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EXECUTIVE SUMMARY 
 
Freshwater resources are crucial for all life on Earth. Water is necessary for drinking, agriculture, industries, 
socio-economic development, and more. The maintenance and balance of ecosystems are also dependent on 
water to a large extent. However, water quality has declined considerably due to anthropogenic activities. 
Therefore, it is imperative to monitor and manage inland water bodies to ensure their supply quantity and 
quality. Traditionally, monitoring water quality is time-consuming and labour-intensive, expensive, and 
inaccessible in certain areas. New efficient and cost-effective methods now need to be employed to monitor 
freshwater resources. Remote sensing, the art of acquiring information about the planet from a distance, can 
monitor water quality.  
 
This study looked at the ability of Landsat 8 and Sentinel 2 to monitor water quality in the Inanda Dam, Durban, 
KwaZulu-Natal (KZN) Province. The aim was to develop algorithms to retrieve chlorophyll-a (chl-a) and total 
suspended solids (TSS) from Landsat 8 and Sentinel 2 imagery and produce their surface distribution in the 
Inanda Dam. This report consists of five chapters: 
 
1. Background Information 
2. Literature Review 
3. Methodology 
4. Results and Discussion 
5. Conclusions and Recommendations  
 
Chapter one contains background information on the status of water quality globally, monitoring water quality 
in-situ and via remotely sensed imagery, the project aims and objectives, and limitations of the study.  
 
Chapter two is a literature review that includes information on the global status of water quality, Landsat 8 and 
Sentinel 2 satellites, different atmospheric correction methods, different mathematical methods available to 
generate algorithms, and water quality in the South African context. The literature review revealed that while 
many studies have been conducted internationally on remotely sensed chl-a and TSS, little has been done in 
South Africa and studies are ongoing. Pre-processing of satellite imagery is often conducted, and the most 
popular method of algorithm development is via empirical formulas. The results of previous studies on the 
development of algorithms for monitoring water quality are varied; however, there is a general agreement that 
chl-a and TSS can be estimated from Landsat 8 and Sentinel 2.  
 
Chapter three describes the study's methodology, including in-situ sampling for chl-a and TSS concentrations, 
extraction of radiance and reflectance data from satellite imagery, algorithm development using in-situ  
chl-a/TSS and remote sensing radiance and reflectance data, and the production of chl-a/TSS surface 
distribution maps.  
 
Chapter four presents and discusses the results obtained from this study. In the results, Landsat 8 bands 1, 2 
and 4, and Sentinel 2 bands 1 and 3 correlated well with in-situ chl-a, while Landsat 8 band 1 and Sentinel 2 
bands 1 and 3 correlated best with in-situ TSS. These bands were used to develop algorithms that successfully 
estimated chl-a and TSS concentrations in the Inanda Dam. Surface distribution maps were developed from 
the most successful algorithms, showing the trend of chl-a and TSS in the Dam. The results of this study 
support the findings of studies conducted internationally, which indicate that chl-a and TSS can be estimated 
from both Landsat 8 and Sentinel 2 imagery.  
 
Chapter five presents the conclusions and recommendations of this study and suggestions for future studies. 
A key finding of this study was that chl-a and TSS could be successfully retrieved from Landsat 8 and Sentinel 
2 imagery. The developed algorithms captured and mapped the surface distribution of chl-a and TSS in the 
Inanda Dam. It is recommended that more research be conducted in many dams across South Africa to enable 
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comparisons, possible synthesis and to expand the body of existing knowledge on remote sensing and water 
quality. 
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GLOSSARY 
TERM MEANING 
Atmospheric correction A method used to remove the scattering and absorption effects from the 

atmosphere to obtain the surface reflectance characterizing surface 
features. 
 

BOA reflectance This represents the actual reflectance of the features on the surface of the 
Earth. The BOA values are calculated from the TOA values by using a 
physical model (Sen2Cor tool for Sentinel-2), with an attempt to eliminate 
the effect of the atmosphere on the reflectance values. 
 

Digital Numbers Represents the amount of energy reflected or emitted by features and 
captured by a sensor in a particular region of the electromagnetic spectrum. 
 

Geospatial data Data or information that has a geographic component. 
 

In-situ Collection of samples at a site. 
 

Radiance The flux of energy leaving a feature and measured by remote sensing 
instruments. 
 

Radiometric correction Refers to a range of processes to correct for sensor irregularities and 
unwanted sensor or atmospheric noise; and the conversion of digital 
numbers from satellite or aerial sensors to a common physical scale based 
on known reflectance measurements taken from objects on the ground’s 
surface.  This type of correction is important for reliable quantitative 
measurements from imagery. 
 

Radiometric resolution The smallest observable difference in energy. Also, defined as the ability of 
a sensor to distinguish different grey-scale values. It is measured in bits. 
The more bits an image has, the more grey-scale values can be stored, and, 
thus, more differences in the reflection on the land surfaces can be spotted. 
 

Reflectance  The ratio of the amount of light leaving a target to the amount of light incident 
on a target. 
 

Spatial resolution The size of the smallest feature that can be detected by a satellite sensor or 
displayed in a satellite image. 
 

Spatial-temporal  Geographic or spatial data or information collected across time and space. 
 

Spectral signatures The variation of reflectance or emittance of a material.   
 

Temporal resolution The amount of time needed by a sensor to revisit and acquire data for the 
same location. 
 

TOA reflectance  Represents the "raw" reflectance of earth’s features as measured from 
space. 
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CHAPTER 1: BACKGROUND 

1.1 INTRODUCTION 

Monitoring water quality is vital to ensure the sustainability of limited freshwater resources globally. Freshwater 
resources are essential for the functioning of terrestrial ecosystems and to support anthropogenic services 
such as domestic use, agriculture, industrialization, waste disposal, and drinking water (Lim and Choi, 2015; 
Bonansea et al., 2019; Soomets et al., 2020; Hu et al., 2021). Unfortunately, these special freshwater functions 
and services are continually impacted by increasing population and economic development, leading to 
eutrophication, pollution, brownification, nutrient enrichment, and the overall degradation of freshwater 
resources (Chen et al., 2021; Ledesma et al., 2019; Ouma et al., 2020; Hu et al., 2021).  
Water quality is traditionally monitored using in-situ point sampling methods, which are expensive, time-
consuming, labour intensive, and cannot be performed in areas that are difficult to access. In addition, these 
methods cannot capture the spatial variation of water quality parameters in a water body (Zhang et al., 2020; 
Grendaitė et al., 2018; Peterson et al., 2020).  
These weaknesses of monitoring water quality through in-situ point sampling can now be overcome using 
geospatial technologies, including remotely sensed satellite images (Zhang et al., 2020). Previously, satellite 
images did not have the spatial resolution needed to monitor small to medium-sized water bodies; however, 
advancements in remote sensing technologies have made it possible to monitor freshwater bodies remotely. 
For example, the release of Landsat 8 and Sentinel 2 satellites, with improved spatial resolution, radiometric 
resolution, and signal-to-noise ratio, has made monitoring small and medium-sized freshwater bodies possible 
(Grendaitė et al., 2018; Malahlela et al., 2018; Peterson et al., 2020).  
Studies conducted on water quality and remote sensing have made use of algorithm development, in-situ water 
samples, and satellite data to monitor water quality parameters remotely (Bonansea et al., 2019; Chen et al., 
2017; Karaoui et al., 2019; Mushtaq and Lala, 2017; Yepez et al., 2018; Bande et al., 2018).  
This study focused on developing algorithms for monitoring chl-a and TSS in the Inanda Dam using Landsat 
8 and Sentinel 2 satellite imagery. 
 

1.2 PROJECT AIMS 

The aim of this study was to develop algorithms for monitoring water quality in the Inanda Dam using Landsat 
8 and Sentinel 2 satellite imagery. 

1.3 OBJECTIVES 

1. To develop algorithms to monitor chl-a in the Inanda Dam. 
2. To develop algorithms to monitor TSS in the Inanda Dam.  
3. To produce maps showing the surface distribution of chl-a in the Inanda Dam.  
4. To produce maps showing the surface distribution of TSS in the Inanda Dam. 

 

1.4 SCOPE AND LIMITATIONS 

There are various water quality parameters such as Coloured Dissolved Organic Matter (CDOM), Secchi Disk 
Depth (SDD), Turbidity, Total Phosphorous (TP), and Total Nitrogen (TN), which can also be inferred from 
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remote sensing. However, this study focuses on chl-a and TSS due to their abilities to reflect spectral 
signatures which can be recorded by remote sensors (Markogianni et al., 2017; Pu et al., 2019). This study 
was conducted in the Inanda Dam (Durban, KZN Province, South Africa), and fieldwork was undertaken once 
during the dry and wet seasons, respectively, due to budget constraints. Therefore, the algorithms developed 
in this study apply only to the Inanda Dam and may not yield accurate results for other dams in South Africa. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

Water quality includes the physical, chemical, and biological parameters of a water body (Gholizadeh et al., 
2016). The quality of a water body can be affected by multiple factors, such as climate change, invasive 
species, agricultural runoff, industrial pollution, increasing anthropogenic activities, acidification, nutrient 
enrichment, eutrophication, and natural factors, among many others. (Ritchie et al., 2003; Palmer et al., 2015; 
Ciancia et al., 2020).  
Freshwater bodies, made up of lakes, dams, rivers, and groundwater, are vital to humans and the environment 
(Pu et al., 2019). Monitoring freshwater bodies regularly and on a large scale has become crucial to ensuring 
their sustainability, considering freshwater shortages and pollution (Pu et al., 2019; Bonansea et al., 2019). 
This literature review focuses on water quality worldwide, monitoring water quality, Landsat 8 and Sentinel 2 
satellites, methodologies used to estimate chl-a and TSS remotely, and remotely sensed water quality 
monitoring in a South African context.   
 

2.2 WATER QUALITY WORLDWIDE 

Markogianni et al. (2017, pg 906) consider water as "essential for the survival of all living organisms." At its 
core, freshwater resources are a vital component of human survival and development (Li et al., 2018; Bande 
et al., 2018). Lakes, rivers, dams, groundwater, and reservoirs provide water for human consumption, food 
supplies, transportation, recreation, economic development, industries, and human health (Markogianni et al., 
2017; Pirasteh et al., 2020). Freshwater bodies also help to maintain the carbon cycle, provide habitats for 
aquatic organisms, and ensure sustainable development, which indirectly impacts the quality of life for people 
(Soomets et al., 2020). Despite these numerous functions and services, freshwater resources are polluted due 
to anthropogenic factors such as overpopulation, industrialization, agricultural runoff, climate change, 
eutrophication, domestic effluent, sewerage disposal, and much more (Hu et al., 2021; Zhang et al., 2020). 
Pollution has led to the rapid decline of freshwater resources and their biodiversity, reduction in the supply of 
drinking water, contamination of aquatic food, and negative impacts on social and economic growth (Pirasteh 
et al., 2020). It is therefore imperative to monitor and manage available freshwater resources, through various 
water quality parameters (Section 2.3). 

2.3 MONITORING WATER QUALITY 

Monitoring freshwater is paramount to ensuring the sustainability and quality of water bodies. Many parameters 
can be measured in water bodies, including but not limited to chl-a, TSS, CDOM, Dissolved Organic Carbon 
(DOC), TP, TN, Electric Conductivity (EC), algae, phytoplankton, turbidity, and water clarity (Sharaf El Din, 
2020; Guo et al., 2020; Mustaq and Lala, 2017; Bonansea et al., 2019). Traditionally, this was done using in-
situ water quality monitoring, a time-consuming, labour-intensive, and expensive method. Point sampling, 
while very accurate, can only give the concentration of a parameter at a specific point and does not account 
for the spatial distribution of a water quality parameter throughout a water body (Zhang et al., 2020; Grendaitė 
et al., 2018; Peterson et al., 2020). It is also impossible to conduct in-situ water quality monitoring in 
inaccessible areas. These limitations make it difficult for water bodies to be efficiently managed. Remote 
sensing is now used to aid in monitoring water quality. The monitoring of small and medium-sized water bodies, 
which was previously a challenge, has been made possible by recent advancements in satellite technology. 
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For example, Landsat 8 and Sentinel 2, with their improved specifications, have been used to monitor water 
quality worldwide with positive results (Grendaitė et al., 2018; Malahlela et al., 2018; Peterson et al., 2020).  
Water quality parameters can be broken into two main categories, namely optically active and non-optically 
active (Guo et al., 2020). Optically active parameters such as chl-a, TSS, CDOM, and algae affect the optical 
properties of water and can change the signals acquired by satellites (Markogianni et al., 2017). On the 
contrary, non-optically active parameters such as TP, TN, Chemical Oxygen Demand (COD), and pH have 
little to no optical signals and cannot influence spectral signatures of water bodies (Pu et al., 2019). Often, 
non-optically active parameters can be inferred indirectly by correlating optically active parameters with non-
optically active parameters (Pu et al., 2019). Most studies have focussed on optically active parameters, 
achieving successful results. Two standard water quality parameters estimated from satellite imagery are chl-
a and TSS. The monitoring of chl-a and TSS is vital for freshwater resource management as they can inform 
water management institutions on the quality of the water bodies they manage (Elangovan and Murali, 2019; 
Manuel et al., 2020; Ciancia et al., 2020).  
Chl-a can be used as an indicator of the trophic status of a water body and phytoplankton activity, which is 
often the cause of harmful algal blooms and eutrophication (Markogianni et al., 2017; Soomets et al., 2020; 
Ledesma et al., 2010; Li et al., 2021a). TSS consists of solids that originate from various sources and can 
include among others, phytoplankton (living and dead), clay minerals, humic substances, and detritus. (Ciancia 
et al., 2020). TSS is often a proxy for pollutants entering a water body, and excess TSS can harm dams, affect 
photosynthesis and dissolved oxygen levels, and cause harmful algal blooms (Peterson et al., 2018; Soomets 
et al., 2020). In addition, increased discharge of sediments into water bodies causes turbidity, increasing 
siltation, and decreasing water quality (Yanti et al., 2016). Both chl-a and TSS can significantly influence the 
optical properties of a water body. With the use of satellite imagery, in-situ concentrations, and mathematical 
methods, chl-a and TSS can be estimated using Landsat 8 and Sentinel 2 (Sharaf El Din, 2020; Molkov et al., 
2019; Bresciani et al., 2018; Ciancia et al., 2020; He et al., 2021). 
 

2.4 LANDSAT 8 AND SENTINEL 2 

Landsat 8 was launched on the 11th of February 2013 and is the eighth satellite in the Landsat series (USGS, 
2021). It has a 12-bit radiometric resolution, a temporal resolution of 16 days, a spatial resolution of 30 m for 
bands 1 to 9, and 100 m for bands 10 and 11 (USGS, 2021). Sentinel 2 comprises two satellites, namely 
Sentinel 2A and Sentinel 2B, launched on the 23rd of June 2015 and the 07th of March 2017, respectively 
(ESA, 2021). Sentinel 2 satellites also have a 12-bit radiometric resolution, a temporal resolution of 10 days 
per satellite and five days when both satellites are taken into consideration, and a spatial resolution of 10 m 
for bands 2, 3, 4, and 8; 20 m for bands 5, 6, 7, 8a, 11 and 12; and 60 m for bands 1, 9 and 10 (ESA, 2021). 
In addition, Landsat 8 collects data using 11 bands, while Sentinel 2 collects data using 13 bands, and when 
all three satellites are used in tandem, the revisit time decreases considerably (Toming et al., 2016; Buma and 
Lee, 2020). The number of bands used to collect information, the temporal resolution, and improved spatial 
and radiometric resolutions of both Landsat 8 and Sentinel 2 makes it possible to monitor water quality in water 
bodies that were previously too small to be monitored using remote sensing (Yepez et al., 2018; Bande et al., 
2018; Peterson et al., 2020). Table 2.1 below shows the names of each band, their spatial resolutions, and 
spectral wavelengths. 
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Table 2.1: Landsat 8 and Sentinel 2 bands, band names, spatial resolutions, and spectral wavelengths 
(USGS, 2021; ESA, 2021) 

 
The spectral region from 400-1000 nm is often used for remotely sensed water applications; however, due to 
the strong absorption by water at wavelengths greater than 750 nm, wavelengths between 400-750 nm are 
generally used (Matthews, 2011).  
Literature shows a strong absorption of chl-a in the blue and red regions of the electromagnetic spectrum, with 
reflectance peaks found at 550 nm and 700 nm. Many chl-a algorithms have used the reflectance peak near 
700 nm and a 700 nm/670 nm colour ratio algorithm or variations for chl-a estimation (Matthews, 2011). The 
reflectance peak near 700 nm and the green, red, blue, and NIR regions of the electromagnetic spectrum are 
beneficial for chl-a estimation and inland water quality remote sensing (Gholizadeh et al., 2016).  
Studies show that TSS can influence the visible (blue, green, and red) and NIR regions of the electromagnetic 
spectrum (Yepez et al., 2018; Gholizadeh et al., 2016). A reflectance peak at 700 nm can be used for TSS 
retrieval in water bodies with lower TSS concentrations (Matthews, 2011). The first four bands of Landsat are 
sensitive to TSS; however, one study found the spectrum range between 700 nm to 800 nm and a single band 
around the spectral regions of 500-900 nm helpful in TSS estimation (Gholizadeh et al., 2016).  
Based on the information found in the literature, it can be inferred that Landsat 8 B1 to B5 and Sentinel 2 B1 
to B8a, which fall within the spectral region of 400 nm to 900 nm, can be helpful in chl-a and TSS retrieval from 
satellite imagery, further discussed in Section 4.3. 

2.5 METHODS EMPLOYED TO ESTIMATE WATER QUALITY PARAMETERS REMOTELY 

Studies abound on the use of in-situ water samples, satellite data, and mathematical methods for the 
estimation of water quality parameters remotely (Bonansea et al., 2019; Chen et al., 2017; Karaoui et al., 2019; 
Mushtaq and Lala, 2017; Yepez et al., 2018; Bande et al., 2018). Mathematical methods consist of analytical 
and statistical/empirical methods used to develop algorithms for monitoring water quality parameters; however, 
both methods have pros and cons. For example, statistical methods are easier to understand and implement. 

 Landsat 8   Sentinel 2   
Band Number Band 

Name 
Spatial 
Resolution 
(m) 

Spectral 
wavelength 
(nm) 

Band Name Spatial 
Resolution 
(m) 

Spectral 
wavelength 
(nm) 

Band 1 (B1) Coastal 
Aerosol 

30 430-450  Coastal 
Aerosol 

60 443 

Band 2 (B2) Blue 30 450-510  Blue 10 490 
Band 3 (B3) Green 30 530-590  Green 10 560 
Band 4 (B4) Red 30 640-670  Red 10 665 
Band 5 (B5) NIR 30 850-880 Vegetation 

Red Edge 
20 705 

Band 6 (B6) SWIR 1 30 1570-1650  Vegetation 
Red Edge 

20 740 

Band 7 (B7) SWIR 2 30 2110-2290 Vegetation 
Red Edge 

20 783 

Band 8 (B8) Panchro
matic 

30 500-680  NIR 10 842 

Band 8a (B8a) - - - Vegetation 
Red Edge 

20 865 

Band 9 (B9) Cirrus 30 1360-1380 Water vapour 60 940 
Band 10 (B10) TIRS 1 100 1060-11190 SWIR – Cirrus 60 1375 
Band 11 (B11) TIRS 2 100 11500-12510 SWIR 20 1610 
Band 12 (B12) - - - SWIR 20 2190 
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However, the algorithms developed are site and time-specific and do not account for any significant variations 
in the water body. On the contrary, analytical methods are more complex to understand, develop and 
implement; however, the algorithms generated can generally be used for many water bodies and at any time 
of the year (Gholizadeh et al., 2016). 
 
Studies related to the retrieval of water quality parameters from satellite imagery requires a generic number of 
steps (Matthews, 2011) summarized as follows:  
•          Pre-processing of satellite imagery  
•          Correlation of bands/band ratios with in-situ water quality parameters 
•          Algorithm development 

2.5.1 Pre-processing  

Remotely sensed imagery often contains flaws or deficiencies which need to be rectified before use for an 
application; hence the correction of these flaws is done before any information is extracted from the imagery, 
a process termed pre-processing (Mather and Koch, 2011). There are many types of image correction methods 
applied to a variety of distortions, and this can be grouped into generic headings, namely atmospheric and 
radiometric corrections (Lillesand et al., 2000). 

2.5.1.1 Atmospheric correction 

An atmospheric correction needs to be performed on satellite imagery to remove atmospheric effects, which 
may cause errors in a study (Pu et al., 2019). Many atmospheric correction methods have been used in 
different studies. While there is no agreement on the best method to be used, there is a consensus that 
atmospheric corrections must be performed before analysis (Olmanson et al., 2020; Ansper and Alikas, 2019). 
Table 2.2 below lists the atmospheric correction methods used in Landsat 8 and Sentinel 2 imagery pre-
processing. 

 
Table 2.2: Atmospheric correction methods used on Landsat 8 and Sentinel 2 imagery (Source: author’s 

work) 
 
Atmospheric correction 
method 

Satellite used Study  

Dark Object Subtraction (DOS) Landsat 8  Markogianni et al., 2017; Boucher et al., 2018; 
Masocha et al., 2018; Gonzalez-Marquez et al., 
2018; Sharaf El Din and Zhang, 2017. 

Landsat-8 surface reflectance 
code (LaSRC) 

Landsat 8  Rodrigues et al., 2017; Chen et al., 2019; Prasad 
et al., 2020; Peterson et al., 2020; Yepez et al., 
2018; Pham et al., 2018; Vinh et al., 2019. 

Second Simulation of Satellite 
Signal in the Solar Spectrum (6S) 

Landsat 8 and 
Sentinel 2  

Bresciani et al., 2018; Li et al., 2017; Zhu et al., 
2019; Li et al., 2018; Bonansea et al., 2019; Cairo 
et al., 2020; Laili et al., 2015; Giardino et al., 2014; 
Zhang et al., 2016. 

Fast Line-of-sight Atmospheric 
Analysis of Hypercubes 
(FLAASH) 

Landsat 8 and 
Sentinel 2  

Yadav et al., 2019; Pu et al., 2019; Kurniadin and 
Jaelani, 2016; Buma and Lee, 2020; Larson et al., 
2021; Ansari and Akhoondzadeh, 2020; Quang et 
al., 2017; Bande et al., 2018; Fadel et al., 2016; 
Alcantara et al., 2016; Chen et al., 2017; Watanabe 
et al., 2015; Rodrigues et al., 2017; Kutser et al., 
2016. 
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Atmospheric correction 
method 

Satellite used Study  

Quick atmospheric correction 
(QAC) 

Landsat 8  Malahlela et al., 2018; Yang and Anderson, 2016; 
Kutser et al., 2016. 

Model-based empirical line 
method (MoB-ELM) 

Landsat 8 and 
Sentinel 2  

Concha and Schott, 2016; Ha et al., 2017 

The Management Unit of the 
North Seas Mathematical Models 
(MUMM)  

Landsat 8 and 
Sentinel 2  

Wang et al., 2021 

ACOLITE Landsat 8 and 
Sentinel 2  

Molkov et al., 2019; Rodrigues et al., 2017. 

Sen2Cor Sentinel 2  Guo et al., 2021; Shang et al., 2021; Ouma et al., 
2020; Grendaitė et al., 2018; Sòria-Perpinyà et al., 
2020; Peterson et al., 2020; Huangfu et al., 2020; 
Li et al., 2021b; Al-Kharusi et al., 2020; Bande et 
al., 2018; Lui et al., 2017. 

Case 2 Regional Coast Colour 
(CR2CC) 

Sentinel 2  Li et al., 2021a; Ansper and Alikas, 2019; Hassan 
et al., 2021. 

POLYMER Sentinel 2  Aptoula and Ariman, 2021 
ATCOR23 Landsat 8  Kutser et al., 2016; Rodrigues et al., 2017. 
Dark Pixel (DP) method Landsat 8 Patra et al., 2017; 
MIP  Sentinel 2 Kutser et al., 2016; Dornhofer et al., 2016. 

 
In relation to the many atmospheric correction methods employed in various studies (Table 2.2), FLAASH is 
the favoured atmospheric correction method for Landsat 8 images, and Sen2Cor has been used extensively 
for Sentinel 2 images. Studies have, however, indicated that no one atmospheric correction method 
outperformed the other, and there is still much disagreement as to the best atmospheric correction method for 
water quality studies (Molkov et al., 2019; Ansper and Alikas, 2019). 

2.5.1.2 Radiometric Correction 

Radiometric correction is performed on imagery to convert Digital Numbers (DN) to radiance or reflectance. 
For example, Landsat 8 DN are often converted to radiance and reflectance values using metadata files 
(Markogianni et al., 2017; Bonansea et al., 2019; Ouma et al., 2020; Yadav et al., 2019; Malahlela et al., 2018; 
Pu et al., 2019; Peterson et al., 2018; Buma and Lee, 2020; Boucher et al., 2018; Ansari and Akhoondzadeh, 
2020; Mushtaq and Lala, 2017; Masocha et al., 2018; Li et al., 2018); however, Hydrolight was used by Chen 
et al. (2019), and DOS by Elangovan and Murali (2020) to obtain remote sensing reflectance.  
 
Sentinel 2 imagery is already radiometrically corrected (ESA, 2021); therefore, no radiometric corrections are 
needed; however, these imageries come in three resolutions and must be resampled to a standard resolution 
(Sòria-Perpinyà et al., 2020). Resampling to a standard resolution can be done using the Resampling function 
in SNAP software (Ansper and Alikas, 2019). 

2.5.2 Band correlations 

Landsat 8 and Sentinel 2 bands are often correlated with in-situ water quality parameters to determine which 
band/band ratios can estimate a specific water quality parameter. The use of band combinations, rather than 
single bands, often produces better correlation results with in-situ water quality parameters, achieving better 
water quality parameter estimations (Kim et al., 2016; Masocha et al., 2018). 
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Studies conducted have made use of Landsat 8 B1 to B7 (Prasad et al., 2020; Ledesma et al., 2019) and all 
Sentinel 2 bands, either in the form of single bands or band ratios to determine chl-a and TSS; however, results 
are varied across the studies, with an indication that band ratios perform better than single bands at estimating 
chl-a and TSS (Sharaf El Din, 2020; Kim et al., 2016; Masocha et al., 2018). 

2.5.3 Algorithm development 

Many algorithms can be used to estimate water quality parameters from satellite imagery. However, 
empirical/statistical methods are easier to understand and are the most used algorithm development method. 
For example, regression analysis is a common statistical method that is performed to generate algorithms to 
estimate water quality parameters (Markogianni et al., 2017; Ledesma et al., 2019; Ouma et al., 2020; Li et al., 
2021b; Grendaitė et al., 2018; Malahlela et al., 2018; Deutsch et al., 2014; Kurniadin and Jaelani, 2016; 
Kontopoulou et al., 2017; Yang and Anderson, 2016; Elangovan and Murali, 2020;  Karaoui et al., 2019, 
Mushtaq and Lala, 2017; Yepez et al., 2018; Fadel et al., 2016; Patra et al., 2017; Kim et al., 2016; Lim and 
Choi, 2015; Masocha et al., 2018; Liu et al., 2017; Sharaf El Din and Zhang, 2017; Lailia et al., 2015; Ha et 
al., 2017; Al-Fahdawi et al., 2015). Physically-based methods are more complex and require an in-depth 
understanding of Inherent Optical Properties (IOP) and are less frequently used (Bresciani et al., 2018; Manuel 
et al., 2020; Zhang et al., 2016; Giardino et al., 2014; Manzo et al., 2015; Dornhofer et al., 2016). In recent 
years, there has been much development in the field of machine learning and Artificial Neural Networks (ANN), 
with promising results (Prasad et al., 2020; Peterson et al., 2020; Peterson et al., 2018; Larson et al., 2021), 
allowing for the exploration of more research in this area of algorithm development.  
 
Despite the simplicity of empirical methods, they have been able to estimate both chl-a and TSS from Landsat 
8 and Sentinel 2 with varying levels of accuracy. Most studies did obtain good correlations with chl-a and TSS 
(R2 = 0.7 and more), while fewer studies achieved less successful correlations (R2 = 0.5 and less). The 
physically-based methods vary from successful to limited, indicating that more research must be done in this 
area of water quality and remote sensing. ANN and machine learning have outperformed empirical methods 
in comparative studies (Prasad et al., 2020; Pu et al.), indicating the possibilities of these methods in water 
quality estimation from satellite imagery. 
There are many methods available to retrieve water quality parameters from satellite imagery. Each method 
has its pros and cons; however, the simplicity of empirical models coupled with the positive results emanating 
from its use makes them the most popular method to use (Matthews, 2011). 

2.6 SOUTH AFRICAN CONTEXT 

South Africa is a water-scarce country, with dams dropping to low levels and rivers having low flows 
occasionally (Donnenfeld et al., 2018). Overexploitation of water resources will cause ecosystems to 
deteriorate and water quality to decline. This can adversely impact South Africa by causing water-borne 
diseases and hindering social and economic development (Donnenfeld et al., 2018). Due to increasing 
population in South African and the resulting increase in the demand for water supply (Donnenfeld et al., 2018), 
the management of water resources to meet these demands is now crucial, and remote sensing can be used 
as a cost-effective tool in managing the water quality of South Africa's various freshwater resources.  
Internationally, many studies were conducted to monitor water quality using remote sensing (Ledesma et al., 
2019; Ouma et al., 2020; Li et al., 2021a; Grendaitė et al., 2018; Deutsch et al., 2014; Bresciani et al., 2018; 
Manuel et al., 2020; Zhang et al., 2016; Giardino et al., 2014; Manzo et al., 2015;), however the studies 
conducted in South Africa are limited. For example, Matthews (2014) looked at eutrophication by monitoring 
chl-a, cyanobacteria, and surface scum with the use of Medium Resolution Imaging Spectrometer (MERIS) 
and water quality algorithms, and Malahlela et al. (2018) and Bande et al. (2018) estimated chl-a and turbidity 
using Landsat 8 and Sentinel 2 imagery with fair accuracy. In their study, Bande et al. (2018) found that 
Sentinel 2 estimated chl-a and turbidity better than Landsat 8. Studies conducted in South Africa, while 
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successful, are limited, leaving a research gap in the field of remotely sensed water quality to be filled. More 
studies conducted in remote sensing and water quality will develop the potential for large scale monitoring of 
freshwater resources using satellite imagery in South Africa. 
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CHAPTER 3: METHODOLOGY 

3.1 STUDY AREA 

The Inanda Dam is located in Kwangcolosi, Valley of a Thousand Hills, 42 km from Durban and 24 km from 
Hillcrest, in KZN Province, South Africa (Figure 3.1). The depth, length, and surface area of the Dam are 
estimated to be 50 m, 23 km, and 14400000 m2, with a total capacity of 256000000 m3 (Agunbiade and 
Moodley, 2014). The coordinates of its inlet and outlet are at 29°39′05.20″S, 30°48′06.24″E and 29°42′55.74″S, 
30°52′07.69″E, with its wall located at 29°42'38.88" S, 30°52'12"E (Agunbiade and Moodley, 2014). The Dam 
is one of four dams found on the uMngeni River, which on a larger scale forms part of the uMngeni catchment, 
with the uMngeni river flowing from the foothills of the Drakensburg Mountains into the Indian Ocean in the 
coastal city of Durban (Namugize et al., 2018; Agunbiade and Moodley, 2014; Matongo et al., 2015; Tinmouth, 
2009). The climate of this study area is subtropical, characterized by dry winters and wet summers, with most 
of the rainfall received during the summer months of October to March (Ngetar, 2002; Namugize et al., 2018). 
While the average rainfall of this region is between 900-1000 mm (Ngetar, 2002), Manickum (2020) found that 
the average rainfall over the Inanda Dam between the years 2017-2019 was 644.7 mm. The surrounding area 
of the Dam is characterized by hilly, undulating landscapes and agricultural activities practised by the 
surrounding rural communities (Nkoana, 2014; Rangeti, 2014). The Inanda Dam is a vital source of drinking 
water for the surrounding areas (Fischer et al., 2019). 
 

 
Figure 3.1: Map of Inanda Dam and its surrounding locations in KwaZulu-Natal, South Africa. 
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3.2 FIELDWORK 

 
Water samples were collected during different seasons to account for the seasonal differences in water quality. 
The wet and dry season in-situ water samples were collected from the Inanda Dam on the 06th of March 2020 
and the 12th of May 2021, respectively. In-situ sampling days were chosen to closely coincide with Landsat 8 
satellite overpass, which occurred on the 07th of March 2020 (wet season) and the 12th of May 2021 (dry 
season), while the Sentinel 2 overpass was on the 04th of March 2020 (wet season) and the 13th of May 2021 
(dry season) (Figure 3.1). Forty-five water samples were collected randomly in the Inanda Dam on both 
sampling dates. Two water samples were collected at each sampling point to test for chl-a and TSS. The GPS 
coordinates of each sample were also recorded. Nine samples could not be used from the two sets of 45 
samples due to errors in the data. The remaining 81 samples (Figure 3.2) were split into 70% or 57 samples 
to develop the algorithms and 30% or 24 samples to validate the developed algorithms. 
 

 
  

Figure 3.2: Location of wet and dry season sampling points in the Inanda Dam. 
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3.3 LABORATORY ANALYSIS  

3.3.1 TSS  

TSS concentration was determined using the filtration method described in the Standard Methods for the 
Examination of Water and Wastewater (Sharaf El Din, 2020) and included the quantitative filtration of a sample 
test portion through a glass fibre filter. Gravimetric determination of the retained residue on the filter was 
gauged after drying at 105 ± 2°C. This method was favoured for its use in numerous studies (Sharaf El Din, 
2020; Soomets et al., 2020; Yanti et al., 2016; Molkov et al., 2019). 

3.3.2 Chl-a 

Chl-a concentration was determined using spectrophotometry, a method promoted in various studies due to 
its accuracy (Prasad et al., 2020; Soomets et al., 2020; Ledesma et al., 2019; Zhang et al., 2020; Li et al., 
2021a; Ansper and Alikas, 2019; Molkov et al., 2019; Elangovan and Murali, 2020). The actual procedure is 
described in Standard Methods for the Examination of Water and Wastewater (Prasad et al., 2020). It consists 
of filtering water samples to concentrate the organisms which contain chl-a. Next, the cells were ruptured, and 
the chl-a was extracted using organic solvent acetone. The extract was then analysed via a spectrophotometric 
method using the known optical properties of chl-a. 

3.4 PRE-PREPROCESSING OF SATELLITE IMAGERY 

Landsat 8 satellite images were downloaded from the United States Geological Survey (USGS) website and 
Sentinel 2 images from the European Space Agency (ESA) Copernicus Hub. Landsat 8 images were 
radiometrically pre-processed to obtain the radiance and reflectance values for B1 to B7. Radiance values for 
the Landsat 8 images were obtained from ENVI 5.2. using the following formula: 
Lλ=MLQcal+AL, where: 

Lλ = TOA spectral radiance (Watts/(m2 * srad * μm)) 
ML =Band-specific multiplicative rescaling factor from the metadata (RADIANCE_MULT_BAND_x, 
where x is the band number) 
Qcal =  Quantized and calibrated standard product pixel values (DN) 
AL=Band-specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND_x, where x 
is the band number) 

Reflectance values for each pixel were obtained using the FLAASH Atmospheric correction module found on 
ENVI 5.2. software, which converted the DN of each pixel into reflectance values for each pixel. The use of 
reflectance instead of radiance values in remote sensing analysis has been favoured because reflectance is a 
property of the target material itself and will give the most accurate results (L3Harris Geospatial, 2013). The 
radiance and reflectance values were extracted from bands 1 to 7 of the Landsat 8 images for the 81 GPS 
sampled points used in algorithm calibration and validation. The radiance and reflectance data for band ratios 
were calculated using simple mathematical formulas in Microsoft Excel for example: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐵𝐵2
𝐵𝐵1

, where:  

B2 is the radiance of Landsat 8 B2 
B3 is the radiance of Landsat 8 B3 
 
Sentinel 2 images can be downloaded in two formats, Top-of-Atmosphere (TOA) reflectance and Bottom-of-
Atmosphere (BOA) reflectance. TOA reflectance images need to be resampled so that all bands have the 
same spatial resolution (Sòria-Perpinyà et al., 2020), and this was done using the resampling function in SNAP 
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(Ansper and Alikas, 2019). The BOA reflectance images are already atmospherically corrected and resampled 
to one spatial resolution, and therefore, no pre-processing was performed on this imagery.  
TOA and BOA reflectance were extracted for all 13 bands of Sentinel 2 imagery for the 81 sample points using 
SNAP. After that, the TOA and BOA reflectance data from each band was used to calculate the TOA and BOA 
reflectance for Sentinel 2 band ratios using Microsoft Excel, as was done for Landsat 8 band ratios. 

3.5 BAND/BAND RATIOS AND CORRELATIONS WITH CHL-A AND TSS 

The Pearson correlation was used to determine the relationship between band/band ratio radiance, 
reflectance, TOA, and BOA values, with in-situ chl-a and TSS. The use of a Pearson correlation was preferred 
as it is used to determine the relationship between two variables, in this case, satellite radiance/ reflectance 
and in-situ water quality concentrations, as opposed to the strength of the dependence between two variables 
(Kendall rank correlation) or the degree of association between two variables (Spearman rank correlation) 
(Statistic Solutions, 2021). This was done to determine which bands/band ratios are most sensitive for the 
retrieval of chl-a and TSS. 

3.6 ALGORITHM DEVELOPMENT 

Linear regression algorithms for monitoring chl-a and TSS in the Inanda Dam were produced in SPSS. The 
radiance and reflectance data obtained from Landsat 8 imagery, TOA and BOA reflectance data obtained from 
Sentinel 2 imagery, and in-situ chl-a and TSS concentrations for the 57 data points used to develop the 
algorithms were input into SPSS to develop the algorithms. Only the bands or band ratios correlating with chl-
a and TSS and retaining a correlation value of 0.8 and above were used to generate the algorithms. The 
algorithms were generated using linear regression analysis, in the form y = a+bx, where a and b are statistically 
generated values, x represents the band/band ratios value, and y represents the estimated water quality 
parameter. The five most successful algorithms generated using Landsat 8 radiance, Landsat 8 reflectance, 
Sentinel 2 TOA, and Sentinel 2 BOA reflectance data for chl-a and TSS were validated using the remaining 
24 samples to obtain the most accurate retrieval algorithms. 

3.7 SURFACE DISTRIBUTION MAPS 

Microsoft Excel was used to create a table including the X and Y coordinates of sample points, their 
corresponding in-situ chl-a and TSS concentrations, and the estimated chl-a and TSS values generated by the 
most successful algorithms.  
ArcMap software (Version 10.8.1) was used to produce maps showing the surface distribution of chl-a and 
TSS in the Inada Dam. To accomplish this, the table created in Excel was imported to ArcMap to display and 
visualize their locations; thereafter, the software's geostatistical analysis tool and the kriging function was used 
to produce the surface distribution maps. Exploratory spatial data analysis tools were also used to transform 
the data to obtain more accurate surface distribution results. The resulting maps are continuous surface maps 
showing the spatial distribution of chl-a and TSS in the Inanda Dam. 
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CHAPTER 4: RESULTS AND DISCUSSION 
 

4.1 INTRODUCTION 

Chapter four presents the results and discusses the findings of this study. This chapter is split into four sections: 
in-situ water quality concentrations, correlations, algorithms, and surface distribution of chl-a and TSS over 
Inanda Dam. The section on in-situ water quality concentrations contains the chl-a and TSS concentrations 
found in the Dam during the fieldwork. The in-situ chl-a and TSS for the wet and dry seasons were determined 
after the two sample sessions, and their concentrations were further combined to give an overview of the 
seasonal concentrations in the Dam. Another reason for merging the two datasets was to improve the accuracy 
of results considering that the dry season data did not provide accurate correlations and algorithms for chl-a 
and TSS estimation. The results, presented in Sections 4.2, 4.3, 4.4, and 4.5 describes and discusses the 
results of the merged wet season and dry season data. 

4.2 IN-SITU WATER QUALITY CONCENTRATIONS 

Section 4.2 presents the results and discusses the in-situ chl-a and TSS concentrations in the Inanda Dam 
during the wet and dry seasons and the combined in-situ chl-a and TSS concentrations for both seasons. 

4.2.1 In-situ chl-a 

The in-situ spatial distribution of chl-a in the Inanda Dam on the 06th of March 2020 (Figure 4.1) and the 12th 
of May 2021 (Figure 4.2) shows its variation in the wet and dry seasons. Figure 4.3. displays the combined dry 
and wet season in-situ chl-a distribution in the Dam. 

 
Figure 4.1: Distribution of in-situ chl-a for the wet season 
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Figure 4.2: Distribution of in-situ chl-a for the dry season 

            
 

 
Figure 4.3: Distribution of in-situ chl-a for the wet and dry season 
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The wet season generally had high chl-a concentrations with a larger range (5.7µg/t to 29µg/t) (Figure 4.1), 
while the dry season had lower chl-a concentrations with a smaller range (0.6µg/t to 5.7µg/t) (Figure 4.2). The 
difference in seasonal chl-a concentrations could be attributed to different climatic conditions in the study area 
during the dry and wet seasons. KZN experiences high amounts of rainfall during the wet season 
 (900-1000 mm) and high temperatures, which aid in developing chl-a (Matthews and Bernard, 2014; Ngetar, 
2002; Namugize et al., 2018). The dry season experiences less rainfall and cooler temperatures, hence lower 
chl-a levels.  
In the wet season, higher chl-a concentrations (20µg/t to 29µg/t) occur near the dam inlet, decreasing as water 
flows closer to the dam outlet (dam wall). This chl-a distribution pattern could be attributed to many factors, 
namely the meandering nature of the Dam and pollution from Darvill Wastewater Works, which releases high 
amounts of soluble phosphorous into the catchment (Rangeti, 2014). In addition, anthropogenic activities from 
Pietermaritzburg and the surrounding rural areas release pollutants into the catchment and the prevailing 
easterly wind direction keeps phosphorous trapped upstream, which contributes to algal production (Graham, 
2004; Simpson and Pillay, 2000). The distribution of chl-a varied during the dry season, with no specific 
concentration pattern in the Dam (Figure 4.2).  
When combined, the wet and dry season sampling results yielded chl-a ranging from 0.6µg/t to 29µg/t (Figure 
4.3), indicating a high seasonal variation of chl-a in the Inanda dam, with higher chl-a concentrations in the 
wet season and lower chl-a concentrations in the dry season.  
More research can be conducted on the role of atmospheric effects and dam circulation in the production of 
chl-a in the Inanda Dam. 

4.2.2 In-situ TSS 

The in-situ distribution of TSS in the Inanda Dam on the 06th of March 2020 (Figure 4.4) and the 12th of May 
2021 (Figure 4.5) shows its variation and spatial distribution in the wet and dry seasons. Figure 4.6 displays 
the combined variation of the dry and wet season in-situ TSS concentrations in the Dam. 

 

 
 

Figure 4.4: Distribution of in-situ TSS for the wet season 
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Figure 4.5: Distribution of in-situ TSS for the dry season 

 
 

 
Figure 4.6: Distribution of in-situ TSS for the wet and dry season 
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In-situ TSS measurements indicate that there is a variation in concentrations between the wet and dry seasons. 
Figure 4.4 shows that the wet season had lower TSS concentrations but a larger range in concentrations  
(4 mg/t to 10 mg/t). The dry season had higher TSS concentrations but a small range (17.7 mg/t to 18 mg/t). 
Pollution from industrial areas, agriculture, and increased rainfall can lead to increases in TSS. Sharaf El Din 
(2020) found the highest TSS concentrations in the wet season, which decreased during the dry season, 
possibly due to temperature changes, pH changes, and compounds found in the water. Contrary to Sharaf El 
Din (2020), Ngabirano et al. (2016) in their study found high TSS levels in the dry season and low levels during 
the wet season, corroborating the results of this study (Figure 4.5 and Figure 4.4 respectively). The apparent 
disagreements emanating from these studies provides an opportunity for further research to be conducted to 
determine the cause of seasonal variations of TSS. Overall, the combined TSS concentrations for the two 
seasons ranged from 4 mg/t to 18 mg/t, with a high variation of TSS distribution over the Dam (Figure 4.6). 
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4.3 CORRELATIONS 

4.3.1 Landsat 8  

Table 4.1 displays the Pearson correlation (R-value) results between Landsat 8 radiance/reflectance and in-
situ chl-a and TSS. The values highlighted in bold indicate correlations of 0.8 and higher. 
 
Table 4.1: Correlations between Landsat 8 band/band ratio radiance and reflectance data, and in-situ chl-a 

and TSS 
 Radiance Reflectance  
Band/Band Ratio Chl-a TSS Chl-a TSS 
B1 0.862 -0.977 -0.835 0.983 
B2 0.882 -0.970 -0.822 0.983 
B3 0.907 -0.947 0.140 0.309 
B4 0.922 -0.928 -0.170 0.607 
B5 0.848 -0.806 -0.598 0.768 
B6 0.270 -0.239 -0.280 0.363 
B7 0.227 -0.210 -0.116 0.198 
B2:B1 0.902 -0.910 0.901 -0.886 
B3:B1 0.917 -0.927 0.900 -0.952 
B4:B1 0.931 -0.886 0.917 -0.935 
B5:B1 0.572 -0.388 0.782 -0.789 
B6:B1 0.019 0.033 0.763 -0.841 
B7:B1 0.011 0.030 0.794 -0.912 
B1:B2 -0.900 0.914 -0.906 0.902 
B3:B2 0.917 -0.933 0.889 -0.965 
B4:B2 0.932 -0.882 0.912 -0.949 
B5:B2 0.313 -0.097 0.706 -0.734 
B6:B2 -0.048 0.097 0.690 -0.797 
B7:B2 -0.046 0.084 0.740 -0.888 
B1:B3 -0.906 0.949 -0.871 0.975 
B2:B3 -0.907 0.950 -0.867 0.977 
B4:B3 -0.494 0.796 -0.612 0.900 
B5:B3 -0.771 0.907 -0.666 0.749 
B6:B3 -0.299 0.347 -0.319 0.289 
B7:B3 -0.260 0.302 -0.157 0.049 
B1:B4 -0.923 0.917 -0.883 0.970 
B2:B4 -0.926 0.908 -0.881 0.972 
B3:B4 0.491 -0.803 0.588 -0.888 
B5:B4 -0.795 0.889 -0.654 0.701 
B6:B4 -0.300 0.335 -0.250 0.167 
B7:B4 -0.257 0.287 -0.031 -0.149 
B1:B5 -0.576 0.391 -0.815 0.885 
B2:B5 -0.265 0.038 -0.771 0.847 
B3:B5 0.752 -0.893 0.772 -0.885 
B4:B5 0.783 -0.876 0.793 -0.854 
B6:B5 -0.107 0.119 0.602 -0.808 
B7:B5 -0.084 0.092 0.617 -0.815 
B1:B6 -0.225 0.141 -0.771 0.895 
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 Radiance Reflectance  
B2:B6 -0.036 -0.060 -0.745 0.878 
B3:B6 0.650 -0.750 0.521 -0.499 
B4:B6 0.641 -0.699 0.378 -0.261 
B5:B6 0.129 -0.110 -0.635 0.822 
B7:B6 0.096 -0.107 0.502 -0.609 
B1:B7 -0.282 0.194 -0.786 0.898 
B2:B7 -0.105 0.006 -0.767 0.885 
B3:B7 0.602 -0.699 0.126 -0.042 
B4:B7 0.578 -0.632 -0.059 0.215 
B5:B7 0.060 -0.045 -0.678 0.831 
B6:B7 -0.069 0.077 -0.488 0.571 

 
4.3.1.1. Correlation between Landsat 8 radiance/reflectance and in-situ chl-a 
Landsat 8 bands B1 to B5 and band ratios B2:B1, B3:B1, B4:B1, B1:B2, B3:B2, B4:B2, B1:B3, B2:B3, B1:B4, 
and B2:B4 radiance, and Landsat 8 reflectance values from bands B1, B2, and band ratios B2:B1, B3:B1, 
B3:B2, B1:B2, B1:B3, B2:B3, B1:B4, B2:B4, B4:B1, and B4:B2 obtained correlations of 0.8 and more with in-
situ chl-a. These results corroborates with the results of similar studies which also found Landsat 8 B1 to B5 
to be the most sensitive in chl-a retrieval (Fadel et al., 2016; Lim and Choi, 2015; Laili et al., 2015; Watanabe 
et al., 2015; Al-Fahdawi et al., 2015; Patra et al., 2017; Prasad et al., 2020; Malahlela et al., 2018; Yang and 
Anderson, 2016; Elangovan and Murali, 2020; Boucher et al., 2018; Vinh et al., 2019; Chen et al., 2020; Li et 
al., 2018; Ouma et al., 2020; Buma and Lee, 2020; Bande et al., 2018). Many studies have found combinations 
of Landsat 8 B2, B3, and B4 to be the most frequently used bands (Fadel et al., 2016; Laili et al., 2015; Lim 
and Choi, 2015; Watanabe et al., 2015; Al-Fahdawi et al., 2015, Patra et al., 2017; Prasad et al., 2020; 
Malahlela et al., 2018; Yang and Anderson, 2016., 2019; Vinh et al., 2019; Li et al., 2018). This is also the 
case in this study, where B2, B3, and B4 obtained good correlations with in-situ chl-a; but in addition, B1 for 
both radiance and reflectance values (Table 4.1.).  
Overall, the strongest correlation was found between B4:B1 radiance/reflectance and in-situ chl-a, though 
Landsat 8 radiance data performed better than Landsat 8 reflectance data. 
 
4.3.1.2. Correlation between Landsat 8 radiance/reflectance and in-situ TSS 
In-situ correlations of 0.8 and greater between TSS and Landsat 8 radiance were obtained from bands B1 to 
B5, and band ratios B1:B2, B1:B3, B1:B4, B2:B1, B2:B3, B2:B4, B3:B1, B3:B2, B4:B1, B4:B2, B3:B4, B5:B4, 
B3:B5, B4:B5, and B5:B3. In relation to Landsat 8 reflectance values, bands B1, B2 and band ratios B2:B1, 
B6:B1, B7:B2, B3:B4, B1:B5, B2:B5, B3:B5, B4:B5, B6:B5, B7:B5, B1:B6, B2:B6, B5:B6, B1:B7, B2:B7, B3:B1, 
B4:B1, B7:B1, B1:B2, B3:B2, B4:B2, B1:B3, B2:B3, B4:B3, B1:B4, and B2:B4 obtained a correlation coefficient 
of 0.8 and more with in-situ TSS. The correlation results both relate and differ from the findings of other studies, 
which found that Landsat 8 B2, B3, B4, B5, and their combinations have been commonly used and successful 
in estimating TSS (Lim and Choi, 2015; Laili et al., 2015; Al-Fahdawi et al., 2015; Larson et al., 2021; Yepez 
et al., 2018; Pham et al., 2018; Ouma et al., 2020; Sharaf El Din, 2020); however, this study also found that 
B1, B6, and B7 can also be used to retrieve TSS.  
Overall, the strongest correlations between Landsat 8 radiance/reflectance and in-situ TSS were found in B1 
for radiance (R = 0.977), and B1 and B2 for reflectance (R = 0.928). 
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4.3.2 Sentinel 2 

Table 4.2 presents the Pearson correlation (R-value) between Sentinel 2 TOA reflectance and in-situ chl-
a/TSS and Sentinel 2 BOA reflectance and in-situ chl-a/TSS. The values highlighted in bold indicate 
correlations of 0.8 and higher. 
 
Table 4.2: Correlations between Sentinel 2 band/band ratio TOA and BOA reflectance with in-situ chl-a and 

TSS 
 TOA BOA 
Band/Band Ratio Chl-a TSS Chl-a TSS 

B1 -0.092 0.310 0.903 -0.950 
B2 0.194 -0.201 0.208 -0.435 
B3 0.910 -0.859 0.341 -0.553 
B4 0.902 -0.819 0.346 -0.549 
B5 0.807 -0.670 0.843 -0.742 
B6 0.658 -0.466 0.736 -0.584 
B7 0.681 -0.509 0.730 -0.588 
B8 0.643 -0.452 0.313 -0.217 
B8a 0.687 -0.507 0.717 -0.571 
B9 -0.043 -0.003 - - 
B10 -0.673 0.788 - - 
B11 0.574 -0.336 0.654 -0.461 
B12 0.432 -0.265 0.532 -0.392 
B2:B1 0.145 -0.275 -0.085 -0.143 
B3:B1 0.165 -0.330 0.122 -0.358 
B4:B1 0.159 -0.319 0.119 -0.346 
B5:B1 0.211 -0.348 0.774 -0.632 
B6:B1 0.138 -0.275 0.403 -0.172 
B7:B1 0.149 -0.287 0.285 -0.061 
B8:B1 0.161 -0.288 -0.035 0.085 
B8a:B1 0.159 -0.291 0.315 -0.129 
B9:B1 -0.024 -0.137 - - 
B10:B1 -0.138 -0.018 - - 
B11:B1 0.146 -0.262 -0.399 0.574 
B12:B1 0.103 -0.240 -0.546 0.658 
B1:B2 -0.395 0.526 0.250 -0.184 
B3:B2 0.664 -0.641 0.865 -0.933 
B4:B2 0.635 -0.581 0.883 -0.913 
B5:B2 0.661 -0.538 0.828 -0.686 
B6:B2 0.409 -0.234 0.511 -0.263 
B7:B2 0.463 -0.307 0.389 -0.154 
B8:B2 0.462 -0.281 -0.023 0.072 
B8a:B2 0.501 -0.335 0.409 -0.215 
B9:B2 -0.103 0.052 - - 
B10:B2 -0.709 0.789 - - 
B11:B2 0.331 -0.116 -0.338 0.539 
B12:B2 0.172 -0.039 -0.480 0.617 
B1:B3 -0.788 0.889 -0.714 0.852 
B2:B3 0.011 -0.019 -0.820 0.921 
B4:B3 -0.463 0.635 -0.191 0.330 
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 TOA BOA 
B5:B3 0.323 -0.056 0.476 -0.160 
B6:B3 -0.465 0.687 -0.229 0.514 
B7:B3 -0.367 0.580 -0.407 0.648 
B8:B3 -0.237 0.482 -0.140 0.178 
B8a:B3 -0.164 0.387 -0.216 0.407 
B9:B3 -0.255 0.209 - - 
B10:B3 -0.825 0.897 - - 
B11:B3 -0.291 0.490 -0.654 0.805 
B12:B3 -0.348 0.446 -0.688 0.809 
B1:B4 -0.780 0.867 -0.703 0.811 
B2:B4 0.027 -0.041 -0.838 0.909 
B3:B4 0.446 -0.615 0.154 -0.294 
B5:B4 0.522 -0.307 0.535 -0.263 
B6:B4 -0.419 0.634 -0.209 0.483 
B7:B4 -0.286 0.484 -0.396 0.626 
B8:B4 -0.151 0.386 -0.139 0.177 
B8a:B4 -0.063 0.268 -0.197 0.382 
B9:B4 -0.229 0.176 - - 
B10:B4 -0.828 0.891 - - 
B11:B4 -0.234 0.422 -0.658 0.799 
B12:B4 -0.304 0.390 -0.681 0.790 
B1:B5 -0.801 0.840 -0.848 0.788 
B2:B5 0.004 -0.030 -0.297 0.060 
B3:B5 -0.271 -0.015 -0.107 -0.159 
B4:B5 -0.530 0.300 -0.120 -0.139 
B6:B5 -0.797 0.853 -0.598 0.717 
B7:B5 -0.761 0.788 -0.726 0.811 
B8:B5 -0.642 0.743 -0.196 0.214 
B8a:B5 -0.484 0.545 -0.471 0.534 
B9:B5 -0.241 0.175 - - 
B10:B5 -0.841 0.878 - - 
B11:B5 -0.435 0.539 -0.790 0.856 
B12:B5 -0.413 0.441 -0.751 0.798 
B1:B6 -0.650 0.665 -0.344 0.176 
B2:B6 0.087 -0.118 -0.150 -0.108 
B3:B6 0.528 -0.741 -0.002 -0.272 
B4:B6 0.499 -0.704 -0.010 -0.259 
B5:B6 0.790 -0.834 0.626 -0.733 
B7:B6 0.428 -0.506 -0.349 -0.329 
B8:B6 0.538 -0.434 -0.133 0.137 
B8a:B6 0.584 -0.566 -0.047 0.007 
B9:B6 -0.157 0.082 - - 
B10:B6 -0.804 0.824 - - 
B11:B6 0.007 0.120 -0.655 0.680 
B12:B6 -0.128 0.144 -0.585 0.598 
B1:B7 -0.673 0.704 -0.203 -0.026 
B2:B7 0.074 -0.102 -0.104 -0.152 
B3:B7 -0.450 -0.663 0.022 -0.291 
B4:B7 0.379 -0.573 0.018 -0.282 
B5:B7 0.755 -0.780 0.755 -0.837 
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 TOA BOA 
B6:B7 -0.411 0.494 0.282 -0.241 
B8:B7 0.181 -0.001 -0.089 0.098 
B8a:B7 0.328 -0.260 0.182 -0.187 
B9:B7 -0.175 0.105 - - 
B10:B7 -0.786 0.821 - - 
B11:B7 -0.107 0.244 -0.601 0.639 
B12:B7 -0.193 0.222 -0.579 0.593 
B1:B8 -0.674 0.681 -0.220 0.053 
B2:B8 0.069 -0.102 -0.123 -0.133 
B3:B8 0.372 -0.620 0.020 -0.296 
B4:B8 0.291 -0.525 0.016 -0.286 
B5:B8 0.659 -0.755 0.649 -0.743 
B6:B8 -0.532 0.445 0.190 -0.176 
B7:B8 -0.183 0 -0.094 0.079 
B8a:B8 0.244 -0.309 0.179 -0.218 
B9:B8 -0.173 0.098 - - 
B10:B8 -0.795 0.817 - - 
B11:B8 -0.162 0.259 -0.606 0.640 
B12:B8 -0.220 0.221 -0.515 0.528 
B1:B8a -0.691 0.708 -0.332 0.234 
B2:B8a 0.053 -0.083 -0.153 -0.090 
B3:B8a 0.258 -0.483 -0.015 -0.248 
B4:B8a 0.148 -0.350 -0.021 -0.238 
B5:B8a 0.510 -0.570 0.492 -0.545 
B6:B8a -0.580 0.576 -0.068 0.130 
B7:B8a -0.368 0.308 -0.317 0.356 
B8:B8a -0.261 0.329 -0.141 0.155 
B9:B8a -0.196 0.125 - - 
B10:B8a -0.785 0.811 - - 
B11:B8a -0.284 0.410 -0.618 0.666 
B12:B8a -0.283 0.295 -0.526 0.549 
B1:B9 -0.076 0.060 - - 
B2:B9 0.118 -0.153 - - 
B3:B9 0.200 -0.245 - - 
B4:B9 0.170 -0.207 - - 
B5:B9 0.238 -0.249 - - 
B6:B9 0.095 -0.104 - - 
B7:B9 0.120 -0.131 - - 
B8:B9 0.131 -0.130 - - 
B8a:B9 0.152 -0.155 - - 
B10:B9 -0.192 0.172 - - 
B11:B9 0.088 -0.075 - - 
B12:B9 0.061 -0.066 - - 
B1:B10 -0.578 -0.545 - - 
B2:B10 0.267 -0.288 - - 
B3:B10 0.859 -0.876 - - 
B4:B10 0.857 -0.857 - - 
B5:B10 0.821 -0.757 - - 
B6:B10 0.755 -0.672 - - 
B7:B10 0.760 -0.682 - - 
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 TOA BOA 
B8:B10 0.736 -0.632 - - 
B8a:B10 0.759 -0.667 - - 
B9:B10 0.063 -0.131 - - 
B11:B10 0.750 -0.607 - - 
B12:B10 0.703 -0.614 - - 
B1:B11 -0.525 0.488 0.444 0.691 
B2:B11 0.082 -0.127 0.023 -0.298 
B3:B11 0.315 -0.553 0.155 -0.437 
B4:B11 0.255 -0.473 0.154 -0.430 
B5:B11 0.453 -0.580 0.778 -0.844 
B6:B11 -0.023 -0.104 0.717 -0.724 
B7:B11 0.098 -0.250 0.650 -0.685 
B8:B11 0.167 -0.263 0.147 -0.143 
B8a:B11 0.278 -0.415 0.697 -0.729 
B9:B11 -0.144 0.061 - - 
B10:B11 -0.695 0.687 - - 
B12:B11 -0.162 0.092 -0.297 0.248 
B1:B12 -0.155 0.163 0.523 -0.684 
B2:B12 -0.021 0.008 0.088 -0.353 
B3:B12 -0.037 0.023 0.245 -0.511 
B4:B12 -0.048 0.039 0.246 -0.505 
B5:B12 -0.015 0.017 0.745 -0.749 
B6:B12 -0.079 0.086 0.684 -0.623 
B7:B12 -0.068 0.073 0.630 -0.587 
B8:B12 -0.063 0.073 0.226 -0.188 
B8a:B12 -0.052 0.059 0.693 -0.651 
B9:B12 -0.151 0.120 - - 
B10:B12 -0.201 0.211 - - 
B11:B12 -0.078 0.096 0.257 -0.176 

 
4.3.2.1. Correlation between Sentinel 2 TOA/BOA reflectance and in-situ chl-a 
Sentinel 2 TOA reflectance of bands B1, B3, B4, B5, and band ratios B10:B3, B10:B4, B1:B5, B10:B5, B10:B6, 
B3:B10, B4:B10, and B5:B10 obtained a correlation coefficient of 0.8 and more with in-situ chl-a. In relation to 
Sentinel 2 BOA reflectance, B1, B5, B3:B2, B4:B2, B5:B2, B2:B3, B2:B4, and B1:B5 achieved correlations of 
0.8 and higher with in-situ chl-a. Sentinel 2 B1, B2, B3, B4, B5 and its band combinations displayed the 
strongest correlations with in-situ chl-a, with TOA reflectance achieving stronger correlations than BOA 
reflectance data (Table 4.2.). These findings are supported by the studies of Ha et al. (2017), Toming et al. 
(2016), Grendaitė et al. (2018), Molkov et al. (2019), Pirasteh et al. (2020), Sòria-Perpinyà et al. (2021), Bande 
et al., (2018); however, this study also found B10 sensitive to chl-a. Ansper and Alikas (2019) and Chen et al. 
(2017) found that a B8:B4 ratio worked well in chl-a estimation, Ouma et al. (2020) used B3 and B11, and 
Buma and Lee (2020) found that combinations of B5 to B7 correlated with in-situ chl-a. These studies reveal 
that there is considerable variation from study to study on which bands can be used to estimate chl-a from 
Sentinel 2, providing opportunities for more studies to determine which possible Sentinel 2 bands/band 
combinations can best retrieve chl-a.  
Overall, the strongest correlation between Sentinel 2 bands and in-situ chl-a were in B3 TOA (R = 0.91) and 
B1 BOA (R = 0.903) reflectance.  
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4.3.2.2. Correlation between Sentinel 2 TOA/BOA reflectance and in-situ TSS 
Sentinel 2 TOA reflectance values for bands B3, B4, and band ratios B1:B3, B10:B3, B1:B4, B10:B4, B1:B5, 
B6:B5, B10:B5, B5:B6, B10:B6, B10:B7, B10:B8, B10:B8a, B3:B10, and B4:B10 obtained correlations of 0.8 
and more with in-situ TSS, while BOA reflectance for band B1 and band ratios B3:B2, B4:B2, B1:B3, B2:B3, 
B2:B4, B11:B3, B12:B3, B1:B4, B7:B5, B11:B5, and B5:B11 achieved correlations greater than 0.8 with in-situ 
TSS.  
Overall, the findings of this study show that B1:B3 TOA reflectance (R = 0.889) and B1 BOA reflectance (R = 
0.95) obtained the strongest correlations with in-situ TSS. Studies conducted by Liu et al. (2017), Molkov et al. 
(2019), Wang et al. (2021), Ouma et al. (2020), and Ciancia et al. (2020) found Sentinel 2 B3, B4, B5, B6, B7, 
B8 and B8a sensitive in TSS retrieval; however, the correlation results of this study found that B1, B2, B10, 
and B11 can retrieve TSS, but not B6, B7, B8, and B8a as suggested by other studies. It is worth to note that 
the number of studies conducted on TSS retrieval from Sentinel 2 imagery are fewer than those for chl-a, and 
therefore more research needs to be conducted on TSS retrieval from Sentinel 2 imagery. 
 
The overall correlation results indicate the Landsat 8 B1 to B5 and Sentinel 2 B1 to B5 can be used in chl-a 
and TSS retrieval, supporting the evidence found by Matthews (2011), Yepez et al. (2018) and Gholizadeh et 
al. (2016), which states that the spectral region from 400-750 nm can be used in chl-a retrieval and  
400-900 nm can be used for TSS retrieval. However, the correlation results also showed that Sentinel 2 B10 
(1375 nm) and B11 (1610 nm) were able to retrieve TSS, which falls out of the 400-900 nm range. Further still, 
some studies have indicated that Sentinel 2 B6, B7, B8, and B8a can be used to retrieve TSS which was not 
the case in this study. Similarly, some studies have found that B7, B8 and B11 can be used to retrieve chl-a; 
however, this was also not supported by the results of this study. Further research is recommended to 
determine which bands/band ratios are suitable for chl-a and TSS retrieval, particularly using Sentinel 2 
imagery, considering the limited number of studies conducted worldwide. 
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4.4 ALGORITHMS 

Section 4.4 presents the algorithms developed from Landsat 8 and Sentinel 2 satellite imagery. The most 
significant correlations between radiance and reflectance and in-situ chl-a and TSS, discussed in Section 4.3., 
were used to develop these algorithms for estimating chl-a and TSS from Landsat 8 and Sentinel 2 imagery. 

4.4.1 Landsat 8 algorithms 

Tables 4.3 to 4.6 show the algorithms generated using Landsat 8 imagery and the most significant correlations 
between radiance/reflectance and in-situ chl-a and TSS.  
 

Table 4.3: Linear regression algorithms generated using Landsat 8 radiance data and in-situ chl-a 
BAND/BAND 
RATIO 

EQUATION Pearson 
correlation 
(R) 

Correlation of 
determination 
(R2) 

Standard 
Error (SE) 
(µg/t) 

Validated 
R value 

B1 y= -48.253+ 1.229x 0.862 0.742 4.6082  
B2 y= -36.955+ 1.211x 0.882 0.777 4.2841  
B3 y= -13.733+ 0.863x 0.907 0.823 3.8148  
B4  y= -15.613+ 1.886x 0.922 0.850 3.5189 0.933 
B5 y= -25.527+ 8.856x 0.848 0.720 4.8084  
B2:B1 y= -207.261+ 266.666x 0.902 0.813 3.9215  
B3:B1 y= -28.020+ 67.363x 0.917 0.841 3.6236  
B4:B1 y= -32.519+ 151.959x 0.931 0.866 3.3195 0.930 
B1:B2 y= 229.627-178.687x 0.900 0.811 3.9492  
B3:B2 y= -36.023+ 66.875x 0.917 0.840 3.6315  
B4:B2 y= -42.730+ 154.423x 0.932 0.869 3.2883 0.928 
B1:B3 y= 49.970-21.556x 0.906 0.821 3.8442  
B2:B3 y= 57.817-31.897x 0.907 0.822 3.8306  
B1:B4 y= 55.563-12.285x 0.923 0.852 3.4950 0.938 
B2:B4 y= 65.892-18.626x 0.926 0.857 3.4350 0.937 

 
Chl-a radiance algorithms produced from B4, B4:B1, B4:B2, B1:B4 and B2:B4 generated high R2 values (0.85, 
0.866. 0.869, 0.852 and 0.857), validating the results. The B4:B2 algorithm obtained the highest R2 value 
(0.869) and the lowest standard error (SE) of 3.2883µg/t, indicating the algorithm's accuracy in retrieving chl-
a from Landsat 8 imagery. When validated using the remaining 24 samples, the B4:B2 algorithms obtained an 
R-value of 0.928. The five most successful algorithms all retained R-values greater than 0.9 when validated; 
however, the SE values were slightly higher than the B4:B2 algorithm, indicating slightly less accuracy. The 
overall formula of the most successful algorithm for retrieving chl-a from Landsat 8 imagery is: 

Chl-a = -42.730 + 154.423 (𝐵𝐵4
𝐵𝐵2

) 
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Table 4.4: Linear regression algorithms generated using Landsat 8 reflectance data and in-situ chl-a 
BAND/BAND 
RATIO 

EQUATION R  R2  SE (µg/t) Validated 
R value 

B1 y= 24.471-172.849x 0.835 0.698 4.9922  
B2 y= 25.731-236.698x 0.822 0.676 5.1708  
B2:B1 y= -92.531+124.224x 0.901 0.812 3.9343 0.909 
B3:B1 y= -4.752+15.280x 0.900 0.811 3.9506 0.925 
B4:B1 y= -6.037+29.579x 0.917 0.842 3.6123 0.938 
B1:B2 y= 117.341-88.045x 0.906 0.820 3.8487 0.924 
B3:B2 y= -6.577+14.684x 0.889 0.791 4.1552  
B4:B2 y= -8.490+29.105x 0.912 0.831 3.7326 0.933 
B1:B3 y= 25.777-11.110x 0.871 0.759 4.4572  
B2:B3 y= 27.465-15.483x 0.867 0.751 4.5288  
B1:B4 y= 27.297-7.185x 0.883 0.780 4.2565  
B2:B4 y= 29.500-10.170x 0.881 0.776 4.2985  
B1:B5 y= 34.062-5.065x 0.815 0.664 5.2619  

 
Table 4.4 shows reflectance algorithms developed for chl-a estimation from Landsat 8 imagery. Bands B2:B1, 
B3:B1, B4:B1, B1:B2, and B4:B2 algorithms generated high R2 values of 0.812. 0.811, 0.842, 0.820 and 0.831 
respectively and were therefore validated. The B4:B1 algorithm obtained the highest R-value (0.938) after 
validation and a slightly lower SE value (3.6123µg/t) than the other four algorithms. However, all algorithms 
obtained correlations of 0.9 and more when validated with the remaining 24 samples, indicating their ability to 
retrieve chl-a from Landsat 8 reflectance data. The overall formula of the most successful reflectance algorithm 
for retrieving chl-a from Landsat 8 imagery is: 

Chl-a = -6.037 + 29.579 (𝐵𝐵4
𝐵𝐵1

)   
 
 

Table 4.5: Linear regression algorithms generated using Landsat 8 radiance data and in-situ TSS 
BAND/BAND 
RATIO 

EQUATION R  R2  SE (mg/t) Validated R 
value 

B1 y= 57.905-0.965x 0.977 0.955 1.3335 0.970 
B2 y= 47.946-0.922x 0.970 0.941 1.5260 0.959 
B3 y= 29.357-0.624x 0.947 0.897 2.0130 0.921 
B4  y= 30.080-1.315x 0.928 0.862 2.3352  
B5 y= 35.609-5.823x 0.806 0.649 3.7242  
B2:B1 y= 163.958-186.244x 0.910 0.828 2.6094  
B3:B1 y= 38.830-47.151x 0.927 0.859 2.3586  
B4:B1 y= 40.281-100.197x 0.886 0.786 2.9102  
B1:B2 y= -142.064+125.521x 0.914 0.835 2.5566  
B3:B2 y= 44.658-47.144x 0.933 0.871 2.2594  
B4:B2 y= 46.811-101.219x 0.882 0.779 2.9574  
B1:B3 y= -16.785+15.632x 0.949 0.900 1.9842 0.933 
B2:B3 y= -22.493+23.143x 0.950 0.903 1.9614 0.930 
B5:B3 y= -20.688+214.683x 0.907 0.823 2.6466  
B1:B4 y= -19.112+8.450x 0.917 0.841 2.5098  
B2:B4 y= -25.742+12.655x 0.908 0.825 2.6291  
B3:B4 y= 157.725-72.311x 0.803 0.644 3.7488  
B5:B4 y= -25.673+123.614x 0.889 0.790 2.8812  
B3:B5 y= 42.877-4.550x 0.893 0.797 2.8322  
B4:B5 y= 47.877-10.681x 0.876 0.768 3.0271  
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Algorithms developed using Landsat 8 radiance and in-situ TSS are shown in Table 4.5. Algorithms produced 
using B1, B2, B3, B1:B3 and B2:B3 generated high R2 values (0.955, 0.941, 0.897, 0.9 and 0.903) and were 
validated. The B1 algorithm obtained the highest R-value (0.970) after validation and the lowest SE value 
(1.3335 mg/t), indicating the ability of the algorithm to retrieve TSS from Landsat 8 accurately. All five 
algorithms obtained validated R values greater than 0.9 and SE values less than 2 mg/t, indicating both the 
accuracy and success of the five TSS retrieval algorithms. The overall formula of the most successful radiance 
algorithm for retrieving TSS from Landsat 8 imagery is: 

TSS = 57.905 - 0.965 (B1) 
 

 
Table 4.6: Linear regression algorithms generated using Landsat 8 reflectance data and in-situ TSS 

BAND/BAND 
RATIO 

EQUATION R  R2  SE (mg/t) Validated R 
value 

B1 y= 0.350+140.827x 0.983 0.966 1.1579 0.977 
B2 y= -0.890+195.916x 0.983 0.966 1.1662 0.979 
B2:B1 y= 82.013-84.546x 0.886 0.785 2.9161  
B3:B1 y= 22.995-11.186x 0.952 0.906 1.9248  
B4:B1 y= 23.524-20.861x 0.935 0.873 2.2374  
B6:B1 y= 22.647-135.650x 0.841 0.707 3.4039  
B7:B1 y= 22.438-216.965x 0.912 0.832 2.5747  
B1:B2 y= -61.822+60.736x 0.902 0.814 2.7092  
B3:B2 y= 24.635-11.031x 0.965 0.931 1.6569  
B4:B2 y= 25.527-20.973x 0.949 0.900 1.9868  
B7:B2 y= 23.137-196.744x 0.888 0.789 2.8866  
B1:B3 y= -0.062+8.611x 0.975 0.951 1.3888 0.967 
B2:B3 y= -1.467+12.084x 0.977 0.954 1.3413 0.970 
B4:B3 y= -84.060+166.974x 0.900 0.810 2.7424  
B1:B4 y= -0.978+5.464x 0.970 0.941 1.5231  
B2:B4 y= -2.722+7.769x 0.972 0.945 1.4809 0.960 
B3:B4 y= 103.934-52.687x 0.888 0.789 2.8863  
B1:B5 y= -5.919+3.810x 0.885 0.784 2.9214  
B2:B5 y= -9.256+5.596 0.847 0.718 3.3381  
B3:B5 y= 30.338-4.639x 0.885 0.783 2.9275  
B4:B5 y= 33.139-9.424x 0.854 0.729 3.2705  
B6:B5 y= 36.222-77.161x 0.808 0.653 3.7031  
B7:B5 y= 27.825-81.945x 0.815 0.665 3.6397  
B1:B6 y= 0.221+0.712x 0.895 0.802 2.7981  
B2:B6 y= -1.042+0.985x 0.878 0.771 3.0065  
B5:B6 y= -12.917+7.486x 0.822 0.675 3.5815  
B1:B7 y= 1.842+0.350x 0.898 0.807 2.7630  

 
Table 4.6 displays the linear regression algorithms produced using Landsat 8 reflectance data and in-situ TSS. 
TSS reflectance algorithms developed from B1, B2, B1:B3, B2:B3 and B2:B4 generated high R2 values of 
0.966, 0.966, 0.951, 0.970 and 0.945 and were validated. The B1 algorithm obtained the highest R-value 
(0.977) after validation, indicating the ability of the algorithm to retrieve TSS from Landsat 8. All five algorithms 
obtained validated R values greater than 0.9, and the SE for all algorithms was less than 2 mg/t, once again 
indicating both the accuracy and success of the five TSS retrieval algorithms. The overall formula of the most 
successful algorithm for retrieving TSS from Landsat 8 is: 
TSS = 0.350 + 140.827 (B1) 
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4.4.2 Sentinel 2 algorithms  

Tables 4.7 to 4.10 show the algorithms generated using Sentinel 2 imagery and the most significant 
correlations between TOA/BOA reflectance and in-situ chl-a and TSS.  
 

Table 4.7: Linear regression algorithms generated using Sentinel 2 BOA reflectance and in-situ chl-a 
BAND/BAND 
RATIO 

EQUATION R  R2  SE (µg/t) Validated R 
value 

B1 y= -9.799+ 924.677x 0.903 0.816 3.896 0.916 
B5 y= 0.631+ 487.332x 0.843 0.711 4.8833 0.891 
B3:B2 y= -18.829+ 21.910x 0.865 0.749 4.5501 0.891 
B4:B2 y= -21.446+ 47.771x 0.883 0.779 4.2669 0.803 
B5:B2 y= -7.815+ 29.438x 0.828 0.685 5.0919  
B2:B3 y= 37.698- 33.917x 0.820 0.673 5.1932  
B2:B4 y= 40.643- 18.960x 0.838 0.703 4.9158  
B1:B5 y= 36.722- 18.543x 0.848 0.719 4.8135 0.826 

 
Table 4.7 displays the algorithms developed using Sentinel 2 BOA reflectance and in-situ chl-a. Algorithms 
produced from B1, B5, B3:B2, B4:B2 and B1:B5 generated high R2 values (0.816, 0.711, 0.749, 0.779 and 
0.719) and were thus validated. The B1 algorithm was the only algorithm to obtain a R-value greater than 0.9 
and a SE value lower than 4µg/t after validation with the remaining 24 samples, indicating that the algorithm 
can retrieve chl-a from Sentinel 2. The overall formula of the most successful algorithm for retrieving chl-a from 
Sentinel 2 is: 

Chl-a = -9.799 + 924.677 (B1) 
 
 

Table 4.8: Linear regression algorithms generated using Sentinel 2 TOA reflectance and in-situ chl-a 
BAND/BAND 
RATIO 

EQUATION R  R2  SE (µg/t) Validated R 
value 

B3 y= -25.925+ 502.455x 0.910 0.828 3.7678 0.925 
B4 y= -27.825+ 945.445x 0.902 0.813 3.9244 0.926 
B5 y= -13.633+ 655.309x 0.807 0.652 5.3560  
B10:B3 y= -1438.337+ 132.690x 0.825 0.681 5.1268  
B10:B4  y= 31.237-856.439x 0.828 0.685 5.0933  
B1:B5 y= 37.502-7.853x 0.801 0.642 5.4309  
B10:B5 y= 30.476-716.815x 0.841 0.708 4.9101 0.903 
B10:B6 y=34.208-778.047x 0.804 0.646 5.4022  
B3:B10 y= -9.300+ 0.232x 0.859 0.738 4.6511 0.886 
B4:B10 y= -9.904+ 0.429x 0.857 0.735 4.6774 0.885 
B5:B10 y= -5.521+ 0.369x 0.821 0.674 5.1825  

 
The bands/band ratios algorithms developed from Sentinel 2 B3, B4, B10:B5, B3:B10, and B4:B10 obtained 
high R2 values of 0.828, 0.813, 0.708, 0.738, and 0.735, respectively and were validated (Table 4.8). The B3 
algorithm obtained the highest R-value (0.925) and lowest SE value (3.7678µg/t) after validation, indicating 
the algorithm's ability in chl-a retrieval from Sentinel 2 TOA reflectance data. The overall formula of the most 
successful algorithm for chl-a retrieval from Sentinel 2 is: 

Chl-a = -25.925 + 502.455 (B3) 
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Table 4.9: Linear regression algorithms generated using Sentinel 2 BOA reflectance and in-situ TSS 
BAND/BAND 
RATIO 

EQUATION R  R2  SE (mg/t) Validated R 
value 

B1  y= 26.496- 663.317x 0.950 0.902 1.9429 0.938 
B3:B2 y= 33.500- 16.127x 0.933 0.871 2.2225 0.901 
B4:B2 y= 34.489- 33.706x 0.913 0.833 2.5317 0.882 
B1:B3 y= -8.018+32.784x 0.852 0.725 3.2468  
B2: B3 y= -8.954+25.978x 0.921 0.848 2.4176 0.919 
B11: B3 y= 2.585+57.976x 0.805 0.648 3.6762  
B12:B3 y= 3.526+66.062x 0.809 0.655 3.6403  
B1:B4 y= -8.126+16.669x 0.811 0.657 3.6275  
B2:B4 y= -10.391+14.207x 0.909 0.826 2.5860 0.890 
B7:B5 y= -4.630+22.016x 0.811 0.657 3.6268  
B11:B5 y= 1.512+27.883x 0.856 0.733 3.2016  
B5:B7 y= 30.238-12.714x 0.837 0.701 3.3879  
B5:B11 y= 22.004-2.876x 0.844 0.712 3.3251  

 
Table 4.9 shows the Sentinel 2 BOA reflectance algorithms and in-situ TSS. B1, B3:B2, B4:B2, B2:B3 and 
B2:B4 algorithms which generated high R2 values (0.902, 0.871, 0.833, 0.848 and 0.826) and were validated. 
The B1 algorithm obtained the highest R-value (0.938) and lowest SE value (1.9429 mg/t) after validation, 
indicating the algorithm's success in retrieving TSS. The overall formula of the most successful algorithm for 
TSS retrieval from Sentinel 2 is: 

TSS = 26.496 -663.317 (B1) 
 
 

Table 4.10: Linear regression algorithms generated using Sentinel 2 TOA reflectance and in-situ TSS 
BAND/BAND 
RATIO 

EQUATION R  R2  SE (mg/t) Validated R 
value 

B3 y= 35.475-323.529x 0.859 0.737 3.1769  
B4 y= 35.816-586.291x 0.819 0.672 3.5506  
B1:B3 y= -9.344+ 12.563x 0.889 0.790 2.8363 0.926 
B10:B3 y= -2.664+ 1066.930x 0.897 0.805 2.7364 0.906 
B1:B4 y= -10.268+ 7.386x 0.867 0.752 3.0839  
B10:B4 y= -3.309+ 628.751x 0.891 0.793 2.8171 0.888 
B6:B5 y= -36.668+ 54.763x 0.853 0.728 3.2305  
B10:B5 y= -2.295+ 510.829x 0.878 0.772 2.9602 0.886 
B5:B6 y= 57.560-39.957x 0.834 0.696 3.4169  
B10:B6 y= -4.635+ 544.474x 0.824 0.679 3.5080  
B10:B7 y= -3.357+ 487.930x 0.821 0.673 3.5411  
B10:B8 y= -3.321+ 391.806x 0.817 0.667 3.5751  
B10:B8a y= -2.106+ 351.510x 0.811 0.658 3.6234  
B3:B10 y= 25.739-0.161x 0.876 0.767 2.9901 0.827 
B4:B10 y= 25.903-0.293x 0.857 0.735 3.1891  

 
Algorithms developed using Sentinel 2 TOA, and in-situ TSS are shown in Table 4.10. Band ratio algorithms 
B1:B3, B10:B3, B10:B4, B10:B5 and B3:B10 generated high R2 values of 0.790, 0.805, 0.793, 0.772 and 0.767 
and were validated. The B1:B3 algorithm obtained the highest R-value (0.926) and a low SE value (2.8363 
mg/t) after validation, indicating the algorithm's success in retrieving TSS. The overall formula of the most 
successful algorithm for TSS retrieval from Sentinel 2 is: 

TSS = -9.344 + 12.563 (𝐵𝐵1
𝐵𝐵3

) 
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This study compared algorithms generated using Landsat 8 radiance and reflectance data and Sentinel 2 BOA 
and TOA reflectance, which has rarely been done before.  
Algorithms developed from Landsat 8 radiance and reflectance achieved good results (R2 > 0.8), while 
algorithms developed using Sentinel 2 TOA, and BOA reflectance also obtained good results (R2 > 0.79), with 
TOA reflectance algorithms generating better results (R2 = 0.828) than BOA reflectance algorithms (R2 = 0.816) 
for chl-a, while for TSS BOA reflectance obtained better results (R2 > 0.902) than TOA reflectance algorithms 
(R2 > 0.790).  
 
The algorithms developed using Landsat 8 data were more successful than those created using Sentinel 2. 
Algorithms developed using Landsat 8 had higher R-values, R2-values, and lower SE values indicating the 
success of Landsat 8 in developing chl-a and TSS retrieval models. Sentinel 2 can also retrieve chl-a and TSS 
remotely; however, the algorithms obtained had slightly lower R-values, R2-values, and higher SE values, 
indicating possible overestimation or underestimation of chl-a and TSS with algorithms developed from 
Sentinel 2. The Landsat 8 algorithms for estimating TSS were more accurate than those for estimating chl-a, 
possibly due to the higher Signal-to-Noise Ratio (SNR) and bandwidth placement of Landsat 8 satellites (Ouma 
et al., 2020). At the same time, there was no noticeable difference in the chl-a and TSS estimation from Sentinel 
2 imagery.  
Yadav et al. (2019), Buma and Lee (2020), Watanabe et al. (2017), and Bande et al. (2018) found that Sentinel 
2 outperformed Landsat in chl-a and TSS estimation; however, Ouma et al. (2020) found that Landsat 8 
outperformed Sentinel 2 in TSS estimation, but there was no significant difference in chl-a retrieval between 
the two satellites. Ciancia et al. (2020) combined Landsat 8 and Sentinel 2 information to estimate TSS with 
good results; however, a comparison for TSS retrieval between the satellites was not performed. The results 
of studies conducted elsewhere show that Sentinel is better able to retrieve chl-a and TSS; however, Ouma et 
al. (2020) and this study revealed that Landsat 8 performed better in chl-a and TSS estimation. Many studies 
have been conducted using Landsat 8 for water quality parameter estimation (Sharaf El Din, 2020; Markogianni 
et al., 2017; Prasad et al., 2020; Ledesma et al., 2019, Hu et al., 2021; Zhang et al., 2020; Malahlela et al., 
2018; Peterson et al., 2018; Kurniadin and Jaelani, 2016; Fadel et al., 2016; Patra et al., 2017; Kim et al., 
2016; Lim and Choi, 2015; Masocha et al., 2018; Liu et al., 2017; Sharaf El Din and Zhang, 2017; Laili et al., 
2015), but fewer studies have considered Sentinel 2 (Soomets et al., 2020; Bresciani et al., 2018; Li et al., 
2021; Grendaitė et al., 2018; Sòria-Perpinyà et al., 2020; Ansper and Alikas, 2019; Molkov et al., 2019; Pirasteh 
et al., 2010), and fewer still have compared Landsat 8 and Sentinel 2 for water quality monitoring (Ouma et 
al., 2020; Yadav et al., 2019; Buma and Lee, 2020; Watanabe et al., 2017; Bande et al., 2018).  
More studies should be conducted locally and internationally to validate the results found in this and other 
studies, considering that few studies have been conducted on Sentinel 2 and water quality estimation 
compared to Landsat 8. Chl-a has also been extensively studied compared to other water quality parameters, 
leaving room for more studies in other remotely sensed water quality parameters. 
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4.5 SURFACE DISTRIBUTION OF CHL-A AND TSS IN THE INANDA DAM 

Maps showing the surface distribution of chl-a/TSS (Section 4.5) were produced using the most successful 
chl-a and TSS algorithms developed from Landsat 8 radiance and reflectance, and Sentinel 2 TOA and BOA 
reflectance, and in-situ chl-a/TSS concentrations (Section 4.4). 

4.5.1 Surface distribution of Chl-a from Landsat 8 and Sentinel 2  

Figure 4.7(a) displays the distribution of in-situ chl-a in the Inanda Dam, showing the highest chl-a 
concentrations along the narrow inlet of the Dam, with chl-a concentrations decreasing as the Dam widens 
and water flows along the Dam towards the dam wall. While the general trend of chl-a indicates the highest 
concentrations at the entrance of the Dam, decreasing as water flows through the Dam, there is some variation 
in this distribution, as indicated by points x, y, and z in Figure 4.7(a). At point x, there is a considerable decrease 
in chl-a concentrations, while at point y, the chl-a concentrations start to increase, with the higher 
concentrations found along the dam edge. Point z shows a slight increase in chl-a concentrations, with chl-a 
decreasing as water flows after point z towards the dam wall. 
 

 

 
Figure 4.7. Surface distribution of chl-a according to (a) in-situ chl-a, (b) Landsat 8 B4:B2 radiance algorithm, 

(c) Landsat 8 B4:B1 reflectance algorithm, (d) Sentinel 2 B3 TOA reflectance algorithm, and (e) Sentinel 2 
B1 BOA reflectance algorithm 

 
Figures 4.7(b) to (e) shows a similar general chl-a trend and variations in surface distribution as in the case of 
in-situ data (Figure 4.7(a); however, Figure 4.7(c) shows that the Landsat 8 B4:B1 reflectance algorithm 
underestimated the chl-a concentrations upstream at the dam inlet but overestimated the chl-a concentration 
downstream closer to the dam wall. The Sentinel 2 B3 TOA algorithm, while showing the correct trend in chl-
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a distribution over the Dam, overestimated the chl-a concentrations in the Dam (Figure 4.7. (d)). The Sentinel 
2 B1 BOA algorithm (Figure 4.7. (e)) was not able to estimate higher chl-a concentrations and therefore 
underestimated chl-a at the Dam inlet but accurately estimated the lower chl-a concentrations downstream 
closer to the outlet (Dam wall). The Landsat 8 B4:B2 radiance algorithm estimated chl-a values which closely 
resembled the in-situ values, with a difference of ± 1µg/t on either end of the range, indicating that this algorithm 
can accurately estimate the chl-a in the Dam, while also capturing the variations in chl-a distribution over the 
Dam (Figure 4.7. (b)). Overall, the Landsat 8 B4:B2 radiance algorithm produced a chl-a surface distribution 
map that closely resembled the map produced using in-situ chl-a data. 
 
The distribution pattern of chl-a in the Inanda Dam may be attributed to many factors, which need to be further 
examined to determine their validity. Darvill Wastewater Works and the Cato Ridge Abattoir are located north 
of the dam and release high amounts of nutrients which find their way into the Inanda Dam (Graham, 2004; 
Simpson and Pillay, 2000). The dam retains approximately 80% of the nutrient load, and the dam’s meandering 
nature and prevailing easterly wind keeps the nutrient load (phosphorous) trapped upstream, leading to more 
chl-a forming upstream and hence higher chl-a concentrations found at the dam entrance (Graham, 2004). As 
water flows through the dam towards the dam outlet, the chl-a concentrations decrease, possibly due to the 
widening of the dam, however more research must be conducted to determine the accuracy of this statement.  

4.5.2 Surface distribution of TSS from Landsat 8 and Sentinel 2  

Figure 4.8(a) displays the distribution of in-situ TSS concentrations over the Inanda dam, showing the variation 
of TSS concentrations in the Dam. Concentrations are, however, generally lower near the dam inlet and higher 
closer to the dam wall and along the dam edges, with TSS values ranging from 4 mg/t to 18 mg/t. Figures 4.8. 
(b) to (e) show that all the algorithms were able to produce the surface distribution of TSS, capturing the trend 
and variation of TSS over in the Dam, with the Landsat 8 B1 radiance algorithm most successful in producing 
a surface distribution map to capture TSS as per in-situ data.  

 
Figure 4.8. Surface distribution of TSS according to (a) in-situ data, (b) Landsat 8 B1 radiance algorithm, (c) 
Landsat 8 B1 reflectance algorithm, (d) Sentinel 2 B1:B3 TOA reflectance algorithm, and (e) Sentinel 2 B1 

BOA reflectance algorithm 
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The Landsat 8 B1 reflectance algorithm had slight difficulty estimating lower values of TSS; however, it 
accurately estimated high TSS concentrations, capturing some TSS variation over the Dam, though not as 
accurately as the Landsat 8 radiance B1 algorithm. Sentinel 2 B1:B3 TOA and B1 BOA reflectance algorithm 
underestimated TSS concentrations, particularly for lower TSS concentrations, but captured TSS variation in 
the Dam. 
 
Variation of TSS distribution in the Inanda Dam can be due to many factors such as temperature, rainfall, wind, 
human acitvities, streamflow, climatic variation, sediment availability, resuspended riverbed material, the 
underlying geology of the area, and much more (Jaiyeola, 2015; Bayram and Kenanoğlu, 2016), however more 
research must be conducted in the Inanda Dam to determine which of these factors or combination of factors 
are responsible for the distribution of TSS in the dam.  
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

This study evaluated the ability of algorithms for retrieving chl-a and TSS from Landsat 8 and Sentinel 2 
satellites and mapped their surface distribution in the Inanda Dam. In-situ chl-a and TSS water samples were 
collected from the Dam during the wet and dry seasons. The in-situ samples and radiance and reflectance 
values from Landsat 8 and Sentinel 2 were used to develop statistical algorithms to estimate chl-a and TSS.  
This study consisted of five deliverables (objectives) to fulfil a contract funded by the Water Research 
Commission (WRC) of South Africa. They included 1) developing wet season algorithms for retrieving chl-a 
and TSS from Landsat 8 and Sentinel 2 images in the Inanda Dam, 2) developing dry season algorithms for 
retrieving chl-a and TSS from Landsat 8 and Sentinel 2 images in the Inanda Dam, 3) mapping the surface 
distribution of chl-a in the Inanda Dam, 4) mapping the surface distribution of TSS in the Dam, and 5) produce 
a full report of the study. Overall, the aim and objectives of this study (Sections 1.2 and 1.3) were achieved 
(Chapters 3 and 4) and are summarized as follows:  

• Chl-a was extracted from Landsat 8 and Sentinel 2 imagery. 
• TSS was extracted from Landsat 8 and Sentinel 2 imagery.  
• Landsat 8 obtained better retrieval results than Sentinel 2 for chl-a and TSS. 
• In addition, both single bands and band ratios could estimate water quality parameters.  
• Both Landsat 8 radiance and reflectance values successfully generated algorithms for extracting chl-

a and TSS in the Inanda Dam. 
• Sentinel 2 BOA algorithms performed better in TSS retrieval, and Sentinel 2 TOA algorithms were 

more successful in chl-a retrieval. 
• Surface distribution maps were produced showing the spatial distribution of chl-a and TSS 

concentrations in the Dam. 

5.2 RECOMMENDATIONS 

Further studies should be conducted on the water and wind circulation patterns in and on the surface of the 
Dam to understand their roles on distribution of chl-a and TSS in the Dam. Future studies on remote sensing 
of water quality in the Inanda Dam should explore the integration of hyperspectral ASD data to improve the 
accuracy and quality of results. More studies need to be carried out in other South African water bodies to 
further strengthen the slowly growing data on algorithms to monitor chl-a, TSS, and other water quality 
parameters. Thus far, few studies have been conducted on water quality and remote sensing, and fewer still 
on the use of Landsat 8 and Sentinel 2. The new Landsat 9 satellite, which was launched on the 27th of 
September 2021, along with the already orbiting Landsat 8, Sentinel 2A, and Sentinel 2B satellites, can provide 
an improved free data source. Scientists can use this information to monitor water quality almost daily to ensure 
the sustainability of South Africa's freshwater resources. With modern advancements in artificial intelligence 
and machine learning, opportunities exist for developing apps to monitor different water quality parameters in 
South African bodies in real-time. 
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