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Abstract

Rising eutrophication in South African reservoirs is of major concern, leading to the consideration of top-down biomanipu-
lation as a management option – reducing zooplankton-eating fish to sustain zooplankton grazing pressure and thus restrict 
autotrophic plankton that proliferate with nutrient increases. The biomass ratio of zooplankton to phytoplankton (ZB/PB) is 
used as an index of the likely value of biomanipulation to achieve this outcome, but values have not been explored for South 
African systems. Using chlorophyll (Chl) as a surrogate for PB, available ZB/Chl data are assembled for the first time for 
ten reservoirs of three types (minerally-turbid systems, oligo/mesotrophic clear water systems, and eutrophic/hypertrophic 
systems), and the results are discussed in relation to a generalised conceptual model proposed. With the exception of one 
minerally-turbid system, ZB/Chl values decline quasi-exponentially with rising chlorophyll within individual reservoirs. 
Conversely, between individual systems, median (or mean) values of ZB/Chl conversely increase rather than decline with 
rising trophic status – broadly contradicting observations reported elsewhere. Underlying causal reasons for the observed 
pattern and its implications for biomanipulation are considered. This assessment evaluates: the negative impacts of general 
declines in food quality that stem from rising eutrophication on zooplankton feeding ability and resulting seasonal changes 
in ZB and community structure; prospects of food sources other than living autochthonous autotrophs in sustaining ZB 
between systems; and inferences about fish predation pressure on zooplankton, derived from empirical data regarding the 
large body sizes of species and individuals of Daphnia that occur in the reservoirs. Observed increases in median ZB/Chl 
ratios with rising nutrient status are consistent with the inference that obligate visual zooplanktivorous fishes are scarce or 
absent, particularly in eutrophic reservoirs, suggesting that biomanipulative management is unlikely to assist in controlling 
the consequences of nutrient enrichment in local reservoirs.  
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Introduction

Cultural eutrophication is a familiar phenomenon known for dec-
ades (e.g. OECD, 1982; Schindler, 2006). Smith and Schindler 
(2009) state that it has become the primary water quality issue 
in most of the freshwater and coastal marine ecosystems in the 
world. Its impact is of growing global concern in view of its mul-
tiple adverse consequences on the structure and functioning of 
affected ecosystems (e.g. Holdren, 2001; Jeppesen et al., 2003b; 
Osborne, 2005; Phillips, 2005; Søndergaard and Jeppesen, 2007). 
Harmful algal blooms (HABs) with adverse ecosystem implica-
tions and potential human health problems commonly emerge 
(Graham, 2007). Krantzberg et al. (2010) indicate that 20% of 
the world’s population (more than one billion people) are at risk 
of water-related diseases associated with water pollution, while 
pathogens can benefit from the higher nutrient levels in eutrophic 
waters (Smith and Schindler, 2009). The greater vulnerability of 
warm and tropical waters to eutrophication problems (Jeppesen 
et al., 2003b, 2005; Hart, 2006b) is an emerging concern of par-
ticular relevance to South Africa, a water-scarce country, largely 
dependent on water stored in man-made reservoirs (reservoir-
lakes) for the sustained supply of raw potable and irrigation 
water.  

South African reservoirs impound at least 50% of the mean 
annual runoff in the country (DWAF, 2004). Some 35% of this 
stored water is currently classified as eutrophic or hypertrophic 
– with nutrient levels greatly exceeding generally-accepted 
trophic boundaries (Harding et al., 2009). Bulk nutrient loading 
of many inland South African reservoirs derives from waste-
water return flows, leading in many cases to cyanobacterial 
blooms (Van Ginkel et al., 2000, 2006; Harding et al., 2009). 
Harding (2008) has estimated that nutrient load reductions of 
between 25 and 96% will be necessary to attain in situ thresh-
old concentrations amenable to an acceptable reduction in the 
frequency of cyanobacterial blooms. However, the prospects of 
such reductions are poor, given the parlous state of increasingly 
over-loaded wastewater treatment plants in the country (DWA, 
2009). Accordingly, alternative in-lake management options 
attract growing consideration, with food web modification (bio-
manipulation) emerging as a possible prospect (e.g. Harding et 
al., 2009). 

The basic principles behind the biomanipulation approach 
to lake restoration are widely known (e.g. Gulati et al., 1990; 
Moss, 1998a; Hansson et al., 1998), and are not elaborated 
here. While the approach has been widely applied internation-
ally, its successes are outnumbered by failures, certainly in 
the longer term (Gulati and Van Donk, 2002; Søndergaard 
and Jeppesen, 2007; Søndergaard et al., 2007; Gulati et al., 
2008). Successful outcomes are more frequent in shallow 
natural lakes where submerged hydrophytes compete with 
phytoplankton for nutrients, and also provide a visual refuge 
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against obligate visually-feeding zooplanktivorous fishes 
(Jeppesen et al., 1997). Nevertheless, the sustainability of 
successful food web manipulation has been found want-
ing on several grounds, even in such natural lakes (Gliwicz 
2005; Søndergaard et al., 2007; Gulati et al., 2008). In 
South African reservoirs, obligate visual zooplanktivores 
are effectively absent, and most reservoir systems are deep 
enough to stratify (Allanson et al., 1990), and thus exceed 
the ‘arbitrary’ deep/shallow depth threshold, of aprox.  
6 m, associated with effective biomanipulation prospects 
(Jeppesen et al., 2003a). Extensive hydrophyte stands are 
also not characteristic of many South African reservoirs, the 
lake beds of which mostly lie below the trophogenic zone, 
and/or because seasonal water-level drawn-downs strand 
hydrophytes and/or desiccate suitable habitat for them. 

On various grounds, the prospects of successful bioma-
nipulation in South African reservoirs have already been 
questioned and seriously challenged (Hart, 2006b); the prob-
lem autotrophs that increase radically with nutrient enrich-
ment are dominated by taxa such as Microcystis (Van Ginkel 
et al., 2000, 2006) and, increasingly, Ceratium (Van Ginkel 
et al., 2001; Hart and Wragg, 2009), which are too large for 
direct consumption by grazing zooplankton. In addition, 
zooplankton populations are not subjected to significant fish 
predation, since obligate zooplanktivorous fish are absent 
and young-of-year (YOY) facultative zooplanktivores are 
numerically, temporally and/or spatially restricted in South 
African reservoirs (Hart 2006b). 

Here, a conceptual model of causal changes in ZB/PB, 
using chlorophyll (Chl) as a proxy for PB, is offered. Values 
of ZB/Chl are collated for the first time for a number of 
South African reservoirs, systems for which empirical evi-
dence regarding fish abundance and composition is severely 
limited. These data show that ZB/Chl ratios decline with 
rising chlorophyll within most individual reservoirs, a trend 
that is partly attributable to the negative effect of declining 
food quality on ZB within systems. Conversely, however, 
the data also reveal that median (or mean) ZB/Chl ratios for 
individual systems actually rise with trophic status. In this 
paper, possible causes for these observations are considered 
and discussed, along with the implications of these for pro-
spective ‘corrective’ top-down biomanipulation, especially 
within the eutrophic reservoirs.  

Conceptual background to the ZB/PB ratio, and 
inferences regarding its causal control

Fundamentally, and all else being equal, ‘grazing’ zooplank-
ton biomass (ZB) is expected to rise commensurately with the 
increase of phytoplankton biomass (PB) associated with nutri-
ent (especially P) enrichment (Fig. 1a). Using total chlorophyll 
(Chl) as a proxy for PB, the ZB/Chl ratio should effectively 
standardise this food effect, and remain constant in relation  
to trophic status/food resource level (Fig. 1b) (disregarding 
food-saturation limitations (Gulati, 1990b)). Alternatively, 
however, this latter ‘equilibrium’ pattern can decrease  
(Fig. 1c) or increase (Fig. 1d). Empirical declines in this ratio 
with rising food levels (Fig. 1c) have been commonly observed, 
and attributed to rising predation of zooplankton (Fig. 1e) by 
known increases in zooplanktivorous fishes with rising nutrient 
status (e.g. Jeppesen et al., 2003a). Such reductions in ZB/PB 
associated with rising fish predation were especially evident  
in shallow lakes across a temperate-arctic latitudinal range 
(Fig. 3 in Jeppesen et al., 2003a), where the ZB/PB dry weight 
ratio declined from 0.35 (equivalent ZB/Chl = ~23.45) in the 
most oligotrophic lakes to below roughly 0.15 (ZB/Chl= ~10.05) 
in the most eutrophic of 466 study lakes.

Equally logically, however, reductions in zooplankton 
feeding ability related to adverse changes in food type/qual-
ity with rising trophic status (Fig. 1f) can result in a similar 
inverse relationship, regardless of fish predation. Such reduc-
tion in food quality is a well-known outcome of eutrophication 
(e.g. Sommer et al., 1986; Gulati, 1990b; Moss, 1998b; Wetzel, 
2001; Kalff, 2002; Lampert and Sommer, 2007); edible, palat-
able and nutritionally adequate phytoplankton are increasingly 
replaced by large colonial and other nutritionally deficient 
cyanoplankton (see Hart and Bychek (2011) for a contemporary 
synoptic overview of these nutritional deficiencies). In addition, 
these large particles depress feeding rates of large cladocerans 
in particular (Lampert, 1987), potentially reducing ZB and 
thus the ZB/PB ratio, regardless of any predatory impacts of 
zooplanktivorous fish (Fig. 1e). Since the depressive impacts of 
the cyanophytic autotrophs that increasingly predominate with 
rising trophic status are strongest on the large-bodied daph-
niid zooplankton (Gliwicz and Siedlar, 1980; Lampert, 1987; 
Gliwicz, 1990) that exert highest grazing pressures (Lampert, 
1987), a decline in food quality can lead to disproportionately 
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A general conceptual model showing 
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food supply and a proxy for increasing 
trophic/nutrient status(the abscissa for 

all panels): a) zooplankton biomass (ZB); 
b) zooplankton abundance standardised 

for food supply (ZB/Chl); c) and  
d) alternative responses of ZB/Chl to 
food supply; e) alternative changes in 
zooplanktivorous fish abundance and 
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with changing trophic status. Dashed 
lines show that the common empirical 
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rapid decreases in ZB, and thus in ZB/Chl ratios.
Alternatively, the ZB/PB ratio could theoretically rise with 

trophic status (Fig. 1d), an increase plausibly attributable to 
one or more of three causes: declining fish predation (Fig. 1e), 
increasing food quality (Fig. 1f), and, most likely, increases in 
autochthonous and/or allochthonous detritus particles, and/or 
non-autotrophic food particles, as trophic status rises. 

Materials and methods

General

A comparative evaluation was made of zooplankton-chloro-
phyll (ZB/Chl) ratios in South African reservoirs for which 
appropriate data exist. Information was extracted from the 
author’s own original raw data used in various publications, 
and from other sources (see Table 2). In the absence of original 
raw data for systems independently studied by other authors, 
their published figures were photo-enlarged to allow measure-
ments of values of interest with a digital micrometer read to 
0.1 mm. All data for Hartbeespoort Dam were derived from 
plots of 3-point moving mean values of weekly measurements 
over 6 years (Jarvis, 1987). These smoothed estimates obvi-
ously obscure some intrinsic temporal variability, and are not 
precise concurrent estimates. However, the error associated 
with this approach is unlikely to negate the general underly-
ing trends described.  Sampling frequency varied from weekly 
(Hartbeespoort), to fortnightly (Midmar, Albert Falls) with 
monthly sampling for all other systems apart from Rietvlei, 
where sampling mostly varied between 4 and 6 weeks

The median, rather than the mean, was selected as a  
measure of central tendency, principally to offset the effect  
of outlying high and low values within the data. However,  
some average values are explicitly given (Table 3) and used 
(Fig. 7b) to emphasise one point. General procedures used to 
obtain original information are outlined below.

Zooplankton biomass (ZB)

Zooplankton was collected in vertical hauls through the entire 
water column, or the upper 15 m thereof. Nets with mesh 

apertures of between 63 and 160 mm were used in different stud-
ies, and samples were preserved with formalin for subsequent 
microscopic enumeration. Resulting (species- or genus-specific) 
counts of copepod instars were converted to biomass using 
uniform instar biomass coefficients (see original publications, 
as noted in Table 2), while cladoceran counts were converted to 
biomass using published (e.g. Bottrell et al., 1976) or original 
length-weight regressions (Hart, unpublished data) applied to 
sample mean lengths (geometric means where available). For 
Hartbeespoort and Roodeplaat Dams, fresh sample wet weights 
(WW) were determined. Dry weight (DW) was estimated as 
one-sixth of fresh weight for Hartbeespoort Dam (NIWR, 1985); 
for consistency, a similar conversion was made for the WW 
values reported for Roodeplaat Dam by Van Ginkel (1987). 

All resulting biomass estimates (mg/m2) are reported as 
water column integrated volumetric values as mg/m3 (mg/ℓ) 
DW, using corrections based on site- and date-specific records 
of net haul length, or from graphical plots given in these units 
by the original authors. 

Phytoplankton biomass (PB)

Direct determinations of PB as dry weight are not avail-
able concurrently with ZB values for any of the study dams. 
Accordingly, total chlorophyll (Chl, mg/ℓ) was used as a sur-
rogate measure, with values generally determined from integral 
hose-pipe samples through the upper 3 or 5 m of the water 
column. Chlorophyll has been multiplied by 67 to estimate PB 
(as mg/ℓ dry weight) (Jeppesen et al., 2003a). This approach can 
progressively underestimate PB as chlorophyll rises between 
1 and 150 mg/ℓ chlorophyll a, since chlorophyll declines from 
approximately 0.7% to merely 0.15% of phytoplankton wet 
weight (Kasprzak et al., 2008), largely as cyanophytes with 
inherently more chlorophyll per unit weight than eukaryotic 
autotrophs predominate at high chlorophyll levels. To avoid 
this confounding prospect, chlorophyll was used as a direct 
proxy for PB. Obviously, not all chlorophyll reflects edible food 
species, and it disregards non-autotrophic foods. However, it 
is inferred here as a direct measure of food supply (as used for 
other published PB values determined from chlorophyll – e.g., 
Jeppesen et al. (2003a)).

Table 1
Best-fit linear (Y=a + bX) or power (Y=aXb) regression statistics for zooplankton biomass (ZB) as 

functions of concurrent chlorophyll levels (Chl) in South African reservoirs. Suffixes for each system 
identify whether the best-fit regression is linear (–L) or power (– P). Data sources are listed in Table 2.

Dam system Regression statistics Notes 
a b r2 n P

Clear water (Oligo/mesotrophic) systems
Midmar – L 21.1 4.22 0.120 195 ***
Albert Falls – P 30.5 0.26 0.093 195 **
Nagle – L 9.3 12.92 0.373 14 *
Inanda – P 93.7 -0.59 0.192 13 ns
Biogenically turbid (eutrophic) systems
Hartbeespoort – P 288.3 -0.08 0.010 133 ns Jarvis, 1987 (Figs 2.0A & 2.2D)
Roodeplaat – P 367.1 -0.17 0.026 86 ns
Rietvlei – L 286.4 6.40 0.561 8 * Not all readings concurrent 
Minerally turbid systems
Vanderkloof – P 182.3 0.31 0.127 7 ns Annual means-open lake
Vanderkloof – P 5.9 1.15 0.381 86 *** Shallow embayment
Spioenkop – L -0.7 4.22 0.251 9 ns
Wagendrift – L -13.6 10.05 0.637 10 **

*** P < 0.001  ** P < 0.01  * P < 0.05  ns – not significant
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‘Phytoplankton’ edibility

Using species and cell or colony types and sizes, Jarvis (1987) 
distinguished between % biovolumes of ‘edible’ (Cryptomonas, 
Chroomonas, Coelastrum, Ankistrodesmus, Cyclotella and non-
sheathed Oocystis), ‘partly edible’ (Aulacoseira, and sheathed 
Oocystis) and ‘largely inedible’ (predominantly Microcystis) 
‘fractions’ of total ‘phytoplankton’ in Hartbeespoort Dam. Here, 
I partitioned chlorophyll into corresponding edibility classes, 
simplistically assuming a direct equivalence of chlorophyll and 
total phytoplankton bio-volume, in order to explore certain fea-
tures relevant to this account (see ‘Results’ section).  

Zooplankton-phytoplankton ratios (ZB/PB)

To avoid artefacts in PB associated with changes in proportion-
ate contributions of chlorophyll to mass (see above), the proxy 
measure of ZB/Chl was used. This ratio is qualitatively but not 
quantitatively comparable to published values of ZB/PB, but 
an approximate conversion can be obtained as ZB/PB = ZB/
Chl*67 for comparative purposes. 

Phosphorus content/trophic status

As direct values of in situ phosphorus content concurrent 
with the zooplankton and chlorophyll data reported here are 

unavailable or inaccessible, chlorophyll is used as a standard 
general proxy for nutrient content (especially P). This approach 
is based on the well-established interdependency of these vari-
ables, as per classic Vollenweider (1975) and related modelling 
approaches (e.g. OECD, 1982; Walmsley and Thornton, 1984), 
despite potential confounding increases of chlorophyll to P when 
cyanophyte abundance increases with rising trophic status. 

Results 

ZB in relation to chlorophyll level

Table 1 gives the regression statistics for total ZB in relation 
to total chlorophyll (as a proxy measure of food supply).  As 
expected, ZB increases with rising food supply (i.e. Fig. 1a), 
except in the eutrophic reservoirs in which the change to a 
negative regression slope (significant or not) is consistent 
with declining food quality (see below), or rising fish pre-
dation (for which no empirical data exist in South African 
reservoirs). The one system with empirical food quality data 
(Fig. 2, Hartbeespoort Dam) supports the former ‘food qual-
ity’ explanation. In this system, ZB declines with ‘inedible’ 
chlorophyll, in contrast to its increases with ‘partly edible’ 
and ‘edible’ chlorophyll fractions (see further  the section on 
‘ZB and ZB/Chl ratios in relation to phytoplankton edibility’ 
below).

Table 2
The biomass ratio of zooplankton (ZB) to chlorophyll (Chl) (as a surrogate of phytoplankton biomass) in various 

South African reservoirs. Ratios for all reservoirs are based on ZB estimates of dry weight per unit volume.

Reservoir 
system
(dam)

Sampling 
information

Haul 
depth 
range

(m)

ZB/Chl ratio Chlorophyll (mg/ℓ)
Zooplankton 

biomass
 (mg/ℓ dry weight) 

Dates n Median Mean Median Mean Median Mean Source

Clear-water (Oligo/meso-trophic) systems

Nagle Jan 91- Sep 
91 14 15 13.74 23.17 1.87 2.19 33.3 37.5 Original data 

(Hart,1996) 
Inanda Aug 92 - 

Aug 93 13 15 7.59 15.4 3.74 4.35 33.1 51.3 Original data (Hart, 
unpubl. data)

Midmar Aug 89 - 
Sep 98 195 10-21 8.70 10.06 3.75 4.10 36.5 38.5 Original data (Hart, 

1992, 1996) 
Albert Falls Aug 89 - 

Aug 98 195 5-21 10.05 11.84 4.38 5.83 45.7 53.7 Original data (Hart, 
1992, 1996) 

Biogenically turbid (eutrophic/hypertrophic) systems

Hartbeespoort Jan 81 - 
Dec 86 132 20-30 26.26 47.10 9.11 11.74 262.1 292.6 NIWR (1985); Jarvis 

(1987)

Rietvlei1 Jul 09 - Jul 
10 8 14-17 27.05 36.82 12.7 30.45 439.8 607.8

Original data (Hart, 
unpubl. data; Coetzee, 
pers. comm., 2010)

Roodeplaat 2 Jan 80 - 
Dec 81 86 7-20 12.97 88.12 26.6 31.36 248.4 392.6 Van Ginkel (1987)

Minerally turbid systems

Vanderkloof 3 Aug 81 - 
Sep 83 86 4-12 6.43 14.04 1.27 2.67 13.3 26.4 Original data (Hart, 

1987)
Vanderkloof 4 Aug 77 - 

Jul 84 7 705 6.47 9.04 1.56 - - - Original data (Hart, 
1986)

Spioenkop Jul 89 - 
May 90 9 15 3.22 3.82 2.61 2.68 11.5 10.7 Original data (Hart, 

1999)
Wagendrift Jul 89 - 

May 90 10 13-15 4.75 5.11 2.91 3.05 14.2 17.1 Original data (Hart, 
2001)

1 Ratio is approximation based on median values of chlorophyll and zooplankton collected on separate dates within the same overall annual period.
2 Data for Stations 1 to 4. 
3 Average haul-depth corrected estimates for 5 sites in a shallow embayment. 
4 Determinations based on weighted annual mean values at a deep (70 m) offshore site, derived from a total of n=253 samples.
5 Haul counts assumed to derive from 15 m, as zooplankton are concentrated in upper 10 m (Hart, 1986) 
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The negative relationship for Inanda Dam (Table 1), 
although weak, is an interesting exception. Although classed as 
a ‘clear-water’ system on account of its low median chlorophyll 
value in the present data set, it is the most downstream and, 
correspondingly, enriched system in the Umgeni River reser-
voir cascade (Midmar, Albert Falls, Nagle and Inanda). Inanda 
is commonly viewed as functionally eutrophic, exhibiting 
prominent open-water blooms of Microcystis, generally high 
chlorophyll values, and extensive rafts of floating hydrophytes 
(Eichornia and/or Pistia) in its littoral margins. 

ZB/Chl ratios in relation to within-reservoir chlorophyll 
levels, and between-system trophic status

Figure 3 shows estimates of the ZB/Chl ratio within 4 reser-
voirs of progressively lower trophic status (i.e. declining 
maximal chlorophyll levels in concurrent data sets). In each 
reservoir, ZB/Chl declines as chlorophyll increases, contrary 
to the standardising effect expected of this division procedure 
(i.e. Fig. 1b). The declines are best described as power regres-
sions, in which the negative exponents decline progressively 
with declining trophic status (Figs 3a to 3d), with broadly 
parallel declines in coefficients of determination. In effect, the 
standardising procedure effectively weakens with rising trophic 
status, resulting in correspondingly greater declines in ZB/Chl, 
(and thus ZB/PB) ratios. Although not illustrated, a comparable 
inverse trend, best described by negative power regressions, is 
evident for all other reservoir data sets, apart from Spioenkop, 
where a positive linear relationship exists.  However, it is nota-
ble that the maximal ZB/Chl values within each system decline 
markedly as trophic status drops (Fig. 3).

ZB and ZB/Chl ratios in relation to phytoplankton 
edibility

Changes in ZB with chlorophyll edibility indicated above  
(Fig. 2) are also reflected in disparate differences in the rates of 
decline of the ZB/Chl ratio with rising chlorophyll, according 

Table 3
Adult carapace lengths (mm) of different species of Daphnia recorded in the specified reservoirs. Values are 
averages for n sampling dates (at multiple sites in the case of Rietvlei). The number of individuals measured 

on each sampling date generally ranged from 25 to 60. Data sources indicated.
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n 205 195 14 6
D. 
longispina

Mean 1.45 1.38 1.41 1.27 X X
Range 1.19-1.94 0.93-1.89 1.26-1.57 1.20-1.56  

n 106 193 14 15

D. barbata
Mean - - - - - 1.58 1.82 - -
Range 1.22-2.20 1.56-1.96

n 231 5

D. laevis
Mean X X 1.65 1.62 - - - - -
Range 1.52-1.80 1.57-1.80

n 7 15
D. pulex/ 
longispina

Mean 1.69 - 2.25
Range 1.36-1.94 up to 2.5 1.41-3.21

n 9 - 43
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Figure 2
Changes in ZB in Hartbeespoort Dam in relation to concurrent 
chlorophyll levels differentiated according to edibility classes. 
Accompanying best fit linear or power regression relationships 

indicate positive relationships apply except for ‘inedible’ 
chlorophyll. Data extracted from Jarvis (1987).

to edibility class (Fig. 4). Although ZB/Chl ratios are high 
at low chlorophyll levels regardless of edibility, the sharpest 
decline of the ratio and its predominantly low values at higher 
chlorophyll levels are both associated with inedible chlorophyll. 
However, as noted above, the ZB/Chl ratio also declines with 
rising edible and partly edible chlorophyll, invoking a cause-
effect dilemma. Are the high ZB/Chl ratios at low chlorophyll 
levels a consequence of chlorophyll reduction by ZB grazing, 
and/or is zooplankton food-limited?  Overall, however, Figs 2 
and 4 conform to the hypothesis that declining ZB is associ-
ated with poor food quality, certainly not an unexpected trend. 
Especially in eutrophic systems, however, the role of detrital 
food derived from high autotroph abundance adds an unquanti-
fiable confounding effect to this evaluation. 
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Daphnia biomass in relation to food supply and  
food type

Contrasts in relationships between Daphnia biomass and chlo-
rophyll among reservoirs provide further indications for the 
role of declining food quality as a factor reducing ZB with ris-
ing chlorophyll. Figure 5 shows a clear switch from a positive 
to a negative relationship between Midmar and Albert Falls. 
Importantly, total zooplankton (and total cladoceran biomass) 
rose with food supply in both systems (Table 1), with a negative 
relationship only appearing for total Daphnia biomass (Fig. 
5).  The same pattern is apparent in Hartbeespoort Dam, in 
which Daphnia density also declined as inedible chlorophyll 
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 Figure 3
ZB/Chl ratios in relation to concurrent chlorophyll levels within 4 South African reservoirs of 
declining trophic status (Panels a to d). Note the sequential decline in exponents and most 

regression coefficients of the power curves fitted for each system.
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Figure 5
Daphnia biomass in relation to concurrent chlorophyll values in 
2 adjacent reservoirs. The inversion from a positive relationship 
in Midmar to a negative relationship in Albert Falls is attributed 
to a decline in food quality in the latter, associated with greater 

quantities of large inedible taxa such as Microcystis. 
Both regressions are significant: P << 0.001 for Midmar, 

and P < 0.01 for Albert Falls.

 Figure 4
Changes in the ZB/Chl ratio in Hartbeespoort Dam in relation to 
concurrent chlorophyll levels differentiated according to edibility 
classes. Best fit linear or power regressions for each chlorophyll 

class are plotted. Note that the most significant decline is 
associated with inedible chlorophyll.

increased, but increased with rising 
quantities of edible, and especially 
partly edible chlorophyll (Fig. 
6).  This trend is consistent with 
the well-known susceptibility of 
Daphnia to the disruptive influ-
ences of large inedible particles like 
Microcystis on its feeding ability 
(Sommer et al., 1986; Jarvis et al., 
1987). Microcystis is numerically 
more prominent in Albert Falls than 
Midmar (Hart, 2006a), and pre-
dominates in Hartbeespoort Dam 
(NIWR, 1985; Jarvis 1987), while 
blooms of Ceratium, another large 
inedible taxon, have also appeared 
more recently in Hartbeespoort 
(Van Ginkel et al., 2001) as well 
as Albert Falls (Hart and Wragg, 
2009).  

Median ZB/PB ratios between 
reservoirs of different trophic 
status

Median ZB/Chl ratios for the 10 
study reservoirs in 3 turbidity and/
or trophic status groupings are 
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given in Table 2. Ratios are arrayed according to median con-
current chlorophyll values within each reservoir class. Apart 
from Roodeplaat Dam, median values of ZB/Chl between 
individual systems (Fig. 7a) unexpectedly rise (to nearly 30, as 
median chlorophyll rises to around 15 mg/ℓ), rather than declin-
ing with chlorophyll as they do within individual systems. 
Roodeplaat’s position becomes less discordant if average rather 
than median values are used (Fig. 7b), but the trend remains the 
same – an increase in ZB/Chl with chlorophyll before an inflec-
tion (based on only 1 data point) drops the ratio with further 
increases in chlorophyll.  Importantly, the relationships are 
described by strongly positive but slightly less significant linear 
regressions.

This generally positive relationship between average ZB/
Chl ratios and average ambient chlorophyll levels used to 
approximate trophic status has important implications regard-
ing the prospective utility of biomanipulation. It also raises the 
question of how or why ZB increases with trophic status, given 
the associated general decline in food quality.  These points are 
discussed below.

Discussion

Converting the median ZB/Chl ratios given for South African 
reservoirs in Table 2 into corresponding ZB/PB values indi-
cates that the South African values are broadly comparable 
with those reported by Jeppesen et al. (2003a) for 466 higher 
latitude (north temperate to arctic) systems. However, they tend 
to rise (Fig. 7) from 0.05-0.1 (i.e. 5-10%) to ~0.4 (40%) across 
the trophic spectrum, rather than declining from a mean ratio 
value of 35% in the most oligotrophic lakes to less than 0- to 
20% in the most eutrophic lakes in Jeppesen et al.’s (2003a) 
data set. The decline observed by these authors was attributed 
to empirically determined rises in fish density and associated 
predation pressure. Almost all South African values are higher 
than 2 natural lake values reported by Havens et al. (2009) 
for the shallow temperate Lago Trasimeno (~6.5%) and the 
cyanophyte-dominated subtropical Lake Apopka (~1%). The 
latter value led the authors to argue that their findings ‘sup-
port an emerging view that fish predation limits the biomass 
of crustacean zooplankton in subtropical lakes’.  (The ZB/
PB ratios for these 2 lakes are averages ‘eye-balled’ from 
their Fig. 2c, and adjusted by ~1.28 to correct for differences 
between their ZB/PB ratios which are based on carbon (viz. 
0.48*ZB/25*Chlorophyll), using the Chl:C ratio proposed by 
Perga et al. (2006) and Taipale et al. (2008), rather than the dry 
weight ratios determined here (viz. ZB/67*Chlorophyll)).

Notably, a fundamental difference exists within and 
between South African reservoirs. Within individual systems, 
the ZB/Chl ratio declines with rising chlorophyll (Fig. 3), 
whereas, conversely, median (Fig. 7a) or mean (Fig. 7b) ZB/Chl 
ratios rise with increasing chlorophyll between systems (Fig 7). 
This contrast merits appraisal. 

As the decline in ZB/Chl with rising chlorophyll within 
individual reservoirs occurs regardless of trophic status (Fig. 3), 
it is difficult to attribute the overall pattern to a declining food 
quality effect. Rather, the changes may reflect temporal dynam-
ics within individual systems. The high ZB/Chl ratios at low 
chlorophyll plausibly reflect a relatively high ZB grazing on a 
low standing stock of chlorophyll with a relatively high turnover 
rate – the classic ‘inverted trophic pyramid’ characteristic of 
pelagic systems. They also imply a food-limited zooplankton.

Subsequent declines of the ratio plausibly mirror the 
approach to a nominally ‘standard’ predator/prey state within 
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Figure 6

Daphnia density in Hartbeespoort Dam in relation to concurrent 
levels of chlorophyll of different food quality. Positive 

relationships with edible and partly edible foods are replaced by 
a strong decline with inedible food. The presence/abundance 
of Daphnia at low levels of inedible food is attributable to the 
concurrent presence of edible and/or partly edible foods in 

natural food mixtures.  
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Figure 7
Reservoir-specific a) median and b) average values of ZB/
Chl values in South African reservoirs of 3 trophic classes 
in relation to corresponding chlorophyll values. The strong 
positive relationship for medians is inflected by a single low 
value for Roodeplaat Dam. The reality of this inflection is 

discussed in the text.

http://dx.doi.org/10.4314/wsa.v37i4.9


http://dx.doi.org/10.4314/wsa.v37i4.9 
Available on website http://www.wrc.org.za

ISSN 0378-4738 (Print) = Water SA Vol. 37 No. 4 October 2011
ISSN 1816-7950 (On-line) = Water SA Vol. 37 No. 4 October 2011520

the system, with further declines heralding the possible onset of 
food quality constraints. It is, however, implausible to attribute 
within-system changes in ZB/Chl to increasing fish predation as 
chlorophyll rises, since life-history constraints of the fish taxa 
known in the reservoirs will restrict short-term (intra-annual) 
changes in fish density.

The marked decline in ZB/Chl values between eutrophic and 
oligo-mesotrophic systems (Fig. 3) appears consistent with and 
attributable to the differences in overall system productivity; 
eutrophic systems support higher standing stocks – as indicated 
clearly in the differences in median values of ZB and chlorophyll 
between systems of contrasting trophic status (Table 2). 

The increase (with one exception) in reservoir-specific ZB/
Chl ratios with rising productivity (Fig. 7a) raises the question 
of how ZB is able to increase with trophic status despite the 
accompanying decline in food quality. Detritus arising from 
autochthonous production is likely to increase, plausibly aug-
menting the food supply. Indeed, the importance of bacteria as 
a food resource for zooplankton, especially in eutrophic waters, 
was identified by Gliwicz (1969), although empirical evidence 
from in situ grazing experiments in Hartbeespoort Dam (Hart 
and Jarvis, 1993) indicated that bacteria accounted for barely 3% 
of total cladoceran dietary carbon intake, perhaps owing to the 
notably small size of natural free-living bacteria in this system 
(Robarts et al., 1986); the value also under-estimates the food 
value of bacteria in detritus-bacterial aggregates. 

The microbial loop generated from autochthonous (and/or 
allochthonous) detritus adds additional food sources for par-
ticular zooplankton. Allochthonous terrestrial energy subsidies 
of aquatic food webs have been identified as important in small 
lakes (e.g. Cole et al., 2010). In reservoirs, with disproportion-
ately high catchment areas, and especially point-source organic 
inputs from wastewater treatment works, such subsidies may 
assist strongly in the accumulation of ZB relative to ambient 
chlorophyll levels, and generate the parallel increases in ZB/
Chl. No explanation can be offered for the deviation shown by 
Roodeplaat (Fig. 7a). Its outlying nature possibly reflects a sys-
tematic difference in sampling methodology. It is the only totally 
independent data point in the present collation – and the author 
of this paper was directly or indirectly involved in research on 
all of the other reservoirs examined herein.  Alternatively, it may 
reflect limited habitat suitable for zooplankton occupancy, owing 
to the extent of seasonal hypolimnetic anoxia in this system, for 
which Van Ginkel (1987) proposed ‘space’ as the major con-
straint on zooplankton. However, similar space constraints apply 
in Hartbeespoort Dam where anoxic hypolimnia occur exten-
sively (NIWR, 1985). 

To date, zooplanktivory has been examined in only 2 com-
prehensive ecosystem studies of South African reservoirs – 
Vanderkloof (Tomasson, 1983) and Hartbeespoort (NIWR, 1985; 
Cochrane, 1985). In both these systems, overall fish predation 
on zooplankton was recorded as low or negligible. In line with 
this, the increases in ZB/Chl with rising productivity strongly 
counter prospects that fish predation on zooplankton becomes 
more significant as system productivity rises. This inference is 
empirically supported by the invariably large sizes of Daphnia 
spp. present in the reservoirs (Table 3). Such large daphniids (and 
other zooplankton components in some systems) strongly contra-
indicate the existence of strong, sustained visual zooplanktivory 
(Hrbáčeck and Hrbáčková-Esslová, 1960; Brooks and Dodson, 
1965; Hart and Bychek, 2011), commonly evident in warm sub-
tropical lakes (Jeppesen et al., 2007). Overall, biomanipulation-
induced reductions in zooplanktivory are unlikely to manifest in 
major improvements in grazer control of large planktonic algae 

and/or cyanophytes that dominate the eutrophic and hyper-
trophic South African reservoirs, the inedibility and suppressive 
influence of which on daphniids in particular is ubiquitously 
acknowledged by all authorities.

Prospects for biomanipulation paradoxically appear theoreti-
cally or practically better in Australian reservoirs, in which zoo-
planktivorous fishes enigmatically appear important (Matveev et 
al., 2002; Hunt et al., 2003; Matveev, 2003; Sierp et al., 2009), in 
contrast to South African systems that are otherwise limnologi-
cally similar. 

In natural lakes, planktivorous fish generally impact signifi-
cantly on zooplankton, as observed in many cooler temperate 
lakes around the world (Jeppesen et al., 1997, 2003a; Vakkilainen 
et al., 2004), and the ZB/PB ratio commonly declines with rising 
trophic status (e.g. Jeppesen et al., 2003a). As fish stocks rise 
concurrently (e.g. Jeppesen et al., 2003a, 2005, 2007; Havens et 
al., 2009), the decline in ZB/PB ratio is plausibly attributable to 
rising top-down controls of fish on zooplankton; thus prospects 
of ameliorating the consequences of eutrophication by top-down 
biomanipulation – reducing zooplanktivorous fish – appear more 
promising. 

Conversely, however, Vanni et al. (2006) effectively ascribe 
the reduction in ZB/PB to increases in PB in response to nutrient 
recycled by fish rather than ZB depletion by fish; in other words, 
a bottom-up rather than top-down effect.  Their argument sug-
gests that the most likely positive benefits of fish manipulation 
in eutrophic South African reservoirs are likely to derive from 
bottom-up rather than top-down effects of fish assemblage modi-
fications. This would involve removal of overabundant ‘coarse’ 
fish species – particularly exotic common carp (Cyprinus carpio) 
whose bioturbation effects undoubtedly sustain strong internal 
nutrient loadings, along with indigenous catfish (Clarias gariepi-
nus) that both dominate the ichthyomass in the eutrophic reser-
voirs studied (Harding et al., 2009). 

Conclusions

In individual South African reservoirs, ZB/Chl ratios decline 
with rising ambient chlorophyll levels, regardless of trophic 
status. Conversely, disregarding Roodeplaat Dam, median 
(or mean) values of the ZB/Chl ratio for each separate system 
increase with rising median (or mean) chlorophyll levels, indicat-
ing a progressive increase of ZB/Chl with system trophic status. 

Although evidence regarding fish abundance in reservoirs 
is severely limited, the increase in ZB/Chl ratios with rising 
trophic status between reservoirs implies that fish predation 
on zooplankton has little or no significant impact on ZB, and 
any such effect certainly does not increase progressively with 
trophic status. Accordingly, food web modifications to reduce 
fish predation on zooplankton will be futile to moderate/cor-
rect the consequences of eutrophication. In-lake management 
options other than top-down biomanipulation will be required to 
reduce the symptoms of eutrophication until such time as its root 
cause – excessive external nutrient loading – can be effectively 
controlled. Much greater attention to fish-zooplankton-phyto-
plankton interactions in reservoirs is also required to provide a 
secure platform for sustainable (and multi-purpose) management 
of South African river reservoirs.  
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