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EXECUTIVE SUMMARY 
 
This report has been generated by the Water Research Commission (WRC)-funded 

project Extending functionality and knowledge transfer of the Water Quality Systems 
Assessment Model (Project No. K5/2448). 

Project Aims 
The WRC project (K5/2448) aims to further develop the Water Quality Systems 

Assessment Model (WQSAM), the development of which was initiated within a previous WRC 
project (K5/2237). 

The aims of the project as stated in the proposal are: 

1. The development and testing of a non-point source nutrient input model linked to land 
cover, to be integrated within WQSAM. 

2. Extension of water quality variables simulated within WQSAM to include acid mine 
drainage and microbial water quality, and the application of WQSAM to selected 
catchments for historical conditions. 

3. Validation of algal and hyacinth growth processes within WQSAM using remote 
sensing estimates of primary production for selected eutrophic reservoirs. 

4. Parameterisation of a sediment transport model using remote sensing data. 
5. The incorporation of a cholera prediction model within WQSAM, with application to 

selected catchments for historical conditions. 
6. The simplification, further testing and consolidation into WQSAM of the sediment 

transport model, and application to selected catchments for historical conditions. 
7. WQSAM model documentation and knowledge dissemination. 

This is the final deliverable of the project which consolidates all previous deliverables. 

Report Structure 
The report is presented as follows: 

Chapter 1 presents a brief introduction on the background and motivation for the project. 

Chapter 2 describes the non-point nutrient input model linked to land cover. 

Chapter 3 describes the extension of WQSAM to simulate microbial water quality and acid 
mine drainage. 

Chapter 4 summarises the process of validating the algal and hyacinth growth processes in 
WQSAM using remote sensing estimates of primary production. 

Chapter 5 outlines the regionalisation, simplification, further testing and consolidation of the 
WQSED model into WQSAM. 

Chapter 6 describes the incorporation of a cholera prediction model into WQSAM. 

Chapter 7 briefly discusses the conclusions of the project and potential for future development. 
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Report Summary 
The current project follows on directly from a previous WRC-funded project, K5/2237. Both 

projects focus on the development, testing and application of the Water Quality Systems 
Assessment Model (WQSAM). K5/2448 has furthered development on WQSAM to: 1) include 
a non-point source nutrient input model linked to land cover; 2) extend water quality variables 
simulated to include acid mine drainage and microbial water quality; 3) validate algal and 
hyacinth growth processes within WQSAM using remote sensing estimates of primary 
production for selected eutrophic reservoirs; 4) parameterise a sediment transport model 
using remote sensing data; 5) incorporate a cholera prediction model within WQSAM; 6) 
simplify, further test and consolidate the sediment transport model; 7) implement WQSAM 
model documentation and knowledge dissemination.  

Chapter 2 derives a formal model to link WQSAM parameters for non-point nutrient inputs 
to land cover. The selection of study sites was done according to biomes. The land cover 
categories were reduced by combining related land cover categories. The water quality of all 
selected sites was modelled within WQSAM. The calibrated surface water quality signatures 
were used within the subsequent analyses. Multiple regression within Statistica and Microsoft 
Excel was used to investigate the relationships between model parameters and the land cover 
proportions of respective study sites. The results of the regressions obtained in Excel using 
Solver made more conceptual sense than those obtained in Statistica. The lack of available 
data affected all modelling and analyses performed. It is concluded that the results of the 
regressions obtained in Excel should be used as a method to link parameters related to non-
point source inputs with land cover, until such a time that further sites and further observed 
data can be identified that can improve the regression models obtained.  

Chapter 3 introduces the inclusion of acid mine drainage (AMD) and microbial water quality 
simulations within WQSAM. Microbial water quality was simulated in a fairly simplistic manner 
using a first order degradation coefficient and Escherichia coli as the microbial indicator. 
Sulphates were used as a general indicator of input of acid mine drainage (AMD). The 
Crocodile River and Olifants River catchments were used as the study catchments. Good 
simulations of E. coli were achieved. For the simulations of sulphate in the Crocodile River 
Catchment, fairly high non-point- and point-source inputs had to be simulated. For the Olifants 
River Catchment, high non-point inputs had to be simulated to account for high variability in 
the observed sulphate concentrations.  

Chapter 4 focused on the evaluation of chlorophyll-a using MERIS and Landsat data for 
two reservoirs in two catchments (Crocodile and Olifants rivers). Algal or macrophyte presence 
in Laing Dam (Buffalo River) was tested using near infrared to red band ratios of Landsat data 
that was checked against Google Earth satellite imagery. The algal simulations by WQSAM 
for the Loskop and Laing dams showed a strong seasonal trend with a summer maximum and 
a winter minimum. Using relationships between algal wet weight biomass and chl-a, the 
simulations of algal biomass as generated by WQSAM were converted into a minimum and 
maximum chl-a range so as to facilitate a comparison with the measures of chl-a for these two 
reservoirs derived using remote sensing data. The results showed that the measures of chl-a 
derived by remote sensing data fell within the same range of chl-a generated by the WQSAM 
model, although a strong seasonal trend was not evident within the results from the remote 
sensing data. The results obtained are reasonable, as the results show that WQSAM is 
simulating algal and hyacinth biomass and seasonal trends within the correct range. 

Chapter 5 describes the conceptual basis and underlying equations of the soil erosion and 
sediment transport model (WQSED). The sediment yield for various catchments in South 
Africa was modelled. The modelled catchment is separated into runoff zones: the high, 
medium and low runoff zones, based on topography, with the high runoff zones generating 
more runoff than the low runoff zones. Soil erosion is estimated using the Modified Universal 
Soil Loss Equation (MUSLE). Conceptually, there are two storages in each zone: in-channel 
storage and catchment storage, and the model attempts to represent the dynamic movement 
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of sediment within and between runoff zones between the different storages. The calculation 
of storm duration, peak discharge for each runoff zone, and runoff depth for each runoff zone 
are important for calculating the runoff factor (erosivity) of the MUSLE equation, whereas the 
rest of the parameters are erodibility factors relate to soil, vegetation, slope and practice. The 
approach for simulating the suspended sediment load was adopted from Van Rijn (1984), with 
some simplifications. Various study sites from across South Africa were modelled, with an 
emphasis on sites in the Eastern Cape because of the high degree of erosion occurring in 
these catchments. The results of erosion and sediment transport for individual study 
catchments are presented and compared to previous estimates, and were found to be 
representative for most of the study catchments. 

Chapter 6 investigated whether the instream fate of the bacterium, Vibrio cholera, could 
be represented within WQSAM using simple first-order degradation. The Olifants River 
Catchment was used as a case study catchment. V. cholerae fate was simulated by adjusting 
the V. cholerae growth rate according to the water temperature, salinity and the availability of 
nutrients. Although there were a lack of observed data, this study broadly showed that 
WQSAM could find use in investigating the risk of endemic V. cholerae growth due to changing 
climate and increasing salinity. In addition, WQSAM could be used to investigate V. cholerae 
fate instream during an epidemic, when inputs from the catchment are expected. 

The outcomes of this project were successful, particularly in relation to extending the 
functionality of WQSAM to simulate further water quality variables, i.e. microbial water quality, 
sulphate and sediment. It was found that while the method of relating non-point sources of 
nutrients to land cover was uncertain, it was nevertheless a vast improvement compared to 
the uncertainty associated with calibrating non-point sources within other water quality 
models. Within the validation of algal growth processes in WQSAM, it is argued that the 
indirect correlations obtained between WQSAM estimates of primary production within 
reservoirs and remote sensing estimates of primary production were reasonable given the 
uncertainty within remote sensing data. The inclusion of Vibrio cholerae survival within 
WQSAM essentially was an exploratory exercise since the lack of data did not allow the 
validation of the model. Further scope for research was identified within the soil erosion and 
sediment transport model (WQSED), particularly related to scale-dependency issues and 
further validation of the main channel sediment transport implementation. 
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CHAPTER 1. INTRODUCTION 

1.1 Background to the project 
The current project, K5/2448 follows on directly from a previous WRC project, K5/2237. 

K5/2237 introduced the Water Quality Systems Assessment Model (WQSAM). The need for 
the development of WQSAM was realised during a WRC-funded project on climate change 
adaptation measures for bulk water suppliers (K5/2018). These realisations were that existing 
water quality models do not fulfil the management requirements for South African water 
resources, and there is value in the development of a new water quality decision support 
system. Therefore, it was decided that a new water quality model (WQSAM) be developed, 
with the following important attributes:  

1. Be able to accept water quantity data as input generated by an existing and routinely-
used yield model.  

2. Simulate data at a daily time step, as water quality is typically driven by transient 
events. 

3. Simulate important water quality variables which are of concern to management of 
water resources. Initially, salinity and nutrients were the focus. 

4. Adopt a ‘requisite simplicity’ approach (Bevan, 2006), by simulating water quality in the 
simplest way possible without compromising the accuracy of simulations.  

5. Incorporate water quality simulation modules for river nodes and reservoir nodes, with 
an emphasis on water quality variable fate, including processes such as chemical 
speciation, sedimentation, and uptake by flora.  

6. Water quality simulations as duration of exceedance curves, as this information is vital 
in allowing for water resource managers to assess risk associated with management 
scenarios. Exceedance information can also be assessed in conjunction with 
Thresholds of Potential Concern (TPCs), allowing rapid assessment of the possible 
water quality risks associated with management options.  

K5/2237 outlined the conceptual and technical structure of WQSAM. In addition, this 
project applied the model to various case study catchments for historical conditions and future 
development and climate change scenarios, and also investigated the use of remote sensing 
data within WQSAM. Subsequent to the completion of K5/2237, it was felt that WQSAM could 
undergo further development, particularly for inclusion of further water quality variables of 
management significance. The current project, K5/2448 was initiated to achieve these further 
developments. The specific aims of the current project are:  

1. The development and testing of a non-point source nutrient input model linked to land 
cover, to be integrated within WQSAM. 

2. Extension of water quality variables simulated within WQSAM to include acid mine 
drainage and microbial water quality, and the application of WQSAM to selected 
catchments for historical conditions. 

3. Validation of algal and hyacinth growth processes within WQSAM using remote 
sensing estimates of primary production for selected eutrophic reservoirs. 

4. Parameterisation of a sediment transport model using remote sensing data. 
5. The incorporation of a cholera prediction model within WQSAM, with application to 

selected catchments for historical conditions. 
6. The simplification, further testing and consolidation into WQSAM of the sediment 

transport model, and application to selected catchments for historical conditions. 
7. WQSAM model documentation and knowledge dissemination. 
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1.2 Guidance to the use of WQSAM 
WQSAM is most useful for long-term water quality management of large river basins. 

Importantly, WQSAM has been developed for use with flows generated from a systems model, 
specifically either the Water Resources Yield Model (WRYM) or the Water Resources 
Modelling Platform (WReMP). The data requirements for setting up an application of WQSAM 
can be large, depending on the target water quality constituents the model is required to 
simulate. Table 1.1 below provides some guidance on the data required according to the water 
quality variables simulated. 
Table 1.1 Data required to set up an application of the Water Quality Systems Assessment 

Model (WQSAM) according to different modelling outputs required 

Description of 
data required 

Basic model 
setup for 
disaggregation 
of monthly flows 
to daily 

Modelling of 
salinity 

Modelling of 
nutrients 

Modelling 
of microbial 
water 
quality 

Systems 
representation of 
the yield model 

Required Required Required Required 

Monthly flows 
from the yield 
model for the 
entire simulation 
period 

Required Required Required Required 

Unbroken daily 
rainfall data 
representative of 
the modelled 
catchment 

Required Required Required Required 

Daily air 
temperature for 
modelling water 
temperature 

Not Required Not Required Required Required 

Observed 
salinity data for 
model calibration 

Not Required Required Not Required Not 
Required 

Observed 
nutrient data for 
model calibration 

Not Required Not Required Required Not 
Required 

Land cover data 
for estimating 
non-point source 
inputs of 
nutrients 

Not Required Not Required Required Not 
Required 

Observed 
microbial water 
quality data for 
model calibration 

Not Required Not Required Not Required Required 
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1.3 Report structure 
Chapter 2 describes the non-point nutrient input model linked to land cover. 
Chapter 3 describes the extension of WQSAM to simulate microbial water quality and 
acid mine drainage. 
Chapter 4 summarises the process of validating the algal and hyacinth growth processes 
in WQSAM using remote sensing estimates of primary production. 
Chapter 5 outlines the regionalisation, simplification, further testing and consolidation of 
the WQSED model into WQSAM. 
Chapter 6 describes the incorporation of a cholera prediction model into WQSAM. 
Chapter 7 discusses the conclusions of the project and potential for future development. 
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CHAPTER 2. A NON-POINT NUTRIENT INPUT MODEL 
LINKED TO LAND COVER 

2.1 Introduction 
The conceptual understanding and technical procedures implemented within the Water 

Quality Systems Assessment Model (WQSAM) are outlined in the final report of K5/2237 
(Slaughter et al., 2015a). The model as represented in Slaughter et al. (2015a) did not 
implement a rigorous method for quantifying the non-point load of water quality variable 
constituents into the modelled system. A short summary of the current approach used within 
WQSAM to quantify non-point loads follows. 

Briefly, WQSAM generates a daily time series of incremental flows within each incremental 
catchment represented within a modelled system. WQSAM achieves this by disaggregating 
monthly incremental flow (obtained from an appropriate yield/systems model) to daily. This 
procedure has been found to be rigorous, and is outlined in the project final report of K5/2337, 
but has also been published in two articles in peer reviewed journals (Hughes and Slaughter, 
2015; Slaughter et al., 2015b). The daily incremental flow is further broken down into three 
flow fractions, namely surface flow, incremental flow and groundwater flow, using a simple, 
yet nonetheless rigorous statistical baseflow separation method (Hughes et al., 2003). 
WQSAM implements the separation of incremental flow into flow fractions to facilitate the 
estimation of non-point loads into the modelled river. The conceptual understanding behind 
the approach is that overland flow, interflow and to a lesser extent, groundwater flow, are the 
carriers of non-point loads into a river. In addition, the concentration of a particular water 
quality variable is likely to show a large variation between the flow fractions for a particular 
catchment. For example, catchments containing a large amount of irrigated agriculture are 
likely to show a large nutrient concentration within the surface water flow fraction. In contrast, 
in certain catchments characterised by marine derived sediment geology, the groundwater 
flow fraction is likely to show a much higher salt concentration then that of surface water flow. 
This conceptual understanding is reasonable, and is therefore additionally regarded to be a 
rigorous part of WQSAM. 

Within the water quality simulation component of WQSAM, water quality variable 
concentrations are assigned to the flow fractions described above. Although the 
concentrations assigned can be guided by the type of landcover/landuse in the catchment, the 
process as it stands is subjective. Where there are observed data available, it is possibly to 
calibrate the signatures assigned to the fractions so as to obtain water quality simulations that 
are representative of the observed data. However, many processes affect water quality within 
any part of a modelled system, including non-point and point sources, and assigning 
parameter values based on calibration opens up the risk of equifinality (Bevan, 2006), which 
can be described in a simplistic way as obtaining the same model simulation through multiple 
sets of parameter values. Within equifinality, one can obtain a model simulation that is a fair 
representation of observed data, but for the wrong reasons, usually in models that are over-
parameterised. 

This realisation of subjectivity within the simulation of non-point water quality loads within 
WQSAM led to efforts to more formally and objectively quantify possible non-point loads 
originating from catchments, which has in turn led to the compilation of the current chapter. 

A method of objectively quantifying non-point loads from a catchment based on land 
cover/use offers various advantages. Including lessening the risk of equifinality, such a method 
would provide more confidence during the application of the model to areas where no 
observed data are available. In addition, future scenarios under which land cover/use is 
predicted to change can be modelled rigorously within the model. 
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2.2 Method and study areas 
2.2.1 Approach used 

It can be assumed that broad regional characteristics of a catchment will affect the 
relationships between land cover and non-point load inputs. Therefore, these characteristics 
should be explored on a regional spatial scale, rather than on a national scale, so as to take 
into account regional patterns. Since the current study investigated the relationship between 
land cover and non-point source load inputs, the regionalisation category chosen was the 
biome categorisation by Low and Rebelo (1996) (see Figure 2.1). 

 
Figure 2.1 Biome categorisation of Low and Rebelo (1996), taken from Low and Rebelo 

(1996)  
 

The approach taken in choosing study sites within the current study was to choose tributary 
catchments receiving incremental flow, and catchments with the following characteristics were 
chosen: 

1) catchments not containing large dams; 
2) catchments not containing large informal settlements, town or cities (as this would be 

a reasonable indication of possible point source influences); 
3) catchments consisting of at most two quaternary catchments, and; 
4) catchments for which there are an adequate (unbroken) amount of observed flow data 

as well the presence of a reasonable amount of water quality data. 
 

2.2.2 Study areas used 
Unfortunately, finding suitable study catchments with the characteristics as listed above 

was difficult. In total, suitable catchments within only four biomes could be identified, namely 



 
 

6 
 

the fynbos, grassland, savannah and thicket biomes. The gauges used are listed in Table 2.1 
below. Figures 2.2-2.5 show the location of gauged catchments and land cover for the fynbos, 
grassland, savannah and thicket sites, respectively. 
 
Table 2.1 Gauged catchments used, specifying gauge names, quaternary catchment(s), 

biome and temporal period of data availability 
Gauge 
name 

Quaternary 
catchment Biome Observed data 

      from  to 
G1H010 G10E Fynbos 1983 2003 
G1H028 G10G Fynbos 1982 2015 
G1H034 G10J Fynbos 1985 2007 
G2H037 G22F Fynbos 1991 2015 
H2H008 H20C Fynbos 1979 1995 
J1H016 J12A Fynbos 1979 2001 
C2H005 C22H/C22J Grassland 2001 2015 
C5H007 C52F Grassland 1988 2015 
C5H056 C52A Grassland 2002 2015 
C8H006 C81H Grassland 1977 1985 
A2H032 A22C Savannah 1979 2004 
A2H034 A21G Savannah 1971 2003 
A6H010 A61C Savannah 1999 2007 
B1H018 B11A Savannah 1993 1998 
B4H009 B41G Savannah 1980 1992 
B9H002 B90F Savannah 1991 2002 
X2H012 X21F Savannah 1986 2015 
X3H003 X31C Savannah 1979 2010 
X3H015 X33B Savannah 1995 1996 
P3H001 P30B Thicket 2002 2010 
P4H001 P40C Thicket 2000 2010 
R2H009 R20D Thicket 1971 1998 
R2H012 R20C Thicket 1971 1999 
U8H001 U80G Thicket 1992 2010 
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Figure 2.2 Map of the gauged tributary catchments chosen within the fynbos biomes  
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Figure 2.3 Map of the gauged tributary catchments chosen within the grassland biome 
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Figure 2.4 Map of the gauged tributary catchments chosen within the savannah biome 
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Figure 2.5 Map of the gauged tributary catchments chosen within the thicket biome
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2.2.3 Methods 
A period of unbroken daily observed flow was obtained for each selected study site from 

the Department of Water and Sanitation (DWS) Resource Quality Information Services (RQIS) 
website (https://www.dwa.gov.za/iwqs/report.aspx, accessed August 2015). Water quality 
data within the same temporal period as the flow data were in addition sourced from the same 
abovementioned site. This study looked at nutrients, concentrating specifically on nitrite plus 
nitrate nitrogen (NO2-N + NO3-N), ammonium nitrogen (NH4-N) and phosphate phosphorus 
(PO4-P). More information on the data chosen is available in Table 2.1.  

The land cover data were obtained from the South African National Land-Cover Dataset 
(Van den Berg et al., 2008). The catchment area was delineated for each water quality 
monitoring point by referring to 1:50,000 river and relief shapefiles in ArcMap 10.3 (ESRI, Inc.). 
The land cover spatial dataset was then clipped by the monitoring point catchment and 
ArcMap 10.3 functions (calculate geometry, summarise) were used to calculate the total areas 
under each land cover class in the catchment. The original dataset contains 45 land cover 
classes which were combined into ten categories for this study. This was done because the 
low number of suitable sites identified in combination with a large number of categories 
decreases the power or even excludes certain statistical analyses, such as multiple 
regression. In addition, working with so many categories within a water quality model would 
be a challenge as each would require a dedicated parameter. The grouping of original land 
cover categories into the more general categories are listed below. 

Bare rock and soil: Bare Rock and Soil (erosion: dongas / gullies); Bare Rock and Soil 
 (erosion: sheet); Bare Rock and Soil (natural). 

Cultivated dryland: Cultivated, permanent, commercial, dryland; Cultivated, temporary, 
 commercial, dryland; Cultivated,  temporary, subsistence, dryland. 

Cultivated irrigated: Cultivated, permanent, commercial, irrigated; Cultivated, 
 temporary, commercial, irrigated; Cultivated, temporary, subsistence, irrigated. 

Sugarcane: Cultivated, permanent, commercial, sugarcane. 
Degraded natural: Degraded Forest & Woodland; Degraded Thicket, Bushland, etc.; 

 Degraded Unimproved (natural) Grassland. 
Forest: Forest (indigenous); Forest Plantations (Acacia spp); Forest Plantations 

 (clearfelled);  Forest Plantations (Eucalyptus spp); Forest Plantations (Other / mixed 
 spp); Forest  Plantations (Pine spp); Woodland (previously termed Forest and 
 Woodland). 

Natural: Improved Grassland; Shrubland and Low Fynbos; Thicket, Bushland, Bush 
 Clumps, High  Fynbos; Unimproved (natural) Grassland. 

Mining: Mines & Quarries (mine tailings, waste dumps); Mines & Quarries (surface-
 based  mining); Mines & Quarries (underground / subsurface mining) 

Urban: Urban / Built-up (residential); Urban / Built-up (residential, formal suburbs); Urban 
 / Built-up (residential, formal township); Urban / Built-up (residential, hostels); Urban / 
 Built-up (residential, informal squatter camp); Urban / Built-up (residential, informal 
 township); Urban / Built-up (rural cluster); Urban / Built-up (smallholdings, shrubland); 
 Urban / Built-up, (commercial, education, health, IT); Urban / Built-up, (commercial, 
 mercantile); Urban /  Built-up (smallholdings, grassland);Urban/Built-up 
 (smallholdings, woodland); Urban /  Built-up (smallholdings, thicket, bushland); 
 Urban / Built-up, (industrial / transport: heavy); Urban / Built-up, (industrial / 
 transport : light).  

Waterbodies: Waterbodies; Wetlands. 

https://www.dwa.gov.za/iwqs/report.aspx
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The grouping strategy was guided by a Principle Component Analysis (PCA) (data not 
shown), to obtain a general indication of which land cover categories show a similar pattern. 
In addition, land cover categories that were obviously related were grouped together, such as 
all the cultivation categories, for example. Sugarcane was given its own category, as previous 
experience in the lower Crocodile River has indicated that sugar cane fields may act as a sink 
of nutrients, and may actually improve water quality.  

Within the analyses performed in the current study, a link between non-point source loads 
and land cover within a catchment was investigated and quantified. These analyses were 
repeated for land cover within a 100 m buffer zone of the river reach, similar to the approaches 
of various studies that have made the assumption of activities closer to the river reach having 
a larger effect on water quality (e.g. Maillard and Santos, 2007; Rodriqueze et al., 2007).  

Within the multiple regression equations given later in this report, the land cover categories 
are written using codes as the entire descriptions would be too long to represent in an 
equation. The codes are represented below. 

A: Bare rock and soil. 
B: Cultivated dryland. 
C: Cultivated irrigated. 
D: Sugarcane. 
E: Natural areas. 
F: Mining areas. 
G: Water bodies. 
H: Urban areas. 
I: Degraded natural areas. 
J: Forest 
A setup of WQSAM was compiled for each study area. However, the only components of 

WQSAM used were the baseflow separation procedure (Hughes et al., 2003) and some 
aspects of the water quality simulation.  

Within the baseflow separation, the same parameter sets were used across all studied 
catchments (see Slaughter et al., 2015a for the explanation of the parameter values). While 
this could be regarded as a possible source of uncertainty within the modelling of the flow 
fractions in these catchments, the determination of the appropriate parameter values for 
baseflow separation is regarded to be especially problematic within hydrological studies (see 
Kapangaziwiri et al., 2011). These difficulties and uncertainties generally revolve around a 
lack of observed data with which to validate baseflow separation methods and parameter 
values, the range of baseflow separation methods available and the conflicting results they 
generate, difficulties in distinguishing between the origins of surface water in regards to flow 
fractions, as well as the disparity in temporal scales at which the different flow fractions 
operate. Therefore, the determination of appropriate baseflow separation parameter values 
was regarded to be beyond the scope of the current study. Instead, the approach of using a 
constant and commonly used parameter set across all modelled catchments was taken. 

Since the current study focussed on the simulation of non-point source inputs, the water 
quality simulations performed in WQSAM only took into account the inputs associated with the 
flow fractions. In other words, the only parameters that were adjusted within the model in 
regards to water quality simulation were the surface flow, interflow and groundwater flow 
concentration parameters for each catchment studied. Appropriate catchments were chosen 
so as to validate this approach. In other words, catchments not containing point sources or 
dams, and catchments in which modelling cumulative flow is not important, as the catchments 
are tributary catchments contributing incremental flow. 



 
 

13 
 

In this particular study, the relationship between surface flow concentrations and land 
cover was investigated. This is because the relationships between land cover and the water 
quality signatures of interflow and groundwater flow are less certain and less influential for 
surface water quality in regards to nutrients. In addition, the rates at which different nutrients 
penetrate the soil vary among the different nutrients types. For example, nitrates are regarded 
to be fairly water soluble, and therefore can find their way into interflow and groundwater. 
However, phosphates generally bind to sediments, and are therefore not expected to occur 
within interflow and groundwater in significant concentrations. In addition, from past studies 
using WQSAM, is has been found that the values of the surface flow signatures were the most 
important for calibrating water quality simulations against observed data. Therefore, it is 
unlikely that a strong relationship would be found between land cover in incremental 
catchments the water quality signatures for the interflow and groundwater flow fractions.  

There is a strong relationship between groundwater salinity signatures and instream 
salinity; however, since salinity is a conservative variable, modelling of salinity within WQSAM 
is regarded to be less uncertain. In addition, groundwater salinity signatures would more likely 
be linked to geology rather than land cover, and can be guided by available water quality data 
from boreholes in a catchment.  

Within the water quality modelling of each study catchment in the current study, the model 
simulations were calibrated to match observed data as closely as possible. Once calibration 
was completed, the surface flow water quality concentrations applied to achieve the 
calibrations for NO2-N + NO3-N, NH4-N and PO4-P were collated for further analyses.  

The relationships between the surface flow water quality signatures and land cover were 
explored using multiple regression. The land cover coverage within each catchment was 
explored in terms of proportion of particular land cover types of the total area of the catchment. 
In addition, all analyses were repeated for land cover within a 100 m buffer zone. Multiple 
regression analyses were conducted within Statistica V8 (Statsoft Inc). Forward stepwise 
regression was used, with statistical significance set at P ≤ 0.05. Multiple regressions were 
additionally implemented in Microsoft Excel 2010 using Solver. Within the regressions 
implemented in Excel, the regression equation took the form of: 
SF = (α × A) + (β × B) + (γ × C) + (δ × D) + (ε × E) + (ζ × F) +  

 (η × G) + (θ × H) + (ι × I) + (κ × J),      Equation 2.1 
where SF represents the surface flow concentration (mg ℓ−1), A-F represent the land cover 
category fractions mentioned in Section 2.2.3 and α-κ represent the regression parameters 
calibrated through Solver applied to respective land cover categories. The Chi-square statistic 
was used as a goodness of fit statistic for each regression. Solver was implemented to find 
the best values for the parameters α-κ by finding the minimum value for the sum of Chi-square. 
Values of α-κ were constrained to be ≥ 0. The relationship between the regression parameters 
α-κ and land cover categories is given in Table 2.2 
 

2.3 Results 
2.3.1 Introduction 

The results are presented in the following way. First, the results of the water quality 
calibration within the case study catchments will be presented. After this, the results of the 
multiple regression will be presented, where the relationships between the model calibrated 
surface flow signatures and land cover categories are explored. This analysis is presented for 
all land cover within the catchments as well as for a 100 m buffer zone. 
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Table 2.2 The parameters associated with Equation 2.1 and representative land cover 
categories 

Parameter Land cover category 
Α Bare rock & Soil 

Β Cultivated Dryland 

Γ Cultivated Irrigated 

Δ Sugarcane 

Ε Natural 

Ζ Mining 

Η Waterbodies 

Θ Urban 

Ι Degraded Natural 

Κ Forest 

 

2.3.2 Results of model calibration 
Fynbos biome 

Table 2.3 shows the goodness of fit statistics for calibration results, represented by the 
Nash-Sutcliffe (Nash and Sutcliffe, 1970) efficiency values. The calibrations are represented 
as frequency distributions. This is because WQSAM is not designed to simulate accurate time 
series of water quality data, but rather focuses on representing the frequency characteristics 
of the observed data (see Slaughter et al., 2015a). 

The efficiency values obtained for NO2-N + NO3-N ranged from 0.14 to 0.35, and were 
therefore generally not very good. The simulations of NH4-N were slightly better, ranging from 
0.31 to 0.76. The simulations of PO4-P obtained mixed results, ranging from −2.24 to 0.74. 
Grassland biome 

The efficiency values obtained for NO2-N + NO3-N were fairly good, ranging from 0.17 to 
0.93. The simulations of NH4-N were also fair, ranging from 0.51 to 0.60. The simulations of 
PO4-P were fair, ranging from 0.52 to 0.66. 
Savannah biome 

The efficiency values obtained for NO2-N + NO3-N were fairly good, ranging from 0.29 to 
0.96. The simulations of NH4-N were also fair, with NSEs obtained ranging from 0.20 to 0.82. 
The simulations of PO4-P were fair, with NSEs ranging from 0.14 to 0.98. 
Thicket biome 

The efficiency values obtained for NO2-N + NO3-N were relatively bad, ranging from −2.6 
to 0.64. The simulations of NH4-N obtained mixed results, with NSEs obtained ranging from 
−42.5 to 0.88. The simulations of PO4-P were also mixed, with NSEs obtained ranging from 
−5.23 to 0.65. 
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Table 2.3 Nash-Sutcliffe (Nash and Sutcliffe, 1970) efficiency values obtained for WQSAM 
model calibration against observed data as frequency distributions 

Gauge Nash-Sutcliffe Efficiency for Calibration 
 NO2-N + NO3-N NH4-N PO4-P 

Fynbos Biome 

G1H010 0.28 0.71 0.74 

G1H028 0.35 0.31 −2.24 

G1H034 0.25 0.34 0.72 

G2H037 0.14 0.55 0.21 

H2H008 0.27 0.60 0.37 

J1H016 0.23 0.76 0.60 

Grassland biome 

C5H007 0.93 0.52 0.64 

C5H056 0.17 0.51 0.52 

C2H005 0.64 0.60 0.58 

C8H006 0.46 0.59 0.66 

Savannah biome 

A2H032 0.29 0.2 0.14 

A2H034 0.78 0.5 0.68 

B1H018 0.63 0.51 0.66 

X2H012 0.90 0.57 0.98 

X3H015 0.96 0.82 0.80 

A6H010 0.96 0.47 0.56 

B9H002 0.32 0.6 0.47 

B4H009 0.93 0.72 0.91 

X3H003 0.76 0.78 0.62 

Thicket biome 

P3H001 −21.6 −42.5 −5.23 

P4H001 −2.49 0.91 0.27 

R2H009 0.64 −4.01 0.49 

R2H012 −17.93 0.68 0.63 

U8H001 0.62 0.88 −0.65 

 
The final surface water flow signatures for all study sites for NO2-N + NO3-N, NH4-N and 

PO4-P are summarised in Table 2.4. 
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Table 2.4  Summary of water quality modelling results in WQSAM for the selected study catchment

    WQ signatures (mg ℓ−1) 

    NO2-N + N03-N NH4-N PO4-P 
  Biome Surface Interflow GW flow Surface Interflow GW flow Surface Interflow GW flow 
G1H010 Fynbos 1.6 0.1 0 0.1 0.05 0 0.07 0.01 0.01 
G1H028 Fynbos 0.05 0.01 0.02 0.06 0.03 0.01 0.03 0.01 0 
G1H034 Fynbos 5 0.03 0.05 0.3 0.1 0.1 0.5 0.05 0 
G2H037 Fynbos 0.07 0.03 0.02 0.07 0.02 0.02 0.05 0 0 
H2H008 Fynbos 0.1 0.02 0.01 0.07 0.02 0.02 0.02 0.001 0 
J1H016 Fynbos 0.1 0 0.02 0.15 0.01 0.01 0.05 0.1 0 
C2H005 Grassland 10 3 3 5 0.7 0 5 2 0.1 
C5H007 Grassland 40 30 0.5 5 0.5 0.1 15 10 0.2 
C5H056 Grassland 0.5 0.1 0 0.4 0.1 0 0.5 0 0 
C8H006 Grassland 0.3 0.1 0 0.2 0.05 0 0.1 0 0 
A2H032 Savannah 1 0.5 0.1 0.2 0.05 0 0.2 0.05 0 
A2H034 Savannah 3 1 0.5 0.3 0 0 0.3 0.01 0 
A6H010 Savannah 12 5 0 0.3 0 0 0.1 0 0 
B1H018 Savannah 0.2 0.05 0.03 0.07 0.04 0.02 0.07 0.05 0.01 
B4H009 Savannah 0.45 0.06 0.02 0.1 0.01 0.01 0.05 0 0 
B9H002 Savannah 9 0.1 0 0.1 0.04 0.02 0.1 0.03 0.01 
X2H012 Savannah 2 0.5 0 0.5 0 0 0.4 0.01 0.02 
X3H003 Savannah 1.3 0.7 0.2 1 0 0 0.2 0 0 
X3H015 Savannah 0.5 0 0.04 0.2 0 0.02 0.06 0.04 0.01 
P3H001 Thicket 7 0.5 0.05 0.4 0 0 0.1 0 0 
P4H001 Thicket 1.5 0.1 0.03 0.2 0.03 0.02 0.5 0 0 
R2H009 Thicket 1.5 0.1 0 0.15 0.05 0.02 0.1 0.05 0 
R2H012 Thicket 1.7 0.3 0.02 0.3 0.02 0 0.1 0.01 0 
U8H001 Thicket 1.6 0.7 0 0.07 0 0.02 0.1 0 0 
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2.3.3 Results of multiple regression in Statistica 
The multiple regressions produced in Statistica did not show a good fit to the data; 

therefore, the regression equations produced are not shown here. The original equations can 
be seen in the previous deliverable (K5/2448/1) 

 

2.3.4 Results of multiple regression in Excel 
Table 2.5 gives the parameter values of parameters α-κ for the various biomes and 

nutrients, and considering the entire catchment or the 100 buffer zone. The parameter values 
were achieved by using Solver to derive estimates of surface water concentrations that were 
as close to the WQSAM derived parameter values (Table 2.4) as possible, using Equation 2.1. 
The results of parameter values can be applied to new catchments to estimate surface water 
concentrations by determining the land cover categories and coverage within a catchment, 
and applying the proportions of total area of respective land cover categories as well as the 
values given in Table 2.4 to Equation 2.1. Table 2.6 shows the results of applying the 
regression parameters given in Table 2.5 to the land cover coverage within the study 
catchments using the regression equation given in Section 2.2.3. 

 
Table 2.5  Parameters derived for multiple regression in Excel using the equation format 

given in Section 2.2.3. Parameters were estimated using Solver.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 NO2-N + NO3-N NH4-N PO4-P 
Parameter Full  Buffer Full  Buffer Full  Buffer 

Fynbos Biome 
Α 0.000 0.000 0.000 0.000 0.000 0.000 
Β 4.738 1.717 0.284 0.155 0.000 0.000 
Γ 0.000 0.000 2.295 0.384 0.449 0.000 
Δ 0.000 0.000 0.000 0.000 0.000 0.000 
Ε 0.016 0.015 0.064 0.063 0.033 0.033 
Ζ 0.000 0.000 0.000 0.000 0.000 0.000 
Η 0.000 0.000 1.204 0.901 0.613 0.626 
Θ 17.245 30.793 0.961 1.452 13.918 4.239 
Ι 0.000 0.000 0.000 0.000 0.000 0.000 
κ 1.622 1.600 0.101 0.100 0.071 0.070 

Grassland Biome 
α 0.000 0.000 0.000 0.000 0.000 0.283 
β 0.000 0.000 0.000 9.687 0.000 0.000 
γ 2060.067 0.000 107.856 0.000 733.146 0.000 
δ 0.000 0.000 0.000 0.000 0.000 0.000 
ε 0.000 0.000 0.000 0.000 0.000 0.031 
ζ 0.000 0.000 0.000 0.000 0.000 0.000 
η 0.000 0.000 0.000 1.107 0.000 0.000 
θ 89.985 498.141 37.021 102.480 41.886 266.912 
ι 0.000 69.364 0.000 0.000 0.000 0.000 
κ 0.000 2901.192 0.000 0.000 0.000 16.489 
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Table 2.5  Continued Parameters derived for multiple regression in Excel using the equation 
format given in Section 2.2.3. Parameters were estimated using Solver.  

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
Table 2.6  Results of applying the regression parameters given in Table 2.5 to the land 

cover coverage within the study catchments using the regression equation format 
given in Section 2.2.3 

 

    NO2-N + NO3-N NH4-N PO4-P 

Station Biome Model Full Buffer Model Full Buffer Model Full Buffer 
G1H010 Fynbos 1.60 1.6 1.60 0.10 0.10 0.10 0.07 0.07 0.07 
G1H028 Fynbos 0.05 0.05 0.03 0.06 0.07 0.07 0.03 0.03 0.03 
G1H034 Fynbos 5.00 5 5.00 0.30 0.30 0.30 0.50 0.50 0.50 
G2H037 Fynbos 0.07 0.07 0.06 0.07 0.06 0.06 0.05 0.03 0.03 
H2H008 Fynbos 0.10 0.101 0.11 0.07 0.07 0.07 0.02 0.03 0.03 
J1H016 Fynbos 0.10 0.099 0.12 0.15 0.15 0.15 0.05 0.05 0.05 
C2H005 Grassland 10.00 14.59 15.79 5.00 5.19 5.00 5.00 6.54 8.21 
C5H007 Grassland 40.00 32.18 36.32 5.00 4.68 5.00 15.00 12.36 12.96 
C5H056 Grassland 0.50 13.84 6.74 0.40 0.95 0.40 0.50 5.00 0.07 
C8H006 Grassland 0.30 0.57 0.00 0.20 0.24 0.20 0.10 0.27 0.03 
A2H032  Savanna 1.00 1.29 2.82 0.20 0.18 0.27 0.20 0.19 0.21 
A2H034  Savanna 3.00 1.24 2.73 0.30 0.14 0.26 0.30 0.20 0.21 
A6H010 Savanna 12.00 10.79 8.68 0.30 0.33 0.18 0.10 0.14 0.14 

 

 NO2-N + NO3-N NH4-N PO4-P 
Parameter Full  Buffer Full  Buffer Full  Buffer 

Savannnah Biome 
α 0.000 0.000 0.000 0.000 0.000 0.000 
β 0.000 0.000 0.000 0.000 0.000 0.000 
γ 0.000 48.088 0.000 1.551 0.000 1.130 
δ 0.000 0.000 0.000 0.000 0.000 0.000 
ε 1.416 0.074 0.085 0.232 0.214 0.197 
ζ 0.509 0.000 69.623 0.000 9.732 0.000 
η 0.000 2.380 0.000 0.000 0.000 0.000 
θ 0.000 3.463 0.000 6.216 0.000 0.940 
ι 71.213 74.864 0.000 0.000 0.000 0.000 
κ 0.000 0.000 0.747 0.041 0.131 0.000 

Thicket Biome 
α 0.000 0.000 0.000 0.000 0.000 0.371 
β 0.000 0.000 0.000 0.000 0.069 0.199 
γ 0.000 0.000 0.000 1.288 28.682 7.871 
δ 0.000 0.000 0.000 0.000 0.353 0.111 
ε 2.881 0.288 0.288 0.035 0.000 0.091 
ζ 0.000 0.000 0.000 0.000 0.000 0.000 
η 710.856 1.339 1.339 9.382 0.000 0.000 
θ 0.000 1.453 1.453 6.612 0.697 19.555 
ι 0.000 0.000 0.000 0.000 0.062 0.000 
κ 0.395 0.004 0.004 0.563 0.000 0.120 



 
 

19 
 

Table 2.6  Continued Results of applying the regression parameters given in Table 2.5 
to the land cover coverage within the study catchments using the regression 
equation format given in Section 2.2.3 

 
    NO2-N + NO3-N NH4-N PO4-P 

Station Biome Model Full Buffer Model Full Buffer Model Full Buffer 
B1H018  Savanna 0.20 0.74 0.15 0.07 0.21 0.20 0.07 0.13 0.17 
B4H009  Savanna 0.45 1.35 0.73 0.10 0.29 0.23 0.05 0.23 0.19 
B9H002  Savanna 9.00 8.34 9.85 0.10 0.45 0.13 0.10 0.10 0.08 
X2H012 Savanna 2.00 1.35 0.11 0.50 0.38 0.23 0.40 0.25 0.19 
X3H003 Savanna 1.30 0.31 0.52 1.00 0.64 0.97 0.20 0.15 0.18 
X3H015  Savanna 0.50 4.72 4.30 0.20 0.36 0.32 0.06 0.14 0.14 
P3H001 Thicket 7.00 4.85 5.44 0.40 0.29 0.33 0.10 0.14 0.11 
P4H001 Thicket 1.50 3.46 2.26 0.20 0.30 0.20 0.50 0.49 0.49 
R2H009 Thicket 1.50 2.77 3.44 0.15 0.18 0.23 0.10 0.10 0.10 
R2H012 Thicket 1.70 1.60 1.67 0.30 0.27 0.28 0.10 0.10 0.10 
U8H001 Thicket 1.60 1.77 1.67 0.07 0.13 0.13 0.10 0.10 0.10 

 

2.4 Discussion and way forward 
2.4.1 Availability of data 

The current study was limited by a lack of data on various fronts. On the broadest level, 
the lack of suitable sites limited the power of the subsequent statistical analyses as well as 
the range of different biomes that could be represented. The nature of the study posed major 
restrictions on the types of sites that were suitable. The lack of suitable sites led to the Nama 
Karoo and succulent Karoo biomes not being represented within the analyses. 

The observed data, both for daily flow and water quality, posed additional restrictions on 
the subsequent analyses. In many cases, identifying periods of unbroken daily flow within the 
flow gauging records was difficult, and posed serious restrictions on the temporal simulation 
period within the subsequent water quality modelling exercise. The low temporal resolution of 
water quality within the DWS historical monitoring data posed additional restrictions on both 
the number of suitable sites, as well as the accuracy of water quality model calibration in the 
subsequent water quality modelling. In general, the DWS water quality data contains a low 
representivity of water quality measures taken during higher flows. This is unfortunate within 
the context of the current study, as higher flows would be the periods in which non-point 
sources would predominate in affecting instream water quality. The lack of water quality 
measures taken at higher flows additionally poses problems for water quality modelling, as 
the time series record of water quality at a site affected by non-point sources will contain 
predominantly lower concentrations from measures taken at low flow, interspersed with a few 
‘spikes’, where measures happened to occur during higher flows. Within a model such as 
WQSAM, representing the observed frequency distribution is difficult, as the model will tend 
to generate a frequency distribution that has too frequent concentrations of medium values as 
compared to the observed frequency distribution. However, it is likely that the frequency 
distribution of observed water quality is a product of a lack of data, and that the model in actual 
fact simulates a more ‘realistic’ frequency distribution of water quality. This problem is blatantly 
evident for various sites in the current study, for example, gauge C5H056 and C8H006 for 
NO2-N + NO3-N. This problem may lead to an underestimation of the surface water quality 
signature estimated during the water quality modelling performed in the current study. 
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2.4.2 Discussion of water quality modelling results 
While in general, fairly good water quality simulations were obtained for many sites, (for 

example C5H007, A2H034 and X2H012 for NO2-N + NO3-N, J1H016 and X3H003 for NH4-N, 
and X2H012 and B4H009 for PO4-P), some poor results were additionally obtained (for 
example P3H001 and R2H012 for NO2-N + NO3-N, P3H001 for NH4-N, and P3H001 and 
U8H001 for PO4-P). As discussed above, the lack of observed water quality measures within 
the DWS historical monitoring data, especially during higher flows, could have influenced the 
accuracy of model calibration within WQSAM.  

The accuracy of model calibrated surface water concentrations would directly affect the 
subsequent multiple regression analyses in investigating links between model calibrated 
surface water flow water quality signatures and land cover. 

Within the fynbos biome, it is likely that agricultural activities or forestry influenced the 
water quality signatures of various sites, for example, G1H034 and G1H010. This is confirmed 
by the land cover data for the sites which show 94% cultivated dryland for G1H034 and 99% 
forestry for G1H010.  

Within the grassland biome, the sites C5H007 and C2H005 showed very high spikes in 
water quality signatures for all three nutrients. The land cover data showed both C2H005 and 
C5H007 to have a mix of land cover that could potentially influence water quality, including 
13% cultivated dryland, 1.2% cultivated irrigated and 1% urban for C5H007, and 25% 
cultivated dryland, 2% mining and 14% urban for C2H005. Relatively speaking, the water 
quality concentrations for C5H007 were considerably higher for all three nutrients than for 
C2H005, indicating perhaps that irrigated agriculture has a disproportionately large effect on 
water quality in comparison to other land cover types. From a conceptual perspective, this 
makes sense as whereas for other land cover types, nutrients become mobilised during 
rainfall, for irrigated agriculture, irrigation return flow provides a constant supply of mobilised 
nutrients to a river, even during dry periods.  

Within the savannah biome, the sites A6H010 and B9H002 showed relatively high 
observed concentrations of predominantly NO2-N + NO3-N. The land cover data for these two 
sites show a mix of land cover categories that could potentially be a source of non-point source 
nutrients, including cultivated dryland, cultivated irrigated and urban areas; however, the large 
proportions of forestry in both areas (40% for A6H010 and 60% for B9H002) as well as the 
fact that the highest concentrations occur for NO2-N + NO3-N indicate that perhaps forestry 
has the greatest influence on water quality for this biome.  

For the thicket biome, the single site that stands out from the rest in terms of concentrations 
of NO2-N + NO3-N is P3H001. Looking at the land cover data for this gauge, it is not 
immediately evident why NO2-N + NO3-N should be so high for this site, with land cover 
including a small amount of agriculture (2.2% cultivated dryland and < 1% cultivated irrigated), 
but predominantly consisting of natural area (96%). 

 

2.4.3 Discussion of multiple regression results from Excel 
Fynbos biome 

The multiple regression results for NO2-N + NO3-N found urban, cultivated dryland, forest 
and natural land cover categories to affect water quality in the order of greatest to least effect. 
These categories make conceptual sense and were in addition consistent for both the entire 
catchment and the buffer zone.  

The multiple regression results for NH4-N for the entire catchment found cultivated 
irrigated, waterbodies, urban, cultivated dryland, forest and natural categories as affecting 
water quality in order of greatest to lowest effect. The results for the buffer zone showed urban, 
waterbodies, cultivated irrigated, cultivated dryland, forest and natural as affecting water 
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quality from greatest to least effect. While the results for the most part make conceptual sense 
considering both the entire catchment and the buffer zone, there is a question around the 
plausibility of the effect of water bodies on water quality. It is known that certain surface waters 
are highly eutrophic, and perhaps water bodies such as farm dams could have a considerable 
effect on the water quality of adjacent rivers. 

The regression results of PO4-P showed urban areas to have the highest effect on water 
quality by far, followed by waterbodies and then cultivated irrigated, and a slight effect by 
natural land cover. It is interesting that the effect of cultivated irrigated was not detected within 
the 100 m buffer zone, but perhaps none of the fynbos study catchments used in the current 
study contained irrigated agricultural land within the buffer zone. The inclusion of water bodies 
as having an effect on instream phosphate is also debatable, and could be justified as for 
ammonium. 
Grassland biome 

The regression for NO2-N + NO3-N for the entire catchment found cultivated irrigated to 
have the greatest effect by far, followed by urban areas. The regression for the buffer zone 
found forest to have the greatest effect, followed by urban areas and degraded natural. The 
effect of cultivated irrigated was however not detected for the buffer zone. It could be that none 
of the investigated sites contained cultivated irrigated land within the buffer zone. The 
identified land cover categories make conceptual sense, as does the larger number of 
categories identified within the buffer zone, as it is expected that land cover within the buffer 
zone has more of an effect on instream water quality.  

The regression for NH4-N for the entire catchment, similar to that for NO2-N + NO3-N, found 
cultivated irrigated to have the greatest effect by far, followed by urban areas. The regression 
for the buffer zone found urban areas to have the greatest effect, followed by cultivated dryland 
and waterbodies. The identified categories for both regressions make conceptual sense. The 
inclusion of waterbodies could indicate the influence of eutrophic farms dams.  

The regression for PO4-P for the entire catchment showed cultivated irrigated land to have 
the greatest effect followed by urban areas. The regression for the buffer zone showed the 
influence of additional categories, namely urban, forest, bare rock and soil and natural from 
greatest to least effect on water quality. All identified categories make sense, with the 
additional categories identified for the buffer zone expected. 
Savannah biome 

The regression for NO2-N + NO3-N for the entire catchment found degraded natural, 
natural and mining to have an effect on water quality. The regression for the buffer zone 
detected additional categories and degraded natural, cultivated irrigated, urban, waterbodies, 
and natural areas were found to influence water quality from greatest to least effect.  

The regression for NH4-N found mining, forest and natural areas to have an effect on water 
quality from greatest to least effect. The regression for the buffer zone found the urban, 
cultivated irrigated, natural and forest categories to affect water quality from greatest to least 
effect. The identified categories make sense; however, it is debatable whether mining should 
have an effect on instream ammonia. The detection of additional land cover categories within 
the buffer zone is expected. 

The regression for PO4-P found mining, natural and forest to affect water quality from 
greatest to least effect. The regression for the buffer zone found cultivated irrigated, urban and 
natural to have an effect on water quality from greatest to least effect. The non-detection of 
urban areas as affecting water quality within the entire catchment was not expected; however, 
perhaps urban areas only influence phosphate if positioned close to the river reach, as 
phosphates are known to bind to soils, and would not be expected to travel far within overland 
flow, unless sediment is mobilised. 
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Thicket biome 
The regression for NO2-N + NO3-N for the entire catchment found waterbodies, natural 

and forest land cover categories to affect water quality from greatest to least effect. The 
regression for the buffer zone found urban areas, waterbodies, natural and forest to affect 
water quality from greatest to least effect. All identified categories make conceptual sense. 

The regression for NH4-N found urban waterbodies, natural and forest to affect water 
quality from greatest to least effect. The regression for the buffer zone found waterbodies, 
urban, cultivated irrigated, forest and natural to affect water quality from greatest to least effect. 
These selected land cover categories similarly make conceptual sense.  

The regression for PO4-P found cultivated irrigated, urban, sugarcane, cultivated dryland 
and degraded forest as influencing water quality. The regression for the buffer zone found 
urban, cultivated irrigated, bare rock and soil, cultivated dryland, forest, sugarcane and natural 
as the categories affecting water quality from greatest to least effect. While the land cover 
categories for the most part make sense, the inclusion of sugarcane is questionable. The 
inclusion of a greater number of categories into the regression for the buffer zone makes 
conceptual sense. 

 

2.4.4 Conclusions and way forward 
The limitations of this study were lack of data. As discussed, few appropriate sites were 

identified. In addition, within each site, lack of observed flow and water quality data was a 
constraint on analysis.  

The lack of observed data and appropriate sites affected the quality of the calibrations 
obtained within WQSAM. As mentioned before, very few water quality readings within the 
DWS historical monitoring data are taken within higher flows. From a logistical point of view, 
this is reasonable as there are safety concerns associated with rivers in flood. However, the 
non-point source water quality signature is strongest during higher flows, and it is unfortunate 
that there are a lack of date to quantify this signature.  

The lack of data in addition affected the quality of the multiple regressions obtained in 
Statistica. This is probably the reason for the results obtained that did not make conceptual 
sense. The regressions obtained in Excel using Solver made more conceptual sense. That 
ability to constrain parameters to positive values within Solver was beneficial to obtaining 
results that were conceptually sound.  

It is recommended that the results obtained using Solver be implemented within WQSAM 
(Table 2.5). However, the regressions should be revisited as further observed data becomes 
available, either as a more appropriate land cover database, the further identification of 
appropriate sites, or further observed flow and water quality data within sites. 
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CHAPTER 3. SIMULATING MICROBIAL WATER QUALITY 
AND ACID MINE DRAINAGE 

 

3.1 Introduction 
The Water Quality Systems Assessment Model (WQSAM) was originally developed to be 

as simple as possible while still representing major water quality processes (Slaughter et al., 
2015). To this effect, the number of original water quality variables simulated by WQSAM was 
restricted to nutrients, algal growth and salinity. It is argued that including certain variables 
such as dissolved oxygen and metals for example, would require the representation of multiple 
additional complicated water quality processes that would so increase the complexity and data 
requirements of the model so as to make the model non-viable within specifically a South 
African water resources management context, and more generally within the context of the 
capabilities of a developing country. 

However, given the water quality processes already represented within WQSAM, such as 
water temperature and salinity, the possibility of including two additional and highly important 
water quality variables was recognised, namely acid mine drainage (AMD) and microbial water 
quality. It has been recognised that arguably it is possible to represent these two variables 
fairly simply, as detailed in this report. 

 

3.1.1 Acid mine drainage (AMD) 
AMD results from the oxidation and hydrolysis of metal sulphides in water-permeable rock 

strata (Gray, 1996; 1997; 1998; Akcil and Koldas, 2007). While sulphides are generally stable 
and insoluble under reducing conditions, oxidation occurs once the minerals are exposed to 
oxygen (Olías, 2004). Exposure occurs within both working and abandoned mines, although 
abandoned mines produce more AMD as active pumping of water has ceased in these mines 
(Cobbing, 2008; Simate and Ndlovu, 2014). The chemistry of AMD is generally fairly 
straightforward, but may vary according to various factors such as geology, temperature, 
microorganisms, water and oxygen (Gray, 1998; Akcil and Koldas, 2007; Simate and Ndlovu, 
2014). Constituent elements of AMD include sulphate, zinc, iron, magnesium, copper, lead, 
calcium and manganese (Gray 1996; Olías, 2004).  

The effects of AMD have been rated as second only to climate change and ozone depletion 
in terms of ecological risk, and can result in irreversible destruction of ecosystems (Oelofse, 
2008). Other effects include the erosion and damage of human infrastructure, increased 
seismic activity and the pollution of groundwater (INTER-MINISTERIAL COMMITTEE, 2010). 
More specifically, low pH often associated with AMD results in water that is unsuitable for 
domestic or other uses, will have long-term effects on infrastructure and will not support most 
aquatic life (Cobbing, 2008; INTER-MINISTERIAL COMMITTEE, 2010). The acidity of AMD 
also increases the bioavailable concentrations of various toxic metals and radionuclides, 
resulting in toxicity for both humans and the environment (INTER-MINISTERIAL 
COMMITTEE, 2010). High sulphates often associated with AMD, even after treatment, can 
render water unfit for human use and results in salinisation and the associated effect on 
aquatic ecosystems (INTER-MINISTERIAL COMMITTEE, 2010; Simate and Ndlovu, 2014). 

AMD has been described in Spain (Olías, 2004), Ireland (Gray, 1996; 1998), the United 
Kingdom (Cobbing, 2008), Portugal (Candeias et al., 2014), Australia (INTER-MINISTERIAL 
COMMITTEE, 2010), Canada (INTER-MINISTERIAL COMMITTEE, 2010) and the USA 
(INTER-MINISTERIAL COMMITTEE, 2010). 

AMD is particularly problematic within South Africa. This is because of the sheer scale of 
mining operations within certain regions in South Africa, the interconnectedness of mines and 
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the general lack of planning to minimise impacts, particularly within the earlier mines that have 
since been abandoned (INTER-MINISTERIAL COMMITTEE, 2010). AMD associated with 
gold mining is particularly problematic within the Witwatersrand region in Gauteng (INTER-
MINISTERIAL COMMITTEE, 2010). The Witwatersrand region can be divided into the 
western, eastern and central basins. Within the central basin, AMD is currently rising at a rate 
of 0.59 m day−1, whereas AMD has already reached the surface in the central basin (INTER-
MINISTERIAL COMMITTEE, 2010). Within the western basin, partial treatment of AMD takes 
place, with approximately half of the average 20 mega litres day−1 AMD partially treated and 
released to the upper Crocodile River (Tweelopie Spruit) (INTER-MINISTERIAL 
COMMITTEE, 2010). AMD produced in the western mining basin near Krugersdorp produces 
AMD of approximately 36,000 million m3 day−1 which threatens a game reserve, ground water 
reserves as well as the Cradle of Humankind World Heritage Site (Hobbs and Cobbing, 2007). 
Within the central basin, pumping stopped in 2008, leading to the subsequent rise in AMD. 
Within the eastern basin, the water quality of AMD is slightly better because of the inflow of 
highly alkaline water, leading to higher pH and lower sulphate levels. However, substandard 
water continues to flow into the Blesbok Spruit from this region, contributing to salinity of the 
Crocodile and Vaal river systems (INTER-MINISTERIAL COMMITTEE, 2010). 

AMD is additionally associated with the Witbank coalfields situated within the headwaters 
of the Olifants River, upstream of Loskop Dam (Oelofse, 2008; Oberholster et al., 2010). This 
region contributes approximately 50 mega litres day−1 of AMD to the upper Olifants (Maree et 
al., 2004). 

 

3.1.2 Microbial water quality 
It is generally recognised that microbial water quality of surface waters in South Africa 

poses a massive health risk to humans and livestock. Given the challenges faced by waste 
water treatment plants, the large number of people living within informal settlements and the 
problems associated with sewerage networks, microbial contamination of surface waters will 
most likely increase into the future. This problem has been highlighted by various studies. For 
example, Britz and Sigge (2012) have sent out an ominous warning of health risks associated 
with irrigated agriculture. Their baseline study found extremely high levels of faecal indicators 
exceeding all guidelines associated with river water used to irrigate crops. Their study 
concluded that produce irrigated with river water from many rivers in South Africa and 
consumed raw without further processing posed considerable risks to human health. Besides 
the implications for consumer health, this news was most unwelcome from an economic 
perspective within the agricultural sector, particularly for producers of export fruit. Their study 
concentrated on rivers in the Western Cape, KwaZulu-Natal, Limpopo and Mpumalanga. Le 
Roux et al. (2012) in addition found high levels of Escherichia coli within tributaries of the 
Wilge, Klein Olifants and Olifants rivers. 

Challenges associated with microbial water quality within South African surface waters 
require urgent intervention and management. To achieve this, a good understanding of the 
behaviour of microorganisms is required at the ecosystem level (Venter et al., 2011). The 
modelling of microbial water quality can assist in prioritising mitigation measures by indicating 
the individual sources of contamination (Sokolova et al., 2013). Modelling of microbial water 
quality can also assist in the investigation of management scenarios (Hipsey et al., 2008). The 
management and mitigation of microbial loads at the catchment level would reduce human 
and livestock illness as well as provide financial benefits (Venter et al., 2011). 

The general approach to the monitoring, measurement and modelling of microbial water 
quality has been to use certain bacterial or viral indicators as models of the behaviour of 
pathogens. These indicators are chosen according to the ease and cost of measurement, and 
may be relatively harmless, with the motivation being that these indicators are indicative of 
faecal contamination and the presence of associated pathogens such as Salmonella spp., 
Shigella spp., Vibrio spp., Clostridium spp. and Giardia spp (Hipsey et al., 2008). The most 
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common indicator species are the enteric coliform bacteria which are Gram-negative bacilli 
belonging to the family Enterobacteriaceae (Hipsey et al., 2008). Specific coliform 
measurements include total coliforms, faecal coliforms Escherichia coli, with the latter two 
being the most common measures as they are abundant within the faeces of mammals 
(Hipsey et al., 2008). In particular, E. coli has been shown as a better indicator of microbial 
contamination than coliforms (Edberg et al., 2000), and as such, has been the preferred 
microbial indicator within several studies such as that of Sokolova et al. (2013). Studies have 
shown that the different classes of organisms show considerably different responses to 
environmental pressures; therefore, the strategy of using microbial water quality indicators is 
not without criticism (Hipsey et al., 2008). As there are some limited data of E. coli levels within 
the Department of Water and Sanitation (DWS) routine monitoring data, the current study used 
E. coli as the microbial indicator.  

It is possible to model microbial water quality in a fairly simplistic way, which is the reason 
for inclusion within WQSAM. The dominant processes affecting the various species of 
microbial organisms are similar; therefore, the construction of a generic model for microbial 
pollutants appears viable (Hipsey et al., 2008). 

From the available literature, the processes that would need to be considered in a model 
would include growth and the effect of temperature, salinity and light on mortality. Generally, 
the instream environment is regarded as hostile to microbial organisms originating from the 
mammalian gut, and is has been suggested that growth can be disregarded within a model 
(Hipsey et al., 2008). This was explicitly confirmed by Servais et al. (2007) who observed no 
growth of faecal coliforms within a batch experiment with sterile Seine River water. It has been 
found that there is a link between temperature and faecal coliforms, for example Britz and 
Sigge (2012). 

Therefore, to model microbial water quality, it would appear that factors affecting the 
mortality rate of microbial indicators require consideration, whereas growth can be 
disregarded. As confirmed in other studies, for example Tian et al. (2002), Kashefipour et al. 
(2002), Collins and Rutherford (2004) and Menon et al. (2003), this mortality can be 
represented as a first order rate. Mancini (1978) proposed the following model: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝑘𝑘0 × ∅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × ∅𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 × ∅𝑑𝑑
(𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇−20) × 𝐶𝐶     Equation 3.1 

where t is the time, C represents the E. coli concentration, k0 (day−1) is the decay rate at 
20°C for a salinity of 0 ‰ and darkness, Sal (‰) is the salinity, ØI is the light coefficient, Int is 
the light intensity integrated over depth, ØT is the temperature coefficient for the decay rate 
and Temp is the water temperature. 

  

3.2 Method and study areas 
3.2.1 Study areas used 

Within this study, the upper and middle Crocodile River Catchment and the Upper Olifants 
River Catchment were used as study areas. Sulphates as indicative of acid mine drainage 
were simulated for both the Crocodile and the Olifants river catchments, as these rivers are 
both affected by AMD (Oelofse, 2008; INTER-MINISTERIAL COMMITTEE, 2010; Oberholster 
et al., 2010). Microbial water quality was simulated for the Crocodile River Catchment as 
measured E. coli data were available for this catchment. 

The Crocodile River Catchment was modelled up to X22 for both microbial water quality 
and AMD. This was mainly because most of the microbial water quality data were available 
up to this point.  

This important catchment occurs in the province of Mpumalanga (Figure B3) and is an 
important irrigation area (Deksissa et al., 2004), with its source in the Highveld, draining an 
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area of approximately 10,440 km2 over a total distance of approximately 320 km, and joining 
the Komati River before entering Mozambique in the East (Deksissa et al., 2004; Pollard and 
du Toit, 2011). Annual rainfall varies from 600-1,200 mm decreasing from west to east, with a 
mean of 880 mm (Deksissa et al., 2004), with predominantly summer rainfall occurring 
between November and April through convection thunderstorms (Deksissa et al., 2004). 

The geology of the region is relevant in regards to the simulations of sulphate. Fractured 
rock aquifers largely of igneous origin occur in the catchment. The broad geology of the 
catchment can be divided into Cambrian and Precambrian geology with associated TDS 
concentrations of < 65 mg ℓ−1 and ranging from 195 to 1,100 mgℓ−1, respectively. Generally, 
the upper catchment is dominated by Cambrian geology, whereas the central and lower 
catchment is dominated by Precambrian geology; therefore, the salinity of the upper 
catchment is not influenced dramatically by the geology. 

Extensive agriculture occurs within the catchment, ranging from wheat and maize farming 
in the western regions to cattle and sugar cane production in the eastern regions. Large areas 
of irrigated agriculture occur within the catchment (Roux et al., 1994; Deksissa et al., 2004). 

The yield model up to the middle catchment can be seen in Figure B3. Because the 
Crocodile River Catchment is relatively large and the systems diagram of the catchment is 
fairly complex, the presented systems diagram is broken up into several sections. 

The catchment is subject to various pollution sources, including industrial and domestic 
point sources of pollutants, with approximately 30 waste water treatment works (WWTWs) 
within the middle reaches alone (Deksissa et al., 2004). In addition, runoff and return flows 
from extensive areas of irrigated agriculture and mining sites act as diffuse sources of 
pollutants within the catchment (DWAF, 1995). Table 3.1 lists the gauges with observed water 
quality data used within the study. 

The Olifants River is highly modified by human use and has been extensively dammed. 
Water from the river is utilised by the coal mining, petrochemical and other industries, as well 
as diverse agriculture (Heath et al., 2010). The Olifants River has been identified as one of 
the most threatened rivers in South Africa, with frequent reports of crocodile and fish kills 
(Balance et al., 2001; de Villiers and Mkwelo, 2009, Van Vuuren, 2009). 

The Olifants River originates from the east of Johannesburg, with the upper Olifants 
extending from the catchment divide with the Vaal River to Loskop Dam down to Flag Boshielo 
Dam, including the Olifants, Klein Olifants, Wilge, Steenkoolspruit, Klipspruit and Elands rivers 
(Heath et al. 2010). The upper catchment includes various major dams such as Loskop, 
Witbank, Middleburg, Bronkhorstspruit and Premier Mine dams.  

Large urban centres occur within Witbank and Middleburg, while several smaller urban 
areas occur within the upper catchment (Heath et al., 2010). Coal mining occurs within the 
Witbank and Highveld coalfields (Heath et al., 2010). Diverse agriculture occurs within the 
upper catchment, with maize farming dominating in the southern and central parts of the upper 
catchment (Heath et al., 2010).  

Figure B2 shows the quaternary catchment structure of the upper Olifants River 
Catchment. The systems diagram of the Olifants River as used within the water quality 
modelling can be seen in Figure B1. 

The major water quality problems within the Olifants have been identified to be acid water, 
metals and sulphates from mines, excessive nutrients from WWTWs and agriculture and 
microbial contamination from WWTWs (van Vuuren, 2013).  

The pH levels within the upper Olifants have been identified as a point of concern. While 
for the most part, pH levels are near neutral to alkaline, certain tributaries such as the Klipspruit 
experience pH levels of near 4 and under due to constant acid mine drainage (AMD) (Heath 
et al., 2010). It has been pointed out that abandoned mines are responsible for the majority of 
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AMD, with operational mines contributing a relatively minor amount of AMD (van Vuuren, 
2013). 
 
Table 3.1 Observed DWA historical monitoring data for the Crocodile River Catchment. 

 

 
  

Node River Name 
WQ 
Gauging 
Station 

Latitude Longitude From: To: 

X21F-1 Elands 1-3214 30.260560 −25.657780 1972 2012 

X21F-2 Elands X2H011 30.277780 −25.645830 1972 2009 

Kwena 
Dam 

Kwena 
(Crocodile) X2R05 

30.386710 −25.359770 
1984 2012 

X21D-2 Crocodile X2H033 30.480640 −25.374990 1977 1992 

DDX21J-1 Elands 1-3212 30.599030 −25.592910 2006 2012 

X22A-1 Blystaanspruit X2H027 30.642480 −25.340570 1966 1981 

X21H-1 Ngodwana X2H034 30.673690 −25.661470 1972 1983 

X21K-2 Elands X2H015 30.697500 −25.487780 1972 2012 

X22A-2 Houtbosloop X2H014 30.700530 −25.379690 1966 2012 

X22E-1 
Kruisfonteinspr
uit X2H035 30.880160 −25.185560 1984 2011 

Witklip 
Dam 

Witklip (Sand) X2R03 
30.899900 −25.235860 

1975 2012 

X22CTrib
utary Rietspruit X2H031 30.942510 −25.472710 1966 2012 

X22F-2 Nels X2H005 30.965310 −25.427930 1969 2012 

Longmere
Dam 

Longmere 
Dam (Witrivier) X2R01 31.000770 −25.279030 1968 2011 

Klipkoppie
Dam 

Klipkopjes 
(Wit) X2R02 31.007640 −25.219250 1981 2012 

X22J-1 Crocodile 1-9827 31.025720 −25.446510 2008 2011 

Primkop 
Dam Primkop (Wit) X2R04 31.071150 −25.384960 1972 2012 

X22H-3 Wit X2H023 31.082780 −25.461330 1968 1992 

X22J-2 Crocodile X2H006 31.100000 −25.469440 1969 2012 

X22K-2 Crocodile X2H032 31.224930 −25.514120 1972 2012 
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Salinisation appears to be a problem within the upper Olifants, with elevated salinity near 
Middlekraal, with the salinity trend increasing from Witbank Dam to Middleburg Dam, and the 
Klipspruit contributing a large salt load due to mining (Heath et al., 2010). Loskop Dam acts 
as a sink for salts (Heath et al., 2010). Table 3.2 shows the gauges with observed water quality 
data used within the current study. 

 
Table 3.2  Observed DWA historical monitoring data for the Olifants River Catchment. 

 

3.2.2 Methods 
Modelling approach 

The approach taken within this study was to implement the functionality within WQSAM to 
simulate sulphates (as representative of AMD) and microbial water quality, and then to 
simulate these two variables within the Olifants and Crocodile river catchments for sulphates, 
and within the Crocodile River Catchment for microbial water quality, for historical conditions. 
The simulations are therefore calibrated against historical monitoring data, and the results 
obtained and parameter values used are discussed in terms of catchment characteristics and 
pollution sources. Calibrations are represented as frequency distributions as WQSAM is 
designed in a way so as to represent the frequency of water quality observations rather than 
accurate time series representations (Slaughter et al., 2015a). 
Microbial modelling approach 

The method used in the current study is based on a modified version of the equation by 
Mancini (1978). Sokolova et al. (2013) found no differences between the persistence of E. coli 
in light and dark incubations; therefore, they disregarded the effect of light in their model. In 
accordance with the model of Sokolova et al. (2013), the model used in the current study to 
simulate the first order degradation of E. coli is:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  −𝑘𝑘0 × ∅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × ∅𝑑𝑑
(𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇−20) × 𝐶𝐶     Equation 3.2 

where t is the time, C represents the E. coli concentration, k0 (day−1) is the decay rate at 
20°C for a salinity of 0 ‰, Øs is the salinity coefficient, Sal (‰) is the salinity, ØT is the 
temperature coefficient for the decay rate and Temp is the water temperature.  
  

Node River Name WQ Gauging 
Station Latitude Longitude From: To: 

B11A Olifants B1H018 29.45917 −26.21667 1991 2014 

B11F Olifants B1H005 29.25389 −26.00639 1979 2014 

B11E Steenkool Spruit B1H021 29.27 −26.13611 1990 2014 

B11C Steenkool Spruit B1H017 29.27417 −26.30556 1990 2014 

B11H Elands Spruit B1H002 29.33778 −25.81833 1990 2014 

B11K Klip Spruit B1H004 29.17111 −25.67333 1966 2014 

Middleburg Dam Klein Olifants B1R002 29.54583 −25.775 1978 2013 

Bronkhorst Dam Bronkhorstspruit B2R001 28.725 −25.8875 1968 2013 

Loskop Dam Olifants B3R002 29.3599 −25.4183 1968 2013 
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Modelling of AMD 
It has been shown that sulphate is generally strongly associated with AMD (Gray, 1996; 

1997; Simate and Ndlovu, 2014). While sulphate contributes to salinity, the general perception 
in South Africa is that sodium and chloride salts contribute to natural salinity, whereas 
sulphates are associated with either AMD or industrial effluent. Sulphate is a non-conservative 
variable, and generally remains relatively unchanged throughout transport in surface waters, 
whereas other variables associated with AMD, such as toxic metals and pH, undergo various 
chemical transformations associated with biotic and abiotic conditions. Arguably therefore, 
sulphate could be used as a general indicator of AMD within surface waters. Within the context 
of water quality modelling, the use of sulphate as an indicator of AMD is preferable as the 
processes affecting sulphate would be similar to those affecting total dissolved solids (TDS), 
such as dilution, input from incremental flow and return flow and evaporation. Therefore, the 
approach taken within WQSAM to model sulphates (as representative of AMD), are the same 
as that for TDS (see Slaughter et al., 2015). 

  

3.2.3 Data 
Table A1 contains a summary of the Escherichia coli data available for the sites on the 

Crocodile River whereas Table A2 contains a summary of effluent Escherichia coli data 
available for the sites on the Crocodile River. 

3.3 Results 
3.3.1 Model calibration for microbial water quality 

As indicated in Equation 3.2, the generic model of the decay of the microbial indicator 
population (in this case, E. coli), is influenced by temperature and salinity. Therefore, to 
adequately simulate microbial water quality, the water temperature and salinity of the study 
catchment must first be adequately represented. Figure 3.1 shows the model calibration for 
salinity (TDS) within the study sites, whereas Figure 3.2 shows the calibration for water 
temperature within the study sites. 

As can be seen in Figure 3.2, an adequate simulation of water temperature was obtained 
within the study sites within the Crocodile River Catchment. It is evident within Figure 3.1 that 
in most cases, an adequate representation of salinity was obtained for the study sites. 

The results of calibrations of E. coli are represented in Figure 3.3. Because of the lack of 
observed data, calibrations could be performed at very few sites. In general, the simulations 
obtained were good representations of the observed data. The results obtained for EWR1 
were relatively poor compared to the results obtained for the other sites. 

Decay rates (k0) across the catchment ranged from 0.1 to 0.4, with the simulations being 
very sensitive to this parameter. Within the flow signatures of surface flow, interflow and 
groundwater flow of incremental flow (see Slaughter et al., 2015), only the surface water flow 
parameter was adjusted during calibration, with the assumption that interflow and groundwater 
flow would generally not by contaminated by microbial pollution. The value of the surface water 
flow signature ranged from 500 to 15,000 cells 100 m ℓ−1. Øs and ØT were kept constant at 
1.05 and 1.04 respectively.  
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Figure 3.1  Results of calibration of salinity as total dissolved solids (TDS) within the Crocodile River Catchment study sites, represented as 

frequency distributions. 
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Figure 3.2  Results of calibration of water temperature simulations to observed data within 

the Crocodile River Catchment study sites, represented as frequency 
distributions. 

 
Figure 3.3  Results of Escherichia coli simulations calibrated to observed data within the 

Crocodile River Catchment study sites, represented as frequency distributions. 
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Figure 3.3  continued Results of Escherichia coli simulations calibrated to observed data 

within the Crocodile River Catchment study sites, represented as frequency 
distributions. 

 



 
 

33 
 

3.3.2 Model calibration for sulphates 
Results for the Olifants River Catchment 

Figure 3.4 shows the results of sulphate simulations for the Olifants River Catchment in 
WQSAM calibrated against observed data. In general, it was found that to achieve sufficient 
variability within the observed sulphate time series data, the surface flow signature had to be 
adjusted, rather than the interflow or groundwater flow signature, although the interflow and 
groundwater flow signatures were adjusted for some sites. Even with the adjustment of the 
surface flow signature, in many cases a good match to the observed data could not be 
achieved, for example B11A, B11C and Middelburg Dam (see Figure 3.4). 
 

 
Figure 3.4  Results of sulphate simulations calibrated to observed data within the Olifants 

River Catchment study sites, represented as frequency distributions. 
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Figure 3.4  (continued) Results of sulphate simulations calibrated to observed data within 

the Olifants River Catchment study sites, represented as frequency distributions. 
Values of the surface flow parameter ranged from 20 mg ℓ−1 within the B20 quaternary 

catchments to 200-400 mg ℓ−1 within the B11A-E quaternary catchments to up to 1,600 mg ℓ−1 
within B11F and B11H, indicating that these two catchments are contributing considerable 
quantities of AMD to the Olifants River. It was not possible to obtain reasonable calibrations 
within the Loskop and Witbank dams, as there are strong increasing trends evident within the 
observed data (see Figures 3.5 and 3.6). WQSAM at this point is not able to simulate dynamic 
water quality trends.  
Results for the Crocodile River Catchment 

In general, the levels of sulphate within the Crocodile River sites were much lower than 
that in the Olifants River. Relatively high sulphate levels were evident within X21F1 and 
X21K2. For most sites, relatively low values ranging from 10 to 20 mg ℓ−1 were assigned to the 
surface flow signatures. For X21F1, a relatively high surface flow signature of 100 mg ℓ−1 was 
assigned to achieve a good calibration. For X21K2, a relatively high return flow concentration 
of 200 mg ℓ−1 was assigned to X21K-1035 immediately upstream. 

While good simulations were achieved for many sites, the simulations could not capture 
the observed frequency distribution of data for a few sites, for example Kwena Dam and Witklip 
Dam (see Figure B3). 

3.4 Discussion and way forward 
3.4.1 Microbial water quality modelling 

Generally, there are less microbial water quality data within the DWA historical monitoring 
data relative to other variables such as nutrients and salts. While there were E. coli data 
available for the Crocodile River Catchment, few sites were ultimately used within the model 
calibration that were sufficiently spatially proximate to allow estimation of model parameters 
related to microbial water quality.  

The model calibration obtained simulations that were generally representative of observed 
data. Some uncertainties however still exist, mostly due to the lack of observed data. In most 
cases, calibrations were obtained by adjusting the value of the surface water flow microbial 
water quality signature. In other cases where possible, the microbial water quality signature of 
return flow was adjusted. However, the yield models are in general constructed in a way to 
optimise the simulation of water quantity, and return flow nodes may be assigned spatial 
positions within the catchment that are viable from a water quantity simulation perspective, 
but are however sub-optimal or inaccurate from a water quality simulation perspective. For 
example, while a return flow signature may be evident within the observed data, the yield 
model may not have assigned a return flow to the node representing that particular spatial 
location.  
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Figure 3.5  Time series results of sulphate simulations calibrated to observed data within Loskop Dam on the Olifants River. The white line 

represents the observed data whereas the blue line represents simulated data. A clear increasing trend is evident within the 
observed data. 

 
Figure 3.6  Time series results of sulphate simulations calibrated to observed data within the Witbank Dam on the Olifants River. The white line 

represents the observed data whereas the blue line represents simulated data. A clear increasing trend is evident within the 
observed data. 
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Figure 3.7  Results of sulphate simulations calibrated to observed data within the Crocodile 

River Catchment study sites, represented as frequency distributions. 
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Figure 3.7  (continued) Results of sulphate simulations calibrated to observed data within 

the Crocodile River Catchment study sites, represented as frequency 
distributions.  
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In this case, the model simulation may be achieved by for example adjusting the 
incremental flow signatures for microbial water quality, and even though an adequate 
simulation may be obtained, the model may be achieving the simulation for the wrong reasons. 
In this case, it is suggested that the yield model nodal configuration be designed for optimal 
water quality simulation, so that nodes indicated as return flow nodes be in the correct spatial 
position. An additional strategy would be to link land cover/use with the incremental flow 
signatures using a formalised model. This would effectively eliminate an important source of 
uncertainty. For example, the hydro-ecological model SENEQUE/Riverstrahler assigns faecal 
coliform concentrations to runoff according to land use types of the catchments, with more 
natural areas assigned relatively low values, whereas grazed fields (1,000 cells/100 mℓ) and 
urban areas (5,000 cells/100 mℓ) are assigned relatively high concentrations (Servais et al., 
2007). While this particular example does not appear to be a rigorous formalised approach, 
for further implementation in WQSAM, an approach similar to that taken for nutrients 
(Slaughter and Mantel, 2015) could be implemented, where the relationship between model 
calibrated surface water flow microbial concentrations and land cover could be described 
within a formalised model. 

The current study does indicate regions within the studied catchment where there are large 
inputs of faecal bacteria, and additionally provides some indication of the degradation/mortality 
of bacteria downstream. Therefore, while limitations and uncertainties remain, there are 
concrete possibilities of using WQSAM to investigate scenarios of microbial water quality 
management if the yield model nodal setup is designed with this objective in mind.  

 

3.4.2 Modelling of sulphate as indicative of acid mine drainage 
The use of sulphate as an indicator of AMD may be criticised as a rather simplistic 

representation of AMD. After all, there are many potentially toxic water quality variables 
associated with AMD besides sulphates such as low pH and a range of toxic metals. It is 
argued here however, that there are two good reasons to the approach of modelling sulphate. 
First of all, the broad aim of WQSAM is to represent water quality processes in as simplistic a 
method as possible, while still capturing the processes that explain the majority of water quality 
variation. The motivation behind this approach is that this strategy is reasonable given the lack 
of observed data available for South African catchments. In addition, complex models with 
many parameters are prone to problems of equifinality (Bevan, 2006), where the model may 
be providing an adequate simulation given observed data, but may be representing the 
incorrect water quality processes, which would ultimately lead to incorrect conclusions within 
scenario modelling. The second reason for the use of sulphate as an indication of AMD is that 
sulphate is generally a conservative variable, and as such is subject to a limited number of 
processes instream and maintains the same chemical form. As such, sulphate is much simpler 
to model than for example pH or the toxic metals. It is recognised that in South African 
catchments at least, that sulphate input generally occurs due to human activities with no 
significant natural input. These sources linked to human activities can either be mining or 
industrial effluent return flow. Sulphate as a water quality variable is additionally recognised to 
be serious toxicant, and contributes to the salinisation of rivers. 

The modelling of sulphate within the current study provided various broad insights. First of 
all, the results show that it is possible to adequately represent the observed data using the 
WQSAM model. Secondly, it was shown that sulphate input is considerably higher in the 
Olifants River than in the Crocodile River.  

The model showed that there is diffuse flow input of sulphates into the Crocodile River at 
X21F, which most probably relates to mining input. However, the model additionally shows 
that the Crocodile River receives some input of sulphate rich industrial effluent, such as at 
X21K.  
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The representation of sulphates within the Olifants River within the model provided various 
insights. First of all, the observed sulphate concentrations at most sites show a high degree 
of temporal variability. This could indicate that the inputs of sulphates within the Olifants River 
Catchment are related to catchment runoff and rainfall, as input from ground water would 
provide a steady and less variable signature. Generally this assumption finds support in the 
literature. Gray (1996) found that sources of AMD include springs and surface runoff. Oli’as 
(2004) found that sulphate concentrations showed an opposite pattern to flow-dilution with a 
high variability over the rainy season. INTER-MINISTERIAL COMMITTEE (2010) mentions 
sources of water to mines as including direct recharge from rainfall and surface water flow 
directly into mine openings, both of which would show high reactivity to rainfall. However, the 
modelling results within the Olifants did not obtain a very good fit to observed data in some 
cases, such as for B11A, B11C and Middelburg Dam, and possibly the dynamics involved 
within the generation of AMD cannot be completely captured by the processes represented 
within WQSAM currently. This possibility requires further thought and discussion with experts 
and those familiar with the situation within the Olifants River catchment. 

Cobbing (2008) states that within the Western Mining Basin near Krugersdorp, while both 
surface water and groundwater can cause AMD problems, groundwater usually contributes 
the greater volume of AMD. Clearly, the modelling results for the Olifants appear to indicate a 
different situation within the Olifants River Catchment. It is generally known that coal mining 
proliferates within the upper Olifants River Catchment, with both open cast and underground 
mining, although none of the mines operate to deep levels. This is in contrast to the gold mines 
affecting the upper Crocodile River Catchment, which run deep underground. Within the 
Olifants River Catchment, surface storage of mining tailings occurs. In addition, due to the 
large amount of irrigated agriculture within the upper Olifants River Catchment, the 
groundwater levels remain fairly low, particularly at present due to the ongoing dry conditions. 
Within the Crocodile River Catchment, there is still active pumping of groundwater, thereby 
limiting the intrusion of AMD into the surface waters. Given this information, different strategies 
of controlling AMD within the two catchments can be recommended. Within the Crocodile 
River Catchment, continual pumping and treatment of the rising mine water is recommended. 
Within the Olifants River, the mine tailings stored at the surface need to be treated or stored 
in some way as to prevent contamination of surface waters, although clearly this presents a 
major challenge.  
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CHAPTER 4. VALIDATION OF ALGAL AND HYACINTH 
GROWTH PROCESSES WITHIN WQSAM  

4.1 Introduction 
Water quality of reservoirs is important to understand and model for management of South 

African water resources. Their water quality is linked to the landscape and morphological 
characteristics of the catchment and information on key variables (such as chlorophyll a) is 
essential for management agencies. The limited amount of in-situ data for reservoirs in 
addition to point location of samples makes the availability of satellite data critical for 
developing models for management of reservoir water quality. 

Remote sensing data are being used to further our understanding of the natural variation 
in environmental variables, of drivers of change and as inputs to models (Politi et al., 2015). 
These data complement in-situ data because of the spatial and temporal (including historical 
data) scale of satellite data. Satellites also gather data for places that have not been sampled, 
and thus increase the area from which data can be gathered. However, they have the 
disadvantages of being at a coarser scale than in-situ measurements and suffer challenges 
such as cloud presence which might not allow evaluation during the rainy season. Once 
calibrated and validated, remote sensing data may be applied to similar lakes that have not 
been previously monitored (e.g. Hicks et al., 2013). This is particularly important for monitoring 
the resource and developing models and providing feedback for decision making and 
management. As an example, Servir (a collaborative project between NASA and USAID) is 
using remote sensing imagery to monitor development of algal blooms in lakes by relating 
remote sensing data (Landsat and ASTER data and hyperspectral imagery from EO-1) to 
chlorophyll measurements to follow development of algal blooms such as those in a 
Guatemalan lake (Servir Global, 2010; Servir Global, 2015).  

Water quality of freshwater ecosystems (including lakes and reservoirs) are indicators of 
ecosystem integrity and ecosystem goods and services provided by the ecosystems 
(Gardiner, 2007). Satellite data are capable of detecting various water quality variables of 
large lakes and reservoirs (with a few recent exceptions looking at smaller lakes) in addition 
to catchment land use which affects the water quality. Remote sensing provides a large 
database of data that can supplement and complement in-situ data and provide useful global 
comparisons and trend analysis because of the periodic collection of data and comparative 
spatial analysis. This is particularly important for monitoring both land and water resources 
and developing models that provide feedback to managers for decision-making.  

A deliverable on a completed WRC project (K5/2237) (see Slaughter et al., 2015) provided 
an overview of the various variables for modelling that can be extracted from remote sensing 
data. The present deliverable draws on that previous report to present some basic concepts. 

 

4.1.1 Some considerations when using remote sensing data 
Remote sensing data (energy wavelengths in the electromagnetic spectrum) are used for 

extracting information about resources (land, water, vegetation, coral reefs), people (urban), 
natural disasters (fire, floods) and for quantifying impacts and changes in these over space 
and time (e.g. ESRI, 2006; ESRI, 2008).  

The spectral, spatial and temporal resolutions of the remote sensed data are important 
considerations in the selection of the data for use. The spectral resolution includes the number 
and bandwidth of the channels of spectral wavelengths generated by the sensor. A higher 
number of channels of finer scale (narrow bandwidth) is better for distinction between different 
elements on Earth.  
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The spatial resolution is the dimensions on Earth that each pixel in the data can be related 
to. A rule of thumb that the Biodiversity Informatics Facility website 
(http://biodiversityinformatics.amnh.org) suggests is to select data with a spatial resolution that 
is a factor of ten smaller than the feature to be identified. Although the spatial resolution of the 
sensor is important in what is visible in an image, there are other factors that can affect whether 
a feature is visible or not. These include the amount of contrast between features next to each 
other (the more the contrast, the better the visibility), the variation in the landscape (greater 
variation might inhibit distinguishing between a feature and this background signal as 
compared to if the background is homogeneous) (Horning and DuBroff, 2004). 

The repeat interval or the temporal resolution defines how often the same area is imaged 
by the satellite. Depending on the project, there might be a need for a very frequent time series 
data (e.g. in the order of several days for flood mapping) or less frequent (as with land use 
change over a time period of years). It is not possible to implement high spectral, spatial and 
temporal resolution in one ideal sensor; thus, one needs to compromise based on the project 
requirements.  

Radiometric resolution (related to the number of digital number resolution which relates to 
the sensitivity of the sensor to the incoming radiation, and which affects the sharpness of the 
image; see http://www.crisp.nus.edu.sg/~research/tutorial/image.htm) is another aspect of 
remote sensed imagery. 

 

4.1.2 Satellites and sensors for water quality data 
Various satellites are currently available for gathering water quality information. Water 

quality variables that change/modify the reflected electromagnetic signals are the ones that 
can be derived from satellite data such as suspended sediments, algae and plants. The spatial 
resolutions of satellites vary widely, and not all of them are useful for small water bodies or 
reservoirs.  

By using satellite data, either a qualitative or quantitative estimation of water quality 
variables can be obtained. Qualitative estimations are relatively simple and involve visual 
assessment of images for presence and spatial extent of the variables of interest, e.g. hyacinth 
covering a lake. On the other hand, quantitative assessments are much more difficult to 
perform and require algorithms that draw on relationships between spectral signatures and 
actual on-the-ground measurements. Palmer et al. (2014) provide a summary of progress and 
challenges facing the scientific community interested in the use of remote sensing for 
monitoring and managing inland waters. Some of the challenges include the optical complexity 
of inland waters (because of independently varying water quality variables such as chlorophyll 
a and coloured dissolved organic matter), their small size, the large number of inland water 
bodies relative to the spatial and spectral resolution of the available data and limited 
coordinated research and funding for developing the science.  

Table 4.1 provides a summary of some of the main satellites from which chlorophyll a 
estimations or temporal trends have been determined. Some of the satellites provide ready-
to-use products which provide quantitative data on chlorophyll a, whereas others provide only 
spectral reflectance data which can be used for qualitative change / trend deriving and which 
can be further processed to calculate quantities using algorithms that are based on in-situ 
data. 

The Landsat family of satellites have been around since the early 1970s and they provide 
data that are freely available from various platforms including Earth Explorer 
(http://earthexplorer.usgs.gov), GloVis (http:// http://glovis.usgs.gov) and Landsat Look Viewer 
(http:// landsatlook.usgs.gov). Landsat data have a high spatial resolution (30 m for many 
bands) making them useful for small water bodies, but their low spectral resolution (wide 
bands) limits their use in assessing chlorophyll a content. In addition, the long dataset for 
Landsat makes it useful for determining long-term historical trends.  

http://earthexplorer.usgs.gov/
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MODIS (MODerate-resolution Imaging Spectroradiometer) is another sensor which is 
widely used because of its large number of high resolution spectral bands. But its low spatial 
resolution makes it primarily useful for larger water bodies.  

Two satellites that are no longer operating – SeaWiFS and MERIS – have been found to 
be useful for looking at past data trends, understanding the extremes and changes in values 
and their timing and developing algorithms to relate spectral signatures to regional 
measurements.  

Note that the data from different sensors can be available at different levels (NASA 
ARSET, 2015; NASA, 2011): 

• Level 0 – raw data 
• Level 1 – geolocated and calibrated 
• Level 2 – geophysical data derived from level 1, e.g. surface reflectances 
• Level 3 – composite level 2 data 
• Level 4 – model-derived data product 

With increasing level, the ease of use of data and comparison across time/space is 
simpler; however, products at higher levels are generally at a much coarser resolution than 
lower level data. For example, MODIS water quality products (level 3 data) are available at 
low spatial (4 km and 9 km) and temporal (8 day or monthly) resolution from Giovanni, while 
the original spectral data are at 250-1,000 m spatial resolution and are available every 1-2 
days.  

 

4.1.3 Use of satellite imagery for phytoplankton and water hyacinth 
Water absorbs a significant portion of electromagnetic radiation in the ultraviolet and 

infrared range; thus, the optical range of the spectrum has been used to detect various water 
quality variables of large lakes and reservoirs (e.g. Olmanson et al. (2011) estimated Secchi 
disk transparency and chlorophyll a from MERIS, MODIS and Landsat ETM+ data). 
Researchers have used satellite data for measuring and modelling water quality for more than 
30 years (e.g. Ritchie et al., 1976; Carpenter and Carpenter, 1983; Harrington et al., 1992) not 
just for understanding the trends, but for meeting requirements for legislation such as the 
Water Framework Directive of the European Commission (e.g. Bresciani et al., 2011). A 
comprehensive WRC report reviewing the use of remote sensing data for water resource 
management is expected to be released soon (Gibson et al., 2015).  

For the water quality of inland and near-coastal waters, Matthews (2011) provides an 
extremely useful and comprehensive review of research using remote sensing for estimating 
water quality variables including chlorophyll a, total suspended solids (TSS), turbidity, 
carbonaceous dissolved organic matter (CDOM) and phycocyanin. A more recent review on 
the use of remote sensing for lake research and monitoring is provided by Dörnhöfer and 
Oppelt (2016). Past work assessing phytoplankton biomass and eutrophication within 
reservoirs using remote sensing data has used chlorophyll a as an indicator. There have been 
some studies in this regard in southern Africa, e.g. Matthews et al. (2010), Chawira et al. 
(2013) and Matthews and Bernard (2013). These studies used MEdium Resolution Imaging 
Spectrometer (MERIS), GlobColour and MODerate resolution Imaging Spectrometer (MODIS) 
satellite products. While Chawira et al. (2013) found a strong correlation between measured 
chlorophyll a and satellite predicted results, the work done by Mathews et al. (2010) and 
Matthews and Bernard (2013) struggled to separate the effects of covariant water constituents 
from satellite readings. Matthews et al. (2012) developed an algorithm to separate the effects 
of cyanobacterial blooms, surface scum, floating vegetation and chlorophyll a from within 
MERIS data while Gitelson et al. (2008) developed algorithms to separate the effects of 
suspended sediment from MERIS and MODIS satellite data. Hyacinth growth has been 
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estimated using Landsat and SPOT imagery for a lake in Kenya (Onywere et al., 2012) and 
Lake Victoria (Albright et al., 2004). 

There are trade-offs to be made when selecting imagery for use. In general, finding 
imagery that has high spectral, high spatial and high temporal resolution is very difficult and 
thus, a compromise on which criteria are more essential for a specific project are necessary. 
For example, high spatial resolution satellites like Landsat provide data for the same location 
every 8-16 days, whereas MODIS data are available almost every 1-2 days, but these data 
have a much lower spatial resolution. Specific to water bodies, the effect of near shore areas 
on the water signal needs to be considered and thus, pixels with both land and water 
contribution are generally ignored in analyses. 
Phytoplankton 

Chlorophyll a is an indicator of phytoplankton biomass and can be detected because of 
the absorption of wavelengths between 0.44-0.56 μm and near 0.67 μm (Matthews, 2011; 
Dörnhöfer and Oppelt, 2016). Remote sensing has been used to determine chlorophyll a 
concentrations using algorithms for the upper waters in the oceans (e.g. those shown on 
http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/, accessed on 17 November 
2015). However, the use of remote sensing in shallower coastal waters is limited by 
interference by bottom reflection and/or turbidity (Carstensen et al., 2011). To estimate 
chlorophyll a in turbid waters, researchers have attempted to develop models to estimate the 
interactions (e.g. Gitelson et al., 2008). Chawira et al. (2013) used MERIS data for modelling 
chlorophyll a and phycocyanin (blue-green algae) concentrations of two eutrophic lakes in 
Zimbabwe. Their results indicated a strong correlation between measured and satellite 
predicted results, although a limited number of samples were used. 

Matthews et al. (2010) studied the use of MERIS for assessing cyanobacterial-dominated 
algal blooms for a small hypertrophic lake in South Africa, and found that separating the 
signals of the covariant water constituents (including TSS and CDOM) was problematic. A 
novel algorithm, called the maximum peak-height algorithm (MPH), has since been developed 
by Matthews et al. (2012) for detecting cyanobacterial blooms, surface scum, floating 
vegetation and chlorophyll a by detection of the dominant peak across the red and near-
infrared MERIS bands. The algorithms are applicable over a range of trophic states from 
oligotrophic/mesotrophic to eutrophic/hypertrophic waters. The development of these 
algorithms requires information on inherent optical properties of water constituents, which is 
what Matthews and Bernard (2013) derived for phytoplankton, gelbstoff and tripton (i.e. non-
living minerals and detritus) in three South African reservoirs with different phytoplankton 
assemblages and concentrations. This was an important first step for calibrating remote 
sensing data to ground measurements. The MPH algorithm has since been improved and 
published by Matthews and Odermatt (2015).  

Matthews assessed chlorophyll a values, cyanobacteria and surface scum area coverage 
for 50 large South African dams utilising MERIS data from 2002 to 2012 for his PhD thesis 
(2014) (Matthews and Bernard, 2015: Table 1). The values obtained from MERIS were 
compared with time series in situ measurements for six dams and were found to be correlated. 
The analysis of the 50 dams indicated that 62% are hypertrophic and 54% have presence of 
cyanobacterial scum. Matthews (2014), however, notes that high turbidity is an issue that 
complicates the evaluation conducted, particularly for dams with the highest chlorophyll a 
estimates.  
 
Water hyacinth 

Everitt et al. (1999) measured spectral signals from water hyacinth and hydrilla plants in 
the green (0.52-0.60 μm), red (0.63-0.69 μm) and near-infrared (0.76-0.90 μm) wavelengths 
and found that water hyacinth had higher near-infrared reflectance than water and hydrilla 
plants. Previous research by Everitt et al. (1986) noted that near infrared reflectance was 
strongly correlated with plant density.  
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Table 4.1 Summary information for some of the primary remote sensing data sources that 
are freely available for chlorophyll estimation (some only for research purposes). 
The last column indicates if a chlorophyll a concentration product is available 
(quantitative data) besides the spectral reflectances (qualitative data that require 
processing to extract quantitative information). 

Satellite Sensor Dates Spatial and 
temporal 
resolution  

Chlorophyll a 
concentration product 
and/or spectral 
reflectances 

Landsat  TM (Thematic 
Mapper), ETM+ 
(Enhanced Thematic 
Mapper), OLI 
(Operational Land 
Imaging) 

1982-
present 

30-80 m, Pan 15 
m, TIR 60-120 
m; 16-17 days 

Spectral reflectance 

Terra ASTER (Advanced 
Spaceborne Thermal 
Emission and 
Reflection 
Radiometer) 

2000-
present 

15-90 m; Daily Spectral reflectance 

Terra and 
Aqua  

MODIS (Moderate 
Resolution Imagine 
Spectroradiometer) 

2000-
present 

250-1000 m; 1-2 
days 

Spectral reflectance; 
Chlorophyll concentration 
product (available through 
Giovanni, Ocean Color 
Web) 

NPP (Nation 
Polar Orbiting 
Partnership) 

VIIRS (Visible 
Infrared Imaging 
Radiometer Suite) 

2011-
present 

375-750 m; 1-2 
observations a 
day 

Spectral reflectance; 
Chlorophyll concentration 
(available through Ocean 
Color Web) 

Envisat 
(ESA) 

MERIS (Medium-
spectral Resolution 
Imaging 
Spectrometer) 

2002-
2012 

300-100 0 m; 35 
days 

Spectral reflectance 
(available through Ocean 
Color Web) 

SeaStar SeaWiFS (Sea-
viewing Wide Field-
of-view Sensor) 

1997-
2010 

1.1 km; 1 day Spectral reflectance, 
Chlorophyll concentration 
(available through Giovanni, 
Ocean Color Web) 

 
Onywere et al. (2012) used the differences in spectral signals and spectral image analysis 

of remote sensed data to evaluate the extent of water hyacinth in Lake Naivasha, Kenya and 
the landuse activities in the catchment. The authors conducted a time series analysis using 
Landsat (TM, ETM for 1986 and 2000) and SPOT imagery (for 2007) to link the change in 
water quality to catchment activities. Using similar remote sensing data providers, Albright et 
al. (2004) used unsupervised image classification to assess the time series trend for water 
hyacinth in Lake Victoria. These authors also used radar sensor data and identified thresholds 
for water hyacinth detection in these images. More recent research has used supervised 
classification for delineating macrophyte growth (e.g. Hunter et al., 2010).  
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4.1.4 Visualising data 
There are a number of data visualisation platforms where data can be viewed without 

downloading. One such example is Ocean Color Web (e.g. 
http://oceancolor.gsfc.nasa.gov/cgi/l3) for viewing Level 3 products such as chlorophyll a 
derived from a number of sensors, although the primary focus is on providing data for oceans. 
An example of chlorophyll a concentration data from Ocean Color Web is shown in Figure 4.1 
below. Since the resolution of Level 3 data is generally coarse (e.g. 4 km and 9 km resolution 
for MODIS), these products have limited use for the majority of reservoirs and lakes which are 
small.  

Other visualisation platforms where data can be viewed and screened before downloading 
are LandsatLook Viewer (http:// landsatlook.usgs.gov) and Giovanni 
(http://giovanni.gsfc.nasa.gov/giovanni/). Visualising data for screening helps with assessing 
if there are issues such as cloud cover in the imagery from a specific date which would make 
the data unusable. An overview of various data products and access tools generated by NASA 
can be found through webinars at the following link (http://arset.gsfc.nasa.gov/airquality-
disasters-ecoforecasting-water-resources/webinars/introduction-nasa-earth-science-data; 
accessed 13 November 2015). 

Some imagery of dams is also available through Google Earth. This imagery can be useful 
for verifying the presence/absence of blooms, but there are disadvantages of this data. For 
example, Figure 4.2 shows the screen capture of Bridle Drift Dam on Buffalo River. The image 
shows overlap of different scenes collected by the satellite, which makes it harder to interpret 
the image. Also for this specific case, only one historical image is available for the dam for the 
year 2013 through Google Earth.  

 

4.1.5 Band combinations for multispectral analysis 
Visualising images using certain spectral band combinations can be helpful in highlighting 

and detecting particular objects. Specifically for water, the red, green, blue and near infrared 
range combinations are useful. Some algorithms have used the differential absorption of blue 
and green spectral wavelengths to identify low concentrations of chlorophyll a since blue 
wavelengths are absorbed more than green wavelengths which are reflected by algae (e.g. 
O’Reilly et al., 1998; http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6/, 
accessed on 17 November 2015; Werdell and Bailey, 2005). On the other hand, high 
concentrations of chlorophyll a can be better estimated using the ratio of NIR and red bands 
(e.g. Gitelson et al., 2008). Table 4.2 provides the wavelengths for the relevant bands for 
Landsat; these will be referred to under the qualitative analysis of reservoir chlorophyll a later 
in this chapter.  

 

4.1.6 Quantitative analysis of reservoir chlorophyll a using remote sensed 
imagery from MERIS data 

Quantitative assessment of chlorophyll a was conducted using the MERIS Lakes 
processor for eutrophic waters (Doerffer and Schiller, 2008) in BEAM version 5.0, which is an 
open-source visualising and processing package designed by Brockman Consult (available 
through http://www.brockmann-consult.de/cms/web/beam, accessed 4 October 2015). Note 
that MERIS data are available from mid-2002 to 2012. The data used in this chapter are for 
2002-2003, since the water quality model (presented in Chapter 2) runs until 2003, and this 
overlaps with Landsat 7 ETM+ data. 

The Lakes processor uses MERIS radiance data provided by the European Space 
Agency, which is atmospherically corrected followed by calculation of water leaving 
reflectances in addition to chlorophyll concentration. The processor results have been 
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validated for lakes in Finland, Spain, Germany and Africa with a training range for chlorophyll 
a of eutrophic lakes between 1 and 120 μg ℓ−1 (Koponen et al., 2008).  
 

 

 
Figure 4.1  Screencapture of chlorophyll a concentrations using data collected by the NPP 

VIIRS sensor from Ocean Color Web. The top panel shows thumbnails for 
different dates and the lower area shows the result for September 2015.  

 
Figure 4.2 Google Earth image of Bridle Drift Dam on 26 January 2015. 
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Table 4.2 Spectral bands for Landsat 7 and 8 sensors that are useful for water quality 
assessments (Source: USGS website 
http://landsat.usgs.gov/best_spectral_bands_to_use.php).  

 Landsat 7 ETM+ Landsat 8 OLI  
Resolution (m) Band Wavelength 

(μm) 
Band Wavelength (μm) 

Blue 1 0.45-0.52 2 0.45-0.51 30 

Green 2 0.52-0.60 3 0.53-0.59 30 

Red 3 0.63-0.69 4 0.64-0.67 30 

Near Infrared 
(NIR) 

4 0.77-0.90 5 0.85-0.88 30 

 
There were however issues with validating data for the two African lakes (Lake Victoria 

and Lake Manzalah) including limited validation data and overestimation for values > 10 μg ℓ−1. 
The results of the Lakes processor for the total reservoir surface (i.e. median of all the relevant 
pixel values) are compared with the water quality monitoring data provided by the Department 
of Water and Sanitation (previously known as the Department of Water Affairs), which are 
available through the National Eutrophication Monitoring Programme (NEMP) website 
(https://www.dwaf.gov.za/iwqs/eutrophication/NEMP/). The NEMP system defines four 
categories of water eutrophication based on chlorophyll a concentration ranges: 

• Oligotrophic: 0-10 μg ℓ−1 
• Mesotrophic: 10-20 μg ℓ−1 
• Eutrophic: 20-30 μg ℓ−1 
• Hypertrophic: >30 μg ℓ−1 

It must be noted that the NEMP database provides chlorophyll a data measured at a water 
quality gauge and it is not representative of the total reservoir surface; thus, this comparison 
has its limitations. 
Loskop Dam, Olifants River 

Loskop Dam is located in the upper catchment of the Olifants River (Figure 4.3). The 
Loskop Dam is generally regarded as the lower boundary of the upper Olifants catchment 
which originates from the east of Johannesburg (Heath et al., 2010). The Olifants River is 
generally regarded as being one of the most modified rivers in South Africa, as the river is 
extensively dammed and is additionally highly polluted (Balance et al., 2001; de Villiers and 
Mkwelo, 2009, Van Vuuren, 2009). Large quantities of water are extracted from the river for 
coal mining, petrochemical industries and diverse agriculture (Heath et al., 2010), and these 
activities additionally affect water quality, along with the various large urban centres such as 
Witbank and Middleburg, as well as smaller settlements which occur in the catchment (Heath 
et al., 2010). These impacts have resulted in various problematic water quality variables 
including acid mine drainage (AMD) and the associated high sulphate and metal 
concentrations, high nutrient concentrations from waste water treatment works (WWTWs) and 
agriculture and microbial contamination from incompletely-treated sewage and runoff from 
urban areas (van Vuuren, 2013). It is known that the water quality of Loskop Dam is 
problematic, as the Department of Water and Sanitation (DWS) historical monitoring data 
indicate that there is a clear increase in salt concentration in the dam, more specifically, 
sulphate concentrations. There have additionally been frequent reports of crocodile and fish 
kills in the dam (van Vuuren, 2009). The DWS historical monitoring data indicate that there 
are spikes of total dissolved solids (TDS) as high as 350 mg ℓ−1, with concentrations 
> 250 mg ℓ−1 approximately 50% of the time. There are additionally high spikes in nutrients, 
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with nitrates + nitrites as high as 3 mg ℓ−1, with concentrations > 0.5 mg ℓ−1 approximately 5% 
of the time, spikes in ammonium of up to 5.5 mg ℓ−1, and spikes in phosphate of up to 
0.6 mg ℓ−1 (Slaughter et al., 2015). 

The 10 year average of chlorophyll a values for Loskop Dam was 58.1 μg ℓ−1 (hypertrophic 
status) for 2002 to 2012 as estimated by Matthews and Bernard (2015). The authors also 
estimated the cyanobacterial area coverage to be 0.4% and the surface scum area coverage 
to be 0%. Overall, this dam scored 3 on the authors’ impact scale of 0 to 9 which incorporated 
these three measures of reservoir health. Looking at the calculations by the authors for the 
2003 period, as shown in Figure 4.4, the chlorophyll a values estimated range between 5 and 
30 μg ℓ−1. 

The NEMP website provides mean annual chlorophyll a for Loskop Dam for the year 2003 
to be 2.4 μg ℓ−1 and classifies it as an oligotrophic reservoir 
(https://www.dwaf.gov.za/iwqs/eutrophication/NEMP/nempdams.htm; accessed 11 
November 2015). The median chlorophyll a concentration at the Loskop Dam wall (gauge 
B3R002Q01) for the winter period (April 2002 to September 2002; value for April 2003 to 
September 2003 is not available) was higher than during the summer period (October 2002 to 
March 2003) (3.5 μg ℓ−1 versus 1.7 μg ℓ−1; also see Figure 4.4; 
https://www.dwaf.gov.za/iwqs/eutrophication/NEMP/report/NEMPyears.aspx). 

A time series of chlorophyll a variation in Loskop Dam was generated for November 2002 
(which is the earliest date for which MERIS data are available for this area) to November 2004 
using MERIS full resolution Level 1 data products downloaded from the European Space 
Agency website (http://merisfrs-merci-ds.eo.esa.int/merci) (see Table 4.3). The MERIS data 
were processed using the Lakes processor (some of the results are shown in Figure 4.5). The 
average chlorophyll a concentration for the surface of Loskop Dam increases in summer 
(Figure 4.6a), although the difference between summer and winter is not as distinct for 2003, 
similar to the pattern shown in Figure 4.4. Note that the standard deviation (from the pixel 
covering the reservoir) is extremely large (Figure 4.6b), i.e. chlorophyll a concentration varies 
hugely across the dam throughout the year. This temporal change in Loskop Dam chlorophyll 
a is similar to (although values are slightly lower) that calculated by Matthews and Bernard 
(2015) which is shown in Figure 4.4. 
 
Kwena Dam, Crocodile River 
Kwena Dam is located on the Crocodile River (Figure 4.7)  

The Crocodile River Catchment is an economically important catchment occurring in the 
province of Mpumalanga, and contributes to industry, agriculture and tourism (Deksissa et al., 
2004). Kwena Dam occurs within the upper catchment, which is within the dryer part of the 
catchment, with an annual rainfall of approximately 600 mm, and a predominately summer 
rainfall through convection thunderstorms (Deksissa et al., 2004). Generally, the upper 
catchment is dominated by Cambrian geology with an associated low salinity (< 65 mg ℓ−1). 
Agriculture in the upper region includes wheat and maize farming (Roux et al., 1994; Deksissa 
et al., 2004). The catchment as a whole is impacted by various pollution sources, including 
industrial and domestic sources of pollutants and runoff and return flow from irrigated 
agriculture and mining sites (DWAF, 1995). As can be observed from the DWS historical 
monitoring data, the salinity of Kwena Dam is relatively low, with total dissolved solids (TDS) 
generally below 120 mg ℓ−1. However, there are moderate spikes in nutrient concentrations, 
with nitrates + nitrites as high as 1 mg ℓ−1 and > 0.2 mg ℓ−1 approximately 40% of the time, 
ammonium spikes as high as 0.3 mg ℓ−1, and > 0.1 mg ℓ−1 approximately 5% of the time, and 
spikes of phosphate as high as 0.45 mg ℓ−1, and > 0.1 mg ℓ−1 approximately 2% of the time 
(see Slaughter et al., 2015). Therefore, there may be some potential for eutrophication in the 
dam. 
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Figure 4.3 Location of Loskop Dam on the Olifants River. 

 

 
Figure 4.4  Data for Loskop Dam (gauge B3R002Q01) extracted from the Department of 

Water Affairs’ National Eutrophication Monitoring Programme (NEMP) website: 
https://www.dwaf.gov.za/iwqs/eutrophication/NEMP/report/Chart_nemp_90462.
png; accessed on 22 October 2015. 
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Table 4.3 MERIS level 1 data for 2002-2004 downloaded for the area near Loskop and 
Kwena Dams. Dates for data download were selected due to the requirement of 
the imagery being primarily cloud free particularly above the dam. 

Date Scene ID 

27 Nov 2002 MER_FRS_1PPBCM20021127_072829_000000232011_00321_03882_0001 

03 Dec 2002 MER_FRS_1PPBCM20021203_073948_000000232011_00407_03968_0006 

22 Dec 2002 MER_FRS_1PPBCM20021222_074236_000000232012_00178_04240_0004 

25 Dec 2002 MER_FRS_1PPBCM20021225_074817_000000232012_00221_04283_0002 

01 Jan 2003 MER_FRS_1PPBCM20030101_072839_000000172012_00321_04383_0005 

04 Jan 2003 MER_FRS_1PPBCM20030104_073419_000000172012_00364_04426_0011 

07 Jan 2003 MER_FRS_1PPBCM20030107_073919_000000872012_00407_04469_0003 

20 Jan 2003 MER_FRS_1PPBCM20030120_073131_000000142013_00092_04655_0001 

26 Jan 2003 MER_FRS_1PPBCM20030126_074249_000000172013_00178_04741_0003 

05 Feb 2003 MER_FRS_1PPBCM20030205_072839_000000172013_00321_04884_0004 

02 Mar 2003 MER_FRS_1PPBCM20030302_074206_000001242014_00178_05242_0007 

31 Mar 2003 MER_FRS_1PPBCM20030331_073050_000001242015_00092_05657_0001 

25 Apr 2003 MER_FRS_1PPBCM20030425_074504_000001242015_00450_06015_0002 

12 Jun 2003 MER_FRS_1PPBCM20030612_073655_000001012017_00135_06702_0004 

14 Jul 2003 MER_FRS_1PPBCM20030714_073055_000001242018_00092_07160_0009 

02 Aug 2003 MER_FRS_1PPBCM20030802_073426_000000172018_00364_07432_0001 

21 Aug 2003 MER_FRS_1PPBCM20030821_073722_000000822019_00135_07704_0008 

24 Aug 2003 MER_FRS_1PPBCM20030824_074221_000001242019_00178_07747_0006 

03 Sep 2003 MER_FRS_1PPBCM20030903_072850_000000172019_00321_07890_0004 

12 Sep 2003 MER_FRS_1PPBCM20030912_074513_000001212019_00450_08019_0010 

25 Sep 2003 MER_FRS_1PPBCM20030925_073640_000001242020_00135_08205_0001 
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Table 4.3 (cont.) 

Date Scene ID 

01 Oct 2003 MER_FRS_1PPBCM20031001_074759_000001212020_00221_08291_0004 

10 Oct 2003 MER_FRS_1PPBCM20031024_072554_000000172021_00049_08620_0008 

08 Nov 2003 MER_FRS_1PPBCM20031108_075335_000001242021_00264_08835_0008 

21 Nov 2003 MER_FRS_1PPBCM20031121_074506_000000872021_00450_09021_0007 

13 Dec 2003 MER_FRS_1PPBCM20031213_075351_000001072022_00264_09336_0005 

30 Dec 2003 MER_FRS_1PPBCM20031230_072017_000000172023_00006_09579_0009 

02 Jan 2004 MER_FRS_1PPBCM20040102_072558_000000172023_00049_09622_0014 

08 Jan 2004 MER_FRS_1PPBCM20040108_073717_000000142023_00135_09708_0016 

14 Jan 2004 MER_FRS_1PPBCM20040114_074834_000000172023_00221_09794_0013 

27 Jan 2004 MER_FRS_1PPBCM20040127_074005_000000142023_00407_09980_0012 

03 Feb 2004 MER_FRS_1PPBCM20040203_072014_000000172024_00006_10080_0011 

18 Feb 2004 MER_FRS_1PPBCM20040218_074835_000000142024_00221_10295_0007 

22 Feb 2004 MER_FRS_1PPBCM20040222_072304_000000172024_00278_10352_0002 

02 Mar 2004 MER_FRS_1PPBCM20040302_074004_000000172024_00407_10481_0006 

09 Apr 2004 MER_FRS_1PPBCM20040409_074544_000000172025_00450_11025_0005 

19 Apr 2004 MER_FRS_1PPBCM20040419_073134_000000172026_00092_11168_0015 

25 Apr 2004 MER_FRS_1PPBCM20040425_074254_000000172026_00178_11254_0003 

05 May 2004 MER_FRS_1PPBCM20040505_072844_000000172026_00321_11397_0002 

24 May 2004 MER_FRS_1PPBCM20040524_073140_000000142027_00092_11669_0004 

02 Jun 2004 MER_FRS_1PPBCM20040602_074839_000000172027_00221_11798_0010 

12 Jun 2004 MER_FRS_1PPBCM20040612_073429_000000172027_00364_11941_0011 
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Table 4.3 (cont.) 

Date Scene ID 

01 Jul 2004 MER_FRS_1PPBCM20040701_073718_000000142028_00135_12213_0009 

23 Jul 2004 MER_FRS_1PPBCM20040723_074551_000000172028_00450_12528_0008 

08 Aug 2004 MER_FRS_1PPBCM20040808_074259_000000172029_00178_12757_0005 

15 Sep 2004 MER_FRS_1PPBCM20040915_074837_000000172030_00221_13301_0010 

17 Oct 2004 MER_FRS_1PPBCM20041017_074300_000000172031_00178_13759_0009 

18 Nov 2004 MER_FRS_1PPBCM20041118_073718_000000172032_00135_14217_0013 

 
The 10 year average of chlorophyll a values for Kwena Dam was lower than that of Loskop 

Dam at 30.2 μg ℓ−1 (just above the hypertrophic lower limit) for 2002 to 2012 (Matthews and 
Bernard, 2015). The cyanobacterial area coverage was estimated to be 1.1% and the surface 
scum area coverage as 0%. Overall, this dam scored 4 on the authors’ reservoir health impact 
scale of 0 to 9, which is higher than the score for Loskop Dam because of the higher 
cyanobacterial area coverage.  

Chlorophyll values for Kwena Dam are not listed on the NEMP website 
(https://www.dwaf.gov.za/iwqs/eutrophication/NEMP/nempdams.htm; accessed 11 
November 2015); thus, the MERIS results presented below cannot be compared with those 
values. 

A time series of chlorophyll a variation in Kwena Dam was generated for 2002-2004 using 
MERIS full resolution Level 1 data products downloaded from the European Space Agency 
website (http://merisfrs-merci-ds.eo.esa.int/merci). MERIS data for Kwena Dam were 
available in the same scenes from which Loskop Dam data were extracted (see Table 4.3). 
These data were processed using the Lakes processor (some of the resulting images are 
shown in Figure 4.8). The summarised average chlorophyll a concentration is high during 
summer 2004 for Kwena Dam, similar to Loskop Dam, and there is an unexpected peak in 
winter 2003 (Figure 4.9a). Note the relatively smaller standard deviation error bars compared 
to Loskop Dam, with a couple of exceptions in June and December (Figure 4.9b versus 4.6b). 
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Figure 4.5  Chlorophyll a concentration (μg ℓ-1) for Loskop Dam derived from MERIS data 
for using the MERIS Lakes processor in BEAM. 
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Figure 4.5 continued 
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Figure 4.6a  Temporal variation in average chlorophyll a concentration of Loskop Dam 

derived from MERIS data using the Lakes processor in BEAM. 

 
Figure 4.6b Temporal variation in average chlorophyll a concentration of Loskop Dam shown 

with standard deviation error bars. 
  



 
 

56 
 

 
Figure 4.7 Location of Kwena Dam on the Crocodile River. 

 
Figure 4.8  Chlorophyll a concentration (μg ℓ−1) for Kwena Dam derived from MERIS data 

using the MERIS Lakes processor in BEAM. 
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Figure 4.8 Continued 
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Figure 4.9a Temporal variation in average chlorophyll a concentration of Kwena Dam derived 

from MERIS data using the Lakes processor in BEAM. 

 
Figure 4.9b Temporal variation in average chlorophyll a concentration of Kwena Dam shown 

with standard deviation error bars derived from MERIS data. 
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Laing Dam, Buffalo River 
 
Laing Dam is located on the Buffalo River (Figure 4.10).  

The Buffalo River Catchment is situated on the east coast of South Africa in the Eastern 
Cape, with the estuary entering the Indian Ocean at the city of East London. The headwaters 
of the river are in the Amatole Mountains, after which the river flows in a south-easterly 
direction for a relatively short total length of 125 km through a catchment area of 1,276 km2 

before reaching the sea. Most runoff occurs within the upper catchment, with annual rainfall 
averaging 1,500-2,000 mm and 500-625 mm for the upper and middle catchment, 
respectively. There are two reservoirs in the upper catchment, the Maden and Rooikrants 
dams, resulting in very little flow being released to the middle catchment. Due to WWTW return 
flow, the flows in the river are increased through King Williams Town. Laing Dam is positioned 
in the middle Buffalo River Catchment just below King Williams Town. 

Although the water quality of the upper catchment is relatively unimpacted, water quality 
problems have been a continual challenge within the middle and lower catchment. The flow 
within the middle catchment is dominated by return flow from inefficiently managed WWTWs; 
therefore, high nutrient concentrations and eutrophication is problematic. The Laing Dam acts 
as a nutrient trap, and this problem is compounded by water being extracted for domestic use 
from the dam and released upstream as WWTW effluent, thereby creating a ‘closed loop’. 
Hyacinth (Eichhornia crassipes) blooms have been a continual problem in the dam (O’Keefe 
et al., 1996). The dam acts as a nutrient sink, and also results in an artificial decrease of water 
temperature of the water released downstream (O’Keefe et al., 1996). In addition to 
eutrophication problems, the Buffalo River Catchment is underlain by marine derived geology, 
and is therefore naturally saline (O’Keefe et al., 1996; River Health Programme, 2004).  

The DWS historical monitoring data indicate spikes in TDS of as much as 750 mg ℓ−1, with 
concentrations of > 330 mg ℓ−1 approximately 50% of the time. In regards to nutrients, spikes 
of nitrate + nitrite of up to 3 mg ℓ−1 occur, with concentrations of > 1 mg ℓ−1 approximately 50% 
of the time, spikes of ammonium of up to 1.6 1 mg ℓ−1, and spikes of phosphate of up to 
0.3 mg ℓ−1. 

The result of the Lakes processor for MERIS data for Laing Dam is shown in Figure 4.12. 
Note that the pixel size/resolution (260 m) is generally larger than the width of the dam, and 
due to the error generated by overlap of land and water areas for the pixels, quantitative 
analysis for Laing Dam was abandoned. 

 

4.1.7 Qualitative analysis of reservoir chlorophyll a using remote sensed 
imagery from Landsat 

Landsat satellites provide a long series of remote sensed imagery that is useful to 
qualitatively monitor change in reservoir water quality over time and space due to frequent 
repeated measurements. Landsat 7 and 8 surface reflectance data with no cloud cover in the 
area of interest was downloaded from the US Geological Survey's (USGS) Earth Resources 
Observation and Science (EROS) Data Center (using the EarthExplorer website; 
http://earthexplorer.usgs.gov/).  
 
Loskop Dam, Olifants River 

The ratio of Landsat 7 ETM+ surface reflectance bands 1 and 2 (blue and green 
wavelengths) was used to generate maps of Loskop Dam using ArcMap 10.3 (Figures 4.13 
and 4.14). The Scan Line Corrector (SLC) in the ETM+ instrument resulted in signal drop 
banding visible in the images after May 2003. 
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Figure 4.10 Location of Laing Dam on the Buffalo River. 

 

 
Figure 4.11  Data for Laing Dam (gauge R2R001Q01) extracted from the Department of 

Water Affairs’ National Eutrophication Monitoring Programme (NEMP) website: 
https://www.dwaf.gov.za/iwqs/eutrophication/NEMP/report/Chart_nemp_10252
3.png; accessed on 11 January 2016. 
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Figure 4.12 Chlorophyll a concentration (μg ℓ−1) for Laing Dam derived from MERIS data for 

2 March 2003 using the MERIS Lakes processor in BEAM. 
 

An example of such a result is shown for 22 August 2003, but other images after this date 
are not shown. Note that low values are coded as shades of green (present towards the edges 
of the dam) relative to purple pixels in the centre of the reservoir. They are symbolised thus 
since algae absorbs blue and reflects green bandwidth, it is expected that where algae is 
present, the values of blue/green ratio will be lower. However, one cannot assign chlorophyll 
a values and this is a qualitative assessment since Landsat bands are relatively broad in the 
bandwidth that they cover and narrow bandwidth is recommended for extracting water quality 
signatures. Comparison of these results with those obtained from the Lakes processor 
(Figure 4.5) shows that there is general correspondence in the spatial variation for 2003 
(Figure 4.14). The images in Figures 4.13 and 4.14 have been symbolised over the same 
range, and thus in terms of temporal trend, a worsening of water quality in the centre of the 
reservoir can be seen with the change in colour from dark blue to blue-green pixels between 
January and March 2003 (similar to Figure 4.5). The value of these Landsat images is primarily 
for assessing the coverage of algae as can be seen in the lower section of the western side 
of Loskop Dam in Figure 4.15.  
 
Kwena Dam, Crocodile River 

As above for Loskop Dam, the ratio of Landsat 7 ETM+ surface reflectance bands 1 and 
2 (blue and green wavelengths) was used to generate maps of Kwena Dam using ArcMap 
10.3 (Figures 4.16 and 4.17). The same Landsat scenes as those for Loskop Dam (listed in 
Table 4.4) were used since the scenes were large enough to cover both the dams. The 
imagery for 16 January 2002 had clouds over Kwena Dam and was not analysed. The images 
have been symbolised over the same data range to allow comparison.  
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Figure 4.13 Ratio of blue and green wavelengths (bands 1 and 2; mutlitplied by 100) for 

Loskop Dam derived from Landsat 7 surface reflectance data for January to 
October 2002.  

 
The ratio of blue to green bands shows the development of algal growth in the middle and 

end of 2002 and 2003, comparable to the pattern seen using MERIS data (Figure 4.8). 
 
Laing Dam, Buffalo River 

To conduct a qualitative analysis using Landsat analysis which can be in some manner 
verified, available Google Earth imagery without cloud cover was assessed for the area around 
Laing Dam to assess when hyacinth growth or surface scum is present. 
 
 
 
 



 
 

63 
 

 
 

Figure 4.14 Ratio of blue and green wavelengths (bands 1 and 2; mutlitplied by 100) for 
Loskop Dam derived from Landsat 7 surface reflectance data for January to 
August 2003. Due to the failure of the SLC in the ETM+ instrument, images after 
May 2003 show signal drop banding, an example of which is shown for 22 August 
2003. 

 
Three Google Earth images of the Laing Dam area with visible growth were chosen for 

2013 and 2014. Landsat 8 data closest to the 2013 and 2014 dates (shown in Table 4.5) were 
downloaded to assess which band ratios can better distinguish the presence of hyacinth or 
surface scum. As noted previously in this chapter, water hyacinth reflects higher amount of 
near infrared wavelengths compared to water. Two band ratios were assessed for their 
performance: blue to green ratio (band 2 / band 3 for Landsat 8) which has been used above 
to identify presence of algae and NIR to red (band 5 / band 4 for Landsat 8) since NIR 
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wavelengths are expected to be affected by hyacinth. The results are shown in Figures 4.18 
to 4.23.  

 
Figure 4.15  Detail of western section of Loskop Dam showing the variation in algal 

coverage from 16 January 2002 to 24 march 2003 (surface reflectance data 
derived from Landsat 7 ETM+ as noted in the legend for Figure 4.13). 

 
The Landsat results are symbolised based on the expected changes in the band ratios 

over the same data range. The presence of algae is expected to result in lower blue/green 
ratio values, and hyacinth growth is expected to increase NIR/red ratio because of greater 
reflection of NIR signal. 
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Table 4.4 Imagery downloaded from Landsat 7 satellite for area near Loskop Dam for 
qualitative assessment of chlorophyll a from the US Geological Survey's (USGS) 
Earth Resources Observation and Science (EROS) Data Center. Dates for data 
download were selected due to the requirement of the imagery being primarily 
cloud free. 

Date of Landsat imagery Scene ID 

16 January 2002 LE71690782002016SGS01 
21 March 2002 LE71690782002080SGS00 
06 April 2002 LE71690782002096JSA00 
22 April 2002 LE71690782002112JSA00 
08 May 2002 LE71690782002128JSA00 
09 June 2002 LE71690782002160EDC00 
11 July 2002 LE71690782002192JSA00 
28 August 2002 LE71690782002240JSA00 
13 September 2002 LE71690782002256EDC00 
15 October 2002 LE71690782002288JSA00 
03 January 2003 LE71690782003003SGS00 
19 January 2003 LE71690782003019SGS00 
04 February 2003 LE71690782003035SGS00 
24 March 2003 LE71690782003083JSA00 
09 April 2003 LE71690782003099SGS00 
22 August 2003 LE71690782003243ASN01 

 
 
Table 4.5 Landsat 8 OLI/TIRS Land Surface Reflectances downloaded from USGS website 

for area near Buffalo River, Eastern Cape for assessment of water quality. 

Date of Google Earth image Date of Landsat imagery Scene ID 

20 August 2013 18 August 2013 LC81690832013230LGN00 
31 March 2014 21 March 2014 LC81700832014080LGN00 
20 July 2014 20 July 2014 LC81690832014201LGN00 

 
Comparison of Landsat band ratios with Google Earth imagery suggests that the NIR to 

red band ratio performs better than the blue to green ratio (see Figures 4.18 to 4.23) in 
identifying areas with high growth in the north (in all three images) and the east side (August 
2013 and July 2014) of the dam. Thus, for the time series imagery for 2002 (see below), only 
the NIR to red band ratio is provided and inferences about hyacinth growth are drawn from it. 
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Figure 4.16  Ratio of blue and green wavelengths (bands 1 and 2; mutlitplied by 100) for 

Kwena Dam derived from Landsat 7 surface reflectance data for 2002. 
 
 

The ratio of Landsat 7 ETM+ surface reflectance bands 4 and 3 (NIR to red wavelengths) 
was used to generate a time series of changes in Laing Dam water quality during 2002. The 
six surface reflectance data products that were used are shown in Table 4.6 and the 
resulting band ratio (Figure 4.24) shows a high value for the north of the dam in 
March/April that reduces slightly over the rest of the year. For the east side of the dam, 
the highest band ratio value is in June 2002.  
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Figure 4.17 Ratio of blue and green wavelengths (bands 1 and 2; mutlitplied by 100) for 

Kwena Dam derived from Landsat 7 surface reflectance data for January to April 
2003. Due to the failure of the SLC in the ETM+ instrument, images after May 
2003 show signal drop banding and are therefore not shown. 
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Figure 4.18 Google Earth images of Laing Dam for 20 August 2013 with bottom images 

showing detailed views. 

  
Figure 4.19 Landsat 8 surface relfectance band ratio (mutlitplied by 100) results for 18 August 

2013: blue to green (left) and NIR to red (right image). 
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Figure 4.20 Google Earth imagery for Laing Dam for 31 March 2014 with bottom images 

showing detailed views. 

    
Figure 4.21 Landsat 8 surface relfectance band ratio (mutlitplied by 100) results for 21 March 

2014: blue to green (left) and NIR to red (right image). 
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Figure 4.22 Google Earth imagery for Laing Dam for 20 July 2014 with bottom images 

showing detailed views. 

  
Figure 4.23 Landsat 8 surface relfectance band ratio (mutlitplied by 100) results for 20 July 

2014: blue to green (left) and NIR to red (right image). 
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Table 4.6  Landsat 7 ETM Land Surface Reflectance downloaded from USGS website for 
area near Buffalo River, Eastern Cape for assessment of water quality. 

 
Date of Landsat imagery Scene ID 

05 March 2002 LE71690832002064SGS00 
22 April 2002 LE71690832002112SGS00 
09 June 2002 LE71690832002160JSA00 
27 July 2002 LE71690832002208JSA00 
28 August 2002 LE71690832002240JSA00 
31 October 2002 LE71690832002304SGS00 

 
 

4.1.8 Discussion 
The use of satellite imagery for gathering environmental data (both temporal and spatial) 

is a growing field of research that is expected to provide greater understanding of temporal 
changes and spatial comparisons to better manage the water resources for the future when 
water is expected to be even more limited in availability (both quantity and quality).  

The pros and cons of remote sensing data for water quality monitoring need to be 
considered when using this information. Some of the advantages include provision of data in 
areas with no information, periodically available data which is for the full surface of the lake or 
dam instead of point measurements (as seen with the MERIS results), and the possibility of 
comparison of dams in a region. However, the available spatial and temporal resolution of the 
imagery itself can be limiting in its application to some waters, e.g. small reservoirs (as was 
the case for the use of MERIS for Laing Dam). Additionally, the presence of clouds, edge 
effects near land / water boundaries and limitations of algorithms for atmospheric correction 
can be issues when using remote sensing data. 

This report has shown the use of remote sensing data from MERIS and Landsat satellites 
from 2002 and 2003 to assess chlorophyll levels and algal presence, including temporal 
variation, for three reservoirs in South Africa. MERIS data were processed through an ESA 
algorithm to provide a quantitative evaluation of two reservoirs (Loskop and Kwena) that were 
large enough relative to the MERIS pixel resolution. Although the MERIS satellite is no longer 
functioning, there are upcoming sensors including Sentinel-3 that are expected to provide 
similar data for water quality evaluation in the near future. Landsat data on the other hand is 
currently available and despite its broad bandwidth, it provides the possibility of assessing 
spatial changes over time. The smaller pixel resolution of Landsat, compared to MERIS, also 
makes its data useful for small reservoirs like Laing Dam. 

Monitoring networks for reservoirs in South Africa at present are primarily based on 
ground data. While this practice needs to continue, Dörnhöfer and Oppelt (2016) suggest that 
water quality monitoring networks need to consider integrating remote sensing data as part of 
their operation. Recent research by Matthews and Bernard (2015) clearly indicated through 
their analysis of 50 large South African reservoirs that satellite imagery can be useful for 
assessing the status of chlorophyll a, cyanobacterial blooms and cyanobacterial surface scum. 
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Figure 4.24  Ratio of NIR to red wavelengths (bands 4 and 3; mutlitplied by 100) for Laing 
Dam derived from Landsat 7 surface reflectance data for March to October 
2002. 

 

4.2 Validation of simulations of primary production using WQSAM 
within the case study catchments 

4.2.1 Introduction 
The Water Quality Systems Assessment Model (WQSAM) is a water quality decision 

support system designed specifically for use within water quality management in South Africa. 
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In that regard, the model development has been guided by the principle of requisite simplicity 
to keep model data requirements at a minimum. More information on the model development 
is available within Slaughter et al. (2015a). The model takes as input flow data generated by 
a routinely-used systems model, either the Water Resources Modelling Platform (WReMP; 
Mallory et al., 2011) or the Water Resources Yield Model (WRYM).  

WQSAM originally concentrated on modelling nutrients and salinity (Slaughter et al., 
2015), and has recently been updated to additionally model sulphates as an indication of acid 
mine drainage, as well as microbial water quality (see Deliverable 2 of the current WRC 
project) (Slaughter, 2017). In regards to the modelling of nutrients, the model has incorporated 
various processes affecting nutrients, which have been adopted and simplified from other 
more established models, such as the CE-QUAL-W2 model (Cole and Wells, 2008). These 
include nutrient speciation, organic matter decomposition and the uptake of nutrients by 
aquatic flora, which are all processes that are regulated by water temperature. WQSAM has 
adopted the algal growth processes from the CE-QUAL-W2 model, except that WQSAM 
currently clumps all algae into one group, whereas CE-QUAL-W2 adopts a more sophisticated 
approach. WQSAM has additionally specifically focussed on modelling hyacinth, as this 
floating invasive macrophyte is regarded as a huge water quality problem in reservoirs in 
South Africa, with considerable impacts within the Crocodile River and Buffalo River 
catchments (Deksissa et al., 2004; O’Keefe et al., 1996). WQSAM has adopted the process 
for simulating aquatic macrophyte growth from the CE-QUAL-W2 model, with adaptations 
regarding the assumption of predominantly floating plants and the uptake of both 
ammonia/ammonium and nitrate + nitrite in regards to nitrogen species.  

Past water quality studies using WQSAM have modelled historical water quality as well as 
future scenarios, with calibration of the model performed against Department of Water and 
Sanitation (DWS) historical monitoring data. These data are generally restricted to 
measurements of nutrients and salinity. To obtain simulated nutrient concentrations, WQSAM 
was required to model algal and hyacinth growth. Although the processes adopted within 
WQSAM for growth of aquatic flora are based on an established model and best science, the 
simulations of algal and hyacinth growth have not been validated against observed data, 
mainly because these data in terms of traditional historical monitoring data do not exist. 
However, the validation of these processes is imperative as there is a danger of equifinality 
within the WQSAM model if the model is producing correct historical simulations of nutrients, 
but using incorrect processes. This would result in incorrect simulations when the model is 
applied to future scenario modelling.  

The availability of remote sensing data provides the opportunity to validate the processes 
for algal and hyacinth growth used within WQSAM, even if merely at a qualitative level, but 
hopefully at a quantitative level as well. 

 

4.2.2 Simulations of primary production within study reservoirs 
Loskop Dam 

Loskop Dam forms the boundary of the upper Olifants River Catchment. Figure B2 shows 
the quaternary catchments and major dams of the upper Olifants River Catchment. Figure B1 
shows the systems diagram structure of the upper Olifants River Catchment.  

As can be seen from Figure B2, the Loskop Dam occurs at the lower end of the upper 
catchment; therefore there are many catchments above the dam that would affect the water 
quality of the dam. The modelling strategy would therefore require that the model simulations 
be calibrated against observed data for all catchments above the dam before the dam water 
quality can be simulated. However, water quality simulations such as salinity and nutrients 
have been reported for this catchment in a previous report (Slaughter et al., 2015), and the 
current report will therefore only report on simulations of primary production within the studied 
reservoir.  
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Figure 4.25 shows the seasonal distribution of simulate algae within the Loskop Dam 
within the calibrated application of the WQSAM model. The simulations show a max algae wet 
weight biomass of approximately 10 mg ℓ−1 which occurs over summer, and a minimum 
biomass of approximately 1 mg ℓ−1 that occurs around august. The results show a strong 
seasonal trend. 

Figure 4.26 shows the observed versus simulated water temperature in the reservoir, as 
water temperature drives the rate of algal growth. It is evident that the simulated temperatures, 
although in the correct range, are not in sync with the seasonal trend of the observed water 
temperature. 
 
Kwena Dam 

Figure B3 shows the location of quaternary catchments, rivers and DWS gauging stations 
within the Crocodile River Catchment. The Kwena Dam is located within the upper reaches, 
and can be observed within the top left of Figure B3.  

Figure B4 shows the systems diagram for the upper Crocodile River Catchment. Kwena 
Dam is evident at approximately the middle of this part of the catchment.  

Figure 4.27 shows the seasonal distribution of simulated algae for this dam, as generated 
by WQSAM. The results indicate a noticeable seasonal algal biomass trend, with a minimum 
algal biomass over August. The algal biomass for this reservoir is evidently lower than that for 
the Loskop Dam, with a maximum of approximately 5 mg ℓ−1 obtained. 

There were no observed water temperature data available to compare to simulated water 
temperature (Figure 4.28). Evident within the simulations of water temperature was a strong 
seasonal trend with a maximum during summer and a minimum during winter. 
 
Laing Dam 

Laing Dam occurs within the middle catchment of the Buffalo River. Figure B4 shows the 
quaternary catchments, dams and DWS flow gauges.  

Figure B4 shows the systems diagram for the catchment. 
Figure 4.29 shows the seasonal distribution of hyacinth wet weight biomass within Laing 

Dam as simulated by WQSAM. The model shows a strong seasonal trend within the hyacinth 
biomass with a maximum of approximately 3 kg m−2 over January and March/April, and a 
minimum of 2.4 kg m−2 over October. Evident is that hyacinth growth appears to persist 
throughout the year. 

Figure 4.30 shows the seasonal distribution of algal wet weight biomass within Laing Dam 
as simulated by WQSAM. As with the simulations of hyacinth, the seasonal trend is slightly 
different from that simulated within the Kwena and Loskop Dams, with a peak in March/April 
of approximately 3.5 mg ℓ−1 and a minimum of approximately 0.5 mg ℓ−1 during October. 

Figure 4.31 shows the monthly average water temperature simulation by WQSAM along 
with the observed data within Laing Dam. 
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Figure 4.25  Monthly average (seasonal) algae simulation for Loskop Dam on the Olifants 
River from 1923 to 2003 

 

 
Figure 4.26  Monthly average (seasonal) water temperature simulation for Loskop Dam on 

the Olifants River from 1923 to 2003 
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Figure 4.27  Monthly average (seasonal) algae simulation for Kwena Dam on the Crocodile 

River from 1955 to 2003 

 
Figure 4.28  Monthly average (seasonal) water temperature simulation for Kwena Dam on the 

Crocodile River from 1955 to 2003 
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Figure 4.29 Monthly average (seasonal) hyacinth simulation for Laing Dam on the Buffalo 

River from 1920 to 2003 
 

 
Figure 4.30 Monthly average (seasonal) algae simulation for Laing Dam on the Buffalo River 

from 1920 to 2003 
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Figure 4.31 Monthly average (seasonal) water temperature simulation for Laing Dam on the 

Buffalo River from 1920 to 2003 
 

4.2.3 Validation of simulations of primary production by WQSAM using 
remote sensing estimates of chlorophyll a 

Introduction 
WQSAM simulates algal biomass as a wet weight mass. The model assigns a nitrogen 

and phosphorus content to algae as a proportion of wet weight, commonly around 10% for 
nitrogen and 7% for phosphorus. In this way, decomposition of 1 g of algae will release 0.1 g 
of nitrogen and 0.07 g of phosphorus. Likewise, an increase in the biomass of algae due to 
growth will capture the same values of these nutrients. The model allows users to change 
these values. Within WQSAM, organic sediment as well as dissolved and particulate organic 
matter resulting from algal death and respiration contains the same proportions of nitrogen 
and phosphorus, to ensure mass-balance within the model. Although there are typically no 
observed data for algal biomass available, the calibration process within WQSAM will typically 
calibrate simulated values of nitrate +nitrite, ammonium and phosphate against observed 
data. Simulations of algal growth therefore are part of the process to obtain model simulations 
of the aforementioned nutrients that are within the same range as the observed nutrient data. 
It could be argued therefore, that the model can simulate a reasonable estimate of algal 
biomass, providing that the nitrogen and phosphorus composition of algae used in the model 
are sensible, and that the algal processes simulated in the model are reasonable.  

One approach of validating the simulations of algal growth within WQSAM could be to 
determine the relationship between algal biomass in wet weight, and the associated 
chlorophyll a (chl-a) concentrations in water bodies. In this way, model simulations of algal 
biomass could be converted to chl-a concentrations and compared to remote sensing 
estimates of chl-a. This relationship has in fact been of interest in past limnology and 
oceanography studies, as estimates of algal biomass are very useful within ecological studies. 
It is however evident that this relationship is by no means constant or easy to determine, and 
varies according to trophic status of the lake/impoundment, season, the taxonomic 
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composition of algae within the community and the size frequency distribution of algal cells 
(Felip and Catalan, 2000; Kasprzak et al., 2008). Kasprzak et al. (2008) noted that chl-a 
content per unit biomass decreases as standing stocks increase, and using the literature, 
determined that the proportion of chl-a within the wet weight biomass of algae within the range 
of 0.1-50 g m−3 ranges from 2.5% to 0.18%. Although this relationship is associated with many 
large uncertainties, it does at least provide a way in which the simulations of algal biomass by 
WQSAM can be validated within a very general way: if the simulations of algal biomass 
converted to chl-a fall within the same general range as the values of chl-a determined through 
the remote sensing products, we can at least assert that WQSAM provides reasonably 
sensible estimates of algal growth processes.  
Approach used for validating simulations of algae within WQSAM 

The values of mean chl-a concentrations determined through the BEAM remote sensing 
product for the period 2004 were averaged into a seasonal distribution for the Loskop and the 
Kwena dams, using the results given earlier in this chapter (see Figures 4.6 and 4.9). The year 
2004 was used as the data associated with the previous years (2002 and 2003) contained 
uncertainties associated with the quality of the data. Using the relationship by Kasprzak et al. 
(2008), the seasonal distribution of algal biomass as simulated by WQSAM was converted to 
estimates of chl-a within an uncertainty band, with the lower estimate using the 0.18% value 
and the upper estimate using the 2.5% value. The entire data period of simulations by WQSAM 
was used in this process (1920-2003 for the Laing and Loskop dams and 1954-2003 for the 
Kwena Dam), as the simulations by WQSAM do not extend into 2004, and we decided 
compare the overall trend of algal simulation in WQSAM with the remote sensing results from 
2004. By plotting the BEAM estimate of seasonal distribution of chl-a on the same graph as 
the WQSAM estimate of algal biomass converted to an uncertainty band of chlorophyll-a 
concentration, it can at least be judged whether WQSAM is simulating algal biomass within 
the correct range.  
Results for the Loskop and Kwena dams 

Figure 3.32 is taken from Matthews (2014), with the top graph showing a time series of 
chl-a within the Loskop Dam as estimated through the BEAM product for the years 2003-2012. 
It is evident that a strong seasonal trend is present in the data from approximately 2008-2012, 
whereas prior to this, the seasonal trend is less pronounced. 

Figure 4.33 shows the results of the analysis for Loskop Dam. From the graph it is evident 
that the BEAM measures of chl-a fall within the uncertainty band of chl-a concentrations 
produced by converting simulations of algal biomass produced by WQSAM into chl-a, although 
the BEAM measures are positioned near the chl-a minimum generated by WQSAM. It is 
additionally evident that the chl-a range obtained from WQSAM shows a much more 
pronounced seasonal distribution as compared to the BEAM estimates, which are relatively 
constant throughout the season. The relatively drastic drop in algal biomass as simulated by 
WQSAM over the winter season results in a very short period in which the BEAM measures 
of chl-a fall outside of the band of chl-a simulated by WQSAM. 

Figure 4.34 shows the results of the analysis for Kwena Dam. It is first of all evident that 
algal biomass and corresponding chl-a concentrations are lower in this dam as compared to 
the Loskop Dam. The remote sensing estimates of chl-a by BEAM once again fall within the 
uncertainty band of chl-a produced by WQSAM by converting simulations of algal biomass 
into chl-a concentrations. Similar to the case of the Loskop Dam, the season trend of chl-a 
produced by WQSAM is much more pronounced as compared to that by the BEAM measures, 
with a sharp drop in chl-a over winter as generated by WQSAM not replicated by the BEAM 
measures. 
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Figure 4.32 Figure 2 from Matthews (2014). Only the top graph is of relevance to this chapter. 

 
Figure 4.33  Seasonal distribution of chl-a within Loskop Dam. Solid line – chl-a for 2004 as 

measured by the BEAM remote sensing technology; grey band – estimates of 
chl-a by converting simulations of the seasonal distribution of algal biomass by 
the Water Quality Systems Assessment Model (WQSAM) for the years 1920-
2003 to estimates of chl-a concentration using the relationships by Kasprzak et 
al. (2008), with the lower bounds equating to 0.18% chl-a: algal biomass and the 
upper bounds equating to 2.5% chl-a: algal biomass. 
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Figure 4.34  Seasonal distribution of chl-a within Kwena Dam. Solid line – chl-a for 2004 as 

measured by the BEAM remote sensing technology; grey band – simulations of 
chl-a by converting estimates of the seasonal distribution of algal biomass by the 
Water Quality Systems Assessment Model (WQSAM) for the years 1954-2003 
to estimates of chl-a concentration using the relationships by Kasprzak et al. 
(2008) with the lower bounds equating to 0.18% chl-a: algal biomass and the 
upper bounds equating to 2.5% chl-a: algal biomass. 

Discussion of the results for the Loskop and Kwena dams 
The results show that WQSAM is producing simulations of algal biomass that are within 

the correct range for the equivalent measures of chl-a measured by the BEAM remote sensing 
product. However, WQSAM estimates of algal biomass show a much more pronounced 
seasonal signature as compared to the remote sensing estimates of chl-a. The estimates of 
chl-a for Loskop Dam using the BEAM product do however show a strong seasonal trend that 
is more similar to the results of WQSAM from approximately 2008, and it can only be surmised 
that the remote sensing data prior to 2008 did not allow the seasonal trend to be distinguished.  

If the overall strategy of WQSAM is considered, the results obtained within this analysis 
are in fact reasonable. WQSAM aims to adhere to the principle of requisite simplicity. This is 
because WQSAM is designed for use within water quality management for South African water 
resources, for which there are typically very little observed data available. WQSAM has 
adopted the strategy of modelling the water quality processes that explain the majority of the 
variation of water quality. The model also aims to simulate the frequency distribution of water 
quality (which can be related to the risk of exceedance by water resource managers), rather 
that accurate time series results of water quality. The various water quality processes adopted 
within WQSAM are therefore relatively simplified as compared to those of more complex water 
quality models, which could arguably be motivated as necessary so as to use the available 
observed water quality data, to limit the complexity of the model and the number of 
parameters, and to avoid equifinality.  

In relation to the simulation of algal and hyacinth processes, there are various 
simplifications within the WQSAM model that are of relevance. First of all, WQSAM simulates 
all algal taxonomic groups as one generic group, so as to limit the number of parameters in 
the model as well as the complexity of the model. If is fairly obvious that this simplification is 
a trade-off on some of the model accuracy. It is generally accepted that different taxonomic 
groups of algae will show varying growth processes, different nutrient requirements for growth, 
and different proportions of chl-a. Some of the processes that may differ between algal 
taxonomic groups that can be directly related to parameters controlling processes modelled 
in WQSAM include:  

1. Parameters specifying the proportions of nitrogen and phosphorus within algal 
biomass. 
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2. The temperature parameters related to algal growth: the minimum, maximum and 
optimal temperatures for growth (see Slaughter et al., 2015a). 

3. The parameters directly related to growth: the respiration, growth and mortality rates. 
4. The parameters related to algal size, such as the algal settling rate. 
5. The parameters related to nutrient uptake, such as the algal ammonium preference 

rate (some algae absorb ammonium in preference to nitrate/nitrite). 
 

The other major simplification of WQSAM that is of relevance to algal growth simulations 
is that stratification of reservoirs is not simulated within WQSAM. This means that some of the 
more complex associations between water temperature and nutrient turnover within reservoirs 
associated with the breakdown of stratification are not considered within WQSAM. Instead, 
WQSAM models reservoirs as completely stirred tank reactors (CSTRs), and water 
temperature is modelled according to a simple multiple linear regression relationship with air 
temperature (see Slaughter et al., 2015). The effect of complex stratification can in fact be 
seen in the comparison of model simulated water temperatures with observed water 
temperatures, for example for Laing Dam, where the observed data appear to show a spike 
in water temperature during winter, possibly related to reservoir turnover with the breakdown 
of stratification. The observed seasonal distribution of water temperature in Laing Dam also 
shows a temperature minimum that is not in step with that of the simulated water temperature, 
occurring approximately three months later than that of the simulated water temperature. This 
discrepancy between the model and observed data could affect the growth processes of algae, 
with the model algal minimum (associated with water temperature) slightly out of sync with 
that of the actual algal growth. Reservoir turnover may also have pronounced effects on algal 
growth, with reservoir turnover causing a breakdown of stratification, which may introduce 
bottom nutrients into the surface layers which may be beneficial to algal growth, whereas this 
may be disadvantageous for heavy algae which may sink.  

Although the WQSAM model adopts various simplifications that may affect model 
accuracy within the simulations of algal biomass, the relationship between algal biomass and 
chl-a is also variable and uncertain, as mentioned previously, and depends on the trophic 
status of the lake/impoundment, the season, the taxonomic composition of the algal 
community and the size frequency distribution of the algal cells (Felip and Catalan, 2000; 
Kasprzak et al., 2008). In addition, it has also been noted that the chl-a content per unit 
biomass of algae decreases as algal biomass increases. There are also uncertainties related 
to the remote sensing measures of chl-a. The analysis adopted in this chapter show that the 
BEAM remote sensing measures of chl-a show very little seasonal effect on chl-a as compared 
to the WQSAM estimates of algal biomass, with the model showing a very pronounced 
summer peak and a winter minimum, whereas the chl-a measures by BEAM are relatively 
constant. It generally makes sense that the algal maximum would occur during summer, given 
the generally accepted relationship between water temperature and algal growth. Therefore, 
one could assume that the seasonal pattern of algal growth is reasonable. The fact that the 
remote sensing measures of chl-a do not pick up a similar seasonal distribution may be due 
to inaccuracies in the remote sensing measures, or it could be due to the variable relationship 
between algal biomass and chl-a mentioned earlier. The measurement of chl-a by Matthews 
(2014) using the BEAM product do in fact show a strong seasonal trend from approximately 
2008. 
 
Validation of simulations of hyacinth growth by WQSAM using remote sensing 
estimates of hyacinth coverage 

As mentioned in previously in this chapter, Landsat 8 data closest to 2013 and 2014 were 
compared to Google Earth images of Laing Dam so as to assess which band ratios in 
Landsat 8 could better distinguish the presence of hyacinth. It was found that the NIR to red 
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band ratio performs better than the blue to green ratio. The NIR to red band ratio showed 
hyacinth coverage to the north and east sides of the dam. The coverage to the north of the 
dam appears to be high over March and April and slightly reduced over the rest of the year.  
It is impossible to attempt a quantitative validation of WQSAM simulations of hyacinth growth 
using these data, whereas the qualitative validation of WQSAM possible using these data is 
limited. The model simulations of hyacinth growth by WQSAM show hyacinth coverage 
throughout the year, with a peak in January and April, and a minimum in October. The results 
by WQSAM are validated by the Landsat remote sensing data on two limited fronts: 1) both 
the remote sensing data and the WQSAM simulations show hyacinth coverage throughout the 
year and; 2) both the landsat data and the WQSAM simulations show a peak over March/April. 
The seasonal distribution of hyacinth coverage is most likely related to nutrient availability in 
the reservoir. Laing Dam is known as a nutrient sink, and it appears that a decreasing input of 
nutrients between April and October that may be related to decreasing flow may cause a 
decreasing coverage of hyacinth. 
 

4.2.4 Conclusions 
The validation of algal and hyacinth growth simulated by WQSAM by remote sensing 

measures achieved within this chapter was limited. However, given the uncertainties within 
WQSAM (which are as a consequence of the requisite simplicity approach taken), within the 
remote sensing data and within the relationship between algal biomass and chl-a, the 
validation results obtained can be argued to be reasonable. It can be argued that given the 
uncertainties, a direct and accurate correlation between WQSAM estimates of primary 
production within reservoirs and remote sensing estimates of primary production was never 
going to be possible. However, this chapter has shown that the estimates of algal biomass by 
WQSAM are within the right range. This chapter has also shown that the simulations of 
hyacinth coverage over the entire year are reasonable, and show that the seasonality of 
maximum hyacinth growth is correct. 

Given that WQSAM was not designed to accurate simulate algal and hyacinth growth 
(these processes were only included in relation to their effect on nutrient concentrations), and 
the focus of the model on requisite simplicity, it can be argued that WQSAM has achieved 
simulations of algal and hyacinth growth that are of sufficient accuracy for water quality 
management of nutrients in South Africa. More specific water quality management that would 
require estimates of the taxonomic composition of the algal community (for example, in the 
case of toxic algae), or a scientific study requiring accurate estimates of hyacinth biomass and 
coverage within a reservoir may require a more complex model, such as the CE-QUAL-W2 
model (Cole and Wells, 2008). Further validation of the primary production processes 
simulated within the WQSAM model may become possible as further observed data become 
available.  
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CHAPTER 5. DEVELOPMENT AND TESTING OF THE 
WQSED MODEL 

5.1 Introduction 
Soil erosion is one of the most critical environmental issues globally and in southern Africa. 

In the context of the present study, erosion is the term used to describe the loss of topsoil, 
which in turn often affects the productivity of agricultural lands, resulting in a decline of crop 
yields, and depending on sediment transport, can result in the deposition of sediment in 
reservoirs, thereby decreasing reservoir volumes (Kusimi et al., 2008). Soil erosion is 
essentially a process of detachment and transportation of soil materials by wind or water. The 
process of raindrops making impact with soil loosens the soil particles, and even on a 2% 
slope, this can initiate the movement of soil downhill. The impact of soil erosion is increased 
on slopes, where there is a positive relationship between the degree of slope and the amount 
of topsoil transported as water flows downhill into valleys and streams (Pimentel and Burgess, 
2013). Topography is one of the most important drivers of erosion as it accelerates the rate of 
erosion and sediment transport. Although 25% of SA is susceptible to wind erosion (Hoffman 
& Todd, 2000), water is the dominant agent causing erosion in southern Africa. Water erosion 
occurs mostly through detachment of soil by rain-splash, sheet erosion as well as rill and gully 
erosion where concentrated flows incise through the soil surface. During water erosion, 
outcomes such as the amount of soil eroded, transported and delivered at the outlet of 
channels depends on a combination of factors such as rainfall erosivity, soil erodibility, slope 
steepness and slope length, crop management and support practice factor (Le Roux et al., 
2008). 

Among water erosion processes, gully erosion contributes more to sedimentation than 
related water erosion processes (Zhu, 2012). Gullied systems are characterised by unstable 
walls and unconsolidated soils which readily erode and wash away when exposed to rainfall. 
Catchments containing gulley systems are therefore likely to produce more sediments 
(Wasson, 1994; Zhu, 2012). According to Poesen et al. (2002), sediment yield data collected 
in different parts of the world show that soil loss caused by gully erosion ranges between 10-
94% of total sediment yield caused by water erosion. Wasson (1994) found that there is a 
positive relationship between high sediment yield and steep gullied upland basins. Gullies can 
therefore be referred to as sediment production zones as they contribute a lot of sediment to 
streams. According to Poesen et al. (2005), the former Transkei region was faced by a 
dramatic increase in livestock during the 20th century as a result of the Apartheid system. This 
development led to a drastic loss of vegetation cover as land use patterns changed as a result 
of the growing human and livestock populations. This resulted in the concentration of cattle 
and human activities along footpaths and animal tracks, with rainwater increasingly filtering 
deep into the soil layers, and subsequent sub-surface erosion increased the rates of gully 
formation (Poesen et al., 2005). This is evidenced by the heavily gullied catchments in the 
former Transkei such as the Umzimvubu River Catchment. Field-based evidence by Poesen 
et al. (2002) suggest that sheet and rill erosion processes as measured on runoff plots are not 
realistic indicators of total catchment erosion, nor do they satisfactorily indicate the 
redistribution of eroded soil within a field. It is through gully erosion that a large fraction of soil 
eroded within a catchment is redistributed and delivered to watercourses (Le Roux et al., 
2014). 

The repeated loss of fertile topsoil negatively affects the long-term sustainability of natural 
systems. Much of the agricultural land across the world has either been lost or is rapidly 
experiencing degradation as a result of soil erosion. According to Arekhi et al. (2012), close to 
40% of the world’s agricultural land is degraded, including 65% in Africa and 74% and 45% 
for North and South America, respectively. Notable is that soil loss by erosion is an ongoing 
process; it was earlier reported by Dudal (1981) that globally, approximately 6,000,000 ha of 
fertile topsoil is lost every year as a result of soil erosion and related factors (Arekhi et al., 
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2012). A major concern lies in that most of the soil being lost from agricultural land is 
transported into rivers and reservoirs. According to Kusimi et al. (2008), soil erosion in 
southern Africa is associated with reservoir sedimentation. 

The problem of reservoir sedimentation is not only a contemporary issue, but has evolved 
over the years. According to Rooseboom and Lotriet (1992), reservoir sedimentation was first 
identified as a serious problem in South Africa during 1901 when the Camperdown Dam 
rapidly suffered a loss in storage capacity as a result of sedimentation. This led to many 
studies being conducted to understand and quantify reservoir sedimentation as a step towards 
sustainable catchment management, and consequently these studies have contributed to 
erosion data in the form of erosion risk maps and reservoir sedimentation rates (Rooseboom 
and Lotriet, 1992). According to Msadala et al. (2010a), the mean loss of storage in reservoirs 
in SA due to sedimentation is 0.4%, which is half of the global average; however, 25% of the 
assessed reservoirs lost between 10-30% of their initial storage. A major challenge exists in 
connecting these sediment yields in reservoirs to catchment erosion and sediment delivery 
data (Boardman, 2012), as a large amount of variability over both temporal and spatial scales 
exists. Erosion rates may vary with soil type, slope angle and vegetation cover, with 
connectivity complicating the association of sediment yield observed at the outlet with erosion 
rates within the entire catchment (Bryson, 2015; Le Roux et al., 2008). 

5.2 Literature review 
5.2.1 Factors influencing soil erosion 

Soil loss through erosion is influenced by a variety of factors, with the most important being 
erosivity of the eroding agent, the erodibility of the soil, the slope of the land and the nature of 
the plant cover (Morgan, 2005). The eroding agent essentially refers to eroding forces such 
as water and wind. However, the current study focuses only on erosion by water, even though 
wind erosion is also significant. The above factors are also highlighted by Wischmeier and 
Smith (1978) and incorporated into the Universal Soil Loss Equation (USLE): 

A = RKLSCP,       (Equation 5.1) 
where A represents the computed soil loss per unit area, R is rainfall, K is soil erodibility, 

LS is slope length, C is vegetation cover and P is the support practice factor (Wischmeier and 
Smith, 1978). A comprehensive discussion on the effect of these factors on erosion is 
presented by Morgan (2005) and Renard et al. (1997). 
Rainfall 

Soil loss is closely related to rainfall, partly through raindrops striking the soil surface and 
detaching soil and mostly through the contribution of precipitation to runoff (Pimentel and 
Burgess, 2013). This applies particularly to erosion by overland flow and rills, where rainfall 
intensity is generally the most important characteristic driving erosion. A study conducted in 
Ohio between 1934 and1942 showed that average soil loss per precipitation event increases 
with the intensity of the storm (Morgan, 2005). This promoted the initial theory that significant 
erosion is solely a function of peak intensities. However, through 30 years of measurements 
by Wischmeier (1962) in several states in the United States of America (USA), it was shown 
that the rainfall factor used to estimate average annual soil loss must include cumulative 
effects of the many moderate sized storms, as well as the sporadic severe storms (Renard et 
al., 1997). This justifies the use of a complete rainfall time series in an erosion estimation 
model. 

However, a need to highlight the threshold flow for erosion remains. Hudson (1981) 
provides a figure based on his studies in Zimbabwe of 25 mm h−1, a value that has also been 
found appropriate in Tanzania and Malaysia, and applicable to semi-arid catchments that 
characterise Sub-Saharan Africa (Morgan, 1974). However, this value is too high for 
applicability to Western Europe, where it is rarely exceeded. This illustrates that models 
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developed for use in a different climatic and geographical setting may not be appropriate for 
universal application. Arbitrary thresholds of 10, 6 and even 1.0 mm h−1 have been used in 
England, Germany and Belgium, respectively (Renard et al., 1997). 
Erodibility 

According to Renard et al. (1997), soil erodibility is the average long-term soil and soil 
profile response to the erosive power of rainstorms. Soil erodibility is therefore a lumped 
parameter that represents an integrated average annual value of the total soil and soil profile 
reaction to a large number of erosion and hydrologic processes (Tingting et al., 2008). 
Erodibility defines the resistance of the soil to both detachment and transport. Although the 
resistance of soil to erosion depends in part on topographic position, slope steepness and the 
amount of physical disturbance, such as during tillage, the properties of the soil are the most 
important determinants (Tya & Oluwaseye, 2015). Erodibility varies with soil texture, 
aggregate stability, shear strength, infiltration capacity and organic and chemical content 
(Renard et al., 1997). Large particles are resistant to transport because of the greater force 
required for entrainment and fine particles are resistant to detachment because of their 
cohesiveness (Renard et al., 1997). The least resistant particles are silt and fine sands. Thus, 
soils with silt content above 40% are highly erodible (Richter and Negendank, 1977). Evans 
(1980) examined erodibility in terms of clay content, and found that soils with clay content 
between 9-30% are the most susceptible to erosion. High soil erodibility is usually observed 
at lower elevations where soil structure profiles are more defined and soils are much deeper. 
This also assumes that catchments located in gentle plateau areas have higher erodibility. 
Vegetation cover 

Vegetation acts as a protective layer or buffer against the force of raindrops between the 
atmosphere and the soil. The leaves and stems of plants absorb some of the energy of falling 
raindrops and running water, resulting in less force directed at the soil, whereas the root 
system contributes to the mechanical strength of the soil (Morgan, 2005). Interdependency is 
therefore established between the vegetation cover and soil erodibility, where the cover 
increases the soil’s resistance to erosion, termed erodibility. 

An experiment demonstrating the effect of vegetation cover known as the mosquito gauze 
experiment was conducted by Hudson and Jackson (1959). Soil loss was measured from two 
identical bare plots on a clay loam soil. Over one plot, a fine wire gauze was suspended, which 
had the effect of breaking up the force of the raindrops, absorbing their impact and allowing 
the water to fall to the ground from a low height as a fine spray; the mean annual soil loss over 
a ten-year period was 126.6 t ha−1 for the open plot and 0.9 t ha−1 for the plot covered by gauze 
(Morgan, 2005). There is therefore a very significant effect of vegetation on lowering erosion 
rates. Figure 5.1 demonstrates the relationship between the soil loss ratio (SLR) and 
vegetation cover: 



 
 

87 
 

 
Figure 5.1 Relationship between soil loss ratio (SLR) and percentage vegetation cover at 

the ground surface. Taken from Morgan (2005). 
 

Figure 5.1, taken from Morgan (2005), illustrates that a lower percentage ground cover is 
associated with high rates of soil loss, whereas in contrast, a higher percentage of cover is 
associated with lower rates of soil loss. Overall, it is generally recognised that for adequate 
protection, at least 70% of the ground surface must be covered (Elwell and Stocking, 1976), 
although reasonable protection can sometimes be achieved with between 30-40% cover 
(Morgan, 2005). However, Morgan (2005) also warns that the effects of vegetation are far from 
straightforward, and under certain conditions, plant cover can exacerbate erosion, depending 
on how cover interacts with the erosion processes. Therefore, the vegetation canopy can 
potentially protect the soil from rain splash, whereas plant roots bind the soil together to 
prevent soil from being washed away. Notable is that there is a high level of interaction 
between all the erosion factors.  
Topography 

According to Renard et al. (1997), erosion increases as slope increases, and is considered 
as the LS factor in the Modified USLE (MUSLE). Slope length L is defined as the horizontal 
distance from the origin of overland flow to the point where either: 1) the slope gradient 
decreases to a sufficient extent to initiate deposition or; 2) runoff becomes concentrated in a 
defined channel (Wischmeier and Smith, 1978). Slope steepness S reflects the influence of 
slope gradient on erosion (Renard et al., 1997). Slope has been estimated in the field using 
an inclinometer and other related devices, as well as using contour intervals. Digital Elevation 
Model (DEM) and GIS techniques are now popularly used to obtain both slope gradient (S) 
and slope length (L) (Wolka et al., 2015). 

Morgan (2005) stressed that erosion would normally be expected to increase with 
increases in slope steepness and slope length as a result of respective increases in velocity 
and volume of surface runoff. The combined interactive effects of erosion factors act to erode 
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a given land surface (Bryson, 2015). Vegetation and soil erodibility increase downslope 
whereas orographic rainfall increases with elevation (Bryson, 2015). Furthermore, although 
raindrops splash soil particles randomly in all directions on a flat surface, on sloping ground, 
more soil is splashed downslope than upslope, and the proportion increases as the slope 
steepens. Slope length and steepness therefore contribute to soil erosion by increasing the 
velocity of runoff; thus the erosive and transport capacity of surface runoff is subsequently 
enhanced. 

 

5.2.2 Erosion and sediment yield model 
Erosion models have evolved as important tools to measure and predict catchment 

erosion. According to Xu (2002), most hydrologic systems are extremely complex, and we 
cannot hope to understand all their detail. Therefore, is important to use models to simplify, 
explain and investigate complex natural processes, as this facilitates the investigation of 
management scenarios. Soil erosion models are essential for catchment management; not 
only do they increase our understanding of complex natural systems, but they also facilitate 
the development of sound catchment management principles. Models are used to simulate 
natural systems, thereby saving time and cost, as at times it is not feasible or practical to 
conduct field measurements over a large spatial extent or fine temporal resolution (Nearing et 
al., 2005). 

Numerical models are very useful tools for the estimation of erosion and sediment yield 
from a watershed, as well as for the analysis of land use impacts on sediment generation 
(Schmidt et al., 2008). The ability to model soil erosion and sediment yield is essential for 
facilitating management to reduce sedimentation rates of reservoirs, as models provide 
simulations of erosion and sediments yields that can be used to control the rates of 
sedimentation. According to Msadala et al. (2010), this is mostly achieved using spatially 
distributed models to provide spatially distributed information on erosion and sediment yield 
at a catchment scale. This information is used by water managers to not only determine control 
measures, but also to prioritise problems areas so as to effectively allocate scarce financial 
resources, characteristic of most countries in southern Africa. However, the effectiveness of 
soil erosion modelling is hindered by various problems such as data variability, over-
parameterisation, unrealistic input requirements and unsuitability of model assumptions or 
misleading parameter values in a local context, and the lack of verification data (Le Roux et 
al., 2007). According to Le Roux et al. (2007), recent assessments on the quality of erosion 
models have demonstrated that the available models are not effectively predicting the 
spatiality of erosion. Therefore, the quantity of erosion predicted by models cannot be 
regarded as absolute erosion figures due to the high degree of uncertainty. However, it is 
essential to note that patterns of erosion quantities predicted by models are useful to provide 
direction in management scenarios. This requires the continuous development of models 
through improvement in parameter estimation, comprehensive testing and validation of new 
models. 

At the catchment scale, a significant amount of sediment that is produced originates from 
the higher slopes. The proportion of sediment load in streams is therefore determined by the 
erosion on the slopes and the availability of rain for energy to deliver the sediment into streams 
(Gao, 2008). The emergence of computers and related software has made it possible to 
successfully estimate sediment yield. Notable also is that the increased storage and 
processing capability of computers has made it possible to describe erosion processes using 
mathematical equations and to simulate the dynamic nature of natural systems at the 
catchment scale (Parsons, 2012). Models are differentiated based on the level of complexity 
represented in soil erosion processes, as well as the spatial and temporal resolution of the 
model (Le Roux et al., 2007).  

Historically, models representing soil erosion by water have been either physically-based, 
empirically-based or a mix of empirically and physically based (Randle et al., 2006). The first 
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soil erosion models were empirically-based. The prime example of the empirically-based 
model is the USLE (Nearing et al., 2005; Wischmeier and Smith, 1978). Models can also be 
classified as conceptual (Le Roux et al., 2007). Models are classified based on the 
hydrological processes that are represented. Parameters used in the physically-based models 
are determined using field data and should be representative of conditions and physical 
characteristics of the catchment (Msadala et al., 2010).  

Physically-based models can represent the catchment as either lumped or distributed. 
Empirically-based models are developed using physical catchment properties that are 
determined from field data collected or from other spatial data sources such as aerial and 
satellite imagery. These data are collected for particular and specific geographic areas; 
therefore, for the achievement of optimum results, the equations developed should be limited 
to areas for which the data were collected (Randle et al., 2006). Conceptual models are 
differentiated from empirical models in that they lump or aggregate representative processes 
over the scale at which outputs are simulated (Wheater et al., 1993); however, they 
incorporate important transfer mechanisms of sediment and runoff generation in their structure 
(Merritt et al., 2003). Conceptual models primarily use simplified deterministic representations 
of the processes governing soil erosion and sediment delivery, including a hydrological module 
and an empirical sediment module (Van Zyl, 2007). 
Physically-based models 

Physically-based models are characterised by a much more sophisticated model structure 
than either empirical or conceptual models, and are based on the solution of physical 
equations describing mass and momentum of flow and sediment transport in a catchment 
(Merritt et al., 2003). According to Le Roux (2008), physically-based models are usually 
spatially distributed and event-based so as to simulate the response of a given area to a rainfall 
event. Physically-based models are based on the interrelationships of factors governing both 
erosion and sediment yield; therefore, the physical and theoretical processes that control 
erosion and sediment yield are both represented in physically-based models (Msadala et al., 
2010). Physically-based models are able to simulate erosion and sediment yield at various 
spatial and temporal scales (Msadala et al., 2010). These models provide a detailed 
description of the flow and transport processes that are involved in erosion and sediment yield 
at various spatial and temporal scales. Some physically-based models include:  

• The Areal Non-point Source Watershed Environmental Response Simulation 
(ANSWERS) (Beasley et al., 1980). 

• The Hydrological Simulation Programme – Fortran (HSPF) (Bicknell et al., 1997).  
• Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) 

(Kinsel, 1980).  
• The European Soil Erosion Model (EUROSEM) (Morgan et al., 1998).  
• The Kinematic Runoff and Erosion model (KINEROS) (Woolhiser et al., 1990).  
Mhangara (2011) outlines how physically-based models represent a combination of the 

individual components and mechanisms controlling soil erosion; they take account of complex 
interactions between several factors and the associated spatial and temporal variability. The 
application of these models is limited because of their large data and computation 
requirements (Mhangara, 2011). 
Empirically-based models 

Empirical models are based on observations and inductive logic, and are generally 
statistical in nature (Msadala et al., 2010). The parameters for empirical models require 
calibration, and examples include the USLE. The USLE method computes annual soil loss 
resulting from sheet and rill erosion from a specified area. The USLE model has been the most 
commonly used model and method of estimating soil erosion since the 1960s (Kinnell, 2000). 
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Figure 5.2 represents the conceptual structure of the USLE and is taken from Wischmeier and 
Smith (1978). 

Other examples of empirical models are the Revised USLE (RUSLE) and the Modified 
USLE (MUSLE), which are improvements of the USLE model. The RUSLE computes annual 
soil loss, and MUSLE proposed in 1972 computes sediment yield for a single storm event 
(Williams, 1975).  
Conceptual models 

Conceptual models are typically based on the representation of a catchment as a series 
of internal storages (Merritt et al., 2003). Conceptual models can represent the catchment as 
a series of grids, with a series of internal storages represented within each grid. Transfer 
mechanisms of runoff generation and sediment transport are incorporated within the structure 
to represent flows paths as a series of storages, and the dynamic behaviour of these 
mechanisms has to be characterised within the model (Merritt et al., 2003). Conceptual models 
usually include a generalised description of catchment processes because detailed catchment 
processes would require detailed information regarding the catchment, which may not be 
readily available or may be very difficult to access (Wheater et al., 1993). However, 
generalised descriptions allow the models to estimate the qualitative and quantitative effects 
of factors such as land use change with minimal data. Traditionally, conceptual models lump 
representative processes over the scale at which outputs are simulated (Wheater et al., 1993). 
According to Merritt et al. (2003), recently developed conceptual models have provided 
outputs in a spatially-distributed manner, making it easier to identify areas that are more 
impacted by erosion. 

 
Figure 5.2 The Universal Soil Loss Equation (USLE) accompanied by a conceptualisation 

of a standard unit plot description adapted from Wischmeier and Smith (1978), 
and taken from Bryson (2015). 

Parameter values for conceptual models are commonly estimated through calibration to 
observed data such as sediment concentrations and stream discharge data (Merritt et al., 
2003). The application of conceptual models is often hindered by problems of parameter 
identification because calibration is required to be performed against observed data, which 
may not be available; a common problem within southern African catchments (Jakeman and 
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Hornberger, 1993). Therefore, most forms of calibration techniques used for conceptual 
models are only able to identify the local optimal parameter values. Problems associated with 
model identification can be reduced by limiting the number of parameters that are meant to be 
estimated through calibration (Merritt et al., 2003). 

 

5.2.3 Erosion and sediment yield modelling in South Africa 
As erosion is a major environmental issue, information relating to erosion rates, yields and 

impacts is widely sought after by water managers in South Africa. Bryson (2015) indicates that 
sediment has long been recognised as one of South Africa’s significant water quality problems. 
For this reason, the Department of Agriculture (DoA) and the Water Research Commission 
(WRC) have funded many regional-based research projects in the country, as the spatial 
extent of the problem requires identification. A review of the methodology for monitoring soil 
erosion in South Africa at a regional scale is presented by Le Roux et al. (2007). The authors 
identified that some of the challenges facing SA with regards to soil erosion research are 
limited data availability and the fact that not all erosion types occurring in SA are accounted 
for. This can be seen by the fact that the main approach adopted by researchers in South 
Africa has been to develop sediment yield maps. Although these maps have provided an 
important tool in sediment yield prediction, they are not effective at a catchment scale; the 
scale at which land and resource management is usually required (Bryson, 2015). 
Agricultural Catchments Research Unit (ACRU) 

The Agricultural Catchments Research Unit (ACRU) hydrological model was originally 
developed to study catchment evapotranspiration in the then Natal Province during the early 
1970s (Schulze, 1989). The ACRU model was developed by the Agricultural Catchments 
Research Unit within the Department of Agricultural Engineering of the University of Natal in 
Pietermaritzburg, South Africa (Schulze, 1995). The agrohydrological component of ACRU, 
which was subsequently added, resulted in the ability of the model to simulate the integration 
and inter linkage of agrohydrological and hydrological processes related to applied 
engineering, scientific hydrology and water resources (Schulze, 1995). Sediment yields are 
modelled using MUSLE in sub-catchments. The rainfall-runoff model then routes the flow and 
sediment through the catchment. However, the model does not include important sediment 
storage processes. Problems such as over-parameterisation are significant as parameters 
may be difficult to determine in data-poor environments. The model user must also prepare a 
certain amount of data and information before operating the model. The ACRU model is 
therefore not considered to be an effective sediment delivery model for catchments in SA 
(Bryson, 2015). Figure 5.3 is a conceptual representation of the components of ACRU. 
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Figure 5.3 The agrohydrological concepts of the Agricultural Catchments Research Unit 

(ACRU) model (taken from Schulze (1995). 
Soil and Water Assessment Tool (SWAT) 

An additional model that has been used recently in a study in South Africa is the Soil and 
Water Assessment Tool (SWAT) (Neitsch et al., 2005). SWAT was recently used in a study to 
determine gully connectivity in a catchment in SA with identified source and sink zones (Le 
Roux et al., 2013). According to Le Roux et al. (2013), the model was designed to simulate 
water, sediment and chemical fluxes in watersheds and large catchments with varying erosion 
factors such as slope, rainfall, soils and vegetation cover. SWAT is a continuous time-scale 
model which uses readily-available inputs on soils, land use, topography, drainage and climate 
to provide outputs on a sub-basin scale. The catchment is divided into sub-basins and 
hydrological response units (HRUs) are used, which are considered areas within the sub-basin 
that have a high homogeneity in terms of factors such as land cover, soil and support practice 
(Le Roux et al., 2013). Calculations for the HRUs are conducted separately whereas the 
outputs are channelled to the catchment outlet so as to quantify total basin loads. A major 
weakness identified in the SWAT model was that it does not consider that sediment is 
deposited along the way during transport from slopes to the channels (Le Roux et al., 2013). 
SHETRAN 

An additional model that has been used recently in a study in South Africa is SHETRAN. 
This is a very effective model for modelling subsurface flow and transport (Ewen et al., 2000). 
SHETRAN was used to estimate sediment yield for the Polihali Dam catchment by Msadala 
et al. (2010). The SHETRAN model uses a grid network to describe the catchment areas and 
links as river networks. It is a three dimensional model that possesses a column of horizontal 
layers underlying each grid square in the vertical direction within each soil layer representing 
soil thickness, and the upper layer represents the overland surface. Flow is routed from the 
surface, subsurface and up to the channel or gullies (Ewen et al., 2000). The overall 
assessment of SHETRAN is that the user must be able to prepare and generate a certain 
amount of data independently before applying it in the modelling system; the authors required 
approximately five months to determine how to use the modelling system and how to set up 
and run the model (Msadala et al. 2010). The extensive data requirements of the model result 
in the unsuitability of the model for data-scarce environments, whereas the time required for 
professional researchers to sufficiently learn how to use the model results in the model being 
less applicable for water managers in SA.  
The Pitman model 

The Pitman model has been the most widely applied hydrological model within the 
southern African region (Hughes et al., 2006). This model was developed in the 1970s 
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(Pitman, 1973) as an explicit soil moisture accounting model, representing interception, soil 
moisture and groundwater storages, with functions to represent the inflows and outflows 
(Hughes, 2008). The Institute for Water Research (IWR) at Rhodes University has added a 
number of refinements based on assessments of the southern African Flow Regimes by the 
International Experimental and Network Data (FRIEND) programme (Hughes, 1995), and 
subsequently have also added more explicit groundwater recharge and discharge functions. 
An advantage of the Pitman Model is the availability of guidelines for parameter estimation 
provided by the WR90 study (Midgley et al., 1994). The guidelines can be used to establish 
initial parameter values for almost any climatic region of southern Africa, which can then be 
refined through local calibration (Hughes, 2008). Linking the sediment delivery model with the 
Pitman Model would be useful, as the Pitman Model represents a hydrological model that has 
proven to be effective and widely applied in semi-arid South African catchments. 

In the current study, the Pitman Model was used to derive the surface flow component of 
the Erosion and Sediment Delivery Model, because of its wide popularity in southern Africa. 
Using existing and established hydrological models increases the likelihood of use by water 
resource managers and ensures that already established routines would not need to be 
redeveloped (Slaughter et al., 2011). The modelled sediment delivery results are therefore 
partly dependent upon the accuracy (or representativeness) of the flow simulations generated 
by the Pitman Model and the daily disaggregation model (Bryson, 2015). Figure 5.4 shows the 
conceptual structure of the Pitman Model as contained in the SPATSIM modelling framework. 

 
Pitman Model 

 
Figure 5.4 Flow diagram showing the main components of the Spatial and Time Series 

Information Modelling (SPATSIM) version of the Pitman Model (Hughes et al., 
2006) 

 
According to Bryson (2015), established hydrological models, such as the Pitman Rainfall 

Runoff Model, act on a monthly time step; however, rainfall events in semi-arid areas are 
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generally in the form of high-intensity, short-duration storms. The output of the Pitman Model 
is disaggregated to a daily time step to represent surface runoff in semi-arid catchments. This 
process has already been developed as part of a water quality model that has been linked to 
existing water resources estimation methods (Hughes and Slaughter, 2015; Slaughter et al., 
2011; Slaughter et al., 2015a). The method followed the principles established by Smakhtin 
and Masse (2000) and includes an approach that separates total daily flow into surface, 
interflow and groundwater components. These are important for the overall water quality 
model and are also highly relevant for the sediment model, as quantification of these flow 
components is important to distinguish between surface flow that could generate slope 
sediment delivery and other flows that might be more important for within-channel sediment 
transport (Bryson, 2015). 
The MUSLE model 

The MUSLE is an improvement of the USLE developed by Wischmeier and Smith (1978). 
The USLE and the revised versions (RUSLE and MUSLE) are among the most widely used 
erosion and sediment models, used to compute potential erosion and sediment yield in 
hydrology and environmental engineering fields (Mishra et al., 2006). The USLE was originally 
conceived to estimate the rate of soil loss from small plots. Subsequently, when applied to 
larger spatial scales, the USLE gave large errors (Kinnell, 2005). The USLE does not take into 
account runoff, although the erosion process involves sediment being discharged with flow; 
runoff is an important determinant of both erosion and transport (Kinnell, 2005). It has been 
observed that delivery ratios to determine sediment yield from the soil loss equation can be 
predicted accurately; however, these ratios vary considerably (Arekhi et al., 2012). As a result 
of uncertainty surrounding the delivery ratio, Williams and Berndt (1977) proposed the MUSLE 
with the replacement of the rainfall factor with a runoff factor. The MUSLE increases the 
accuracy of sediment yield prediction by incorporating flows, and also eliminates the 
requirement for delivery ratios (Arekhi et al., 2012). 

According to Sadeghi et al. (2013), combining the sediment delivery ratio (SDR) with gross 
erosion to determine sediment yield is tedious if one is interested in particular rainfall events. 
The rainfall factor of the USLE does not effectively account for the effective rainfall that 
generates sufficient runoff to mobilise sediment, which is an important factor in erosion and 
sediment delivery (Sadeghi et al., 2014). Williams (1975) used 778 storm-runoff events 
collected from 18 small watersheds, with areas varying from 15 to 1,500 ha, slopes from 0.9 
to 5.9% and slope lengths of 78.64 to 173.74 m (Williams and Berndt, 1977). The Modified 
USLE (MUSLE) model was given in the general form of:  

𝑆𝑆𝑆𝑆 = 𝑎𝑎 (𝑄𝑄𝑄𝑄𝑄𝑄) LSCP,      (Equation 5.2) 
where Sy is sediment yield (in tonnes) on a storm basis for the entire catchment, Q is 

volume of runoff (in m3), qp is the peak flow rate (in m3 s−1) and K, L, S and P are the soil 
erodibility (in t ha h MJ−1 mm−1), slope length, slope steepness, crop management and soil 
erosion control practice factors, respectively, similar to the USLE model, and a and b are 
location coefficients. For the area where the equation was developed, the a and b coefficients 
were 11.8 and 0.56, respectively (Williams and Berndt, 1977). 

A review of the international application of the MUSLE model has been presented by 
Sadeghi et al. (2014) to evaluate the applicable conditions and methods used to determine 
the MUSLE model parameters. The trends in the methodology to determine the factors in the 
MUSLE model indicated that for the erodibility factor, most values were obtained by using the 
Wischmeier and Smith (1978) diagrams, with the erodibility estimation methodology not 
affecting the accuracy of results. The topography factor was estimated by the direct use of a 
topographic map at a scale of 1:50,000 in most studies, with the use of GIS providing an 
improved performance of model estimates. Crop management and control practice factors 
were mainly estimated by using existing data, with the incorporation of temporal variation of 
these factors resulting in significant improvements in performance. Sadeghi et al. (2014) 
concluded that application of the MUSLE model may provide reasonable results when applied 
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under appropriate conditions similar to those of the original model, or when the model factors 
are calibrated accordingly.  

According to Nearing and Hairsine (2011), the popularity of the MUSLE model emanates 
from its ease of use in a GIS, in particular the ease of deriving the topography (LS) factor from 
a DEM. In addition, the availability of remote sensing images for determining vegetation cover 
has added to the popularity of the MUSLE. The MUSLE has been previously and recently 
used in many studies (Arekhi et al., 2012; Bryson, 2015; Jang et al., 2015; Sadeghi and 
Mizuyama, 2007). Notable also is that Tripathi et al. (2001) used the MUSLE and GIS in India, 
and obtained estimated values close to observed values. Meanwhile, Bryson (2015) has 
applied the MUSLE in South Africa and reported that the model had managed to characterise 
the dynamics of erosion and sediment for arid catchments in SA. From the literature, it is 
evident that the MUSLE is a rationally efficient model for estimating sediment yield. 

A central model for the current study is the erosion and sediment delivery model for semi-
arid catchments developed and used by Bryson (2015) under the Institute of Water Research 
(IWR) at Rhodes University. The author attempted to avoid problems of over-prediction of 
sediment yield typically associated with empirical models. This was conducted by linking the 
empirical erosion model to the Pitman Hydrological Model. The MUSLE model was linked to 
the Pitman Model for the purpose of avoiding over prediction. The model was tested on the 
Ganora (2.7 km2), Cranemere (57 km2) and the Nqweba (3 667.7 km2) catchments. The 
results for the two small and one large catchments were as according to Bryson (2015): ‘an 
effective representation of sediment dynamics in semi-arid catchments’. This current study will 
however further test and validate Bryson’s model within catchments with a variety of conditions 
including soils, climate and vegetation cover. A considerable reduction in the number of 
parameters required to be parameterised will be achieved through the use of GIS and readily 
available spatial datasets to estimate the values of these parameters. 

 

5.2.4 Sediment transport modelling 
Sediment transport is the movement of organic and inorganic particles by water (Czuba et 

al., 2011). These particles are dislodged from their original surfaces by erosional forces. The 
amount of sediment transported is dependent on the power of flow (Southard, 2006). 
Therefore, a channel with a greater velocity is likely to move a greater amount of sediment. 
The total load that is transported includes bedload, suspended load and washload. 

Bedload is the sediment that rolls, slides or bounces along the bed of the channel (EPA, 
2012). Some of this sediment may not maintain constant contact with the river bed, but it does 
not move in suspension either. Its movement is neither uniform nor continuous (Southard, 
2006). According to EPA (2012), bedload transport occurs when the force of the water is 
sufficiently strong to overcome the weight and cohesion of the sediment. The particles are 
dragged along and move slower than the water around them, as the flow rate is too weak to 
suspend the sediment. This process occurs at low and high flows for smaller and larger 
particles, respectively. Up to 20% of sediment that is transported is bedload (Czuba et al., 
2011). 

Suspended load refers to the amount of sediment that is carried downstream within a water 
column (Southard, 2006). The turbulence that is created by moving water keeps sediment 
particles suspended above the streambed (Hickin, 1995). The amount and size of particles 
that can be carried as suspended load is dependent on the rate of flow (Southard, 2006). 
Czuba et al. (2011) state that larger particles will fall to the stream bed unless the flow rate 
increases turbulence on the streambed. 

Washload is generally regarded as part of suspended load (Hickin, 1995). This load is 
comprised of the fine sediment of sizes less than 0.00195 mm. This load is different from 
suspended load because it does not settle on the channel bed during periods of low to no 
flows (Southard, 2006), as the particles remain suspended and bounce off water molecules to 



 
 

96 
 

remain afloat (Southard, 2006). However wash and suspended loads are barely 
distinguishable when there is flow. Turbidity in waterbodies is an important indicator of 
washload (Fink, 2005). However, although turbidity can be used to approximate suspended 
sediment concentration, it cannot be used to estimate sediment transport of river channels 
(Fink, 2005). 

Sediment transport is a dynamic process that is subject to constant change. Geological 
formation, geomorphology and organic elements affect the volume and nature of sediment 
output. However, sediment transport may also be altered by external forces such as changes 
in water flow, water level, weather elements and anthropogenic controls. 

Discharge is identified as the single most important factor/element of sediment transport. 
Flow is essential for setting sediment in motion and without it, sediment will either settle on 
the stream bed or remain in suspension (McNally & Mehta, 2004) and not move downstream. 
Two basic methods to calculate water flow are shown in Equations 5.3 and 5.4: 

Flow (m3 s−1) = Area (m2) × Velocity (m s−1)    (Equation 5.3) 
Or 
Flow (m3 s−1) = Volume (m3) / Time (s)     (Equation 5.4) 
The calculations of the relationship between sediment transport and water flow are more 

complex because of the large number of variables requiring consideration, which include bed 
geometry, particle size and concentration (Southard, 2006). Multiple forces are active on the 
sediment, including relative inertia, turbulence and velocity. Although most of these variables 
will be unknown or not simple to ascertain, they are required as input to the equations 
describing the relationship between erosion and sediment transport (Southard, 2006). 
Southard (2006) also states that methods of measurement inevitably alter the reading because 
they disturb the flow. This makes sediment transport difficult to measure. This challenge has 
been dealt with by using equations to simplify flow rate and sediment transport scenarios. This 
method ignores some geomorphological variables and non-uniformity in flows (Southard, 
2006). 

According to Crone (2004), the two main factors to consider in sediment transport are 
settling rate and shear stress on the boundary layer. The Stokes settling rate is the rate at 
which sediment within a liquid settles on the bottom (Crone, 2004), and is controlled by the 
drag force which maintains the particles in suspension and the gravitational force. This is an 
important relationship in the determination of forces that have to be overcome for sediment of 
various particle sizes to be moved. The Stoke settling rate is defined by Equation 5.5: 

Vs = (g × (ρp – ρf) × Dp2) / 18μ      (Equation 5.5) 
where Vs is the settling velocity, g is the gravitational constant, ρp is the particle density, ρf 

is the fluid density, Dp is the particle diameter and μ is the fluid viscosity.  
The shear stress explains how much force is required for flow to overcome relative inertia 

and initiate sediment transport (Crone, 2004), and is defined by Equation 5.6: 
τ = ρf × u × 2,        (Equation 5.6) 
where τ is shear stress, ρf is fluid density and u is the characteristic velocity of turbulent 

flow (shear velocity). 
The characteristic velocity of turbulent flow (u) for river systems is calculated using 

Equation 5.7 (Crone, 2004): 
u = Sqrt (g × h × s),       (Equation 5.7) 
where u is shear velocity, g is the gravitational constant, h is the river depth and s is the 

river slope.  
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The above equations are important for understanding and identifying the forces that act 
on sediment in water (Crone, 2004). However, the Shields stress equation can be used to 
further understand the conditions required for sediment transport. According to Crone (2004), 
the Shields stress equation and the particle Reynolds number can be used estimate how much 
flow is required to transport the sediment. The Reynolds particle number essentially expresses 
particle resistance to viscous force, which is the ability of flow to overcome relative inertia of 
sediment particles (Benson, 2014). However, the critical point at which water flow begins to 
move sediment is the Shields shear stress defined by Equation 5.8:  

τ∗ = τ / (g × (ρp – ρf) × Dp),      (Equation 5.8) 

where τ∗ is Shields stress, τ is shear stress, g is the gravitational constant, ρp is the particle 
density, ρf is the density of the fluid and Dp is the particle diameter. 

The Shields shear stress equation creates an empirical curve, which can be used to 
determine the size of sediment that can be moved by a particular flow rate (Crone, 2004).  

The aforementioned equations (5.3-5.8) are essential for defining minimum flow rates for 
sediment transport. However, they do not determine actual sediment load and transport rates. 
Van Rijn developed a sediment transport rate equation for bedload and suspended transport 
rates (McNally & Mehta, 2004). Suspended load transport rate is defined by Equation 5.9: 

qs = u × h × ca × [((a / h) Z – (a / h) 1.2) / ((1 − a/h) Z × (1.2 − Z))], (Equation 5.9) 
where qs is the suspended load transport rate, u is the average flow velocity, h is the 

average flow depth, ca is the reference concentration, a is the height above the stream bed, 
relative to particle size and Z is the suspension number. 

The construction of dams and land cover/use changes affect the nature and quantity of 
sediment load as well as the river’s ability to transport sediment (Czuba et al., 2011). Dams 
affect water flow by completely holding up or restricting river channels (Missouri DNR, 2009). 
The restricted channel will result in sediment being deposited behind the dam wall and the 
downstream river ecosystem being starved of sediment (Zaimes & Emanuel, 2006). Notably, 
instream erosion processes are also affected by low flows. Czuba et al. (2011) states that dam 
releases dramatically increase flows downstream. Although controlled releases can restore 
habitats for benthic organisms, uncontrolled releases can result in flooding of the river, 
scouring of the channel and the transport of sediment further downstream (Czuba et al., 2011). 

Anthropogenic factors such as land use have an impact on sediment load but not transport 
rate (Czuba et al., 2011). An increase in flow power is therefore necessary to move the 
sediment. Zaimes & Emanuel (2006) identified anthropogenic land use as a leading cause of 
excessive sedimentation. This occurs when activities such as logging, mining and construction 
remove vegetation and expose the topsoil to erosion by rainfall and runoff (Murphy, 2007). 

5.3 Erosion and sediment delivery model 
5.3.1 Introduction 

The sediment transport model was developed using geomorphological principles by 
Bryson (2015) with supervision by Prof. Denis Hughes. A conceptualisation of catchment 
processes was used to develop the model, following which equations and linkages were 
incorporated into the model structure. The Modified Universal Soil Loss Equation (MUSLE) 
was linked to the Pitman hydrological model for this purpose. Distribution function theory was 
used to represent the stochastic nature of erosion. Erosional processes were accounted for 
by using a probability distribution of conceptual sediment stores (Bryson, 2015). This simplifies 
the distribution of catchment processes within the sediment transport model. The erosion part 
of the model estimates the amount of soil loss within the catchment and the hydrological model 
provides the flows. The flow component is the driving force behind the model as it moves 
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sediment between storages and to the catchment outlet. The model is categorised into the 
flow estimation, erosion estimation and the storage and delivery estimation components. 

 

5.3.2 Flow estimation 
Source of flows 

The flow component is an important part of the erosion transport model. Flows constitute 
the energy that drives the model; therefore, the accuracy of the simulated output is dependent 
on the accuracy of the flow data used within the model. Observed flow data are available from 
the Department of Water and Sanitation (DWS) website. Flows can also be simulated using 
the Pitman hydrological model. The simulation of flows is useful for catchments where there 
are no observed flow data, or for investigating management scenarios. 
Disaggregation of monthly flows to daily 

Since the Pitman Model simulates monthly flows, and the sediment model requires daily 
flows, the approach taken was to disaggregate monthly flows to daily. This disaggregation 
method was first implemented for use in WQSAM, which also requires daily flows, but the 
method is applicable within any hydrological application where daily flows are required, such 
as in the sediment model. The detailed approach within the disaggregation model is presented 
in Slaughter et al. (2015b); however, a summary is presented here. The conceptual approach 
taken within the disaggregation model is also shown in Figure 5.5. 

 
Figure 5.5 The conceptual framework of the monthly-to-daily flow disaggregation method. 

Taken from Slaughter et al. (2015b). 
First, monthly simulated flows are used to generate a monthly flow duration curve (FDC) 

of mean monthly flows. A scaling equation is then use to scale the monthly FDC as close as 
possible to a daily FDC, which is derived from any available daily flow data, either observed 
or simulated, for the catchment of concern or from a catchment of representative conditions. 
A minimum of one but as many as three time series of antecedent rainfall representative of 
the catchment of interest and time period of simulation are then collated to derive a single time 
series of daily antecedent rainfall. Antecedent in this context refers to daily rainfall that takes 
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into account rainfall within the recent past, as soil moisture conditions affect the degree of 
runoff associated with single rainfall events. Therefore, the calculation of antecedent rainfall 
takes into account the fact that there is a threshold of rainfall above which runoff will be 
expected, and that the storage characteristics of the catchment will affect runoff, with these 
processes being dependent on catchment conditions. Daily rainfall for this process is typically 
derived from ground-based weather stations; however, Hughes and Slaughter (2015) found 
that the use of global rainfall datasets, such as remote sensing estimates of rainfall, could 
successfully be used within the disaggregation model. The collated time series of daily 
antecedent rainfall is then used to generate a daily antecedent rainfall frequency distribution. 
The disaggregation model then steps through the time series of daily antecedent rainfall, and 
for each day: 

• Determines the frequency of the rainfall from the antecedent rainfall frequency 
distribution. 

• Identifies the equivalent daily flow for the frequency derived from (1) from the daily 
flow FDC, thereby producing a time series of daily flow.  

• The time series of daily flows produced in (2) is volume corrected against the 
original monthly flows. 

The study by Slaughter et al. (2015b) found that the volume correction (3), ensuring that 
daily sums of flows are equal to the monthly flows, reduces the sensitivity of the model to some 
of the parameters, thereby preventing the generation of drastically incorrect disaggregated 
flows.  
Separation of daily flows into flow fractions 

Subsequent the disaggregation, daily incremental flows are separated into surface flow, 
interflow and groundwater, using a simple statistical baseflow separation method by Hughes 
et al. (2003). This approach requires the setting of two parameter values, whereas the value 
of a third parameter remains constant as recommended by Hughes et al. (2003), and the 
approach taken in setting these values is to usually use default values determined during 
previous hydrological modelling studies in similar catchments. This may introduce a source of 
uncertainty; however, it can be argued that a rigorous determination of appropriate parameter 
values for the flow separation method is problematic (see Kapangaziwiri et al., 2011) due to 
the general lack of observed data with which to validate flow separation methods, the range 
of baseflow separation methods available and the conflicting results they generate, the 
difficulties in distinguishing between the origins of surface water in regards to flow fractions as 
well as the disparity in temporal scales at which the different flow fractions operate.  

 

5.3.3 Erosion estimation 
The MUSLE model was used to estimate erosion. The MUSLE was developed by Williams 

(1975) and is defined by Equation 5.10: 
SA = R × LS × K × C × P       (Equation 5.10) 
Where SA is the daily sediment availability (in t ha−1), R is the runoff factor, C is the cover 

factor, LS is the topography factor, K is the soil erodibility factor and P is the practice factor. 
The MUSLE is an improvement of the Universal Soil Loss Equation (USLE) developed by 

Wischmeier and Smith (1978). The USLE was later revised into the Revised Universal Soil 
Loss Equation (RUSLE) and then modified into the MUSLE. The MUSLE is used in this study 
because of its ability to estimate soil loss on a single storm basis. It can therefore be used with 
a flow time series to provide temporal distributions of erosion yield. In the erosion and transport 
model, estimates of sediment availability (SA) are made according to the inputs of the MUSLE 
model. These inputs are made for 100 sub grids that are assumed to represent the total 
catchment. The sub grids are distributed according to the high, medium and low slope zones. 
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Thus, if the proportions for the high, moderate and low runoff zones are 0.2, 0.6 and 0.2 
respectively, 20, 60 and 20 sub-grids will be used for the three zones (Bryson, 2015). 

 

5.3.4 Determining parameters associated with erodibility 
Topography (LS) Factor 

The topography factor is an important parameter as it is closely related to the runoff factor. 
A catchment with high topography is a high energy catchment that has lower storage capacity 
and high erosion and sediment yield (Bryson, 2015). Erosion would normally be expected to 
increase with increases in slope steepness which corresponds in increases in velocity and 
volume of surface runoff (Morgan, 2005). The S sub-factor represents the effect of slope 
gradient on erosion, and it has more effect on soil loss as compared to slope length 
(Wischmeier and Smith, 1978). Slopes that are convex increase downslope and have high 
erosion rates. Because of such interaction, the effect of L and S is usually considered together. 
It has been demonstrated that increases in slope length and slope steepness can marginally 
increase the velocity of flow and thereby also increase erosion and sediment delivery rates 
(Yang et al., 2015). 

According to Yang et al. (2015), the LS factor may be determined accurately from a DEM 
using GIS methods. The precision with which the LS factor can be estimated depends on the 
resolution of the DEM. A DEM contains cells that store spatial data from which elevation values 
can be determined. A DEM is generically described as a spatially geo-referenced dataset that 
is a popular method of encoding the topography for environmental modelling purposes 
(Sulebak, 2000). GIS-based methods for calculating the LS factor are presented in Zhang et 
al. (2013). 

The DEM provides input necessary to extract slope and flow accumulation using ArcGIS 
(version 10.3.1). The first stage is to acquire the DEM, preferably the Shuttle Radar 
Topography Mission (SRTM) with a 30 m spatial resolution; because of its high resolution, it 
contains more data per pixel and is expected to improve the estimation significantly (Gallant 
et al., 2011). The DEM may be further processed for use, for example, if there are two or more 
DEMs covering the catchment, there is a need to combine all the DEMs using the mosaic tool 
in Arc Toolbox.  

The DEM is further processed to fit dimensions of the catchment using a mask extraction 
tool from the Arc toolbox. This is achieved by laying a shapefile of the catchment boundary 
onto the DEM, and then extracting only the portion of the DEM that is contained within the 
catchment boundary. The DEM is then conditioned to be depressionless using the ‘fill sink’ 
command to determine the maximum downhill slope and the flow direction (e.g. Jain et al., 
2010). The slope (S) factor and flow accumulation are derived from the depressionless DEM. 
The LS factor map is generated in ArcGIS using the raster calculator (Jain et al., 2010), by 
using the LS equation given by Moore & Burch (1986):  

 
(Power ((("FlowAcc" × cell size) / 22.13), 0.4)) × (Power ((Sin 
("Slope_Degree" × 0.01745 / 0.0896)), 1.3))     (Equation 5.11) 

 
The flow diagram to determine LS is shown in Figure 5.6. 
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Figure 5.6 Flowchart illustrating the process of determining the Modified Universal Soil Loss 

Equation (MUSLE) topography (LS) factor. 
Cover (C) factor 

According to Sadeghi et al. (2014), it is essential to consider variations in vegetation cover 
when considering the C factor for the MUSLE model. The C factor is a value between 0 and 
0.5 that relates to the extent of vegetation cover which protects the soil from soil erosion in a 
given catchment. The cover factor was determined for each land cover type using guidelines 
by Ayalew et al. (2015). Table 5.1 shows the C factor values assigned for SA land cover types. 

The cover management factor (C) is determined using the national land cover data (NLC, 
2014). The NLC (2014) is a national-scale shapefile showing land cover and land use across 
South Africa. Catchment-specific cover properties can be extracted from the readily-available 
shapefile by using the Geoprocessing tools in ArcMap to clip out catchment-specific data from 
the national land cover map. 

The attribute containing land cover categories is exported to Microsoft Excel where C 
factor values suggested by Wischmeier and Smith (1978) are used to assign C values to 
respective land cover classes. Assigned C values are weighted according to the proportion of 
the catchment covered by particular land cover classes. The mean of the C factor values 
assigned to the land cover categories represented in the study catchment and weighted by 
proportional area is then used as an input to the model. It is essential to note that C values for 
particular land cover categories can also be obtained and/or verified using C values from 
recent erosion modelling studies, including that by Jang et al. (2015) and Shinde et al. (2011). 
The process to determine the cover factor is shown in Figure 5.7.  
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Table 5.1 Cover factor (C) for SA land cover/use categories 

Land Cover Type C 

Forest, bush ,thicket 0.009 

Grasslands 0.12 

cultivated lands 0.37 

low shrub 0.013 

open bush 0.012 

bare/degraded land 0.45 

Plantations / Woodlots  0.012 

Waterbodies  0.01 

Wetlands 0.038 

Settlements 0.1 

 
Figure 5.7 Flowchart illustrating the process of determining the Modified Universal Soil Loss 

Equation (MUSLE) cover management (C) factor. 

Soil erodibility (K) factor 

Soil erodibility refers to the susceptibility of the soil to erosional processes, and involves 
soil characteristics such as structure, organic content and texture which are important 
determinants of the aggregate soil strength and water infiltration capacity. The K factor is rated 
on a scale from 0 to 1, with 0 indicating soils with the least susceptibility to erosion whereas 1 
indicates soils which are highly susceptible to soil erosion by water (Mhangara, 2011). 
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tables)
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to MS Excel)
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The soil type distribution for South Africa is obtained from readily-available shapefiles from 
the SA Atlas of Climatology and Agro-hydrology. These data contain the distribution of soil 
types and related K values for the soils. Catchment-specific soil data will be extracted from 
shapefile and attribute data exported to Excel to weight the K factor against the proportion of 
the catchment covered by each K class. The Schulze and Lorentz (1995) K values 
classification table (Table 5:2) will be used to classify the K values of respective catchments. 

 
Table 5.2 Erodibility factors for various soil erodibility classes (Schulze and Lorentz, 1995). 

K-Factor Soil Erodibility Class  

> 0.70 Very High 

0.50-0.70 High 

0.25-0.50 Moderate 

0.13-0.25 Low 

< 0.13 Very Low 

 
Schulze and Lorentz (1995) grouped K factor ranges and assigned descriptive classes. 

This makes it easier to attach K factor values to their impact on catchment soil erosion. 
Figure 5.8 below is a simplified flowchart of how soil erodibility is determined.  

 

 
Figure 5.8 Flowchart illustrating the process of determining the Modified Universal Soil Loss 

Equation (MUSLE) soil erodibility (K) factor. 
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Management practice (P) factor 

The management practice factor relates to conservation methods that are implemented to 
reduce the rate of soil loss from agricultural lands. These practices include contour and strip 
farming. The P factor refers to management practices that relate to agricultural lands. The 
Wischmeier & Smith (1978) values are used to determine the P factor for cultivated land and 
plantations. However, a value of 1 is assigned as the P factor for non-agricultural lands (Jang 
et al., 2015; Luo et al., 2016). Table 5.3 shows the P factor for SA land cover/use types. 
Table 5.3 Practice factor (P) for cultivation on various slope categories (Wischmeier & 

Smith, 1978) 
 
 
 
 
 
 
 
 
 

The quantification of the P factor requires mapping of agricultural areas and related 
conservation practices using high resolution imagery. Using land cover/use maps is a 
relatively easier and efficient method of determining the P factor (Jang et al., 2015; Luo et al., 
2016). The P factor for the current study was determined by using land use/land cover maps. 
The method by Wischmeier and Smith (1978) is used to determine P values. The proportion 
of cultivated land in each runoff zone is used to weight the P factor and this provides the mean 
catchment P, which is an input to the model. Figure 5.9 is a flowchart showing how P factor is 
derived. 

5.4 Sediment storage and delivery model 
5.4.1 Introduction 

This section describes the conceptual basis of the sediment storage and transport part of 
WQSED as well as the underlying mathematical equations for both the sediment yield and 
transport components of WQSED. The description of the WQSED model within this chapter is 
restricted to sediment transport to the outlet of a single quaternary catchment. Integration of 
WQSED into WQSAM will be implemented to describe routing of sediment through multiple 
quaternary catchments, and is the subject of a later section of this chapter.  

 

Land slope percent (%) P factor 
1 to 2 0.60 

3 to 5 0.50 

6 to 8 0.50 

9 to 12 0.60 

13 to 16 0.70 

17 to 20 0.80 

21 to 35  0.90 
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Figure 5.9 Flowchart illustrating the process of determining Modified Universal Soil Loss 

Equation (MUSLE) management practice (P) factor. 
 

5.4.2 Conceptual model of WQSED sediment storage and transport 
Separation of the study catchment into zones 

The catchment is divided into three runoff zones. These divisions are based on the 
topography factor. The three slope categories are high, medium and low which represent high, 
medium and low runoff zones, respectively. It is assumed within the sediment transport model 
that runoff is related to slope gradient, with higher slopes producing higher flow and greater 
erosion. The high runoff zone is assumed to generate more flow than the medium runoff zone, 
whereas the medium runoff zone generates more flow than the low runoff zone. The zone with 
the higher slope/flow produces more erosion and sediment delivery relative to other slope 
zones (Pimentel and Burgess, 2013). 

In the original sediment transport model, Bryson (2015) dealt with the issue of scale in 
sediment delivery modelling by focusing on the sediment cascade, incorporating an analysis 
of connectivity within the catchment which involves features that act as sediment sources, 
sinks and conduits to transfer sediment. Geomorphologic features that act as sources of 
sediment include badlands, gullies and the rest of the catchment area from which sediment is 
derived. Sediment sink features include flood outs, alluvial fans and reservoirs. Gulley systems 
and channels transfer sediment from slope storage to channel storage. Gullies (that are 
connected) are considered to be a part of drainage features as they are formed by streams 
eroding head-ward into hill slopes.  

Landscape units can however act as buffers that absorb the sediment flux within the 
catchment (Bryson, 2015). The sediment flux in such scenarios is reflected by the re-
organisation of storage as sediment moves across storages. High upstream erosion and 
sediment transport in such instances will not correspond with the low delivery at the outlet. A 
lumped model does not sufficiently reflect this behaviour, whereas a distributed catchment 
model can reflect responses of various spatial units across the catchment (Bryson, 2015). 

The erosion model (MUSLE) makes sediment available for various storages within the 
catchment. Without the energy factor from flow, this sediment settles into the storage. 
Sediment movement across storages and to the outlet is initiated when flow energy is 
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available. The division of the catchment into zones characterises both the runoff and the 
spatial distribution of topography within a catchment. Each runoff zone is characterised by two 
storages. These are the slope storage and channel storage, which includes all drainage 
features and gullies. Sediment moves from the high runoff zone to the low runoff zone, into 
the channel and out of the catchment. The model attempts to represent the stochastic nature 
of erosion by accounting for the dynamic movement of sediment between and within storages.  

Figure 5.10 illustrates the storage and delivery components of the model. In Figure 5.10a, 
the three storage and runoff zones are depicted with the main channel cutting through all the 
zones. The (Cprop) represents other channel storages and gulley systems through which 
sediment is routed to the main channel. In Figure 5.10b, SA0, SA1 and SA2 are inputs from the 
erosion model and these are placed into the three slope zones S0, S1 and S2, respectively. A 
proportion of the sediment placed within the storages is removed through the channel storages 
Cprop0, Cprop1 and Cprop2, depending on the transport energy of the runoff (Bryson, 2015). 
Sediment can be moved across storages, where it settles until a strong runoff event flushes 
stored sediment to the catchment outlet. The illustration in Figure 5.10 captures the robust 
sediment storage and delivery process. 

 

5.4.3 Mathematical description of WQSED 
Please refer to Appendix C. 
 

 
Figure 5.10  The sediment storage and delivery component of the model. Sourced from 

Bryson (2015) 

5.5 Study sites and data 
5.5.1 T35A-E 

The Tsitsa River Catchment (T35A-E) is part of the larger Umzimvubu River Catchment. 
It is located between −16.453928 (Lat.) and 32.888327 (Lon.), in the Eastern Cape, with well-
known towns within the catchment including Maclear and Mount Fletcher. Although the 
Umzimvubu River is noted as the largest undeveloped water resource in South Africa, plans 
are underway to construct a dam in quaternary T35E at Ntabelanga on the Tsitsa River. The 
river has a flow length of approximately 200 km before it joins the Tina River. Tributaries to 
the Tsitsa River include the Inxu River. The Tsitsa River Catchment lies in a very mountainous 
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region and varies considerably in elevation. The catchment has complex topography 
characterised by steep mountain slopes (Figure 5.11), gentle undulating foot slopes and 
almost flat valley floors (Le Roux et al., 2014). 

The catchment also varies considerably in geology, with high areas around the 
escarpment consisting of basaltic lava from the Drakensberg formation (Jurassic). This is 
underlain by a strata of Triassic sand stones and mudstones (Le Roux et al., 2014). The most 
dominant geological formation is the fine sandstones from the Clarens formation, followed by 
mudstones from the Elliot formation and sandstones of the Molteno formation (Le Roux et al., 
2014). There is also a small presence of quaternary alluvium, whereas dolerite occurs in thin 
bands. 

Soil depth is limited on the steep slopes and gradually deepens towards the foot slopes 
and floodplain areas due to colluvium and alluvial deposits. The thin soils on steeper slopes 
become highly erodible when vegetation is removed (Dollar and Rowntree, 1995), and this 
situation gradually worsens as livestock graze on the slopes .The soil erodibility index of the 
catchment is according to Schulze (2007) moderate to highly erodible. These conditions have 
resulted in massive gullying (Figure 5.12, 5.13) within the catchment.  

The climate is characterised by a distinct seasonality in rainfalls and temperatures within 
the catchment. Most of the rain (around 80%) falls during the summer (October to March), 
whereas winters are generally dry. Mean annual rainfall ranges from 625 mm in the low lying 
areas to 1,415 mm in the mountainous regions (Climatology Staff, 1978-2012). Mean 
temperatures range from 7°C in winter to 19°C in summer, with high variation during the day. 

The Tsitsa River Catchment is dominated by the grassland biome, whereas Eastern valley 
bushveld thrives along river channels in the lower catchment (Mucina and Rutherford, 2006). 
The natural vegetation is largely influenced by altitude and burning (Le Roux et al., 2014); 
therefore, small pockets of Afromontane forest occur along drainage lines and ravines where 
fire has minimal effect. The National Land Cover (NLC, 2014) shows that over 60% of the 
catchment area is covered by grassland. Patches of natural forest also occur alongside forest 
plantations. Other minority land cover/ uses include commercial and subsistence agriculture, 
waterbodies, mines, bare/degraded land and both urban and rural settlements (NLC, 2014). 

 

5.5.2 Duiwenhoks Dam catchment 
The Duiwenhoks Dam catchment (quaternary H80A) (Figure 5.14) is located at coordinate 

Lat. −33.98° and Lon. 20.98° in the Western Cape. The quaternary covers an area of 150 km2. 
The main towns within the catchment include Heidelberg and Vermaaklikheid. The 
Duiwenhoks River drains the Langeberg Mountains and flows towards the coast, entering the 
sea west of Mossel Bay. 

The topography of the catchment varies considerably (Figure 5.15), with the northern and 
southern parts of the catchment characterised by steep slopes with altitudes of around 600 m 
and 1,200 m, respectively. The area between the escarpments comprises a relatively flat to 
gentle valley with an altitude of around 300 m. The geology of the area consists of the 
Peninsula formation that dominates the northern escarpment and the Ceres formation that 
dominates the southern areas. The formation consists of sandstones, shales and tillites of the 
Cape Supergroup. The area is according to Schulze (2007) is characterised as highly erodible, 
which means that the soils are very susceptible to erosion. The catchment experiences a 
temperate climate, with rainfall occurring during both summer and winter. The mean annual 
precipitation is less than 500 mm and mean annual runoff is 212 MCM. Average daily 
temperature (ºC) ranges from 0 to more than 32 (Climatology Staff, 1978-2012). 
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Figure 5.11 Map showing location of the study area T35A–E. 
 

 
Figure 5.12 Steep gullied slopes in quaternary T35E 
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Figure 5.13 Gulley erosion and sediment transport in quaternary T35E 

 

 
Figure 5.14 Map showing location of the study area of the Duiwenhoks Dam catchment 

(H80A). 
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Figure 5.15 The Duiwenhoks Dam and topography and vegetation of part of the catchment.  

The vegetation is mainly a mixture of temperate, transitional forest and scrub. The 
dominant vegetation is fynbos which covers approximately 60% of the catchment (NLC, 2014). 
The natural vegetation is modified by a few forest plantations situated on the slopes of the 
southern edge of the catchment. The dominant land use type is cultivation, comprising 
approximately 15% of the entire catchment. Notable is that most of the cultivation within the 
catchment is commercial (dryland and irrigated agriculture). Other land uses include mining 
and sheep and ostrich farming in the more arid areas. Settlements are not a very significant 
land use as the catchment has a low population of around 30,000. 

 

5.5.3 Prinsriver Dam catchment 
The Prinsriver Dam catchment (quaternary J12G) (Figure 5.16) is located at the 

coordinates 20.812 (Lon.), −33.468 (Lat.) southwest of Laingsburg in the Western Cape. The 
catchment has an area of 768 km2.The landscape within the catchment consists of moderate 
to high relief mountains and hills with a mean altitude of 300-1,900 m (Figure 5.17). Slope 
varies widely across the catchment as this is a region containing folded mountains. The 
geology also varies widely with geological formations including Nardouw, Ceres, Bidouw and 
Waltevrede, with the latter being the most dominant in the catchment (Schulze, 2007). The 
formations are overlain by shales and sandstones; however, it is essential to note that 
sandstone dominates the study area. The soils are moderately erodible (Schulze, 2007). The 
area is semi-arid and characterised by a hot and dry climate. Rain falls in the very late summer 
to winter. The mean annual precipitation (MAP) ranges from 200-500 mm, whereas mean 
annual runoff is approximately 6 mm. The daily average temperature is 10-32ºC (Climatology 
Staff, 1978-2012). 
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Figure 5.16 Map showing location of the study area of the Prinsriver Dam catchment (J12G). 

 

Figure 5.17 The Prinsriver Dam and topography and vegetation of part of the catchment. 
Source (DWS) 
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The vegetation consists mainly of sandstone fynbos and succulent Karoo. Fynbos covers 
close to 70% of the study area, whereas succulent Karoo covers 15% (NLC, 2014). Notable 
also is that 11% of the catchment comprises bare ground; this kind of ground cover together 
with steep slopes is likely to exacerbate erosion (NLC, 2014). Land uses within the catchment 
consist of nature reserves such as the Anysberg and Witterberg, which are private nature 
reserves. Mining activity is carried out within the catchment, whereas human settlements are 
very limited. 

 

5.5.4 Churchill Dam catchment 
The Churchill Dam Catchment (Quaternaries K90A-B) (Figure 5.18) is located in the 

Eastern Cape at the coordinates 24.488 (Lon.), −33.994 (Lat.) in a ravine between the 
Suuranysberge and Tsitsikama mountains near the southern coast. 

The geology of the area is defined by sandstone and quartzite, leading to the formation of 
grey sandy soils and Table Mountain Sandstone. Podzolic and litholic soils are dominant in 
the catchment. The lower slopes are characterised by dark structured soils with fine sand, 
whereas the steep slopes contain nutrient deficient, acidic lithosols (Mucina and Rutherford 
2010). The valley bottoms consist of permanent and seasonally saturated hydric soils. These 
conditions are suitable for the formation of valley bottom peat which characterises the 
catchment. 

The catchment is drained by the Kromme River, which flows for approximately 100 km 
before entering the Churchill Dam. Tributaries drain from the escarpment in a trellised pattern 
(Figure 5.19). The mean annual rainfall (MAR) is 700 mm, with a wide temporal variation, with 
yearly averages ranging from 300-700 mm. 

 

 

Figure 5.18 Map showing location of the study area of the Churchill Dam catchment 
(Quaternaries K90A-B). 
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Figure 5.19 Google Earth image showing the topography and vegetation of part of the 
Churchill Dam catchment. 

The natural vegetation (Figure 5.19) of the area is dominated by fynbos, with other cover 
types including grassland, thicket and forest (Mucina and Rutherford, 2006). The valley bottom 
peatland is dominated by Palmiet (Prionium seratum), ferns, grasses and reeds, which are 
also found on the peatland. The considerable portion of the catchment consists of degraded 
vegetation comprising invasive alien species. 

Land uses in the catchment include nature reserves, orchards, livestock farms and 
vegetable farming. Much of the agriculture is large-scale commercial farming. Other land uses 
include mines and human settlements. 

 

5.5.5 Maden Dam catchment 
The Maden Dam catchment is a small catchment located in the Upper Buffalo River 

Catchment (quaternary catchment R20A). It is located between co-ordinates 
−32.672957 (Lat.) and 27.310065 (Lon.), near King Williams Town in the Eastern Cape 
province of South Africa. The catchment has an area of 30 km2 and is located in the steep 
upper reaches of the Amatola Mountains with an altitude ranging between 600-1,400 m above 
sea level. The catchment is characterised by steep slopes as shown in Figure 5.20. 

The catchment is well vegetated, with > 50% of the catchment covered in thicket, bushland 
and bush clumps. Indigenous forest and forest plantations cover the rest of the catchment 
(NLC, 2014). The geology of the catchment is dominated by the Karoo dolerite subgroup, 
whereas a small proportion lies in the Adelaide subgroup (Middleton and Bailey, 2008). Soils 
in the mountainous areas (Karoo dolerite group) which characterise the Maden Dam 
Catchment are thin, shallow and poorly drained as compared to the deep well-drained soils of 
the foothills (Adelaide group), which are prone to erosion because of reduced vegetation 
cover. Figure 5.20 show that soils in the catchment have low erodibility.  
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Figure 5.20 Map showing slope, soil erodibility, mean annual precipitation, simplified 
geology, vegetation types and location of the Maden Dam catchment in the 
Eastern Cape of South Africa. 

The climate of the catchment is warm to temperate with a mean annual temperature of 
21̊ C. The rainfall of the Buffalo River Catchment ranges from 400 mm to > 1,000 mm per 
year, with a mean annual rainfall of 700 mm; however, the segment of the Buffalo River 
Catchment upstream of the Maden Dam receives rainfall in the higher end of this range (1,500-
2,000 mm) as this area represents the headwaters of the catchment, and generates 
approximately 42% of the runoff of the entire catchment (O’Keefe et al., 1996). 

 

5.5.6 Klaserie Dam catchment 
The Klaserie (Jan Wessenar) Dam catchment (Figure 5.21) is located in the Klaserie River 

Catchment (quaternary catchment B73A). It is located between co-ordinates −24.659418 
(Lat.) and 31.085407 (Lon.) in Mpumalanga Province, South Africa. The catchment has an 
area of 136 km2. The catchment is located in a Lowveld region with a mean altitude of between 
300-600 m. Figure 5.21 shows that the area west of the catchment is characterised by steep 
slopes, whereas the rest of the catchment lies in the lower slope zone. 

The area generally has a dry climate, with temperatures averaging 22°C. Precipitation 
ranges between 400-800 mm year−1 (DWAF, 2004). However, rainfall on the escarpment is 
generally higher, ranging between 600-1,200 mm year−1, with mean annual temperatures 
varying between 10-22°C. Although the lower lying areas are warmer, they are also much 
drier, with an average rainfall of between 400-600 mm year−1 (DWAF, 2004). 
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Figure 5.21  Map showing slope, soil erodibility, mean annual precipitation, simplified 
geology, vegetation types and location of the Klaserie Dam catchment. 

The upper catchment is characterised by steep mountain slopes that are well vegetated, 
comprising Afromontane forests in the moist gorges of the Drakensberg escarpment. The 
vegetation comprises dense indigenous forest and timber plantations (NLC, 2014). The lower 
catchment is dominated by human settlements (high density suburbs) occupying the south 
eastern part of the area, whereas the north eastern part is dominated by commercial farming 
activities. Even though the lower catchment is sparsely vegetated, satellite imagery (Google 
Earth, 2016) does not show evidence of extensive land degradation. The geology of the area 
is mainly composed of granite rock, covering > 75% of the area and all of the lower catchment 
(Middleton and Bailey, 2008). The rest of the catchment is covered in quartzite and shales. 
The catchment is dominated by lowly erodible soils which reduce the rate of soil loss. 

 

5.5.7 Xonxa Dam catchment 
The Xonxa Dam catchment (Figure 5.22) is located on the White-Kei River. The dam 

receives water from rivers in quaternaries S10A-E. The catchment is located between 
coordinates −30.793738 (Lat.) and 28.748414 (Lon.), and is situated north of Queenstown in 
the Eastern Cape, South Africa. The total catchment area is 1,476 km2.  
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Figure 5.22  Map showing slope, soil erodibility, mean annual precipitation, simplified 
geology, vegetation types, and location of the Xonxa Dam catchment. 

The geology of the area is largely comprised of the Karoo supergroup which includes 
shales, mudstones and sandstones (Figure 5.22). The Tarkastad and Adelaide supergroups 
also characterise the area, consisting of sandstones and mudstones. The catchment also 
contains patches of Elliot, Clarens and Molteno formations, comprised of shales, siltstones, 
mudstones and sandstones. The soils of the catchment are largely deep clayey loams, rocky 
shallow soils and alluvial soils in the valleys. The soils have a high erodibility, ranging between 
0.2-0.7 (Figure 5.22).  

The catchment is located in one of the driest parts of the country. The vegetation is mainly 
comprised of grassland (> 70% of the total area), with patches of acacia Karoo thornveld as 
well as Afromontane forest and sub-arid thorn bushveld (NLC, 2014). The lower reaches of 
the catchment are characterised by valley thicket. Alien invasive species dominated by black 
wattle have a significant presence in the catchment, particularly along the riparian zones 
(DWAF, 2009). Land use within the catchment comprises livestock farming, subsistence and 
commercial farming, as well as forest plantations. Game farming is also being practised, 
whereas mining activities occur at a lesser scale. Human settlements comprise a major land 
use in the catchment, comprised of both urban and rural settlements (DWAF, 2009). 

 

5.5.8 Koster Dam catchment 
The Koster Dam is located in the Koster River Catchment (quaternary catchment A22B) 

(Figure 5.23). It is located between coordinates (decimal degrees) −25.713371 (Lat.) and 
26.768959 (Lon.) in the North West Province of South Africa. The catchment has an area of 
187 km2.  
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The geology of the catchment comprises of the Silverton, Daspoort and Strubenkop 
formations (Figure 5.23). The erodibility of the catchment ranges between 0.26-0.33, falling 
within the low to moderate erodibility class (Schulze and Lorentz, 1995). The vegetation of the 
catchment comprises mostly grassland, indigenous forest and thicket bush.  

 
Figure 5.23  Map showing slope, soil erodibility, mean annual precipitation, simplified 

geology, vegetation types, and location of the Koster Dam catchment 
A significant proportion of the catchment is covered by degraded land (NLC, 2014) which 

is susceptible to erosion. Cultivation is the dominant land use, comprising both subsistence 
and commercial agriculture. The mean annual rainfall ranges between 500-700 mm. 

5.6 Results and discussion 
5.6.1 Catchment parameters 
Topography (LS) factor 

The LS factor varied considerably across the study catchments, with a mean and median 
of 6.3 and 6.6, respectively. The LS factor used for the Duiwenhoks Dam catchment has the 
highest value at 9.7 followed by that of the K90A quaternary of 8. Both these catchments are 
located in the Western Cape. Figure 5.24 shows the distribution of the LS factor values across 
the study sites. The lowest value of LS of 1 was used in quaternary A22B, which is > 75% 
lower than those used for the other selected catchments. This quaternary is located in the 
Northern Cape. Values of LS > 6 were used for the T35A-C group of quaternaries, much 
higher than those of the T35D and T35E catchments that have values of LS of 4.6 and 5.6, 
respectively, which is attributed to T35A-C being steep headwater catchments. 
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Figure 5.24 Distribution of the values of the topography (LS) factor in the selected study sites 
Vegetation cover (C) factor 

The C factor indicates the state of vegetation cover in a particular catchment. Values closer 
to 0 indicate good vegetation cover whereas values closer to 0.5 indicate poor cover. A distinct 
variation between catchments in the southeastern part of the country and the rest of the 
country is evident. Quaternaries such as R20A, H80A and K90A-B that are located in the 
southeast have low cover factors of 0.01, 0.05 and 0.03 respectively (Figure 5.25). 

 

Figure 5.25 Distribution of the vegetation cover (C) factor in the selected study sites 
The rest of the selected catchments (with the exception of B73A) have C factors of above 

0.1. The S10A-E and T35 quaternaries (located in the Eastern Cape) have C factors ranging 
from 0.12-0.15 that is synonymous with grassland and scrub and bushland. However, the 
T35C quaternary has a slightly lower C factor of 0.09 that is likely influenced by a larger 
proportion of natural forest in the headwater basin. The A22B catchment in the dry North 
Western Cape has a C factor 0.17; the basin has the worst vegetation cover compared to the 
other study areas.  
Soil erodibility (K) factor 
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There is little variation in erodibility across the study areas, with approximately 77% of the 
study areas falling within the moderate erodibility (0.25-0.5) range. All the selected study sites 
in the Eastern Cape fall in the moderate erodibility category, including A22B, J12G and H80A. 
Figure 5.26 shows the distribution of K across the study areas. 

 

Figure 5.26 Distribution of the soil erodibility (K) factor for the selected study sites 
Low erodibility values were estimated for quaternaries R20A and B73A that are located in 

the northeastern and southeastern parts of the country respectively. The highest erodibility 
values were estimated for the K90A-B quaternaries that are located in the southeastern areas 
and closer to the coast.  
Management support practice (P) factor 

The practice factor relates to the management activities implemented on agricultural lands 
to reduce soil loss from agricultural areas. Values closer to one indicate poor practice whereas 
values close to 0 indicate good practice. P values above 0.8 were applied to all study areas 
(Figure 5.27). The results show that close to 50% of the catchments have P factors above 
0.95. The highest P value used is 0.99 for the J12G quaternary catchment located in the 
southeastern area of South Africa. 

The P factor values used across the study catchments are high and not variable. However, 
lower P values were used in B73A and A22B of 0.8 and 0.88, respectively. Table 5.4 displays 
the list of catchments and their estimated parameter values. 

5.6.2 Model outputs and analysis 
Model outputs for Klaserie Dam (B73A) 

The modelling of erosion within this catchment was driven by observed daily flows, and a 
period of complete daily flows from early 1960 to early 1970 was used. This catchment is 
characteristic of the extreme hydrological variability associated with arid catchments, as 
demonstrated by the significant peak flows (Figure 5.28). Periods of low to zero flows are 
interspersed by very high peak flows. The time series depicted in Figure 5.28 demonstrates 
this behavior noticeably for the period 1969-1972. This pattern is a result of rainfall 
characteristics of arid to semi-arid areas where long dry spells are accompanied by high 
intensity storms. The time series also shows a gradual increase in peak flows in the latter half 
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of the period (1968 onwards). This reflects an increase in rainfall amount towards the end the 
decade after the 1964 drought (Masih et al., 2014). 

 

Figure 5.27 Distribution of the management practice (P) factor in the selected study sites 
Table 5.4 Catchment erodibility parameters computed using GIS coverages 

Catchment Dam name Size (km2) K LS C P 

R20A Maden 30 0.24 7.7 0.01 0.92 

B73A Klaserie 136 0.2 9 0.04 0.8 

A22B Koster 187 0.28 1 0.17 0.88 

J12G Prinsriver 768 0.4 6.9 0.06 0.99 

H80A Duiwenhoks 150 0.3 9.7 0.05 0.96 

K90A Churchill 213 0.6 8 0.03 0.97 

K90B Churchill 149 0.6 6.4 0.03 0.97 

S10A-E Xonxa 1282 0.41 3.9 0.15 0.94 

T35A N/A 475 0.3 6.1 0.12 0.96 

T35B N/A 395 0.32 6.8 0.12 0.95 

T35C N/A 306 0.35 6.6 0.09 0.94 

T35D N/A 348 0.33 4.6 0.15 0.9 

T35E N/A 492 0.33 5.3 0.13 0.94 

The model output for soil loss (Figure 5.28) shows a trend similar to that of the flow time 
series; therefore, it is evident that the model generates erosion events in response to surface 
flow events. Low flow events within this catchment subsequently result in low erosion events, 
whereas high peak flows (1971-1972) are accompanied by peak erosion events. This 
characterises the relationship between flow and erosion, where flow is the driver of erosion. 

The analysis of simulated soil loss shows that an estimated 1,500 Kt of soil was lost from 
the 136 km2 Klaserie Dam catchment over the 11-year time series. The simulated soil loss for 
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the catchment is 9 t ha−1 year−1. The Msadala et al. (2010) erosion risk study estimated that 
the erosion of this area would range between 13-26 t ha−1 year−1.  

The Klaserie Dam catchment is categorised as a low to moderate erosion zone by Msadala 
et al. (2010). Although the mean topography factor (LS) of this catchment is very high, it is 
affected by the extremely high Drakensberg escarpment slopes. The remaining catchment 
(50%) is located in the low slope zone, thereby explaining the low rate of erosion. The steep 
upper catchment, which is assumed to experience higher erosion, is well vegetated with low 
soil erodibility, thereby resulting in reduced soil loss. The B73A quaternary catchment is 
located in a relatively dry climate, and the infrequent and low runoff events lead to a low 
cumulative soil loss over the time series. 

 

Figure 5.28 The model outputs in terms of surface flow and soil loss for the Klaserie Dam 
catchment in the Limpopo province, South Africa 

Model outputs for Maden Dam (R20A) 
A period of complete observed daily flow was used to drive the model estimates of erosion 

for this catchment, with flows for the period from early 1980 to late 2000 used.  
The time series of daily flow for the Maden Dam catchment shows frequent peak flows 

over the study period; however, the beginning of either decade was characterised by low flows. 
The years between 1981-1983 and 1991-1993 (Figure 5.29) exhibit very low flows. This can 
be attributed to the historical droughts that occurred at the beginning of both decades (Masih 
et al., 2014). It is essential to note that the peak flows of the Maden Dam catchment are 
significantly lower than the peak flows of the other catchments used in the current study, such 
as the Klaserie Dam catchment.  

The erosion time series shows a corresponding increase and decrease in erosion rate in 
response to flow rate (Figure 5.29). As a result of the lower peak flows, the early parts of each 
of the two represented decades contained the lowest erosion yields. 

The simulated results show that the cumulative amount of soil lost to erosion in the Maden 
Dam catchment over the 21-year study period is 390 Kt, produced from the relatively tiny 
headwater catchment of 31 km2. The simulated soil loss for the catchment is 6 t ha−1 year−1. 
The result of this study falls slightly above the range of the estimate by Msadala et al. (2010) 
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for this region, which provided the most recent erosion estimation for South Africa. According 
to the estimate by Msadala et al. (2010), the soil loss from the catchment should range 
between 0-5 t ha−1 year−1.  

The Maden Dam catchment is characterised by steep slopes, although low soil erodibility 
and good vegetation cover reduce the rate of erosion. The Msadala et al. (2010) erosion risk 
map shows that the catchment is located in a very low to low erosion zone. The low soil loss 
estimated in the current study is likely associated with the good vegetation cover observed 
within the wider that part of the R20A quaternary catchment.  

 

 

Figure 5.29 The model outputs in terms of surface flow and soil loss for the Maden Dam 
catchment (R20A) in the Eastern Cape, South Africa. 

Model outputs for Koster Dam 

The flows used to drive the sediment model for this catchment were a period of unbroken 
daily observed flows; therefore, the model outputs extend from the mid-1960s to early 2000.  

The flow time series shows that the Koster Dam catchment is characterised by long dry 
spells typically associated with arid and semi-arid climates (Figure 5.30). Significantly high 
peak flows are evident for the years 1997 and 2000. Although low flows characterise the flow 
time series, severe dry periods are noted for 1967-1968, 1982-1984 and 1990-1994 (Masih et 
al., 2014).  

The erosion output for the Koster Dam Catchment (Figure 5.30) shows increases and 
decreases in response to flows. This catchment generally exhibited lower erosion output 
compared to the other study areas of the current study. Cumulative erosion for the time series 
indicates that the Koster Dam catchment has considerably low erosion, and past erosion risk 
studies, such as that of Rooseboom (1992), have placed this catchment in a very low erosion 
zone. 

The analysis of simulated soil loss shows that an estimated 650 Kt of soil was simulated 
as lost from the 187 km2 Koster Dam catchment over the 34-year time series. The simulated 
soil loss for the time series is 1 t ha−1 year−1. The Msadala et al. (2010) erosion risk study 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0

2,0

4,0

6,0

8,0

10,0

12,0

M
ea

n 
so

il 
lo

ss
 K

t/y
r

M
ea

n 
an

nu
al

 F
lo

w
 (m

m
)

Quaternary Catchment R20A

Flow Soil loss



 
 

123 
 

estimated that the soil loss in the catchment would range between 0-5 t ha−1 year−1; therefore, 
the results of the simulations fall within the lower range of the Msadala et al. (2010) estimate.  

The Koster Dam catchment is located in a region classified as experiencing very low 
erosion (Msadala et al., 2010). The low amount of erosion recorded in the catchment is likely 
a result of the interaction between multiple factors, including topography and soil erodibility. 
Although the vegetation cover is poor and is likely to contribute to soil loss, the soil erodibility 
and slope are very low, thereby reducing soil loss rates. The flow time series shows long dry 
spells accompanied by low peak flow events, indicating that that there is insufficient flow 
energy to drive rapid erosion across the A22B quaternary catchment. 
Model outputs for the Xonxa Dam catchment (S10A-E) 

Since no daily observed flow were available for this study area, monthly WR90 flows were 
used, disaggregated to daily using the method by Slaughter et al. (2015b); therefore, the flows 
used to drive the sediment simulations extend from 1920 to 1990. 

The flow time series indicates that the Xonxa Dam catchment is characterised by high 
peak flows. Figure 5.31 shows that the peak flows for this catchment are higher than those 
observed in all the other catchments of the current study. The years 1924, 1944, 1972 and 
1987 contain extreme peak flows > 200 mm. The flows indicate that periods of dryness were 
experienced between peak flows events, a pattern characteristic of the hydrological variability 
associated with semi-arid catchments. The high peak flows experienced throughout the time 
series are an important factor in the high erosion that is experienced in the study area. 

The output of the erosion model shows that an estimated 600 × 106 tons of soil was lost 
from the 1,282 km2 Xonxa Dam catchment over the 70-year time series. The simulated erosion 
for the catchment is 70 t ha−1 year−1. The Msadala et al. (2010) erosion risk study estimates 
that erosion within the study would range between 60-150 t ha−1 year−1; therefore, the erosion 
model simulated results are similar to the lower range of the Msadala et al. (2010) estimate.  

The Xonxa Dam catchment is positioned in one of the highest erosion risk areas in the 
country, as shown by the erosion risk map of Msadala et al. (2010). The model output for the 
time series also shows extreme erosion events, particularly the years 1944, 1972 and 1987. 
Erosion for the year 1944 was simulated to exceed 600 Kt/day, an extreme case of erosion. A 
dam sedimentation study conducted by Msadala et al. (2010) found that the Xonxa Dam 
sedimentation rate is 888 tons km−2 year−1, which is very severe given that the effective 
catchment area is > 1,000 km2.  

The Xonxa Dam catchment is located in a high erosion region. The catchment is 
characterised by steep slopes. The daily flow time series (Figure 5.31) shows very high peak 
flows, which correspond with high erosion events. The soil erodibility of the catchment is very 
high, whereas vegetation cover is relatively poor. The interactions between these erosion 
factors result in a high soil loss rate over the quaternaries S10A-E. 

Model outputs for Churchill Dam (K90A−B) 
Since an unbroken record of observed daily flows was not available for the catchment, the 

monthly WR90 flows were used, disaggregated to daily using the method by Slaughter et al. 
(2015). The flows used for simulations in this catchment extend from 1920 to 1990.  

The average soil loss for the Churchill Dam catchment is estimated at approximately 
20 t ha−1 year−1. The estimate is within the range obtained by Le Roux et al. (2008) of 13-
25 t ha−1 year−1. The range relates to areas affected by moderate soil loss. The total simulated 
soil loss over the time series is 47 × 106 tons. The soil loss varies temporally in relation to 
variations in discharge over time. Periods of high discharge are characterised by high soil loss. 
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Figure 5.30 The model outputs in terms of surface flow and soil loss for the Koster Dam 
catchment (A22B) in the North West Province. 

The Churchill Dam catchment is characterised by good vegetation. Whereas good 
vegetation cover reduces raindrop impact, encourages infiltration thus reducing runoff velocity, 
it is the highly erodible soils in the catchment that result in significant soil loss. The catchment 
however falls within the low to moderate soil loss category (Msadala et al., 2010), and is 
influenced by the low runoff rate and good vegetation coverage. 
Model outputs for T35A−E 

Quaternary catchment T35A The simulation period for this catchment is from 1920-1990 
and monthly WR90 flows disaggregated to daily using the method by Slaughter et al. (2015) 
were utilised to drive the model. The WR90 flows were used due to the lack of a continuous 
record of observed flows. 

The simulated output of 166 × 106 tons was recorded from the catchment. The soil was 
lost from the 475-Km2 over a 70-year time series. Approximately 50 t ha−1 year−1 of soil is lost 
from the catchment. The output is within the range of previous estimates as Msadala et al. 
(2010) estimated that 26-60 t ha−1 year−1 is lost from within the catchment. Although the range 
given by Msadala et al. (2010) is very wide and at a coarse scale, it gives a valuable indicator 
for us to see if our estimates are reasonable. 

The simulated output indicates that the catchment has a high rate of soil loss (Figure 5.33). 
Msadala et al. (2010) places the catchment in a high to very high soil loss category. The 
catchment has poor vegetation cover; the cover factor of 1.2 indicates that the catchment is 
largely grassland that does not provide excellent protection against raindrop impact. The 
catchment also has one of the highest mean values of flow as compared to the other 
catchments used in the study, and this explains the high soil loss rate within the area.  

Quaternary catchment T35B The simulated soil loss output for the catchment is 
174 × 106 tons (Figure 5.34) .This value is cumulative daily time scale simulations over 70 
years. The cumulative simulations equate to 63 t ha−1 year−1 of soil that is lost from the 395-
km2 catchment. The result is slightly outside the 26-60 t ha−1 year−1 estimated by Msadala et 
al. (2010). The result shows that the catchment is prone to high levels of soil loss. 
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The high soil loss in this catchment is attributed to the dominant grassland vegetation, 
which is sparse and degraded. Apart from the poor vegetation coverage, the catchment has 
the highest LS factor among T35 quaternaries and this largely influences the high soil loss 
simulation. The catchment is in the high to very high soil loss category (Msadala et al., 2010). 

Quaternary catchment T35C The monthly WR90 flows disaggregated to daily using the 
method by Slaughter et al. (2015) were used to drive the model. The catchment has no 
gauging station; hence, there is no observed flow record available. The WR90 flow record 
used in the simulation is from 1920 to 1990. 

The cumulative soil loss over the catchment is 128 × 106 tons (Figure 5.35). This was 
simulated over a 70-year time series. The annual soil loss rate is 60 t ha−1 year−1.The 
simulated output falls within the range estimated by Msadala et al. (2010) of 26-60 t ha−1 year−1 
lost from the catchment. The catchment is also prone to soil loss similar to the other 
quaternaries selected from this region. 

The T35C catchment has better vegetation coverage (C-factor 0.09) as compared to the 
other T35 catchments. However, the high output simulated for the catchment is attributed to 
the LS factor and soil erodibility factor (K) which is the highest among the T35 catchments. 
The reasonable vegetation coverage prevents the catchment from having the worst soil loss 
output among the T35 group of catchments. 

Quaternary catchment T35D Since no daily observed flow were available for this study 
area, monthly WR90 flows were used, disaggregated to daily using the method by Slaughter 
et al. (2015b); therefore, the flows used to drive the sediment simulations extend from 1920 to 
1990. 

A cumulative 109 × 106 tons of soil was lost from the 348-km2 study area (Figure 5.36). 
This amounts to 45 t ha−1 year−1 of soil lost from the catchment. The simulated output falls 
within the range estimated by Msadala et al. (2010) of 26-60 t ha−1 year−1 lost from the 
catchment. 

The high soil loss output from the catchment is attributed to the poor vegetation cover. The 
catchment has a cover factor of 1.5 that is the highest among the group of T35 catchments. 
However, the catchment has the lowest LS and P factors among the T35 study catchments, 
and this reduces the soil loss significantly compared to headwater catchments T35A-C.  

Quaternary catchment T35E The monthly WR90 flows were used, disaggregated to daily 
using the method by Slaughter et al. (2015). The flow period used within WR90 is from 1920-
1990, and this is the simulation period for which the model was applied. The simulated results 
showed that the cumulative amount of soil lost due to erosion in the 492-km2 T35E quaternary 
catchment is 137 × 106 tons over a 70-year period. The mean annual soil loss is 
1.95 ×106 tons. This translates to approximately 40 t ha−1 year−1 of soil that is lost from the 
catchment. The result of the current study falls within the range of the findings of Msadala et 
al. (2010) who estimated that 26-60 t ha−1 year−1 is lost from the study area. Le Roux et al. 
(2014) estimated soil loss for the same area to be between 21-50 t ha−1 year−1.  

The rate of soil loss correlated well with runoff (Figure 5.32). High flows are typically 
accompanied by increased soil loss. The graph (Figure 5.32) shows the typical ‘flashiness’ 
associated with arid catchments where periods of dryness are followed by large storm events. 
This triggers rapid erosion, as displayed by the years 1976 and 1977. The model output for 
soil loss also shows the impact of low flows associated with droughts that affected South 
Africa. The severe drought period of 1980-1983 (Masih et al., 2014) was associated with low 
flows and reduced soil loss.  
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Figure 5.31 The model outputs in terms of surface flow and soil loss for the Xonxa Dam 
catchment in the Eastern Cape Province, South Africa. 

 

Figure 5.32 The model outputs in terms of surface flow and soil loss for the T35E catchment 
in the Eastern Cape Province, South Africa 
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Figure 5.33 The model outputs in terms of surface flow and soil loss for the T35A catchment 
in the Eastern Cape Province, South Africa 

 

Figure 5.34 The model outputs in terms of surface flow and soil loss for the T35B catchment 
in the Eastern Cape Province, South Africa 
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Figure 5.35 The model outputs in terms of surface flow and soil loss for the T35C catchment 
in the Eastern Cape Province, South Africa 

 

Figure 5.36 The model outputs in terms of surface flow and soil loss for the T35D catchment 
in the Eastern Cape Province, South Africa 

Model outputs J12G 
The WQSED Model was driven using a WR90 flow record from 1920-1990. The monthly 

flows were disaggregated to daily using the method by Slaughter et al. (2015). 
The model estimated 3 t ha−1 year−1 of soil lost from the catchment (Figure 5.37). A 

cumulative 16 × 106 tons of soil was lost from the 768-km2 study area over the 70-year time 
series. The model simulation is lower than the previous estimates by Msadala et al. (2010) 
who estimated that 6-13 t ha−1 year−1 of soil is lost from the catchment. 
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The J12G catchment is classified to be in a low erosion zone (Msadala et al., 2010). The 
erodibility parameters are marginally different from parameters recorded for high soil loss 
areas such as the T35 group of catchments, with the exception of the cover factor (0.06) which 
denotes good vegetation coverage. The low simulated soil loss rate is likely associated with 
low flow rate. The average flow rate of 0.12 mm-1 s-1 is one of the lowest flow averages across 
all the catchments used in this study. Flow is the driver of the model; therefore, a catchment 
with low flows will be characterised by low soil loss output, even if other (erodibility) factors 
indicate potential for high erosion. Without sufficient flow energy, soil will not be dislodged 
and/or transported. 

 

Figure 5.37 The model outputs in terms of surface flow and soil loss for the Prinsriver Dam 
catchment in the Western Cape Province, South Africa 

Model outputs H80A 

The monthly WR90 flows disaggregated to daily using the method by Slaughter et al. 
(2015) were used to drive the model. The flows used for simulations in this catchment extend 
from 1920 to 1990.  

The simulated results show that the cumulative amount of soil lost to erosion in the 
Duiwenhoks Dam catchment over the 70-year study period is 25 × 106 (Figure 5.38). This 
equates to 24 t ha−1 year−1 of soil that is lost from the catchment. The result of this study falls 
within the range of the estimate by Msadala et al. (2010) for this region, which provided the 
most recent erosion estimation for South Africa. According to the estimate by Msadala et al. 
(2010), the soil loss from the catchment over the time series should range between 13-
26 t ha−1 year−1; therefore, the result of the current study fell within the upper range of the 
estimate by Msadala et al. (2010) 

The H80A quaternary catchment falls in a moderate erosion zone (Msadala et al., 2010). 
The catchment has the highest LS factor compared to all the other study areas. A high LS 
factor increases erosion rates (Morgan, 2005); however, the catchment has a very good 
vegetation coverage (C factor = 0.05). The good vegetation absorbs the effects of the high LS 
factor and eases the soil loss rate. The H80A catchment has a low average time series flow 
rate (0.7 mm−1 s−1) compared to T35 catchments (> 1.5 mm−1 s−1), and this partly contributes 
to lower soil loss rates.  
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5.6.3 Model outputs: sediment concentration 
Four catchments were selected to analyse sediment concentration outputs by the model. 

These include A22B, T35E, B73A and R20A representing arid, semi-arid, semi-arid and 
temperate climatic regions respectively. The two semi-arid catchments are considered to cater 
for the Eastern Cape proposed site, which is to be constructed in a reportedly very high erosion 
area (Le Roux et al., 2014). The model simulates sediment concentrations likely to be 
recorded at the outlets of the catchments. Sediment concentration duration curves were used 
analyse the time series outputs (Figure 5.39). 

 

 

Figure 5.38 The model outputs in terms of surface flow and soil loss for the Duiwenhoks Dam 
catchment in the Western Cape Province, South Africa. 

The model simulated low concentrations for the arid A22B catchment. The peak time-
series concentration is 50 mg ℓ−1. The curve shows that model simulations of sediment 
concentration are more than 1 mg ℓ−1 less than 10% of the time and below 0.1 mg ℓ−1 over 
60% of the time. The model simulations of sediment concentration for the R20A quaternary 
catchment representing the temperate region show a much lower time series peak of 
10 mg ℓ−1. The simulations reflect concentrations above 1 mg ℓ−1 less than 5% of the time, 
whereas concentrations less than 0.1 mg ℓ−1 are reflected over 70% of the time series. Model 
simulations for the B73A catchment in the semi-arid zone show a high time series peak 
concentration of 477 mg ℓ−1. Sediment concentrations above 1 mg ℓ−1 are reflected 50% of the 
time and 20% of the time for concentrations less than 0.1 mg ℓ−1. Sediment sampling 
conducted in a nearby catchment observed a high of 3,000 mg ℓ−1. The observed 
concentrations are five times higher than the model outputs. Model simulations for the T35E 
catchment showed the highest time series peak of 10,000 mg ℓ−1. The simulations for the 
catchment also reflect concentrations of more than 1 mg ℓ−1 more than 90% of the time. 
Sampling conducted in a catchment relatively near to T35E (Bannatyne et al., 2017) reported 
a high sediment concentration of 5,000 mg ℓ−1. The model simulations are therefore two times 
higher than what has been observed in a separate catchment. It is however important to point 
out that sediment concentrations can vary immensely at spatial and temporal scales. 
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5.6.4 Sensitivity of model outputs to inputs 
A statistical analysis was conducted using principle component analysis (PCA). The 

analysis sought to investigate the impact of inputs on the model outputs across catchments. 
The analysis is crucial in identifying the prominent drivers of soil loss in South African 
catchments. The results of the analysis (Figure 5.40) show that runoff (flow) is the major driver 
of soil loss. The correlation of flow to soil loss is very high (> 0.9). Apart from flow, the only 
other factor that correlates significantly with soil loss is the vegetation cover factor. The 
vegetation cover factor has a correlation of 0.6 to soil loss. All the other factors that include 
area, topography, management practice and soil erodibility have a correlation below 0.5. A 
correlation lower than 0.5 indicates a weak relationship and therefore lower impact on the soil 
loss outputs. Notably, soil erodibility and topography have a negative correlation with soil loss. 
The negative correlation indicates that among the study sites used in the study, most of those 
with high soil erodibility and topography values had low soil loss output. The analysis was 
undertaken using the inputs and outputs of all catchments in the study to identify trends in 
inputs and outputs. 
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Figure 5.39 Sediment concentration duration curves representing varying climatic regions (A) 
A22B – semi arid (B) R20A – temperate (C) B73A − semi-arid and (D) T35E – 
proposed location for the Ntabelanga Dam 
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Figure 5.40 Correlation of the physical catchment parameters to simulated soil loss 
The PCA tested the relationship of inputs and outputs across catchments. Although the 

analysis provides an important overview on the influence of parameter values on soil loss 
output, the scale at which it is applied does not suffice to explain model sensitivity to input 
parameter values. A deterministic sensitivity analysis was used to analyse model response to 
changes in parameter input values. The result of the sensitivity analysis summarised in 
Table 5.5, shows that the model was more sensitive to the parameter relating to vegetation 
cover (C) compared to the other parameters. The minimum and maximum ranges for the C 
parameter gave the lowest and highest model outputs, respectively. When all parameters were 
set to minimum values, model output associated with C (Pmin) was > 75% lower compared to 
model outputs associated with the other parameters. The same trend was noted at the 
maximum parameter value where the outputs for C (Pmax) were > 45% higher compared to the 
output for other parameters. The management support practice (P) parameter showed the 
least sensitivity in output. 

 

5.6.5 Discussion 
Model parameterisation 

The use of readily-available geographic information system (GIS) datasets and the a-priori 
regionalisation procedure managed to yield parameter values that were consistent with 
physical properties of the various catchments under study. The parameter values could be 
related to catchment characteristics reported in the literature and observed in field 
observations and satellite imagery.  

The distribution of the LS shows variations in topography across the selected sites. The 
Duiwenhoks Dam catchment has the highest LS factor (9.7) and this was attributed to it being 
located in a ravine; the steep slopes on either side of the catchment contribute to the LS 
distribution calculated for the catchment. 

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

Area K LS C P flow



 
 

134 
 

 
Table 5.5 Sensitivity of soil loss simulations (in Kilotons) to model input parameter values. 

The Pmin & Pmax correspond to the minimum and maximum values of the 
parameter, respectively 

Parameters Parameter Ranges Soil Loss Output 
 Minimum Maximum Pmin Pmax 

Cover 0.003 0.5 3 530 
Soil erodibility 0.03 0.7 12 290 
Topography 1* 10* 25 260 
Practice 0.1 1 14 140 

*The LS values used were min and max values recorded in selected study areas; 
therefore, the LS factor can be higher or lower than stated above.  

The Koster Dam Catchment located on a relatively flat plain has the lowest LS of 1. The 
T35 catchments located near Lesotho have high LS factor distributions; the Drakensburg 
range dominates this region, resulting in steep slopes. The LS factor for the selected 
catchments range from a low of 1 and a high of 9.7. It is essential to note that mean LS factor 
values are used as model inputs; therefore, much lower and higher values would be distributed 
spatially across a given catchment.  

The distribution of the vegetation cover (C) factor does not show a lot of variation 
(Table 5.5). Approximately 50% of the study sites have a C factor of between 0.1 and 0.15, 
indicating the dominance of grassland in these areas. A dominance of grasslands in the C 
factor is consistent with the classification of Acocks (1988) and Mucina and Rutherford (2006) 
who highlight that approximately two thirds of South Africa is dominated by grassland and 
savannah grassland biomes. The C factor is largely influenced by the climatic zonation of 
respective catchments as climate correlates with vegetation coverage. The arid Koster Dam 
catchment has the highest C factor of 0.17. All the catchments in the semi-arid zones have a 
C factor ranging from 0.1-0.15 (indicating grassland) except for the Klaserie Dam catchment. 
The Klaserie is small, steep headwater catchment that receives up to 1,200 mm (Schulze et 
al., 2007) of rainfall due to the orographic effect. The Klaserie catchment contains good 
coverage of indigenous forest (NLC 2014) that influences its C factor. The catchments located 
in the southeastern humid and temperate regions such as the Maden and Prinsriver dam 
catchments have low C factors of below 0.05. The low C factor is a result of the good 
vegetation coverage in these areas. It was noted from field observations and from literature 
(Poesen et al., 2005), that the former Transkei region in the Eastern Cape (which includes 
T35A-E) is experiencing drastic vegetation loss because of overgrazing. It may be necessary 
to adjust the grassland C factor upwards to cater for degraded grassland scenarios.  

The soil erodibility factor distribution (Table 5.5) shows that the majority (69%) of selected 
study sites have soils that are moderately erodible. K factors between 2.25-0.5 are classified 
as moderately erodible (Schulze and Lorentz, 1995). The Churchill Dam catchment has a high 
erodibility factor that is associated with the Podzolic (sandy) soils dominating that region. In 
an empirical study conducted in the T35 catchments, it was discovered that part of the 
catchment is covered by dispersive soil (Le Roux et al., 2014). Dispersive soils have a high 
infiltration rate and crumble and dissolve when exposed to water. The discovery means that 
our previous understanding of the soils of the area (Schulze, 2007) requires revision as K 
factor of the area may be higher.  

The management practice (P) factor distribution (Table 5.5) shows that most of the study 
areas have high P factor values of > 0.8.The high P factor values indicate that there are poor 
management practices within the study areas. However, this is certainly not the case. In most 
of the catchments, agriculture constitutes a small percentage of the total area. Since non-



 
 

135 
 

agricultural land is assigned a P factor of 1 (indicating no management practice), weighting 
the P factor of all land used to obtain the mean catchment P factor results in a high P factor. 
The mean P factor effectively represents the parameter at a catchment scale; however, the 
mean value is misleading and fails to depict the actual status of the agricultural land.  

Model outputs 

The model results show that erosion is essentially driven by flows, and catchments with 
higher peak flows experience higher rates of erosion (Figure 5.41). A linear regression 
analysis of model output and flow yielded an R2 of 0.88 (Figure 5.42). However, some of the 
catchments such as the T35A and T35E have lower soil loss rates but high flows. This can be 
attributed to other factors that influence erosion processes in catchments such as vegetation 
cover and slope. Flow is the most significant driver of erosion processes; however, soil loss 
results from an interaction of factors. A typical example of these interactions is that the size of 
a catchment affects the amount of sediment available in storage; however, this does not 
translate to increased erosion. This is exhibited by the Prinsriver Dam catchment (768 km2), 
which has a lower soil loss rate compared to other catchments which are less than half its 
size. Notable also is that although steep-sloped catchments are expected to experience more 
erosion, steep slopes that are well-vegetated, such as those found in the Koster and Klaserie 
dam catchments, are protected from erosion. However, sensitivity analysis outputs show that 
flow and vegetation cover are the lead causal factors in soil loss. 

 

 

Figure 5.41  The relationship between mean annual runoff and annual soil loss for the 
selected study areas. 
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Figure 5.42 Linear correlations of soil loss and flow. 
The model outputs for soil loss (Table 5.5) are consistent with soil loss estimates from 

previous studies. The outputs from the model fall within the range of soil loss estimates by 
Msadala et al. (2010), which is the most recent erosion study covering South Africa. The 
Msadala et al. (2010) sediment prediction for South Africa is a follow-up study to the 
Rooseboom (1992) study; however, the more recent study by Msadala et al. (2010) provides 
considerably higher estimates compared to the earlier study.  

The results (Table 5.6) show that the catchments located in the Eastern Cape have the 
highest soil loss output. Le Roux et al. (2014) conducted an erosion modelling study in the 
Umzimvubu catchment in the Eastern Cape region and the results indicated a very high 
sediment yield of > 50 t ha−1 year−1 of soil loss. The high rates of soil loss in the region are 
attributed to massive gullying and the presence of dispersive soils that erode rapidly when 
exposed to rainwater (Le Roux et al., 2014). Ongoing research by the department of 
environmental affairs in the Ntabelanga Dam site also suggests there may be ongoing erosion 
below the surface (known as piping), resulting in the surfaces suddenly collapsing into large 
gullies. The high soil loss rates in the Eastern Cape can also be attributed to human influence. 
Poor land management and overgrazing are destroying the vegetation cover, which are 
important factors contributing to soil loss (Poesen, 2005). 

The temperate south eastern parts of the country which include the R20A and K90A-B 
catchments have much lower erosion rates compared to the semi-arid Eastern Cape 
catchments. The lower soil loss rates are attributed to the good vegetation coverage in the 
region (Table 5.6). 

The sensitivity analysis (Table 5.5) shows that a low vegetation cover parameter 
(indicating good coverage) results in considerable decreases in soil loss. An experiment 
conducted by Hudson and Jackson (1959) proved that there is 99% less erosion on vegetated 
soil as compared to bare soil. This validates why catchments in the south east have > 45% 
lower erosion than catchments in the poorly-vegetated Eastern Cape. A study conducted by 
Rooseboom (1992) showed that the catchments in the temperate region experienced > 60% 
lower erosion as compared to the Eastern Cape. The parameterisation within the current study 
has managed to represent catchment conditions and the model outputs are consistent with 
the erosion trends that are reported by past studies for the country.  
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Table 5.6 Summary of model erosion outputs and estimates (Kt) by Msadala et al. (2010) 

Name  (km2) Climate 
Model estimates 
(tons h−1 yr−1) 

Previous estimates (tons 
h−1 yr−1) (Msadala et al., 
2010)  

R20A 30 Temperate  6 0-5 

B73A 136 Semi-arid  9 13-26 

A22B 187 Arid 1 0-5 

J12G 768 Arid  3 6-13 

H80A 150 Temperate 24 13-26 

K90A 213 Temperate 23 13-26 

K90B 149 Temperate 23 13-26 

S10A-E 1282 
 

semi-arid 70 60-150 

T35A 475 semi-arid 50 26-60 

T35B 395 semi-arid 63 26-60 

T35C 306 semi-arid 60 26-60 

T35D 348 semi-arid 45 26-60 

T35E 492 semi-arid 42 26-60 

 
The western part of South Africa is characterised by aridity (Schulze, 2007). The lack of 

precipitation also affects erosion and sediment transport. Rooseboom (1992) highlights that 
this region experiences on average 70% lower erosion as compared to the rest of South Africa. 
The model outputs of the catchment representing this region (A22B-Table 5.6) show that the 
catchment has the lowest erosion output compared to other selected study sites. The ability 
of the model to simulate erosion trends that have been reported in previous literature indicates 
the effectiveness of the parameterisation procedure employed to estimate model parameters. 

5.7 Incorporation of WQSED into WQSAM 
5.7.1 Introduction 

The incorporation of WQSED into WQSAM is required from a water quality systems 
modelling perspective, as although it is sufficiently accurate to model sediment from individual 
subcatchments using natural incremental flow, once sediment enters the main stem of a river, 
flow is impacted through human use such as extractions and return flows as well as reservoirs. 
A certain velocity of flow is required to maintain sediment in suspension, and reservoirs can 
act as sediment traps. Therefore, to model the fate of sediment within a large catchment highly 
impacted by human use, there is no alternative but to drive the sediment modelling through 
flows generated by a systems (yield) model, rather than a hydrological model.  
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The broad approach taken within WQSAM is to model incremental inputs of sediment from 
individual subcatchments separately using WQSED. The simulations of daily sediment loads 
are then saved as time series in SPATSIM, from which they are read as input into WQSAM. 
Therefore, for conceptual understanding of erosion and sediment routing in individual 
subcatchments, please read the previous sections of the current chapter.  

It is important to stress that since WQSED does not simulate bed load transport of 
sediment, WQSAM similarly ignores bed load transport and concentrates on the transport of 
suspended sediment. 

 

5.7.2 Calculation of velocity, depth and river width with different flows 
To calculate the transport of suspended sediment, WQSAM requires estimates of velocity 

(m s−1), depth (m) and width (m) with different daily flows (m3 s−1). To calculate these, WQSAM 
makes certain assumptions about the channel shape, and also requires additional user input, 
i.e. the river channel maximum width (m) and slope. The assumptions of the channel shape 
are illustrated in Figure 5.43. 

Within the sediment routing procedure of WQSAM, the model will first step through all the 
subcatchments (nodes) in the modelled system, and using the set parameters of Widthmax and 
Slope, will calculate width (Width), depth (Depth), flow (Q) and velocity (Vel) in one cm 
increments of depth until the maximum depth for the channel. These values are placed in an 
array in run-time memory, which effectively acts as a lookup table during the sediment routing. 

Widthbed is assumed to be 60% of Widthmax. We need to calculate Depth at bankfull to 
determine the range of depths for the lookup table: 
Opp = (Widthmax – (Widthmax * 0.6))/2      (Equation 5.12) 
Depthmax = 0.6 * ((Widthmax/0.45)2.08)0.35     (Equation 5.13) 
Depthmax is the depth at bankfull and determines the range of depths for which Q, Vel and 
Width are calculated in one cm increments of Depth.  
We need the angle α (Figure 5.43) in subsequent calculations: 
Hyp = (Opp2 + Depthmax2)0.5 (Pythagorean Theorem)    (Equation 5.14) 
α = arcsin(Opp/Hyp)        (Equation 5.15) 
For each 1 cm increment of Depth from 1 to Depthmax: 
N = 0.1 – (Depth/Depthmax * 0.06)      (Equation 5.16) 
Where N is Manning’s N for an assumed range of 0.04 to 0.1, with 0.1 the value at the lowest 
depth and 0.04 the value at Depthmax.  
To work out wetted perimeter and area with changes in depth: 
Hyp = Depth/Cos(α)        (Equation 5.17) 
Opp = (Hyp2 – Depth2)0.5       (Equation 5.18) 
Wetted_Perimeter = Hyp * 2 + Widthmax * 0.6    (Equation 5.19) 
Area = (Widthmax * 0.6 * Depth) + (Depth * Opp)    (Equation 5.20) 
Vel = ((Area/Wetted_Perimeter)0.67 * Slope0.5)/N    (Equation 5.21) 
Width = (Widthmax * 0.6) + (Opp * 2)      (Equation 5.22) 
Q = Area * Vel         (Equation 5.23) 
For each 1 cm increment of Depth from 1 cm to Depthmax, Depth, Width, Vel and Q are stored 
in a lookup table (runtime memory multi-dimensional array). 
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Figure 5.43 Conceptual representation of a river channel used to route sediment in the Water 

Quality Systems Assessment Model (WQSAM).  
 

5.7.3 Calculation of suspended sediment 
The approach adopted follows the method for suspended load transport for steady flow 

proposed by Van Rijn (1984). 
 

qb = αs * ρs * Vel * d50 * Me2.4 * (D*)−0.6    (Equation 5.24) 
Me = (Vel − Velcritical)/[(s − 1)gd50]0.5     (Equation 5.25) 
D* = d50[(s − 1)g/v2]0.33      (Equation 5.26) 
Velcritical = a * (d50 * 10,000)b      (Equation 5.27) 
s = ρs/ρw        (Equation 5.28) 

qb is suspended load transport (kg m−1), αs is assumed to be 0.012 (Van Rijn, 1984), ρs is 
the density of the sediment (kg m−3) and is assumed to be 1,200 from an initial survey of the 
literature, d50 is the median particle size (m), which is set by the user, Me is the mobility 
parameter, Velcritical is the critical depth-averaged velocity for initiation of motion (m s−1), s is 
relative density, ρw is the density of water (kg m−3), and is assumed to be 1,000, g is the 
acceleration of gravity (m s−2), which is known to be 9.81, v is the kinematic viscosity 
coefficient (m2 s−1), which for water at 20°C is known to be 0.000001. 
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The values of a and b where calculated through linear regressions of the relationship 
between Velcritical and d50 given by Van Rijn (2012): 

a = 0.225 * Depth0.15      (Equation 5.29) 
b = 0.49 * Depth−0.02      (Equation 5.30) 
For each day, WQSAM uses the cumulative flow (m3 s−1) to obtain Depth, Width and Vel 

from the aforementioned lookup table in memory. Using the equations given above, the load 
of sediment that can be carried in suspension (kg m−3) is calculated by multiplying qb by Width. 
The loads of sediment entering the catchment from upstream are summed and the final load 
(kg m−3) is compared to the load that can be carried in suspension. If the load entering the 
subcatchment is greater than what can be carried in suspension by the cumulative flow, the 
difference is deposited to the bed load. If the load entering the subcatchment is smaller than 
what can be carried in suspension by the cumulative load, the difference is taken from the bed 
load as it is assumed that some of the bed load enters suspension. The load in suspension is 
passed to the subcatchment downstream on a daily time step.  

5.7.4 Settling of sediment in reservoirs 
The settling of sediment in reservoirs is usually described using the theory of trap efficiency 

(e.g. Revel et al., 2013). However, estimates of trap efficiency are normally calculated on a 
yearly time step, which is of course not appropriate for a daily-time-step water quality model. 
The approach taken within WQSAM is to assume that sediment will settle with time:  

ISSi = ISSi−1 – (KISS * ISSi−1)      (Equation 5.31) 
ISS is suspended sediment concentration (mg ℓ−1), KISS is the degradation coefficient for 

ISS (d−1) and i is the time step. Of course, at each time step, ISS is updated through mass-
balance for sediment entering a reservoir or leaving a reservoir through overflow or release 
flows.   
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CHAPTER 6. THE INCORPORATION OF A CHOLERA 
PREDICTION MODEL INTO WQSAM 

6.1 Introduction 
Advancements in medical care, nutrition and sanitation during recent history have 

eradicated or diminished many diseases that historically caused mass mortality amongst 
human populations. However, some of these diseases are resurging (Colwell, 1996). The most 
obvious underlying reason for this is the grinding poverty evident in many countries, due to 
the associated lack of safe sanitation, poor or insufficient nutrition, high population density, 
low education and lack of previous exposure, thereby allowing diseases to flourish (Colwell 
1996; Griffith et al., 2006). However, there is not always a direct link between disease 
outbreaks and factors that traditionally have been thought to be causal, and increasingly, the 
environment has been linked to disease. Of particular relevance in this context is the changing 
climate.  

Cholera is an ancient disease that has disappeared from most developed countries due to 
improvements in sanitation. However, the disease has re-emerged in several developing 
countries in recent decades (Bertuzzo et al., 2010), which has highlighted the relationship 
between cholera and environmental conditions (van den Bergh et al., 2008). The disease is 
caused by the bacterium Vibrio cholerae, which has been found to be naturally present in the 
environment. The bacterium colonises the small intestine of humans, and clinical 
manifestations of cholerae are due to the secretion of an exotoxin by the bacteria (du Preez 
et al., 2010). The infection typically has a very short incubation time of five hours to one day. 
The main symptom of cholera is the production of painless copious watery diarrhoea leading 
to sever dehydration, and even death if not treated (Jensen et al., 2006; van den Bergh et al., 
2008) 

Over 200 serogroups of V. cholerae have been reported, of which only two have been 
linked to epidemics, namely O1 and O139 (Lipp et al., 2002). This is supported by the fact that 
genes for the cholera toxin have rarely been found except in the two aforementioned 
serogroups. Historically before 1961, outbreaks were linked to the classical biotype of 
V. cholerae O1 (Lipp et al., 2002). However, the O1 El Tor strains had largely replaced the 
classical biotype by 1961 (Aslam et al., 2006). The O139 biotype first emerged as a threat in 
southeast India and the Bay of Bengal in 1992 (Gupta, 2005), and has not been reported 
anywhere else, and it has been hypothesised that this strain emerged through genetic 
exchange between other strains (Lipp et al., 2002).  

Recent cases of cholera have been relatively well monitored; however, less attention has 
been given to the monitoring of V. cholerae (Collins, 2003). Although as a pathogen, cholera 
has been relatively well monitored and studied, recent outbreaks have offered a very 
unsatisfactory outcome, which casts doubts on how much we actually understand about the 
disease. V. cholerae and other Gram negative bacteria are able to enter a dormant stage, 
which has been termed viable but nonculturable (VBNC), which is utilised during unfavourable 
environmental conditions (Lipp et al., 2002). Using this adaptation allows bacteria to enter a 
state of dormancy which allows survival and persistence in a natural or host environment. This 
poses a problem for monitoring of V. cholerae as cells are unable to grow on conventional 
culture media. 

 

6.1.1 A short history of cholera outbreaks 
Although there is obviously a lack of written supporting history, it is thought that cholera 

may have existed in India as early as 400 BC (Underwood, 1974). Witten history exists on a 
devastating epidemic which occurred in the Lower Bengal in 1817 (Underwood, 1947). This 
pandemic was regarded as the first of seven within recorded history, and spread across India, 
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extending as far as China and the Caspian Sea in Europe before receding. The second 
pandemic extended from approximately 1830 to 1850, affected various regions in Europe, 
North Africa and the Americas including Hungary, Germany, Russia, the United Kingdom, 
France, North America, Mexico and Egypt. The third pandemic occurred between the 1850 
and 1860s and mainly affected Russia, but also spread to London, China, Japan and the 
Philippines. It was during this pandemic that John Snow made the now famous initial link 
between the spread of cholera and the water supply in a region of London. The fourth 
pandemic occurred between the late 1860s and the early 1870s, and began in the Bengal 
region and was spread by Muslim pilgrims to Mecca. Subsequently, the disease spread 
through the Middle East in Europe, Africa and North America. It was during an outbreak in 
London, using the previous knowledge by John Snow, that a particular water company was 
identified as the source of the disease, and quick action prevented further deaths. The fifth 
pandemic occurred between the early 1880s and the early 1890s, and affected Europe, the 
Americas, Asia and North Africa. By the sixth pandemic, recent advances in public health in 
Western Europe limited the impact of the disease; however, Russia was particularly hard hit. 
During this period, a distinct change in the impact of the disease was observed in Western 
Europe and North America due to improvements in public health and sanitation. Whereas 
previous pandemics resulted in the deaths of up to millions of people, the sixth pandemic was 
characterised by small outbreaks amongst travellers, who were quickly placed under 
quarantine in countries such as the United States. 

By the 1920s, it was generally believed that cholera would not recur in pandemic form 
because of improvements to water supply and sanitation worldwide. However, what is now 
known as the seventh and current pandemic began in Indonesia, and by the early 1960s 
spread to India, Pakistan, the Soviet Union, Italy, North Africa and some parts of Asia. 
Interestingly, a new biovar or biotype of V. cholera is responsible for the current pandemic, 
namely the V. cholera O1 El Tor biotype. Cholera caused by this biotype is not as severe as 
that caused by the classical biotype. 

  

6.1.2 A more detailed description of outbreaks in Southern Africa 
Cholera outbreaks in South Africa are relatively recent, forming part of the latest (seventh) 

pandemic. Cholera surveillance programmes linked to mining first detected the V. cholerae 
bacteria for three Transvaal mines (Kustner and du Plessis, 1991). In 1978, three South 
Africans were found to be carriers after arriving back from overseas. The first case of locally 
contracted cholera was diagnosed in 1980 at NaNgwane (Kustner and du Plessis, 1991). 
Kustner and du Plessis mapped out cholera cases in South Africa between 1980 and 1987. 
The pandemic was confined to the eastern parts of the country, including the north eastern 
region incorporating what is now Gauteng, Mpumalanga and the Northern Province, eastern 
region incorporating KwaZulu-Natal and the south eastern, incorporating parts of the Eastern 
Cape. The pandemic appeared to start in the north east, bordering Mozambique. The 
V. cholerae strain was confirmed as O1 type El Tor. Between this period, the pandemic 
peaked between 1981-1982, with total confirmed cases of > 25,000. This period of cholera 
outbreak was preceded by a severe drought. From 1983 to 2000, the number of cases showed 
continual decline, falling to 37 cases between 1996-2000. A second peak starting during 
August of 2000 showed a massive number of cases within a span of just 13 months with 
> 80,000 cases, the vast majority in KwaZulu-Natal. The outbreaks of cholera since 2000 are 
outlined in the Epidemiological Comments publication by the Department of Health. Mentioned 
are the outbreak in Zimbabwe in 2008/2009 that spread into South Africa. In addition, an 
outbreak occurred in Mpumalanga Province from November 2008 to April 2009.  

Le Roux et al. (2010) conducted a study of microbial water quality of the upper Olifants 
River, although the dates of the study are not specified. They found that most of the sites had 
high Escherichia coli counts, indicating high faecal contamination. Although V. cholera was 
widely detected, none of the strains were enterotoxigenic. Madoroba and Momba (2010) 
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investigated the prevalence of V. cholerae in rivers within the Mpumalanga province, which as 
of 2009, has the highest prevalence of cholera cases in South Africa. Almost 600 Water 
samples were collected over a four month period from August to November 2009. Of these, 
15 samples were positively identified to contain non-enterotoxigenic V. cholerae strains. 
Momba et al. (2006) conducted a study of microbial water quality of drinking water sources in 
Nkome in the Eastern Cape over a four month period (November 2001, January-March 2002). 
Surface and ground water samples were taken from various locations, including Lenge Dam, 
the Tyume, Sityi and Mnikini rivers and boreholes from various villages in the region. Their 
study found Vibrio species in borehole sources of two villages as well as in the Tyume River, 
and a total of 25% of groundwater samples were found to contain V. cholerae, indicating that 
groundwater can be a significant source of V. cholerae contamination. Nteme et al. (2014) 
investigated the occurrence and survival of V. cholerae in surface waters in and around the 
Msundizi, Umlazi and Isipongo rivers in KwaZulu-Natal between October 2012 and December 
2013. Of a total of almost 700 river samples, almost 70% tested positive for non-toxigenic 
V. cholerae, indicating that the Msunduzi, Umlazi and Isipingo rivers are frequently 
contaminated with non-toxigenic V. cholerae. 

However, South Africa has not experienced the highest number of cholera cases within 
southern Africa. Mozambique has over recent decades consistently reported the highest rate 
of cholera incidents globally, with over 87,000 cases from 1998 to 1999. In addition, a major 
cholera outbreak occurred in Zimbabwe from 2008 to 2009, with almost 100,000 cases and 
almost 4,000 deaths (Madoroba and Momba, 2010). This outbreak in Zimbabwe has been 
attributed to the deterioration in sanitary and health conditions in Zimbabwe over the past 
decades.  

 

6.1.3 Relationship between cholera and the environment 
John Snow was the first person to link the spread of cholera with water supply during one 

of the earlier pandemics of cholera in London. Prior to this, it was thought that the disease 
spread through person to person contact. It has since been established that cholera is caused 
by the V. cholerae bacterium, which appears to be a natural member of the coastal aquatic 
microbial community (Bertuzzo et al., 2010). In its natural environment, the bacterium appears 
to survive in association with chitinaceous zooplankton such as copepods and shellfish 
(Bertuzzo et al., 2010). The transmission of the V. cholerae to humans occurs either from the 
natural reservoir, termed primary transmission, or through V. cholerae contaminated human 
faecal matter entering the waterways during an epidemic, termed secondary transmission. 
Therefore, the environment has a great influence on the initial transmission as well as the 
subsequent spread of the disease. The pattern of cholera epidemics on spatial and temporal 
scales is linked to the ecology of V. cholerae, and how environmental variables affect the 
survival of the bacteria. The results of Investigations into the relationships between 
environmental variables and the occurrence of cholera have sometimes been contradictory, 
with relationships with particular environment variables appearing to change according to 
region or latitude 
Relationships with meteorological variables 

Seasonal patterns of cholera as well as longer-term patterns appear to be linked to 
meteorological variables such as air temperature and rainfall, and related variables such as 
sea surface temperature. For example, incidents of cholera showed an increase of 6.5% in 
association with a 1 mm d-1 increase in precipitation in the Bay of Bengal (de Magney et al., 
2008). There is growing concern that the dynamics of many diseases, including cholera, are 
changing in response to changing global climate (Pascual et al., 2002). Although in the past it 
has been difficult to separate the effects of climate on disease dynamics from the effects of 
other factors, such as socioeconomic factors, the recent increase in the availability of climate 
data from remote sensing products has provided new opportunities to analyse the 
relationships between climate and disease. Despite this increase in data, the link between 
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climate and cholera remains poorly understood (Pascual et al., 2002). Pascual et al. (2002) 
found that the coldest inhabited regions are generally spared from cholera, indicating that cold 
temperatures limit the spread of the disease.  

Within the lower Bengal, considered to be the origin of cholera, the disease shows strong 
seasonality, with spikes during the spring and winter seasons and lower mortality during the 
monsoon rains and colder winter months (Bouma and Pascual, 2001). The effect of the El 
Niño-Southern Oscillation (ENSO) on the prevalence of cholera in various regions has been 
highlighted in various studies. In simple terms, the ENSO is a shift of pressure across the 
equatorial Pacific (Lipp et al., 2002). The El Niño phase refers to the shift of a zone of low 
pressure eastward, resulting in local changes including a drop in the easterly trade winds, a 
depression of the thermocline along the South American coast and a warming of the eastern 
Equatorial Pacific. During the La Nina event, the aforementioned trends are generally 
reversed. The ENSO is particularly important as the phenomenon has been linked to 
interannual shifts in global climate. Bouma and Pascual (2001) investigated the effects of seas 
surface temperature and the El Niño Southern Oscillation (ENSO) on incidents of cholera 
within the Bay of Bengal. They found that seasonality of cholera shows a bimodality with two 
peaks per year, with a rise in sea surface temperature corresponding with the spring peak of 
cholera, and that the effect of spring cholera is more pronounced within coastal regions. They 
also noted an influence of ENSO on both the interannual and seasonal dynamics of cholera. 
Pascual et al. (2000) has also investigated the link between the ENSO and cholera, and they 
noted the reappearance of cholera in Peru with the El Nino event of 1991-1992, as well as an 
association between diarrheal diseases in Peru and warmer temperatures associated with the 
El Nino event of 1997-1998. Their analysis of cholera and climate data in Bangladesh found 
the well-known seasonal variation of the disease in Bangladesh, but also identified an 
interannual variability with a dominant frequency occurring once every approximately four 
years, similar to that of the ENSO event, suggesting a role of ENSO in driving the dynamics 
of the disease. The role of ENSO in driving cholera dynamics relates to the changes in sea 
surface temperature (SST) (Pascual et al., 2002). In South Africa, cholera cases appear to be 
linked to regions of higher rainfall (> 600 mm), with outbreaks being most common in the 
wetter eastern and north eastern parts of the country (Kustner and du Plessis, 1991l).  
Seasonality of cholera 

Areas where cholera is endemic are areas in which the disease does not disappear after 
an outbreak, but reappears in successive waves over time. It is in these endemic areas where 
cholera shows distinct and remarkably regular seasonality (Lipp et al., 2002); however, the 
patterns of seasonality vary geographically. In addition, a study by Emch et al. (2008) found 
that seasonality is more pronounced at higher latitudes, whereas outbreaks do not follow a 
clear pattern at the equator. These patterns are described by Pascual et al. (2002) for different 
regions of the world. Within the coastal and surrounding regions of Bengal and parts of 
Madras, two annual seasons are evident, with a pronounced drop in cholera incidents over 
the monsoon. According to Pascual et al. (2002), this drop in incidents of cholera can perhaps 
be attributed to the drop in salinity associated with dilution resulting from the monsoon. In 
contrast, within the drier parts of the Indian subcontinent, cholera incidents appear to peak 
over the monsoon. Pascual et al. (2002) attributes this to increased flow resulting in increased 
transmission of the disease. A single peak in cholera incidents is typically seen in African and 
Latin American regions, with the epidemics associated with the summer months (Lipp et al., 
2002; Pascual et al., 2002). In general, it appears that water temperature plays an important 
role in the seasonality of cholera. 
Relationships with biotic variables 

Some outbreaks of cholera have been associated with the consumption of seafood, such 
as an outbreak in Louisiana and Texas (Singleton et al., 1982). It has been hypothesised that 
shellfish may provide an effective environmental reservoir for V. cholerae, either through a 
nonspecific association or through a commensal relationship (Singleton et al., 1982). It has 
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also been hypothesised that the enterotoxin of V. cholerae may play a role in sequestering 
Na+ from its commensal host, whereas in the human gut, the enterotoxin results in an efflux 
of Na+ and other electrolytes from epithelial cells along with large quantities of water, thereby 
producing the classic cholera symptoms. 

Other studies have highlighted the role of aquatic plants as temporary or long-term 
reservoirs of V. cholerae. It has been found that V. cholerae secrete an enzyme called 
mucinase that digests mucin in the environment (Emch), which is present in plant cell walls. 
Other studies have confirmed the association between V. cholerae and various aquatic plants 
such as water hyacinth, cyanobacteria and blue-green algae (Emch). 

The V. cholerae 01 strain has been found to secrete an enzyme called chitinase (Emch), 
which digests chitin, a biological compound associated with the exoskeleton of chitinous fauna 
such as zooplankton (Emch et al., 2008).  

A study by de Magny et al. (2008) found a significant correlation between coastal 
chlorophyll a and incidents of cholera in the northern Bay of Bengal.  

A study by Nteme et al. (2014) of the prevalence of V. cholerae in surface waters of 
KwaZulu-Natal concluded that the environmental non-toxigenic V. cholera strains detected are 
well adapted to survive in the environment, likely through its ability to grown as a biofilm 

The ability of V. cholerae to enter a dormant stage in response to unfavourable conditions 
is likely to be a key reason for the success of this bacterium as an opportunistic pathogen. 
This probably also explains the link between V. cholerae and zooplankton, which are able to 
survive unfavourable conditions through diapause (Codeco, 2001).  
Relationship with socioeconomic factors 

Socioeconomic factors mainly drive secondary transmission, and once the disease 
emerges, will determine whether the disease reaches epidemic proportions. These factors 
include contaminated drinking water, inadequate sanitation, inadequate medical interventions 
and treatment during outbreaks and the population density. The relationship between the 
secondary spread of cholera and socioeconomic factors explains why the disease has all but 
disappeared from developed countries, whereas epidemics reoccur in some developing 
regions, such as Africa and South America.  
Relationship between cholera and the environment in South Africa 

Mendelsohn and Dawson (2008) using data of the cholera epidemic that occurred in 
KwaZulu-Natal between 2000-2001 that resulted in over 100 000 cases of cholera, explored 
relationships between cholera incidents and various environmental variables, including sea 
surface temperature, sea surface height, chlorophyll a and precipitation. Within this epidemic, 
most cases (25%) occurred during February. The analysis found strong relationships between 
incidents of cholera and precipitation, sea surface temperature and coastal cholrophyll a, with 
lag times of two, zero and six months, respectively.  

Socioeconomic factors in South Africa additionally increase the risk of secondary 
transmission of cholera, and the ultimate risk of full-blown cholera epidemics. Although great 
strides have been made in recent decades in providing the majority of the population with 
clean piped water for domestic use, other socio-economic risk factors remain in South Africa. 
Apart from the usual factors such as poverty and poor living conditions, many rivers in South 
Africa are compromised by poorly treated sewage effluent. A study by the CSIR of sewage 
effluent released from rural hospitals in KZN during the period 1998 to 2000 obtained positive 
tests for toxigenic V. cholerae from two hospitals, and in both cases, rural communities were 
drawing water from springs located nearby (Cottle and Deedat, 2002). The same study found 
that the sewage treatment plant had suffered breakdowns, had frequently run out of chemicals 
for treatment, and often untreated effluent had been released to nearby rivers. Also, it has 
been confirmed that the Umtata sewage works was the source of a subsequent cholera 
outbreak in the Eastern Cape.  
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The ability of V. cholerae to enter a dormant stage 
V. cholerae, along with other Gram negative bacteria, are characterized by their ability to 

enter a dormant stage when environmental conditions are unfavourable, thereby allowing the 
bacteria to persist in the environment. Lipp et al., (2002) has termed this state within 
V. cholerae as ‘viable but nonculturable’ or VNC. This ability is believed to have played a major 
role in the success of V. cholerae as an opportunistic pathogen, and could in fact also explain 
the commensal relationship between V. cholerae and zooplankton, as zooplankton are known 
to enter a similar dormant state called diapause (Lipp et al., 2002). 

6.1.4 Attempts to model cholera 
A conceptual understanding of how V. cholerae spreads is required to develop a model. 

In addition, understanding environmental conditions conducive to the survival of V. cholerae 
is required. Although cholera is one of the most well-studied diseases, as cholera is an ancient 
disease, most studies and monitoring efforts have concentrated on the clinical aspects of 
cholera, and studies of cholera epidemics have monitored and analysed cases of cholera, 
whereas the temporal and spatial distributions of the bacterium V. cholerae have received 
relatively less attention. Since it has been shown that V. cholerae is a natural inhabitant of 
coastal estuarine systems, pathways of V. cholerae movement inland can be through 
waterways and river networks (Bertuzzo et al., 2010).The infection can spread from inland 
areas to surrounding areas as people get sick, and untreated waste water containing the 
bacteria enters waterways (Bertuzzo et al., 2010). The two aforementioned routes of 
transmission are termed primary transmission and secondary transmission, respectively. 

The model by de Magny et al. (2005) simulated cholera infections within a population, and 
explicitly took into account the developed immunity of recovering individuals. The model by de 
Magny et al. (2005) divided the modelled human population into four classes: 1) infected 
individuals; 2) recovered individuals; 3) susceptible individuals and; 4) dead individuals. 
Jensen et al. (2006) created a model that considers the effect of bacteriophages on 
V. cholerae, and incorporates dynamics of both the infected population and the V. cholerae 
bacteria. Their model contains various model compartments including: 1) susceptible human 
individuals; 2) individuals infected with V. cholerae; 3 individuals infected with V. cholerae and 
phage; 4) individuals that are recovered/dead; 5) the reservoir of V. cholerae in the 
environment and; 6) the reservoir of phage. 

Cedeco (2001) introduced a model to simulate the role of the V. cholerae reservoir, regions 
most likely to maintain endemic cholera and the prediction of human sickness from a cholera 
outbreak. In regards to the model compartment that simulates the fate of V. cholerae in the 
environment, their model incorporates factors to calculate the concentration of V. cholerae in 
water, a threshold parameter indicating the concentration of V. cholerae indicating a 50% 
chance of catching cholera if ingested, the growth rate of V. cholerae in the environment and 
the loss rate of V. cholerae in the environment. 

Although many models have attempted to simulate the spread of cholera epidemics 
through surface waters, specifically demonstrating that the spread of cholera is driven by 
connectivity of the hydrological network, Mari et al. (2012) extended this conceptual 
understanding by considering the effect of mobility of the human population on the spread of 
the disease. Here, Mari et al. (2012) utilised the concept of ‘gravity transmission’, which 
considers the population sizes of communities and the distances between multiple 
communities.  

Fleming et al. (2007) developed a cholera health risk prediction model for southern Africa 
using a fuzzy expert system and GIS, and was based on the assumption of the presence of 
endemic V. cholerae reservoirs in the environment, with environmental conditions triggering 
algal blooms, which in turn trigger the growth of V. cholerae. Their model also considers a 
threshold of V. cholerae concentration in the environment that may initiate primary 
transmission, after which the initiation of an epidemic through secondary transmission 
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depends on socioeconomic conditions. Interestingly, their model assumed that the initiation of 
the rainy season, i.e. the first rains after the dry season, may flush salt into the rivers in 
sufficient loads to contribute to the salinity requirements of V. cholerae.  

Bertuzzo et al. (2010) presented a spatially explicit model to account for the environmental 
matrix along which the V. cholerae bacteria can be transported. Their model operates on the 
assumption that since cholera transmission is mediated by water, direct contact between 
individuals is less important within disease transmission than spatial connectivity. Their model 
is therefore constructed as an oriented graph, consisting of nodes connected by edges, where 
the nodes represent reservoirs of the V. cholerae bacteria. Each node contains a human 
population, which release greatly increased loads of V. cholerae bacteria into a river once an 
epidemic begins. Their model considers two separate time scales: 1) the time for an epidemic 
to spread through the system and; 2) the time taken for the epidemic to run its coursed within 
a single community. The use of directed graphs with nodes and edges by Bertuzzo et al. 
(2010) is very similar to the systems approach taken by WQSAM (see Slaughter et al., 2015). 
Although Bertuzzo et al. (2010) present various alternative graph structures, optimal channel 
networks (OCNs) are the most similar to the underlying network structure used by the systems 
models that WQSAM communicates with (to obtain flow output).  

6.2 Case study catchments and modelling approach 
6.2.1 Case study catchment 

In the current study, the Olifants River Catchment has been chosen as the initial case 
study catchment. There are various reasons for this approach. Firstly, the Olifants River 
Catchment has been modelled previously using WQSAM; therefore, much of the model setup 
and data are already in place. Secondly, the Olifants River Catchment has experienced cases 
of cholera outbreaks in the past (Kustner amd du Plessis, 1991), and although most cases 
have been reported in KwaZulu-Natal (Cottle and Deedat, 2002), since 2009, most cases have 
been reported in Mpumalanga, which incorporates the Olifants River Catchment. In addition, 
non-toxigenic V. cholerae bacteria has been detected in the Olifants River Catchment 
(Modoroba and Momba, 2010; Le Roux et al., 2010). Furthermore, the Olifants River 
Catchment borders and in fact extends into Mozambique, and Mozambique has repeatedly 
experienced cholera outbreaks in recent times. Mozambique has in fact over recent decades 
consistently reported the highest global rates of cholera incidents. 

The present study will focus on the upper Olifants River Catchment, extending down to 
Loskop Dam (see Figure B2). The catchment originates from the east of Johannesburg, and 
is generally regarded as one of the most polluted rivers in South Africa (Balance et al., 2001; 
de Villiers and Mkwelo, 2009, van Vuuren, 2009). Water quality is compromised within the 
catchment by various anthropogenic activities including mining, petrochemical industries and 
diverse agriculture (Heath et al., 2010). Of relevance to the present study is that the microbial 
water quality of the Olifants River Catchment is also impacted by inadequately treated sewage 
effluent as well as runoff from informal settlements (van Vuuren, 2013).  

 

6.2.2 Observed data 
The available data relating to cholera in the Olifants River Catchment can be broadly 

divided into two groups: 1) Measures of V. cholera, either as presence/absence or 
concentration, and; 2) data on incidents of cholera for settlements within the catchment. Since 
this present study focuses on the fate of V. cholerae instream, data on human cholera cases 
would not be applicable. However, for the sake of discussion, the available data on cholera 
cases within the Olifants River Catchment is included. 
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Data on incidents of cholera within the Olifants River Catchment 
Cottle and Deedat (2002) reports on the epidemic of 2000-2001. Although this epidemic 

mainly affected KwaZulu-Natal, Cottle and Deedat (2002) does give a breakdown of the 
incidents of cholera by province. Here, Mpumalanga is listed as recording 79 cases by 01 
March 2001. A publication of the Epidemiological Comments by the South African Department 
of Health (Volume 2 Number 2, April-June 2009) provides a more detailed breakdown of 
cholera cases in South Africa in the period 2008-2009. Included in this report is a breakdown 
of daily cases of cholera from January to April 2009 in the Mpumalanga province (see 
Figure 6.1). 

 

 
 

Figure 6.1 Daily breakdown of the cases of cholera that occurred in the Mpumalanga 
Province over the period January 2009 to March 2009. The data are sourced 
from the Epidemiological Comments by the South African Department of Health 
(Volume 2 Number 2, April-June 2009) 

The report also provides a breakdown of total cases per sub-district in Mpumalanga, with 
Umjindi, Mbombela North, Mbombela South, Nkomanzi-Tonga, Nkomanzi-Shongwe, Thaba 
Chweu and Bushbuckridge experiencing cases numbering 88, 3 654, 345, 213, 207, 373 and 
1901, respectively.  
V. cholerae presence/absence data within the Olifants River Catchment 

Le Roux et al. (2012) performed a study of microbial water quality of the upper Olifants 
River. The results of that study in regards to V. cholerae are summarised within Table 2.1. It 
is important to note that no toxigenic strains were detected within the study. Le Roux et al. 
(2012) indicated that positive results for V. cholerae were obtained downstream of WWTWs.  

Madoroba and Momba (2010) similarly investigated for the prevalence of V. cholerae in 
Mpumalanga, with only one site falling within the upper Olifants River, and no positive results 
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for V. cholerae were obtained for this site. Unfortunately, it appears that there is no 
concentration data for V. cholerae available for the Olifants Rivers. 

 

6.2.3 Modelling approach 
It was decided to only model the effect of environmental conditions on the survival and 

growth of V. cholerae in a river network, as the modelling of a cholera epidemic is not within 
the scope of a water quality model such as WQSAM. However, thresholds of V. cholerae 
concentration can serve as warnings of a high risk of transmission of the cholera disease into 
the human population within a catchment.  

Due to the inherent directed graph structure of WQSAM, incorporating nodes 
(subcatchments) and edges (channels), the approach taken in the present study is similar to 
that presented by Bertuzzo et al. (2010), specifically the optimal channel network (OCN) type 
graph structure. 

Survival and growth of the V. cholerae bacteria in the current study is modelled using the 
standard Optimal Model (Chapra, 1997) approach that has been extensively adopted within 
WQSAM, with factors affecting survival and growth selected from information available in the 
literature. In the current study, it is assumed that V. cholerae bacteria will enter a dormant 
state if values of any critical environmental variables move beyond certain specified 
thresholds. The transition back into an active state would then depend on the range of 
environmental variables affecting V. cholerae falling within the required ranges for the survival 
of the bacteria.  
Factors considered for modelling instream V. cholerae concentration 

The factors considered are: 1) water temperature (Madico et al., 1996; Mendelsohn and 
Dawson, 2008; Pascual et al., 2002; Singleton et al., 1982), thereby being able to simulate the 
seasonal patterns of cholera that show a spike during warmer months in South Africa; 2) 
salinity (Singleton et al., 1982), with specific salinity ranges being associated with the survival 
of V. cholerae, namely between 5 g ℓ-1 to 45 g ℓ-1; 3) nutrients (Singleton et al., 1982), with a 
positive relationship between nutrient concentration and V. cholerae growth. 

In the current study, nutrients are regarded to promote V. cholerae growth and survival. 
Since nutrients encompass a variety of chemical species, the present study uses dissolved 
organic matter (DOM) as a proxy for nutrients in general.  
Model structure 
The effect of temperature on V. cholerae growth rate is represented by Equations 6.1-6.3: 
KgT = 0  (T≥Tmax or T ≤ Tmin)    (Equation 6.1) 
KgT = Kg.opt × ((T-Tmin)/(Topt-Tmin)) (Tmin ≤ T ≤ Topt) (Equation 6.2) 
KgT = Kg.opt × ((Tmax - T)/(Tmax-Topt)) (T > Topt)  (Equation 6.3) 

Where KgT is V. cholerae growth rate at temperature T, Tmax is the maximum temperate, 
Topt is the optimal temperature, Tmin is the minimum temperature, and Kg.opt is the optimal 
growth rate. Similar to the approach taken for algal growth in WQSAM, this approach assumes 
the Optimal Model (Chapra, 1997) for representing the effect of water temperature on growth.  
The effect of salinity on V. cholerae growth rate is represented by Equations 6.4-6.6: 
KgS = 0     (S≥Smax or S ≤ Smin) (Equation 6.4) 
KgS = Kg.T × ((S-Smin)/(Sopt-Smin)) (Smin ≤ S ≤ Sopt) (Equation 6.5) 
KgS = Kg.T × ((Smax - S)/(Smax-Sopt)) (S > Sopt)  (Equation 6.6) 
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Table 6.1  Presence/Absence data of non-toxigenic Vibrio cholerae within the upper 
Olifants River Catchment, South Africa. Data are sourced from le Roux et al. 
(2012)  

Date  River Name  latitude Longitude Presence/absence 
12-Nov-09 Wilge  -25.62153 28.99902 Not Detected 
18-Jan-10        Not Detected 
10-Mar-10        Not Detected 
15-Jul-10        Not Detected 
13-Sep-10        Not Detected 
12-Nov-09 Klip  -25.62150 29.21253 Not Detected 
12-Nov-09 Olifants  -25.62392 29.21685 Not Detected 
12-Nov-09 Klein Olifants  -25.68073 29.30537 Not Detected 

12-Nov-09 Groot Olifants  -25.68445 29.30042 Detected 
12-Nov-09 Brugspruit  -25.85707 29.13565 Detected 
18-Jan-10        Not Detected 
10-Mar-10        Not Detected 
15-Jul-10        Not Detected 
13-Sep-10        Not Detected 
12-Nov-09 Riverview  -25.84170 29.26633 Detected 
18-Jan-10        Not Detected 
10-Mar-10        Detected 
15-Jul-10        Not Detected 
13-Sep-10        Not Detected 
12-Nov-09 Middleburg  -25.77093 29.48262 Detected 
18-Jan-10        Detected 
10-Mar-10        Detected 
15-Jul-10        Detected 
13-Sep-10        Detected 
12-Nov-09 Klein Olifants  -25.87258 29.56964 Detected 
18-Jan-10        Detected 
10-Mar-10        Detected 
15-Jul-10        Not Detected 
13-Sep-10        Not Detected 
12-Nov-09 Klein Olifants  -25.88297 29.64290 Detected 
18-Jan-10        Detected 
10-Mar-10        Detected 
15-Jul-10        Not Detected 
13-Sep-10        Not Detected 
12-Nov-09 Koffiespruit  -25.99543 28.66347 Not Detected 
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Where KgS is V. cholerae growth rate at salinity S, Smax is the maximum salinity, Sopt is the 
optimal salinity, Smin is the minimum salinity, and Kg.T is the V. cholerae growth rate at 
temperature T. This approach similarly assumes the Optimal Model (Chapra, 1997), as there 
is both a minimum and maximum salinity below and above which V. cholerae growth is 
compromised, respectively.  

The effect of nutrients, represented by DOM concentration, is represented by Equations 
6.7-6.9: 
KgN = 0       (DOM ≤ DOMmin) (Equation 6.7) 
KgN = Kg.S × ((DOM-DOMmin)/(DOMopt-DOMmin))  (Pmin ≤ P ≤ Popt) (Equation 6.8) 
KgN = Kg.S      (DOM > DOMopt) (Equation 6.9) 
Where KgN is V. cholerae growth rate at the nutrient concentration represented by DOM, 
DOMopt is the optimum DOM concentration for V. cholerae growth, DOMmin is the minimum 
DOM concentration for V. cholerae growth, and Kg.S is the V. cholerae growth rate at salinity 
S. 

The growth rate is estimate in the aforementioned order (Equation 2.1-2.9), following 
which the change in V. cholerae concentration per time step is calculated: 
KN = Kqp         
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑘𝑘𝑔𝑔 − 𝑘𝑘0) × 𝐶𝐶        (Equation 6.10) 

Where Kg is the final growth rate for V. cholerae, taken as the value of Kgp if the correct 
order of calculating the growth rate (Equation 2.1-2.9) is followed, K0 is the decay rate of 
V. cholerae in the environment, and C is the concentration of V. cholerae. Therefore, if Kg is 
greater than K0, a net increase in V. cholerae over time will occur, whereas the opposite will 
result in a net decrease in V. cholerae concentration. To simulate growth of V. cholerae, it is 
important to set Kg.opt > K0 at the start of the model run. 
The issue of whether V. cholerae is endemic, and the consequences for model structure 

It has been hypothesised that V. cholerae is endemic to certain areas, and enters a state 
of dormancy when environmental conditions are not optimal. The modelling of endemic 
V. cholerae could be fairly simple: once the environmental variables simulated by the model 
(temperature, salinity and nutrients) enter ranges that facilitate V. cholerae growth, the model 
will automatically initiate the growth of V. cholerae from some minimal starting point 
concentration. However, V. cholerae may not be endemic to some regions, and may in fact 
be imported from other regions through the migration of an infected human individual. It is 
difficult to determine whether V. cholerae is endemic to certain regions, as the dormant stage 
is almost impossible to detect. Le Roux et al (2012), detected non-toxigenic strains of 
V. cholerae within certain sites of the upper Olifants River Catchment. However, past cholera 
epidemics in the region, such as that of the 2008 to 2009 epidemic in Mpumalanga, occurred 
because of an outbreak in Zimbabwe that spread into South Africa. The Olifants River 
Catchment also borders Mozambique, and many Mozambicans routinely cross the border into 
South Africa. Mozambique has been identified country with the highest incidents of cholera 
outbreaks in the world.  

Therefore, although on one hand it may be justified to model V. cholerae in the Olifants 
River Catchment assuming that the bacteria is endemic to the catchment, it is equally, or 
perhaps more realistic to model V. cholerae in the catchment assuming that the bacteria is 
imported from outside the catchment. The model implementation of external import of 
V. cholerae into the catchment can be simulated by simply setting a V. cholerae concentration 
for WWTW sewage return flow and/or any of the signatures for the incremental flow fractions 
(surface water flow, interflow or ground water flow). Endemic V. cholerae growth can be 
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simulated by allowing environmental conditions within the catchment to facilitate the initiation 
of V. cholerae growth.  

6.3 Results and discussion 
6.3.1 Scenarios investigated 

From the literature, it appears that the occurrence of V. cholerae within a river network can 
occur from two origins: 1) from dormant endemic V. cholerae that begin to multiple and 
become active once environmental conditions become favourable and; 2) from faecal matter 
entering the river network once a cholera pandemic begins. As mentioned earlier, the 
environmental factors which determine whether instream V. cholerae experience growth 
include temperature, salinity and nutrients. In addition, V. cholerae have been linked to algal 
blooms. In regards to the input of V. cholerae into a river network when the bacteria is not 
endemic, this usually occurs through migration of an infected person into the catchment from 
outside of the catchment. Therefore, the present study investigated two broad scenarios: 1) 
the initiation of endemic V. cholerae bacterial growth without external input and; 2) input of 
V. cholerae bacterial growth as an external source. 

 

6.3.2 Results 
Growth of V. cholerae as an endemic bacteria strain linked to environmental conditions 

From the literature, it appears that some data are available on variable ranges required for 
growth of V. cholerae for temperature and salinity (Singleton et al., 1982). The data appear to 
show that V. cholerae can tolerate a salinity of as much as 40 g ℓ-1, as little as 5 g ℓ-1, and 
appear to prefer salinities of around 25 g ℓ-1. For temperature, it has been indicated that 
temperatures below 10ºC would not be conducive to V. cholerae growth. Although it has been 
indicated that V. cholerae require nutrients for growth, no actual concentration values have as 
yet been elucidated. 

 
To investigate the scenario of endemic V. cholerae growth, a reach of the upper Olifants 

River was investigated without many WWTW return flows. The reach chosen was the 
catchment above and including the Middleburg Dam incorporating the B12A and B12B 
quaternary catchments. As an initial investigation, the following parameter values were chosen 
based on the literature: Tmax = 35ºC, Tmin = 10ºC, Topt = 25ºC, Smax = 40 g ℓ-1, Smin = 5 g ℓ-1, 
Sopt = 25 g ℓ-1.  

Values of other parameters were set to reasonable initial values: Kg = 0.5, K0 = 0.2, 
DOMmin = 0.5 mg ℓ-1, DOMopt = 1 mg ℓ-1.  

 
The results of model simulations for the Middleburg Dam are shown in Figure 6.2. 

Figure 6.2a shows that the water temperature within Middleburg Dam sometimes goes below 
the Tmin value of 10ºC, and never reaches the Topt value of 25ºC. Figure 6.2b shows that the 
salinity in the Middleburg Dam is most of the time well below the Smin value of 5 g ℓ-1, although 
this value is exceeded once in the time series. Figure 6.2c shows that the DOM values are 
constantly above the DOMopt value that was rather arbitrarily chosen for this scenario analysis. 
Figure 6.2c shows the model simulations of V. cholerae instream. Immediately obvious is the 
extremely low levels of bacterial cells simulated. Also evident is the relative spike in cells 
corresponding to the spike in salinity. 
Growth of V. cholerae as an external input linked to WWTW effluent input 

The second scenario investigated would be the fate of instream V. cholerae after external 
input through WWTW effluent. For this analysis, the reaches upstream of the Witbank Dam 
and incorporating Witbank Dam were investigated, because of the high number of WWTWs 
in this part of the catchment. This part of the catchment incorporates the quaternary 
catchments B11A-E. For this analysis, the same parameter values of the previous analysis 
were maintained; however, return flows linked to WWTWs were assigned V. cholerae 
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signatures of 5 000 cells 100 mℓ-1. This is a rather arbitrary value, and was chosen to merely 
investigate the trends evident with external input of V. cholerae. Figure 6.3 shows the results 
of simulations for this analysis. The temperature regime of Witbank Dam shows that the water 
temperature remains for the most part between Tmin and Topt, although the water temperature 
drops below Tmin and rises marginally above Topt during winter and summer, respectively (see 
Figure 6.3a). The salinity within the Witbank Dam was well below the Smin salinity required for 
V. cholerae growth over the entire modelled period (see Figure 6.3b). Figure 6.3c shows that 
even though environmental conditions within Witbank Dam are not conducive to the survival 
of V. cholerae, high inputs of the bacteria from the catchment can result in some persistence 
of V. cholerae in the dam. 

 

6.3.3 Discussion 
According to the available literature, it is obvious that the environmental conditions within 

the upper Olifants River Catchment are not optimal for the growth of V. cholerae. The 
simulations of endemic V. cholerae growth within the catchment upstream of Middleburg Dam 
showed that both temperature and salinity limit the growth of V. cholerae (Figure 6.2a and b). 
The water temperature in the dam falls below the optimum temperature value for V. cholerae 
growth most of the time, and often during winter falls below the minimum temperature for 
V. cholerae growth. The salinity environment within the upper Olifants River is not sufficiently 
saline for V. cholerae growth according to the data available in the literature. Within the 
Middleburg Dam, there is a single peak above the minimum salinity 5 g ℓ-1 to induce 
V. cholerae growth of, whereas for the rest of the simulated period, the salinity fell way below 
this value. Interestingly, the simulation of V. cholerae in Middleburg Dam showed a relative 
peak corresponding with the salinity peak; however, overall V. cholerae simulations were of 
very low concentrations. The model therefore did not indicate that endemic V. cholerae would 
grow to any great extent in the upper Olifants River Catchment. Given that V. cholerae has 
been indicated to prefer salinities close to that of seawater (35 g ℓ-1), this result is not 
surprising. 

 
The investigation of V. cholerae fate with external input of V. cholerae through WWTW 

effluent indicated that even with large inputs of cells, the bacteria quickly degrade in the 
unfavourable environmental conditions, particularly in this case, the temperature (Figure 6.3a) 
and salinity (Figure 6.3b) of the Witbank Dam. However, a relatively large WWTW input of 
V. cholerae cells does have an impact downstream, as indicated in Figure 6.3c with the 
bacteria able to persist. Therefore, during a cholera epidemic, it is plausible that the river 
network could act as a conduit for cholera infections, despite environmental conditions for the 
survival of the bacteria being unfavourable. 

 
Collins (2003) estimates that to contract cholera, a healthy individual would need to 

consume approximately 100 V. cholerae cells. At the highest simulated concentrations in the 
Witbank Dam, this would equate to about a litre of water, which is well within the bounds of 
possibility.  

 
It must be remembered that due to a lack of observed data (the data by Le Roux et al. 

(2012) are merely V. cholerae presence/ absence data), the current investigation was more 
exploratory, rather than a rigorous model of V. cholerae fate instream of a river network. 
However, given more observed V. cholerae concentration data, the current study has 
demonstrated how simulated results could be of use. Future scenario modelling could indicate 
how changing temperatures and rising salinities could promote the growth of V. cholerae 
within a river catchment. In addition, with a sufficiently calibrated model (linked to the 
availability of observed data), the model simulations could give an indication of the risk of 
primary or secondary transmission of cholera, as this can be related to the concentration of 
V. cholerae cells instream. 
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Figure 6.2 Results of modelling Vibrio cholerae as an endemic bacterial organism within the 

Middleburg Dam of the upper Olifants River Catchment. a) temperature; b) 
salinity; 3) nutrient (dissolved organic matter); d) instream V. cholerae 
concentration. X-axis: days since 1920. 
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Figure 6.3 Results of modelling Vibrio cholerae as introduced through sewage effluent 

within the Witbank Dam of the upper Olifants River Catchment. a) temperature; 
b) salinity; 3) instream V. cholerae concentration. X-axis: days since 1920. 
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CHAPTER 7. CONCLUSIONS AND FUTURE DEVELOPMENT 

7.1 Outcomes of the current project 
The current project has shown that it is possible to develop a formal model for linking land 

use to non-point source inputs of nutrients. Although the method remains uncertain, it is an 
improvement on the massive uncertainty associated with calibrating the non-point source 
inputs of other existing water quality models. 

The extension of WQSAM to simulate two important water quality variables, microbial 
water quality and sulphate (as indicative of acid mine drainage), was in particular successful. 
It was found that the modelling of Escherichia coli as a microbial indicator and sulphate could 
be achieved relatively simply but sufficiently accurately for management purposes. 

Although the validation of simulations of algal and hyacinth growth within WQSAM by 
remote sensing data was limited, this needs to be weighed up against the inherent 
uncertainties within the remote sensing data. It can therefore be argued the indirect 
correlations obtained between WQSAM estimates of primary production within reservoirs and 
remote sensing estimates of primary production were reasonable. 

The development and testing of the soil erosion and sediment transport model, WQSED, 
has been an extensive project in its own right. In particular, the model has been developed in 
conjunction with researchers working within the Ntabelanga catchment (T35A-E) through 
sharing of data and conceptual understanding. The project has revealed inherent scale-
dependency problems within empirical estimates of soil erosion, such as the Modified 
Universal Soil Loss Equation (MUSLE). This project has shown that the WQSED model is able 
to general estimates of erosion that are within the range of previous estimates for South Africa.  

At the initiation of the project, it was envisioned that a cholera prediction model could be 
relatively easily incorporated within WQSAM. This is because the survival in water of the 
bacteria that causes cholera, Vibrio cholerae, can be simulated in a relatively simple manner, 
similar to that of E. coli. This project has shown how this can be achieved within WQSAM, 
both conceptually and technically. However, it was found that although records of cholera 
cases are relatively well represented in the literature, studies of the bacteria, V. cholerae, and 
observed measures of the bacterial population, in particular the serotype causing cholera, are 
limited. Therefore, it was not possible to validate the implementation of V. cholerae survival in 
WQSAM or relate V. cholerae survival to cases of cholera outbreaks, and this study remained 
essentially an exploratory study. 

7.2 Aspects of the model identified for further development 
7.2.1 Soil erosion and sediment delivery model 

This project has highlighted inherent scale-dependency issues within the MUSLE 
equation. An interrogation of the literature has revealed that this issue has been largely 
ignored in previous studies. Strategies for getting around this issue will need to be developed. 
In addition, the simulation of transport of sediment within the main river channel is related to 
the capacity of water to carry sediment, which is further related to water velocity. Although 
there is a preliminary implementation of this aspect, it is likely that further refinements will be 
required. Mr David Gwapedza, the Master’s student on this project, has been able to upgrade 
his project to a doctorate, and it is likely that these issues will form part of his extended project.  
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7.3 Scientific outputs of K5/2237 and K5/2448 
7.3.1 Publications 

 
Hughes, D.A. and Slaughter, A.R. (2015) Daily disaggregation of simulated monthly flows 

using different rainfall datasets in southern Africa. Journal of Hydrology: Regional Studies 
4: 153-171. 

Hughes, D.A. and Slaughter, A.R. (2016) Disaggregating the components of a monthly water 
resources system model to daily values for use with a water quality model. Environmental 
Modelling and Software 80: 122-131. 

Slaughter, A.R. (2017) Simulating microbial water quality in data-scarce catchments: an 
update of the WQSAM model to simulate the fate of Escherichia coli. Water Resources 
Management. DOI 10.1007/s11269-017-1743-1. Available at: 
http://link.springer.com/article/10.1007/s11269-017-1743-1 

Slaughter, A.R., Hughes, D.A., Retief, D.C.H. and Mantel, S.K. (2017) A management-
oriented water quality model for data scarce catchments. Environmental Modelling and 
Software 97, 93-111. 

Slaughter, A.R., Mantel, S.K. (2017) Land cover models to predict non-point nutrient inputs for 
selected biomes in South Africa. Water SA 43(3), 499-508. 

Slaughter, A.R., Mantel, S.K. and Hughes, D.A. (2016) Water Quality Management in the 
Context of Future Climate and Development Changes: A South African Case Study. 
Journal of Water and Climate Change, jwc2016138. 

Slaughter, A.R., Retief, D.C.H. and Hughes, D.A. (2015) A method to disaggregate monthly 
flows to daily using daily rainfall observations: model design and testing. Hydrological 
Sciences Journal 4(B): 153-171. 
http://www.tandfonline.com/doi/pdf/10.1080/02626667.2014.993987 

 
7.3.2 Published conference proceedings 
 
Slaughter, A.R. and Hughes, D.A. (2014) Investigating possible climate change and 

development effects on water quality within an arid catchment in South Africa: a 
comparison of two models. Proceedings of the 7th International Environmental Modelling 
and Software Society (iEMSs) biennial meeting, San Diego, USA 15-19 June 2014. 
http://www.iemss.org/sites/iemss2014/papers/iemss2014_submission_318.pdf 

Slaughter, A.R. and Mantel S.K. (2016) The validation of algal growth processes in a water 
quality model using remote sensing data. Proceedings of the 8th International 
Environmental Modelling and Software Society (iEMSs) biennial meeting, Toulouse, 
France 10-14 July 2016. 
http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1374&context=iemssconferen
ce 

Slaughter, A.R. and Mantel S.K. (2017) Water quality modelling of an impacted semi-arid 
catchment using flow data from the WEAP model. IAHS special issue “Water security and 
the food-water-energy nexus: drivers, responses and feedbacks at local to global scales”. 
Proceedings of the IAHS Scientific Assembly 2017, Port Elizabeth, South Africa, 10-14 
July 2017. Proc. IAHS, 94, 1-9, 2017 https://doi.org/10.5194/piahs-94-1-2017 
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Slaughter, A.R., Hughes, D.A. and Mantel, S.K. (2012) The development of a Water Quality 
Systems Assessment Model (WQSAM) and its application to the Buffalo River Catchment, 
Eastern Cape, South Africa. Proceedings of the 6th International Environmental Modelling 
and Software Society (iEMSs) biennial meeting, Leipzig,  Germany 1-5 July 2012. ISBN: 
978-88-9035-742-8 
http://www.iemss.org/sites/iemss2012//proceedings/I2_2_0497_Slaughter_et_al.pdf 
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APPENDIX A. DATA FOR CHAPTER 3 
Table A1 Description of the Escherichia coli data available for the sites on the Crocodile River 

 
 

 

Gauge 
Name 

Description Yield 
Node 

Coordinates Record 
number 

Dates  mean min max SD 

   Lat. Lon.  from to     
 DULLSTROOM – @ 540 ROAD BRIDGE ON 

CROCODILE RIVIER 
EWR1 −25.41 30.11 24 2008 2010 140.74 0 1732 375.24 

 ROODEWAL 117 JT – @ R36 ROAD BRIDGE ON 
KROKODILRIVIER U/S OF KWENA DAM 

EWR2 −25.40 30.33 46 2008 2012 307.78 0 1732 469.24 

 DOWNSTREAM OF KOMATIPOORT SEWAGE EWR6 −25.42 31.96 25 2008 2011 345.92 0 2419 591.69 
 KOMATIPOORT GOLF COURSE ON 

CROCODILE 
EWR6 −25.44 31.97 122 2004 2010 412.45 3 3534 573.07 

 DOWNSTREAM OF SHEBA COMMUNITY AT 
ROAD BRIDGE 

EWR7 −25.68 31.17 25 2008 2011 627.76 0 2600 801.61 

 UPSTREAM OF SHEBA COMMUNITY EWR7 −25.71 31.17 27 2008 2010 360.59 0 3000 704.66 
X2H087 X2H087Q01 BON ACCORD-DOWNSTREAM OF 

EUREKA 
EWR7 −25.68 31.18 40 2006 2011 297.63 0 2419 621.80 

 D/S OF WHITE RIVER WWTW AT HAIG WEIR Haig_Weir −25.30 31.06 23 2008 2011 653.83 0 2419 878.27 
 UPSTREAM OF WHITE RIVER SEWAGE Haig_Weir -25.32 31.03 26 2008 2010 494.85 0 2419 867.93 
 KLIPKOPJE 228 JT – @ ROAD BRIDGE ON 

WITRIVIER D/S OF KLIPKOPPIEDAM 
Klipkoppie 
Dam 

−25.22 31.01 23 2008 2011 104.43 0 1000 232.87 

 LEEUSPRUIT 150 M U/S ASSMANG CHROME X21F_1046 −25.73 30.22 16 2008 2010 99.69 0 1000 246.60 
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Table A1 Continued Description of the Escherichia coli data available for the sites on the Crocodile River 

 

Gauge 
Name 

Description Yield  
Node 

Coordinates Record 
number 

Dates  mean min max SD 

   Lat. Lon.  from to     
 U/S MACHADODORP S/W ON BRIDGE @ 

CARAVAN PARK ON ELANDSRIVIER 
X21F_1046 −25.66 30.25 34 2008 2011 77.60 0 220 81.37 

 LEEUSPRUIT AT BRIDGE 50 M D/S 
EMTHONJENI S/W 

X21F_1100 −25.69 30.26 132 2004 2012 561.24 0 12100 1149.89 

 LEEUSPRUIT D/S ASSMANG CHROME BRIDGE 
AT ENTRANCE TO SITE 

X21F_1100 −25.72 30.24 28 2008 2010 128.33 0 1300 311.13 

 D/S WATERVAL BOVEN S/W FROM FIVE BOOG 
BRIDGE ON ELANDSRIVIER 

X21G-1037 −25.65 30.36 22 2009 2011 293.00 0 2800 617.57 

 DOORNHOEK AT N4 BRIDGE D/S 
WATERVALBOVEN S/W ON ELANDSRIVIER 

X21G-1037 −25.65 30.36 108 2004 2012 1026.7
0 

0 12100 1775.86 

 ELANDSRIVIER X21F TO X21K X21G-1037 −25.64 30.34 30 2008 2010     
 AT HEMLOCK U/S SAPPI NGODWANA ON 

ELANDSRIVIER 
X21J-1013 −25.60 30.58 26 2008 2011 103.54 0 1000 223.88 

 AT LINDENAU 5 KM D/S SAPPI NGODWANA ON 
ELANDSRIVIER 

X21K-997 −25.49 30.70 30 2008 2011 68.93 0 450 115.30 

X2H015 X2H015Q01 AT LINDENAU ON ELANDSRIVIER X21K-997 −25.49 30.70 9 2007 2009 115.50 7 700 236.57 
 ELANDSHOOGTE 270 JT – @ ROAD BRIDGE, 

U/S OF ELANDSHOOGTE MINE ON 
HOUTBOSLOOP 

X22A-913 −25.36 30.67 9 2008 2011 92.56 0 260 97.20 

 SUDWALAASKRAAL 271 JT – @ ROAD BRIDGE 
ON HOUTBOSLOOP 

X22A-913 −25.38 30.69 21 2008 2011 58.29 0 300 86.69 

 RIVULETS – @ ROAD BRIDGE ON 
KROKODILRIVIER @ RIVULETS 

X22B-2 −25.43 30.76 31 2008 2011 237.97 0 2419 539.14 

X2H013 X2H013Q01 CROCODILE RIVER AT MONTROSE X22B-987 −25.45 30.71 38 2007 2011 173.62 0 2419 395.91 
 GLADDESPRUIT PAPPAS QUARY X22C-1004 −25.46 30.95 25 2008 2011 296.68 0 2419 507.81 
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Table A1 Continued Description of the Escherichia coli data available for the sites on the Crocodile River 

 

Gauge 
Name 

Description Yield  
Node 

Coordinates Record 
number 

Dates  mean min max SD 

   Lat. Lon.  from to     
X2H092 X2H092Q01 BOSCHRAND MATAFFIN ROAD 

BRIDGE 
X22C-946 −25.45 30.95 17 2008 2011 282.76 0 2419 582.21 

 NELS RIVER ON BRONDAL ROAD X22F-842 −25.34 30.88 20 2008 2011 97.55 0 420 124.58 

 SAND RIVER ON BRONDAL ROAD X22F-842 −25.33 30.94 21 2008 2011 2466.14 0 40000 8726.18 
 BESTERSPRUIT UPSTREAM OFMMC DELTA X22J-958 −25.46 30.97 22 2008 2011 20806.7 0 27000

0 
67108.0 

 DOORNHOEK AT N4 BRIDGE D/S 
WATERVALBOVEN S/W ON ELANDSRIVIER 

X21G-1037 −25.65 30.36 108 2004 2012 1026.70 0 12100 1775.86 

 ELANDSRIVIER X21F TO X21K X21G-1037 −25.64 30.34 30 2008 2010     
 AT HEMLOCK U/S SAPPI NGODWANA ON 

ELANDSRIVIER 
X21J-1013 −25.60 30.58 26 2008 2011 103.54 0 1000 223.88 

 AT LINDENAU 5 KM D/S SAPPI NGODWANA ON 
ELANDSRIVIER 

X21K-997 −25.49 30.70 30 2008 2011 68.93 0 450 115.30 

X2H015 X2H015Q01 AT LINDENAU ON ELANDSRIVIER X21K-997 −25.49 30.70 9 2007 2009 115.50 7 700 236.57 
 ELANDSHOOGTE 270 JT – @ ROAD BRIDGE, 

U/S OF ELANDSHOOGTE MINE ON 
HOUTBOSLOOP 

X22A−913 −25.36 30.67 9 2008 2011 92.56 0 260 97.20 

 SUDWALAASKRAAL 271 JT – @ ROAD BRIDGE 
ON HOUTBOSLOOP 

X22A-913 −25.38 30.69 21 2008 2011 58.29 0 300 86.69 

 RIVULETS – @ ROAD BRIDGE ON 
KROKODILRIVIER @ RIVULETS 

X22B-2 −25.43 30.76 31 2008 2011 237.97 0 2419 539.14 

X2H013 X2H013Q01 CROCODILE RIVER AT MONTROSE X22B-987 −25.45 30.71 38 2007 2011 173.62 0 2419 395.91 
 GLADDESPRUIT PAPPAS QUARY X22C-1004 −25.46 30.95 25 2008 2011 296.68 0 2419 507.81 
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Table A1 Continued Description of the Escherichia coli data available for the sites on the Crocodile River 

 

 

Gauge 
Name 

Description Yield  
Node 

Coordinates Record 
number 

Dates  mean min max SD 

   Lat. Lon.  from to     
X2H092 X2H092Q01 BOSCHRAND MATAFFIN ROAD 

BRIDGE 
X22C-946 −25.45 30.95 17 2008 2011 282.76 0 2419 582.21 

 NELS RIVER ON BRONDAL ROAD X22F-842 −25.34 30.88 20 2008 2011 97.55 0 420 124.58 

 SAND RIVER ON BRONDAL ROAD X22F-842 −25.33 30.94 21 2008 2011 2466.14 0 40000 8726.18 
 BESTERSPRUIT UPSTREAM OFMMC DELTA X22J-958 −25.46 30.97 22 2008 2011 20806.7

0 
0 27000

0 
67108.0

0 
X2H094 X2H094Q01 FRIEDENHEIM LION S CLUB IN 

CROCODILE RIVER 
X22J-958 −25.46 31.01 24 2008 2010 422.33 0 4000 824.08 

X2H095 X2H095 BOSCHRAND 283 JT – @  ROAD 
BRIDGE ON KROKODILRIVIER 

X22J−993 −25.46 30.97 25 2008 2011 421.72 0 2000 598.62 

 KANYAMAZANE D/S AT N4 BRIDGE 
KROKODILPOORT ON CROCODILE 

X22K1 −25.50 31.18 148 2004 2012 806.14 0 4840 955.21 

 KANYAMAZANE STREAM X22K1 −25.48 31.17 27 2008 2011 4020.21 0 10000
0 

18828.8
3 

 KARINO BRIDGE IN CROCODILE RIVER X22K1 −25.47 31.10 141 2004 2012 774.20 0 6050 1023.84 
 NOORD KAAP RIVER FROM BRIDGE 200 M D/S 

NEW CONSORT MINE 
X23B_1052 −25.67 31.09 26 2008 2011 325.69 0 2419 653.86 

X2H080 X2H080Q01 SEGALLA-UPSTREAM OF 
CONSORT GOLD MINE 

X23B-1052 −25.65 31.06 26 2008 2011 106.27 0 900 233.17 

X2H082 X2H082Q01 DAISY KOPJE-
NELSPRUIT/BARBERTON BRIDGE 

X23F-1 −25.74 31.00 24 2008 2010 175.46 0 2419 494.37 

X2H083 X2H083Q01 DIXIE-PUMP STATION X23F-1120 −25.71 31.06 38 2007 2011 166.57 0 1660 327.86 
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Table A1 Continued Description of the Escherichia coli data available for the sites on the Crocodile River 

 

 
 
 
 
 
 
 
 
 
 
 

Gauge 
Name 

Description Yield  
Node 

Coordinates Record 
number 

Dates  mean min max SD 

   Lat. Lon.  from to     
X2H085 X2H085Q01 ITALIAN FARM UPSTREAM OF JOE 

S LUCK 
X23G-1 −25.67 31.13 36 2006 2011 173.78 0 1986 383.09 

X2H088 X2H088Q01 LOVEDALE-HONEYBIRD RAILWAY 
STATION 

X23H-6 −25.65 31.24 35 2006 2010 310.36 0 2419 683.88 

 UPSTREAM OF KABOKWENI SEWAGE X24B-2 −25.31 31.18 24 2008 2010 275.42 0 2419 530.27 
 DOWNSTREAM OF KABOKWENI SEWAGE X24B-903 −25.30 31.18 23 2008 2011 162.70 0 1000 308.44 

X2H048 X2H048Q01 CROCODILE RIVER AT MALELANE 
BRIDGE/KRUGER NAT PAR 

X24D-994 −25.46 31.54 30 2007 2011 10011.0
0 

0 30000
0 

53824.1
2 

 KRUGAR NATIONAL PARK − @ CROCODILE 
BRIDGE ON CROCODILE RIVER @ CROCODILE 
BRIDGE R/C 

X24H-934 −25.36 31.89 20 2008 2011 125.45 0 1203 255.04 
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Table A2. Description of the effluent Escherichia coli data available for the sites on the Crocodile River 

 

Description Yield Model 
Node 

Coordinates Record 
number 

Dates  mean min max STD 

  Lat. Lon.  from to     
BARBERTON SEWAGE 
EFFLUENT 

X23F-1120 −25.75 31.04 18 2009 2010 765.2222 0 2419.00 957.49 

EMTHONJENI SEWAGE X21F-1100 −25.69 30.25 31 2008 2011 241.1667 0 2419.00 643.76 
WATERVAL BOVEN SEWAGE X21G-1037 −25.64 30.34 29 2008 2011 3745.593 0 62000.00 12529.49 
MILLY'S SEWAGE X21F-1046 −25.69 30.21 30 2008 2011 3952.893 0 37000.00 9429.97 
WHITE RIVER SEWAGE 
EFFLUENT 

Haig_Weir −25.31 31.05 25 2008 2011 59344.88 0 520000.00 136232.66 

KANYAMAZANE SEWAGE X22K1 −25.49 31.17 27 2008 2011 75.7037 0 1000.00 222.54 
KABOKWENI SEWAGE X24B-2 −25.31 31.17 24 2008 2011 501.2083 0 8600.00 1758.21 
KINGSTONVALE SEWAGE 
LEFT CHAMBER 

X22J-958 −25.44 31.03 24 2008 2010 4172.88 0 100000.00 19970.58 
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APPENDIX B. STUDY SITES USED IN MULTIPLE 
CHAPTERS 

 

 

 
Figure B1  WReMP systems diagram of the upper Olifants River Catchment 
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Figure B2 Map of the upper Olifants River Catchment showing quaternary catchments and major dams. 
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Figure B3 Map of the Crocodile River Catchment within the Mpumalanga province of South Africa, showing the location of the rivers, quaternary 
catchments and DWA gauging stations. 
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Figure B3  WReMP systems diagram for the Crocodile River Catchment 
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Figure B3 continued. WReMP systems diagram for the Crocodile River Catchment 
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Figure B3 continued. WReMP systems diagram for the Crocodile River Catchment 
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Figure B3 continued WReMP systems diagram for the Crocodile River Catchment
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Figure B4 Map of the Buffalo, Nahoon and Kubusi River catchments in the Eastern Cape (Amatole System), showing the location of the rivers, 

dams, quaternary catchments and flow gauges. Laing Dam is visible within the middle Buffalo River Catchment.
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Figure B5 Segment of the WReMP yield model systems diagram for the Amatole System 

representing the Buffalo River Catchment. 
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APPENDIX C. MATHEMATICAL EQUATIONS USED IN THE 
SEDIMENT MODEL 

 
Erosion estimation 

Daily flows (m3 s−1) are required for the erosion estimation. These can either be an 
unbroken time series of observed daily flow, daily flow estimated from a daily hydrological 
model such as the Agricultural Catchments Research Unit (ACRU) model (Schulze, 1989), or 
monthly flow simulated from a monthly hydrological model such as the Pitman model (Pitman, 
1973) disaggregated to daily using a monthly-to-daily disaggregation routine (e.g. Slaughter 
et al., 2015). 

Daily flows are separated into surface and subsurface flow fractions, namely surface flow, 
interflow and groundwater flow, all in m3 s−1, using the baseflow separation method by Hughes 
et al. (2003).  
The catchment surface flow volume is calculated from surface flow (Flows): 

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠  ×  0.0036 × 24,      (Equation C1) 

where Vsf is the surface flow volume in million cubic meters (MCM) per day.  
The storm duration associated with surface flow on each day is then calculated: 

𝐷𝐷 = 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇(𝑉𝑉𝑉𝑉𝑉𝑉)𝐷𝐷𝐷𝐷 +  𝐷𝐷𝑆𝑆𝑐𝑐𝐼𝐼,      (Equation C2) 

where D is the duration (hours), and Dscale, DP and Dcon are the scaling, power and constant 
parameters for calculating the duration, respectively. All three runoff zones are assumed to 
have the same duration of runoff. 

The peak discharge for each runoff zone is calculated assuming a double triangle-shaped 
hydrograph: 

𝑄𝑄𝐻𝐻𝑇𝑇 = 2 ×𝐹𝐹𝑆𝑆𝑐𝑐𝐹𝐹𝑠𝑠 ×24
0.75 × 𝐷𝐷 

,        (Equation C3) 

𝑄𝑄𝑀𝑀𝑇𝑇 = 2 ×𝑄𝑄𝐻𝐻𝐻𝐻 ×24
0.75 × 𝐷𝐷 

,        (Equation C4) 

𝑄𝑄𝐿𝐿𝑇𝑇 = 2 ×𝑄𝑄𝑀𝑀𝐻𝐻 ×24
0.75 × 𝐷𝐷 

,        (Equation C5) 

𝑄𝑄𝐻𝐻𝑇𝑇 = �𝑄𝑄𝐻𝐻𝐻𝐻 ×3.6
𝐴𝐴𝐻𝐻

�,        (Equation C6) 

𝑄𝑄𝑀𝑀𝑇𝑇 = �𝑄𝑄𝑀𝑀𝐻𝐻 ×3.6
𝐴𝐴𝑀𝑀

�,        (Equation C7) 

𝑄𝑄𝐿𝐿𝑇𝑇 = �𝑄𝑄𝐿𝐿𝐻𝐻 ×3.6
𝐴𝐴𝐿𝐿

�,        (Equation C8) 

 
where QHp, QMp, and QLp are the peak runoff flows for the high, medium and low runoff 

zones, respectively (in m3 s−1), AH, AM and AL are the areas (km2) of the high, middle and low 
runoff zones, respectively, and qHp, qMp and qLp are the peak runoff depths for the high, medium 
and low runoff zones, respectively (in mm h−1). 

The runoff depths for the high, medium and low runoff zones are then computed based on 
the assumption that the high runoff zone generates 75% more runoff than the moderate runoff 
zone, which in turn is assumed to generate 75% more than the low runoff zone: 

𝐷𝐷𝐷𝐷𝑄𝑄𝐷𝐷ℎ = 𝐹𝐹𝑆𝑆𝑐𝑐𝐹𝐹𝑠𝑠 ×86.4
𝐴𝐴𝐻𝐻  

,       (Equation C9) 
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𝐷𝐷𝐷𝐷𝑄𝑄𝐷𝐷ℎ𝐻𝐻 = 𝐷𝐷𝑇𝑇𝑇𝑇𝐼𝐼ℎ

𝐻𝐻+� 𝑀𝑀
1.75�+�

𝐿𝐿
3.0625�

,       (Equation C10) 

𝐷𝐷𝐷𝐷𝑄𝑄𝐷𝐷ℎ𝑀𝑀 =  𝐷𝐷𝐷𝐷𝑄𝑄𝐷𝐷ℎ𝐻𝐻/1.75,       (Equation C11) 

𝐷𝐷𝐷𝐷𝑄𝑄𝐷𝐷ℎ𝐿𝐿 =  𝐷𝐷𝐷𝐷𝑄𝑄𝐷𝐷ℎ𝐻𝐻/3.0625,      (Equation C12) 

where Depth is the runoff depth for the entire catchment (mm day−1), H, M and L are the 
proportions of the entire catchment area falling within the high, medium and low runoff zones 
respectively, and DepthH, DepthM and DepthL are the runoff depths (mm day−1) for the high, 
medium and low runoff zones, respectively. 

Daily sediment availability is calculated using the Modified Universal Soil Loss Equation 
(MUSLE) (Williams, 1975).  

𝑆𝑆𝑆𝑆 = 𝑅𝑅 × 𝐿𝐿𝑆𝑆 × 𝐾𝐾 × 𝐶𝐶 × 𝑃𝑃 ,      (Equation C12) 
where SA is the daily sediment availability (tons ha−1), R is the runoff factor, C is the cover 

factor, LS is the topography factor, K is the soil erodibility factor and P is the practice factor. 
Equation 5.24 would be run separately for each runoff zone, where LS, K, C and P would be 
related to the characteristics of the catchment area in a specific zone, and R would also be 
related to a specific runoff zone; therefore, for the high runoff zone for example: 

𝑅𝑅𝐻𝐻 = 1.586 ×  (𝐷𝐷𝐷𝐷𝑄𝑄𝐷𝐷ℎ𝐻𝐻  ×  𝑄𝑄𝐻𝐻𝑇𝑇)0.56  ×  𝑆𝑆𝐻𝐻0.12,    (Equation C13) 

Erosion storage and transport estimation 
The maximum storage capacity for each runoff zone as well as for the main channel is 

calculated by: 

𝑆𝑆𝑇𝑇𝑆𝑆𝑚𝑚 = 𝑆𝑆 × 𝑄𝑄 × 𝑑𝑑,       (Equation C14) 

where Smax is the maximum sediment storage capacity (kg) of the runoff zones or main 
channel, A is the area (m2) of the runoff zone of the channel, p is the bulk density (kg m−2) and 
d is the maximum depth (m) of the stored sediment. 
The proportion of gully or channel storage in each runoff zone is then calculated: 

𝐶𝐶𝑇𝑇𝑝𝑝𝑐𝑐𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷,        (Equation C15) 

where Cprop (constrained between 0.1 and 0.8) is the proportion of the total storage in a 
runoff zone that is assumed to be represented by gully or channel storage and DD is the 
drainage density (km km−2) of the channel features in that zone.  
Sediment is added to the three slope storage zones during each time interval of the model: 

𝑆𝑆𝑆𝑆(𝐷𝐷) = 𝑆𝑆𝑆𝑆(𝐷𝐷 − 1) +  𝑆𝑆𝑖𝑖𝐼𝐼𝑇𝑇𝑖𝑖𝐼𝐼,      (Equation C16) 

where SS(t − 1) is the sediment storage at the end of the previous time interval, SS(t) is the new 
storage (before transport of other storages) and Sinput is the sediment generated from the soil 
loss estimation procedure described in the previous section. 

The output from each storage component is calculated using the peak surface runoff (qsed 
mm h−1) for that runoff zone relative to the maximum mean daily total flow depth (qmax mm h−1) 
for the whole catchment (over the whole time series) and a threshold flow depth (qt, mm h−1), 
as well as a power function for the amount of sediment currently in storage relative to the 
maximum possible storage.  

For the main channel storage, the peak runoff value is based on the total flow (not only 
surface runoff) depth during the day for the whole catchment. The maximum mean daily total 
flow depth is pre-calculated from the full time series of flow data input from the hydrological 
model. 

If qsed > qt then: 
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𝑆𝑆𝑐𝑐𝑖𝑖𝐼𝐼 = 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠− 𝑞𝑞𝑡𝑡
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚− 𝑞𝑞𝑡𝑡

 × 𝑆𝑆𝑆𝑆 ×  (𝑆𝑆𝑆𝑆 / 𝑆𝑆𝑇𝑇𝑆𝑆𝑚𝑚)𝑇𝑇𝑐𝑐𝐹𝐹     (Equation C17) 

For the three slope sediment storage components, the 𝐶𝐶𝑄𝑄𝐶𝐶𝐹𝐹𝑄𝑄 value (i.e. the proportion of 
total sediment storage for the runoff zone that is considered to be in channel features) is used 
to determine the destination of the sediment delivery. 𝑆𝑆𝐹𝐹𝑜𝑜𝐷𝐷 × 𝐶𝐶𝑄𝑄𝐶𝐶𝐹𝐹𝑄𝑄 is added to the channel 
storage within the same runoff zone, whereas 𝑆𝑆𝐹𝐹𝑜𝑜𝐷𝐷 × (1 − 𝐶𝐶𝑄𝑄𝐶𝐶𝐹𝐹𝑄𝑄) is added to the slope storage 
of the next runoff zone in the cascade. The outputs from the channel storages are directed to 
the next channel storage in the cascade, whereas all of the outputs from the lower runoff zone 
are directed to the main channel. The outputs from the main channel become the final 
sediment delivery for the total catchment. 
Calculation of sediment transport in the main river channel 
Calculation of velocity, depth and river width with different flows 

To calculate the transport of suspended sediment, estimates of velocity (m s−1), depth (m) 
and width (m) with different daily flows (m3 s−1) are required. To calculate these, certain 
assumptions about the channel shape are made, requiring additional user input, i.e. the river 
channel maximum width (m) and slope. The assumptions of the channel shape are illustrated 
in Figure C.1. 

Within the sediment routing procedure, the model will first step through all the 
subcatchments (nodes) in the modelled system, and using the set parameters of Widthmax and 
Slope, will calculate width (Width), depth (Depth), flow (Q) and velocity (Vel) in one cm 
increments of depth until the maximum depth for the channel is reached. These values are 
placed in an array in run-time memory, which effectively acts as a lookup table during the 
sediment routing.  
Widthbed is assumed to be 60% of Widthmax. We need to calculate Depth at bankfull to 
determine the range of depths for the lookup table: 

Opp = (Widthmax – (Widthmax * 0.6))/2     (Equation C18) 
Depthmax = 0.6 * ((Widthmax/0.45)2.08)0.35     (Equation C19) 

Depthmax is the depth at bankfull and determines the range of depths for which Q, Vel and 
Width are calculated in one cm increments of Depth.  
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Figure C.1 Conceptual representation of a river channel used to route sediment 

 
We need the angle α (Figure C.1) in subsequent calculations: 
Hyp = (Opp2 + Depthmax2)0.5 (Pythagorean Theorem)    (Equation C20) 
α = arcsin(Opp/Hyp)        (Equation C21) 
  
For each 1 cm increment of Depth from 1 to Depthmax: 
N = 0.1 – (Depth/Depthmax * 0.06)      (Equation C22) 
Where N is Manning’s N for an assumed range of 0.04 to 0.1, with 0.1 the value at the lowest 
depth and 0.04 the value at Depthmax.  
To work out wetted perimeter and area with changes in depth: 
Hyp = Depth/Cos(α)        (Equation C23) 
Opp = (Hyp2 – Depth2)0.5       (Equation C24) 
Wetted_Perimeter = Hyp * 2 + Widthmax * 0.6    (Equation C25) 
Area = (Widthmax * 0.6 * Depth) + (Depth * Opp)    (Equation C26) 
Vel = ((Area/Wetted_Perimeter)0.67 * Slope0.5)/N    (Equation C27) 
Width = (Widthmax * 0.6) + (Opp * 2)      (Equation C28) 
Q = Area * Vel         (Equation C29) 



 
 

189 
 

For each 1 cm increment of Depth from 1 cm to Depthmax, Depth, Width, Vel and Q are stored 
in a lookup table (runtime memory multi-dimensional array).   
Calculation of suspended sediment 

The approach adopted follows the method for suspended load transport for steady flow 
proposed by Van Rijn (1984). 
qb = αs * ρs * Vel * d50 * Me2.4 * (D*)−0.6     (Equation C30) 
Me = (Vel − Velcritical)/[(s − 1)gd50]0.5      (Equation C31) 
D* = d50[(s − 1)g/v2]0.33       (Equation C32) 
Velcritical = a * (d50 * 10,000)b       (Equation C33) 
s = ρs/ρw         (Equation C34) 
  

qb is suspended load transport (kg m−1), αs is assumed to be 0.012 (Van Rijn, 1984), ρs is 
the density of the sediment (kg m−3) and is assumed to be 1,200 from an initial survey of the 
literature, d50 is the median particle size (m), which is set by the user, Me is the mobility 
parameter, Velcritical is the critical depth-averaged velocity for initiation of motion (m s−1), s is 
relative density, ρw is the density of water (kg m−3), and is assumed to be 1,000, g is the 
acceleration of gravity (m s−2), which is known to be 9.81, v is the kinematic viscosity 
coefficient (m2 s−1), which for water at 20°C is known to be 0.000001. 

The values of a and b where calculated through linear regressions of the relationship 
between Velcritical and d50 given by Van Rijn (2012): 
a = 0.225 * Depth0.15        (Equation C35) 
b = 0.49 * Depth−0.02        (Equation C36) 

For each day, WQSAM uses the cumulative flow (m3 s−1) to obtain Depth, Width and Vel 
from the aforementioned lookup table in memory. Using the equations given above, the load 
of sediment that can be carried in suspension (kg m−3) is calculated by multiplying qb by Width. 
The loads of sediment entering the catchment from upstream are summed and the final load 
(kg m−3) is compared to the load that can be carried in suspension. If the load entering the 
subcatchment is greater than what can be carried in suspension by the cumulative flow, the 
difference is deposited to the bed load. If the load entering the subcatchment is smaller than 
what can be carried in suspension by the cumulative load, the difference is taken from the bed 
load as it is assumed that some of the bed load enters suspension. The load in suspension is 
passed to the subcatchment downstream on a daily time step.  
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