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Executive Summary 
 

What is this project about? The subtitle says it succinctly:  Exporting PyTOPKAPI and 

HYLARSMET over SADC, including RSA, with extended spatial and computational capacity of 

Soil Moisture and Evapotranspiration for flood and drought monitoring.  Timeous and routine 

monitoring of the spatial distribution of Soil Moisture and Evapotranspiration over a large 

region in fine detail has great value for coping with two weather extremes: Flash Floods and 

Droughts. The current state of soil moisture conditions has a major impact on the runoff 

response of a catchment to heavy rainfall; and monitoring the wetness of the soil in detail 

over large regions, without having to laboriously take expensive samples, is a bonus for 

agricultural managers who need to understand the status of crop growth potential. This is 

particularly relevant in the southern and central African countries in the SADC region which 

contribute importantly to the food basket of Africa.  

 

Why did we do this work?  This proposed project had two thrusts.  The first was to extend 

coverage of near real-time Soil Moisture (SM) and Evapotranspiration (ET) monitoring over 

the SADC region using the existing methodology of operating the PyTOPKAPI hydrological 

model in Land Surface Modelling mode (as proven in RSA), which we called HYLARSMET in the 

completed WRC project K5/2024. This outreach project is likely to be beneficial in many ways, 

not only technically and socially, but also to help cement other forms of collaboration within 

the region.  

 

The second thrust was to develop powerful computing techniques that will make it feasible 
to drive the modelling procedure for the vastly increased number of cells required to cover 
the SADC region. The same techniques can be applied to improve the spatial detail of 
distributed hydrological modelling at fine scale in RSA, as piloted in the WRC project K5/2024, 
to complement the South African Flash Flood Guidance system initiative.  With a contribution 
from us, this was undertaken by Mr Eugene Poolman of SAWS in WRC project K5/2068. The 
improved computational speed will also add convenience when performing ensemble 
simulations to assess the impacts of climate change scenarios on hydrological variables at fine 
scale, hence the link with Prof Bruce Hewitson's CSAG group at UCT. We joined this group to 
exploit our strong link through their WRC project 'Managing limits in skill for seasonal climate 
forecasting'. 
 

This report details answers to the following important research questions.  How did we: 

• ascertain what rainfall data are available in the SADC countries outside our 
borders and perform checks on their suitability for modelling 

• obtain suitable ground cover and soil maps over the whole SADC region (e.g. 
FAO and others), for comparison with those already available in RSA 

• exploit the sensitivity calculations performed on the RSA data-set under 
HYLARSMET  

• determine the best way to compare FAO sets of ground-based data with our 
RSA sets 
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• determine if there are better alternative rainfall inputs to TRMM, for near real-
time precipitation data input.  If not, exploit bias adjustment of the TRMM 
product 

• exploit the Soil Moisture estimates of the European Space Agency's SMOS [Soil 
Moisture & Ocean Salinity] mission when ready for use in model inter-
comparisons 

• determine how to best cope with the uncertainties associated with input 
parameters and forcing variables [TRMM in particular] when computing 
ensembles of historical and forecast data streams 

• devise means of increasing computing capacity and the speed of calculations 
by refining key parts of the code and employing parallel [or High Performance] 
computing power 

• determine the best ways of cold-starting calculations [model initialization] for 
both gauged and ungauged catchments? 

 

The body of the report relates the methodology in as visual a way as possible – there are 107 
Figures enhancing the message of the text.  In the main, they illustrate the complexity of the 
problem we faced and solved.  We have included almost no mathematics in the report – all 
computations were performed on computers using the Python language.  For technically 
competent readers, we have given the details of the sites where the data and the programs 
we have devised can be accessed as open source material, at the end of this Executive 
Summary.   
 
As an example of complexity and the necessity of very large data-sets, the following image 
from Section 2 illustrates the data handling problem well.  The detail is at 1 km resolution, as 
stated in the report: 'Soil Mapping Units (SMUs) … have been gridded to a resolution of 30 
arc-seconds (nominally about 1 km)' – Dewitte et al., 2013, noting that Africa's area is 
30.37 million sq km. 
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Harmonised soil map of Africa (after Dewitte et al., 2013) 

 

There are several major original research highlights that come out of the project.  Our focus 

in EXSMET was to develop and utilise calculations at isolated 1 km pixels in 0.125 (about 12 

km) squares over SADC, driven by hydrological modelling through our hydrological model 

PyTOPKAPI, leading to Soil Moisture assessments. We took advantage of gains made in an 

improved understanding of Soil Moisture and surface water hydrological processes through 

the completed WRC project HYLARSMET, which was blessed by the availability of better 

hydrological data, especially the various forms of more accurate remotely-sensed data with 

better precipitation coverage, like TRMM, recently replaced by GPM.  Throughout this 

project, strategic partnerships with international expertise in climate, soil water and surface 

water hydrological research flourished. Hydrological tools that were developed in the past 

under HYLARSMET were upgraded, re-developed and accelerated by alternative tools that are 

suited to current data availability, improved knowledge and the recent technological 

advances in hydrological modelling using the PyTOPKAPI model.  

 

In this EXSMET project, the loss of information due to continued deterioration of hydrological 

gauging processes and other installed earth measurement devices were managed through 

the intensive use of new data sources from remote sensing, coupled with the limited earth-

based measurements.  
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In conclusion, the major outcomes we achieved here are that (i) we devised techniques to 

model Soil Moisture and Evapotranspiration over SADC in detail and (ii) model hydrological 

runoff on ungauged catchments over RSA, both with estimated levels of confidence, using 

accelerated parallel computing algorithm designs, which were especially devised for this 

project. 

 

 

<<<<<>>>>> 

 

Innovation: 
This is probably the first WRC project to tackle Hydrometeorological problems outside RSA.  

The four-year study covered all SADC countries, modelling Evapotranspiration and Soil 

Moisture at 3-hour intervals over a 5-year period.  The methodologies developed for 

modelling hydrological responses to precipitation and evaporation were applied over a very 

large area at nearly 50 000 sites.  This massive computing task demanded the development 

of new tools for high speed parallel computing which were devised, archived and made free-

ware.  In addition, with poor meteorological information available outside data-rich RSA, it 

was mandatory that remote sensing tools should be exploited.  A large amount of effort was 

made to ensure that the appropriate data sources were downloaded, compared, sorted and 

chosen.  

 

Capacity building – postgraduate students:  
 

Graduated: 

MSc Eng:  Simon Malose Ngoepe (2017) 'Conditioning Tropical Rainfall Measuring Mission 

(TRMM) data using ground-based rainfall data' 

MSc Hydrology:  Thigesh Vather (2016): Thesis entitled: 'Comparison between satellite based 
and cosmic ray probe soil moisture measurements: A case study in the Cathedral Peak 
Catchment'.  Supervisor Prof Colin Everson in a joint WRC project with Pegram & 
Associates – K5/2323: 'The Validation of the Variables (Evaporation and Soil Moisture) in 
Hydrometeorological Models: Phase II, Application of Cosmic Ray Probes for Soil Water 
Measurement' 

 

Currently being supervised: 

[PhD] Stephanie Landman: Topic: 'High resolution ensemble numerical weather prediction 

forecasts for applications in the field of hydrology' 

[MSc Eng, co-supervised]  Tadiwanashe Gutsa: Utility of radar rainfall estimates in catchment 

rainfall analysis 
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Papers Published in International Journals:  
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Symposium, University of KwaZulu-Natal, September. 
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Archives: 
It is important for the technical reader to know where to access the routines and data-sets 

developed in this report.  These can be found in: PyTOPKAPI v0.4.0. Zenodo.   

            http://doi.org/10.5281/zenodo.820640 

and in  

            https://github.com/sahg/PyTOPKAPI  
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Introduction 

 

Timeous and routine monitoring of the spatial distribution of Soil Moisture and Evapotranspiration 

over a large region in fine detail has great value for coping with two weather extremes: Flash Floods 

and Droughts. The prevailing state of soil moisture conditions has a major impact on the runoff 

response of a catchment to heavy rainfall.  Monitoring the wetness of the soil in detail over large 

regions, without having to laboriously take expensive samples, is a bonus for agricultural managers 

who need to understand the status of crop growth potential. This is particularly relevant in the 

Southern and central African countries in the SADC region which contribute importantly to the food 

basket of Africa.  

 

This research project had two thrusts. The first was to extend coverage of near real-time Soil 

Moisture (SM) and Evapotranspiration (ET) monitoring over the SADC region using the existing 

methodology of operating the PyTOPKAPI hydrological model in Land Surface Modelling mode (as 

proven in RSA), which we called HYLARSMET in the completed WRC project K5/2024 (Sinclair and 

Pegram, 2013b). This outreach project EXSMET is likely to be beneficial in many ways, not only 

technically and socially, but also to help cement other forms of collaboration within the region. The 

second thrust was to develop powerful computing techniques that make it feasible to drive the 

modelling procedure for the vastly increased number of cells required to cover the SADC region. 

The same techniques can be applied to improve the spatial detail of distributed hydrological 

modelling at fine scale in RSA, as piloted in the WRC project K5/2024, to complement the SAFFG 

initiative undertaken by Mr Eugene Poolman of SAWS in WRC project K5/2068, assisted by us in 

Pegram & Associates.  

 

Notwithstanding the above, the core focus of this proposal was to build on the momentum of 

HYLARSMET's development of PyTOPKAPI as both a distributed hydrological model (Vischel et al., 

2008; Sinclair and Pegram, 2010) and a Land Surface Model (Sinclair and Pegram, 2013a), in two 

earlier WRC projects K5/1683 and K5/2024, completed respectively in March 2010 and March 2013. 

The major thrusts in the HYLARSMET project were:  

 

 (1) Search for precipitation products possibly useful for EXSMET 

(2) Obtain updated soil and land use data from ARC-ISCW and WRC/UKZN;  

(3) Add a surface infiltration layer to TOPKAPI to allow flash flood runoff to be modelled;  

(4) Improve rainfall and ET forcing after conducting an exhaustive sensitivity analysis;  

(5) Set up hydrologically consistent implementations of HYLARSMET on several SAWS SAFFG 

target catchments, computing soil moisture at fine scale;  

(6) Maintain the HYLARSMET tools for the community which included: an open source 

version of the PyTOPKAPI model, bug fixes, extensions to the model, website 

maintenance, user interaction, and a successful workshop.  

 

To enable the extension of PyTOPKAPI into areas outside of South Africa, it was necessary to obtain 

suitable soil property data-sets over the region. Comparisons of hydrological response (which 

includes ET and SM behaviour) to different data-sets, were made to determine how sensitive are 

the estimates to these differences. The comparisons were made between our RSA data-sets and the 

global ones we obtained. Crucial to the transfer of information to the SADC region outside RSA was 

an estimation of the difference in responses of ET, SM and hydrology in the two sets. In the 
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HYLARSMET project K5/2024, the variable to which the SM modelling was found to be the most 

sensitive (and over which we have some control in terms of bias adjustment) is the rainfall input. In 

the SADC region outside RSA, the gauge rainfall records are sparser, by an order of magnitude, than 

those in RSA. We had to rely on the Tropical Rainfall Measuring Mission [TRMM] to provide us with 

rainfall estimates. However, we found in the HYLARSMET project that TRMM is biased, depending 

on topography and location. To tackle the problem, a postgraduate student involved with this 

project, Simon Ngoepe of DWS, concentrated on TRMM bias adjustment in his MSc research – he 

was awarded his degree in 2017.  

 

In summary, this EXSMET proposal focused on developing and utilising integrated hydrological 

approaches in surface water and Soil Moisture assessments, water resource planning and 

management. It took advantage of gains made in improved understanding of Soil Moisture and 

surface water hydrological processes through the completed project HYLARSMET, as well as the 

availability of better hydrological data, especially the various forms of remotely-sensed data with 

better coverage, like TRMM. Hydrological software that was developed in the past under 

HYLARSMET was adapted, re-developed and accelerated by tools that are suited to current data 

availability, improved knowledge and the recent technological advances in hydrological modelling 

using the PyTOPKAPI model. In this EXSMET project, the continued deterioration of hydrological 

gauging processes and other installed earth measurement devices were managed through the 

intensive use of new data sources from remote sensing coupled with the limited earth-based 

measurements. Finally, the major outcomes were that we were able to (i) model Soil Moisture over 

SADC in detail (approximately 49 000 isolated pixels centred in 0.125 squares) and (ii) model 

hydrological runoff on ungauged catchments over RSA, both with estimated levels of confidence.   

 

We consider that it is important for the technical reader to know where to access the routines and 

data-sets developed in this report.  These can be found in: PyTOPKAPI v0.4.0. Zenodo. 

http://doi.org/10.5281/zenodo.820640 (Sinclair, et al. 2017, June 28) and in 

https://github.com/sahg/PyTOPKAPI  

 

A good bias correction of TRMM, and other carefully chosen remote sensing products, was of 

paramount importance if we were to get the hydrology right. To achieve this, we partially relied on 

the output of our parallel WRC project K5/2241: originally named 'Revision of the Mean Annual 

Precipitation (MAP) estimates over Southern Africa' (Pegram et al., 2016) dedicated to gauge rainfall 

interpolation and TRMM bias correction. 

 

In the Sections which follow, the Deliverables in the project are outlined, then our interpretation 

and results of the research are expanded upon in detail towards the end. 

 

 

 

-----ooOoo---- 
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1.  Summary of precipitation products possibly useful for EXSMET 

 

This first Section describes the work done under Deliverable 1:  'Ascertain what rainfall data are 

available in the SADC countries outside our borders and perform checks on their suitability for 

modelling'.  In Table 1.1 are the details of the 23 Products/Data that are available at monthly down 

to daily and sub-daily time-steps, which were considered as possible candidates for testing in 

EXSMET. It was decided that all data-sets must be publicly accessible (preferably via the internet 

without onerous administrative restrictions, e.g. licensing.) 

 

Table 1.1:   Summary of precipitation products possibly useful for EXSMET 

 

The following paragraphs list of 12 (out of the 23) possibly useful products, selected from the full 

set of 23 in Table 1.1, based purely on whether they are currently available: CHIRPS, CMORPH, ERAI, 

CPC FEWS RFE, GHCN [Global station precipitation, Point Daily 1850 to 2014], GPCP, GSMaP, NRL, 

PREC/L, QMORPH, TRMM 3B42 and TRMM 3B42-RT.   

 

CHIRPS 

http://chg.geog.ucsb.edu/data/chirps/ 

 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Funk et al., 2014) is a 30+ 

year quasi-global rainfall dataset. Spanning 50S-50N (and all longitudes), starting in 1981 to near-

present.  CHIRPS incorporates 0.05 resolution satellite imagery with in-situ station data to create 

gridded rainfall time series for trend analysis and seasonal drought monitoring. As of May 1st, 2014, 

when the project was initiated, version 1.8 of CHIRPS was complete and available to the public. 

 

CMORPH 

http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html 

 

CMORPH – CPC MORPHing technique (Joyce et al., 2004) – produces global precipitation analyses 

at very high spatial and temporal resolution. This technique uses precipitation estimates that have 

been derived from low orbiter satellite microwave observations exclusively, and whose features are 

transported via spatial propagation information that is obtained entirely from geostationary 

http://chg.geog.ucsb.edu/data/chirps/
http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
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satellite IR data. We incorporated precipitation estimates derived from the passive microwaves 

aboard the DMSP 13, 14 & 15 (SSM/I), the NOAA-15, 16, 17 & 18 (AMSU-B), and AMSR-E and TMI 

aboard NASA’s Aqua and TRMM spacecraft, respectively. These estimates are generated by 

algorithms of Ferraro (1997) for SSM/I, Ferraro et al. (2000) for AMSU-B and Kummerow et al. (2001) 

for TMI. Note that this technique is not a precipitation estimation algorithm but a means by which 

estimates from existing microwave rainfall algorithms can be combined. Therefore, this method is 

extremely flexible such that any precipitation estimates from any microwave satellite source can be 

incorporated. 

 

With regard to spatial resolution, although the precipitation estimates are available on a grid with 

a spacing of 8 km (at the equator), the resolution of the individual satellite-derived estimates is 

coarser than that – more on the order of 12 x 15 km or so. The finer 'resolution' is obtained via 

interpolation.  In effect, IR data are used as a means to transport the microwave-derived 

precipitation features during periods when microwave data are not available at a location. 

Propagation vector matrices are produced by computing spatial lag correlations on successive 

images of geostationary satellite IR which are then used to propagate the microwave derived 

precipitation estimates. This process governs the movement of the precipitation features only. At a 

given location, the shape and intensity of the precipitation features in the intervening half hour 

periods between microwave scans are determined by performing a time-weighting interpolation 

between microwave-derived features that have been propagated forward in time from the previous 

microwave observation and those that have been propagated backward in time from the following 

microwave scan. We refer to this latter step as 'morphing' of the features. 

 

Combined precipitation estimates are available from low earth orbiting microwave satellite 

platforms using geostationary IR data to provide motion fields describing the movement of 57 

rainfall estimates between observations. 3 hourly data at 0.25 spatial resolution is available in a 

custom binary file format via FTP. There is a time lag of around 18 hours. The product is also available 

in 8 km and 30-minute resolution. 

 

QMORPH 

http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html 

 

Similar to CMORPH, but only uses forward advection (i.e. forecasts). Combines precipitation 

estimates from low earth orbiting microwave platforms using geostationary IR data to provide 

motion fields describing the movement of rainfall between observations. Past 24 hours available in 

a custom binary file format via FTP, at 0.25 and 8 km spatial resolutions and 30-minute temporal 

resolution. 

 

ERAI 

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim 

 

ERA-Interim (Dee et al., 2011) is a global atmospheric reanalysis from 1979, continuously updated 

in real time. The data assimilation system used to produce ERA-Interim is based on a 2006 release 

of the IFS (Cy31r2). The system includes a 4-dimensional variational analysis (4D-Var) with a 12-hour 

analysis window. The spatial resolution of the data set is approximately 125 km (T255 spectral) on 

60 vertical levels from the surface up to 0.1 hPa. 

http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
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CPC FEWS RFE 

http://www.cpc.ncep.noaa.gov/products/fews/rfe.shtml 

 

As of January 1, 2001, RFE version 2.0 has been implemented by NOAA’s Climate Prediction Center. 

Created by Ping-Ping Xie, this replaces RFE 1.0, the previous rainfall estimation algorithm that was 

operational from 1995 through 2000 (Herman et al., 1997). RFE 2.0 uses additional techniques to 

better estimate precipitation while continuing the use of cloud top temperature and station rainfall 

data that formed the basis of RFE 1.0. Meteosat 7 geostationary satellite infrared data is acquired 

in 30-minute intervals, and areas depicting cloud top temperatures of less than 235K are used to 

estimate convective rainfall. WMO Global Telecommunication System (GTS) data taken from 1000 

stations provide accurate rainfall totals, and are assumed to be the true rainfall near each station. 

RFE 1.0 used an interpolation method to combine Meteosat and GTS data for daily precipitation 

estimates, and warm cloud information was included to obtain dekadal (sic – i.e. 10-day total) 

estimates. The two new satellite rainfall estimation instruments that are incorporated into RFE 2.0 

are the Special Sensor Microwave/Imager (SSM/I) on board Defense Meteorological Satellite 

Program satellites, and the Advanced Microwave Sounding Unit (AMSU). Both estimates are 

acquired at 6-hour intervals and have a resolution of 0.25 degrees. RFE 2.0 obtains the final daily 

rainfall estimation using a two-part merging process, then sums daily totals to produce dekadal 

estimates. All satellite data is first combined using a maximum likelihood estimation method, and 

then GTS station data is used to remove bias. Warm cloud precipitation estimates are not included 

in RFE 2.0. 

 
 

Figure 1.1: CPC FEWS daily RFE rainfall product for Africa on July 9 2014 

 

GHCN 

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ 

 

The Global Historical Climatology Network Daily (Menne et al., 2012; Durre et al., 2010) is an 

integrated database of daily climate summaries from land surface stations across the globe. Like its 

http://www.cpc.ncep.noaa.gov/products/fews/rfe.shtml
http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
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monthly counterpart (GHCN-Monthly), GHCN-Daily is composed of daily climate records from 

numerous sources that have been integrated and subjected to a common suite of quality assurance 

reviews. 

 

GHCN-Daily now contains records from over 75000 stations in 180 countries and territories. 

Numerous daily variables are provided, including maximum and minimum temperature, total daily 

precipitation, snowfall, and snow depth; however, about two thirds of 5 the stations report 

precipitation only. Both the record length and period of record vary by station and cover intervals 

ranging from less than year to more than 175 years.   

The dataset is regularly reconstructed (usually every weekend) from its 20-plus data source 

components to ensure that GHCN-Daily is generally synchronous with its growing list of constituent 

sources. During this process, quality assurance checks are applied to the full dataset. On most 

weekdays, GHCN-Daily station data are updated when possible from a variety of data streams, which 

also undergo a suite of quality checks.  Our interest is confined to cover SADC as shown in  

Figure 1.2. 

 

Figure 1.2: Left panel – The complete set of rain gauges available in the GHCN database for SADC 

countries, focused on the continental landmass. Right panel – The subset of SADC gauges that are 

likely to provide updated information via the WMOGTS system. 

 

 

Figure 1.3 shows the availability of these data over time. 
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Figure 1.3: Top panel – The complete number of active SADC rain gauges available in the GHCN 

database. Bottom panel – The subset of SADC gauges that are likely to provide updated 

information via the WMO GTS system. 

 

GPCP 

http://precip.gsfc.nasa.gov/ 

 

The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research 

Program (WCRP) and subsequently attached to the Global Energy and Water Exchange program 

(GEWEX) to address the problem of quantifying the distribution of precipitation around the globe 

over many years. The general approach is to combine the precipitation information available from 

each of several sources into a final merged product, taking advantage of the strengths of each data 

type. The passive microwave estimates are based on Special Sensor Microwave/Imager (SSMI) and 

Special Sensor Microwave Imager/Sounder (SSMIS) data from the series of Defense Meteorological 

Satellite Program (DMSP, United States) satellites that fly in sun-synchronous low-earth orbits at 6 

a.m./p.m. The infrared (IR) precipitation estimates are computed primarily from geostationary 

satellites (United States, Europe, Japan), and secondarily from NOAA-series polar-orbiting satellites 

(United States). Additional low-Earth orbit estimates include Atmospheric Infrared Sounder (AIRS 

data from the NASA Aqua), and Television Infrared Observation Satellite Program (TIROS) 

Operational Vertical Sounder (TOVS) and Outgoing Longwave Radiation (OLR) Precipitation Index 

(OPI) data from the NOAA series satellites. The precipitation gauge data are assembled and analysed 

by the Global Precipitation Climatology Centre (GPCC) of the Deutscher Wetterdienst. 

The GPCP has promoted the development of an analysis procedure for blending the various 

estimates together to produce the necessary global gridded precipitation fields. The currently 

operational procedure is described in Huffman et al. (2001), Adler et al. (2003) and Huffman et al. 

http://precip.gsfc.nasa.gov/
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(2009), and has been used to produce the GPCP Version 2.2 Combined Precipitation Data Set, 

covering the period January 1979 through the present (with some delay). The primary product in 

the Version 2.2 dataset is a combined observation-only dataset, that is, a gridded analysis based on 

gauge measurements and satellite estimates of precipitation. There is a total of 27 fields in the data 

set providing information from the individual and intermediate estimates, including estimates of 

RMS random error. 

 

GSMaP 

http://sharaku.eorc.jaxa.jp/GSMaP/ 

 

The Global Satellite Mapping of Precipitation algorithm is a combination of the CMORPH technique 

and Kalman filter (Kubota et al., 2007). The IR data are used as a means to move the precipitation 

estimates from microwave observation during periods when microwave data are not available at a 

location in this study. The microwave sensors which we use are TRMM/TMI, Aqua/AMSR-E, and 

DMSP/SSMI (F13, 14, 15) for the GSMaP-MVK product; in addition to these, AMSU-B’s are included 

in the GSMaPMVK+ product. The technique to have high resolution global precipitation map uses 

the Kalman filter to compute the estimates of the current surface rainfall rates at each 0.1 pixel of 

the infrared brightness temperature by the GEO-IR satellites. The filter predicts the precipitation 

rate from the microwave radiometer and its propagated product based on the IR data, and then 

refines the prediction based on the relationship between the IR brightness temperature and surface 

rainfall rate. The rain rates from the passive microwave radiometer are generated as suggested by 

Aonashi and Liu (2000). 

 

 
 

Figure 1.4: GSMaP rainfall product for Africa. 

 

The blended satellite IR and passive Microwave rainfall estimates, provide both instantaneous and 

accumulated rainfall at 0.25 spatial resolution and 6-hourly time-steps. It’s not clear from the 

website how one can access the data, nor what the details of the algorithm are (there is no reference 

to published work, but the contact person appears to be Joe Turk who we know and have met, and 

who is well published and respected in the field of satellite rainfall estimation). 

 

 

http://sharaku.eorc.jaxa.jp/GSMaP/
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NRL Monterey 

http://www.nrlmry.navy.mil/sat-bin/rain.cgi 

 

The US Naval Research Laboratory (NRL) blended satellite technique is based upon area-dependent 

statistical relationships derived from a precise, near real-time ensemble of collocated passive 

microwave (PMW) and infrared (IR) pixels from any or all low Earth-orbiting (LEO) and geostationary 

satellites, respectively, as their individual orbits and sensor scan patterns continuously intersect in 

space and observation time. 

 

 

 
 

Figure 1.5: NRL Monterey 3 hour blended global rainfall rate product. 

 

 

PREC-L 

http://www.esrl.noaa.gov/psd/data/gridded/data.precl.html 

 

PREC-L is NOAA’s PRECipitation REConstruction over Land (Chen et al., 2002) product. The monthly 

data set consists of three files containing monthly averaged precipitation totals. Precipitation is 

available at 3 spatial resolutions. The global analyses are defined by interpolation of gauge 

observations over land. Gauge observations are from over 17 000 stations collected in the Global 

Historical Climatology Network (GHCN) version 2 (see above) and the Climate Anomaly Monitoring 

System (CAMS) datasets. An Optimal Interpolation technique was used to assimilate the 

observations. The mean distribution and annual cycle of precipitation observed in the PREC/L 

showed good agreement with those in several published gauge-based datasets, and the anomaly 

patterns associated with ENSO resemble those found in previous studies. All maps are stored using 

a landmask [MATLAB term] as smoothing puts values well over the oceans. We stored all values 

where the values were below 0. One may decide to further mask the data using their land file and a 

different cutoff. 

 

 

  

http://www.nrlmry.navy.mil/sat-bin/rain.cgi
http://www.esrl.noaa.gov/psd/data/gridded/data.precl.html
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TRMM 3B42 

http://daac.gsfc.nasa.gov/precipitation/TRMM_README/TRMM_3B42_readme.shtml 

 

TRMM Multi-Satellite Precipitation Analysis (Huffman et al., 2007), combined microwave and 

microwave/gauge calibrated IR estimates of precipitation rate. Spatial resolution is 0.25 and 

temporal resolution is 3 hourly. Estimates are post-processed on a Monthly basis, with the previous 

month’s data typically available within a few days of month end. The data are available in HDF 

format and can be ordered via the TRMM Data Search and Order System, this process requires 

manual intervention, but could be partially automated. 

 

TRMM 3B42-RT 

ftp://trmmopen.gsfc.nasa.gov/pub/merged 

 

TRMM Real-Time Multi-Satellite Precipitation Analysis (Huffman et al., 2007), combined microwave 

and microwave calibrated IR estimates of precipitation rate. Spatial resolution is 0.25 and the 

temporal resolution is 3 hourly. Estimates are available within 6-7 hours of observation times and 

can be downloaded via FTP in a custom binary file format. 

 

1.1 Summary of decisions 

 

At this early stage of the project we examined the following products for appropriateness in our 

study: 

 

CHIRPS, 

CMORPH, 

ERA-I, 

CPC FEWS RFE, 

GHCN [Global station precip. Point Daily 1850 to 2014], 

GPCP, 

GSMaP, 

NRL, 

PREC/L, 

QMORPH, 

TRMM 3B42,  

TRMM 3B42-RT 

 

These were chosen because they are historically up-to-date and have promise of persevering into 

the future. This is important if we are to perform consistently reliable downscaling estimates of 

ground-level rainfall at the daily and monthly scale, as measured by gauges, as noisy as these may 

be.  Thus, in the spirit of the description of this first deliverable, we ascertained what rainfall data 

are available in the SADC countries outside our borders and performed checks on their suitability 

for modelling, in particular for downscaling the appropriate remote sensing products. The difficult 

part now turned to how to determine the best way to export the downscaling techniques that we 

developed over data-rich RSA, to the data-poor countries north of us. 

 

-----ooOoo----  

http://daac.gsfc.nasa.gov/precipitation/TRMM_README/TRMM_3B42_readme.shtml
ftp://trmmopen.gsfc.nasa.gov/pub/merged
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2.  The FAO maps used to determine parameters for PyTOPKAPI modelling 

 

In order to extend the current HYLARSMET implementation in South Africa into the rest of SADC 

north of our borders, it was necessary to obtain suitable estimates for the PyTOPKAPI static 

parameters in these regions.  The 2nd Deliverable was to: 'Obtain suitable ground cover and soil 

maps over the whole SADC region (e.g. FAO and others), for comparison with those already 

available in RSA'. Therefore, in this Section we summarize our investigations into suitable 

alternatives to the detailed information available in South Africa. In subsequent Subsections we 

perform an extensive investigation of the differences between the South African and regional data 

sets. 

 

In Subsection 2.1, we introduce the static parameters and techniques used to estimate them in 

South Africa. In Subsection 2.2 we mention a few alternatives to the Digital Elevation Model (DEM) 

used in our South African work. Subsection 2.3 summarises a variety of options for obtaining land 

cover information in SADC countries, while soil properties are reviewed in Subsection 2.4. Interim 

conclusions are presented in Subsection 2.5. 

 

2.1  Estimation of the HYLARSMET parameters 

 

Each PyTOPKAPI model cell in the HYLARSMET product (Pegram et al., 2010; Sinclair and Pegram, 

2013b) is 1 km square in plan and is as deep as the active soil layer (approximately 1 m in South 

Africa, depending on location). The forcing variables driving the cell water content are rainfall and 

evapotranspiration, the latter depending on the soil water content of the cell as well as atmospheric 

variables.  The parameters required to model the flow of water into and out of the cell are physically 

based properties: 

 

• Soil store: local slope of cell, depth, saturated soil moisture, residual soil moisture and soil 

conductivity 

• Overland store: local slope of cell and surface roughness. 

• Infiltration layer: bubbling pressure and pore size distribution index, both parameters of the 

Green-Ampt (1911) Infiltration model. 

2.1.1 Local slopes 

The local slopes for each pixel were derived from CGIAR's SRTM DEM product (Jarvis et al., 2008) 

using raster analysis tools in GRASS GIS. 

 

2.1.2 Overland surface roughness 

In the concurrent implementation of HYLARSMET, we derive overland surface roughness (n0) from 

GLCC v1.2 (see Figure 2.1) using an interpretation of the classes in line with table 12.2.1 of Maidment 

(1993), see table 2.1 in this Section. 

 

2.1.3 Soil depth 

For HYLARSMET in South Africa, we derived soil depth (L) maps by resampling and projecting the 

soil depths reported in Schulze et al. (2008). 
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2.1.4 Saturated soil moisture content 

For HYLARSMET in South Africa, we derived saturated moisture content (s) maps by resampling 

and projecting the total porosity maps reported in Schulze et al. (2008). 

 

 
 

Figure 2.1: USGS GLCC v1.2 land cover product for the African continent 

 

2.1.5 Residual soil moisture content 

 

We obtained soil texture classifications from the WR2005 soils map (Middleton and Bailey, 2009). 

The residual soil moisture content (r) values are then the mean values for the relevant texture 

classes reported in table 5.3.2 of (Maidment, 1993) and in cases where more than one soil texture 

class is represented, an average has been taken. 

 

2.1.6 Saturated hydraulic conductivity 

 

We obtained soil texture classifications from the WR2005 soils map (Middleton and Bailey, 2009). 

The soil conductivity (Ks) values were then estimated using table 5.5.5 of (Maidment, 1993) and in 

cases where more than one soil texture class is represented, the average of the values reported for 

each class is used. 

 

2.1.7 Bubbling pressure 

 

We obtained soil texture classifications from the WR2005 soils map (Middleton and Bailey, 2009). 

The bubbling pressure (b) values were then estimated using table 2 of Rawls et al. (1982) and in 



13 

 

cases where more than one soil texture class is represented, the average of the values reported for 

each class is used. 

 

Table 2.1: Lookup table of Manning roughness coefficients for USGS GLCC v1.2 land cover classes. 

Note that coefficients have only been assigned for classes that appear in South Africa, therefore 

some additions were required for application in SADC. Missing values are represented as -999. 

 

 
 

 

2.1.8 Pore size distribution index 

 

We obtained soil texture classifications from the WR2005 soils map (Middleton and Bailey, 2009). 

The pore size distribution index () values were then estimated using table 2 of Rawls et al. (1982) 

and in cases where more than one soil texture class is represented, the average of the values 

reported for each class is used. 

 

Summary of 2.1 

 

The local slopes for each cell in the SADC region can be calculated from the SRTM DEM as we did for 

South Africa. Possible alternative elevation models are listed in Subsection 2.2. Values of no for SADC 

can be derived from GLCC v1.2 exactly as they have been for the South African implementation of 

HYLARSMET. However, there are some more modern alternatives that were investigated for 

possible improvements (these are introduced in Subsection 2.3). 
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Since L and s were derived from Schulze et al. (2008), we needed to use different data sets to 

calculate these parameters in the rest of the SADC region. L was the most challenging parameter, 

as there is not much information outside RSA borders.  On the other hand, an estimate of s can be 

derived from soil texture information and the tables in Rawls et al. (1982) and Maidment (1993) – 

see Figure 2.2. These two parameters are of particular importance, as the PyTOPKAPI model is most 

sensitive to errors in these parameters (see Sinclair and Pegram, 2013a). 

 

The remaining parameters (r, Ks, b and ) can be estimated from soil texture information available 

in Figure 2.2, the result is that our focus was to identify sources of soil depth and texture information 

as a priority (the possibilities that we were aware of are presented in Subsection 2.4). In addition, 

we endeavoured to choose the 'best' data sets for all other parameters where there are several 

alternatives to choose from. 

 

 
 

Figure 2.2: The table from Rawls et al. (1982) used to estimate soil properties from texture 

information. 

 

 

2.2 Digital Elevation Models – Alternatives to CGIAR SRTM 

 

Besides the SRTM DEM of Jarvis et al. (2008), in this Section we provide a list of other potential 

sources for elevation models:  

•  HydroSHEDS – see USGS https://hydrosheds.cr.usgs.gov/data.php 

•  opentopography.org 

•  African GIS database (B_odis, 2009) 

•  GeoNet and PyGeoNet – https://sites.google.com/site/geonethome/home - 

https://hydrosheds.cr.usgs.gov/data.php
https://sites.google.com/site/geonethome/home
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From these sources, we can extract characteristics from high resolution topography data.  We 

investigate these and others when we determine the best way to compare FAO data-sets with our 

RSA sets of ground-based data, in Section 4. 

 

2.3 Land Cover – Alternatives to GLCC v1.2 

 

There is a fairly large variety of different land cover classifications which could be used as 

alternatives to the GLCC v1.2, and several of these are listed in this Subsection. In general, these 

classification schemes are quite different from each other (e.g. see Figure 2.3).  However, we 

showed in Sinclair and Pegram (2013a) that HYLARSMET is fairly insensitive to no, so we did not 

spend a great deal of time trying to make the 'best' selection amongst the options. In any event, we 

elected to keep using GLCC v1.2 as a matter of convenience. 

 

 
 

Figure 2.3: Comparison of (a) GLC2000, (b) GLOBCOVER, (c) MODIS and (d) ECOCLIMAP-II in Africa 

(after Tchuenté et al., 2011). Also compare with GLCC in Figure 2.1. 
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IGBP DIS 

The International Geosphere Biosphere Program global land cover of Loveland et al. (2000). This is 

the alternative/new name for GLCC v1.2.   More detail is available at: 

http://edc2.usgs.gov/glcc/glcc.php. 

 

UMD 

The University of Maryland global land cover of Hansen et al. (2000). This is a 1 km resolution global 

data set based on data from the Advanced Very High-Resolution Radiometer (AVHRR) on board the 

MODIS satellite. The approach used to create the set, is an unsupervised classification using decision 

trees. 

 

GLC 2000 

The Land Cover Classification System/GLC 2000 Bartholomé and Belward (2005). A global land cover 

map based on observations from the VEGETATION sensor on-board SPOT 4. The spatial resolution 

is 1 km and the classification has been regionally tuned by experts. 

 

MODIS LC 1 

The MODIS land cover type map of Friedl et al. (2002). This is the official MODIS product, also at 1 

km resolution, and based on AVHRR. However, the methodology employed is a supervised 

classification scheme, based on a database of training sites, to guide an unsupervised procedure. 

 

ECOCLIMAP 1 & 2 

The CNRM ECOCLIMAP of Masson et al. (2003). This product provides initialization parameters for 

SVAT land surface models based on the tiling approach. It is also based on AVHRR at 1 km resolution, 

but provides many more variables in addition to land cover classes. 

 

GLOBCOVER 

Global land cover maps derived from the MERIS instrument on board ENVISAT (Defourny et al., 

2006). The GLOBCOVER maps are designed to be frequently updated to allow for land cover/use 

change studies. 

 

Global Land Cover-SHARE (GLC-SHARE) 

http://www.glcn.org/databases/lc_glcshare_en.jsp  –  

'A new FAO land cover product: the Global Land Cover-SHARE (GLC-SHARE) has been just launched. 

It brings global land cover data under one roof for the first time and represents the most-reliable 

global view of planetary land cover assembled to-date.'  See Figure 2.4 following: 

 

http://edc2.usgs.gov/glcc/glcc.php
http://www.glcn.org/databases/lc_glcshare_en.jsp
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Figure 2.4: GLC-SHARE global land cover database 

 

2.4 HWSD: Soil properties – Alternatives to WR2005 & Agro-Atlas 

 

Harmonized World Soil Database: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-

database/ 

 

'The HWSD is composed of a raster image file and a linked attribute database. The raster 

database consists of 21600 rows and 43200 columns, of which 221 million grid cells cover the 

globe's land territory. Each grid cell in the database is linked to commonly used soil 

parameters, namely, organic carbon, pH, water storage capacity, soil depth, cation exchange 

capacity of the soil and the clay fraction, total exchangeable nutrients, lime and gypsum 

contents, sodium exchange percentage, salinity, textural class, and granulometry. HWSD 

allows soil compositions to be displayed or queried in terms of user-selected soil parameters.' 

 

This set was used in the development of the 'African GIS database' (Bódis, 2009) produced to allow 

the LISFLOOD model (Burek et al., 2013) to operate in the African continent. We rely heavily on the 

HWSD in order to derive the required soil parameters for SADC (despite some known issues with 

the data set).  

 

Soil Atlas of Africa 

 

The HWSD has a variety of discrepancies that have recently been corrected for the African continent 

during the production of the Soil Atlas of Africa (see Dewitte et al. (2013), selected paragraphs 

quoted verbatim below; see Figure 2.5 following). 

 

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/
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'The new soil map of Africa represents an important contribution to the future sustainable use 

of soil resources of the continent. Together with the Soil Atlas of Africa it will raise awareness 

about the importance of soils in the support of an increasing population and threatened 

environment. The soil map and associated database also have the potential to enhance global 

studies on climate change, food production and land degradation for example. The 

explanation of the decisions that were made to produce the map will be useful to others who 

are attempting to harmonise legacy soil data sources to provide a usable information base. 

 

 
 

Figure 2.5: Harmonised soil map of Africa (after Dewitte et al., 2013) 

 

'The Soil Atlas of Africa Project utilised the large body of legacy soil information for Africa 

collected over the last 60 years. The resulting harmonised soil map and database demonstrate 

the value of applying modern spatial analytical techniques to historic soil data to produce what 

is undoubtedly the best current soil information base for the African continent. Initially it is 

expected to satisfy the soaring demand for up-to-date and relevant soil data at international 

level in addition to the Africa Soil Information Service (AfSIS), which constitutes the African 

part http://www.africasoils.net of the GlobalSoilMap.net project (Sanchez et al., 2009). 

However, the resulting map highlights the need for applying new mapping techniques and 

collecting new data in Africa to meet 21st century soil information needs. 

 

'The new map is at the heart of the Soil Atlas of Africa (Jones et al., 2013), displayed in a series 

of map sheets at the scale 1:3 M, constituting some forty per cent of the Atlas pages. The 

published Atlas, the Soil Map of Africa that it contains and the corresponding datasets 

(modified map and associated modified HWSD) are available for downloading free of charge 

http://www.africasoils.net/
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from the portals of the European Commission Joint Research Centre SOIL Action 

http://eusoils.jrc.ec.europa.eu/.' 

 

The African soil atlas does not yet provide information on soil properties – only a description of soil 

types (see Figure 2.4). Unfortunately, the planned updates of 2016 were not released in time for 

use in this project. 

 

SoilGrids1km Global Soil Information Based on Automated Mapping 

 

SoilGrids1km is an interpolated set of soil parameters based on a large number of soil samples 

(shown in Figure 2.6), which have been interpolated using several regression covariates – including 

the HWSD (Hengl et al., 2014). This is an interesting project and a potentially useful data source for 

soil parameters in the SADC region. 

 

The International Satellite Land Surface Climatology Project, Initiative II 

 

http://daac.ornl.gov/ISLSCP_II/islscpii.shtml  

'The International Satellite Land Surface Climatology Project, Initiative II (ISLSCP II) Project was 

part of the Global Energy and Water Experiment (GEWEX) and was responsible for addressing 

land- atmosphere interactions, process modelling, data retrieval algorithms, field experiment 

design and execution, and the development of global data sets. The ISLSCP II data set 

collection contains about 50 comprehensive data sets over the 10-year period from 1986 

through 1995 focused on land cover, hydrometeorology, radiation, and soils. The ISLSCP II 

data were acquired from a number of U.S. and international agencies, universities, and 

institutions, then co-registered to equal-angle grids of one, one-half, and one-quarter degree 

resolution and reformatted into a common ASCII format. 

 

 
 

Figure 2.6: SoilGrid1km profile locations for Africa (after Hengl et al., 2014) 

 

http://eusoils.jrc.ec.europa.eu/
http://daac.ornl.gov/ISLSCP_II/islscpii.shtml
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The ORNL DAAC ISLSCP II Data archive includes data products from the following categories: 

Ancillary data; Carbon; Hydrology and Soils; Near Surface Meteorology; Radiation and Clouds; Snow, 

Sea Ice, and Oceans; Socioeconomics; Vegetation' 

 

GlobalSoilMap.net 

http://globalsoilmap.net/  

'There is a need for accurate, up-to-date and spatially referenced soil information. This need 

has been expressed by the modelling community, land managers, policy developers and 

decision makers. The need coincides with an enormous leap in technologies that allow for 

improvements in accurately collecting and predicting soil properties. 

 

A global consortium has been formed to make a new digital soil map of the world using state-

of-the-art and emerging technologies. This new global soil map will predict soil properties at 

fine spatial resolution (100 m). These maps will be supplemented by interpretation and 

functionality options to support improved decisions for a range of global issues such as food 

production and hunger eradication, climate change, and environmental degradation. This is 

an initiative of the Digital Soil Mapping Working Group of the International Union of Soil 

Sciences IUSS. 

 

The project was officially launched on 17th February 2009, New York, USA.' 

 

Unfortunately, there is no public activity on the website after early 2012, and we were not able to 

source any datasets. 

 

2.5 Summary of Section 2 

 

We conducted a review of both global and Africa focused data sets which allowed us to assemble 

the basic building blocks for an implementation of HYLARSMET in the SADC region. 

 

The slope and overland roughness parameters are derived using the same data sets as we have used 

in the South African implementation (SRTM Jarvis et al., 2008; GLCC v1.2). Of necessity, the soil 

physical parameters were derived from alternative data sets, but these are freely available and used 

the same techniques as we did for South Africa (primarily based on lookup from soil texture classes). 

The main difficulties were in obtaining soil depth information; we were reduced to using the 

(mostly) uniform soil depths presented in the HWSD. 

 

As a result of this review, we were confident that we could proceed to the next stage of the project 

and carry out a comparative analysis to assess the effect of using the alternative parameter sets in 

modelling soil moisture using the HYLARSMET system. 

 

-----ooOoo---- 

  

http://globalsoilmap.net/
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3. The UMLINDI newsletter highlighted the usefulness of the RSA product 

 
The following image is a clip from the front page of [at the time] the most recent copy of Umlindi, 

the ARC-ISCW newsletter on monthly climate variables.  We were delighted to have been given 

pride of place on the first page of the new issue in December 2014. 

 

 
 

The text in the right column is legible.  The second paragraph follows, highlighting the modelling 

procedure developed by Pegram and Associates.  Note that SSI stands for Soil Saturation Index. 

 

'The modelling of soil moisture is performed by the University of KwaZulu-Natal 

Satellite Applications and Hydrology Group. Supported by the WMO, the system and 

algorithms developed by the UKZN have been replicated at the ARC-ISCW, where the 

developing archive will be utilized in the expansion of the suite of drought monitoring 

products provided in near-real time. The SSI maps will be published in the newsletter 

in future. The wet conditions reflected over the central parts started by the end of 

October, with several rainfall events resulting in extremely wet conditions for the 

month over parts of the central interior and the far western areas.' 
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It bears expanding on this short description to put it in context.  In the contract proposal, we made 

the following statement – please note in particular the highlighted text. 

 

' ... the World Meteorological Organisation (WMO) held a workshop at ARCISCW in 

Pretoria on 29-30 May 2012 entitled 'STAKEHOLDER MEETING ON AGROMET AND SOIL 

MOISTURE APPLICATIONS FOR SOUTH AFRICA', adding considerably to the value of this 

initiative. It was led by Robert Stefanski, Chief, Agricultural Meteorology Division, 

WMO. Attendees beside members of ARC-ISCW, WMO and Pegram and Associates, 

included Prof Roland Schulze of UKZN, Mr Eugene Poolman of SAWS and Dr Stephan 

Steyn of UFS. Why this information is germane to this proposal, is that WMO want to 

perform validation (if possible) and model inter-comparison (certainly) of a high-

resolution soil moisture product based on MODIS, developed by Prof. John Qu and his 

team at the George Mason University in the United States. The product will be 

distributed via the WMO's WAMIS (World Agro-Meteorological Information Service) 

and they are pursing possibilities for validation/intercomparison over SADC countries 

including RSA. We in Pegram and Associates and ARC-ISCW suggested that PyTOPKAPI 

is the correct tool to perform the model inter-comparison. This was endorsed by those 

present and it was agreed by the workshop attendees that a working copy of the 

HYLARSMET system should be installed and housed at ARC and that in addition, WMO 

would financially support Mr J Malherbe (ARC-ISCW) and Dr S Sinclair (P&A) to achieve 

the transfer of the HYLARSMET model code. They will take this opportunity to produce 

a user manual for installing and using the HYLARSMET system, in order to make it more 

transportable and 'friendly'. The transfer will provide valuable information on 

challenges and pitfalls that will greatly benefit this proposed EXSMET project. This 

means that the HYLARSMET system will be deployed to perform routine SM monitoring 

for agricultural planning and drought monitoring. Incidentally, the attendees asked for 

a renewed effort for deployment of Soil Moisture probes and both SAWS and ARC-ISCW 

agreed to move ahead with that, which will help with validation of the modelled 

estimates.' 

 

During August, September, October and November of 2014 Dr Sinclair made 4 trips from Durban to 

Pretoria, of from 2 to 4 days long, to install this code and make it run 'on foreign soil' as it were.  We 

are immensely proud of this achievement and grateful to the WMO for support and to ARC (in 

particular, Dr Johan Malherbe) for making the successful transplant possible.   

 

It is still running today in 2017. 

 

 

-----ooOoo---- 
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4.  Gathering appropriate FAO data-sets guided by our RSA ground-based data 

  

Deliverable 4 was described as: 'Determine the best way to compare FAO data-sets with our RSA 
sets of ground-based data'.   We prepared the way for applying HYLARSMET (WRC project K5/2024) 
in the SADC region by testing the effect of using the best available replacements to the detailed 
hydraulic property data-sets available in South Africa.  As explained in Section 2, this is necessary 
because the data-sets we used to derive the soil properties in HYLARSMET that are not available 
outside South Africa.  
 

In Subsection 2.4 we introduced the HWSD (Harmonized World Soil Database), expanded in 

Subsection 4.2, and the soil characteristics used to develop the soil hydraulic properties needed for 

the PyTOPKAPI model (originally developed in WRC project K5/1683 from TOPKAPI and made open 

source in HYLARSMET). In Subsection 4.2, we describe the calculation of the proportional change in 

the relevant soil properties and use the sensitivity results reported in Sinclair and Pegram (2013) to 

evaluate the relative impact of the changes at each location in the HYLARSMET grid.  Subsection 4.3 

contains a summary of our findings and conclusions. 

 

4.1. HWSD – the Harmonized World Soil Database 

 

In this Subsection we describe the derivation of soil texture characteristics required to obtain 

hydraulic properties for PyTOPKAPI in the SADC region, based on the Harmonized World Soil 

Database (HWSD v1.2.1; FAO/IIASA/ISRIC/ISS-CAS/JRC (2012)). 

 

The HWSD is currently the most complete and useful SADC-wide soil database containing sufficient 

information to allow the derivation of the soil properties needed to run the PyTOPKAPI model. The 

HWSD has been used as a base data-set by many land surface modellers (e.g. see Bódis, 2009; 

DeLannoy et al., 2014). There are a few alternative data-sets (e.g. Shangguan et al., 2014; Hengl 

et al., 2014; Jones et al., 2013) that we investigated, but these are either not widely used, or miss 

the soil texture information we require, so they are only mentioned for completeness. 

 

The HWSD data-set is provided in the form of a 2 Gigabyte global raster, which specifies a soil 

mapping unit ID for each grid cell. The spatial resolution of the raster is approximately 1 km (30 arc 

seconds by 30 arc seconds) and consists of 43 200 rows by 21 600 columns of 16-bit unsigned integer 

values. Each mapping unit ID is associated with up to 9 soil units, resulting in a one-to-many 

relationship between the designated mapping unit ID and the mix of soil properties contained 

therein. Finally, each individual soil unit in a given mapping unit is defined according to its top- and 

sub-soil parameters (of which there are 48 in total per soil unit).  Figure 4.1 shows an NDVI 

(Normalized Difference Vegetation Index) image at the same scale as the data-base. 
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Figure 4.1: Global NDVI in April 2010. 

Given this information, it is clear that the HWSD data structure is relatively convoluted and it was 

necessary to develop custom software to sample the database at the locations required. In addition, 

we spent a considerable amount of time developing a robust HWSD reader in Python, to ensure that 

the coherence of the data was maintained, while it was being parsed for specific applications in 

chosen regions.  This extensive but invisible effort has added considerable value to the data resource 

and is the major contribution to the deliverable. 

The properties sampled from the HWSD, for our purposes of developing soil parameters, are the 

sand, clay and organic carbon contents for top- and sub-soil respectively. The method used to 

convert these to hydraulic soil properties is described in Subsection 4.2. Here we present the 

sampled top- and sub-soil textural data from the HWSD that are used to derive the hydraulic 

properties. Figure 4.2 shows the sampled soil properties for the southern portion of SADC.  

 
 

Figure 4.2: Top- and sub-soil texture and organic carbon sampled from the HWSD on an extended 

HYLARSMET grid (0.125). Missing data are shown in grey. Of interest are the considerable areas 

of missing sub-soil properties; these are regions with shallow soils (see the HWSD reference depth 

map in Figure 4.4). 



25 

 

 

4.2.  Derivation and comparison of soil hydraulic properties 

In this Subsection we present the resulting changes in soil properties in South Africa where we have 

available detailed data-sets. For most of the parameters we follow the methodology of DeLannoy 

et al. (2014) to convert the Harmonized World Soil Database (HWSD v1.2.1; FAO/IIASA/ISRIC/ISS-

CAS/JRC (2012)) texture classes to soil hydraulic properties. 

 

Table 4.1: The table from Rawls et al. (1982) used to estimate soil properties from texture 

information, rotated for readability.  Unfortunately, the original document's text is not very clear. 
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However, the residual moisture content r, bubbling pressure b and pore size distribution λ are 

calculated as before, using the table of Rawls et al. (1982) (see Table 4.1, repeated here from Figure 

2.2 for convenience). The main difference from our RSA work is that for SADC we are using the new 

texture maps from the HWSD. 
 

The basic procedure for converting soil texture to hydraulic properties can be explained by referring 

to the soil texture triangles shown in Figure 4.4.3.  

 

Figure 4.3: Soil texture triangles a) the 12 class USDA triangle used for defining the HYLARSMET 

parameters b) the 253-class triangle developed by DeLannoy et al. (2014) – their Figure repeated 

here 

 

Figure 4.4.3a shows the USDA soil texture triangle, and the location of a given soil into a particular 

class can be determined using the properties shown in Figure 4.2 – the relevant hydraulic properties 

are then obtained using the soil texture data shown in Table 4.1. The method adopted by DeLannoy 

et al. (2014) subdivides the triangle into smaller regions and also stratifies the properties according 

to broad ranges of organic carbon content. The result is 253 unique soil types, with their associated 

properties determined by a look-up table which we extracted from the paper of DeLannoy et al. 

(2014).  This set of activities was coded into the HWSD reader to enable semi-automatic calculations 

to be made.  

 

There are 3 ways of obtaining soil properties which we examine in this Subsection in the following 

Subsections: 4.2.1 directly from HWSD; 4.2.2 combining HWSD texture and DeLannoy's triangles; 

4.2.3 combining HWSD and Rawls' Table.  We make inter-comparisons between them in maps of 

the region. 

 

4.2.1  Properties obtained directly from the HWSD 

Soil depth 

For HYLARSMET in South Africa, we previously derived soil depth (L) maps by resampling and 

projecting the soil depths reported in Schulze et al. (2008).   The top left panel in Figure 4.4.4 shows 

the depths used in the HYLARSMET analyses. 
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Figure 4.4: Depth of the soil layer currently used in the HYLARSMET modelling analyses (top left), 

HWSD reference depth map (top right), difference between HYLARSMET and HWSD (bottom left), 

and the proportional change introduced by using the HWSD texture maps (bottom right) 

 

The only depth information in the HWSD is a property called Reference Depth, and it is uniformly 1 

metre across the globe, except for areas with shallow and rocky soil where a depth of either 0.1 m 

or 0.3 m is defined. The top right panel of Figure 4.4.4 shows their distribution of reference depth 

in Southern Africa.  The bottom left-hand panel in Figure 4.4.4 shows the change in soil depth (m) 

as a result of using the HWSD information compared to Schulze et al. (2008).  The bottom right-hand 

panel in Figure 4.4.4 shows the percentage change in soil depth as a proportion of the original 

HYLARSMET depths based on Schulze et al. (2008). 

 

4.2.2 Properties obtained by combining HWSD texture and the information from DeLannoy et al. 

Saturated soil moisture content 

For HYLARSMET in South Africa, we derived saturated moisture content (s) maps by resampling 

and projecting the total porosity maps reported in Schulze et al. (2008). The top left panel in Figure 

4.4.5 shows the saturated moisture content used in the HYLARSMET analyses. 

 

To develop s based on the HWSD texture and organic content information, we extracted the look-

up tables from DeLannoy et al. (2014) and calculated the reported value of s. The new map of s is 

shown in the top right panel of Figure 4.4.5. 
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The bottom left-hand panel in Figure 4.4.5 shows the difference in saturated moisture content s 

introduced by using the HWSD information. 

 

The bottom right-hand panel in Figure 4.4.5 shows the percentage change in saturated moisture 

content, as a proportion of the original HYLARSMET s based on Schulze et al. (2008). 

 

  

   

Figure 4.5: Saturation moisture content s currently used in the HYLARSMET modelling analyses 

(top left), s estimated from the HWSD (top right), difference map (bottom left), and the 

proportional change introduced by using the HWSD texture maps (bottom right). 

 

Saturated hydraulic conductivity 

For HYLARSMET in South Africa, we obtained soil texture classifications from the WR2005 soils map 

(Middleton and Bailey, 2009). The soil conductivity (Ks) values were then estimated using table 5.5.5 

of (Maidment, 1993) and in cases where more than one soil texture class is represented, the average 

of the values reported for each class is used. A map of the Ks values used in HYLARSMET is shown in 

the top left panel of Figure 4.4.6. 

 

To develop maps of Ks based on the HWSD texture and organic content information, we used the 

look-up tables extracted from DeLannoy et al. (2014) and obtained the reported value of Ks.  The 

new map of Ks is shown in the top right panel of Figure 4.4.6. 

 

The bottom left-hand panel in Figure 4.4.6 shows the difference in Ks, when using the HWSD 

compared to the Middleton and Bailey (2009) distribution. 

 

The bottom right-hand panel in Figure 4.4.6 shows the percentage change in saturated hydraulic 

conductivity, as a proportion of the original HYLARSMET Ks based on Maidment (1993). 
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Figure 4.6: Saturated hydraulic conductivity Ks currently used in the HYLARSMET modelling 
analyses (top left), revised Ks map based on the HWSD texture information (top right), difference 

map (bottom left), and the proportional change introduced by using the HWSD texture maps 
(bottom right). 

 

4.2.3  Properties obtained by combining HWSD texture and Table 4.1 (Rawls et al., 1982)  
 
Residual soil moisture content 
 

To develop maps of residual moisture content r for HYLARSMET, we obtained soil texture 

classifications from the WR2005 soils map (Middleton and Bailey, 2009). The r values are then the 

mean values for the relevant texture classes reported in table 5.3.2 of (Maidment, 1993) and in 

cases where more than one soil texture class is represented, an average has been taken. The top 

left panel of Figure 4.4.7 shows the map of values used in HYLARSMET. 

 

To develop new maps of r based on the HWSD texture and organic content information, we used 

the same look-up tables extracted from (Maidment, 1993) and obtained the reported value of r. 

The new map of r is shown in the top right panel of Figure 4.4.7.  The bottom left-hand panel in 

Figure 4.4.7 shows the change in r, as a result of using the HWSD information. The bottom right-

hand panel in Figure 4.4.7 shows the percentage change in r, as a proportion of the original 

HYLARSMET r based on the spatial distributions of Middleton and Bailey (2009). 
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Figure 4.7: Residual moisture content r currently used in the HYLARSMET modelling analyses (top 
left), revised map based on the HWSD (top right), difference map (bottom left), and the 

proportional change introduced by using the HWSD texture maps (bottom right). 
 
Bubbling pressure 
In developing HYLARSMET, we obtained soil texture classifications from the WR2005 soils map 

(Middleton and Bailey, 2009). The bubbling pressure (b) values were then estimated using the 

values in Table 4.1 and in cases where more than one soil texture class is represented, the average 

of the values reported for each class is used. The HYLARSMET b distribution is shown in the top left 

panel of Figure 4.4.8. 

 

To develop revised maps of b based on the HWSD texture and organic content information, we 

used the information in Table 4.1 and obtained the reported value of b. The new map of b is 

shown in the top right panel of Figure 4.4.8. 

 

The bottom left-hand panel in Figure 4.4.8 shows the difference in b introduced as a result of using 

the HWSD data. 

 

The bottom right-hand panel in Figure 4.4.8 shows the percentage change in b, as a proportion of 

the original HYLARSMET b based on the spatial distributions of Middleton and Bailey (2009). 
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Figure 4.8: Bubbling pressure b currently used in the HYLARSMET modelling analyses (top left), 
the updated map based on the HWSD information (top right), difference map (bottom left), and 

the proportional change introduced by using the HWSD texture maps (bottom right). 
 
Pore size distribution index 

We obtained soil texture classifications from the WR2005 soils map (Middleton and Bailey, 2009). 

The pore size distribution index (λ) values were then estimated using Table 4.1 and in cases where 

more than one soil texture class is represented, the average of the values reported for each class is 

used. The HYLARSMET λ distribution is shown in the top left panel of Figure 4.9. 

 

To develop revised maps of λ based on the HWSD texture and organic content information, we used 

the same look-up tables extracted from Table 4.1 and obtained the reported value of λ. The new 

map of λ is shown in the top right panel of Figure 4.4.9. 

 

The bottom panel in Figure 4.4.9 shows the percentage change in λ, as a proportion of the original 

HYLARSMET λ based on the spatial distributions of Middleton and Bailey (2009). 
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Figure 4.9: Pore size distribution parameter λ currently used in the HYLARSMET modelling analyses 

(top left), the HWSD based map (top right), difference between HYLARSMET and HWSD λ (bottom 

left), and the proportional change introduced by using the HWSD texture maps (bottom right). 

4.3  Summary of Section 4 

As reported in the heading of this Subsection we have sought then adopted a global set of soil 

properties from the Harmonized World Soil Database and then compared the parameters, thence 

derived for PyTOPKAPI, to the ones we developed in HYLARSMET, the WRC project K5/2024.   

We 

• sifted through a large range of products before we identified HWSD as a suitable 

data-source to cover SADC with the parameters we required at a fine enough scale 

• developed a suite of code to access texture information in HWSD, in order to 

extract the information pertinent to the comparison 

• identified and implemented a revised method of soil hydraulic parameter 

determination from DeLannoy et al. (2014) 

• compared the derived parameters against our PyTOPKAPI ones and found that the 

data range is reasonable in most areas of South Africa, where we made the tests.  

We found that there are problems of mismatch and differences due to a different 

areal distribution of soil types, especially on the boundaries between our soil 

units/clusters. 

• unfortunately, we do not have the same detailed data-sets over SADC as we do 
over RSA, so for the region outside our borders, we will have to use what is readily 
available.  Regrettably, without ground-truthing, we are not completely sure 
which data-set is correct. 
 

-----ooOoo---- 
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5. Selecting best-match alternative remotely sensed rainfall data to TRMM 

 

The intent of Deliverable 5 was to: 'Determine if there are better alternative rainfall inputs to 

TRMM [such as the Global Precipitation Mission], for near real-time precipitation data input, 

if not exploit bias adjustment of the TRMM product', and to research the options for replacing 

the remotely sensed rainfall driving the HYLARSMET soil moisture modelling system.  This tool was 

TRMM 3B42RT (part of a suite of rainfall products known as the TRMM Multisensor Precipitation 

Analysis – TMPA). Such replacement was only intended to take place if we were able to find a 

justifiably better alternative. However, this task took on a new importance with the 

decommissioning of the TRMM satellite’s precipitation radar on 7 October 2014, and the TRMM 

Microwave Imager (TMI) on 8 April 2015, as the TRMM satellite was due to re-enter the Earth's 

atmosphere (Huffman, 2015). Luckily the TMPA rainfall products were scheduled to continue until 

mid-2017 (even though they no longer included inputs from TRMM); this gave us time to make a 

clean transition to the best usable alternative. 

 

We start in what follows by describing two sub-daily rainfall products that are freely available with 

low update latency, based on data collected by the instruments flown on-board the Global 

Precipitation Mission (GPM) core observatory and other satellite-based instruments (Subsection 

5.1). The choice was made primarily on the basis that these two products are both easily available 

in near real time and are being actively developed under the activities of the GPM. 

 

In Subsection 5.2 we describe the data-sets collected and the analysis carried out to compare the 

new rainfall products with the TRMM3B42-RT product. Finally, in Subsection 5.3 we describe a 

preliminary choice of the best replacement product going forward. 

 

5.1  GPM based rainfall products 

In this Subsection we present a description of the GPM core observatory (Subsection 5.1.1) and then 

proceed to provide an overview of the two GPM derived near real time rainfall products, IMERG 

(Subsection 5.1.2), and GSMaP (Subsection 5.1.3). The intention is to give an overview of the 

instrumentation carried aboard the GPM core, and the relevant characteristics of the derived rainfall 

products. 

 

5.1.1  The GPM core observatory and constellation 

The GPM core observatory is the successor to TRMM and carries two instruments with improved 

capabilities over the decommissioned TRMM instruments. These instruments are: 

 

1) the GPM Microwave Imager (GMI), which is a replacement for the TRMM 

Microwave Imager (TMI). The GMI has 13 channels in the 10-183 GHz range, 

compared to 5 channels in the range 10-86 GHz of the TMI. The GMI measures the 

intensity of upwelling radiation from the Earth’s surface and atmosphere, which is 

sensitive to the presence of moisture (e.g. rainfall, snow) at microwave frequencies. 

 

2) the Dual Precipitation Radar (DPR), which is a dual frequency cross-track scanning 

radar. The DPR scans at two frequencies 13.6 GHz and 35.5 GHz and is a replacement 

for the TRMM Precipitation Radar (PR), which was also a cross-track scanner at a 

single frequency, 13.8 GHz. 
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Figure 5.1 shows a schematic of the GPM core components, while the different scanning strategies 

for the GMI and DPR are illustrated in Figure 5.2. 

 

 
 

Figure 5.1: A diagram of the GPM core observatory, showing instrumentation. Of note are the 

GPM Microwave Imager (GMI) and the Dual Precipitation Radar (DPR). 

 

  
 

Figure 5.2: An illustration of the scanning geometry for the GPM core observatory. The DPR scans 

cross-track and the GMI scans an arc forward of the satellite. The ground footprints also have 

different spatial resolutions, and the DPR samples at a range of vertical intervals. 
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The GPM core will also have an extended orbit relative to TRMM, allowing it to observe a wider 

range of latitudes.  Figure 5.3 is an illustration of three successive TRMM orbits in yellow, and the 

same for GPM core in blue. The wider coverage of the GPM core is clearly evident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: An illustration of three successive TRMM orbits in yellow, and the same for GPM core 

in blue. The wider coverage of latitudes by the GPM core is clearly shown. 

 

The GPM core is the central satellite platform of the GPM initiative, which includes a constellation 

of low earth-orbiting satellites that carry microwave imagers and/or sounders capable of observing 

precipitation (see Figure 5.4 for an overview). The goal is to combine the relatively accurate and 

high spatial resolution, but intermittent microwave derived rainfall estimates, with the more 

indirect IR based estimates from geostationary platforms, which have better time and space 

coverage but coarser spatial resolution. 

 

 

  
 

Figure 5.4: An illustration of the GPM constellation, showing the satellite platforms carrying 

suitable microwave instrumentation and the partner states/organizations involved in this global 

initiative. 
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5.1.2  IMERG rainfall products 
 

In this Subsection we describe the IMERG rainfall product, which is NASA’s successor to the TMPA 

suite of rainfall products based on TRMM (Huffman et al., 2007). The IMERG acronym stands for 

'Integrated Multi-satellitE Retrievals for GPM' and is the NASA algorithm that provides the near-

realtime multi-satellite precipitation product for the U.S. GPM team. 

 

IMERG Half Hourly (HH) product has three variants that are relevant to this investigation, their basic 

characteristics are outlined in table 5.1. The space-time resolution is the same for each (0.1 grid at 

30-minute intervals – a great improvement compared to TRMM 3B42RT’s 0.25 grid at 3-hour 

intervals) – and the inputs and algorithms are similar.  The main difference is in the latency at which 

the products become available. The IMERG HH Early and Late products are essentially identical, with 

the difference being that the Late run product may contain more microwave derived rainfall 

estimates (depending on the latency of the processed microwave rainfall products). The IMERG HH 

Final product includes an adjustment based on rain gauge observations (although the rain gauge 

network available over Africa is extremely sparse and includes only a small percentage of the 

complete gauge network).  The 30-minute time-step is determined by the time resolution of the 

global combined IR precipitation field derived from geostationary satellite data. 
 

Table 5.1: Basic characteristics of the IMERG Half-Hourly rainfall variants. 

 

Product name IMERG HH Early 

Source http://pmm.nasa.gov/data-access/downloads/gpm  

Spatial resolution 0.1∘ 

Temporal resolution 0.5 hr 

Start date 2014-03-12 (but only most recent 5 months available) 

End date Present 

Latency 6 hrs 

Product name IMERG HH Late 

Source http://pmm.nasa.gov/data-access/downloads/gpm  

Spatial resolution 0.1∘ 

Temporal resolution 0.5 hr 

Start date 2014-03-12 (but only most recent 6 months available) 

End date Present 

Latency 18 hrs 

Product name IMERG HH Final 

Source http://pmm.nasa.gov/data-access/downloads/gpm  

Spatial resolution 0.1∘ 

Temporal resolution 0.5 hr 

Start date 2014-03-12 

End date Present 

Latency 4 months 

 

The IMERG data files contain a number of fields for each observation time-slot, and these are 

illustrated in Figures 5.5 through 5.13.  A description of each field is given in the figure captions. 

http://pmm.nasa.gov/data-access/downloads/gpm
http://pmm.nasa.gov/data-access/downloads/gpm
http://pmm.nasa.gov/data-access/downloads/gpm
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Figure 5.5: The IMERG HH HQprecipitation field for the time slot 2015-09-03 12:00. The 

HQprecipitation field is a blend of rainfall estimates derived from microwave instruments flown 

aboard low earth-orbiting (LEO) satellites (see the table in Figure 5.15 for the list of LEO estimates 

used in the GSMaP rainfall product). IMERG uses roughly the same selection. In this image we can 

identify several different instruments simultaneously sampling precipitation in the 30-minute 

interval after noon. 

 

  
Figure 5.6: The IMERG HH HQprecipSource field for the time slot 2015-09-03 12:00. The 

HQprecipSource field contains integer keys that define which microwave product was used in each 

grid box to derive the HQprecipitation field shown in Figure 5.5. 
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Figure 5.7: The IMERG HH HQobservationTime field for the time slot 2015-09-03 12:00. The 

HQobservationTime field shows the observation time for each microwave product used to derive 

the HQprecipitation field shown in Figure 5.5. The observation times are reported as an offset 

from the start time of each time-slot, starting blue and finishing red in the swaths. 

 

  
Figure 5.8: The IMERG HH IRprecipitation field for the 30-minute time slot on 2015-09-03, starting 

at 12:00. The IRprecipitation field is a global precipitation field derived from all available IR 

instruments aboard geostationary satellites. This IR field is combined with the HQprecipitation 

field shown in Figure 5.5 to produce the uncalibrated and calibrated precipitation fields shown in 

Figures 5.10 and 5.11. 
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Figure 5.9: The IMERG HH IRkalmanFilterWeight field for the time slot 2015-09-03 12:00. The 

IRkalmanFilterWeight field gives the filter weights used to adjust the IR based precipitation 

estimates towards the microwave HQ precipitation estimates. 

 

  
Figure 5.10: The IMERG HH precipitationUncal field for the time slot 2015-09-03 12:00. The 

precipitationUncal field is the combination of the IR based and microwave HQ precipitation 

estimates. 
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Figure 5.11: The IMERG HH precipitationCal field for the time slot 2015-09-03 12:00. The 

precipitationCal field is the combination of the IR based and microwave HQ precipitation estimates 

shown in Figure 5.10, but now adjusted to match monthly rain gauge distributions. 

 

  
 

Figure 5.12: The IMERG HH probabilityLiquidPrecipitation field for the time slot 2015-09-03 12:00. 

The probabilityLiquidPrecipitation field defines the probability of observed precipitation being in 

liquid form rather than ice, snow or hail. 
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Figure 5.13: The IMERG HH randomError field for the time slot 2015-09-03 12:00. The 

randomError field defines the Kalman filter error variance in mm/hr. 

 

 

5.1.3  GSMaP rainfall product 

 

Table 5.2: Basic characteristics of the GSMaP hourly rainfall product. 

 

Product name GSMaP NRT 

Source http://http://sharaku.eorc.jaxa.jp/GSMaP/  

Spatial resolution 0.1 

Temporal resolution 1 hr 

Start date 2008-08-12 

End date Present 

Latency 6 hrs 

 

A full technical description of the GSMaP rainfall product is given in Kubota et al. (2007), and Tian 

et al. (2010). According to their website: 

 

'We offer hourly global rainfall maps in near real time (about four hours after observation) 

using the combined MW-IR algorithm with GPM-Core GMI, TRMM TMI, GCOM-W AMSR2, 

DMSP series SSMIS, NOAA series AMSU, MetOp series AMSU and Geostationary IR data. 

Background cloud images are globally merged IR data produced by NOAA Climate Prediction 

Center (CPC), using IR data observed by JMA’s MTSAT satellite, NOAA’s GOES satellites and 

EUMETSAT’s Meteosat satellites.' 

 

The data files are available for download in raw binary grid which must be decoded and resampled 

for our analysis (see Subsection 5.2). The basic characteristics are given in table 5.2, while Figure 

5.14 shows a sample rainfall map. Figure 5.15, which contains their Table 2, shows the level of 

complication of the blend of microwave rainfall retrievals used in this product. 

 

http://http/sharaku.eorc.jaxa.jp/GSMaP/
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Figure 5.14: Example rainfall from the GSMaP product for a 1-hour time-slot on 2015-07-27 

starting at 01:00. The lower image shows the overlays of the microwave overpasses in pale yellow. 
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Figure 5.15: Details of low earth orbit microwave observations incorporated in the GSMaP product 

(Table 2 from the GSMaP user guide). 

 

 

5.2  Analysis and results 

 

In this Subsection we describe the data-sets used and present some comparisons with the currently 

used TRMM 3B42RT rainfall product. 

 

We downloaded several hundred Gigabytes of raw data; each set was in a different file format. This 

exercise took over two weeks to achieve and we then had to develop tools to read and manipulate 

each set because they were each differently organised.   
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The comparative analysis was carried out for the 13-month period 2014-04-01 through 2015-04-30. 

The ending date was decided by the most recent available IMERG HH Final rainfall products. More 

recent data are available for the IMERG HH Early and Late products; however, a full archive of these 

products is not available (at least we were unable to locate such an archive on any of the public 

NASA data portals). The IMERG HH Early/Late products are only available in a rolling window 

covering the previous 5 months (see Subsection 5.1.2), so we elected to carry out these early 

comparisons using the longer overlapping record offered by the IMERG HH Final product. 

 

In order to make meaningful comparisons during the analysis period, we spatially resampled each 

of the rainfall products from their native grid resolution (of 0.1 and 0.25 respectively) onto a 

0.125 grid, matching the HYLARSMET grid. Each of these resampled grids was stored in a Network 

Common Data Form (NetCDF) file at its native time resolution for further analysis. 

 

5.2.1  Spatial comparisons 

 

To get a feeling for the general behaviour of each product we started by analysing the spatial 

properties of the rainfall estimates. Figures 16 to 18 show the accumulated rainfall total for the 

13-month analysis period 2014-04-01 to 2015-04-30 for each product. There is a very general 

agreement between the products with an increasing rainfall gradient from relatively dry over the 

western parts and the eastern portion of South Africa being wetter. This is as expected, so we are 

comfortable that the gross rainfall properties are reasonable. All of the products exhibit much higher 

rainfall over the ocean off the east coast when compared to the rainfall amounts estimated over 

the nearby coastal areas.  

 

 
 

Figure 5.16: Total rainfall accumulation for the 13-month period 2014-04-01 to 2015-04-30 from 

the two 3B42RT combined fields. The precipitation field is the one we currently use for the 

HYLARSMET soil moisture modelling effort. Note the increased rainfall over the southern Cape 

mountains in the 'calibrated' precipitation field compared to the 'uncalibrated' version. 
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Figure 5.17: Total rainfall accumulation for the 13-month period 2014-04-01 to 2015-04-30 from 

the two IMERG combined fields. Note the increased rainfall over the southern Cape mountains in 

the 'calibrated' precipitation field compared to the uncalibrated version (this behaviour is similar 

to that shown in Figure 5.16. The rainfall over the interior is also significantly reduced by applying 

the 'calibrations'. 

 

  
Figure 5.18: Total rainfall accumulation for the 13-month period 2014-04-01 to 2015-04-30 from 

GSMaP. 

 

Figure 5.19 shows the proportion of missing time slots in the record for each grid box. TRMM 3B42RT 

and IMERG HH both have a low proportion of missing data, because they fall back on the IR rainfall 

field when there are problems with the microwave derived estimates. The IMERG map is smoother, 

but there are occasional problems with 3B42RT when the algorithm missed data for both microwave 

and IR (it is unclear why this occurred, but special processing was required in the analysis and use 

of the product as a result, which we undertook). The GSMaP product has data missing mainly due 

to failed microwave retrievals.  The architects of this product do not fill in these missing retrievals 

with IR data as done for 3B42RT and IMERG, but instead report the missing value as a microwave 

retrieval failure. Nevertheless, even though the GSMaP missing proportion is much larger than the 

other two, it is still well below 10% during the analysis period.  
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Figure 5.19: Maps comparing the proportion of missing data for each of the products during the 

13-month analysis period. Although the GSMaP product appears to have more missing data, it is 

worth noting that the maximum missing is still less than 10% of the observation times. 

 

Figures 5.20 to 5.22 map the maximum estimated rainfall rates during the analysis period for each 

product. In general, the 3B42RT maximum rates are far lower than those of the other products. This 

is mostly due to the larger grid box (0.25) over which rainfall rates are averaged compared to the 

grid box for IMERG and GSMaP (0.1). The sampling intervals also vary between products; 3-hourly 

for 3B42RT, 1 hourly for GSMaP, and half hourly for IMERG. The GSMaP product shows anomalous 

high maximum rainfall rates over the coastal regions, which is a concern. 

 

   
 

Figure 5.20: Maximum rainfall rate on each 0.125 block for the period 2014-04-01 to 2015-04-30 

from the two 3B42RT combined fields. Note the generally decreased rates over much of the 

interior for the 'calibrated' precipitation field compared to the uncalibrated version. The overall 

maximum rates from 3B42RT are considerably lower than the maximum rates shown in Figures 

5.21 and 5.22. 
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Figure 5.21: Maximum rainfall rate for the period 2014-04-01 to 2015-04-30 from the two IMERG 

combined fields. Note the generally decreased rates over much of the interior for the 'calibrated' 

precipitation field compared to the uncalibrated version, which is much more realistic. There are 

also a few coastal locations (near cities and especially the Cape) showing a marked increase in the 

expected rainfall rates in the 'calibrated' product. 

 

 

 

  
 

Figure 5.22: Maximum rainfall rates for the period 2014-04-01 to 2015-04-30 from GSMaP. Note 

the extremely high maximum rates experienced along the east coast and off the west coast. 
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5.2.2  Time-series and frequency distributions at selected locations 

 

We selected several locations around South Africa with different rainfall regimes and considered 

the behaviour of each rainfall estimate in some detail. Figures 5.23 through 5.29 compare the time-

series and cumulative distribution functions (cdfs) for each estimate at 6 different locations around 

the country.  The series are not long, but give a feel for the comparison between the sources of 

information.  Figure 5.28 is a comparison of cdfs of daily data over 10 years at Polokwane, and 

suggests that the IMERG product is more faithful to measured rainfall than either TRMM or GSMaP, 

however this is only one location where we have useful data.  In all the other cdfs of rainfall rates, 

the IMERG estimates of heavy rain-rates are greater than the others' estimates, in line with our 

experience with raingauge estimates compared to TRMM. 

 

 

  
 

Figure 5.23: Comparative time-series and cumulative distribution functions for the estimated 

rainfall rates during the period 2014-04-01 to 2015-04-30 at Durban. 

 

In most of these Comparative Figures of time series and their cdfs, we note that there is very poor 

timing matching between the sources of the time series.  However, there is not much difference 

between the calibrated and uncalibrated sets of the individual products, except for Cape Town in 

Figure 5.24, Pretoria in Figure 5.26 and Polokwane in Figure 5.27. 
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Figure 5.24: Comparative time-series and cumulative distribution functions for the estimated 

rainfall rates during the period 2014-04-01 to 2015-04-30 at Cape Town. 
 

   
 

Figure 5.25: Comparative time-series and cumulative distribution functions for the estimated 

rainfall rates during the period 2014-04-01 to 2015-04-30 at Bloemfontein. 

 

   
 

Figure 5.26: Comparative time-series and cumulative distribution functions for the estimated 

rainfall rates during the period 2014-04-01 to 2015-04-30 at Pretoria. 
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Figure 5.27: Comparative time-series and cumulative distribution functions for the estimated 

rainfall rates during the period 2014-04-01 to 2015-04-30 at Polokwane. 

 

We do not have gauge rain-rate data for the above period, but we do have daily data for Polokwane 

over 10 years prior – see Figure 5.28 below.  The character of the gauge compared to the TRMM 

and GSMaP cdfs in Figure 5.28 (gauges report higher maxima than TRMM) is similar to the 

comparison of IMERG to GSMaP in Figure 5.27, which is in the right direction, therefore lending 

credence to the IMERG product compared to GSMaP. 

 
Figure 5.28: Frequency distributions of daily rainfall totals estimated by Gauge Block averages and 

TRMM at Polokwane, 2000 to 2010. 

 

   
 

Figure 5.29: Comparative time-series and cumulative distribution functions for the estimated 

rainfall rates during the period 2014-04-01 to 2015-04-30 at Ulundi. 
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5.3  An explanation for the mismatch of gauge and TRMM rainfall 

 

Based on Figures 5.23 to 5.29, it seems that there is poor correspondence between gauge and 

TRMM estimates, not only temporally, but also because the distribution functions are quite 

different – the gauges are 'drier', as measured by their P[0] values, in all cases.  To explain this 

phenomenon, we include below a few paragraphs of work done on the MAP project (Sinclair and 

Pegram, 2013b), whence we import the relevant Subsection, indented left and right and verbatim 

between inverted commas, with the labelling unchanged. 

 

'9.6.1.  An experiment to determine the link between a true rainfall field and averaged 

gauges. 

In a numerical experiment conducted by Prof Bardossy [private communication], a set of ten 

thousand daily images of rainfall on an area 25 km square [the size of a TRMM pixel/block] 

were generated.  Each 1 km pixel on the square was populated with properly spatially 

correlated 'rainfall', generated by a Fourier transform and using a fixed Exponential 

distribution for the amounts, for each set.  The correlation length of the spatial variogram was 

set at 20 km, so the generated rainfields were relatively variable, similar to fields of convective 

rainfall.   

 

The 'true' block average on each image was calculated by numerically averaging all the pixel 

values on each 'day'.  Then a set of evenly spaced points was carefully selected from each field 

as if they were gauge locations; the numbers of sites per image chosen were 1, 2, 4, 8 and 16 

and the location of each site chosen was kept the same for the set of 10 000 estimates ('days').  

Numerically averaging the individual 'daily' gauge samples and using these to compute their 

cfds yielded sets of gauge block average estimates to compare against the distribution of the 

'true' spatial averages of the set of full fields.  The numerical averaging of the gauge values 

was done by calculating their simple mean, but because they were equally spaced, their 

averages would match those of Multiquadrics.  The following results are thus not only 

illustrative but very useful. 

 

 
Figure 5.30: Cumulative frequency distributions of block averages of rainfall above 0.1 

mm on gauges over a 25 by 25-pixel square in 10 000 days. Blue: 1 gauge; green: 2 

gauges; brown: 3 gauges; yellow: 4 gauges; black: 8 gauges; magenta: 16 gauges; navy 

blue 625 sites (full square). 
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The cumulative frequency distributions (cfds) of the range of populations of gauge 

averages in the square shown in Figure 5.30 are somewhat surprising and a summary of 

these follows.   

 

Note that the lower bound of the vertical axis in the figure has been set at a probability 

of 0.5 [5000 days] to help in visualising the differences.  We truncate the lower estimates 

of 'precipitation' at 0.1 mm.  The obvious reason is that the value of p0 at a threshold of 

0.1 mm depends heavily on the number of gauges when they are few, such as 1, 2 or 3, 

as shown by the blue, green and brown curves.  There is not much difference between 

cumulative cfdfs when 8 (red curve) or 16 gauges (black curve) are considered and the 

convergence of the latter to the 'true' (navy blue) curve derived from 625 sites is quite 

good.  

  

If we were to threshold the curves at 1 mm, as shown by the vertical axis (because below 

that measurement is technically a 'trace', which suggests that in that interval there is poor 

sampling of fine drizzle), then 4 gauges or more are quite adequate for a good areal 

estimation.  A comparison of rainfall amounts in the vicinity of 0.95 (9500 days out of  

10 000) shows that the 1-gauge curve reads 4.3 which overestimates the areal daily 

rainfall of 3.3 by about 1 mm, but that the curves of 4 gauges and above are quite faithful 

in their estimates of the true values.  It seems we only need to be concerned when there 

are between 1 and 3 gauges used to get average daily rainfall on a 625 km2 area.'   

 

The conclusion is that there is typically a poor match between TRMM daily rainfall and that collected 

by singleton gauges.  One is only likely to obtain a good match in wetter areas where there are 4 or 

more gauges in each TRMM block.  More importantly, the TRMM rainfall over each block is quite 

good on the average over a month (as against individual days), as confirmed in a personal discussion 

between Geoff Pegram and George Huffman (the 'father' of TRMM) at the European Geosciences 

Union's Spring meeting in Vienna in 2015. 

 

5.4  Summary of Section 5 

 

In this Subsection we presented the results of an investigation into choosing a replacement near-

realtime rainfall product to drive HYLARSMET and its extension into SADC. This is necessary because 

the currently used TRMM 3B42RT rainfall product will be discontinued by 2017 due to the 

decommissioning of the TRMM satellite in early 2015. In addition, the new GPM core satellite carries 

updated instruments and is central to global rainfall estimations moving into the future. 

 

We identified two near-realtime rainfall products that use information from the GPM core 

observatory. These are the NASA product IMERG, and the JAXA product GSMaP. We were able to 

download a 13-month dataset for each of these products that overlaps in time with the TRMM 

3B42RT product. These large datasets were then resampled onto the HYLARSMET 0.125 grid over 

South Africa and parts of its neighbours. We made various comparisons between the datasets as 

described in Subsection 5.2. 
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Although there are some differences between the products, we chose to proceed with the IMERG 

rainfall estimates in place of TRMM. There are several reasons for this choice: 

 

• IMERG has fewer missing data slots 

 

• The GSMaP product exhibits unusually high rain rates in places (especially the coastal 

regions) and this is of concern. 

 

• IMERG provides both a raw satellite algorithm (uncalibrated precipitation) and a post-

calibrated estimate.  GSMaP provides only a post-calibrated estimate. If we intend 

to make our own adjustments based on gauge information, we prefer to adjust the 

pure satellite estimate directly. 

 

• The GSMaP product is available in a flat binary file format, which is fast and convenient 

to read (if you know the file structure ahead of time). However, there is no self-

describing meta-data file to assist in unpacking the information. IMERG is available 

in several different formats and via a number of delivery mechanisms. One of these 

OPeNDAP allows spatial subsets of the global file to be downloaded, which saves 

both bandwidth and subsequent storage space. 

 

Based on the investigation reported here, we adapted our HYLARSMET and EXSMET soil moisture 

modelling procedures to ingest the new IMERG product. 

 

-----ooOoo---- 
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6.  Determine the usefulness of SMOS remotely sensed soil moisture over RSA 

 
6.1.  Introduction and SMOS mission overview 
 
In a previous project (Pegram et al., 2010) we had hoped to use the soil moisture estimates from 
SMOS (European Space Agency’s Soil Moisture and Ocean Salinity satellite) in our work, but the 
SMOS team had not yet begun disseminating data at that time.  In the intervening time, the SMOS 
science team has amassed a large data archive and made this available via a very user friendly online 
service.  The purpose of Deliverable 7, 'Determine when the Soil Moisture estimates of the 
European Space Agency's SMOS mission will be ready for use in model inter-comparison with 
EXSMET and other remote sensing estimates, and exploit it' was to investigate the SMOS-derived 
soil moisture data-sets available for Southern Africa, in order that we could carry out inter-
comparisons in an effort to validate our modelling efforts.  This task required a large amount of data 
to be downloaded and archived locally, before we were able to develop new software to extract 
relevant information for the Southern African region from the global SMOS data-sets.   
 

This Section of the report is arranged into three Subsections: 6.1.1. The SMOS mission, 6.1.2. 

Analysis of the data obtained and 6.1.3. Summary. 

 

6.1.1.  The SMOS mission  

In this Subsection we describe the characteristics of the SMOS mission (Kerr et al., 2001), describing 

the SMOS satellite and the relevant soil moisture products derived from SMOS observations. 

 

The SMOS mission was designed to provide global measurements of L-band brightness 

temperatures, resulting in soil moisture and ocean salinity data sets from space.  The mission 

objectives were: (1) to provide global volumetric soil moisture estimates with an accuracy of 0.04 

m3/m3 at a spatial resolution of 35-50 km and a temporal sampling interval of 1-3 days; (2) to provide 

global ocean salinity estimates with an accuracy of 0.1 practical salinity scale units for a 10-30 day 

average for an open ocean area of 200 x 200 km2; (3) to provide daily sea ice thickness estimates 

based on MIRAS observations, for the Northern hemisphere, with a spatial resolution of 100 x 100 

km2 up to maximum thickness values of 50 cm.  SMOS observations additionally provide valuable 

information on vegetation and snow covered surfaces. 

 

The payload of the SMOS satellite consists of the Microwave Imaging Radiometer using the Aperture 

Synthesis (MIRAS) instrument, a passive microwave 2-D interferometric radiometer, operating in L-

band (1.413 GHz, 21 cm) within a protected wavelength/frequency band.  The SMOS mission is 

based on a sun-synchronous orbit (dusk-dawn 6am/6pm).  SMOS measurements are made over a 

range of incidence angles (0 to 55) across a swath of approximately 1000 km with a spatial 

resolution of 35 to 50 km.  MIRAS can provide measurements in dual and full polarisation, with the 

latter being its present operating mode. 
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Figure 6.1: An artist’s representation of the SMOS satellite in orbit. 

 

In a recent update study, Kerr et al. (2016) presented an overview of the performance of SMOS in 

global soil moisture estimation.  They concluded that the data products are of high quality and meet 

the goals of the mission.  However, their work did not include much analysis of the SMOS product 

performance in Southern Africa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: An illustration of the SMOS satellite swath extent. 
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6.1.2.  SMOS derived soil moisture products 

 

There are several soil moisture products available from the SMOS science team and their partners.  

These need to be parsed and selected from the global data set which contains the following 

products. 

 

Level 2 Soil Moisture, Vegetation Optical Depth and ancillary land products: 

These comprise the retrieved swath-based soil moisture, vegetation optical depth and other 

ancillary data derived during processing (surface temperature, roughness parameter, dielectric 

constant and brightness temperature retrieved at top of atmosphere and at surface) with their 

corresponding uncertainties.  The latency of the products is 8-12 hours.  Spatial resolution of grid: 

15 km (ISEA 4H9 grid). 

 

Level 3 CATDS Soil Moisture, Vegetation Optical Depth and ancillary land products: 

The daily product contains filtered data processed from the ESA L1B product.  The L3 processing 

algorithm involves the use of a multi-orbit approach, in which retrievals are done using three 

successive orbits within a seven-day moving window.  When several retrievals are available for a 

given day, the best estimation of soil moisture is selected for each grid point.  Besides soil moisture, 

the vegetation optical depth, surface roughness and dielectric constant are also included in the final 

global-scale product.  Spatial resolution of grid: 15 km (ISEA 4H9 grid). 

 

The 3-day, 10-day and monthly products are produced by performing a temporal aggregation of the 

daily global maps, after filtering for detected events.  In the case of the 3-day product a moving 

window is used, resulting in daily availability of global maps.  All products contain soil moisture, 

vegetation optical depth and radio frequency interference (RFI) statistics.  The 3-day product 

additionally contains dielectric constant data.  The 10-day product additionally contains surface 

roughness data, and minimum, maximum and median values of soil moisture.  Spatial resolution of 

grid: 25 km (EASE grid version 2). 

 

Level 3 SMOS-BEC Soil Moisture, Vegetation Optical Depth and ancillary land products: 

Level 3 SMOS Barcelona Expert Centre (SMOS-BEC) daily maps of soil moisture, vegetation optical 

depth and dielectric constant are available on a 15 km (ISEA 4H9) grid; daily maps of soil moisture 

are also available on a 25 km (EASE) grid.  The former (ISEA 4H9 grid) is generated from the ESA L2 

soil moisture data set without spatial or temporal averaging.  The latter (EASE grid) is generated by 

simple spatial averaging of the ESA L2 soil moisture data set, taking into account only the last orbit 

measurements in each grid cell.  In both cases, ascending and descending orbits are processed 

separately and the maps are provided at global scale. 3-day averages, 9-day averages, monthly and 

annual maps of soil moisture are constructed by simple spatial averaging of ESA L2 data using all 

available orbits.  The spatial averaging is computed in a 25 km (EASE) grid.  Ascending and 

descending orbits are processed separately and the maps are provided at global scale. 

 

Interim Summary: For our applications, we had to inspect, check and test the various products to 

decide upon a valid and applicable soil moisture estimate which closely follows our 3 hourly 

calculated SM variables over South Africa.  This non-trivial exercise required a large amount of data 

handling and calculation. In any event, for our purposes we chose the level 2 swath based product 

because this allows for more flexibility to do our own aggregations in space and time. 
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6.2.  Analysis and results 

 

6.2.1.  Data processing 

• We downloaded the SMOS MIR SMUDP2 product for all orbits in the archive which contain 

data within our SA region. 

• Our data archive is reasonably large at 44 Gb in size (5742 individual files) – this was all 

downloaded from the SMOS data archive and required the design of a usable storage system. 

 
 

Figure 6.3: Histogram showing the approximate distances in kilometres between each HYLARSMET 

grid point and the nearest SMOS L2 grid point.  The average is about 5 km.  The SMOS grid 

resolution is 15 km while the HYLARSMET grid is at 12 km spacing (approximately).  As a 

complication, the two grids are offset relative to each other, at different angles. 

 

• Each file contains the data for a full orbit, in the ISEA 4H9 grid used by the SMOS products. 

These were nearest-neighbour resampled onto the HYLARSMET grid and stored in NetCDF 

format. 

• Nearest neighbour resampling was done to obtain SMOS soil moisture estimates on our 

0.125 HYLARSMET grid.  Figure 6.3 shows the histogram of distances between the closest 

SMOS grid point and the HYLARSMET grid points.  The closest point is typically within 5 km, 

which is reasonable given the SMOS grid resolution of 15 km and spatial resolution of 

approximately 40 km.  This turned out to be a very laborious procedure which we had to 

automate. 

 

6.2.2.  Spatial comparisons 

We have developed techniques to resample the SMOS data onto the HYLARSMET grid.  Figures 6.4 

to 6.9 give examples, the Figures are described in their individual captions. 
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Figure 6.4: A single swath on the SMOS grid for the ascending (morning) pass on 2015-07-15.  The 

colour scale indicates estimated volumetric soil moisture content in m3/m3. 

 

 
Figure 6.5: A resampled version of the single swath on the SMOS grid for the ascending (morning) 

pass on 2015-07-15 shown in Figure 6.4.  Although this Figure appears very similar to Figure 6.4, 

careful inspection of the grid orientation shows that the two grids are offset and staggered relative 

to each other.  The colour scale indicates volumetric soil moisture content in m3/m3. 

 

 
Figure 6.6: The HYLARSMET estimate matching Figure 6.4.  The colour scale indicates effective 

saturation as a percentage – note the units and range do not match those of Figure 6.4. 
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Figure 6.7: A single swath on the SMOS grid for the descending (afternoon) pass on 2015-07-15.  

The colour scale indicates volumetric soil moisture content in m3/m3. 

 

 
Figure 6.8: A resampled version of the single swath on the SMOS grid for the descending 

(afternoon) pass on 2015-07-15 shown in Figure 6.7.  Although this Figure appears very similar to 

Figure 6.7, careful inspection of the grid orientation shows that the two grids are offset and 

staggered relative to each other.  The colour scale indicates volumetric soil moisture content  

in m3/m3. 

 

 
Figure 6.9: The HYLARSMET estimate matching Figure 6.7.  The colour scale indicates effective 

saturation as a percentage – note the units and range do not match those of Figure 6.7. 
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6.2.3.  Time-series comparison 

In order to establish the correspondence in the temporal dynamics of the SMOS and HYLARSMET 

soil moisture estimates, we plotted the time history of each set for several locations. Figure 6.10 

shows an example for a location (26.75E, 25.75S) in the eastern part of South Africa. 

 

 
Figure 6.10: A comparison of the time-series at a single location (26.75E, 25.75S) for the full period 

of SMOS record in our archive.  Blue line HYLARSMET, red dots SMOS L2.  Note that the units are 

different and have separate scales, with the SMOS estimates being irregularly spaced in time. 

 

The general seasonal cycles agree in Figure 6.10, and the drought in 2015/2016 is captured by both 

estimates (although it is more evident from the HYLARSMET soil moisture results).  This feature is 

better captured in Figure 6.11, where we chose a pair of 2 year matching time series.  We note at 

this juncture, that the rainfall product we are currently using is a blend (in time) of TRMM and GPM 

data from a different satellite source. 

 

 
Figure 6.11: A comparison of the time-series at a single location (26.75E, 25.75S) for the 2-year 

period 2014-2016 of the SMOS record.  Blue line HYLARSMET, red dots SMOS L2.  Note that the 

units are different and have separate scales, with the SMOS estimates being irregularly  

spaced in time. 
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6.3.  Section summary 

The purpose of this deliverable was to investigate the SMOS derived soil moisture data-sets 

available for Southern Africa, in order that we could carry out inter-comparisons in an effort to 

validate our modelling efforts. We have determined that, although there are differences in the 

detail, the SMOS mission data are in fact ready, usable, useful and available, and have downloaded 

an archive of over 5 years.  The data-set that we possessed at this stage was the SMOS level 2 swath 

data, which was manipulated and re-gridded using our analysis software, which was developed in-

house.  At this stage of the project, we had positively evaluated its usefulness and the research 

provided confidence in our modelling results. 

 

 

-----ooOoo---- 
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7.  Upgrade catchment extraction tools to streamline hydrological calculations  
 

This Deliverable 8 was defined as follows: 'Determine how to best cope with the uncertainties 

associated with input parameters and forcing variables [TRMM in particular] when computing 

ensembles of historical and forecast data streams'. 

 

In previous work (Sinclair and Pegram, 2013a) we investigated the effect of uncertainty in the 

physical parameters that define the PyTOPKAPI model on the soil moisture state modelled in Land 

Surface Model (LSM) mode.  There, the model cells were independent of each other, so that there 

was no lateral drainage between adjacent cells.  Since sub-surface and overland lateral drainage (in 

a downhill direction) is an important hydrological process, we wanted to include its effect in this 

work.  As a result, we chose to investigate the effect of parameter and forcing variable uncertainty 

on soil moisture and streamflow at the outlet of fully developed PyTOPKAPI catchments. 

 

This Section looks forward to Deliverable 10, whose description appears in Section 9, to which it is 

closely related.  There we will focus on the computational challenges of extending the HYLARSMET 

modelling system to the greater Southern African Development Countries (SADC region), where 

parameter and forcing uncertainty will be significant issues. 

 

This Section 7 is arranged in four Subsections: 7.1. Overview of the selected catchments; 7.2. 

Description of the work carried out, including unexpected challenges; 7.3. Some first results; 7.4. 

Section summary. 

 

7.1.  Catchment overview 

In this Subsection we provide an overview of the two catchments considered in this work: the 

Liebenbergsvlei (a familiar medium sized catchment of 4600 km2) and the Crocodile catchment (a 

larger catchment of 10 000 km2).  Figure 7.1 illustrates the relative locations of the two catchments 

within the borders of South Africa, while Figures 7.2 and 7.3 give a more detailed view for each 

catchment, including topography, stream networks and Department of Water and Sanitation (DWS) 

streamflow gauging stations. 

 

 
Figure 7.1: Locality map showing the relative position and sizes of the two catchments considered 

in this work.  The Liebenbergsvlei (C83) catchment is shown in green, and the Crocodile (X2) 

catchment is shown in red. 
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Figure 7.2: A detailed overview of the Crocodile (X2) catchment showing the topography, 

catchment boundary, river network and DWS streamflow gauging stations. 

 

 
 

Figure 7.3: An overview of the Liebenbergsvlei (C83) catchment showing the topography, 

catchment boundary, river network and DWS streamflow gauging stations. 

 

7.2.  Work carried out 

In this Subsection we discuss the various tasks carried out as part of this deliverable. 

 

7.2.1.  Update catchment extraction tools 

We revised and updated the tools developed during WRC project K5-2024 (Sinclair and Pegram, 

2013b) for extracting the information to produce a PyTOPKAPI parameter file for a given catchment 

of interest.  This required updating the tools developed under Python 2.x to work with the newer 

Python versions 3.x.  A more recent version of the GRASS GIS (GRASS 7.x) was also utilized to take 

advantage of an improved Python integration.  The PyTOPKAPI tools were continually upgraded 

going forward to work with the most advanced versions of these GIS tools, now accessible in: 

PyTOPKAPI v0.4.0. Zenodo. http://doi.org/10.5281/zenodo.820640 (Sinclair, et al. 2017, June 28). 

 

http://doi.org/10.5281/zenodo.820640
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In order to model a catchment using PyTOPKAPI, it is necessary for the user to prepare a parameter 

file that describes the catchment's physical properties on a regular grid with the desired spatial 

resolution.  This work needs to be carried out by model users with whatever tools and spatial 

information they have at their disposal typically using a GIS package to collate and manage the 

relevant information.  We developed two toolsets to assist model users to streamline this process 

which de facto achieves the primary goal of the work reported in this Section. 

 

First, we carefully upgraded and streamlined the existing helper scripts in the PyTOPKAPI package 

to cater for the sophisticated user who is able to carry out the work of delineating their catchment 

using GIS, or other tools with which they are familiar.  One of the new tools is a Python function in 

the PyTOPKAPI package that produces a valid and properly formatted PyTOPKAPI parameter file 

when provided with the required set of georeferenced raster data files and some configuration 

parameters.  The user needs to set up the locations of the files in the <...> brackets in the listing 

below, to tell PyTOPKAPI where to find the information it needs to run the model.  This nontrivial 

innovation has considerably streamlined the setting up procedure.  The listing follows: 

 

[raster_files] 

 

dem_fname = <path to DEM file> 

mask_fname = <path to catchment mask file> 

soil_depth_fname = <path to soil depth file> 

conductivity_fname = <path to saturated conductivity file> 

hillslope_fname = <path to hill slope file> 

sat_moisture_content_fname = <path to saturated moisture content file> 

resid_moisture_content_fname = <path to residual moisture content file> 

bubbling_pressure_fname = <path to bubbling pressure file> 

pore_size_dist_fname = <path to pore size index file> 

overland_manning_fname = <path to overland Manning roughness file> 

channel_network_fname = <path to channel network file> 

flowdir_fname = <path to flow direction file> 

flowdir_source = <source of flowdir file. Can be GRASS or ARCGIS> 

[output] 

param_fname = <path to output parameter file> 

[numerical_values] 

pVs_t0 = <initial percent saturation of soil stores> 

Vo_t0 = <initial volume of overland stores> 

Qc_t0 = <initial flow rate in channels> 

Kc = <crop factor, currently this must be set to 1.> 

 

The tool takes care of all the details that specify interconnection between cells and the general 

model setup and guarantees the user that a valid parameter file will be produced.  However, 

producing the required input rasters for a catchment is a nontrivial task, so we developed a second 

tool to automate the process of delineating and analysing a catchment using standard GIS tools. 

 

We elected to develop this second tool using the free and open source package GRASS GIS because 

we believe that it is important to avoid requiring potential model users to purchase expensive 
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proprietary GIS packages in order to take advantage of our toolset.  Additionally, using open source 

tools makes it easier for the procedure to be critically evaluated and peer reviewed, because it is 

repeatable.  The remainder of this Subsection outlines the procedure we have automated and then 

discusses two technical aspects that need special attention (infilling sinks in DEMs and computing 

the Strahler steam order to define the Manning streamflow roughness parameter in PyTOPKAPI). 

 

 
Figure 7.4: A vector polygon representing the portion of the Liebenbergsvlei catchment that we 

want to model using PyTOPKAPI.  The green background shows WR2005 quaternary catchments, 

the purple overlay polygon is a concatenation of the subset of those quaternaries that make up 

the Liebenbergsvlei. [The bar at the top-left of the Figure is scaled to 50 km] 

 

The procedure to produce the set of raster files needed to generate a PyTOPKAPI parameter file is 

outlined in Figures 7.4 to 7.9 and the supporting text; the Figures are likely to convey more 

information than the text.  The first requirement is that the GRASS GIS location contains an elevation 

model and other base maps for the region where the target catchment is situated (for this work we 

used the 1 km countrywide base maps developed in an earlier project (Sinclair and Pegram, 2013b), 

but a similar set of data at an alternative spatial resolution could be used instead).  The catchment 

modelled by PyTOPKAPI is defined by the properties of the DEM, so to ensure we have fully captured 

the extent of the catchment, an initial boundary is required (see Figure 7.4), for example.  

PyTOPKAPI now possesses code that combines the GIS tools, in an automated way, to carry out the 

steps to define the catchment on the basis of the DEM, as outlined in Figures 7.5 to 7.9 that follow. 

 

The processing tool that we have introduced uses functionality in the GIS to produce a 5 km buffer 

around the predefined catchment boundary as shown in Figure 7.5.  This is necessary because the 

catchment defined from the DEM will not necessarily match the boundary given in Figure 7.4 in an 

exact way.  The buffering accounts for this possible mismatch of the boundaries by ensuring that a 

sufficiently large portion of the DEM is examined in the vicinity of the catchment to be modelled. 

The external of the buffered boundary is used to cut out a portion of the base DEM for analysis. 
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Figure 7.5: A 5 km buffer around the initial boundary is automatically provided. The buffer is 

indicated by the wide grey outline. [The bar at the top-left of the Figure is scaled to 50 km] 

 

The hydrological analysis tools provided by GRASS GIS can produce sensible results even if there are 

inconsistencies in the DEM.  The most common inconsistency is a sink, where a cell or a collection 

of cells is lower than all of its neighbours.  PyTOPKAPI assumes that water from all cells in a 

catchment will eventually drain down to a single cell at the catchment outlet, so DEM sinks must be 

removed, despite the fact that GRASS can provide useful catchment information from flawed DEMs.   

 

Figure 7.6 show the progress of the automated sink-filling procedure for the Liebenbergsvlei.  In the 

first panel based on the SRTM (Shuttle Radar Tomography Mission) multiple sinks are identified (this 

is not uncommon) and two passes of the sink filling algorithm are typically required before all of the 

sinks are removed.  The fourth image in Figure 7.6 is the cropped basin. 

 

 
Figure 7.6: Demonstration of the automated sink filling routine for the Liebenbergsvlei DEM.  The 

colour bar on the right describes the elevation in metres above sea level and the red dots show 

the locations of sinks at each stage in the process.  The sinks on the border are ignored by the 

filling routine as they cannot be corrected without data in every cell surrounding the sink.  The 

cropped catchment in the fourth panel is the region defined by the flow direction map, and 

includes all cells flowing into the outlet cell. 
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Once all sinks have been removed, the hydrological analysis tools in GRASS are employed to obtain 

(i) a flow direction raster describing the interconnectivity of the cells as well as (ii) a stream network 

raster. These are illustrated in Figures 7.7 and 7.8. 

 

The catchment outlet is also identified as being the cell where the stream network intersects the 

original catchment boundary (red dots in Figures 7.7 & 7.8).  Once the outlet cell has been identified, 

the GRASS tools are used to follow the flow direction information upstream until a watershed is 

reached, this process defines the extent of the catchment according to the DEM properties.  Figure 

7.7 shows the Liebenbergsvlei catchment extracted from the DEM, it matches very well (but not 

exactly) with the WR2005 based boundary that was initially provided to the processing tool in vector 

form. 

 
Figure 7.7: Vector version of the stream network obtained from DEM analysis (blue line).  The red 

dot shows the catchment outlet obtained by calculating the position of the intersection of the 

stream network and catchment boundary. [The bar at the top of the Figure is scaled to 50 km] 

 

 

 
 

Figure 7.8: Left: The portion of the DEM extracted by computing upslope cells from the catchment 

outlet. Right: Raster version of the channel network, upstream of the catchment outlet. 
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Once the catchment has been delineated, the set of raster data files are produced to serve as input 

to the PyTOPKAPI parameter file generation tool.  The entire process is carried out using a Python 

script, which controls the GRASS GIS tools, and ensures that the process is repeatable on different 

catchments.  All that is required to process a new catchment is the vector definition of its boundary. 

 

Figure 7.9 gives examples of model parameters obtained from two different sources, manipulated 

by GRASS: Surface Slope and Soil Depth. 

 

One part of the PyTOPKAPI parameter file generation process requires determining the channel 

roughness coefficient based on the Strahler stream order for the given channel reach.  We coded 

up an implementation of the algorithm described by Gleyzer et al. (2004) and this has now been 

made a part of the PyTOPKAPI package.   

 

 
Figure 7.9: Left: Example of model parameters extracted. Surface slopes from the DEM.  Right: 

Example of model parameters extracted. Soil depths. 

 

Figure 7.10 following shows the stream order computed on a synthetic stream network used to test 

the algorithm adapted for use in the PyTOPKAPI suite. 

 
Figure 7.10: A directed graph representing a simple stream network. The numbered squares are 

the graph nodes and the lines joining the nodes show direction using a thickened end as an arrow 

head. The calculated Strahler order is shown by each node’s colour. 
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Figures 7.11 and 7.12 show the results obtained for the stream network extracted on the 

Liebenbergsvlei, using the algorithm displayed in Figure 7.10. 

 
Figure 7.11: A directed graph representing the stream network extracted from the 

Liebenbergsvlei. The 1 km squares are the DEM graph nodes with Strahler order shown by their 

colour. 

 

 
Figure 7.12: A close up showing the lower part of Figure 7.11. Two first order streams join to form 

a second order stream, which does not change order when joined by another first order stream. 

 

7.2.2. Query DWS website 

• We developed tools to query the DWS Hydrology website and locate gauging stations 

(streamflow, etc.) contained within a catchment of interest. Figure 7.13 shows an example 

table for the X2 catchment. 
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• We developed tools to download streamflow records from the DWS Hydrology website.  

Given a gauging station of interest, we have developed tools to download the relevant data 

records and store these locally. 

7.2.3.  PyTOPKAPI model development and fixes 

• Working with previously unvisited catchments uncovered some inconsistencies in the core 

PyTOPKAPI parameter datasets that had not been encountered before.  We spent time 

developing tools to verify the integrity of the PyTOPKAPI parameter files developed using 

the automated tools mentioned in the previous bullet point.  In addition, we coded some 

simple infilling algorithms to correct inconsistent parameter files.  These tools were 

incorporated directly into the PyTOPKAPI code. 

• We also discovered some troubling numerical errors in the earlier model code, related to 

numerical precision when the solution of the model’s Ordinary Differential Equations 

resulted in the difference being computed between minuscule but similar numbers.  We 

have implemented checks to ensure that these situations are correctly handled by the 

model. 

 
 

 
 

Figure 7.13: An illustration of the automated tool developed to query the DWS website for 

information on the available stations in a catchment. Top – shows a query to fetch the relevant 

web page. Bottom – shows the reformatted results extracted from the web page in tabular form. 
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7.3. Section results and summary 

 

We carried out a range of model simulation runs for the catchments introduced earlier. Figure 7.14 

shows the catchment extracted for the X2 region using the updated tools described in Subsection 

7.2.1. 

 

Although we encountered a few unexpected difficulties in the process of working towards this 

deliverable, we were able to upgrade the catchment extraction tools to take advantage of newer 

versions of the Python programming language and the GRASS GIS package that PyTOPKAPI relies on 

to provide advanced GIS functionality.  We were also able to improve the PyTOPKAPI model’s ability 

to handle difficult corner cases that we had not encountered previously – this makes the model 

more robust, and was important for our coverage over the larger Southern African region. 

 

Several things that we discovered fed well into Deliverable 10.  The focus of that future deliverable 

was to find ways to improve the computational speed of the model and demonstrate our ability to 

model a significant portion of the SADC region in a convenient timeframe, which was achieved. 

 

 

 
Figure 7.14: The X2 catchment extracted using the PyTOPKAPI tools. The background shows the 

digital elevation model (DEM) at 1 km2 resolution, and the blue triangle marker shows the location 

of the catchment outlet as derived by the PyTOPKAPI catchment extraction tool. The channel 

network shown is that derived from the catchment DEM. 

 

-----ooOoo---- 
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8.  Evaluating the work done part-way through the project  
 

In this Section we describe how we took stock of the work we envisioned carrying out towards 

managing the computational load, as an introduction to the strategies we developed, to be 

described fully in Sections 9 to 11 which follow. We initially intended to model a major subset of the 

SADC region south of the equator.  The countries targeted were: Angola, Botswana, Lesotho, 

Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia and Zimbabwe.  At the current 

modelling scale on a grid with 0.125 spacing, this equates to roughly 35 000 cells (approximately  

5 times the number of cells we currently model in HYLARSMET).  Figure 8.1 shows the regions 

covered by these countries.  As it happened, we extended this area to include Kenya and Democratic 

Republic of Congo in Sections 9 and 10 for completeness, once we had worked with and judged the 

size of the problem.    

 

 
 

Figure 8.1:  An illustration of the significant portion of the SADC region that we originally intended 

to model.  Countries to be targeted were shaded in blue.  We covered the full area of SADC in 

Chapters 9 and 10. 

 

At this stage we decided to purse several avenues to increase the model’s computational speed.  

These fall into 4 broad categories: Improve computational speed for individual cells; Exploiting 

additional computing power; Reducing temporal and spatial resolution; Interactions, capacity 

building and non-deliverable related project activities 

 

8.1.  Improve computational speed for individual cells 

 

The core calculation component of the PyTOPKAPI model is the solution of either two or three 

Ordinary Differential Equations (ODEs) for each cell (a separate ODE is solved for the soil store, 

overland store and channel store when this exists).  The original ODE solver is an implementation of 

the Runge-Kutta ODE algorithm coded in Python by Vischel et al. (2008).  It was likely that replacing 

this solver with a solver coded in a compiled language by experts in ODE’s would speed up the model 
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somewhat, in addition to the valuable property of being much more numerically robust.  This is an 

avenue that we explored. 

 

Since the computational time per cell is also affected by the ways that the model state and forcing 

information is accessed from memory and disk, we explored possible optimizations related to the 

model's memory and disk access patterns. 

 

8.2.  Exploiting additional computing power 

 

In its original form the PyTOPKAPI model computes each cell sequentially on a single processor core 

for each time-step.  By contrast, when the PyTOPKAPI model is used in Land Surface Modelling mode 

to compute ET and soil moisture (EXSMET – SADC region; HYLARSMET – South Africa), each model 

cell then is entirely independent of the others and we can take advantage of multiple computing 

cores, or a network of individual computers if available, to calculate the results for each cell 

individually.  There is a large number of parallel computing options that we intend to explore here. 

 

An interesting and related task that we tackled was the use of parallel computing techniques to 

speed the computations when PyTOPKAPI is set up in catchment mode as a network of 

interconnected cells.  In catchment mode, there is a flow of water from the cells on the catchment 

periphery inwards to the main channels and finally to the outlet.  In the catchment case, this 

network structure is dictated by the Digital Elevation Model of the Earth's surface, and computations 

on a given cell cannot begin before the computations for all of its upstream cells have been 

completed in order.  However, at any time there may be several or many cells that do not depend 

on each other and can benefit from parallel computing techniques.  Directed Graph structures such 

as those shown in Figures 7.10-7.12 are already in a suitable form to exploit well-known algorithms 

from Graph Theory, to determine an optimum order of computation that allows as many cells as 

possible to be computed concurrently. 

 

8.3.  Reducing temporal and spatial resolution 

 

Our main aim in this project was to increase the spatial extent of our modelling efforts resting on 

HYLARSMET.  Depending on the gains that we can achieve using the techniques described above, 

we thought it might be necessary to sacrifice time resolution and inter-cell spacing in order to obtain 

the required spatial coverage.  In the event, we found that this was not necessary, so we were able 

to model the SADC countries to the same detail we had done in South Africa in the HYLARSMET 

project. 

 

8.4  Interactions, capacity building and non-deliverable related project activities 

 

In this Subsection we draw attention to a variety of interactions and activities that came about due 

to our involvement in this project and which support the WRC’s aims of capacity building, knowledge 

dissemination and outreach. 

• HYLARSMET was installed on a dedicated computer at the ARC ISCW is Pretoria, as described 

in Section 3.  This work was carried out as a collaboration with Dr Johan Malherbe and 

funded by the World Meteorological Organisation (WMO).  We assisted Dr Malherbe in 

updating the soil moisture and evaporation estimates on a monthly basis, until his departure 
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to the CSIR.  The updates were also periodically made available on our website at 

http://sahg.ukzn.ac.za. 

• The HYLARSMET soil moisture data produced by the system installed at ARC ISCW have been 

used by several parties that have made contact with us: 

o Ian Engelbrecht of SANBI investigated the use of the HYLARSMET soil moisture data 

in the Karoo BioGaps project (http://www.sanbi.org/biogaps ), which is intended to 

inform environmental impact studies involved with fracking, and the HYLARSMET 

product will be extremely valuable for guiding the surveys in this arid part of the 

country.  Ian’s views are highlighted in this Facebook post: 

    https://www.facebook.com/ian.engelbrecht.5/videos/10153616935491353  

o Dr Roy Williams of the ARC is using the soil moisture and evaporation estimates from 

HYLARSMET to help predict Rift Valley fever outbreaks 

o Nipho Msibi from the Equity Research department at Investec Bank, has expressed 

great interest in the HYLARSMET product to assist with their advice to listed food 

producers (Pioneer, Tiger Brands, RCL Astral, Clover, etc.). 

• We had some good collaboration on a recently completed WRC project K5-2323 headed by 

Prof. Colin Everson (Everson et al., 2016), where our soil moisture and ET estimates were 

compared with in-situ estimates, especially soil moisture measured by a Cosmic Ray Probe.  

Thigesh Vather obtained his MSc from UKZN in which he showed that the 

HYLARSMET/EXSMET estimates compared favourably with their ground based 

measurements, particularly COSMOS. 

• Dr Sinclair was involved in several interactions with Masters and Hydrology Honours 

students based in UKZN Pietermaritzburg on the topics of soil moisture and evaporation. 

• Dr Sinclair was invited to present a portion of a WMO and EUMETSAT funded training 

workshop in Harare, Zimbabwe during 24-28 October 2016.  The workshop was attended by 

representatives of Met offices and Departments of Agriculture for the SADC region and was 

a valuable platform to showcase the work being done in this project. 

Looking forward, timeous and routine monitoring of the spatial distribution of Soil Moisture and 
Evapotranspiration over a large region in fine detail has great value for coping with two weather 
driven extremes: Flash Floods and Droughts.  The current state of soil moisture conditions has a 
major impact on the runoff response of a catchment to heavy rainfall.  In addition, monitoring the 
wetness of the soil in detail over large regions, without having to laboriously take expensive 
samples, is a bonus for agricultural managers who need to understand the status of crop growth 
potential.  This is particularly relevant in the Southern and Central African countries in the SADC 
region which contribute importantly to the food basket of Africa.  
 
A reminder: this project has two thrusts.  The first is to extend coverage of near real-time Soil 

Moisture (SM) and Evapotranspiration (ET) monitoring over the SADC region using the existing 

methodology of operating the PyTOPKAPI hydrological model in Land Surface Modelling mode.  The 

second thrust is to develop powerful computing techniques that will make it feasible to drive the 

modelling procedure for the vastly increased number of cells required to cover the SADC region. 

This latter thrust is the objective of the next deliverable.  The two Sections following show how we 

exploited the ideas outlined above. 

-----ooOoo----  

http://sahg.ukzn.ac.za/
http://www.sanbi.org/biogaps
https://www.facebook.com/ian.engelbrecht.5/videos/10153616935491353
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9.  Increasing computational speed and capacity 

 
The description of this deliverable 10 in the project proposal reads 'Devise means of increasing 

computational speed and capacity and demonstrate ability to make estimates of SM and ET over 

SADC'.  The purpose was to devise techniques that will allow the modelling strategy utilized in the 

HYLARSMET system (Sinclair and Pegram, 2010; Sinclair and Pegram, 2013) to be extended to 

include a significant proportion of the SADC region for this project (EXSMET).  One of the main 

obstacles to achieving this aim is the non-trivial increase in the number of locations to be modelled 

when compared to our previous work limited to South Africa, hence the associated computational 

workload.   

We identified several avenues of investigation to increase the model’s computational speed, which 

is the main objective of this deliverable.  These fall into 4 broad categories outlined in the 

Subsections which follow: improve computational speed for individual cells; exploit additional 

computing power; reduce temporal and spatial resolution; devise parallel computing methods for 

implementation in PyTOPKAPI. 

 

9.1.  Improve computational speed for individual cells 

 

The core calculation component of the PyTOPKAPI physically-based model is the solution of either 

two or three Ordinary Differential Equations (ODEs) for each model cell.  A separate ODE is solved 

for (i) the soil store, (ii) overland store and (iii) channel store (when a channel exists in the cell, fed 

by an upstream cell).  The current ODE solver is an implementation of the well-known Runge-Kutta 

ODE algorithm coded in Python by Vischel et al. (2008).  It is likely that replacing this solver with a 

solver coded in a compiled language by experts in ODE’s will speed up the model somewhat, in 

addition to possessing the valuable property of being much more numerically robust.  In any event, 

for the purposes of this deliverable, we decided not to put energy into this modification.  The reason 

is that profiling the model code demonstrated that the current solution speed of solving the ODEs 

is already extremely fast, so the optimization effort is better spent utilizing multiple CPU (Central 

Processing Unit) cores as described in Subsections 9.2 to 9.4. 

 

Because the computational time per cell is affected by the ways that the model status and forcing 

information is accessed from memory and disk, some additional small gains are likely to be possible 

using optimizations related to the model’s memory and disk access patterns. 

 

9.2.  Exploiting additional computing power 

 

As mentioned above, in its original form when applied to catchment rainfall-runoff problems, the 

PyTOPKAPI model computes each cell sequentially on a single processor core for each time-step.  In 

contrast, when the PyTOPKAPI model is used in Land Surface Modelling mode to compute ET and 

soil moisture (EXSMET – SADC region; HYLARSMET – RSA), each model cell is entirely independent 

of the others and we can take advantage of multiple computing cores or a network of individual 

computers to calculate the results for each cell individually.  There is a large number of parallel 

computing possibilities, so we focussed on an approach which could provide the best possible 

benefit without making any major new demands on users of the model.   
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Fortuitously, there is a bonus which springs from the above, useful for catchment modelling rather 

than over many individual disconnected pixels.  An interesting and related task that we were able 

to explore is the use of parallel computing techniques to speed the computations when PyTOPKAPI 

is set up in catchment mode as a network of interconnected cells.  In catchment mode, there is a 

flow of water from the cells on the catchment periphery inwards to the main channels and finally 

to the outlet.  This network structure is dictated by the DEM, and computations on a given cell 

cannot begin before the computations for all of its upstream neighbours have been completed in 

order.  However, at any given time there may be several or many cells that do not depend on each 

other and can benefit from parallel computing techniques.  Directed Acyclic Graph (DAG) structures, 

such as those shown in Figures 7.10 and 7.11, are already in a suitable form to employ well-known 

algorithms to determine an optimum order of computation that allows as many cells as possible to 

be computed concurrently.  This bonus innovation is described in greater detail in Subsection 9.4.1.   

 

9.3.  Reducing temporal and spatial resolution 

 

Our main aim in this project is to develop techniques to increase the spatial extent of our modelling 

efforts and make the applications feasible in the large scale.  Initially, we were concerned that the 

gains that we could achieve using the techniques described above would not be sufficient, and that 

it might therefore be necessary to coarsen the calculation, by reducing time resolution and inter-

cell spacing, in order to obtain the required spatial coverage.  It turned out that this was not 

necessary after all. 

 

9.4.  Parallel computing implementation for PyTOPKAPI 

 

In this Subsection 9.4, we describe the implementation of a multi-processor (parallel) algorithm for 

the PyTOPKAPI model.  Subsection 9.4.1 gives some background, as well as our implementation 

strategy; Subsection 9.4.2 summarizes the results and demonstrates our ability to model the 35 000 

model cells covering the portion of SADC shown in Figure 8.1, extended to about 49 000 in Section 

11.   

 

9.4.1.  Strategy employed 

In Subsection 9.1 we introduced the idea that the core unit of computation for the PyTOPKAPI model 

is the solution of three ODEs per time-step for each model cell, as listed in 9.1.  In this Subsection 

we expand on this concept and detail the strategy employed to maximize computational speed using 

a DAG to represent the network topology.  This construct provides us with the flexibility to take 

advantage of the ubiquitous multi-core processors on modern computer hardware, and opens the 

door to taking advantage of distributed (multi-machine) processing and possibly the use of 

dedicated processing units such as Graphics Processing Units (GPU). 

 

In order to illustrate the strategy that we devised for parallel processing, consider the simple 30-cell 

catchment shown in the left-hand panel of Figure 9.1.  The catchment outlet is coloured blue and 

labelled 0, while the catchment’s network tree has a main trunk (given by the set of nodes {0, 1, 8, 

13, 17, 22, 27, 29}) and several branches connecting to this channel.  The connections between cells 

have a direction defined by the local topography and are shown in the figure by the bold end of the 

line joining connected nodes.  For example, the outlet node 0 is directly connected to, and 
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downstream of, the nodes {1, 2, 3, 4}.  Similarly, node 15 is connected to nodes {13, 18, 19}, but is 

downstream of nodes {18, 19} and upstream of node 13.   

 

For the PyTOPKAPI model to produce a simulation of m time-steps for this catchment of n=30 cells, 

a total of mxn = 30m cell-solutions must be performed (in this report we use the term cell-solution 

to mean the block of computations required to solve all of the ODEs for a given cell at a single time-

step).  The total computational load of mxn cell-solutions is subject to some ordering constraints 

dictated by the structure of the model.  Firstly, there is a direct serial dependence between 

consecutive times-steps for each cell (water flows downhill … !).  This implies that the cell-solutions 

for a model cell must be performed sequentially in order of increasing simulation time and cannot 

be calculated independently.  Secondly, there is a spatial dependence between the cells in the 

network.  Due to the input transfer of water from upstream cells, each cell must wait for the 

cell-solutions of all its upstream predecessors to be completed before starting to calculate its 

cell-solution for any time-step.  Thus the cells are not entirely independent of each other.  The 

caption of Figure 9.1 describes the cell connectivity. 

 

 

 
 

Figure 9.1:  Example of a catchment network structure.  The left-hand panel shows the numbered 

nodes of a Directed Acyclic Graph (DAG), which represents the catchment topology.  The arrowed 

ends of the lines joining the nodes denote the downstream end of the inter-node connection, as 

defined by the catchment topography.  The catchment outlet is the node numbered 0, in blue in 

the left panel.  The right-hand panel shows the network decomposed into 8 levels of independent 

cells – the set of independent cells for each level is plotted in the same colour (refer to the text for 

details of the decomposition). 

 

All of this leads quite naturally to the straightforward (and guaranteed numerically correct) 

computational sequencing adopted in the baseline version of the PyTOPKAPI model.  In the baseline 
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version, the cells are first ordered by increasing distance from the outlet, where distance is defined 

as the number of connections which must be traversed to reach the outlet from the target cell 

(additional left to right sorting is performed row-wise in order to decide ties).  Then, for each 

simulation time-step, the cell-solutions are calculated in reverse order, starting with the highest 

numbered cell (node 29 in Figure 9.1) and ending at the outlet node.  The process is repeated serially 

until the simulation is complete. 

 

The serial computational order of the baseline model makes sense and is simple to understand and 

implement in computer code.  Unfortunately, it does not provide any context to allow for the 

parallel execution of independent cell-solution operations, where this might prove beneficial.  The 

baseline computation thus runs on a single processor core with a total execution time that is a 

simple linear function of the total workload mxn cell solutions.  The total model workload does not 

increase in a linear fashion with increasing numbers of model cells and time-steps, so the total 

execution time increases in a non-linear fashion.  This is shown by the contours of equal workload 

plotted in Figures 10.4 and 10.5, which will be discussed in detail in Section 10. 

 

As noted above, the solution speed of the ODEs in the individual cells is already extremely fast, and 

we might only envisage incremental speed-ups by changing the ODE algorithm/code-library.  The 

primary reason to implement such changes would be to achieve improved numerical robustness, by 

building on the work of experts in numerically solving Differential Equations.  This means that the 

baseline model does not provide much of an opportunity for really significant speed increases.  

Based on our work with the specific case of disconnected model cells in HYLARSMET, we realized 

that the time-series for each disconnected cell could be computed not only independently of each 

other, but also in parallel on multiple CPU cores (or even multiple computers).  Furthermore, it is 

quite straightforward to generalize this idea to catchment networks of inter-connected cells 

represented by a DAG.   

 

Consider the right-hand panel of the network shown in Figure 9.1 above.  There we have coloured 

all of the outer network nodes in blue (those with no upstream predecessors), then the next level 

down in gold (those nodes with a single level of upstream predecessors).  Finally, the set of main 

trunk nodes {22, 17, 13, 8, 1, 0} each depend on a sequentially larger number of upstream levels.  

The sets of nodes at each level (e.g. level 2 nodes {4, 15, 20, 21, 25, 27}) are entirely independent 

and their complete time-series of cell-solutions can be calculated in parallel.  The sequence of levels 

and each matching set of independent nodes are easily determined by decomposing the network 

DAG, and the revised computation sequence becomes: Loop through the levels and compute the full 

time-series for each cell in the current level.  The new sequence of computations readily lends itself 

to parallel processing algorithms.   

 

For a practical catchment problem, consider the Liebenbergsvlei catchment in Figure 9.2 below. 
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Figure 9.2:  Decomposition of the Liebenbergsvlei catchment into a sequence of levels with 

independent cells.  The top-left panel shows the inter-cell connections of the catchment network 

(the outlet cell is shown in red, top right of the catchment).  The remaining 3 panels show the 

independent cells for each set of the first 3 levels of the decomposition (the lower the level, the 

fewer the dots).  The set of cells at each level is represented as a green dot.  The cells at each level 

have no interconnectivity and their time-series can be solved independently in parallel before 

moving on to solve the next level down. 

 

For the specific case where PyTOPKAPI is run in land surface modelling mode, the 'network' DAG is 

decomposed to a single level where all model cells are independent (about 7 000 isolated cells for 

HYLARSMET in RSA – 49 000 cells for EXSMET over SADC).  This is typical of a situation that computer 

scientists would call 'embarrassingly parallel', and it turns out that medium to large catchments are 

usually very likely to decompose into 'embarrassingly parallel' computational problems.  Figure 9.2 
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illustrates this for the Liebenbergsvlei catchment.  The top-left panel shows the network of 

connections between the 1 km2 cells comprising the 3544 km2 catchment, with the outlet cell shown 

as a red dot.  The remaining three panels show the locations of independent nodes for the first 3 

levels in the catchment network.  It is interesting to note that these three levels account for 77% of 

the total cells in the catchment – which is typical.  Thus it turns out that the parallel algorithms used 

to speed up calculations for EXSMET can be used without modification to generate valuable speed 

increases for catchment simulations as well.   

 

In this Subsection we introduced the philosophy behind our strategy for calculating cell-solutions in 

parallel on multiple processor computers.  In Subsection 9.5 we present the results of our final 

implementation.   

 

9.5.  Results and discussion 

 

In Subsection 9.4 we presented our strategy for a parallel processing version of PyTOPKAPI, in this 

Subsection we give some results from tests of our implementation of the above strategies.  The 

implementation required a hugely significant restructuring of the model codebase.   

 

During the development process we used a short (170 time-step) simulation on the Liebenbergsvlei 

catchment network shown in Figure 9.2 (3544 cells).  The total workload for this simulation was 

602 480 cell-solutions (the relevance of this will be made clear in the discussion of Figures 9.4 to 

9.6).  Figure 9.3 shows a comparison of simulation runtimes for the baseline and parallel codes.  The 

comparison is made in terms of the ratio of speed-up achieved, relative to the average simulation 

speed from five runs of the baseline model.  The red horizontal bar indicates the mean speed-up of 

the baseline relative to itself (obviously a factor of one), while the bold black line overlaid on the 

bar shows the (narrow) range of speed-ups for five independent model runs.  The blue bars show 

the relative ratios for the parallel code, again with variability of ratio.   

 
 

Figure 9.3:  Relative speed-up for the Liebenbergsvlei catchment network with 3544 cells and 170 

time-steps (see Figure 9.2 for the network layout).  The horizontal bars show the speed-up relative 

to the baseline as an average from 5 model runs.  The bold black bars show the range of speed-ups 

achieved from the 5 runs.  The red bar represents the baseline code while the blue bars give 

results for the parallel code with a range of spawned worker processes from 1-10 workers. 
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NB.  All of the technical details are captured in the public code repository1 and we will not include 

them in this report as they are extensive.  Instead we focus on the results obtained by comparing 

model execution speed between the baseline and parallel versions of the code.  The tests described 

in this Subsection were carried out on a quad-core i7 laptop running the Linux operating system.  

This computer has 4 physical CPU cores, each of which run two virtual CPUs, so the computer 

operating system sees eight separate CPUs to which it can assign work.  The machine has 16 GB of 

on-board RAM, so memory usage did not constrain the tests.   

 

Our implementation of the parallel algorithm spawns new operating system processes as workers.  

Each process is passed a chunk of work (all the cell-solutions of a single cell for the entire simulation 

period).  As the individual processes complete their work, another chunk is passed until the entire 

workload is complete.  The operating system will typically (but not necessarily) assign each spawned 

worker process to a different CPU core (this depends on many factors such as the number of 

spawned processes, CPU workload from other programs, etc.).  The blue bars in Figure 9.3 show the 

mean speed-ups obtained for a range of spawned worker processes ranging from one to ten. 

 

For the test computer with 8 CPU cores, Figure 9.3 shows a steady increase in the speed-ups from 

1 to 7 obtained as the number of spawned worker parallel processes is raised.  The best speed-up 

with the smallest variability in speeds is achieved with seven worker processes.  An obvious slow 

down and increase in variability occurs when the number of spawned processes becomes equal to 

or greater than the number of CPUs.  This is almost surely caused by competition between the 

processes for CPU resources, remembering that the main process program is running in addition to 

the worker processes.   

 

9.6.  Technical Summary 

 

The tests based on the Liebenbergsvlei catchment model (see Figure 9.2 and related text) were a 

good way of testing the procedures in a realistic and typical catchment modelling exercise.  These 

tests incorporate a large number of the confounding factors, which introduce variability in the time 

taken to complete a cell-solution.  For example, the solution time of an ODE can depend on the 

starting state of the store, the rate of upstream inputs and the parameters of the ODE equation.  All 

of these are strongly affected by heterogeneity in the catchment characteristics as reflected in the 

physical properties of each cell.  When we began to experiment with larger workloads, we noticed 

a worrying drop in the solution rate of the parallel model version for large workloads, and devised 

an experiment to investigate the cause.   

 

To control for the effects of inter-cell variability, in going forward, we selected a single cell at random 

from the HYLARSMET grid and used its physical properties as a 'cell template'.  This allowed us to 

create a set of duplicate cells of any number desired.  We retained the inter-time-step variability 

using a forcing dataset of length 25 years, at a daily time-step, which we sub-sampled to create 

time-series of any desired length (up to the maximum).  By duplicating the cells and sampling the 

time-series, we could construct a simulation with a chosen size of workload.  We randomly selected 

workloads, then constructed and timed the simulations to determine the work-rate as a function of 

                                                           
1 https://github.com/sahg/PyTOPKAPI  

https://github.com/sahg/PyTOPKAPI
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workload, number of cells and number of time-steps.  The results are presented in Figures 9.4 to 

9.6, with fully explanatory captions.   

 

Figure 9.4 shows contours of equal workload in the Cartesian space of number of cells and number 

of time-steps.  The contours are described by a sequence of rectangular hyperbolas k = mn where k 

is the workload, m is the number of time-steps and n is the number of cells.  The workload contour 

of constant at 8x106 cell-solutions is highlighted in red to match the limit of the data plotted in Figure 

9.4.  In that Figure, the average work-rates for each simulation (cell-solutions per second) are 

plotted in the Cartesian space and coloured blue according to the colour bar shown on the right-

hand side.  The work-rates plotted in Figure 9.4 are those computed using the baseline model 

version, and exhibit a stable mean with low variance (see Figure 9.6) and exhibit a relatively low 

work-rate compared to the other procedures.   

 

 
 

Figure 9.4:  Response surface of the baseline model version; the colour bar for the dots is the 

number of cells solved per second.  The sequence of rectangular hyperbolas shows contours of 

equal computational workload at intervals of 2x106 cell-solutions.  The 8x106 contour is 

highlighted for reference (see Figure 9.6). 

 

The number of cell-solutions per second is plotted for various combinations of number of cells and 

number of time-steps.  The Cartesian location of each point describes the number of cells versus 

time-steps, while the colour indicates the rate of cell solutions per second.  Note that for this version 

of the model, the solution rate is independent of the workload at approximately 10000 cells solved 

per second as all the dots have the same hue.  This means that the total computation time increases 

rapidly with the workload. 
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In Figure 9.5 we have plotted the cell-solution rates for the parallel model version.  Two things are 

immediately obvious from this Figure.  First, the solution rates for small and moderate sized 

workloads are much higher for the parallel version (matching the results shown in Figure 9.3, as 

expected) and second, there is a sudden and severe drop in work-rate close to the workload contour 

of 4x106 cell-solutions.  Unfortunately, we do not yet have an explanation for this drop.  Luckily it is 

not very difficult to break the simulation time-series into chunks that will constrain the workload to 

the 'good' region.  

 

 
 

Figure 9.5:  Response surface of the current parallel model version; the colour bar for the dots is 

the number of cells solved per second. The sequence of rectangular hyperbolas shows contours of 

equal computational workload at intervals of 2x106 cell-solutions.  The 8x106 contour is 

highlighted for reference (see Figure 9.6). 

 

 

The number of cell-solutions per second is plotted for various combinations of number of cells and 

number of time-steps.  The Cartesian location of each point describes the number of cells/time-

steps, while the colour indicates the rate of cell solutions per second.  Note the higher solution rate 

in the lower left hand corner (more yellow than blue) compared with Figure 9.4, and also the severe 

drop off above the 4x106 contour.   

 

Figure 9.6 reinforces the message of Figures 9.4 and 9.5, and also demonstrates our ability to model 

the 49 000 cells required to produce soil moisture and ET simulations over the EXSMET region as 

shown in Section 11.   
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Figure 9.6:  A scatter plot of the work-rates achieved for total workloads below 8x106 cell-solutions 

(the red contours in Figures 9.4 and 9.5). 

 

In Figure 9.6, the red dots show the solution rates achieved for the set of randomly selected 

workloads shown in Figure 9.4, with the blue bar showing a range of 2 standard deviations either 

side of their mean.  The black dots show the matching solution rates achieved using the newly 

developed parallel version of the model code (see the yellow to green dots below the contour in 

Figure 9.5).  The coloured squares joined by lines indicate the solution rate for a fixed number of 

cells and increasing number of time-steps (see the legend) – the time-steps vary by number of model 

cells to achieve matching workloads.   

 

The first two square markers on each line are for points very close to the x-axis in Figures 9.4 and 

9.5 (i.e. a low number of time-steps).  This is because when the number of time-steps is very low, 

the overhead of passing data to the worker processes outweighs their benefits and high solution 

rates cannot be achieved.  The line joining the grey squares (35 000 cells) is an average through the 

red dots of the serial workloads and has a considerably lower work-rate than the corresponding 

green line and squares.  In any event, it seems that more than 400 000 cells x nsteps causes a 

collapse in work rate, independent of the number of cells in the parallel workloads. 
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9.7. Summary of Section 9 

 

Recall that the description of this 10th deliverable in the project proposal reads 'Devise means of 

increasing computational speed and capacity and demonstrate ability to make estimates of SM 

and ET over SADC'.  We have significantly revised the PyTOPKAPI model code and implemented 

algorithms which allow the model to take advantage of the multiple CPU cores typically found in 

modern computers.  This model advancement is entirely transparent to users, and does not require 

any special interventions on their part. 

 

Although there are still some difficulties experienced with the parallel implementation for large 

workloads, work-arounds can be employed in a simple manner, and the new code is faster for 77.8% 

of the cases tested.  The strategy is to make computations in chunks that limit the total workload to 

the region of maximum solution speed.  In any event, the serial code path remains available through 

the use of a simple function parameter passed, on instruction from the user, to the main routine of 

the model for problem cases. 

 

In addition, we have clearly demonstrated our ability to run the model for the 49 000 cells 

comprising our set-up for the full extent of SADC shown in Figure 10.1.  The average solution speed 

improvement for moderate workloads is 2-2.5 times faster than the baseline serial version of the 

model code.  This does not make much difference if updates are made once per day, however there 

are often occasions when the entire simulation must be re-run due to problems with input data, 

power failures and other hazards of real-time operation.  This is where the speed improvements 

really make a significant difference to EXSMET.  For example, a 25 year long daily simulation can be 

completed on a powerful laptop in 3 hours, compared with 8 hours for the baseline model code.  

This makes for a far more productive use of modelling time in real world applications of the model. 

 

We have met the requirements of this deliverable and made important changes to the PyTOPKAPI 

model structure which pave the way for exciting parallel (multi-processor) and distributed (multi-

machine) processing for large scale physically based hydrological modelling.  As always, the latest 

model code is freely available at https://github.com/sahg/PyTOPKAPI under a BSD style license 

(Sinclair et al., 2017).   

 

 

-----ooOoo---- 

  

https://github.com/sahg/PyTOPKAPI
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10. Model initialization 

 

In this 11th deliverable entitled 'Determine the best ways of cold-starting calculations [model 
initialization]' we relied heavily on what has gone before in this project.  The difference here is that 
we are not only on our home ground of RSA, which we have been modelling since 2007, but also 
North of us in the other Southern African Development Community (SADC) countries, which stretch 
beyond the Equator.  RSA is rich in physical information that informs our PyTOPKAPI model, derived 
from many years of careful data collection and updating by others, to a fine spatial scale.  This 
richness is not shared by our neighbours, so we have had to rely on sparsely sampled variables 
interpolated by space-borne sensors, resulting in a very much coarser data product than ours.  
 

Nevertheless, the computational load is large, considering that the static physical parameters 

required for the application of the South African model are obtained from data‐sets sampled onto 

cells of 1 km2 equal area, in a grid covering the country.  In both HYLARSMET (Sinclair and Pegram, 

2013) and now EXSMET (this project), 7200 of RSA’s 1.22 million cells were used in both projects 

and were centred on a regular latitude and longitude grid with a spacing of 0.125.  By contrast, the 

land area of SADC (excluding Madagascar) is 8 950 000 km2, compared to RSA’s 1 220 000 km2, so is 

6.3 times larger.  This translates to modelling 48 598 locations, each 1 km2 in size, at 3-hour intervals, 

which requires powerful computing capacity.  In this Subsection, we have included Tanzania and the 

DRC for complete coverage of SADC (except for Mozambique), omitted in Subsection 8. 

 

In this Subsection we decided to:  

(i) determine the values of the PyTOPKAPI parameters at each of the 48 598 locations over SADC 
using the Harmonised World Soil Database (HWSD), HYDROSHEDS DEM and USGS Global Land 
Cover Classes (GLCC) parameter sets introduced in Section 2 of this report.  

(ii) compare the GLCC parameter sets against our RSA sets, where they overlap 
(iii) show proof of concept, in other words, determine the best ways of cold-starting the 

calculations, but not to model the whole region.   
 

To achieve the last of the 3 tasks, we randomly selected sites over SADC and computed their ‘start-

up’ times, in other words, the interval from initiation until nearly stable responses.  We found, as 

expected, that there are variations depending on locations, as a result of varying soil and ground 

cover parameters, besides precipitation regimes.  The result is that the length of the warm-up from 

cold start varies between sites and is between 3 and 6 months from initiation, which is much what 

we expected in a region which has a high variability of ambient variables (such as temperature) and 

precipitation. 

 

The result is that the improved version of PyTOPKAPI, in mapping mode, is ready to be used with 

confidence over the region. 
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10.1  Introducing the Geographical Variables 
 
In this Subsection we introduce maps of the variables used in the calculations and compare these 

with our original RSA ones where they overlap.  Unfortunately, the colour code of each set does not 

match in most cases, but the tone is the key to comparison. Figure 10.1 shows the USGS Global Land 

Cover Characteristics Data Base, Version 2.0 (GLCC) over SADC, classed by colour, omitting 

Madagascar. The categories are not on a numerical scale, but are illuminated by colour.  It is 

followed by Table 10.1, which translates these values to soil properties, as was shown in Section 4.  

For most of the parameters, we follow the methodology of DeLannoy et al. (2014) to convert the 

Harmonized World Soil Database (HWSD v1.2.1; FAO/IIASA/ISRIC/ISS-CAS/JRC (2012)) texture 

classes to soil hydraulic properties. However, the residual moisture content r, bubbling pressure 

b and pore size distribution λ are calculated using the table of Rawls et al. (1982) (see Table 10.1, 

repeated here for convenience). The main difference from earlier work over RSA is, that for SADC in 

this Section, we are switching to the new texture maps from the HWSD, because our RSA maps are 

limited to this country. 

 

 
Figure 10.1: USGS Global Land Cover Characteristics Data Base, Version 2.0 (GLCC) over SADC, 

omitting Madagascar.  Besides the countries shaded in Figure 8.1, we have included Tanzania and 

the DRC, to complete the set. 

 

Table 10.1 follows. 
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Table 10.1: The Table 2 from Rawls et al. (1982), used to estimate soil properties from texture 

information. 

 

The next set of Figures (10.2 to 10.7) displays the translation of Land Cover Characteristics, pixel by 

pixel from the data displayed in Figure 10.1, and HWSD soil texture information shown in Figure 2.5, 

to soil properties as used by PyTOPKAPI, via the values in Table 10.1. 

 
 

Figure 10.2:  Manning’s roughness coefficient [n0] for overland flow, determined from Figure 10.1 

and Table 10.1.  A small copy of Figure 2.5 is on the right, for information. 
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Figure 10.2 displays the roughness of the ground surface for overland flow, not to be confused with 

channel flow resistance.  We are not modelling streamflow in this project, but estimating soil 

saturation and consequent evapotranspiration, cell by cell, each 1 km square at a spacing of 0.125. 

We now follow with maps of estimates of soil properties over SADC. 

 

 
Figure 10.3:  The soil depth L over SADC, from the Harmonized World Soil Database in the left 

panel.   On the right is the difference in values of L from HYLARSMET from HWSD estimates over 

RSA. 

 

Except for RSA, there is a lack of detailed information over SADC in the HSWD data-base, hence the 

almost universal 1 m depth over the region in the panel on the left of Figure 10.3, which is a 

reasonable technical compromise. Note the negative changes (green) over RSA in the right panel, 

which are typically dry areas with shallow soils, whose L is overestimated by HWSD compared to our 

RSA data. 

 
Figure 10.4:  Saturated Hydraulic conductivity Ks using Figure 10.1 and Table 10.1 in the left panel, 

differences between HYLARSMET and HWSD in the right panel 

 

Comparing the map on the left with the corresponding images of differences between HYLARSMET 

and HWSD shown on the right of Figure 10.4, it is evident that the differences over RSA are not too 

large – there is fair correspondence. Nevertheless, conductivity Ks estimated by HWSD is larger than 
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the corresponding HYLARSMET values in the drier areas and vice versa, particularly in the North-

West, as shown in the panel on the right. 

 

 

 
Figure 10.5:  Pore size distribution  using the information in Figure 10.1 and Table 10.1 in the left 

panel. Differences between HYLARSMET and HWSD in values is on the right. 

 

Comparing the image of SADC Pore size distribution values  on the left with the corresponding 

image on the right of Figure 10.5, the differences over RSA are considerable.  It seems that Pore size 

distribution  is larger in the drier areas and vice versa.  This is particularly so over Botswana and 

Angola.  Note that the relative differences (dark vs light shading) of HSWD in Figure 10.5 in the left 

panel are close to those in Figure 10.4 above, as Hydraulic conductivity Ks increases with , as shown 

in Table 10.1. 

 

 
Figure 10.6:  Residual soil Moisture content r using Figure 10.1 and Table 10.1 in the left panel.  

Differences between HYLARSMET and HWSD in values is on the right. 
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Comparing the Figure of SADC values of Residual soil Moisture content r on the left with the 

corresponding image of differences on the right, the differences over RSA are marked.  Again, the 

dry areas have this parameter overestimated by HWSD, compared to HYLARSMET values, as shown 

by the blue-green negative changes compared to the brown positive ones in the wetter areas in the 

right panel. 

 

 
Figure 10.7:  Saturation moisture content s using Figure 10.1 and Table 10.1 in the left panel. 

Differences between HYLARSMET and HWSD values are on the right. 

 

Comparing the Figure of HWSD values of Saturation soil Moisture content s over SADC on the left 

with the corresponding image of differences on the right, the differences over RSA are moderate.  

The dry areas have this parameter slightly underestimated by HWSD, compared to HYLARSMET 

values, as shown by the small patch of brown in the Northwest and West coast.  The remainder of 

RSA has been relatively well modelled, except for some green patches. 

 
Figure 10.8:  Bubbling Pressure, b, using Figure 10.1 and Table 10.1 in the left panel. Differences 

between HYLARSMET and HWSD values on the right. 
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There is considerable overestimation of Bubbling Pressure, b, as shown by the image of differences 

in the panel on the right, showing differences between HYLARSMET and HWSD; the differences over 

RSA are large.  In the dry areas this parameter has again been overestimated by HWSD, compared 

to HYLARSMET values, as shown by the blue-green negative changes, compared to the small patches 

of brown positive ones in the coastal and Eastern areas of RSA. 

 

 
Figure 10.9: Slopes of the ground in SADC, calculated from the HYDROSHEDS product estimated by 

the USGS, here at 1 km resolution.  The panel on the left show slopes in degrees, which have been 

converted to tangents [tanβ] in the right panel, as required by the Manning equation in 

PyTOPKAPI. 

 

The HYDROSHEDS product of USGS is offered as a Digital Elevation Model, at a 3 arc-second 

resolution, over the globe.  At the equator, this distance is equivalent to approximately 90 metres.  

As we are interested in 1 km square pixels for modelling, transformation of these data was required, 

requiring a considerable investment in computation skill and time.  PyTOPKAPI requires the tangent 

of the angle of the slope [Sf = tanβ] as a parameter for the Manning’s equation of flow over a surface.  

We did not map this variable in Deliverable 4 of the project, but decided to illustrate it here for 

information.   It seems from the image on the left that Africa is quite flat.  However, the image on 

the right picks out the steepness of mountainous areas of SADC in green, compared to the dominant 

yellow in the interior and Southern Mozambique.   

 

10.2  Section summary 

 

This Section was bent on data collection and comparisons for the purpose of defining the PyTOPKAPI 

model application – to EXport SM and ET over SADC.  There is nothing more to add here, except to 

note that it concludes the important and arduous effort required to obtain the Geographical 

Variables, as Maps of the parameters, required to run PyTOPKAPI. 

 

 

 

-----ooOoo---- 
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11. Behaviour of soil storage volumes and ETa simulated over the SADC region 

 

This penultimate Section does not deal with one of the individual contract deliverables as above, 

but is an important summary of what we have achieved in the project, by using a set of 

demonstration calculations. First, we use PyTOPKAPI to model 6 selected 1 km square pixels 

randomly chosen over SADC, to display actual Evapotranspiration (ETa) traces (as against potential 

ET).  ETa is here used in the calculation of the Soil Storage Index (SSI) at 3-hour intervals over 90 

days.  These 6 cells are initialised as having a range (25%, 50% and 75%) of their soil storages, and 

their progress over 3 months is recorded.  In addition, we determine the computation load of 

obtaining the SSI after 90 days of precipitation and ETa, at all cells over the whole of SADC, at each 

of the 1 km pixels in the 0.125 squares.  Again, these are individually initialised with three different 

initial storage states, 25%, 50% and 75% of saturation. This information is important to obtain, 

because the computational load for lengthy simulation over 48 598 sites is considerable.  It is 

therefore prudent to determine these limitations before startup of an extended calculation in space 

and time over this large area. The SSI responses, as time series of moisture content, are affected by 

three major variables:  

(i) soil storage capacity, as a function of porosity and saturation moisture content  
(ii) evapotranspiration rate, based on available SM, temperature and humidity and 
(iii) the local precipitation regime. 

 

The 6 sites' traces of storage follow in 6 images in Figures 11.1 a to f.   

 

 

 
 

Figure 11.1 a and b:  Soil water storage traces in 1 km square areas reacting to local rainfall and 

ETa over 3 months of computation.  These are for the first 2 of 6 sites chosen at random, started 

at quarter, half and three-quarter full states, ranked by spread of end-states; panels c to f overleaf. 



94 

 

 

 

 

 
Figure 11.1 c to f:  Soil water traces forced by local rainfall and ETa over 3 months of computation 

for another 4 sites chosen at random, started at quarter, half and three-quarter full states, ranked 

by spread of end-states. 

 

The duration of the traces in Figure 11 is 90 days and the start times at each site were randomised.  

The 6 images in Figure 11.1 have been ranked sequentially by the tightness of the 3 individual traces 

at the end of the 3-month period.  It is clear from the traces that the convergence depends on the 

soil properties, ET and the rainfall regime governing the responses, so that the wider the 3 traces 
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are at the end of 3 months, the longer the warm-up period required.  The next set of four images in 

Figure 11.2 comprises the maps of initial and final Soil Saturation Index (SSI) for 3-month simulations 

started at 25%, 50% and 75% saturation, over the whole of SADC’s 49 572 1 km-square pixels, 

centred in 0.125 squares, demanding a large amount of care and computation.  We show the maps 

at start and end of three months' soil moisture estimation over the whole area of the conterminous 

SADC countries, each starting from 3 different initial states as in Figure 11.1. 

________________________________________________________________________________ 

 
________________________________________________________________________________ 

 
________________________________________________________________________________ 

 
________________________________________________________________________________ 

Figure 11.2: Results of simulations of soil moisture content on all of the 49 572 1 km-square pixels 

over the SADC region, starting from three levels of local saturation: 25%, 50% and 75% and 

running for 3 months. 



96 

 

Besides the records of SSI, also of interest is the variation, both temporal and spatial, of actual 

Evapotranspiration (ETa), the important driver forcing these storages.   ETa is calculated over the 

EXSMET region in the same manner as the calculations carried out for the HYLARSMET region over 

South Africa.  The difference for EXSMET is that we do not have access to the meteorological 

variables from the SAWS weather model.  For the purposes of demonstrating the feasibility of 

running the model over SADC we used meteorological forcing from the WATCH Forcing Dataset ERA 

Interim (WFDEI) in Weedon et al., 2014.  This is useful for historical analyses, but not for operational 

soil moisture modelling. 

 

From the WFDEI paper's abstract: 'The WFDEI meteorological forcing data set has been generated 

using the same methodology as the widely used WATCH Forcing Data (WFD) by making use of the 

ERA-Interim reanalysis data. We discuss the specifics of how changes in the reanalysis and 

processing have led to improvement over the WFD. We attribute improvements in precipitation and 

wind speed to the latest reanalysis basis data and improved downward shortwave fluxes to the 

changes in the aerosol corrections. Covering 1979-2012, the WFDEI will allow more thorough 

comparisons of hydrological and Earth System model outputs with hydrologically and phenologically 

relevant satellite products than using the WFD.' 

 

Shown below in Figure 11.3 is a sequence of time series of 3 months calculated ETa at a site chosen 

at random, and a close up of the first few days at the start of the period in Figure 11.4: 
 

 
 

Figure 11.3:  Three traces of ETa over 90 days at 3 hour intervals at a selected site.  Note the 

gradual diminution of the red trace of ETa as the soil store dries out with time, having started 75% 

full, but the close correspondence between all the traces at the end of the 3-month period. 
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Figure 11.4 shows a combined close-up of the first 12 days of the traces of ETa in Figure 11.3. 
 

 
Figure 11.4:  Three traces of ETa over the initial 12 days (300 hours) at 3 hour intervals at a 

selected site, giving detail by combining the three traces in Figure 11.3 – note the diurnal 

variation. 
 

Of interest is the spatial variation of ETa over SADC.  In Figures 11.5 a and b we show two maps 

essentially snapshots) of accumulated ETa over the SADC region.  These are shown at different time 

intervals of 3-hours, with the initial SSI conditions set at 25%, hence the different patterns, especially 

in the wet interior.  The scale is from 0 to 1 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 11.5 a and b.  Two maps of 3 hour accumulated ETa over the SADC region, sampled at 

different times. 
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In Figure 11.6, we present the full period of 3-month total accumulated SSI, given the 25%, 50% and 

75% SSI initial conditions at each 1 km site. 

 

 
 

Figure 11.6: The full period of 3-month total for the 25%, 50% and 75% SSI initial condition. 
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In Figure 11.6, it is clear where the water-rich areas are, with significantly higher ETa losses.  By 

contrast, the drier areas in particular are found over the South West coastline of Africa.  The white 

patches in the maps in Figures 11.2, 11.5 and 11.6 are locations of water-bodies. 

 

11.1  Summary of Section 11 

 

In this chapter, based on previous work, not only have we shown that it is feasible, but have 

demonstrated that we have indeed managed to export PyTOPKAPI and HYLARSMET over SADC 

including RSA, with extended spatial and computational capacity of Soil Moisture and 

Evapotranspiration, for flood and drought monitoring.  The tools developed herein are ready to be 

used by practitioners to continue the work.   

 

 

 

-----ooOoo---- 

 

 

  



100 

 

 

12. Conclusion 

 
This EXSMET project has been a huge challenge, requiring significant retooling of our PyTOPKAPI 
software and searching through a plethora of global offerings of remotely sensed Earth surface data, 
in order to make a meaningful estimate of Soil Moisture and Evapotranspiration over SADC.  Not 
only that, but we have had to make sense of which sets of global data are appropriate for the needs 
we had envisaged in the original contract, proposed 5 years ago.  At that time, TRMM was still viable, 
but the decommissioning of the TRMM satellite’s precipitation radar on 7 October 2014 meant that 
we had to consider alternative remotely sensed precipitation sources.  In addition, although we had 
an inkling that this would happen at the time the proposal was drafted, we had to turn to the Global 
Precipitation Measurement program (GPM) and compare it with TRMM before its demise.  
Furthermore, managing the non-trivial task of understanding and exploiting the information on 
ground data offered by remote sensing technology required developing skills we did not have up 
front.   
 
Besides the assessment of the Earth's surface properties (land-cover, soil types, etc.) we expected 
that we needed a means of estimating Evapotranspiration (ET) in detail over SADC.  Where we had 
access to Meteorological data from SAWS in our HYLARTSMET project to so do, we now had no 
similar meteorological data-sets available over Africa North of RSA for the estimation of ET.  We 
were able to find sources of soil properties and parameters from the Food and Agricultural 
Organisation's (FAO) global maps.  These space-born products were therefore sufficient to drive our 
PyTOPKAPI software in land surface, rather than hydrological mode, as was similarly done in 
HYLARSMET.  As it happened, it turned out in this EXSMET project, as in HYLARSMET, that the Soil 
Saturation Index was most sensitive to the rainfall input, then to the soil parameterization and much 
less to actual evapotranspiration (ETa). 
 

In more focused detail, here follows the list of aims that we listed in our proposal/contract, all of 
which have been achieved satisfactorily: 
 
1. To ascertain what rainfall data are available in the SADC countries outside our borders and 

perform checks on their suitability for modelling 
2. To obtain suitable ground cover and soil maps over the whole SADC region (e.g. FAO and 

others), for comparison with those already available in RSA 
3. To exploit the sensitivity calculations performed on the RSA data-set under HYLARSMET  
4. To determine the best way to compare FAO data-sets with our RSA sets of ground-based data  
5. To determine if there are better alternative rainfall inputs to TRMM, for near real-time 

precipitation data input.  If not, exploit bias adjustment of the TRMM product 
6. To exploit the Soil Moisture estimates of the European Space Agency's SMOS mission when they 

are ready for use in model inter-comparisons 
7. To determine how to best cope with the uncertainties associated with input parameters and 

forcing variables [TRMM in particular] when computing ensembles of historical and 
forecast data streams 

8. To devise means of increasing computing capacity and the speed of calculations by improving 
key parts of the code and employing parallel [or High Performance] computing power 

9. To determine the best ways of cold-starting calculations [model initialization] for both gauged 
and ungauged catchments 
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Our focus in EXSMET was to develop and utilise calculations at isolated pixels in 0.125 (about  

12 km) squares, driven by hydrological modelling through PyTOPKAPI, leading to Soil Moisture 

assessments. It took advantage of gains made in an improved understanding of Soil Moisture and 

surface water hydrological processes through the completed project HYLARSMET, which was 

blessed by the availability of better hydrological data, especially the various forms of more accurate 

remotely-sensed data with better coverage, like TRMM, to be replaced by GPM. Throughout this 

project, strategic partnerships with international expertise in climate, soil water and surface water 

hydrological research flourished. Hydrological tools that were developed in the past under 

HYLARSMET were upgraded, re-developed and accelerated by alternative tools that are suited to 

current data availability, improved knowledge and the recent technological advances in hydrological 

modelling using the PyTOPKAPI model. In this project, the continued deterioration of hydrological 

gauging processes and other installed earth measurement devices were managed through the 

intensive use of new data sources from remote sensing, coupled with the limited earth-based 

measurements. Finally, the major outcomes we achieved here are that (i) we were able to model 

Soil Moisture and Evapotranspiration over SADC in detail and (ii) model hydrological runoff on 

'ungauged' catchments over RSA, both with estimated levels of confidence, using accelerated 

parallel computing designs which were especially devised for this project. 

 

 

 

 

_____ooooo///o\\\ooooo_____ 
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