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Motivation

In southern Africal, rainfall is the element of climate most influential in
determining the variety and abundance of flora and fauna, land use, eco-
nomic development and practically all aspects of human activity. The major
climatic and agricultural regions of southern Africa are based largely on the
areal distribution and seasonality of rainfall. Most studies have focused on
the simplest characteristic of the rainfall process such as annual and monthly

means. However, as was pointed out by Tyson (1986):

“... it is clear that rainfall over Africa is a highly variable quantity,

particularly over the dry western parts of South Africa. Conse-
quently the concept of mean annual rainfall at any one locality

must be treated with caution.”

The same comment holds for monthly means. Furthermore monthly means
provide little or no information on many properties of the rainfall that are
relevant to the wide variety of rainfall-related activities. For example, the
risk and severity of storms, the risk, severity and duration of drought and
the timing of rainfall within each year are all aspects of rainfall that are of
importance to decision making,.

It is of course possible to make a special study of any particular property
of daily rainfall. For example, Adamson (1981) tabulated and mapped the
risk and severity of n-day storm depths (for n = 1,2,3,7) at 2200 sites in
southern Africa. However the variety of statistics that might be of interest to
different decision makers is effectively infinite, which renders that approach
problematic.

An alternative and more flexible approach is to model the daily rainfall

process itself and thereby encapsulate all the properties of daily rainfall by

PThroughout this report, ‘southern Africa’ is defined to include South Africa, Lesotho

and Swaziland.



means of a small number (in our case 1§) of mc;del parameters. Until the
advent of cheap fast computers this approach would have been fruitless be-
cause it is difficult or impossible to determine properties of interest purely
analytically, based on such a2 model. For example it is doubtful that one
could derive a formula for the probability of events such as ‘there will be at
least 50 mm rainfall at Pretoria in July but not more than 20mm on any one
day’.

Computers have made it easy to evaluate the probability of any such event
or sequence of events, regardless of complexity. Once calibrated, the model
can be used to generate long artificial rainfall sequences (typically 1000-2000
years) which preserve all the statistical properties of rainfall; not merely the
means and variances, but also the frequency of occurrence of any sequence
of values. -

The point of being able to generate sequences of artificial rainfall is that
it enables one to estimate statistics relating to rainfall events. For example.
suppose that we require an estimate of the probability that Stellenbosch will
have less than 20 mm rainfall in February, This can be done by using the
model to generate a 1000-year daily rainfall sequence at Stellenbosch and
counting the number of years in which this event occurred. Suppose that in
689 out of the 1000 years the February rainfall total was less than 20 mm.
Then an estimate of the required probability is 689/1000 = 0,689 .

In effect one estimates probabilities of this type by simply regarding the
artificial rainfall sequence generated as a very long real rainfall record. One
can do this because the model used to generate the sequences preserves the
properties of real rainfall sequences, for example the averages, standard de-
viations and in fact the entire probability distribution of daily, monthly and
anpual rainfall totals, as well as the correlation between rainfall totals on
consecutive days, the seasonal distribution of wet and dry runs, and so on.

One can use the artificial sequences generated to estimate a wide variety
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of quantities that may be of interest, for example

e What is the probability of having no rain between two specified dates,

e.g. between 15 July and 30 July ?

e What is the probability of having a run of 20 consecutive dry days

starting sometime in November ?

e Which day (week, month, 50-day period, ... ) of the year has the highest |

(or lowest) average amount of rainfall 7

e What is the distribution of monthly rainfall {mean, median, standard

deviation, ... ) for any given month of the year ?

e What is the probability that, between 15 October and 31 December,
there will be at least 200 mm, and that there will be no 10-day run

having less than 5 mm ?

One can answer any of these and similar questions by simply averaging
over the generated sequence, that is treating the generated sequence as if it
were a very long real rainfall record.

The Water Research Commission project by Zucchini and Adamson enti-
tled “The Occurrence and Severity of Drought in South Africa’ (WRC Report
No. 91/1/84 - 91/3/84) described a daily rainfall model for South Africa.
The model, which was calibrated at 2550 sites across the country, captures
all the probabilistic properties of the daily rainfall process at those sites. It
can be used to quantify the daily, monthly and annual statistics of rainfall,
its seasonality, the risk of storms and the probabilities of droughts of various
durations and intensity. In fact it can be used to estimate the probability of
any rainfall event or sequence of events with a resolution of one day or langer.
Thus the model provides a versatile decision support tool enabling hydrole-

gists, water resources managers, natural resource planners and other decision
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makers to assess the probable consequences of decisions whose outcome de-
pends on the amounts and timing of rainfall. Some applications of the model
are described, for example, in Zucchini, Adamson and McNeill (1992). The
model is now used routinely by various institutions in Forestry, Agriculture,
Nature Conservation, Agricultural and Civil Engineering and Hydrology, as
well as by researchers at a number of South African universities, by some
farmers, and by a number of companies and financial institutions, such as
the Standard Bank of South Africa. It is offered as one of the products of the
Computing Centre for Water Research {CCWR), according to whose records
it has been used -over 2000 times, mainly to infill missing values of daily
rainfall prior to the data being run through daily rainfall budgeting models.

Although the model was calibrated at a large number of sites, the sites
having sufficiently long records to allow for accurate calibration are concen-
trated in and around urban centres. Many parts of the country, notahly the
north-western Cape, the north-eastern Transvaal and Lesotho, are poorly
covered, due to the shortage of rainfall records. Consequently users of the
model have been obliged to base their estimates and conclusions on the rain-
fall properties of calibrated sites, which are often quite distant from the
location of interest. Thus, whereas the usefulness of the model has been
established, its application has been limited to those sites for which it has
been calibrated.

Direct estimation of the model parameters is possible using as few as
five years of daily rainfall data, although the accuracy of estimates based
on seo little data would be questionable. However, to establish and service
sufficiently many rain gauges to accumulate records of even such relatively
modest length is obviously not practical. It is therefore necessary to make

do with the data that are available.



Objectives

The main objective of this project has been to produce estimates of the
parameters of the daily rainfall model of Zucchini and Adamson (1984) for
sites throughout South Africa at which there is little or no rainfall data
available, thereby making it possible to use the model to generate artificial
rainfall sequences and study rainfall characteristics at any given location or
over any given area in South Africa. Parameter estimates were to be made

available in the form of:

1. Isoline maps.

2. Digitised values at a regular grid of points one minute of degree square
throughout southern Africa, (that is, at a resolution of about 1,5 kilo-

metres), to be made available on magnetic tape.

3. An algorithm for generating parameters at any point.

These constitute three different ways of presenting the same information.
During the course of the project, the Project Steering Committee recognised
that the maps stipulated under item 1 and the algorithm stipulated in item
3 above would be of limited use once the digitised values were available and
recommended that the project team focus on item 2.

A second objective was to develop methodology and computer software for
the type of interpolation problem investigated in the project with a view to its
future use in the interpolation of other climate variables, such as temperature

and relative humidity.



The Database

Rainfall data from a number of sources, including the South African
Weather Bureau, the Department of Forestry, the Department of Agricul-
ture, the South African Sugar Association, as well as data collected by farm-
ers and other members of the public, are held by the Computing Centre for
Water Research (CCWR), and this data set was used as the data base for
this project. Dent ef al. (1989) describe the data base and its quality in
more detail.

In order to fit a reasonably accurate model of daily rainfall at any loca-
tion, it is necessary to have a fairly long record of daily rainfall at that site.
Zucchini and Adamson (1984) fitted their daily rainfall model to some 2550
stations throughout southern Africa, which, in 1981, had at least 30 years of
daily data available.

In 1992, there were some 3397 stations with at least 30 years of data in
southern Africa (including Lesotho and Swaziland). As the major objective
of this project was to extend the geographical coverage of the model, it was
decided to include also all stations with between 20 and 30 years of data.
The first phase of the project was thus to re-fit the model at sach of these
stations. Figure 1 shows the location of these sites.

It is clear from this map that there are a number of areas with a very
low density of data points, in particular the western, north-western and cen-
tral Cape, Lesotho, and an area in the north-east of the country around the
Kruger National Park. For these areas, it was decided to include those sta-
tions having at least five years of data, giving an additional 512 stations.
While models fitted at such sites might not be very accurate in themselves,
they would contribute useful information to the estimation process described
in the report. The accuracy of the fitted model was incorporated into the
final estimation process in such a way that stations where the fitted model

had low accuracy would be appropriately down-weighted. In all, there were
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Figure 1: Stations with at least 20 years of data.

5070 stations finally selected. Their locations are shown in Figure 2. Despite
the incorporation of the additional stations, some areas of the country are
still poorly represented in the data set. In addition, the station locations
tend to be clustered around areas of human habitation, so that in mountain-
ous areas there may be a bias towards the lower altitudes, which could give
rise to a corresponding downward bias in rainfall estimates for those areas.
The rainfall data-base was complete up to the end of February 1992,
except for a few stations where record-keeping had been discontinue:il prior
to this date. Thus the actual time period covered varies from one sta;.tion to

another; for example, a 10 year record covers the period 1982-1992 while a 20



Figure 2: Stations used in this report.

year record covers the period 1972-1992. In analysing the data any possible
long-term trends have been ignored; the magnitude of any such trends is in
practice very small in comparison with the typical year-to-year variation in
the rainfall values.

The data held by CCWR have been screened as far as possible for record-
ing and coding errors. Missing or doubtful values are a.pprc;rpria.tely flagged
in the data base, although there seem to be occasional inconsistencies in the
coding of some of the older stations in that missing values are sou:!etiuﬁes
coded in the same way as zero rainfall. While the model fitting pro‘gra.m is
designed to deal with missing values in an appropriate way, it is difficult to



quantify the effect of coding and recording errors in the data on the fitted
parameters.

Identifying suspect data values is not a trivial task since each value must
be considered both in the light of the time of year and the geographical
location; a value that is reasonable at one site at a given time of year might
be most unlikely in another situation. Fortunately, the majority of rainfall
records are unaffected by this problem and, furthérmore, many of those that
are, contain a only few such anomalies. With this in mind, a number of
checks were performed at various stages of the project to identify suspect
values, such values were re-coded as missing values

Apart from possible errors in the daily rainfall values another potential
source of error is the station locations. Although the locations of a few sta-
tions are recorded to the nearest second of a degree of latitude and longitude,
the majority are recorded to the nearest minute. This means that locations
are accurate to within 1 to 2 km at best. In most paris of the country the
pattern of daily rainfall will change very little over such a distance, however
in coastal and mountainous areas the changes can be quite significant. This
variability must be viewed as a limitation imposed by the resolution of the
data; it cannot be removed but must be taken into account in the estimation

Pracess.

The Model

In the recent literature the process of daily rainfall is described by a model
comprising two components; the first describes the occurrence of wet and dry
days while the second describes the distribution of the amounts of rain on
wet days, and the parameters of the model are allowed to vary seasonally.
Woolhiser (1992) gives a recent review. In modelling the occurrence of wet
and dry days a first order Markov chain was found to be appropriate. That is,

the rainfall process exhibits a one day ‘memory’. Thus the model estimates



the probability of a wet day given that the preceding day was also wei, and
the probability of a wet day {ollowing a dry day. Clearly these probabilities
also vary seasonally in a smooth way. The model incorporates the seasonal
effect by fitting a 5-term Fourier series to the data at a given site.

The method of maximum likelihood was used to fit the Fourier parameters
to the sequence of historical daily rainfall at a given site. Figure 3 illustrates
the model fitted to the probability of a wet day following a dry day at Stellen-
bosch in the south-west Cape, together with the actunal frequencies observed

over a 104-year rainfall period.
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Figure 3: Empirical probabilities and Fourier series model for the probability

of a wet day following a dry day at Stellenbosch.

The amount of rain on wet days was found by Zucchini and Adamson

(1984) to show a seasonally varying mean but a constant coefficient of vari-
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ation. A 5-term Fourier series was again used to model the mean amounts.
Given the estimated mean, the method of moments can then be used to fit
any two-parameter distribution to the data. The Weibull distribution was
found to provide a good fit for stations throughout southern Africa.

The first stage of this project was therefore to re-fit the model outlined
above to the 5070 stations shown in Figure 2.

As mentioned above, in order to improve the spatial coverage of the sites
we had to make use of a number of sites with quite short rainfall records
which can therefore be calibrated relatively imprecisely. Thus the accuracy
of the parameter estimates at the calibrated sites varies substantially. In
fact the accuracy depends not only on the length of the rainfall record, but
also on various aspects of the timing and amount of rainfall at the site. For
example, the model parameters for sites in arid areas with highly seasonal
rainfall can be estimated less accurately than parameters in areas of high
rainfall with less marked wet and dry seasons.

These discrepancies in the accuracy of the parameter estimates at the
calibrated sites need to be taken into account in the interpolation process.
More specifically it is necessary to have a reasonably accurate measure of
the standard errors of the estimates in order to assign appropriate weights to
each of the available data points. A substantial portion of the work done on
this research project was focused on finding ways to quantify the accuracy of
the parameter estimates at calibrated sites. Initially the standard theoretical
approach to the problem was attempted, but this led to unacceptable levels of
hias. The reasons why this approach fails are discussed in an appendix to the
report. An alternative approach was based on the so-called dootstrap method,
and this proved successful. This method requires an enormous amount of
computation, and its implementation would not have been possible without
the co-operation of the CCWR who made their computer facilities available

to us and kindly assisted with software implementation,
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Interpolation of the Parameters

Having re-calibrated the model at the 3070 sites, the major objective of
the project was to interpolate the model parameters, (16 at each site), to a
grid of 1 minuie of a degree of latitude and longitude throughout southern
Africa, or some 500 000 points in all.

The key theoretical issue in this project was to identify the most appro-
priate method of interpolating the calibrated parameter values. All existing
methods of interpolation that we could find in the literature were considered;
the main ones are briefly reviewed in the report. For a variety of reasons de-
tailed in the report, we decided to make use of the method known as kriging.
However, as outlined below, the standard kriging techniques (and software)
are not directly applicable to our problem so it was necessary to develop
new variations on the kriging methodology and to write the corresponding
software.

The parameters of the daily rainfall model fall neatly into two types,
the ‘amplitude parameters’ and the ‘phase parameters’. Roughly speaking,
the former encapsulate information relating to the amount of rainfall at a
site and the latter provide information relating to the timing of the rainfall.
The coefficient of variation, which is somewhat anomalous, being neither
an amplitude nor a phase parameter, can be regarded as being of the first
type. The amplitude parameters are scalar quantities (in our case either
probabilities or millimetres) but the phase parameters are what are known
as circular variables (in our case the days of the year). The magnitude of a
scalar variable is determined on an ordinary linear scale but the magnitude
of a circular variable is a somewhat subtler concept which needs to be mea-
sured as a direction on a circle. As an example, consider the fact that the
tine interval between day 364 of the year (30 December) and day 365 (31
December) is the same that between day 365 and day 1 (1 January). Even

the ‘mean’ of two circular values has to be defined in a special way; it is
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not the simple arithmetic average of the two values. The main consequence
of this is Lthat ecircular variables need to be modelled entirely differently to
scalar variables, Furthermore kriging techniques for circular variables were
not available and had to be derived; the theory for kriging circular variables
which was developed in this project has recently been published in a scientific
journal (McNeill, 1993).

The phase parameters of the model do have one property that is not
enjoyed by the amplitude parameters, namely they do not depend to any
significant extent on local topographic features. Thus one can find pairs of
sites, only a few kilometres apart, which have substantially different mean
rainfall (typically in mountainous areas), but the seasonality of the rainfall
will be approximately the same (they will tend to receive rain at the same
time of the year). This property allows one to interpolate the phase param-
eters directly, without taking local features into account.

The interpolation of the amplitude parameters, by contrast, has to take
account of local topographic features. Altitude measurements were available
to us on a grid of 1 minute of degree of latitude and longitude throughout
southern Africa. In effect this determined the finest resolution that we could
achieve for interpolating the model parameters. The question of how best to
make use of this altitude information occupied much of our attention. We
considered a variety of interpolation techniques which incorporate additional
information. A brief review of the main techniques is given in the report. The
literature on the interpolation of other aspects of rainfall, such as the mean
annual precipitation, describes a variety of measures derived from altitude
data, the main ones being gradient, aspect, roughness and exposure. The
precise definition of each these measures is, of course, somewhat arbitrary
so that there are many variations on how one might define, for example,
exposure. One of the main advantages of the kriging technique that we

finally adopted is that it is not required to specify such measures in advance
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- the method can be used to determine which functions of altitude are most
important for the interpolation.

Another of the problems that we had to consider was the magnitude of
the data set with which we were dealing. Some techniques are not applicable
to such large data sets with the currently available computers - they simply
require too much computing. We also required a methodology which would
take account of the varying accuracy of the data points. This was important
in our application because, as mentioned above, some of the parameter esti-
mates were based on very short rainfall records. The method finally selected
was the so-called kriging with exiernal drift ; the ‘external drift’ in this case
being the functions of altitude. All computations were done on a local basis;
that is, the parameters at each grid point were interpolated using only data
values in the vicinity of the grid point; this relieves one of the necessity of
first partitioning the country into homogeneous regions, interpolating each
region separately and then dealing with the subsequent problem of patching

together the estimates from the disjoint regions in a smooth way.

Validation

The rainfall model itself was extensively tested and validated by Zucchini
and Adamson (1984). In the present report we focused on the validation
of the interpolated parameter estimates. This was carried out by ‘hiding’
a number of the available data points, using the remaining data points to
obtain interpolated estimates at the locations of the hidden points and then
comparing the interpolates to the ‘true’ values. (It needs be kept in mind that
the ‘true’ values are in fact also estimates.) The agreement was found to be
within the limits of accuracy indicated by the bootstrap variance calculations.

Another way to validate the results is to to calculate derived charac-
teristics, such as the mean annual precipitation, based on simulated data

generated by the model; this enables us to test the model as a whole in the
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form in which it will be used in practice, and also allows comparison with the
same stafistics derived from other sources. We therefore calculated a mean
annual precipitation (MAP) at the location of each of 373 selected test sites

using four different methods:

¢ Using a 100 year simulation based on the daily rainfall model parame-

ters estimated for that station.

» Using a 100 year simulation based on the daily rainfall model parame-
ters estimated by the kriging procedure at the grid point with the same

latitude and longitude as the station.

¢ Using the MAP calculated directly from the daily rainfall data for that
station held by CCWR.

o Taking the value of MAP from the CCWR data base of gridded MAP
values, as estimated by Dent ef al. (1989).

There are a number of reasons to expect differences between the four
values; these arz discussed in the report. In general, however, the agreement
between the four sets of figures is very close (Figure 4), which helps to confirm
that the interpolated model parameters produce realistic simulated rainfall

sequences,

Summary

The main objective of the project described in this report was to pro-
duce estimates of the parameters of the daily rainfall model of Zucchini and
Adamson (1984) for sites throughout southern Africa at which there is little
or no rainfall data available, thereby making it possible to use the model to
generate artificial rainfall sequences and study rainfall characteristics at any
given location or over any given area in southern Africa.

The parameters of the daily rainfall model have been interpolated on a

regular grid one minute of degree square throughout southern Africa, that

15



91

*(urar i) sanjer JYIA Jo nosuedwo)) f aIndlg

M) #pov pub e gy
00BL 00¥L 00ZL OOO} DOH 003 OOY 00T O

MAP at grid node (DR muodel)

. 3588 88 % B

=

MAP grld node {DR model)

88888 BB

epous HQ) uomms gvH

0091 00Y4 G2t OOOK OB 009 OOV X2 O

=

MAP at grid node (DR modsl)

8 $§ 28 B B 5 B

fHMOD) vokIe 1 dYH

034 0¥l 0GZ) OOOL 008 009 00Y 002 O




is, at a resolution ol about 1,5 kilometres, making the parameter estimates
of the model available for approximately 500 000 sites.

The daily rainfall model is routinely used by researchers and decision
makers in a wide variety of applications. It is hoped, now that the model
is now applicable at practically any site in southern Africa, that it will find
even wider application.

It needs to be emphasised that although the theory behind the model
is rather technical, the model is easy to use by anybody who can operate a
micro-computer. No statistical or other specialist knowledge is required to
apply the model. The feedback that we have received, during the last eight
or nine years, from users with very different mathematical backgrounds, has
been encouraging; no-one has indicated that they found the model difficult to
apply. We are not aware of any user who has misunderstood ‘what it is that
the model provides or who has misinterpreted the estimates derived from the
model.

One of the by-products of the project has been the contribution to the
theory of kriging, namely the development of a technique for the kriging
of circular variables, described in McNeill {1993). The report also briefly
reviews kriging and other interpolation techniques and comments on their
suitability in the context of hydrological data. This provides a convenient
starting point and an up-to-date list of references for researchers wishing to

interpolate other values.

Recommendations

The daily rainfall model has 16 parameters. We have generated estimates
of these parameters for approximately 500 000 grid points, covering southern
Africa on a grid of 1 minute by 1 minute. This information is currently stored
at the CCWR,; the data file occupies 3 megahytes of computer disc space for

each of the 16 parameters or almost 50 megabytes in total. As this quantity
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of information is too large to be conveniently distributed in its entirety to

individual researchers and other interested parties, we recommend that the

CCWR. be approached fo:

e store the data file of estimated parameter values.

o extend their present service of supplying artificially generated rainfall
sequences via the ‘DRAINGEN’ program to incorporate an option for
using the grid point data. (They currently supply generated sequences
for the 2550 stations covered in the Zucchini and Adamson (1984) re-

port.)

¢ maintain an archive of the interpolation software which was used to
estimate the grid point values so that it will be possible to re-run the

programs at some future date to update the parameter estimates.

We also recommend that some consideration be given to finding appro-
priate means of publicising the existence of the model and its potential uses.
We believe that the number of current users is much smaller than the num-
ber of potential users, who are either unaware of the model or who might
be mistakenly under the impression that it is a complicated tool requiring
specialist knowledge. With this in mind, a PC compatible diskette contain-
ing a small data set and sample programs will be made available on request.
Further software development, aimed at providing application tools to make
optimum utilisation of the generated data, would be a valuable addition.

Further research is required to develop methodology for generating sim-
ulated sequences of daily rainfall for an area rather than a single point, in
such a way as to preserve the appropriate spatial correlation of individual

rainfall occurrences.
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List of Symbols: Model Parameters

Section 3.3 explains the meaning of each of the individual model parameters.

Throughout the text the following abbreviations are used for the parameters:

WWAOQ
WWAI
WWA2
WWP1
WWP2

DWAD
DWA1
DWA?2
DWP1
DWP2

DEPAD
DEPAL
DEPA2
DEPP1
DEPP2

CV

Zero’th amplitude:

First amplitude:

Second amplitude:

First phase:

Second phase:

Zero'th amplitude:

First amplitude:

Second amplitude:

First phase:
Second phase:

Zero'th amplitude:

First amplitude:

Second amplitude:

First phase:

Second phase:

Coeflicient of Variation;

iv

Prob(W,|W;..1)
Prob(W,;|Wi-1)
Prob(W|W,-1)
Prob(W;{W,_,)
Prob(W;|We_1)}

Prob(W,|De-)
Prob{W;|D;-y)
Prob(W;| D¢y )
Prob(W;| D¢y )
Prob(W:|D,_1)

Mean depth on wet days (mm x 1071)
Mean depth on wet days (mm x 1071)
Mean depth on wet days (mm x 1071)
Mean depth on wet days {mm x 1071)
Mean depth on wet days (mm x 1071)

Depth on wet days
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Chapter 1

Introduction

[n southern Africal, rainfall is the element of climate most influential in de-
termining the variety and abundance of flora and fauna, land use, economic
development and practically all aspects of human activity. The major cli-
matic and agricultural regions of southern Africa are based largely on the
areal distribution and seasonality of rainfall. (See for example, Dove (1988),
Schumann and Thompson, {1934), Schumann and Hofmeyr (1938), Schulze
(1947}, (1958), Jackson (1951), Wellington (1955).) Most studies have fo-
cused on the simplest characteristic of the rainfall process such as annual

and monthly means. However, as was pointed out by Tyson (1986):

"... it is clear that rainfall over Africa is a highly variable quantity,
particularly over the dry western parts of South Africa. Conse-
quently the concept of mean annual rainfall at any one locality

must be treated with caution.”

The same comment holds for monthly means. Furthermore monthly means
provide little or no information on many properties of the rainfall that are
relevant to the wide variety of rainfall-related activities. For example, the

risk and severity of storms, the risk, severity and duration of drought and

YThroughout this repart, ‘southern Africa’ is defined to include South Africa, Lesotho

and Swaziland.
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the timing of rainfall within each year are all aspects of rainfall that are of
importance to decision making.

It is of eourse possible to make a special study of any particular property
of daily rainfall. For example, Adamson (1981) tabulated and mapped the
risk and severity of n-day storm depths (for n = 1,2,3,7) at 2200 sites in
southern Africa. However the variety of statistics that might be of interest to
different decision makers is effectively infinite, which renders that approach
problematic.

An alternative and more flexible approach is to model the daily rainfall
process itself and thereby encapsulate all the properties of daily rainfall by
means of a small number (in our case 16) of model parameters. Until the
advent of cheap fast computers this approach would have been fruitless be-
cause it is difficult or impossible to determine properties of interest purely
analytically. For example it is doubtful that one could derive a formula for
the probability of events such as "there will be at least 50 mm rainfall at
Pretoria in July but not more than 20mm on any one day”.

Computers have made it easy to evaluate the probability of any such event
or sequence of events, regardless of complexity. Once calibrated, the model
can be used to generate long artificial rainfall sequences (typically 1000-2000
years) which preserve all the statistical properties of rainfall; not merely the
means and variances, but also the frequency of occurrence of any sequence
of values.

The point of being able to generate sequences of artificial rainfall is that
it enables one to estimate statistics relating to rainfall events. For example,
suppose that we require an estimate of the prob:e.bility that Stellenbosch will
have less than 20 mm rainfall in February. This can be done by using the
model to generate a 1000-year daily rainfall sequence at Stellenbosch and
counting the number of years in which this event occurred. Su-ppose that in

689 out of the 1000 years the February rainfall total was less than 20 mm.
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Then an estimate of the required probability is 689/1000 = 0,689 .

In effect one estimates probabilities of this type by simply regarding the
artificial rainfall sequence generated as a very long real rainfall record. One
can do this because the model used to generate the sequences preserves the
properties of real rainfall sequences, for example the averages, standard de-
viations and in fact the entire probability distribution of daily, monthly and
annual rainfall totals, as well as the correlation between rainfall totals on
consecutive days, the seasonal distribution of wet and dry runs, and so on.

One can use the artificial sequences generated to estimate a wide variety

of quantities that may be of interest, for example

s What is the probability of having no rain between two specified dates,
e.g. between 15 July and 30 July ?

e What is the probability of having a run of 20 consecutive dry days

starting sometime in November ?

. o Which day (week, month, 50-day period,...) of the year has the highest

(or lowest) probability of having non-zero rainfall ?

s Which day (week, month, 50-day period,...) of the year has the highest
(or lowest) probability of having at least 25 mm of rainfall ?

e Which day (week, month, 50-day period,...} of the year has the highest

(or lowest) average amount of rainfall ?

e What is the average rainfall for any given period of the year, e.g. be-
tween 29 February and 13 April ? What is the corresponding standard

deviation, median, mode, 90% confidence interval 7

e What is the distribution of monthly rainfall for any given month of the

year ?
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e What is the distribution of annual rainfall ?

» What is the least amount of rainfall that can be reasonably expected
(for example, with probability 0,9) between 15 December and 15 Febru-

ary 7

e What is the probability of having more than 200 mm in any 3 consec-

utive days between 1 September and 31 January ?

¢ What is the probability that, between 15 October and 31 December,
there will be at least 200 mm, and that there will be no 10-day run

having less than 5 mm ?

One can answer any of these and similar questions by simply averaging
over the generated sequence, that is treating the generated sequence as if it
were a very long real rainfall record.

Zucchini and Adamson {1984a) described a daily rainfall model for sites
in southern Africa. The model, which was calibrated at 2550 sites across the
region, captures all the probabilistic properties of the daily rainfall process
at those sites. Some applications of the model are described, for example, in
Zucchini, Adamson and McNeill (1992).

The model is now used routinely by various instifutions in Forestry, Agri-
culture, Nature Conservation, Agricultural and Civil Engineering and Hy-
drolagy, as well as by researchers at a number of South African universities,
by some farmers, and by a number of companies and financial institutions,
such as the Standard Bank of South Africa. It is offered as one of the products
of the Computing Centre for Water Research (CCWR), according to whose
records it has been used over 2000 times, mainly to infill misging values of
daily rainfall prior to the data being run through daily rainfall budgeting

models.
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Although the model was calibrated at a large number of sites, the sites
having sufficiently long records to allow for accurate calibration are concen-
trated in and around urban centres. Many parts of the country, notably the
north-western Cape, the north-eastern Transvaal and Lesotho, are poorly
covered, due to the shortage of rainfall records. Consequently users of the
model have been obliged to base their estimates and conclusions on the rain-
fall properties of calibrated sites, which are often quite distant from the
location of interest. Thus, whereas the usefulness of the model has been
established, its application has been limited to those sites for which it has
been calibrated.

Direct estimation of the model parameters is possible using as few as
five years of daily rainfall data, although the accuracy of estimates based
on so little data would be guestionable. However, to establish and service
sufficiently many rain gauges to accumulate records of even such relatively
modest length is obviously not practical. It is therefore necessary to make
do with the data that are available.

_ The main objective of this project has been to produce estimates of the
parameters of the daily rainfall model of Zucchini and Adamson (1984a) for
sites throughout southern Africa at which there is little or no rainfall data
available, thereby making it possible to use the model to generate artificial
rainfall sequences and study rainfall characteristics at any given location or
over any given area in southern Africa.

~ This report describes the theory and methods used to reach this objective,
namely to obtain estimates of the model parameters on a regular grid one
minute of degree square throughout southern Africa, that is, at a resolution
of about 1,5 kilometres. Thus the parameter estimates of the model are now
available for approximately 500 000 sites.

To achieve this objective, the model was first calibrated at a tc;ta.l of
some 5070 sites for which data are available. (A brief description of the
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data that were available to us is given in Chapter 2, details of the model
are given in Chapter 3.). As many sites as possible were used in order to
increase the density of coverage, especially in areas with a low density of
data points, such as the western, north-western and central Cape, Lesotho
and the north-western and north-eastern Transvaal. The 2550 sites covered
in the Zucchini and Adamson (1984a) report were re-calibrated so as to
take advantage of the addifional data that have become available since the
release of that report. The resulting estimates formed the raw material for
the interpolation procedure,

In order to increase the number of sites we had to make use of a number
of sites with quite short rainfall records which can therefore be calibrated
relatively imprecisely. Thus the accuracy of the parameter estimates at the
calibrated sites varies substantially. In fact the accuracy depends not only on
the length of the rainfall record, but also on various aspects of the timing and
amount of rainfall at the site. For example, the model parameters for sites in
arid areas with highly seasonal rainfall can be estimated less accurately than
parameters in areas of high rainfall with less marked wet and dry seasons.

These discrepancies in the accuracy of the parameter estimates at the
calibrated sites need to be taken into account in the interpolation process.
More specifically it 1s necessary to have a reasonably accurate measure of
the standard errors of the estimates in order to assign appropriate weights to
each of the available data points. A substantial portion of the work done on
this research project was focused on finding ways to quantify the accuracy of
the parameter estimates at calibrated sites. Initially the standard theoretical
approach to the problem was attempted, but this led to unacceptable levels
of bias. The reasons why this approach fails are discussed in Appendix A.
An alternative approach (described in Chapter 4) was based on the so-called
bootstrap method, and this proved successful. This method requires an enor-

mous amount of computation, more than would have been possible 20 years
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ago.

The re-fitting of the model parameters and the estimation of their stan-
dard errors has not been without problems. A number of stations were found
to have isolated data values which were clearly questionable. Identifying sus-
pect data values is not a trivial task since each value must be considered both
in the light of the time of year and the geographical location; a value that
is reasonable at one site at a given time of year might be most unlikely in
another situation. Fortunately, the majority of rainfall records are unaffected
by this problem and, furthermore, many of those that are, contain a only few
such anomalies. As far as possible, suspect data values were identified and
either corrected or re-coded as missing values.

The key theoretical issue in this project was to identify the most appro-
priate method of interpolating the calibrated parameter values. This is the
subject of Chapter 5. All existing methods of interpolation that we could
find in the literature were considered; the main ones are briefly reviewed
in the report. For a variety of reasons detailed in the report, we decided
to-make use of the method known as kriging. However, as outlined below,
the standard kriging techniques (and software) are not directly applicable
to our problem so it was necessary to develop new variations on the kriging
methodology and to write the corresponding software.

The parameters of the daily rainfall model fall neatly into two types, the
‘amplitude parameters’ and the ‘phase parameters’. Roughly speaking, the

former encapsulate information relating to the amount of rainfall at a site
and the latter provide information relating to the timing of the rainfall. The
coeflicient of variation, which is somewhat anomalous, being neither an am-
plitude nor a phase parameter, can be regarded as being of the first type.
The amplitude parameters are scalar quantities (in our case either probabili-
ties or millimetres) but the phase parameters are what are known as circular

variables (in our case the days of the year). The magnitude of a scalar vari-
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able is determined on an ordinary linear scale but the magnitude of circular
variable is a somewhat subtler concept which needs to be measured as a di-
rection on a circle. As an example, consider the fact that the time interval
between day 364 of the year (30 December) and day 365 (31 December) is
the same that between day 365 and day 1 (1 January). Even the ‘mean’ of
two circular values has to be defined in a special way; it is not the simple
arithmetic average of the two values. The main consequence of this is that
circular variables need to be modelled entirely differently to scalar variables,
Furthermore kriging techniques for circular variables were not available and
had to be derived; the theory for kriging circular variables which was de-
veloped in this project has recently been published in a scientific journal
(McNeill, 1993).

The phase parameters of the model do have one property that is not
enjoyed by the amplitude parameters, namely they do not depend to any
significant extent on local topographic features. Thus one can find pairs of
sites, only a few kilometres apart, which have substantially different mean
rainfall (one site might be in a rain shadow area), but the seasonality of the
rainfall will be approximately the same (they will tend to receive rain at the
same time of the year). This property allows one to interpolate the phase
parameters directly, without taking local features into account.

The interpolation of the amplitude parameters, by contrast, has to take
account of local topographic features. Altitude measurements extracted by
Dent et al. (1989) were available to us on a grid of 1 minute of a degree of
latitude and longitude throughout southern Africa. In effect this determined
the finest resolution that we could achieve for interpolating the model pa-
rameters. The question of how best to make use of this altitude information
occupied much of our attention. We considered a variefy of interpolation
techniques which incorporate additional information. A brief review of the

main techniques is given in the report. The literature on the interpolation
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of other aspects of rainfall, such as the mean annual precipitation, describes
a variety of measures derived from altitude data, the main ones being gra-
dient, aspect, roughness and exposure. The precise definition of each these
measures is, of course, somewhat arbitrary so that there are many variations
on how one might define, for example, exposure. One of the main advantages
of the kriging technique that we finally adopted is that it is not required to
specify such measures in advance - the method can be used to determine
which functions of altitude are most important for the interpolation.

Another of the problems that we had to consider was the magnitude of
the data set with which we were dealing. Some techniques are not applicable
to such large data sets with the computers currently available - they simply
require too much computing. We also required a methodology which would
take account of the varying accuracy of the data points. This was important
in our application because, as mentioned above, some of the parameter esti-
mates were based on very short rainfall records. The method finally selected
was the so-called kriging with external drift ; the ‘external drift’ in this case
being the functions of altitude. All computations were done on a local basis;
that is, the parameters at each grid point were interpolated using only data
values in the vicinity of the grid point; this relieves one of the necessity of
first partitioning the country into homogeneous regions, interpolating each
region separately and then dealing with the subsequent problem of patching
together the estimates from the disjoint regions in a smooth way.

The rainfall model itself was extensively tested and validated by Zucchini
and Adamson {1984a). In the present report we focused on the validation
of the interpolated parameter estimates., This was carried out by ‘hiding’
a number of the available data points, using the remaining data points to
obtain interpolated estimates at the locations of the hidden points and then
comparing the interpolates to the ‘true’ values. (It needs be kept in mind

that the 'true’ values are in fact also estimates.) The agreement was found
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to be quite close.
Chapter 6 gives an outline of the algorithm needed to generate artificial
rainfall sequences using the model. Our conclusions and recommendations

are given in Chapter 7.



Chapter 2

The Data

2.1 The Database

Rainfall data from a number of sources, including the South African Weather
Bureau, the Department of Forestry, the Department of Agriculture, the
South African Sugar Association, as well as data collected by farmers and
other members of the public, are held by the Computing Centre for Water
Research (CCWR), and this data set was used as the data base for this
project. Dent et al, {1989) describe the data base and its quality in more
detail.

2.2 Selection of Stations

In order to fit a model of daily rainfall at any location, it is necessary to
have a fairly long record of daily rainfall at that site. Zucchini and Adamson
(1984a) fitted their daily rainfall model to some 2550 stations throughout
southern Africa, which, in 1981, had at least 30 years of daily data available.

In 1992, there were some 3397 stations with at least 30 years of data in
southern Africa (including Lesotho and Swaziland). As the major obj‘ective

of this project was to extend the geographical coverage of the model, it was

11
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decided to include also all stations with between 20 and 30 years of data.
The first phase of the project was thus to re-fit the model, as described in
Chapter 3, at each of these stations. Figure 2.1 shows the location of the
sites. It is clear from this map that there are a number of areas with a
very low density of data points, in particular the western, north-western and
central Cape, Lesotho, and an area in the north-east of the country around

the Kruger National Park. For these areas, it was decided to include those

Figure 2.1: Stations with at least 20 years of data.

stations having at least five years of data, giving an additional 512 stations
(Figure 2.2). While models fitted at such sites might not be very accurate

in themselves, they would contribute useful information to the estimation
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Figure 2.2: Stations with between 5 and 20 years of data.

process described in Chapter 5. The accuracy of the fitted model was incor-
porated into the ﬁﬁal estimation process in such a way that stations where
the fitted model had low accuracy would be appropriately down-weighted.
In all, there were 5070 stations finally selected. Their locations are shown in
Figure 2.3. Despite the incorporation of the additional stations, some areas
of the country are still poorly represented in the data set. In addition, the
station locations tend to be clustered around areas of human habitation, so
that in mountainous areas there may be a bias towards the lower altitudes,
which could give rise to a corresponding downward bias in rainfall estimates

for those areas. This point will be addressed in Chapter 5.
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Figure 2.3: Stations used in this report.

Figure 2.4 shows the distribution of the number of years of available
rainfall record at each of the 5070 stations. The data was complete up to
the end of February 1992, except for a few stations where record-keeping had
been discontinued prior to this date. Thus the actual time period covered
varies from one station to another; for example, 2 10 year record covers
the period 1982-1992 while a 20 year record covers the period 1972-1992.
In analyzing the data any possible long-term trends have been jgnored; the
magnitude of any such trends is in practice very small in comparison with

the typical year-to-year variation in the rainfall values.
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Figure 2.4: Distribution of length of rainfall record.

2.3 Accuracy of the Data

The data held by CCWR. has been screened as far as possible for recording
and coding errors. Missing or doubtful values are appropriately flagged in
the data base, although there seem to be occasional inconsistencies in the
coding of some of the older stations in that missing values are sometimes
coded in the same way as zero rainfall. While the model fitting program is
designed to deal with missing values in an appropriate way, it is difficult to
quantify the effect of coding and recording errors in the data on the fitted
parameters.

With this in mind, a number of checks were performed at various stages of
the project to identify suspect values. One of the first checks was to construct

histograms (see Figure 3.1) of each of the fitted model parameters and to
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investigate any outliers. In addition, 200 year simulations (based on the fitted
daily rainfall model} were carried out to estimate mean annual precipitation
(MAP) values at each site, which were compared with those obtained directly
from the CCWR data. Some 89 sites were found to be discrepant, apparently
mainly as a result of the inconsistencies in coding of missing and zero data
described above. The data for these sites were re-checked by the CCWR,
and suspect values were re-coded as missing values where necessary. After
bootstrapping the data to estimate the variances as described in Chapter 4, a
further check was made by comparing the bootstrap means with the original
estimates. This led to the exclusion of some additional stations, as described
in Section 4.3.

Apart from possible errors in the daily rainfall values another potential
source of error is the station locations. Although the locations of a few sta-
tions are recorded to the nearest second of a degree of latitude and longitude,
the majority are recorded to the nearest minute. This means that locations
are accurate to within 1 to 2 km at best. In most parts of the country the
pattern of daily rainfall will change very little over such a distance, however
in coastal and mountainous areas the changes can be quite significant. As an
example, Table 2.1 lists the fitted model parameters at three stations on the
slopes of Table Mountain in Cape Town which all have the same recorded
location. It can be seen that for some parameters! the differences are quite
considerable. This is also reflected in the ‘nugget effect’ apparent in the
serni-variograms discussed in Chapter 5. This variability must be viewed as
a limitation imposed by the resolution of the data; it cannot be removed but

must be taken into account in the estimation process.

'See symbol list on page iv for an explanation of the parameter codes,
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Station Code

020719 W | 020719AW | 020719BW
WWAD -0.847 -1.018 0.183
WWAL1 0.622 0.576 0.634
WWA2 0.140 0.183 0.085
WWP1 195.40 204.56 191.87
WWP2 131.09 127.22 132.51
DWAD -1.614 -1.646 -1.175
DWAL 0.292 0.258 0.395
DWA?2 0.051 0.067 0.033
DWP1 216.67 216.34 211.50
DWP2 “ 49.42 53.02 97.74
DEPAQ 203.40 192.38 114.20
DEPAL 88.63 91.82 37.90
DEPA2 25.23 27.12 1L.77
DEPP1 173.44 173.40 176.81
DEPP2 164.90 163.71 175.26
Cv 1.263 1.278 1.233

Table 2.1: Fitted parameters: stations coded 020719.
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The Daily Rainfall Model

The sequences of rainfall values exhibit a number of distinctive features.
[n particular the distribution of daily precipitation depths varies seasonally,
rainfall depths on consecutive days are not independently distributed, that
is, the probability that a wet day will follow a wet day is higher than the
probability that a wet day will follow a dry day, and finally the distribution
of rainfall is partly discrete and partly continuous. Any useful model for
the description of precipitation sequences must of course preserve all these

properties.

Several models have been proposed for simulating daily precipitation.
(Gabriel and Neumann, 1962; Richardson, 1981; Roldan and Woolhiser, 1982;
Stern and Coe, 1984; Zucchini and Adamson, 1984a. For a recent review,
see Woolhiser, 1992.) Most precipitation models are specified by a discrete
occurrence process describing the sequence of wet and dry days, and a con-
tinuous distribution function for the amount of precipitation- of days with

rain. The parameters of the model are allowed to vary seasonally.

18
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3.1 A Model to Describe the Occurrence of

Wet and Dry Sequences of Days

A first-order Markov chain is used to describe the occurrence of wet and dry
days. By this one assumes that the state of day ¢ depends on the state of the
previous day, {—1. This does not imply that the state at time { is independent
of the state on day ¢t — 2,2 — 3, etc ..., but rather that the information given
by t — 1 is equivalent to all the information given by t — 1,4 —~2, etc .... One

also assumes that, except for the seasonality, the process is stationary.

A first-order Markov chain has been found to be an adequate model for
precipitation occurrence in many different regions. (See, for example, Gabriel
and Neumann, 1962; Caskey, 1963; Weiss, 1964; Hopkins and Robillard,
1964; Haan et al., 1976; Smith and Schreiber, 1973; Woolhiser and Pegram,
1979; Richardson, 1981; Roldan and Woolhiser, 1982; Zucchini and Adam-
son, 1984a, Woolhiser,1992.) The order of the Markov chain may of course
be increased, but this has to be done at the cost of increasing complexity
and the number of parameters in the model. A further problem arises if one
attempts to increase the order of the Markov chain in arid areas, namely the
estimation of the probability that a rain day follows two or more consecutive
rain days. In arid areas there are relatively few runs of three or more consec-
utive rain days and thus there is hardly any data on which to base estimates
of this conditional probability. (Note that this has to be estimated for each
day of the year.) Finally, it was demonstrated in Zucchini and Adamson
(1984a) that a first order Markov chain provides an adequate description of
the occurrence of wet and dry sequences of days in the complete ra;lge of

southern African conditions.
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3.1.1 Notation and Preliminaries

The day will be used as the time unit. That is, the year is divided into
NT{= 365) equal intervals, denoted by £ =1,2,...,¥T. A day with total
rainfal} greater than 0 mm is considered as a wet day.

The following notation will be used:

R represents the occurrence of rain (i.e. wet day).
R repr;zsents the non-occurrence of rain (i.e. dry day}.
Fort=1,2,...,NT
NR(t) is the number of times it was wet in period t.
NR(2) is the number of times it was dry in peried {.
NRR(t) is the number of times it was dry in period £ — 1 and wet in period 1.
NRR(t) is the number of times it was wet in period t — 1 and dry in period 2.
NRA(t) is the number of times it was dry in period ¢ — 1-and dry in period ¢.
NRR(t) is the number of times it was wet in period t — 1 and wet in period t.

ND(t) = NRR(t) + NRR(t) is the number of times that it was dry in period

t — 1 and there was an observation (wet or dry) in period ¢.

NW(t) = NRR(t)+ N RR(t) is the number of times that it was wet in period

t — 1 and there was an observation (wet or dry) in period ¢.
mpsr(t) the probability that period ¢ is wet given that period £ — 1 is wet.
7 gr(t) the probability that period ¢ is dry given that period ¢ — 1 is wet.
7p/r(t) the probability that period # is wet given that period ¢ — 1 is dry.

7a/a(t) the probability that period ¢ is dry given that period ¢ —1 is dry.
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Then }TR;R(?E) + Wﬂfﬂ(t) =1
Tr/alt) + 7mryp(t) = 1.

Therefore the transition probabilities are fully defined given 7ryr(t), Tr/r(%)
and the wet or dry state on day £ — 1, and one only needs to estimate these
two probabilities.

From elementary probability theory we have

NRR(t) ~ B(NW(t), wpr(t))
NRR(t) ~ B(ND(t), ma(t)), t=12,...,NT

where B(N, ) denotes the binomial distribution with parameters N and #.

3.1.2 Estimation

The functions wg/a(t) and wg,p(t) are estimated using the same method but
different data. To simplify the notation in what follows, one makes use of

the following generic names:
Let M) ~ B(MM(L), =(t)}), t=12...,NT.

First we note that the binomial distribution belongs to the exponential
family. Therefore we have a set of independent random variables M(2),t =
1,2,...,NT, each with a distribution from the exponential family; each M (¥)
depends on a single parameter w(t) and the distributions of all M(2), ¢t =
1,2,...,NT, are of the same form (i.e. all binomial). Thus the properties of a
generalized linear model are satisfied, and estimates of 7(¢) may be obfained.

by using the theory for estimation for generalized linear models. (Dobson,

1983.)
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The probabilities # () are represented as functions of a linear combination

of parameters ¥1,¥2,...,yv7. That is

g(7()) = A?)

where g is the link function and A(f) is a linear combination of the +;.
To ensure that the estimated values of 7(t) are restricted to the interval
[0, 1], one uses the logit link function, given by
atw(0) = bog (120 = ).
To obtain the linear combination of the v, A(t), we lock at some of the
properties of 7 (), namely that it is a smooth, periodic and approximately
sinusoidal shaped function. Transforming (%), using the logistic transforma-

tion, to a logit A(¢) given by

IENETSY

one obtains a representation which has the similar properties to 7(t), and thus

we can approximate A(t) by the first few terms of its Fourier representation.
This approximation has been used by Stern and Coe {1984) and Zucchini
and Adamson (1984a).

The exact Fourier representation of A(%) is given by

NT
M) =Y wpilt), t=1,2,...,NT

i=1

where
cos{w(t — 1)1/2) i=24...
pit) =1 | , ,
sin{w(t — 1)(i = 1)/2) 1=35,...
p)=1; t=1,2,..,NT,
and

v
W= ——,

2
NT



The Model 23
Define the function A(Z, L) by

L
M, Ly=Y wglt), t=12,...,NT; L<NT

i=1
where ;(t) is defined as before and I is the order of the Fourier series

approximation. One is thus making the following approximation:

For some L <« NT
Alt, L) = A(2) , t=12,...,NT.

A procedure to choose the order of the Fourier series approximation (i.e.
the value of L) will be discussed later. Generally this approximation is ac-
curate for small values of L. The number of parameters, [, is always chosen
to be an odd number. This restriction is made partly for programming con-
venience and partly for the following reason: ‘

If we rewrite the Fourier representation of A(¢, L) by its polar form, we

get

A(t L) _ ap + E?=1 Cr; COS (%((t - 1) - ﬁf)) ¥ L odd
’ @ + E?:l ¢ COS (%((t -1)- ﬂn)) + ap cos h—%’;—ll, L even

where

@ = N
. 1 .
a5=(7§i+7§£+1)=a t=1,2,...,p
NT Y2i41 .
i = : t —_ =1,2,...
; Qmamm(m, L2

and p is the integer part of ""—;—1- The «; is called the amplitude and S; is
called the phase of the ith harmonic.

If L is even, then the highest harmonic does not have a phase parameter.
Thus the quality of the fit of the model depends on the time origin selected.

If L is odd we obtain the same degree of approximation for all time origins.
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We have used the Fourier representation of A(t) as the basis for obtaining
approximations. Other representations are also feasible, e.g. polynomials
or rational functions. There are several reasons for selecting the Fourier
representation rather than other possibilities. Firstly, A(¢) is known to be
approximately sinusoidal in shape and consequently we can expect that even
for small values of L, the approximation A(f,L) =~ A(¢} will be reasonably
accurate. Secondly, A(, L) is periedic, which is a property that A(t) is known
to have. Thirdly, the individual components in the representation are orthog-
onal, which is a convenient mathematical property.

The log-likelihood function of the observed values as a functio.n of the

probabilities 7 (), is given by

NT
o0 M) = 3 (M1 (255 ) + arasceonts =i + g (M)

=1

Therefore, the log-likelihood function of the observed values as a function of

the parameters 43,7, ...,7z is given by

NT
(M) =S [M(t)A(t, L) — MM(t) log(1 + ")) + log (wf\ﬁt(; )>] '

The score vector U with respect to 1,7a,.-.,7L has elements given by

. pAEL)
sz%“;@ﬂ - ; [M(t) MM(t) 5 ,\am] e;(t)

= E (M(2) — MM () (1)]p;{t)

fa=1

ML)

since Var(M(t)) = MM(2) 3 oy and

MM(t)eMud)
BE(M(1) = m and so

JE(M(t)) MM (t)eMeL) )
At L)  (1+e0D) = Var(M(2)).
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Similarly, the information matrix Ipxs has elements given by

NT ML)

I = ; w;{)ponlt) M M(t) T o

SMeL)
Since (_lm = m(t)(1 — =(t)) it follows that

NT

Li =Y @it)e()MM2(t)m(t)(1 — =(t)).
i=1

The maximum likelihood estimates for ¥, vz, ...,y are then obtained by

solving the iterative equation

I{m—llq{m) = I"“"’?"“‘” 4 yim=1)

where m indicates the mth approximation and ¥ is the vector of estimates.

Some initial approximation 4% is used to evaluate I” and U/, then
the iterative equation is solved to give 4! which in turn is used to obtain
better approximations for I and U, and so on until adequate convergence is
achieved. When the difference between successive approximations 7™ and
4tm=1 is sufficiently small, 7™ is taken as the maximum likelihood estimate

vector.

3.1.3 Model Selection

Whenever a model is fitted to observed data, two types of discrepancy arise.
The discrepancy due to approximation (the fewer the number of parameters
fitted, the higher the value of this discrepancy) and the discrepancy due to
estimation (the more parameters fitted, the higher the value of this discrep-
ancy). When choosing the number of parameters to be fitted, one attempts
to minimize the combined effect arising from the two discrepancies.

Selection of the number of parameters, L, may be done by using the cri-
terion of the Kullbach-Leibler measure of discrepancy (Linhart and Zucchini,
1986; Zucchini and Adamson, 1984a.)
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Under the assumption that for some Lg, A(f) is exactly fitted by L
parameters, l.e.
AME) = M¢, L), Lo < NT,
the above method leads to the Akaike Information Criterion where

AIC = ~l(v; M) + L

where £(7y; M(t)) is the log-likelihood function given before.

Each value of L leads to a different approximating model. The criterion
is computed for L, = 1,3,5,... and the model which leads to the smallest
value of the criterion is selected.

The AIC criterion is much easier to compute than the full Kullbach-
Leibler discrepancy and leads to almost identical results if the discrepancy
due to approximation is small, which it is in this application. (Linhart and

Zucchini, 1986)

3.2 The Distribution of Rainfall on Days when
Rain Occurs

Several models have been proposed for the distribution of precipitation amounts
given the occurrence of a wet day., These include the exponential (Toderovic
and Woolhiser, 1975; Richardson, 1981); gamma (Ison et al., 1981; Buishand,
1977; Stern and Coe, 1984); two-parameter gamma. (Buishand, 1978); three-
parameter mixed exponential (Woolhiser and Pegram, 1979); kappa (Mielke,
1973); lognormal and Weibull (Zucchini and Adamson, 1984a).

Woolhiser and Roldan (1982b) found that out of the exponential, gamma
and mixed exponential distributions, the latter fitted the model of precipita-
tion amounts best. Zucchini and Adamson (1984a} found that for stations in
southern Africa, the lognormal distribution did not fit some stations, while

the Weibull seemed to provide better fits.
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It is known that the distribution of precipitation depths when rain occurs
is positively skewed (i.e. smaller amounts occurring more frequently than the
larger amounts) and that it exhibits the same seasonal variability as found
with the probabilities #(¢). To account for this seasonality, the simplest
solution is to fit a family of distributions and then to allow the parameters
to change over the year, where these parameters are expressed in terms of its

Fourier series approximation.

The method of modelling precipitation amounts is based on Zucchini and
Adamson (1984a). Here one does not fit any model initially, the first two
moment functions of the distribution are fitted instead. These are then used
to estimate the parameters (by the method of moments) to any desired two-
parameter model. Different families can be fitted to a single record, e.g. one

for the rainy season and a second for the dry season.

3.2.1 Notation

The year is divided into NT equal intervals denoted by { =1,2...,NT.

Mt} represents the number of times that it rained in period ¢.

R(i,t) represents the rainfall depth on the ith year that it rained in period £,
where i = 1,2,..., M(¢).

C' represents the coefficient of variation which we assume to be constant

for all £ (Zucchini and Adamson, 1984a).

p(t) represents the mean rainfall per rainy day in period ¢t = 1,2,..., NT.
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3.2.2 Estimating the Mean and Coefficient of Varia-
tion

As observed before p(t) can be approximated by its truncated Fourier series
representation thus reducing the number of parameters to be estimated. That

is, we make the approximation:
plt, L) = p(t), t=12,...,NI; L<NT

where p(t) is defined as

)u’(t) = ZP:‘P:(*) t=1121"'1NT

i=1

and

u(t, L) = Zp,tp,(t) t=1,2,...,NT; L<NT

=1

and ;(t) is defined as before.

Define m({t) to be the observed means for each period, i.e.
Mit)
1 .
m(t) = ——Z RG,t), t=1,2,...,NT; i=1,2,...,M(t); M(t)>0
i=1
where m(t) is not defined when M(t) = 0, i.e. it never rained in period &.
We use the method of least squares on m(t) to estimate py, ps,... 1L,

that is, minimize
NT

> (m(t) = u(t, L))? (3.1
=1
with respect to the y;, ¢=1,2,...,L. Approximations to the least squares

estimators when some of the M(¢) = 0, something which occurs often in arid

regions, are given by
NT

= K(i) ) mit)et) (32)

tml
M{#]»0
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where
NT

Kiy= Y oty i=1,2,..., L
=1
M(3)>0

The m(t) in ( 3.1) are given the same weight and so periods which had
very little rainfall have a large influence in the estimates of x(t). To overcome
this difficulty, the following criterion is used instead:

Minimize

NT M)

Sy =3 Y (RG,1)—plt, L)) (3.3)

=1 =1
with respect to u;, 1=1,2,...,L.
By adding and subtracting m(t) inside the squared term of ( 3.3), S(u)

can be rewritten as

NT

S(p) =S+ M) (m()— plt, L)) (3.4)
=1
where
NT M)
5=% Z (R(i,t) —m(t))?

and m(t) is defined as before if M(t) # 0 and m(2) = 0 if M(¢) = 0.

To minimize { 3.4} its first partial derivatives are set equal to zero:

NT
ﬁgﬁf) = -2 Y M@)(m(t) - u(t, D)e:lt), i=12,...,L

t=1 '
These I equations can be solved using the Newton-Raphson iteration

method. For this, we need the second partial derivatives:

825 (k) _ o 5 g
=2 M()wi(t)e;(1), i=1,2,...,L.
Bpat; ~ 2 2o MWeiei i

Denote the ith element of the vector f¥) by

NT
¥ =3 M@E)(mE) - u D@ L)edt),  i=12..,0  (35)

=1
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and the (3, j)th element of the matrix FUK) by

NT
FiP =35 Mlpdtei(t),  45=12,...,L (3.6)

t=1
where k denotes the kth iteration.
Then an algorithm to estimate p;, i=1,2,...,L is given by:
Step 1: Obtain initial estimates pin), cavy ,ug:'] using (2) and compute p(® (2, L).
Step 2: Compute f*) using (5) and F* using (6).
Step 3: Compute the vector 8%} which is the solution to the system of L linear
equations given by
FiR gk} fUC)
Step 4: Set plk+l) = k) _ §i8)
Step 5: Test for convergence, e.g. if the elements of f{*) are sufficiently close
to zero. If the convergence criterion is met, stop, otherwise increase
k by 1 and go to Step 2.
Note that F{*} is symmetric. This fact can be used to reduce the number

of computations performed.

An estimator of C' is given by:

i [ ?;1; E:}:{:) (R(i,t) — fj(t))z] i

= (3.7)
(ol meaer|
3.2.3 Selecting the Number of Parameters
NT
A(L) =) (p(t) - E(R(H L)), L=1,35,... (3.8)

=1
would be a suitable discrepancy on which to base the selection, except that

some M (t) are zero and so only approximately unbiased estimators are avail-
able. The reliability of this criterion is therefore difficult to determine.

If one is prepared to make distributional a.ssﬁmptions, then selection eri-
teria are relatively easy to derive, for example based on the Kullbach-Leibler

discrepancy.
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A reasonable procedure is to select L for a parametric family of models

and then use the same L in the estimation of u(t).

3.2.4 Fitting the Weibull Family

Zucchini and Adamson (1984a) found the Weibull family to fit the rainfall
depth models for stations in southern Africa and so this family was used to
model the observed rainfall amounts on days that rain was recorded.

Having estimated the mean value function p(t) and the coefficient of
variation, C, one can apply the methed of moments to estimate the parameter
functions of the Weibull distribution.

Denote the scale parameter by at), t = 1,2,...,NT and the shape
parameter by 5.

Now
L
L(1 +2/8) }5
C=¢—F—T"—">-13 . 3.9
{1757 39)
To obtain 3 as a function of C a rational function approximation has to
be derived as no closed expression of this function is available.

The following approximation has been obtained from Zucchini and Adam-

son (1984a):

339.5410 + 148,445C + 102.7492C7 + 29.44015°3
1+ 257.1162C + 287.8362072 + 157.223003

B= (3.10)
Using the relationship
g(t) = o(t)T(1 +1/8) t=1,2,...,NT

we obtain the estimator

a(z)=—ﬁ(‘—),. t=1,2,...,NT.
(1 +1/8)
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3.3 The Amplitude-Phase Representation

Up until now we have used the representation
L
ML) =Y weiy  t=1,2..,NT; L<NT
i=1

where L is an odd integer, and where
cos(w(t — 1)i/2) i=24,...
sin{w( — 1)(z — 1)/2) i=3,5,..
w;(t)y=1; t=1,2,...,NT,

wi(t) =

and

W= —

NT'
Although this representation is convenient for computational purposes since
the terms ;(t) need only be computed once, it is not a very convenient repre-
sentation for purposes of interpretation of the parameters and for comparing
the parameters of different stations. For this the amplitude-phase represen-
tation is more appropriate. For example the first phase parameter represents
the time of year of maximum probability of rain, or of maximum rain depths,
while the zero’th amplitude represents the average rainfall depth, or the aver-
age probability of rain throughout the year and the first amplitude describes
the range of rainfall depth, or of the probability of rainfall. The phase pa-
rameter has the further advantage in interpolating rainfall parameters in
that they are not affected by altitude. The amplitude-phase representation

is given by
/\(t L) = &g + zp: ;€08 Qﬂ(t -] - Qb‘)
’ =1 NT
where oy = 71 and
o = (B+4n),  i=12...,P

NT ; : :
¢li = %Hctw(%), 1=1,2,...,P,
{ .



The Model 33

where P = %

Obtaining maximum likelihood estimates for the amplitude-phase repre-
sentation is equivalent to obtaining the maximum likelihood estimates for
the parameters 7;, ¢=1,2,...,L and then transforming them as above,

In order to obtain phases that are always between (0 and NT we use the

following convention to compute the ¢;, i=1,2,...,P

if 1 <0 th  =C[A+2
¥ 9 > 0 theu{’ Tait en  ¢i=ClA+ 2]

if Yoipr = 0 then ¢; =CA

if 41 <0 then ¢ =C[3]

if Y2i4+1 > 0 then ‘f’i = C[%]

If v < 0 then ¢: = ClA+],

If i = 0 then{

where C = XL and A = arctan(Z224) and the range of arctan is defined to
be in the interval (—=/2,7/2].

With this convention we in fact have that the phases ¢; € (0, NT/i], i =
1,2,...,L.

The model described above was fitted to the daily rainfall data at each
of the stations selected as discussed in Chapter 2. Thus, for each station we
estimated the sixteen model parameters as listed on page iv. Histograms of
each of the parameters are shown in Figure 3.1, while Figure 3.2 maps the
mean value of each parameter, averaged over all rainfall stations within each

Weather Bureau block.

3.4 Rainfall Model Validation

In order to ensure that simulated sequences of daily rainfall data generated by
the model preserve those properties of the process which are of interest to the

user, Zucchini and Adamson (1984a) tested the model at six stations which
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broadly represent the various rainfall/climate regions of southern Africa. The

properties which they tested included

e The annual mean and variance and the distribution of annual totals

and sums of annual totals.
e The monthly means and variances.
e The expected number of wet days, and its seasonal variation.

o The runs characteristics of daily rainfalls and their seasonal variation,

for example the 5 or 10 day rainfall total at various times of the year.
o The distribution of n-day extreme rainfalls.

Their tests showed that the relevant properties were faithfully reproduced by
the model at each of the test sites. In view of the fact that the model used
here was identical to that used by Zucchini and Adamson (1984a) the model

validation process was not repeated.



FLLETT LTS .
CHERL LTSS TSR m

35

244
wWwp2

SES LTSS TS
n T TLTI TS A
- ELALETL LTSS A LTS LTSI

THLLR RS TELES LTSS
m EETL ALY
- FEL TIPS S

1400
12004
D00
800
B0t
4004
00
°-
1000
900+
200
7004
o0
5004
T
200
0
100+
o

WWA1
WWA2

N
T

The Model

Histogram of parameter values.

-
.

Figure 3.1



CHAPTER 3

36

DWP1

DWA1

ALTIESE LI ETS ISP
SSEFRSELITTESE TR FSLLEFIS SIS AS 4
AILEERLLEPLISFFFEES LT
LSS ELLETLILSIT LTS AL LSS
FL IS A LTS EITF LI STS R P E
PP ESELE SIS ETTEFEI LS
AT TSI P T P ETE
CPETLTSEIS IS TEIISF
FEELLAEPLE LTS ELT SIS
HS LIRS TS SIS
FILL LIS LELL LTI

1.5

SIS LIETI D
LTSS

EEEREEEERE

Histogram of parameter values (contd.).

+
*

Figure 3.1



The Model

DEFAD

250 M0 50

500+
700

DEPP2
tan

FASLL S
VLl
AL ST
HTT LS LT TEIEEL I
A EPE LIS LTSI LSS TEITS S
CILL LIS EIE IS IT TSI LSS OAETS I,
FSEEL T ETTEL LT IEETI IS

120

DEPA1

cv

DEPAZ

Histogram of parameter values (contd.).

Figure 3.1



38 CHAPTER 3

™
A
A o
s aaammAA&aA&A&&Am&&&&&A?
s A A& AAASANAAASMASASAMA

F-
A Al AM AAAAMAMAMNSAAAASANNMNAA
A@CL._A D o8 AL SN AAMNAA NN A ANADAANAANK

AAMA A o A AMNAADANN DN

DA AAMNAAANANANADNANNN
mAéﬁAA&AA&AA&%%ﬂ‘ wwal
AMAMNAANMNAMASAMA

%ﬁgamammAmﬂwmv\ . max MA\-0.071
AN AN min  -2.119

;

¥y LGN WL
&,_,ﬁ/&aa.s.saa
A A A A 8 &AL AR
A A AL S A AS AN
A A AL & a s s MM
. T N A - N Y-Y- Y-
- A & & A A& & 2 A M A M A
a + & 8 & A A A S A A A A A KA A
. & a4 A A A A A& & A & 8 & a A A & A,
Fy A A a & B B A A & & & & & a B M A s
& A A A A A & & A A & 2 s A A A A A a
+ h " AoS A A A A a8 A 2 & A & A A A b A M
4 & & a F O O Y e - - T EE--
& A e L0k & oa & = = 2 a A S AAAAM G
A a4 A & & & + a antléﬁﬁé&AAA‘Jé
P - P O . - O . Y
D A B v A A a .aa.A.\AAAA&?/:
a 0& 4 & A& 4 & & A & & & A o2 A 2 A M s
LT aAaaAllnaAAiAj,"ﬁ
4 . A A B 4 = 4 4 & 4+ & + A & 8 &L
PO Y . a avoa/llf‘ wwai
N . .
: ' max /Nt 612

min 0.067

Figure 3.2: Mean parameter values for each Weather Bureau block.
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Chapter 4
Variances of Model Parameters

To apply the kriging method for the interpolation of the rainfall model pa-
rameters, it is necessary to estimate the standard errors of the parameter es-
timates. Initially a classical methodology was applied to solve this problem.
Although we were successful in deriving suitable formulae for the parameters
of the Markov chain module of the model, maximum likelihood estimation of
the Weibull distribution that relates to rainfall depths on rainy days leads to
difficulties. The theory of the maximum likelihood estimation method and

the reasons why we had to abandon this approach are discussed in Appendix
A.

4.1 The Parametric Bootstrap Method

Efron {1979) proposed a methodology called the bootstrap by which for a ran-
dom sample X = (X1, X»,...,X..) from an unknown probability distribution
F', one can estimate the sample distribution of a specific random variable V,
on the basis of the observed realizations of X, x = (z1,z3,...,2,), where V
possibly depends on both X and F. The bootstrap method is explained here

as it has been applied to our situation.

In Chapter 3 we discussed fitting models to the occurrence and non-
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occurrence of rainfall (the discrete part of the model) as well as to rainfall
depths on days when rain occurs {the continuous part). Parameter estimates
for the probability that a wet day follows a wet day and that a wet day
follows a dry day, for mean rainfall and for the coefficient of variation are
then obtained. The problem to be solved is to get some measure of accuracy
of these estimates, namely their standard errors. The bootstrap method gives
us a way to do this. We have a special case of the bootstrap method in that
we know that the probability distribution of the number of times a wet day
follows a wet day is the binomial as is the probability distribution that a wet
day follows a dry day and that rainfall depths follow a Weibull distribution.
We therefore apply a parametric bootstrap procedure.

Let B = [El,ﬁg, ey 315) denote all the parameter estimates of the rainfall
model, that is the parameter estimates for the probability that a wet day
follows a wet day, the probability that a wet day follows a dry day, for the
mean rainfall and for the coeflicient of variation. Denote the probability
distributions that describe the rainfall model by ¥ = (F1, F3), that is, /
is the binomial distribution and F, is the Weibull distribution. Then the
bootstrap algorithm is given by:

Algorithm

Step 1: Generate NY years of daily rainfall observations given the parameter es-
timates B and probability distribution F. Denote this by X *(3,t), i=
1,2,...,NY and i =1,2,..., NT. This is called the bootstrap sample.

Step 2: Estimate the model parameters for the bootstrap sample in the same

manner as B was obtained. Denote these parameter estimates by E:
Step 3: Repeat Step 1 and Step 2 NB times.

Step 4: From the repeated Monte Carlo sampling in Step 3 we obtain a random
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sample of parameter estimates

which can be used to estimate the bootstrap distribution of 3 .

Step 5: Approximate the sampling distribution of B by the bootstrap distri-
bution of 8 . In our case we are estimating the standard error of the

parameter estimates by the standard deviation of E:

4.2 Implementing the Bootstrap Method

The first step in implementing the bootstrap procedure is to choose the num-
ber of years (NY) of daily rainfall sequences to generate in each bootstrap
sample and how many bootstrap repetitions to perform (N B). For this
project it is appropriate to set NY equal to the number of years of the daily
rainfall record at any given station so as to reflect the variance of parameter
estimates based on a sequence of this length., N B is usually chosen to be
a large number, say 1000, so as to obtain an accurate estimate of the vari-
ance. However, having to perform 1000 bootstraps for every singlé rainfall
station would be an immense task. That is, for every one of the £5000 rain-
fall stations one would have to generate NY (in the region of 60} years of
daily rainfall sequences 1000 times, and for each of these sequences, compute
16 parameter estimates as well as their mean and variance. On the other
hand, too few bootstrap replicates will not give the accurate results. Thus,
a decrease in the number of bootstrap samples generated must not be at the
cost of accuracy of the final results. We used the following strategies,

For a subset of rainfall stations, referred to as test stations, standard
errors were obtained with N B set to 50, 100, 200, 300, ...1000. The re-

sulting standard errors were compared and a decision was taken to perform
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100 baotstraps in all subsequent runs as the standard errors did not differ
significantly for values of N B between 100 and 1000.

Secondly, we investigated the possibility that the standard error at each
station could be related to the number of years of rainfall data available.
If such a relationship existed it would indicate that the bootstrap standard
errors for parameter estimates could be derived as a function of the number
of years of rainfall data; that is, it would not be necessary to perform the
bootstrap procedure for every rainfall station in southern Africa. For the test
stations, the bootstrap variance was plotted against the number of years in
the historical rainfall record. No clear pattern was found; it appeared that
other factors such as the geographical location, which in turn determines
the variability of rainfall, also have a major effect on the variance of the
parameter estimates. It was therefore decided that the bootstrap procedure
had to be performed for all rainfall sites. Figure 4.1 shows the plot of the
bootstrap variances versus the number of years for all model parameters, at
all sites. The plots show that the variance of the parameter estimates does
decrease as the number of years of data increase. It is also interesting to note
that there is levelling off, that is, beyond about 60 years there is relatively

little decrease in the variance for most parameters.

4.2.1 Checking the Bootstrap Method

As already mentioned, we were successful in obtaining standard errors for the
Markov chain part of the rainfall model from approximations to large sample
| theory, that is, the inverse of the negative matrix of second derivatives of
the log-likelihood function provides information relating to the accuracy of
the parameter estimates. This provides us with a way of testing the ability
of the bootstrap method to give satisfactory standard errors of the r;:,infall

model parameter estimates. The standard errors obtained from the bootstrap
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samples for the Markov chain model were compared to those obtained by the
classical approach. These compared very favourably and since, at least for
the model for the occurrence of wet and dry days, the bootstrap method is an
acceptable method to obtain standard errors for the parameter estimates, we
assumed that it will also give appropriate estimates for the standard errors
for the rainfall depth parameters. In order to have standard errors of all the
parameter estimates computed in a uniform way, bootstrap standard errors
were used for the Markov chain model as well as for the rainfall depth model

in the subsequent interpolation of model parameters.

4.3 Conclusion

The bootstrap method was examined as a possible way to obtain standard
errors for the rainfall model parameter estimates. The procedure was found
to give satisfactory results and therefore bootstrap variances and means for all
parameter estimates were computed for a.li the selected stations mentioned
inr;Chapter 2. The bootstrap method not only produced variances for the
parameter estimates, but it also provided us with a further check on how
well the rainfall model behaves. For each station, 100 bootstrap samples.
were generated and the model pa.ra.metérs estimated. One would expect the
mean of the parameters from the bootstrap samples to be very close to the
parameter estimates obtained from the historical record. There were a few
stations that showed a significant difference between the bootstrap means
and the original parameter estimates. Cut-off points were established for
the maximum permissible difference between the bootstrap mean and the
ariginal parameter estimates with the aid of histograms and the scatterplots
for the various parameter estimates. The few stations that exceeded this
maximum difference were considered as outliers and were removed frc;m the

data set. The final number of rainfall stations included in the remaining
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analyses was 5070. Figure 4.2 shows the mean of the parameters from the
bootstrap samples plotted against the original parameter estimates. As can
be seen from this plot, once outlying stations were removed, the bootstrap

means compare favourably with the original parameters.
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Chapter 5

Estimating the Model

Parameters

Having fitted the daily rainfall model at all stations at-which sufficient daily
data are available it is necessary to turn to the problem of estimation of
the parameters at points where no data, or too little data, are available,
Specifically, our objective is to estimate the parameters on a grid of 1 minute
of a degree of latitude and longitude throughout South Africa, Lesotho and

Swaziland.

The map of selected rainfall stations (Figure 2.3) shows that in some areas
of the country there is a high density of stations while in others, notably
the north-western Cape, the data is very sparse. Available data tends to be
clustered around areas of human habitation. One consequence of this is that,
in mountainous regions of the country, the higher lying areas tend to be less
well covered by rain gauges, so that to ignore this in the analysis would tend
to give rise to under-estimation of rainfall,

Large-scale spatial patterns are clearly observable in most of the model
parameters (Figure 3.2). These large scale trends may be attributed to gen-
eral circulation patterns affecting the climate of southern Africa and involv-

ing the movements of large masses of air, giving rise to frontel rainfall. On a

a8
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smaller scale rainfall patterns are affected by the local topography and other
physical features; in particular orographic rainfall is induced by the forced
ascent of air on the windward side of mountain barriers, while convectional
rainfall is due to updraughts caused by localized heating and can thus be
affected by ground cover and land use. In all types of rainfall, rising air is
cooled so that it approaches saturation; a further factor in the formation of
actual rain droplets is the presence of suitable nuclei; these may be provided
by ice crystals in the clouds or by other particles such as occur in dust or
man-made air pollution so that, for example, large cities may hﬁve higher
rainfall than the surrounding rural areas. It is clear that local anomalies
can be accurately estimated only if the rainfall data js sufficiently dense in a
| given locality or if information on local explanatory variables is incorporated
into the estimation process.

Elevation data is available on a grid of 1 minute by 1 minute through-
out southern Africa (Dent et af., 1989), and one would expect that local
estimation of model parameters could be improved by incorporating this in-
formation. In addition, by making use of elevation data we would hope to
overcome the bias in the station locations towards the lower-lying parts of
each region.

One might expect that the amplitude parameters, which relate to rainfall
amounts, would be more susceptible to topographic effects than the phase
parameters which relate to seasonalily of rainfall. This is exemplified by a
comparison between the models for Tamboerskloof in Cape Town (station
code 020716 W, elevation 100m) and the station at Woodhead Dam on the

- slapes of Table Mountain (station cade 020719BW, elevation 747Tm) as shown
in Figure 5.1. These two sites are only about five kilometres apart but show
a large difference in the average level of the mean depth of rain on wet
days (DEPAQD), while the other parameters are very similar at the two sites.

It was therefore decided to make use of the altitude information only in the



60 CHAPTER 5

0.9 0.8
.8 2.2
a7 0.
0.8 a.e
Q.59 0.5+
0,44 .44
a3 o
0.2 0.24
0.3 o1

. Prob(W/W): station 020718 W _ Prob(W/W}: station 0207158W

‘2 %0 100 950 200 250 30 Mo 40 ¢ W M0 10 00 W MO 2 400
O o
0.8 0.8
0.7 0.7
0.8 .61
u{ 0.8
0.4 0.44
0.3 0.31
aal 02 /\
o Prob(W/D): station 020716 W >\ Prob{W/D): staion 02071SBW

w0 @0 30 3™ B0 w0 0w W™ @ 2m 20 ™ H o
180 10
180 18
140+ 1404
120/ 120-
100} 1004

0 o

o 01

Mean Depth: station 020716 Mean Depth: stadion G207198BW
“5 50 100 150 X0 M0 0200 MW 4o “ % Im 400

180 W0 220 200 M0

Figure 5.1: Comparison of two stations on Table Mountain.



Rainfall and Topography 61

estimation of the amplitude parameters. Further justification for this decision
is provided by the semi-variogram models of the parameters, described in
later sections of this chapter.

In the following section we review some of the approaches taken by pre-
vious researchers in the field of rainfall modelling to the incorporation of the
effects of topography into the modelling process. We then review a number
of methods for the interpolation and smoothing of spatial data and motivate

the selection of kriging for the estimation of the rain model parameters.

5.1 Rainfall and Topography: A Review

As mentioned in the previous section, orographic rain results when air rises
over mountains, so that one may expect the highest rain to occur on the
windward slopes; for narrow mountain ranges the tops of the mountains and
leeward slopes may also experience relatively high rain, however for more
extensive mountain ranges the leeward slopes may be in a rain shadow area.
This suggests that using only the altitude at a given point to predict the rain
anomaly at that point will in general not be very successful, and this has been
found to be the case by a number of researchers, for example, Armstrong
(1992) and Creutin and Obled (1982). Thus a considerable body of research
has been directed at deriving functions of the altitude at surrounding points
which will be more suitable for predicting local rainfall patterns.

An early study is that of Spreen (1947) who investigated the relationship
between elevation, slope, orientation (aspect) and exposure (defined below}).
Using a graphical regression technique Spreen found that 88% of the varia-
tion in mean winter precipitation in western Colorado could be explained by
these four variables, compared with 30% for elevation alone. Other studies,
using the same measures, plus a number of others such as ‘roughness’, have

been carried out in other parts of the world, for example in New Zealand by
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Hutchinson (1968}, in Israel by Wolfson (1975}, and in South Africa by Whit-
more (1968), Schulze (1976), Hughes (1982) and Dent, Lynch and Schulze
(1989).

Most of these authors have used multiple regression techniques to in-
corporate the topographic variables into the rainfall modelling process; a
difficulty of this approach is that if the area under study is large it may first
need to be segmented into homogenous sub-regions within each of which the
relationship between rainfall and the topographic variables is approximately
constant. Dent et el (1989) initially delineated some 712 regions in their
study of mean annual and monthly rainfall in southern Africa, but experi-
enced considerable difficulty in patching together the resultant estimates at
the sub-region boundaries.

All the topographic variables used by these authors are based on grid-
ded altitude data, using a local grid centered on a given point to calculate
the relevant variates at that point. Definitions of the most commonly used

measures are given below,

Gradient and Aspect Given a tangent plane to the surface at any point,
the gradient is the maximum rate of change in altitude on this plane and
the aspect is the compass direction of this maximum (decreasing) rate
of change (Skidmore, 1989). The estimate of these values will depend
on the grid size and limits used, as well as the algorithm used; Skid-
more compares six possible algorithms. Some authors (Spreen (1947),
Hutchinson (1968))} define aspect as the direction in which the exposure
(defined below) is a maximum. Aspect s a circular variable, and thus

cannot be used directly in a standard regression model.

Roughness In view of the fact that the roughness of the terrain may cause
updraughts and turbulence which may in turn influence the occurrence

and longevity of storms (London and Emmitt, 1986) a number of re-
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searchers have included a measure of roughness. Hobson (1972) gives
three methods for the calculation of roughness: one based on ‘bump
frequency’, one based on comparing estimated surface area with the
corresponding planar area and a third based on the variation in the
direction of normals to planar surfaces defined by adjacent groups of

three elevation readings.

Exposure A number of authors have attempted to define directly a function
of topography which encapsulates the fact that windward slopes tend
to get higher rain due to their higher ‘exposure' to the rain bearing
winds, Dent et al (1989) used the definition of exposure suggested
by Seed (1987) which involves counting the number of points in a 5
minute by 5 minute mask which have a lower elevation than the point
at the centre. Spreen (1947) used as his definition of exposure the
number of one-degree sectors of a 20 mile radius circle centered on
the station in which there is no land higher than 1000 feet above the
station. Hutchinson (1968) used a similar definition but with a five mile
radius. Hughes (1982) used an index based on the (weighted) sum of
areas of grid squares with elevation higher than the gauge, taken over
all squares of area 0,25 km?® lying in a 45 degree sector oriented south-
west and of radius 10 km. The weighting used was the logarithm of
the excess elevation. The south-west orientation was chosen to coincide
with the main rain-bearing wind direction in the area, the other aspects
of the measure were chosen after a number of trials with exposure
indices of varying complexity, and Hughes comments that ‘the choice
of a measure of ezposure proved to be very difficult’. It is clear from
these different definitions that, apart from the difficulty of finding a
satisfactory definition of exposure, there is almost certainly a n;aed to

‘customize’ the measure for different geographical regions.
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In practice all these measures are calculated as a function of the a; where the
a; are the local values of altitude, usually available at a grid of peints, and
are thus influenced by the grid spacing and also by the extent of the local
area or mask used in the calculation. Many of the measures can be expressed
in the form ) w;a;, that is, a linear function of the local altitudes. In view
of the fact that researchers have noted the difficulty in finding a suitable
measure of ‘exposure’ based on a priori considerations, it is appropriate to
ask whether it may not be possible to use the data itself to determine, on a
local basis, that function of the e; which best explains the rainfall anomalies,
and let this function provide a local definition of ‘exposure’ which can then be
calculated at ungauged locations to predict the anomalies there. By defining
a single measure in this way we could alse avoid the difficulty that arises
when a number of correlated measures are used as the explanatory variables
in a multiple regression and also the need to consider the possible interacting

effects of such variables. This approach is discussed further in Section 5.3.3.

5.2 Methods of Interpolation and Smooth-

ing

In this section we outline the commonly used methods for fitting a surface to
data available at points in two dimensions. In the case of exact interpolation,
the fitted surface is required to coincide with the original values at the data
points. This can be viewed as a limiting case of the more general smoothing
problem, in which the fitted surface need not match the original values. For
the rainfall model data, which consist of estimated model parameters, we
know that there is error in the data values, as measured by the bootstrap
variance, and thus exact interpolation is not appropriate. '

Throughout this section we use the notation that the variable v; (in our
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case v; represents one of the rainfall parameters) is measured at locations
z; = (i, ) where i = 1,2,...n, and z and y represent appropriate co-
ordinates such as longitude and latitude. The location of the point to be
estimated is given by Zg = (o, Yo}, and d;; represents the distance between

z; and z;, while di represents the distance between z; and 2.

5.2.1 Trend Surface Analysis

In trend surface analysis a simple polynomial function such as a plane or
quadratic surface is fitted to the data using ordinary least squares (Grant
(1957), Krumbein (1959}, Watson(1971, 1972)). For example, if the fitted
function is quadratic in the x and y coordinates of the data locations, then

the fitted surface has the form:

f(z,y) = Bo+ iz + oy + faz’ + Pazy + Bsy?

While this method may be appropriate when the trend has a relatively sim-
ple functional form, this is rarely the case in practice in the earth and atmo-
spheric sciences, except perhaps over fairly small areas. The degree of the
polynomial must be selected by the user, and in fact this is the only way in
which the user can control the degree of smoothing; interpolation is possible
for most data sets only by allowing the number of terms in the model to
equal the number of data points. When the residuals from the trend, or local
‘anomalies’, are spatially correlated, as they generally are in spatial appli-
cations, use of the usual F-tests will often lead to the fitting of a surface
of too high an order which is perceived by the user as ‘too wavy’. Ripley
(1981, Chapter 4) illustrates this effect. In addition, clustering of the data
points tends to give excessive weight to the fit of the surface in the vicinity
of the clusters. In the presence of spatial correlation of the residuals it would

be more appropriate to use generalized {weighted) least squares (Draper and

Smith, 1981).
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The fitting of polynomial models lends itself readily to the inclusion of
information on covariates, and thus the method of trend surface analysis has
been popular for interpolating rainfall values, incorporating information on
continentality, altitude, and other topographic features as described in the
previous section. However, a problem often encountered is that the relation-
ship with the covariates may change across the study area, and this may
necessitate partitioning the area, which is in itself 2 major problem in that
homogeneous areas must first be delineated, and also leads to the subsequent
problem of patching together the various fitted equations in a smooth way,

as described by Dent et al. (1989).

5.2.2 Smoothing Splines

The idea of fitting local polynomial functions leads naturally to the concept of
smoothing splines. There are a nurnber of generalizations of spline smoothing
to two dimensions, but the most commonly used is the thin-plate smoothing
spline {two-dimensional Laplacian smoothing spline) which can be viewed as

the function f which minimizes the penalized least-squares expression
n™' Y [vi — flza 3 + AA(f)
i=1
where

A(f) = f 2 +22 + 2 da dy

(Duchen, 1976; Wahba and Wendelberger, 1980). The degree of smiooth-
ing is controlled by the smoothing parameter A; if A is set to zero, the solution
will interpolate the data points. If there is measurement error in the data
the smoothing parameter is usually selected by generalized cross-validation;
software for this is available in GCVPACK (Bates ef al, 1987).

Unequal error variance in the data points could be accommodated into

the spline smoothing method by weighting the fit differently at individual
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points. [t is less clear how spline smoothing applied to the rainfall parameter

values could incorporate concomitant information on topography.

5.2.3 Kriging and Optimal Interpolation

The technique of kriging was developed by Matheron (1963); the almost
identical but less well known method of optimal interpolation was developed
at about the same time by Gandin {1963). In these methods the data is
modelled as a realization of a stochastic process with a covariance function
which is assumed stationary, that is, dependent only on distance, at least
locally, and the kriging estimate is derived as the minimum variance un-
biased linear predictor. By explicitly modelling the covariance of the data
points, the method is especially suited to clustered data exhibiting spatial
autocorrelation. h

If we use the general mode!
vi=Ti+ i+ € ' (5.1)

where 7 represents large-scale trend, 7 represents the local spatially correlated
component, and e represents measurement error, then kriging provides an

estimator of vy of the form
n
>

where the weights w; are chosen to minimize the expected squared error of
estimation of the measurement-error free values, that is, to minimize
E (O wivi — (70 +m0))*
f=1
In the case of so-called simple kriging, the data are assumed to be de-
trended so that the 7 terms may be assumed to be zero. In this case the

solution is given (Cressie, 1991) by

Kw=c (5.2)
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where the matrix K has elements k;; = cov(v;, v;) and ¢; = cov{v;,n9) =
cov(7;, 7o ).

More generally, the trend term is either assumed to be a constant (‘ordi-
nary kriging’}, or else modelled as a simple deterministic trend function, for
example, a quadratic function of the z and y coordinates (‘universal kriging’).

Thus we have, at any location gz,

p
vi= Y fi(2)B+ s+ e (5.3)
=1

where the f){z) are functions of z and y and the f; are coefficients to be
determined. The problem is then equivalent to a generalized least squares

prediction problem, and we can write, in the usual regression notation,
v=XA4+n+e

By using the Lagrange multiplier technique to introduce a constraint to en-

sure unbiasedness, the solution for the w can be shown to be (Cressie, 1991}

K X w c
= (5.4)
X 0 —-A Xg

where A is 2 p x 1 vector of Lagrange multipliers and 0 i1s a p X p matrix
of zeros, the matrix K has elements k; = cov(y; + &,7; + ¢;) and ¢ =
cov(n; + €,M0) = cov(ni,ng). The elements of the vector xp are the values
fi(zo). By partitioning the left-hand matrix in equation 5.4 as shown the
solution for iy can also be written (Goldberger, 1962 or Stein and Corsten,
1991) as

Bo = X483 + 'K~ (v — XB) (5.5)
where 3 is the generalized least squares estimate of 3. We see that this
is equivalent to generalized least squares regression estimate of 7o combined
with a simple kriging prediction of the value of the local compur;ent N0, based

on the regression residuals.
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If the trend is assumed to be constant, then the matrix X above reduces
to a vector of l's and  1s simply an estimate of the mean. Although it
is unlikely to be reasonable to assume a constant mean throughout a large
study area, it is common practice to use local or moving-window kriging, in
which only the data points in the vicinity of the point to be estimated are
used in the estimation process. In this case the constant mean assumption
is more likely to be realistic, and Journel and Rossi (1989) have shown that
local kriging with a constant mean model gives results essentially the same
as those given by a more complex trend model, while avoiding some of the
difficulties associated with the latter.

In many applications of kriging the measurement error term ¢ in equa-
tion 5.1 is ignored, that is, the data are assumed to be error-free. In this case
kriging acts as an interpolatar, so that if zy = z; then %, = v;.

The method of kriging can be extended to the situation where data on
covariates is also available, using either co-kriging, in which the estimate is
given by 9y = Y wyv; + ¥, w;u; where the u; are the covariate values, ar
alternatively by incorporating the covariates as part of the trend function.
These two options are discussed further in Section 5.3

More detailed accounts of the theory and practice of kriging are given by

Clark (1979), Cressie (1991) and Isaaks and Srivastava (1989).

5.2.4 Moving Averagé Methods (Kernel Smoothing)

These methods use a simple weighted average of the neighbouring data
points, with the weights being chosen as some (inverse) function of distance
or kernel function. Thus to estimate the value vg at the location zg based on

values v; at locations z; we have

n
flg = E Wi

i=1
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where the weights w; are given by

_ ¢, {di
w,—)‘[\(,\)

where K is the chosen kernel function (a decreasing function of distance) and
A 1s known as the bandwidth. The constant cp is usually included to ensure
that the weights sum to unity (Hastie and Tibshirani, 1990). Interpolation
of the data points is achieved by choosing a weighting function which tends
to infinity as the distance tends to zero. In general, the degree of smoothing
is determined by the bandwidth and the rate of decay of the kernel function.

Kernel smoothing methods are computationally simple and do. not require
the assumption of any functional form for the underlying trend. They are
however inappropriate for clustered data which exhibit short-scale spatial
correlation, since in this case the clusters tend to dominate the smooth in
their vicinity, leading to bias.

Another disadvantage of using moving average methods for estimating
the parameters of the rainfall model is that there is no obvious way to incor-
porate covariate information. It is also not clear how one would incorporate
information on heterbgeneity of the measurement error into these methods,
although a possible approach might be to multiply the weight of each data

point by some inverse function of the variance.

5.2.5 Maultiquadric Surfaces

A predictor for two-dimensional data based on the fitting of multi-quadric
surfaces was proposed by Hardy (1971). The surface to be interpolated is
represented by the summation of the heights of a series of n quadric surfaces,
where the i'th surface has its vertex at the i’th data point. The parameters
of the individual surfaces, which may be circular hyperboloids of two sheets,
paraboloids or cones, are determined in such a way as to ensure.that. the final

surface interpolates the data points. Lee ef al. (1974) tested several types
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of quadric surface for the estimation of areal rainfall and concluded that the
cone was the most appropriate choice of surface, giving good estimates and
being simple to compute. For the circular cone with vertex at (i, y:) given
by v? = }{{z —2:)?+(y —1:)?), the height at a point with coordinates (z;, y;)
is given by
vj = cidyj

where d;; is the distance between (zy, y;) and (z;, ;). Thus if the sum of the
heights of the cones is to interpolate the data points, the constants ¢; must

be determined by the equations
v =Dec

where the elements of the matrix D are the inter-point distances, and the
elements of the vector v are the data values. From this we see that ¢ = D~'v
and hence
tp=d'D'v

where d is the vector of distances d.

The method is specifically designed to interpolate the data points exactly
and is thus not a general purpose smoother. In fact, the equation above
shows that the solution is in fact a special case of simple kriging, with a

linear function of distance used for the covariance function.

5.2.6 Selecting a Smoothing Method

A number of researchers have compared some or all of these methods on real
and simulated data. Creutin and Obled (1982) tested splines, optimal inter-
polation and kriging, amongst other methods, to estimate rainfall amounts
in southern France, while Tabios and Salas (1985) used trend surface anal-
ysis, kriging, optimal interpolation, multi-quadric interpolation and inverse-

distance averaging to estimate annual precipitation in Nebraska and Kansas.
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Both studies used a number of known sites as test sites to evaluate the var-
ious methods being tested. Generally the more sophisticated methods gave
hetter results. In their conclusions, Creutin and Obled recommended optimal
interpolation while Tabios and Salas recommended optimal interpolation or
kriging.

Despite the apparent differences between these approaches, there are nu-
merous connections between them., Some of these.have already been men-
tioned in the discussion above but some further points are worth noting.
Firstly, kriging can be seen as an extension of trend-surface analysis which
uses generalized least squares in place of ordinary least squares to take ac-
count of the spatial correlation in the residuals, and also uses a local smooth-
ing of the residuals to extract further predictive value from them.

There is also a formal equivalence between kriging and splines; as shown
by Kimeldorf and Wahba (1970) and Watson (1984). More practical aspects
of the relationship between the two methods are also discussed in some detail
by Wahba (1990) and Cressie {1990).

Silverman (1985) discusses the relationship between splines and kernel
smoothers and shows that the one-dimensional cubic smoothing spline is
(approximately) equivalent to a kernel smoother with a bandwidth which is
varied according to the local density at each data point used in the estimation,
so that more clustered points are thus down-weighted.

In view of the discussions above the choice of an appropriate methodol-
ogy for smoothing the rain model parameters would appear to be essentially
between a spline-based approach or a geostatistical approach. While the
computational techniques used in splines have perhaps been better devel-
oped than those in kriging, the geostatistical approach was selected for the

following reasons:

» The model based formulation of kriging makes it suitable for the ac-
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commodation of a varying error variance.

e A technique for including information on covariates via ‘co-kriging' or
‘kriging with external drift' already exists. In fact, as discussed in Sec-
tion 5.3, these approaches make it possible to relate the rainfall at one
point to the altitude at a number of neighbouring points, thus largely
obviating the need to try to pre-define functions such as ‘exposure’

which have previously been used for this purpose.

5.3 Estimation of the Amplitude Parame-

ters

In this section we consider the estimation of the nine amplitude parameters
of the daily rainfall model and the coeflicient of variation. Estimation of the
phase parameters, which are circular in nature, and thus need to be treated
rather differently, is discussed in Section 5.4
The approach takeu is univariate; that is, each of the parameters is es-
timated independently of the others. Although there will probably be some
spatial correlations between the parameters, which might suggest some ad-
vantage fo be gained from a multivariate approach, possibly using co-kriging,
it has been found in practice that co-kriging is generally only beneficial when
the covariates are sampled more densely than the variable of interest. For
the rainfall model, the data locations are the same for all parameters, so
that a multivariate kriging is unlikely to give much advantage, and would be
considerably more complex.
In order to use the kriging approach it is necessary first to model the
spatial covariance function of each parameter; if co-kriging is to be used to
incorporate the topographical information then the relevant cross—covar-ia.nces

are also required. Alternatively, if one is using kriging with external drift,



74 : CHAPTER 35

then one must select appropriate topographical variables to be included in

the drift function. We consider each of these aspects in turn.

5.3.1 Estimation of the Spatial Covariance Function

The spatial covariance defines the covariance of two points as a function of

the distance between them. That is,

U(h) = E[(”z — p2)(Vzen — Ez+h )]

where u denotes the mean value at a given location. In kriging applications

it is more common to work with the semi-variogram function, defined as

v(h) = 1/2E[(vz ~ vz4n)’] (5.6)

The term semi-.variogra.m is due to Matheron although its use had been
recommended earlier in a time series context by Jowett (1952). There are a
number of advantages in working with the semi-variogram, using the estima-
tor

7(h) = 1/(2Vn) ) (v, = va,)’

where the summation is over all N}, pairs which are a vector distance h
apart. In practice, for non-gridded data, the summation is calculated over
all pairs belonging to a number of distance intervals, for example, 0-1 km, 1-2
km, 2-3 km etc, If the spatial continuity is more marked in some directions
than others, then it is necessary to calculate separate semi-variograms for
each direction, but often there is no directional effect so that we need only
consider the distance A =|| h |

One of the advantages of working with the semi-variogram is that its
estimation does not require any prior estimate of the mean; in addition,
the estimate is relatively little affected by trend for small va.lu-es of h, these

being the more critical values for the kriging process, since in practice it is
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[l 11

usual to obtain the kriging estimate at a given location using only the data
points which are in the vicinity of that lacation. Other reasons for preferring
to use the semi-variogram rather than the covariance function are given by
Srivastava (1988) and Cressie (1991).

In the case where the mean is constant there is a simple relationship

between the semi-variogram and the covariance, given by
7h) = a(0) - a(k)

so that, having estimated the semi;variogram, one may readily obtain the

corresponding covariance required for the solution of the kriging equations.
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Figure 5.2: Effect of error on the semi-variogram.

When there is measurement error in the data it is necessary to break down
the semi-variogram into components corresponding to the original model
components given in equation 5.1 In the case where E(g) = 0, var(e;) = o?

and the ¢; are uncorrelated with one another and with the n; then it is easy
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to show that

E[((ni + €) = (n; + ))°] = E[(n: — 0;)%] + 207

and thus we have
Tore(h) = (k) + 07 (5.7)

so that the error term increases the semi-variogram by a constant amount

equal to o? (Figure 5.2).
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Figure 5.3: Effect of trend on the semi-variogram.

The effect of trend on the semi-variogram is dependent on the exact form
of the trend. If the trend is constant then it is clear from equation 5.6 that
it will cancel out of y(%). In general the trend will vary little over small
distances, so that the effect of the trend will be relatively minor for small lag
distances. Figure 5.3 shows a typical semi-variogram for a data s;et containing

trend.



Estimation of the Amplitude Parameters

14
121 O p

104 =]

semi-varlogram
T
0
i]

& 7 *
L o
o+,
24 b4 7
0' L} L T T ¥ L L L} L
0 2 4 -] 8 10 12 14 16 18 20

distance
x exrapolaion1 + eaxirapolation 2

| o data values

Figure 5.4: Estimating the nugget effect.

Unless there are repeated measurements at some locations, or some other
way of independently estimating o?, the error variance can only be estimated
from the empitica.l'senﬂ-va.riogram by extrapolating the fitted model to the
point k = 0. As it is quite possible that there is also significant short-scale
variation in 7, commonly referred to as the nugget effect, such extrapolation
may be quite inaccurate (Figure 5.4).

For the rain model parameters there are three sources of apparent small-
scale variation. Firstly there is the measurement error term of equation 5.1,
whose variance was estimated by the bootstrap procedure. Secondly we have
the inaccuracy in the measurement of the station locations, and thirdly the
small-scale variation in the local component, 5, of equation 5.1 which will
typically be the result of topographic variability. Because the value of o2
is not constant across all data points we cannot use equation 5.7 djreétly in

this case, but since the bootstrap procedure provides individual measurement
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2

error variances o;,

corresponding to each datum v, ¢ = 1,2,...n we can use

the fact that
El{(ni + &) — (n; +€))") = E[(ni — n;)"] + 0% + o,
to calculate an adjusted semi-variogram estimator by using

Galh) = 1/@N) {3 (01 = i) - &% - 5% }
where the summation is, as usual, over all ¥, pairs which are a distance A
apart.

Figure 5.5 shows the unadjusted and adjusted semi-variograms for the
nine amplitude parameters and the coeflicient of variation of the daily rainfali
model. For most of the parameters, the unadjusted values suggest a definite
nugget effect, while in many of the graphs the adjusted values appear to pass
approximately through the origin, that is, 7,(0) = 0. Those which still show
a nugget effect after adjustment (notably DEPAQ, DEPA1, CV, WWAL(, and
DWAO) suggest that the corresponding parameters are sensitive to local to-
pographical changes, or possibly other sources of small-scale variation. For
one parameter, WWA2, the adjustment seems to have over-corrected, re-
sulting in negative values throughout the empirical semi-variogram. This is
probably due to the somewhat skew distribution of this parameter, and also
the fact that the error variance of this parameter is relatively high compared
to the actual parameter values, which are typically quite small.

Models were fitted to the semi-variograms of each of the amplitude pa-
rameters and to the coefficient of variation. The method of fitting, based
on the weighted least squares method of Cressie (1985), gives more weight
to those points on the semi-variogram which are based on a larger number
of data pairs, and also gives more weight to those points corresponding to
smaller values of . In each case the model fitted was the sum of a spherical
model for the local component 7 plus a linear model for the trend component

T.
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Figure 5.5: Semi-variograms: amplitude parameters (contd.).

The spherical model is given by

a((3/2)(k/r) — (1/2)(k/r)*] 0<h<r

v(k) =
a h>r

where a, the asymptote, is commonly known as the sill, while r, the range,
indicates the maximum extent of the spatial correlation.

The linear model is given by
v(h) = sh

where s is a slope parameter.
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The fitted values a, r, and s, for each rainfall model parameter, are listed
in Table 5.1. The ranges of the local component vary between 10 and 40
kilometres. All the models fit well up to a distance of at least 240 km, which
corresponds to the maximum distance used in the local kriging calculations.
These fitted models are used to provide the covariances required for the

kriging calculations.

parameter sill | range | slope
WWAO | 0.0530 | 15| 0.000140
WWAL {00035 | 36| 0.000036
wwa2 [ 00027 | 19| 0.000007
DWA0 || 0.0790 | 10 | 0.000300
DWA! | 0.0030 | - 10 | 0.000140
DWA2 || 0.0007 | 12 | 0.000010

DEPAQ 389 10 | 0.0400
DEPA1 47 30 | 0.0002
DEPA2 5 40 | 0.0020
Ccv , 0.0180 10 | 0.000064

Table 5.1: Fitted semi-variogram models: amplitude parameters.

5.3.2 Cokriging of Rain and Altitude

One possible approach to the incorporation of altitude into the kriging pro-
“cess is to use co-kriging (Matheron, 1971) in which the covariates are essen-
tially treated as an extension of the data vector so that the solution (for a
single covariate) is a weighted sum of values of the variate to be interpolated
and the values of the covariate. Thus we have

n m
g = E wit; + E ﬁ!,‘uj

=1 =1
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with constraints 3 w; =1 and ) w; = 0.
Assuming a no-trend model for the data, the co-kriging weights are given

by

Cw Cywu 1 0 w Cvo
Cyv Cuy 0 1 & | | cu
1 o 6o || -xn] | i
o’ Y 00 —Au 0

where the matrix C,, is now the n xm matrix of cross-covariances, C,, = C;,
and the vector ¢,g also contains cross-covariances (of the u; with vg), while
Ay and A, are La.grangia.ﬁ parameters., More generally, a polynomial trend
model may be included, as in universal kriging. Stein and Corsten (1991)
show how co-kriging with a polynomial trend function may be expressed as
a generalized least squares predictor.

In using co-kriging, the covariates need not be available at the same
points as the variate of interest, nor at the sites to be estimated, although
the locations of the covariate information do affect the method of estimation
of the cross-covariance function (see below). Co-kriging is generally most
valuable when the covariates are sampled more intensely than the predictand.
An application of co-kriging to the estimation of rainfall data is described by
Krajewski (1987).

In order to use the co-kriging approach it is necessary to model the cross-
coveriance of ¥ and v in addition to their respective covariances. The spatial

cross-covariance of two variate v and u 15 defined as

owu(h) = E[(vz — #3)(tz4m — tiz43)]

where p¥ and p* denote the mean values, of v and u respectively, at the
relevant location.
While the cross-covariance function may be estimated directly it is nat-

ural, in view of the advantages of the semi-variogram over the ordinary co-
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variance function to look for an appropriate way of defining a cross semi-
variogram. The traditional definition (see for example Journel and Hui-

jbregts, 1978) is

You(h) = 3 El(2 ~ vgn)(ts = gy

In order to estimate this function the variables v and  must be available
at a number of common locations. The function is also symmetric in » and
u. This implies that v,.(h) = 74 {—h) and this is not always appropriate;
for example, in studying the relationship between rain and altitude, it is
generally the windward slopes of mountains which receive higher rain, so
that the direction of a mountain in relation to a point at which rainfall is to
be estimated cannot be ignored.

Myers (1982) proposes an alternative definition which involves modelling
the semi-variograms of v, u and v + u, and then using these to estimate the
corresponding covariances, from which the cross-covariance of » and v may
be obtained. This method also requires a number of common data locations
and is also symmetric in v and u, and thus suffers from the same problem as
the previous definition in that it does not cater for directional effects.

Clark et al. (1987) have suggested that a better definition of the cross
semi-variogram is

Yull) = 5 El(02 = us10 )

Use of this definition does not require common data locations; further-
more the definition is not symmetric in v and u. It is recommended that the
two variables first be standardized to zero mean and unit variance so that val-
ues are commensurate, since gross differences in scale could adversely affect
the precision of computations.

For our application, where the cross-covariance will certainly show direc-
tional effects, it was decided to try modelling the cross-covariance directly. In

exploring this approach the cross-covariance of the parameter DEPAD with
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altitude was studied for the south western Cape region {(approximately west
of Mossel Bay and south of Calvinia). Calculations were done for eight di-
rections, and the results are shown in Figure 5.6 (in which the distance units
are minutes of a degree of latitude or longitude). Figure 5.7 displays the
same information in the form of a contour map. It is clear from the figures
that the cross-covariance is generally positive and decreases with distance,
but there is a distinct group of negative values at a lag distance of approxi-
mately 20 units (about 35 km) in a north-west direction. This corresponds
with the knowledge that the main rain-bearing wind direction in this area
is approximately north-west, so that it is likely that rain gauges which are
sited so as to have points of high elevation to the north-west will be in the
rain shadow of that higher ground and thus have reduced rain.

It is clear, however, that in order to take account, for example, of lo-
cally varying directional effects, the cross-covariance models would have to
be re-calculated and fitted regionally, or perhaps, to avoid discontinuities at
regional boundaries, re-computed in a neighbourhood of each point being
estimated as suggested by Haas (1990). This would necessitate an enormous
amount of computation. Further, there is then a need to parameterize appro-
priate cross-covariance models which could be used as part of an automatic
fitting procedure, since it would be impractical for the user to interactively
model cross-covariances at the half a million or so locations being estimated
in this project. Some further research was done to investigate the feasibility

of such automatic modelling, but the results were generally disappointing

(Sedupane, 1992).

5.3.3 Kriging with External Drift

An alternative to the co-kriging approach is to include the covariates as part

of a trend function, which is essentially similar to the kriging formulation
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Figure 5.6: Cross-covariance of rain and altitude: SW Cape.
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given in Section 5.2.3 so that, in equation 5.3, some of the funciions f; may
be functions of the covariates. Thus, for example, the functions f; might
be functions of altitude as well as latitude and longitude. This approach
requires firstly that the form of the relationship between predictand (rainfall
para.meter) and covariate (altitude or function of altitude) is known or can
be approximated by a simple function such as a polynomial, and also that
the covariate information is available at all the sites at which the predictand
is known and also at all those points at which an estimate of the predictand
is required. This method, which Matheron has described as kriging with ez-
ternal drift, was applied by Ahmed and De Marsily (1987) to the estimation
of aquifer transmissivity, assuming a linear dependence on specific capac-
ity. It has also been used by Armstrong (1992) to estimate monthly rainfall
in Lesotho, using (sometimes estimated) annual rainfall as the covariate or
‘drift’, and by Hudson (1992) to estimate monthly temperatures in Scotland
using elevation as the covariate.

The use of this approach means, in effect, that we would be using a
generalized least squares multiple regression of rain on some function of al-
titude, together with ordinary kriging of the residuals. This would appear
to bring us back to the problems previously mentioned for the multiple re-
gression approach, namely the need for restricting the regression calculations
to homogenous sub-regions and also the need to pre-define the appropriate
functions of topography to be included in the regression model. The use of a
moving-window {local) kriging approach as discussed in Section 5.2.3 avoids
the first of these problems by re-calculating the estimates at each point using
only data points within a limited neighbourhood, thus effectively re-fitting
the regression at each point. While computationally intensive, the process
1s computationally stable, and does not produce the sharp discontinuities in
the output that can occur at regional boundaries when regional regr;ession

models are used.
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To avoid the need to pre-define functions of topography it was decided to
first calculate a number of orthogonal functions of elevation at each gridded
altitude point, which together would account for all possible patterns up to
a third degree surface. This would effectively incorporate a number of the
functions defined in Section 5.1; for example, both slope and aspect can be
measured in terms of first degree functions, while some of the definitions
of roughness and exposure could also be expressed as low-order polynomi-
als of the gridded altitude values. It should be emphasised, however, that
what is proposed here is more general than the use of a..-l:;re-deﬁned funetion
of altitude such as slope, in that no particular polynomial is chosen a pri-
ori, but rather, a set of functions is used which effectively encompasses all
possible patterns that can be described by third degree functions, while the
moving-window kriging process estimates appropriate weightings to give to

the component functions in the neighbourhood of each point being estimated.

An advantage of defining orthogonal functions is that they are by defini-
tion uncorrelated and thus we avoid the multicollinearity problems commonly

associated with multiple regression.

For gridded data the calculation of the orthogonal functions is a sim-
ple matter. If we write the altitude values at a grid of points in an ¢ x ¢
matrix, D, and then calculate the matrix M'DM where M is the g X 4 ma-
trix whose columns give the coefficients for orthogonal polynomials of degree
0,1,2,3 respectively, then the resultant matrix has as its elements the required

orthogonal functions.

We illustrate the procedure using a 5 x 5 grid of altitude peints. Let the
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altitude values at a grid of points be given by:
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Then the matrix M of orthogonal polynomial coefficients is given by:

[

and M'DM can be written as

MDM =

for o2
éu b2
&21 E22
631 '53?

where £po is simply the sum of the elements of D, while £y, is the linear

contrast of the columns of D, which corresponds to a plane with E-W slope,

and &y corresponds to a plane sloping N-5. By including both £39 and £p; in

the external drift function we allow for a plane of any inclination to form the

‘drift’ function. By including also £s2, 11 and €5 we allow for an arbitrary

second degree surface and so on. We decided to include all terms up to third

degree, thus allowing for a cubic surface, and using 10 orthogenal functions

in all. This allows for reasonably complex topographical patterns.

Tables of orthogonal polynomial coefficients for various values of g, to-

gether with formulae for their computation in the general case, are given in
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Figure 5.8: Calculating the functions of topography.

a number of books of statistical tables, for example, Pearson and Hartley
(1962).
Thus the full external drift function has the form:

Boooo+ Brofro+ Bor€er + Paof 20+ Prabaa +Bozbor + Baolao+ Bnéar +Fr2érz+ Boaboa

where the g coefficients will be selected optimally by the kriging program to
model the relationship between the rainfall model parameter and the compo-
nents of the pattern of topography in the neighbourhood of the point being
estimated. ~

The values £go, - . . foa are calculated at each data point and at each point
to be estimated, Figure 5.8 illustrates this, using a 3 x 3 grid. In practice, a
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3 x 3 grid is too small to allow the calculation of independent functions up
to third degree; a grid of at least 5 x 5 is required, but it is not immediately
obvious how to choose the optimal size of the grid. In addition, the optimal
choice may depend on whether the data has been de-trended. If one is work-
ing with de-trended residuals, then they will probably only reflect relatively
local topographic effects, while the effects of larger mountain features will
have been absorbed by the trend. On the other hand if no prior smooth-
ing has been used then the data will possibly reflect the effects of mountain
features some distance away, so that a larger mask should probably be used
for the altitude function calculations. A disadvantage of using a larger mask
would be that as the number of points in the mask increases, so does the
potential complexity of possible topographic patterns, so that it might be
necessary to use orthogonal functions of higher degree to obtain a realistic
approximation to the surface. Another problem with using a large mask is
that the gridded altitude data is not currently available for some of the areas
north of the South African border, so that as the grid size increases, there
are an increasing number of data sites for which we cannot calculate the

necessary functions without some additional estimation.

5.3.4 Cross-Validation

In order to decide on the optimal grid size and also on the optimal degree of
the £ functions to be used in the external drift kriging procedure, a number of
test sites were selected as described below, and the values at these sites were
estimated from the remaining sites using a range of grid sizes and functions.
The sum of the squared estimation errors at the test sites was then used to
compare the various options.

Thus, for a given grid size, the corresponding orthogonal aI('.itude' fune-

tions were first calculated and stored for each point within southern Africa.
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Then the kriging estimation process was carried out firstly using no topo-
graphical information, then using only the term &g, that is, the average
altitude, then using only first degree functions, that is, including £15 and &g,
then using first and second degree functions, and finally using the full set of
third degree functions. For any sites where the external drift matrix X in
equation 5.4 was singular, (this could happen for example if all the altitude
values in the mask were identical) a drift of lower order was substituted until
a non-singular matrix was obtained.

The whole process was repeated twice; once using the de-trended param-
eters, (the trend estimation procedure is described in Appendix B), and once
with the original parameters. In all cases, a moving window version of kriging
was used, such that the closest 33 points {within 2 maximum search distance
of 120 km ) were selected. In those parts of the country where the stations
are fairly dense the closest 33 points were generally all within a radius of not
more than 60 km. If the number of points found within the maximum search
distance of 120 km was insufficient for estimation with the chosen degree of
orthogonal functions then a drift of lower order was used at that site. For
example, if a cubic drift was selected, but less than 30 data points were found
within 120 km of a given location to be estimated, then a quadratic drift was
used, if less than 20 data points were found, then linear drift was used, while
if less than 10 data points were available, then only £5p was used.

In selecting a set of data points as test sites to cross-validate the various
options it must be remembered that the data, that is, the rain parameter
values, are themselves estimated values subject to error, so that we do not
have “true’ data values with which to compare our estimates. It was therefore
decided to select from each Weather Bureau block the rainfall station at which
the variance of the estimate of DEPAQ was a minimum, and to use these
points as the test points, No test point was selected from blocks having less

than five data points, as this could make the resultant data set rather sparse
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degree of orthogonal function

with no de-trending || with prior de-trending
grid size 0 1 2 3 0 1 2 3
5%x85 363 | 378 | 437 | 568 || 373 | 387 | 443 | 358
15 % 15 366 | 373 | 410 | 466 |) 377 | 383 | 417 | 466
25 x 25 374 | 385 | 391 { 437 not calculated
35 x 33 378 {400 § 413 | 465 not calculated
no altitude || 381 | not applicable || 386 [ not applicable

Table 5.2: Mean squared estimation error: DEPAO.

around that point. Apart from these omitted blocks the 373 test points are
thus roughly on a grid across the country, with one in each Weather Bureau
block. The decision to use the variance of the parameter DEPAQ as the
selection criterion was based on the fact that this parameter is probably the
one most sensitive to topography.

. The levels of the various factors used in the cross-validation exercise were:
o grid size: (5 x 5, 15 x 15, 25 x 25, 35 x 35 minutes of a degree)

¢ degree of orthogonal functions: (0,1,2,3) |

® prior dewtrending / no prior de-trending

For each rain model parameter the mean squared estimation error, averaged
over the 373 test points, was calculated for various possible combinations
of the factors shown above. The optimal factor combination could vary
depending on the specific rain parameter under consideration. In practice,
results were very similar for all parameters and thus only results for the
parameter DEPAQ are given here (Table 5.2).

It is clear from the results that prior de-trending of the data gwes no

improvement. The spurious correlations at short lags which were induced by
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the smoothing process (see Appendix B) may well be responsible for this.
Also, the fact that local kriging was used throughout means that the effects
of trend are likely to be small, and thus the de-trending only introduces an
extra level of complexity into the kriging process, apparently without any
compensating gain in accuracy.

A rather surprising feature of the results is that fitting the more complex
topographical models produces poorer results, although the deterioration
15 less marked for the larger grid sizes. The estimation using the average
altitude £op does however give a small improvement over estimation ignoring
altitude.

These results are made clearer if we graph the absolute values of the
errors at individual test sites, as in Figure 5.9. We see from these graphs,
which are based on a grid size of 9 x 9, that, although the models using
average, linear or quadratic altitude generally give rise to smaller absolute
error than the model ignoring altitude, the quadratic model gives rise to one
very poor estimate, and the cubic model gives two. Bearing in mind that
we may be extrapolating the altitude functions; that is, the values of the £
at the point being estimated could be outside the range of the { values at
the neighbouring data locations, it is not so surprising that we occasionally
get rather poor estimates., Thus the more complex models are less robust.
The fact that the models which do not include altitude at all do almost as
well as the models with altitude is probably due to the fact that the test
points, which were chosen for their low variance, are typically stations with
many years of data and not necessarily at high altitude, so that a simple
interpolation from the neighbouring data points gives fairly accurate results.

In order to show more clearly t,hg effect of including altitude in the mod-
els, parameter estimates were calculated at one minute intervals along two
transects; Figure 5.10 shows the estimates of DEPAO along the two tran-

sects, together with the altitude values. In the first, running west to east in
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the Jonkershoek mountains near Stellenbosch, there are a number of rainfall
stations within the mountains, so that the ordinary kriging model without
any altitude functions follows the shape of the mountains quite well. In the
second transect, running west to east across the mountain ranges just north
of Porterville, the model without altitude does not pick up the individual
mountain peaks at all as there are few rainfall stations in the area, while the
model including £y shows a small rise in DEPAOQ as each peak is crossed.
By contrast, the values of DWAD, which is a measure of the probability of
rain, taken along the same transect (Figure 5.11), show almost no response
to altitude; the values decrease steadily as one moves west, away from the

coast.

18004 ++, K. Bokkeveld; latitude 32°50' S .2 1

2.3

2.5

Altitude {m}
DwAQ

c L] L] L) Ll T
1130 1140 1150 1160 1170 1180 1193'!
longitude (minutes)

——— altitude + kriging + altitude > krging anly

Figure 5.11: Predicted DWAO and altitude.

On the basis of these results it was decided that the final estimates should
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be done without prior de-trending and including only the term £gp in the drift
function. Further checking of grid sizes suggested that a grid of 9x 9 would be
optimal, and this was used for the final estimation at a grid of sites covering
the country at 1 minute by 1 minute intervals. Maps of the estimates at,
intervals of 30 minutes by 30 minutes, that is, at the centre of each Weather

Bureau block, are shown in Figure 5.12.
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Figure 5.12: Estimated parameter values at centres of Weather Bureaun

blocks (amplitude parameters) (contd.).
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5.4 FEstimation of the Phase Parameters

The phase parameters of the daily rainfall model are circular in nature. In
particular the first phase parameters take values between 0 and 365 while the
second phase parameters take values between 0 and 365/2. Given two sites,
one with ¢, = 364 (December 30) and the other with ¢; = 3 (January 3), say,
an obvious estimate of the value of this phase parameter at a site situated
midway between the two sites would be given, not by the arithmetic average
(364 + 3}/2 = 183.5, but by the value ¢; = 1 {January 1). From this simple
example it is clear that normal methods of calculation are inappropriate for
ciccular data. Such data arise in a number of fields. The most common
examples arise either from directional data in two-dimensional space, such as
in studies of wind direction or direction of magnetization of reck specimens,
or else from periodic phenomena, such as the time of day or the time of year
of the occurrence of certain events. The phase parameters of the rainfall
model are of the latter type. Many other examples are given in the texts by
Mardia (1972}, Batschelet (1981) and Upton and Fingleton (1989).
Statistical techniques for circular data tend to be more computationally
complex than their counterparts for data taking values on the real line. No-
tions of correlation, regression and bias are still the subject of discussion
(Mardia (1975), Jupp and Mardia (1989)). In particular, the development of
smoothing techniques for spatially distributed circular data is very much in

its infancy.

5.4.1 Smoothing Methods for Circular Data

Watson (1985) is perhaps the first to discuss the problems of interpolat-
ing and smoothing circular data available at a number of spatial locations,
and he outlines a couple of possible approaches. For the interpolation prob-

lem he suggests the use of a weighted average of the data points, with the
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weights chosen proportional to the inverse of the square of the distance from
the point to be estimated. He goes on to outline a possible method for
smoothing spatial directional data, represented by angles 8y, ...8,, based on
calculating estimated values f(2z;) to f{z.) at the given spatial locations z;,

({=1,2,...n} to maximize

D kicos(l; — f(z))+1 D cos(f(z:) — f(z;))/di;

i=1 1<i<ign

where k; is some inverse function of the measurement error variance of the z’th
data point, d;; is some monotonic increasing function of distance between the
¢’th and j'th data points and 7 is a smoothing parameter. Watson does not
give full details of the method; in particular, the discussion does not explain
how tﬁe method generates estimates at points other than the original data
locations z;. Also, if the original data locations are clustered in space, then
excessive weight will be given to ‘high density’ areas. This criticism applies
also to the simple weighted average method.

Mendoza (1986) has subsequently implemented a method of smoothing
circular data available at locations on a plane and illustrates its use to smooth
data on the cross-bedding directions of sandstone. His method, which is
rather similar to Watson's except that it uses a spline-based measure of

smoothness, finds f(z) to minimize

Zw,—(l — cos(8; — f(z:)) + ARa(S)

i=1
where 8; is the observed angle and f(z;) the smoothed angular value at the
’th location, w; is a weighting factor for the i’th data point and Rz(f) is a
measure of roughness of the function f. The roughness criterion is similar to

that used in spline-smoothing and is given by

62 62 32
Ral1) = [ [t + 25 1 + (s e
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Figure 5.13: Re-labelling of circular values.

Whereas for most calculations involving directional data only trigonomet-
ric functions of the data values are used, so that 6; and 6; + 360 (in degrees)
are equivalent, in the calculation of Ry(f) such values are not equivalent, so
that it is first necessary to choose the value #; to represent each data point.
Mendoza suggests that these values should be chosen ‘so that observations
are not rougher than they should be'. Thus, for example, a sequence of adja-
cent values (in degrees) of 240 300 350 30 is re-expressed as 240 300 350 390.
This may not be easy to achieve consistently for spatial data. For example,
Figure 5.13 shows some data values in the south-western Cape, taken from
the values of WWAUD (converted to degrees), in which smoothing the data
along the path indicated by the dotted line from the point A (192 degrees)
to the point B leads to a labelling of 381 degrees for point B whereas smooth-
ing the data along the path indicaied by the dashed line leads to a value of
21 degrees for the same point; the lack of a natural ordering of points in
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Figure 5.14: Vector distance and angular distance.

two dimensional space.means that appropriate values may not be uniquely

defined.

I”.Young (1987) extends the technique of kriging to vector data in a natural
wa.jr, using the Euclidean norm as a measure of distance, and suggests that
the resulting technique will be appropriate for directional or circular data.
This is not the case however, since there is no guarantee that the vector esti-
mate resulting from the vector kriging process will in fact be of unit length,
and thus it may minimize the vector distance but not the angular distance.
Thus, for example, in Figure 5.14 the vector B is closer (as measured by the
Euclidean norm distance) to vector O than is vector A. However, in terms
of angular distance, A is closer to O than B is. To get an estimate which
minimizes the angular distance it is necessary either to constrain the solution

to lie on the unit circle, or else to try to minimize angular distance directly.

In the next section we explore the feasibility of extending kriging in this

way.
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5.4.2 Kriging for Circular Data

We start by reviewing some basic notation and summary statistics for circular

data.

Means and Vartances for Circular Data

Circular data can be represented by points on a circle of upit radius. Where
the data are not directions, as in the present application, the range of values
can easily be mapped on to the circle; for example, in the case of the first
phase parameters of the rainfall model , which take values between 0 and 365,
we can multiply the values by 2x /365 to get an equivalent value in radians.
The mean of the data is then defined to be the direction of the resultani
vector. That is, if we represent the data points by the unit vectors e,,es,
... &y, with polar coordinates (1,8),(1;82), ...{1,8,) then the mean vector

of the sample is given by

m= Ze;/n

i=1
If we assign a unit mass to each data point in Figure 5.15, then m represents
the centre of gravity of the data. The cartesian coordinates of m are T =

Y. cosf;/n and T = Y _sin§;/n and the polar coordinates are (R, §) where

and

tanf = Zsinﬂ;/Zcos 8;

This has a singularity if )" sinf; = _ cos 6; = 0, so that the centre of gravity
is at the origin, and thus the resultant direction is not uniquely defined.

It can be shown that

R= icos(&; —8)/n

=1
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Figure 5.15: Mean of circular data.

and thus the measure [1 — R| provides a measure of the variance, with prop-
erties which are in many ways analogous to those of the variance for non-
circular data (Mardia, 1972)

To obtain a weighted mean with weights wy, ... w, it is natural to de-
fine this as the direction corresponding to the point with coordinates ¥ =
> wicosfi/n and § = Y w;sind;/n, which is equivalent to assigning the
weights as masses to the data points and finding the centre of gravity as
before. Note that multiplying all the weights by a non-zero constant, {, does
not affect the direction of the weighted mean, but changes the length of the

mean vector R by a factor 1.

The Kriging Equations

We consider a model equivalent to that used in ordinary kriging, that is, we
assume the data are a realization of a stochastic process with common mean
and variance, and that the covariance, to be defined below, is a function of

distance only.
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Given unit vectors eq,ey,. .. e,, at spatial locations z;,23,...2,, we seek an
estimator, based on the weighted sum 3 wie;, of the value at some location
zo. Specifically, if 3 w;e; is written in polar {orm as { Ry, én) then we seek w
to minimize

E[1 — cos(fy — 8,)] (5.8)

where fp is the unknown angular value at location 2g. The use of the function
1- cos(é—é’) as a measure of estimation error is common in circular statistics,
and is analogous to the usual least squares criterion (Fisher and Lewis, 1985).
We show in Appendix B that an approximate solution is given by:
K-ls K-s
VsK-s T

where ki; = Efcos(8; — 8;)), s; = E[cos(8; — 8g)] and » = V&' {15 is a scalar

(5.9)

normalizing constant.

For the case where the data include measurement error, as is the case
with the rainfall model parameters, so that we observe J; = 8; + ¢; instead
of 8;, a similar argument shows that the approximate solution to obtaining
an optimal estimate of 8y is given by the same expression but with &;; =
Elcos(d; — ;)] and s; = E[cos(d; — bp)).

The form of the solution given by equation 5.9 is, apart from the normal-
izing constant r, exactly analogous to the solution of the usual (non-circular)
problem of simple kriging. The form of this solution is intuitively appealing,
in that it gives more weight to those data values which are close (in space)
to the point to be estimated {via s) and gives less weight to points which
are clustered with other data points (via {~1). Thus, although equation 5.9
gives only an approximate solution to the minimization of equation 5.8, it
can be justified in its own right as a form of weighted average which caters
specifically for clustered data, and can also cater for varying error variances.

It is thus of interest to see how well such a method performs in practice.
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The performance of the method was therefore compared with the simple
weighted average method described in Section 5.4.1, using a number of test
sites. Before carrying out the estimation it is first necessary to model the

spatial covariance so as to have values for E[cos(?; —d;)] and E[cos(d; — 8y)].

Modelling the Spatial Covariance

A number of measures of association have been proposed for circular data,
and reviews can be found in Jupp and Mardia (1989) and Breckling (1989).
For our purposes here it suffices to find a measure of the relationship between
two circular variables with the same distribution, and, in particular, with the
same mean, since, in using local kriging, trends can be ignored. In view of

the form of the kriging equations an obvious choice is
o;; = Efcos(8; — 8;)]

This is in fact equivalent to the measure proposed by Breckling (1989) in the
case where the means of §; and 8; are the same.

 If we assume that the covariance is a function of distance only then we
can estimate the covariance function from the data by plotting cos(8; — 8,)
as a function of d;;. Alternatively we may prefer to define a circular semi-
variogrﬁm as

v(h) = E(d.;:h}[%(l — cos(0; — 6;))]

as a circular analogue of the usual semi-variogram, where the expectation
is over all locations 1 and j with separation distance k. The circular semi-
variogram as thus defined takes values between 0 and 1.

In order to study the empirical circular semi-variogram as a function of
separation distance we can plot the average of the values (1 — cos(8; — 8;})/2
for all pairs of points with a given separation distance as a function of the
separation distance. When the data is measured with error, this empiri-

cal semi-variogram will be increased by an amount depending on the error



112 CHAPTER 5

variance. Specifically, suppose that we observe angular values J; such that
i =8; + ¢

where the angles ¢; represent measurement error, so that we may assume that
the values of ¢ at different sites are independent of one another and also of
the values §;, We also assume that the distribution of ¢; is symmetric with

mean zero so that E[sine;] = 0. Then we show in Appendix B that
Elcos(d; - ;)] = E[cos(8; — 8;)] Ecos €;) E[cos ¢;] (5.10)
Similarly
Elcos(¥; — 8g)] = E[cos(f; — 8o)] Efcos &]

Estimates of the terms E[cos¢] are available for each parameter at each
rainfall station from the bootstrap variance calculations described in Chapter
4, and thus it is possible to estimate the covariance of the underlying 8 values

using the estimator

cos(¥; — v;)
os(h) = 1/Ny {Z(E[cos[fe)]E[COS(fi)])}

where the summation is over all N, pairs of points a distance A apart. A

similar adjustment may be made to the semi-variogram calculated from the
observed ¥ values to get an estimate of the semi-variogram of the 8 values.
Figure 5.16 shows the unadjusted and adjusted semi-variogram for each
of the phase parameters of the daily rainfall model. The effect of the adjust-
ment is less marked for the first phase parameters than for the second phase
parameters, indicating that the former are subject to relatively less estima-
tion error. After adjustment, the graphs show little evidence of any residual
nugget effect, which means that the phase parameters do not change signif-
icantly over short distances. This confirms our earlier suggestion that while
the amplitude parameters would be sensitive to local topography, the phase

parameters would not. The few negative values in some of the adjusted
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Figure 5.16: Semi-variograms: phase parameters.
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graphs result from the measurement error adjustment; clearly, in fitting a
model to such data one would require all the fitted values to be positive,
Using the weighted least squares method discussed in Section 5.3.1, an ex-

ponential model, given by the equation
¥{h) = s(1 — exp(—3h/r)) (6.11)

was fitted to each of the adjusted semi-variograms. In this equation s is the
sill and r is the effective range, that is, the range at which the value of ¥
reaches 95% of the sill. Table 5.3 gives the sill and effective range for each

rain model parameter.

parameter || sill r
WWP1 0.0112 | 10
WWwWp2 0.1110 { 22
DWP1 0.0157 | 11
DWP2 0.0078 | 28
DEPP1 0.0659 | 29
DEPP2 0.2790 | 13

Table 5.3: Fitted semi-variogram models: phase parameters.

5.4.3 Validation and Discussion

To test the circular kriging method proposed in the previous section, the
method was compared with the simpler method of inverse distance weighting
using a test set of 101 rainfall stations and a data set of 325 rainfall stations
selected from the full data set. The test sites selected lie approximately
on a regular grid, with one station having been selected at random from
every alternate Weather Bureau block, while the test sites were selected at
random from the remaining stations in such a way as to have a s'imilar spatial

distribution to the full data set (Figure 5.17).
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Figure 5.17: Map of data sites used in circular kriging validation.

The data sites are rather sparse; while this can be expected to result in
rather poor estimates, it should also help to highlight the difference between
the two methods, since, if too dense a data set is used, almost all smoothing
methods will give good results. In both methods a search radius of 300
kilometres was used, that is, only points within 300 kilometres of the point

to be estimated were included in the calculation.

The average of the error terms, [1 — cos(¥; — ;)] (averaged over the 101
test data points), was compared for the two methods, and the results for the
parameter WWP1 are shown in Table 5.4 below, from which it is clear that

the kriging method has resulted in considerably lower errors on average.

There are several reasons why the kriging method may give better results
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method av. error
inverse distance 0.1318
kriging 0.0988

Table 5.4: Comparison of prediction errors: WWPL.

than the inverse distance method. One is, of course, that in using the inverse
distance method we have made no attempt to optimize the particular inverse
distance function used; it would be possible to use a parametric function
of distance, with the parameter value controlling the effective bandwidth
selected, for example, by cross-validation, but this to some extent reduces
the main advantage of the inverse distance method, namely its simplicity.
Another possible reason for the superiority of the kriging method is that
the inverse distance method does not take account of clustering in the data;
however, a study of Figure 5.17 suggests that this is probably not of great
consequence for this particular data set, as the clustered data points generally
have similar values to the more isolated points around them. A third reason
for the superiority of the kriging method is its explicit use of the error variance
of the data; the inverse distance method will give relatively high weight to
the few points which are closest to the point to be estimated even if those
data points have high measurement error, whereas the kriging method will
adjust for this; this is quite important in the present application where the
error variance, as measured via the bootstrap procedure, was relatively high
at some sites.

In comparing individual estimated values with the original values in the
test data set one must bear in mind that even the values in the test data
set are not entirely accurate but are subject to the parameter estimation
errors as estimated by the bootstrap procedure. Therefore, ‘iu plotting a
map of the values estimated by the kriging method (Figure 5.I18) we have

included for comparison, not the original data values, but a range of values
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Figure 5.18: Map of kriging estimates at test sites.
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(indicated by the two short lines emanating from each site in the figure) which
represent a range of ¥;4¢;, where J; is the original data value at that site and
g = arccos(Z;Sg cos(?; ~ ¥;;)), where the J;; are the individual bootstrap
estimates described in Chapter 4. For our data set this range corresponds
roughly to an approximate 95% confidence interval for data having a von
Mises distribution, based on the formulae given in Section 9.6 of Upton and
Fingleton (1989).

It can be seen in Figure 5.18 that the fit of the estimated values is gen-
erally good, except for five sites which lie in the area of change-over between
the winter rainfall area in the south west and the summer rainfall area fur-
ther to the north and east. The test data set is relatively sparse in this area;
clearly more data points are needed for accurate estimation in this region.
In practice, of course, the full data set has over 5000 points compared with
the 325 used here, which should give much more accurate results throughout
the country.

In the comparison described above the semi-variogram parameters were
estimated directly from the empirical semi-variogram. However, since the
solution given by equation 5.9 is only approximate there is no reason why
these parameters should be optimal and it is likely that better results would
be obtained if the parameters ¢ and r were estimated via cross-validation.
However, the cross-validation approach is more computationally intensive
and it is thus of interest to test the sensitivity of the kriging method to the
semi-variogram parameters. The estimation process was therefore repeated
with a range of values of these parameters, but the results suggested that
average estimation error was fairly insensitive to variation in the sill and
range parameters (McNeill, 1993). Thus it would seem that, for this data set
at least, using cross-validation to estimate optimal parameters is not likely to

give much improvement over the computationally quicker method used here,

based on modelling the empirical semi-variogram.
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Another possible method of improving the accuracy of estimation would
be by re-estimating the semi-variogram locally, as suggested by Haas (1990).
For example, it is likely that the effective range of the spatial covariance
would be smaller in the change-over region between the winter and summer
rainfall area than it is in the middle of the summer rainfall area, However,
as mentioned in Section 5.3.2, such a moving-window approach is excessively
computationally intensive and thus effectively impractical in a project such
as this. In -addition, the advantage of a locally-calibrated semi-variogram
model must be offset against the fact that relatively few data points will be
used to estimate each local model and thus the model-fitting procedure will
be less robust.

For the final estimation of the phase parameters throughout southern
Africa, the semi-variograms for all parameters were estimated using the full
data set, with the fitted semi-variogram models given in Table 5.3. Fig-
ure 3.19 shows maps of the resultant estimates at the cenire of each Weather

Bureau block.
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5.5 Validation

The validation of the original daily rainfall model by Zucchini and Adamson .
(1984a) was discussed in Section 3.4. Briefly, the relevant characteristics of
simulated daily rainfall data generated by the model at individual rainfall
stations were compared with the corresponding values deduced directly from
the original data. The kriging process described in this chapter extends the
original 5000 stations at which the model is available to some 500000 points
throughout southern Africa. Since most of these points do not coincide with
the location of rain gauges, it is not possible to validate them in the same
way. In addition, at those grid points which do coincide with rainfall stations
we do not expect the estimated model parameters for the grid point to be
equal to the values fitted to the original data at the station, since the kriging
process takes into account the estimation error in the fitting of the original
parameters and also the error introduced by the limited accuracy of the
station locations. However, a comparison of grid peint and station values
will give some indication of the validity of the kriging process.

Rather than comparing individual model parameter values, it is more
meaningful to compare derived characteristics, such as the mean annual pre-
cipitation, based on simulated data generated by the model; this enables us
to test the model as a whole in the form in which it will be used in prac-
tice, and also allows comparison with the same statistics derived from other
sources. We therefore calculated a mean annual precipitation (MAP) at the
location of each of the 373 test sites described in Section 5.3.4 using four

different methods:

¢ Using a 100 year simulation based on the daily rainfall model parame-

ters estimated for that station.

¢ Using a 100 year simulation based on the daily rainfall model parame-
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ters estimated by the kriging procedure at the grid point with the same

latitude and longitude as the station.

s Using the MAP calculated directly from the daily rainfall data for that
station held by CCWR.

¢ Taking the value of MAP from the CCWR data base of gridded MAP
values, as estimated by Dent et al. (1989).

The results are shown in Table 5.5. There are a number of reasons for
the differences between the; four values; in particular, sampling variability
introduced by the simulation process, uncertainty in the exact station loca-
tion relative to the grid point, estimation error in the daily rainfall model
parameters, estimation error in the kriging procedure, estimation error in the
CCWR gridded MAP value calculations, outliers in the daily rainfall data,
and also the use of data for a different time period (the grid values estimated
by Dent et al. (1989) include data up to May 1987 and thus exclude the
most recent rainfall data. In general, however, the agreement between the
four sets of figures is quite close.

The MAP estimates based on the kriged values are also compared with the
other three sets of values in Figure 5.20. As might be expecil'.ed, the agreement
with the values based on the daily rainfall model fitted to the station data
(diagram A) is the closest; any discrepancy is due to the allowance for model-
fitting error and the influence of neighbouring rainfall stations and of the
altitude data in the kriging process. In diagram B, where the kriged values
are compared with those calculated directly from the CCWR rainfall data
at the station, the discrepancies incorporate also any inherent ‘lack of fit’
of the seasonal Markov chain model described in Chapter 3. In diagram C,
the discrepancies are generally greater, as they now include also the effects
of estimation errors inherent in the regression procedure used .by Dent et al.

(1989).
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Station
Code
2885'W
3032 W
4891 W
SBDS A
673aW
7608 A
8136 A
2815 W
11065 W
12215W
17582 A
21055 W

2038 W -

20878 W
24197 W
25500 W
26510W
27302 W
28838 \W
29805 W
0080 W
NITW
2200w
338 W
T8I W
J5179 A

JIETZW
37696 W
40653 W
MITW
42227 W
43109 W
44050 W
45134 W
48470 W
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48042 W
40080 W
50887 W
51430 W
52580 W
sz wW
54505 W
55500 W
s5a70a W
STOA0AW
581 W
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S1208W
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&3538 A,
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TRISW
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5
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tEENEREIREERE
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EEQHAN

-]
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154
g7a

473

158
318
424
)

SEEHERUERE

RIBR

a4
120
187
195
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Table 5.5: Comparison of MAP values (in mm).
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Station
Coda
7227 A
79632 W
60694 W
B30a07 W
B3572 A
B4159 W
asnaw
[ralix
88203 W

| 893Bs W

196 W
21835 W
g1 W
83314 W
4730w
95119 W
|1 w
97239 W
sa1pwW
98811 W
100329 W
101804 W
10Zre2 W
10AS1EW
104762 W
1062850 W
107366 W
109215 W
110385 W
111373 W
112348 W
113025'W
114747 W
116080 W
117447 W
118395 W
11208 W
120238 W
121018 W
122480 W
123304 W
125150 W
127485 A
18032 W
134478 A
1T W
130041 W
139458 W
10516 W
141329 W
142805 W
142579W

B0 W

145029 A
146568 W
147409 W
146352 A
149082 A
1530085 W
151604 W
152190 W
157035 W

Latitude

a2
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-32

-
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o
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31
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-
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a1
1
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T
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20
3
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72
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GCWR
{grid)
313
956
647
693
223
240
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Table 5.5: Comparison of MAP values (contd.).
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Station  Latituda
Codae

165808 A 30 58
166238 W .30 58
167665 W -3p a5
168250 W 30 40
160080 W 0
170008 A A0 28
174758 W 30 36
172183W  -30 43
173487 W B0 47
174550 W 30 40
175371W 30 A
176631AW 30 A1
17178 A 30 58
178689 W 30 59
179790 W 30 40
160032 W 30 32
18107aW 30 42
182373 A -ap 48
W50ZAW 0 23
193561 A ST |
196375 W <30 15
198836 W 30 26
199107 W 17
200486 W 30 18
201361 W 30 ¢
202575 W 3 5
203857 W 30 27
204138 W =30 18
205385W  -30 25
206842 W 30 3
207560 W 30 20
208406 W 30 18
209035 W a0 8
210002 W a0 2
211861 A a0 1
214870 W 29 40
223344 W 29 4
224430 W 29 40
2256TOW 20 4%
228327 W 20 57
ZN2TW 29 a7
228567 W 28 57
229558 A 20 48
230816 W 29 34
231279W -2 %
232870 W 28 43
233044W 29 M
2BTTW W 47
28UTIW 3 J
Z3B83T A 2 57
DI4R2 A 20 a2
208MW -2 5
241019W 29 48
B512W o
252804 W 29 24
253648W 20 18
258202 W -2 2
256453W 23 3
25T84AW 28 5
256458 W 22 B
2/WTITW B T
2800TAW 29 18
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Station
Code
26172'W
2629w
263855 A
264022 W
268640 A
269532 A
270544 W
27 0ag W
AW
2082823'W

283088 W

286824 W
aTd W
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290483 W
201899 A
25461 W
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3T W
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29
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-29
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-28
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Table 5.5: Comparison of MAP values (contd.).
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Station
Coda
J58634 W
369238 W
JT0466 W
INE7e W
J7zesz w
373680 W
74204 W
75366 W
392148 W
393778 W
304874 W
395855 W
296812 W
aoToBE W
298556 W

AJ3TSW
410133 W
411175W
430354 W
431896 W
432237 A
423858 W
434020 W
435400 W
AIBTATW
437134 A
438315W
439784 W
440157 W
HITTTW
H2TA
ALMSTW
A4TABW
448741 3
488318 W
AT1480 W
AT2175W
473838 W
474198 W
475881 W
475072 W
477300 W
ATBIBOW
4TAS45 W
480889 W
481187 W
482257 W
483053 W
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25
25

34
54
36
38
42
30
54
e ]
2B
28

4
15

3
28
16

7
23
18
21
14
bl ]

BRsa2geeqgiss9a8aqgen

TP TY-ES

g5y

Longituda

28
29
29
a0
a0
)
n

BEBPRRBNNIVBRRRRYERE

E3BURBENNERNLBERBBRNNED
EERERS8EER 2o~ Bo i RaYRERloRslREERaRI YN 28U NEuERe

Epraeqy

52
L}
97
20
59
23
a9
13

&

Yoar
of data
BO

B

g7

73

75

&3

"

&1

85

34

14

38

T4

i |

JILARRIEIRBR2I2/LIJBEBAAGAB2G

DAmodel DRAmodel GCWA

g

RESENAIRRLER

573

AU BRI GERER R INEEERE

FREILERS

z
~

gEasesgagEne

GEgEE

gEEBENERE
BEREREEEAEBREETE

gyige

JEEIES

Lz )

REERIECRE

B

{atn)
721
851
7as
738
781

1531

58

b= |
[*]
-

tBERISHERYRES

§38EEREE2 RS

-
Refzzpegss

SESREER

L3

RESEEERBORAEEERS

ﬂg@
3 -
edn

BRI2BEBREASEERURYES

-_

"

Table 5.5: Comparison of MAP values (contd.}.

129



130

Station
Code
510712'W
511463 W
312613 W
513382 W
S14618'W
515826 W
516285 A
SAT40W
518859 W
518017 W
S50 W
545628 W
548082 W
540054 W
530567 W
551120 W
SS210'W
553851 W
554788 W
555487 W
558110'W
557029 W
585528 W
566441 W
587350 W
5884068 W
5859594 W
590307 W
591538 W
593015 W
594141 W
595202 W
53011 W
6311 W
832465 W
8IS W
M0 W
85078 W
B38308 W
BIT7T20W
438748 W
638504 W
673284 W
675117 W
G705 W
877804 W
aTHT2S W
BTO268 W
680354 W
S81080 W
718474 W
TIBATOA
720727 W
T2 w
722457 W
723080 W
F2ATOO W
762532 W
763315 W

TR W -

7650889 W
766863 A

Latijude
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-24
24
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Table 5.5: Comparison of MAP values (contd.).
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Figure 5.20: Comparison of MAP values (in mm).



Chapter 6

Implementing the Model

The application of generated daily rainfall sequences to estimate statistics of
interest has been discussed in Zucchini and Adamson (1984a) and Zucchini
et al. (1992). This chapter describes the algorithm required to generate the
rainfall sequences.

To generate an artificial rainfall sequence at a particular site one first
needs to know the parameters of the model for that site. If there is a rainfall
station at the site whose model parameters have been calibrated, then it is
only necessary to know the Weather Bureau station number. If there is no
rainfal] station at the site, then one has to use the interpolated parameter
values. To obtain these one needs to give the longitude and latitude of the
site.

The user also specifies the length (in years) of the required generated
sequence. The output is in the form of daily values given in tenths of a mm
so that, for example, a rainfall depth of 10,2 mm is represented by the integer
102,

Algorithm for generating artificial rainfall sequences

Step 1: Input

— number of years of daily rainfall to be generated
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e Read NG

— either station number of interest
¢ Read STNNO

— or grid points (i.e. longitude and latitude) for the site.
s Read LONG,LAT

Step 2: Extract model parameter estimates for the site of interest from the data
base.
o Get WIWWAD, WW AL WW A2, WWP1, WW P2, DW A0, DW AL, DW A2,
DWP1,DWP2, DEPAN, DEFPAL, DEPA2, DEPPY,DEPP2,CV

Step 3: Set initial state of day to be dry.
o STATE=0
Step 4: Compute
— Probability that day t is wet given that day ¢ — 1 is wet, ¢ =
1,2,...,365

o W =10.01721421

o LOGIT=WWAO+ WWAlscos(W=«(1—1-WWPL))+
WWA2xcos(2* W (t — 1 — WWP2))

o PWW(t) = exp(LOGIT)/(1 + exp(LOGIT))

— Probability that day ¢ is wet given that day t — 1 is dry, i =
1,2,...,365

o LOGIT = DWAD + DWAL *cos(W  (t — 1 - DWP1L)) +
DW A2+ cos(2+ W * (t — 1 — DW P2))

e PDW(t) = exp(LOGIT) /(1 + exp{LOGITY)

— The shape and scale parameters of the Weibull distribution.



134 CHAPTER &

*» Bl =4,
The shape parameter, B, is given by equation ( 3.10),

e GI=1/T(1+ BI)

» M(t)=(DEPA0+ DEPAl xcos{W #(t—1 - DEPP1)) +
DEPA2xcos(2« W+ (t -1~ DEPP2)))«GI

Step 5: Loop over years NY and over days ¢.
s NY =1,2,...,.NGand t=1,2,...,365

Step 6: Generate uniform random number between 0 and 1, inclusive (£/(0, 1)).
e Generate RND

Step 7: If U(0,1) random number is less than the probability of a wet day

following a day with the status of the previous time period then
- the status of the present time period is wet.
Otherwise

— the status of the present time period is dry.

e If AND < PWW(t) given STATE =1
¢ or RND < PDW({t) given STATE = 0 then

o STATE=10
e Else
e STATE =1

Step 8: If present state is wet than determine the rainfall depth, (else set rain
= 0).

o If STATE =1 then
o GR(NY,t) = M(t) « (— log( RN D))B!
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o QOtherwise

o GR(NY,t) =0

Step 9: Repeat loop from Step 5 until enough years of rainfall have been gen-

erated.
e End of ¢ loop and NY loop.
Step 10: Output the generated daily rainfall sequence.

s Write GR(NY,1),NY =1,2,...,NG, t=1,2,...,365.

To generate and store 1000 years of daily rainfall on a 386 micro-computer
(with math co-processor) takes less than 2 minutes. A FORTRAN version
of this algorithm, which makes use of the parameter values at calibrated

stations and the interpolated grid point values described in this report, is

available from CCWR (see Chapter 7 and Appendix C).



Chapter 7

Summary and

Recommendations

7.1 Summary

The main objective of the project described in this report was to produce
estimates of the parameters of the daily rainfall model of Zucchini and Adam-
son (1984a) for sites throughout southern Africa at which there is little or
no rainfall data available, thereby making it possible to use the model to
generafe artificial rainfall sequences and study rainfall characteristics at any
given location or over any given area in southern Africa. Examples of the
type of questions that the model can be used to answer are given in Chapter
1.

The parameters of the daily rainfall model have been interpolated on a
regular grid one minute of degree square throughout southern Africa, that
is, at a resolution of about 1,5 kilometres, making the parameter estimates
of the model available for approximately 500 000 sites.

As was pointed out in the introduction, the daily rainfall model is rou-
tinely used by researchers and decision makers in a wide variety of applica-

tions. It is hoped, now that the model is now applicable at practically any
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site in southern Africa, that it will find even wider application.

It needs to be emphasised that although the theory behind the model
is rather technical, the model is easy to use by anybody who can operate a
micro-computer. No statistical or other specialist knowledge is required to
apply the model. The feedback that we have received, during the last eight
or nine years, from users with very different mathematical backgrounds, has
been encouraging; no-one has indicated that they found the model difficult to
apply. We are not aware of any user who has misunderstood what it is that
the model provides or who has misinterpreted the estimates derived from the

model.

QOne of the by-products of the project has been the contribution to the
theory of kriging, namely the development of a technique for the kriging
of circular variables, described in McNeill {1993). The report also briefly
reviews kriging and other interpolation techniques and comments on their
suitability in the context of hydrolegical data. This provides a convenient
starting point and an up-to-date list of references for researchers wishing to

interpolate other values,

7.2 Recommendations

The daily rainfall model has 16 parameters. We have generated estimates of
these parameters for approximately 500 000 grid points, covering southern
Africa on a grid of 1’ by 1’. This information is currently stored at the
CCWR; the data file occupies 3 megabytes of computer disc space for each
of the 16 parameters or almost 50 megabytes in total. As this quantity
of information is too large to be conveniently distributed in its entirety to
individual researchers and other interested parties, we recommend that the

CCWR be approached to;
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¢ store the data.

o extend their present service of supplying artificially generated rainfall
sequences via the ‘DRAINGEN’ program to incorporate an option for
using the grid point data. {They currentlj-r supply generated sequences
for the 2550 stations covered in the Zucchini and Adamson (1984a)}
report.)

s maintain an archive of the interpolation software which was used to
estimate the grid point values (see Appendix C) so that it will be
possible to re-run the programs at some future date to update the

parameter estimates.

We also recommend that some consideration be given to finding appro-
priate means of publicising the existence of the model and its potential uses.
We believe that the number of current users is much smaller than the num-
ber of potential users, who are either unaware of the model or who might
be mistakenly under the impression that it is a complicated tool requiring
specialist knowledge. With this in mind, a summary version of the current
report, together with a PC compatible diskette containing a small data set
and sample programs, is currently in preparation. Further software develop-
ment, aimed at providing application tools to make optimum utilization of
the generated data, would be a valuable addition.

Further research is required to develop methodology for generating sim-

ulated sequences of daily rainfall for an area rather than a single point,
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Appendix A

Maximum Likelihood
Estimates of the Weibull

Distribution

The probability density function of the ordinary non-seasonal Weibull distri-

bution is given by

fla) = (E) (&) eeer, ez,

o &

with mean
p=al(l+1/8),
variance

o =ao’T(1+2/8)-T{1+1/8)*

and coefficient of variation

_o_(_Ta+zp
T-ﬁ_(l‘(lﬂlﬁ)*—l) '

If we allow the mean of the Weibull distribution to vary seasonally and

model this seasonal mean by its truncated Fourier series representation, that

is we define

L
pt, Ly = bigi(t),  t=1,2,...,NT, L<NT,
=1
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where ;(t) is defined as in Chapter 3, then the seasonal probability density
function of the Weibull distribution is given by

16)= (5) (m)ﬁ exp(—(afalt)f), w20,

where

u(t, L) Zaip,

=1
B =p(y) isindependent of t
M
ot) M1 +1/8)

The likelihood function of observation z; is then

e
L($) = LG fix)= Hf(.r;]_ [Bri+1/871° H—_EL ;(p

T (T(1+1/8)z
exp[ ;( L 8,@,())]

and the log-likelihood is given by

T L
() = T(logB+Blog(T(1+1/B))+ {(ﬁ —1)logz, — Blog(y _ Bipi(t))

=1 i=1

— g - ( 2. )ﬁ
RARER A\ aren

Maximum likelihood estimates can be obtained by minimising £(7) and
this is achieved by setting its first partial derivatives with respect to the
parameters, 8;, and 4, equal to zero. The first partial derivatives are given

by

6.‘_‘ 1!" - _ wilt) I(1+1/8)° zrp;(t)
1 ﬁ; ;L-lattia‘() /) ﬁ; E:'L=1 ipi(t))P+

}
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ay) T . 1 +1/B)] & oo
R R I W

T 8
log(z&(p‘(t)} (1+1/ﬁ)‘*2(Z ’;‘ (t))

i=1 t=1

Tt (1 + 1/8)
{log (Zf‘:] gisas(t)) - B + log{T'(1 + 1f5))}

These equations cannot be solved explicitly and therefore the Newton-

Raphson iterative method is used to solve them. For this we require the

second partial derivatives. These are

T

3 Z0R0)
‘Zﬂ: (Zf:r 9{%‘(1))

T g

zy ;{1 )or(t)
> :
pr (Z‘.L:l 0;@;(i))ﬁ+

<}
) _ T TY(1+1/) o~ __m
apos — B g3 ri+1/8) ;(Eilﬂm(ﬂ)

z, ¥(1 +1/8) ?
|:log (E ) g + log(T(1 + 1/;3})}

a* )
08,00,

s = BB+ 11 +1/8Y

s ety

1-19593[”
¥'(1+1/8)
T TR }
) _ et O__ 1y 1/pp L delt)
36,98 Z ST beanld) (1+1/8) ; (Z?:l 9i¢£(f))ﬂ+l

{1 - (1 +1/8) + 8 log{T'(1 + 1/8))} + log z,
L
- log (Z 9,-@.-@))”.

An algorithm for parameter estimation as well as algorithms to compute

the gamma function ['(a), the digamma function, ¥(a), and the trigamma
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function, W' (o) are given at the end of this appendix.

A.1 Properties of MLE of the Weibull dis-
tribution

The Weibull distribution was fitted to model rainfall depth and maximum
likelihood estimates of the parameters were obtained for two test stations. It
was seen that, although the parameter estimates for the mean rainfall depth
were close to thase obtained by the method of moments, the coefficient of

variation differed significantly (Table A.1).

Durban Elsenburg
Moment estimate 1.633 1.266
Maximum likelihood 1.013 0.8549

Table A.1: Estimates of coefficient of variation

According to Johnson and Kotz (1970):

1. It is not generally true that maximum likelihood estimates are unbi-
ased, and in particular the maximum likelihood estimate of the shape
parameter {#) of the Weibull distribution is a biased estimate. The

coefficient of variation, C'V, is given by

T(2/B+1)-T(1/B + 1)
T(1/8+1) '

That is, the coefficient of variation of the Weibull distribution is a

CV =

function of the shape parameter alone and therefore if the estimate of

B is biased, so is the estimate of CV.

2. If the maximum likelihood estimates are ‘regular’, in the sense of hav-

ing the usual asymptotic distribution, then the asymptotic variance-
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covariance matrix for the estimators is given by the inverse of the ma-

2636,

where £; represents the model parameters. Maximum likelihood estima-

trix with entries

tors are ‘regular’ only for @ > 2. In our case, for several rainfall stations
we have that g < 2 therefore we do not obtain correct measures of the

standard errors of the estimates.

Alternative distributions, such as the gamma distribution used by Stern
and Coe (1984), were considered for modelling rainfall depth. The coefficient
of variation for the gamma distribution is also dependent only on a shape
parameter whose maximum likelihood estimate is biased. The bias can be es-
timated if the mean rainfall depth is assumed to be constant. In our situation,
the mean rainfall depth is allowed to vary seasonally so this assumption is vi-
olated and the extent of the bias is unknown, therefore one cannot objectively
correct for bias. Also, the coefficient of variation essentially determines the
variability of rainfall, which is a property that it is important for the model
to preserve, especially in southern Africa where the variability in the rainfall
is a major feature of our climate. It was thus decided to abandon the classi-
cal approach to solving this problem and to develop alternative methods of

estimating the required standard errors discussed in the Chapter 4.

A.2 Algorithms

A.2.1 Algorithm to compute parameter estimates

Step 1: Estimate initial 5, i=1,2,...,L by

)
It
3]
=
il
o

and



Step 2:

Step 3:

Step 4:

Step 5:

A.2.2

B = /3,

where T and s is the mean and the standard deviation of the

observations z;, t=1,2,...,T, respectively.

Compute f*) and F©*), where f® is the vector of first derivatives
and F*} is the matrix of second partial derivatives, computed at

the kth iteration,

Compute the vector §¢) which is the solution to the system of NP

linear equations
pikglh) = p&}
where NP represents the number of parameters.

Set G+ = gtk _ 54 where A% contains the parameter esti-

mates at the kth iteration.

Test for convergence, for example, if the elements of f(*) are suffi-
ciently close to zero, If the convergence criterion is met then stop,

otherwise increase k by 1 and return to step 4.

Algorithm to compute I'(«)

This and all following algorithms were obtained from Zucchini and Schmidt

(1990). The gamma function is given by:

r(a)=/ t*le~tdt, a#0,-1,-2,...
1]

If & < 10 the following recurrence relationship is applied in order to increase

the argument of the gamma function to a number greater than or equal to

10:

Pla+1) = al(a).
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Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

APPENDIX

Input a
Set A=a
G=1

Test if A > 10 then go to Step 5

Set G=G=+A
A=A+41

Goto  Step 3

Set T = (1 + (0.0833333 + 0.00347222 — 0.002681327/4)/A)/A
Gamma = exp(—A + (A — 0.5) * log(A) + 0.918939) + T'*
AlG

OQutput Gamma

A.2.3 Algorithm to compute ¥(a)

The digamma function is given by:

If @ < 4 the following recurrence relationship is applied in order to increase

the argument of the gamma function to a number greater than or equal to 4:

U+ 1) = T{a) + 1/0



Step 1: Input o
Step 2: Set A=«
P=10
Step 3: Testif A >4 then go to Step 5
Step 4: Set P=FP-1/A
A=A+1
Goto Step 3
Step 5: Set T=1/(AxA)
U =T +(0.08333333 — T * (0.008333333 — T + 0.003968254))
Digamma = P +log(A)} = 0.5/A - U
Step 6: Output Digamma

A.2.4 Algorithm to compute ¥'(a)

The trigamma function is given by:

o v _ d*InT{a)

¥'(a) T eF0h-L-2..

If o < 4 the following recurrence relationship is applied in order to increase

the argument of the gamma function to a number greater than or equal to 4:

¥(a+1)=¥(a)+1/ak
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Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Input
Set

Test if
Set

Go to
Set

Output

APPENDIX

o

A=«

P=10

A > 4 then go to Step 5

P=P+1/AxA

A=A+1 '

Step 3

T=1/{AxA)

U=T=(0.1666667 — T * (0,03333333 — T » 0.02380953))
Trigamma= P +1/A+05xT+U/A

Trigamma



Appendix B
Kriging

B.1 Trend Removal by Kriging

The usual polynomial models of trend are not suitable for modelling topog-
raphy or rainfall except over fairly small areas due to the complexity of the
surfaces typically encountered. Also, methods of smoothing based on simple
moving averages, such as are commonly used in time series analysis, are un-
suitable for irregularly-spaced data. An alternative paossibility is to re-write

the general kriging model

v=7t+nite

Vi =g+ T

where g is the overall mean, and 7 represents trend, considered now as a
stochastic component with zero mean similar to n, but on a larger scale.
One can then use kriging as a filter fo separate the high and low frequency

components 7 and 5. Thus we estimate the trend as

pTT = i WYy

i=1
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where the w; are given by:

K 1 w c
1 0 —-A 1

where k;; = cov{v;,v;), and ¢ = cov(w;, 7g) = cov(m, 7). This is commaonly
known as factorial kriging (Matheron, 1982), and is similar to ordinary krig-
ing except that the covariance must be decomposed into components cor-
respanding to the high and low frequency components. While the separa-
tion of 7 and 7 is to some extent subjective since the terms small-scale and
large-scale are relative, there is often a naiural distinction apparent in the
empirical semi-variogram or covariance function. The semi-variograms of the
amplitude parameters discussed in Section 5.3 show such a separation, with
a levelling-off at a range somewhere between 10 and 40 kilometres, and this
was used as a basis for the models described in table 5.1. Having estimated
the trend component at each data point, using the equations above, we can
then subtract the trend from the original values to get de-trended data. The
semi-variograms of the de-trended data showed that the long-range trend
effects had indeed been eliminated, but also showed a spike at a lag distance
of approximately four kilometres suggesting a spurious negative correlation
induced by the de-trending process. This phenomenon is well known in the

time-series field (see for example Diggle, 1990, section 2.6).

B.2 Circular Kriging Equations

Proof of Equation 5.9
We wish to find weights w; to minimize £[1 — cos(fp — )] where (Ro, fo) is
the vector Z::-;l w;e; written in polar form.

If we write e; = (z:, y;)’ so that 8; = arccos{z;) = arcsin(y;} and ep = (o, o)’
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with #y = arccos{zq) = arcsin(yp), then we have

Sil‘lég = iw;y;/ﬁo = iw;sin 9,‘/Rg

ju=1 =1

and . n
cos by = Z wiz;i[Ro = Zwi cos 8;f o

f=1 =1

where Hjp is the length of the vector Z w;e; so that

Ry = (Z wizi)’ + () wiys)’

1=1

n n T "
= E E w;chosﬂgcosﬂj-l-g E w;w; sin §; sin 6;

i=1 j=1 =1 j=1

= i: i w;w; cos(f; — 8;)

i=1 j=1
= wQw
where ¢;; = cos{f; — 8;) .
Now
cos(fjg —6p) = cos 8y cos 8 + sin 8 sin fp
= 1/Rp (Z w;(cos 8; cos Bp + sin f; sin Bo])

=1

w'e//(w'Qw)

where ¢; = cos(f; — 6p)
Thus in order to minimize E[1 — cos(éo — 8p)] we need to find wy,...w, to
maximize

N
It is clear from the formula above that the solution will be unique only up
to a constant multiplier; that is, if w is a solution, then so is {w for any
non-zero constant .
If we nse a first order Taylor series expansion of E[w'c//W'@w], so that
we approximate it by w's/vw Kw, where &; = E[g;] and s; = Elej], and
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use the uniqueness constraint E[w'Qw] = w'K'w = | then we can use the

Lagrange multiplier approach to find the optimal values of the w;. With the

chosen uniqueness constraint, the function to be maximized becomes simply

w's, 50 1f we set

then

and

G=ws— AwKw-1)

which leads to the solution

B_CE =5 =2 Kw
dw
oG -
B—A =whiw-=1
K-1s K-1s
w = =

Vs K-1s T

where r = v/s$'/{~1s is a scalar normalizing constant.

Proof of Equation 5.10

Efcos(d; — 9;)]

Elcos(f; + ei — 8; — €;)]

E[cos(8; — 8;) cos(e; — €;) — sin{6; — 8;) sin(e; — ¢;)]
Efcos(8; — 8;)(cos €; cos €5 4 sin ¢; sin ¢;)

~sin(0; — 8;)(sin¢; cose; — cos ¢;sin ¢;)

E[cos(8; — ;) cos ; cos ¢;]

E[cos(8; — 8;)] Elcos €] E[cos ;]



Appendix C

Programs

The list below gives brief details of the main programs used in this project.
The programs have been written in ANSI 77 FORTRAN and conform to the
full ANSI standard.

DRMODEL Fits model parameters at selected sites. See Chapter 3.

DRBOOT Generates 100 parametric bootstrap samples, using the fitted
model parameters at each site, and uses these to estimate the variances

of the parameters. See Chapter 4.

SVGMAMP Calculates the unadjusted and adjusted semi-variograms for
all the amplitude parameters and the coeflicient of variation. See Chap-

ter .

SVGMCIR Calculates the unadjusted and adjusted semi-variograms for
the phase parameters, See Chapter 5.

ORTHOALT Calculates the orthogonal functions of altitude. See Chapter
3.

KGXDRIFT Carries out the kriging estimation of the amplitude param-
eters (and CV) using an ‘external drift’ model which incorporates the

orthogonal functions of altitude. See Chapter 5.
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KRIGCIRC Carries out the kriging estimation of the phase parameters.
See Chapter 5.

DRGEN Generates an n-year sequence of simulated daily data for a given

station or grid point. See Chapfer 6.

These programs are available from the Computing Centre For Water Research

at the following address:

Computing Centre For Water Research
cfo University of Natal

P O Box 375

Pietermaritzburg

3200

Tel. (0331) 63320 ext. 177/178

Fax (0331) 61896.



