721772W
722497W
723080 W
724790 W
762532W
763313W
764161W
765869W
766883 A

Latitude

-25
-25
-23
•25
-25
•25
•25

•25
-25
-25
-28
-25
-25
•25
•25
•25
-25
-25
•25
-25
-25
-25
•24
-24
-24
-24
-24
-24
-24
-24
-24
-24
-24
•24
-24
-24
-24
-24
-24
-24
-24
-24
•23
•23

-23
-23
-23
•23

-23
•23
-23
-23
-23
-23
-23
-23
-23
-22
•22
-22
-22
-22

52
49
43
52
48
46
45
40
49
47
0
26
22
24
27
30
10
21
6
7
20
29
48
51
50
46
54
37
56
45
51
52
1
11
15
23
11
18
8
30
28
24
44
57
43
54
35
58
54
39
4
10
7
22
17
20
10
52
43
41
59
53

Longitude

26
27
27
SB
28
29
29
30
30
31
31
25
26
27
28
2B
29
29
30
30
31
31
26
26
27
27
28
28
29
30
30
31
27
27
28
28
29
29
30
30
31
31
27
28
28
29
29
30
30
31
28
28
28
29
29
30
30
28
28
29
29
30

54
16
51
13
51
28
40
15
59
1
45
51
3
42
19
34
21
52
27
47
4
31
18
45
12
44
20
41
18
1
35
7
18
31
16
47
1
33
11
54
25
47
10
4
48
28
55
9
42
3
0
13
55
26
47
3
57
IB
41
8
59
29

Yeara
of data

77
70
69
74
83
52
62
83
B1
28
35
70
66
62
52
74
39
66
72
49
54
35
53
67
30
83
30
72
50
64
67
36
34
58
48
49
27
54
61
45
35
41
36
63
37
82
44
51
41
33
51
28
60
53
52
58
33
49
29
61
33
37

DRmodel
(sin)
B67
692
696
706
724
709
784
798
819
715
764
616
605
534
601
681
623
739
695
1138
915
899
583
580
697
617
654
635
520
562
598
1053
512
525
599
673
595
563
959
834
572
597
473
556
475
493
640
1320
537
486
416
418
555
415
428
787
550
3S9
448
364
783
1072

DRmodel
(grid)
672
694
689
702
723
695
777
797
828
713
768
605
610
594
615
671
631
725
691
1151
900
673
591
587
695
622
631
632
522
558
602
1046
493
523
586
668
592
561
971
827
581
589
463
584
489
488
629
1338
541
497
416
434
538
418
430
796
546
378
456
347
786
1080

CCWR
(stn)
667
568
G67
685
694
686
764
781
786
744
739
583
598
579
570
660
604
718
677
1098
901
670
566
551
669
601
632
623
500
559
570
1022
504
513
563
664
597
534
948
790
561
556
442
540
474
482
618
1268
521
471
420
402
557
405
405
749
575
366
417
374
748
1028

CCWR
(grid)
648
673
675
688
684
689
757
790
872
682
594
588
587
604
612
644
625
692
67a
1095
848
652
585
572
632
614
629
615
515
552
551
1019
506
505
610
666
624
537
968
903
581
562
447
553
499
485
589
1147
537
501
403
391
686
402
411
841
568
465
410
377
754
1077

Table 5.5: Comparison of MAP values (contd.).
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0 200 400 600 80G 1000 1200 1400 1600
MAP station (DR model)

0 ZOO 400 600 800 1000 1200 1400 1600
MAP at station (CCWH)

0 200 +00 600 800 1000 1200 1400 1000
MAP* grid nod* (CCWH)

Figure 5.20: Comparison of MAP values (in mm).
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Implementing the Model

The application of generated daily rainfall sequences to estimate statistics of

interest has been discussed in Zucchini and Adamson (1984a) and Zucchini

et al. (1992). This chapter describes the algorithm required to generate the

rainfall sequences.

To generate an artificial rainfall sequence at a particular site one first

needs to know the parameters of the model for that site. If there is a rainfall

station at the site whose model parameters have been calibrated, then it is

only necessary to know the Weather Bureau station number. If there is no

rainfall station at the site, then one has to use the interpolated parameter

values. To obtain these one needs to give the longitude and latitude of the

site.

The user also specifies the length (in years) of the required generated

sequence. The output is in the form of daily values given in tenths of a mm

so that, for example, a rainfall depth of 10,2 mm is represented by the integer

102.

Algorithm for generating artificial rainfall sequences

Step 1: Input

— number of years of daily rainfall to be generated

132
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• Read NG

— ei ther station number of interest

• Read STNNO

— or grid points (i.e. longitude and latitude) for the site.

• Read LONG, LAT

Step 2: Extract model parameter estimates for the site of interest from the data

base.

• Get WWAO, WWAl, WWA2, WWPl, WWP2, DWAO, DWAl, DWA2,

DWP\,DWP2, DEPAQ, DEPAl, DEPA2, DEPP1, DEPP2, CV

Step 3: Set initial state of day to be dry.

• STATE=0

Step 4: Compute

— Probability that day t is wet given that day i — 1 is wet, t =

1,2,...,365

• W = 0.01721421

• LOGIT = WWAO + WWAl * cos{W *(t-l- WWPl)) +

WWA2 * cos(2 * W * (t - 1 - WWP2))

• PWW(t) = exp{LOGIT)/{l +exp(LOGIT))

— Probability that day t is wet given that day f — 1 is dry, t —

1,2,...,365

• LOGIT = DWAO + DWA1 * cos{W * (t - 1 - DWP1)) +

DWA2 * cos(2 * W * (t - 1 - DWP2))

• PDW(t) = exp{LOGIT)/(l + exp{LOGIT))

— The shape and scale parameters of the Weibull distribution.
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The shape parameter, B, is given by equation ( 3.10).

• GI = l/T{l+ BI)

• M{t) = (DEPAO + DEPA1 * cos{W * (i - 1 - DEPPl)) +

DEPA2 * cos(2 * W * (t - 1 - DEPP2))) * GI

Step 5: Loop over years NY and over days t.

• NY = 1 ,2, . . . ,NG and < = 1,2,...,365

Step 6: Generate uniform random number between 0 and 1, inclusive (f/(0,1)).

• Generate RND

Step 7: If £/(0,1) random number is less than the probability of a wet day

following a day with the status of the previous time period then

- the status of the present time period is wet.

Otherwise

- the status of the present time period is dry.

• If RND < PWW(t) given STATE = 1

• or RND < PDW(t) given STATE = 0 then

• STATE = 0

• Else

• STATE= 1

Step 8: If present state is wet than determine the rainfall depth, (else set rain

= 0).

• If STATE = 1 then

• GR(NY, t) = M(i) * ( - \og(RND))BI
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• Otherwise

. GR[NY,t) = Q

Step 9: Repeat loop from Step 5 until enough years of rainfall have been gen-

erated.

• End of t loop and NY loop.

Step 10: Output the generated daily rainfall sequence.

• Write GR{NY,t),NY = \,2,...,NG, t = 1 ,2 , . . . , 365 .

To generate and store 1000 years of daily rainfall on a 386 micro-computer

{with math co-processor) takes less than 2 minutes. A FORTRAN version

of this algorithm, which makes use of the parameter values at calibrated

stations and the interpolated grid point values described in this report, is

available from CCWR (see Chapter 7 and Appendix C).



Chapter 7

Summary and

Recommendations

7.1 Summary

The main objective of the project described in this report was to produce

estimates of the parameters of the daily rainfall model of Zucchini and Adam-

son (1984a) for sites throughout southern Africa at which there is little or

no rainfall data available, thereby making it possible to use the model to

generate artificial rainfall sequences and study rainfall characteristics at any

given location or over any given area in southern Africa. Examples of the

type of questions that the model can be used to answer are given in Chapter

1.

The parameters of the daily rainfall model have been interpolated on a

regular grid one minute of degree square throughout southern Africa, that

is, at a resolution of about 1,5 kilometres, making the parameter estimates

of the model available for approximately 500 000 sites.

As was pointed out in the introduction, the daily rainfall model is rou-

tinely used by researchers and decision makers in a wide variety of applica-

tions. It is hoped, now that the model is now applicable at practically any

136
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site in southern Africa, that it will find even wider application.

It needs to be emphasised that although the theory behind the model

is rather technical, the model is easy to use by anybody who can operate a

micro-computer. No statistical or other specialist knowledge is required to

apply the model. The feedback that we have received, during the last eight

or nine years, from users with very different mathematical backgrounds, has

been encouraging; no-one has indicated that they found the model difficult to

apply. We are not aware of any user who has misunderstood what it is that

the model provides or who has misinterpreted the estimates derived from the

model.

One of the by-products of the project has been the contribution to the

theory of kriging, namely the development of a technique for the kriging

of circular variables, described in McNeill (1993). The report also briefly

reviews kriging and other interpolation techniques and comments on their

suitability in the context of hydrological data. This provides a convenient

starting point and an up-to-date list of references for researchers wishing to

interpolate other values.

7.2 Recommendations

The daily rainfall model has 16 parameters. We have generated estimates of

these parameters for approximately 500 000 grid points, covering southern

Africa on a grid of 1' by 1'. This information is currently stored at the

CCWR; the data file occupies 3 megabytes of computer disc space for each

of the 16 parameters or almost 50 megabytes in total. As this quantity

of information is too large to be conveniently distributed in its entirety to

individual researchers and other interested parties, we recommend that the

CCWR be approached to:
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• store the data.

• extend their present service of supplying artificially generated rainfall

sequences via the 'DRAINGEN' program to incorporate an option for

using the grid point data. (They currently supply generated sequences

for the 2550 stations covered in the Zucchini and Adamson (1984a)

report.)

• maintain an archive of the interpolation software which was used to

estimate the grid point values (see Appendix C) so that it will be

possible to re-run the programs at some future date to update the

parameter estimates.

We also recommend that some consideration be given to finding appro-

priate means of publicising the existence of the model and its potential uses.

We believe that the number of current users is much smaller than the num-

ber of potential users, who are either unaware of the model or who might

be mistakenly under the impression that it is a complicated tool requiring

specialist knowledge. With this in mind, a summary version of the current

report, together with a PC compatible diskette containing a small data set

and sample programs, is currently in preparation. Further software develop-

ment, aimed at providing application tools to make optimum utilization of

the generated data, would be a valuable addition.

Further research is required to develop methodology for generating sim-

ulated sequences of daily rainfall for an area rather than a single point.
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Appendix A

Maximum Likelihood

Estimates of the Weibull

Distribution

The probability density function of the ordinary non-seasonal Weibull distri-

bution is given by

() ( ) .-(•/•c, , > o,
\cty \a/

with mean
fi = a r ( l + 1//?),

variance

and coefficient of variation

a f T(l+2/0) \1 /a

7 /i U
If we allow the mean of the Weibull -distribution to vary seasonally and

model this seasonal mean by its truncated Fourier series representation, that

is we define
L

5],-Vi(t)1 t = 1,2,..., NT, L<NT,

150
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where ipi(t) is defined as in Chapter 3, then the seasonal probability density

function of the Weibull distribution is given by

0-1

f{x)=

where

fi(t,L) =
t = i

' s independent of t

The likelihood function of observation xt is then

T T

exp -E
£=1

and the log-likelihood is given by

( = 1
iff

t = l

Maximum likelihood estimates can be obtained by minimising i(ijf) and

this is achieved by setting its first partial derivatives with respect to the

parameters, 9;, and /?, equal to zero. The first partial derivatives are given

by

4=1
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i = l

log

These equations cannot be solved explicitly and therefore the Newton-

Raphson iterative method is used to solve them. For this we require the

second partial derivatives. These are

log

T

v t = l

l

+ r{i +

• ^[iog(r(i

T

-i 2

An algorithm for parameter estimation as well as algorithms to compute

the gamma function T(a), the digamma function, V&(a), and the trigamma
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function, ty'(a) are given at the end of this appendix.

A.I Properties of MLE of the Weibull dis-

tribution

The Weibull distribution was fitted to model rainfall depth and maximum

likelihood estimates of the parameters were obtained for two test stations. It

was seen that, although the parameter estimates for the mean rainfall depth

were close to those obtained by the method of moments, the coefficient of

variation differed significantly (Table A.I).

Durban Elsenburg

Moment estimate 1.633 1.266

Maximum likelihood 1.013 0.8549

Table A.I: Estimates of coefficient of variation

According to Johnson and Kotz (1970):

1. It is not generally true that maximum likelihood estimates are unbi-

ased, and in particular the maximum likelihood estimate of the shape

parameter (fi) of the Weibull distribution is a biased estimate. The

coefficient of variation, CV, is given by

That is, the coefficient of variation of the Weibull distribution is a

function of the shape parameter alone and therefore if the estimate of

/3 is biased, so is the estimate of CV.

2. If the maximum likelihood estimates are 'regular', in the sense of hav-

ing the usual asymptotic distribution, then the asymptotic variance-
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covariance matrix for the estimators is given by the inverse of the ma-

trix with entries

where & represents the model parameters. Maximum likelihood estima-

tors are 'regular' only for /? > 2. In our case, for several rainfall stations

we have that {3 < 2 therefore we do not obtain correct measures of the

standard errors of the estimates.

Alternative distributions, such as the gamma distribution used by Stern

and Coe (1984), were considered for modelling rainfall depth. The coefficient

of variation for the gamma distribution is also dependent only on a shape

parameter whose maximum likelihood estimate is biased. The bias can be es-

timated if the mean rainfall depth is assumed to be constant. In our situation,

the mean rainfall depth is allowed to vary seasonally so this assumption is vi-

olated and the extent of the bias is unknown, therefore one cannot objectively

correct for bias. Also, the coefficient of variation essentially determines the

variability of rainfall, which is a property that it is important for the model

to preserve, especially in southern Africa where the variability in the rainfall

is a major feature of our climate. It was thus decided to abandon the classi-

cal approach to solving this problem and to develop alternative methods of

estimating the required standard errors discussed in the Chapter 4.

A. 2 Algorithms

A.2.1 Algorithm to compute parameter estimates

Step 1: Estimate initial 0,-, i — 1, 2 , . . . , L by

x if i = 0
and

0 if i = 2,3, . . . , L,
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0 = sxjx,

where x and sx is the mean and the standard deviation of the

observations xt, t = 1,2,... ,T, respectively.

Step 2: Compute / ^ and F^k\ where fW is the vector of first derivatives

and F^ is the matrix of second partial derivatives, computed at

the kth iteration.

Step 3: Compute the vector 5^ which is the solution to the system of NP

linear equations

where NP represents the number of parameters.

Step 4: Set /9(*+1> = /?<*' - 8^k\ where /3(fc) contains the parameter esti-

mates at the kth iteration.

Step 5: Test for convergence, for example, if the elements of /'*' are suffi-

ciently close to zero. If the convergence criterion is met then stop,

otherwise increase k by I and return to step 4.

A.2.2 Algorithm to compute T(a)

This and all following algorithms were obtained from Zucchini and Schmidt

(1990). The gamma function is given by:

T(a)= re-'z-'dt, a ^0,-1,-2, . . .
Jo

If a < 10 the following recurrence relationship is applied in order to increase

the argument of the gamma function to a number greater than or equal to

10:
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Step 1: Input a

Step 2: Set A = a

G= 1

Step 3: Test if A > 10 then go to Step 5

Step 4: Set G = G*A

A = A+l

Go to Step 3

Step 5: Set T = (1 + (0.0833333 + 0.00347222 - 0.002681327/A)/A)/i4

Gamma = exp(-A + (A - 0.5) * log(A) + 0.918939) * T*

A/G

Step 6: Output Gamma

A.2.3 Algorithm to compute

The digamma function is given by:

dor

If a < 4 the following recurrence relationship is applied in order to increase

the argument of the gamma function to a number greater than or equal to 4:
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Step 1: Input a

Step 2: Set A = a

P = Q

Step 3: Test if A > 4 then go to Step 5

Step 4: Set P = P- I/A

A = A + 1

Go to Step 3

Step 5: Set T=l/(A*A)

U = T* (0.08333333 -T* (0.00S333333 -T* 0.003968254))

Digamma = P + Iog(j4) - 0.5/4 - U

Step 6: Output Digamma

A.2.4 Algorithm to compute

The trigamma function is given by:

, a

If a < 4 the following recurrence relationship is applied in order to increase

the argument of the gamma function to a number greater than or equal to 4:

* ' ( o + l ) = *'{a) + I/a2.
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Step 1: Input a

Step 2: Set A-a

P = Q

Step 3: Test if A > 4 then go to Step 5

Step 4: Set P = P + I/A * A

A = A+1

Go to Step 3

Step 5: Set T = l/(A*A)

U = T* (0.1666667 -T* (0.03333333 - T* 0.02380953))

Trigamma = P + I/A + 0.5 * T + U/A

Step 6: Output Trigamma
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Kriging

B.I Trend Removal by Kriging

The usual polynomial models of trend are not suitable for modelling topog-

raphy or rainfall except over fairly small areas due to the complexity of the

surfaces typically encountered. Also, methods of smoothing based on simple

moving averages, such as are commonly used in time series analysis, are un-

suitable for irregularly-spaced data. An alternative possibility is to re-write

the general kriging model

Vi = T{ + T}{ + ti

as

Vi - fl + Ti + T)i + Ci

where /i is the overall mean, and r represents trend, considered now as a

stochastic component with zero mean similar to r/, but on a larger scale.

One can then use kriging as a filter to separate the high and low frequency

components T and 77. Thus we estimate the trend as

71

fl + T = 2 J wivi

159
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where the Wi are given by:

where kij = cov{v,-,Uj), and c,- = cov(ti,-,T0) = COV(T,-,T0). This is commonly

known as factorial kriging (Matheron, 1982), and is similar to ordinary krig-

ing except that the covariance must be decomposed into components cor-

responding to the high and low frequency components. While the separa-

tion of r and 77 is to some extent subjective since the terms small-scale and

large-scale are relative, there is often a natural distinction apparent in the

empirical semi-variogram or covariance function. The semi-variograms of the

amplitude parameters discussed in Section 5.3 show such a separation, with

a levelling-off at a range somewhere between 10 and 40 kilometres, and this

was used as a basis for the models described in table 5.1. Having estimated

the trend component at each data point, using the equations above, we can

then subtract the trend from the original values to get de-trended data. The

semi-variograms of the de-trended data showed that the long-range trend

effects had indeed been eliminated, but also showed a spike at a lag distance

of approximately four kilometres suggesting a spurious negative correlation

induced by the de-trending process. This phenomenon is well known in the

time-series field (see for example Diggle, 1990, section 2.6).

B.2 Circular Kriging Equations

Proof of Equation 5.9

We wish to find weights UJ,- to minimize E[\ — cos(0o — 90)] where (RQ, 8Q) is

the vector X)"=i wiei written in polar form.

If we write et- = (z,-, y,-)' so that 0,- = arccosfz,) = arcsin{y,-) and eQ = (ZQ, VO)'
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with 9Q

and

= arccos(.ro) =

sin

cos

= arcsin(i/0),
n

1=1

n

i'=l

then we have
Tl

__ V^

t = l

n

= \ W{ COS

t = l

where RQ is the length of the vector ^ u>i&i so that

n n n n
J,-t«j cosBi cos 0j + V j 2. WiWj sin5; sin

where qij

Now

.•=i i=i
n n

= EZ>
= w'Qw

= cos(0t-0j) .

Itfj COs(dt' — 5

1=1 J = l

cos(0o — ^o) = cos ^o COS ^o + sin ^o sin ô

Wi(cos 9{ cos ô + sin 9{ sin ^o)
» = i

= w'c/V(w'Qw)

where C; = cos(0; — 0Q)

Thus in order to minimize £[1 — cos(0o — BO)] we need to find wi,...wn to

maximize

It is clear from the formula above that the solution will be unique only up

to a constant multiplier; that is, if w is a solution, then so is lw for any

non-zero constant /.

If we use a first order Taylor series expansion of E[w'c/^w'Qw], so that

we approximate it by w's/i/w'/sTw, where kjj ~ E[qij\ and S{ = E[ci\, and
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use the uniqueness constraint E[w'Qw] = w'A'w = 1 then we can use the

Lagrange multiplier approach to find the optimal values of the u>,-. With the

chosen uniqueness constraint, the function to be maximized becomes simply

w's, so if we set

G = w ' s - A ( w 7 < w - 1 )

then

and
dG

— = w ' A w - l

aX

which leads to the solution

where r = \/s'/v~1s is a scalar normalizing constant.

Proof of Equation 5.10

i-dj)] = E[cos{Bi + £,- - Bj - £j-)]

^i - flj) cos(et- - £j) - sin(^,- - fij) sin(e,-

0,- — 6j)(cos t{ cos £j + sin e; sin £j)

— sin(0; — 0j)(sin £,- cos 6j — cos e; sin ej)

= E[cos(8i — 8j) cos e,- cos ej]

= E[cos(0i - 9j)\E[cos 6i]E[cos e5)



Appendix C

Programs

The list below gives brief details of the main programs used in this project.

The programs have been written in ANSI 77 FORTRAN and conform to the

full ANSI standard.

DRMODEL Fits model parameters at selected sites. See Chapter 3.

DRBOOT Generates 100 parametric bootstrap samples, using the fitted

model parameters at each site, and uses these to estimate the variances

of the parameters. See Chapter 4.

SVGMAMP Calculates the unadjusted and adjusted semi-variograms for

all the amplitude parameters and the coefficient of variation. See Chap-

ter 5.

SVGMCIR Calculates the unadjusted and adjusted semi-variograms for

the phase parameters. See Chapter 5.

ORTHOALT Calculates the orthogonal functions of altitude. See Chapter

5.

KGXDRIFT Carries out the kriging estimation of the amplitude param-

eters (and CV) using an 'external drift' model which incorporates the

orthogonal functions of altitude. See Chapter 5.
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KRIGCIRC Carries out the kriging estimation of the phase parameters.

See Chapter 5.

DRGEN Generates an n-year sequence of simulated daily data for a given

station or grid point. See Chapter 6.

These programs are available from the Computing Centre For Water Research

at the following address:

Computing Centre For Water Research

c/o University of Natal

P 0 Box 375

Pietermaritzburg

3200

Tel. (0331) 63320 ext. 177/178

Fax (0331) 61896.


