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EXECUTIVE SUMMARY 

UNDERSTANDING ESTUARINE PROCESSES IN UMFOLOZI/UMSUNDUZI/ST LUCIA 
ESTUARY FROM EARTH OBSERVATION DATA OF VEGETATION COMPOSITION, 

DISTRIBUTION AND HEALTH 
 

BACKGROUND 

 

The uMfolozi/uMsunduzi/St Lucia estuary is situated in the largest fluvial coastal plain in 

South Africa and the largest estuarine system in Africa (155 000 ha). This estuarine system 

hosts the highest diversity of wetland habitat types for its size in the whole of southern Africa 

(Cowan, 1999). The estuary faces a number of threats as a result of human interference 

over several decades including habitat fragmentation and loss of species diversity. 

Understanding the uMfolozi/uMsunduzi/St Lucia estuary system is crucial, yet difficult, 

considering the regional extent and difficulty in accessing the area. The physicochemical 

processes (hydrodynamic, chemical and sedimentological) largely determine the biological 

components (e.g. vegetation composition/distribution, health and the habitat types) in the 

estuary. For example, (i) wetland plant communities vary across estuarine salinity or water 

quality gradients, and (ii) mangroves have been adversely affected by sediment burial of 

roots. Furthermore, changes in composition and condition of estuarine habitats could 

influence the spatial distribution of faunal populations including amphibians, fish, birds, 

reptiles and mammals. Therefore, the spatio-temporal monitoring of the 

uMfolozi/uMsunduzi/St Lucia estuarine vegetation should be considered as an integral part 

of understanding the estuarine biological processes and detecting changes in particular and 

by proxy, the underlying physicochemical processes. 

 

RATIONALE 

 

The paucity of exhaustive spatial-temporal information on estuarine vegetation composition, 

distribution and health in South Africa undermines a holistic understanding of estuarine 

processes and potential threats to their functioning. The development of new Earth 

Observation (EO) methods is essential to providing time-cost effective ways of assessing 

estuarine processes. Conventional field-based surveys are laborious, time-consuming, 

expensive and risky in the estuarine environment. Remote sensing, using current or 

anticipated space-borne sensors is widely viewed as a time- and cost-efficient way to 

proceed with inventorying of estuarine vegetation, water quality and processes such as 
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channel development. Conventional EO techniques are however inadequate because of the 

low spectral/spatial resolutions of commonly available sensors. 

 

AIMS 

This study has explored the utility of earth observation data consisting of remote sensing and 

other ancillary data to provide information on the spatial distribution on the 

uMfolozi/uMsunduzi/St Lucia estuary vegetation types and condition. The general approach 

consisted of understanding leaf-to-spaceborne remote sensing of wetland tree species, 

vegetation community or habitat types and vegetation nutrient status. The aims were: 

 

Aims Description of work and key findings 

1. To spectrally 
discriminate and 
map estuarine 
tree and 
grass/reed 
species 
 
2. To accurately 
map estuarine 
habitat types, 
habitat 
heterogeneity 
and land 
use/land cover 
(LULC) types 
 
 

Models for species (or vegetation type) separation using remote sensing 
are based on the assumption that within-species (or vegetation type) 
spectral differences resulting from differences in their chemical and 
structural properties are much lower that between species (or vegetation 
type) spectral differences.  In this study, we assessed the above 
assumption at the leaf spectral and spaceborne sensing levels. 
 
At the leaf spectral level, twenty-two spectral bands out of 2100 bands of 
the field spectrometer (a hyperspectral sensor) were identified as the 
most important spectral variables for classification of six dominant 
evergreen tree species in the St Lucia estuary.   
 
A higher accuracy for classifying vegetation types was obtained from 
WorldView-2 when compared to RapidEye.  However, the accuracy of 
classifying vegetation types involving RapidEye images was comparable 
to that obtained from the WorldView-2 image when RapidEye images for 
several seasons were used. 

3. To assess the 
estuarine 
vegetation 
condition/health 
using new 
multispectral 
imagery such as 
RapidEye and 
WorldView-2 
 

Vegetation condition is considered in this study to be the relative health 
of vegetation compared to undisturbed vegetation of the same type. The 
main indicator of vegetation condition considered in this study is the leaf 
nitrogen (N) or phosphorus (P) content.  
 
In this study, both leaf and spaceborne remote sensing was used to 
assess leaf N or P content. Very strong correlations were found between 
laboratory measured leaf N (%N) and leaf spectral reflectance, 
particularly in the shortwave infrared region for evergreen tree species. 
The results for leaf P were not so promising. Leaf N in the region varies 
according to the season, showing maximum variability among species 
during spring and the lowest variability in winter. However, winter leaves 
contain the highest amounts of leaf N. 
 
Spaceborne remote sensing also showed a good potential for assessing 
leaf N at the broad landscape using RapidEye imagery. This is possible 
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thanks to the red-edge band of RapidEye which has been shown to vary 
with subtle changes in leaf chlorophyll content. 
 
The map of leaf N for the estuary showed that conversion of indigenous 
forest into subsistence grazing land or farming landscape leads to loss 
of N from the system.  
 

4. To explain the 
physiochemical 
processes 
underlying the 
composition and 
distribution of 
vegetation 
 

Macrophyte habitats in the estuary, including submerged macrophytes, 
reeds and sedges, mangroves, grass and shrubs, salt marsh and 
swamp forest, were mapped for 2008 and 2013. The distribution of 
macrophytes was related to sediment characteristics.  
 
The results indicated that changes in salinity and water level caused die-
back or expansion of particular habitats. Submerged macrophytes 
increased while salt marsh decreased due to inundation.  

5. To ensure that 
the knowledge 
generated serves 
to inform 
sustainable 
management of 
the 
uMfolozi/uMsund
uzi/St Lucia 
estuary. 
 

A geoportal data viewer for the project map deliverables has been 
created and is hosted by the Department of Environmental Affairs 
(DEA), Branch: Oceans and Coasts, Chief Directorate Integrated 
Coastal Management at 

http://mapservice.environment.gov.za/Coastal%20Viewer/.  

 

 

 
CONCLUSIONS 

In conclusion, the study has highlighted the potential contribution of remote sensing 

technology and science to understanding the vegetation status of uMfolozi/uMsunduzi/St 

Lucia estuary. Estuarine systems are complex and difficult to access. Therefore, developing 

a monitoring system based on remote sensing data and other in-situ ancillary information will 

enhance the ability to rapidly assess changes in the vegetation composition and condition of 

the estuary. The availability of new multispectral sensors such as RapidEye and  

WorldView-2 moves remote sensing closer to widespread monitoring of estuarine vegetation 

condition including species and nutrient status. 

 

 

Please note:  

Throughout the project publications, the names ‘uMfolozi’ and ‘uMsunduzi’ have been 

interchangeably used with ‘Mfolozi’ and ‘Msunduzi’ for these two Rivers. 
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GLOSSARY 

Earth Observation.  Is the gathering of 

information about the Earth’s surface’s 

physical, chemical and biological systems via 

remote sensing technologies supplemented 

by earth surveying techniques, encompassing 

the collection, analysis and presentation of 

data (International Journal of Applied Earth 

Observation and Geoinformation). 

 

Field Spectroscopy.  The quantitative 

measurement of radiance, irradiance, 

reflectance or transmission in the field / on the 

ground. 

 

Hyperspectral (imaging).  Data collected in a 

high number (> 100) of continuous narrow  

(1-2nm) spectral bands across the 

electromagnetic spectrum. 

 

Multispectral (imaging). Data collected of 

the Earth’s surface in few (typically 3-8) 

relatively broad (>50 nm) spectral bands. 

 

LiDAR. A kind of imaging technology. Usually 

mounted on an aircraft, the LiDAR sensor 

sends light pulses to the earth surface and 

measures the time until the reflected signal 

returns to the sensor. From the time past, i.e. 

the distance between the airborne sensor and 

the earth surface, information on ground 

elevation and vegetation canopy structure is 

derived. A common product is a fine scale 

Digital Elevation (or Surface) Model which can 

be used for further geospatial analysis. 
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1 INTRODUCTION AND OBJECTIVES 

 

1.1 Introduction 

 

Estuarine systems face a number of threats as a result of global change, including nutrient 

enrichment, sea-level rise, habitat fragmentation and loss of species diversity. 

Understanding these systems is crucial, yet difficult, considering the regional extent and 

difficulty in accessing these systems.  

 

An estuary is defined as “a partially or fully enclosed water body that is open to the sea 

permanently or periodically, and within which the seawater can be diluted, to an extent that 

is measurable, with freshwater drained from land” (RSA, 1998a). Thus, estuaries form a 

transition zone between river and ocean environments and are subject to both marine 

influences such as waves, tides and the influx of saline seawater and riverine influences, 

such as flows of fresh water and sediment. It is therefore the unique combination of both 

freshwater and saltwater that dictates many of the hydrodynamic, chemical, 

sedimentological and biological processes within the estuary. The decline of intact estuarine 

environments around the world could be attributed to many factors, including increased 

sedimentation from upstream soil erosion due to overgrazing and poor farming practices; 

overfishing; drainage and filling of wetlands; eutrophication due to excessive nutrients from 

sewage and animal wastes; pollutants including heavy metals, hydrocarbons from sewage 

inputs; damming for flood control or water diversion and habitat fragmentation. For example, 

changes in nutrient concentrations in rivers and estuaries have been be related to land use 

(Ball 1994). Upstream land use or cover changes and floodplain transformations are other 

factors that could be affecting estuarine processes. 

 

The physicochemical processes (hydrodynamic, chemical and sedimentological) largely 

determine the biological components (e.g. vegetation composition/distribution, health and 

the habitat types) in the estuary. For example, (i) wetland plant communities vary across 

estuarine salinity or water quality gradients (Sand-Jensen and Borum 1991), and (ii) 

mangroves have been adversely affected by sediment burial of roots (Ellison 1999). 

Furthermore, changes in composition and condition of estuarine habitats could influence the 

spatial distribution of faunal populations including amphibians, fish, birds, reptiles and 

mammals (Adams et al., 2012). Therefore, the spatio-temporal monitoring of estuarine 

vegetation should be considered as an integral part of understanding estuarine biological 

processes and detecting changes in particular and by proxy, the underlying physicochemical 
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processes. Vegetation sampling coupled with remote sensing data and other ancillary 

information e.g. topographic and land use data will provide a regional, temporal, seasonal 

and spatial understanding of estuarine processes. Change detection over space and time 

could inform integrated management of estuaries. 

 

The paucity of exhaustive spatial-temporal information on estuarine vegetation composition, 

distribution and health in South Africa undermines a holistic understanding of estuarine 

processes and potential threats to their functioning. The development of new Earth 

Observation (EO) methods is essential to providing time-cost effective ways of assessing 

wetland or estuarine processes. Conventional field-based surveys are laborious, time-

consuming, expensive and risky in the wetland environment. Monitoring of protected tree 

species under the National Forest Act (Act no. 84 of 1998; RSA, 1998b), is challenging in 

such environments. Remote sensing, using current or anticipated space-borne sensors is 

widely viewed as a time- and cost-efficient way to proceed with inventorying of estuarine 

vegetation, water quality and processes such as channel development. Conventional EO 

techniques are however inadequate because of the low spectral/spatial resolutions of 

commonly available sensors. According to the National Estuary Biodiversity plan for South 

Africa (Turpie et al., 2012) rapid assessment methods are required to assess estuarine 

processes more regularly. The uMfolozi/ uMsunduzi/St Lucia estuarine system (Figure 1.1), 

being the largest estuary in South Africa (50% of estuarine area in SA) would benefit from a 

space-borne rapid-assessment for conservation and management purposes. 

 

The iSimangaliso Wetland Park (uMfolozi/uMsunduzi/St Lucia estuaries) is situated in the 

largest fluvial coastal plain in South Africa (Van Heerden, 2011) and the largest estuarine 

system in Africa (155 000 Ha) and hosts the highest diversity of wetland habitat types for its 

size in the whole of southern Africa (Cowan, 1999). In November 2000 an extended area to 

the Ramsar site was declared as a World Heritage Site, according to the World Heritage 

Convention Act, Act 49 of 1999 (RSA, 1999). Management resorted to both the local 

KwaZulu-Natal Parks authority, Ezemvelo KwaZulu-Natal Wildlife (EKZNW) Management, 

as well as the iSimangaliso Wetland Park Authority. 

 

The most recent National Biodiversity Plan (NBP) of 2011 (Turpie et al., 2012) found that 

Lake St Lucia represents more than 50% of estuarine area of South Africa, yet is in a very 

poor condition regardless of being situated in a formal protected area. Historically the 

uMfolozi/uMsunduzi/St Lucia estuaries were interconnected, and with sufficient run-off from 

the catchment, the estuary mouth scoured open in a natural way (WRC report no. KV 255/10 
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(Bate et al., 2011)). Since 1920, much of the water which previously fed directly into the 

various lake compartments has been diverted for agriculture and other uses, thus affecting 

biophysical processes in the estuary (Bate et al., 2011). 

 

However, a review of studies on the above estuary (Bate et al., 2011), showed that research 

has focused mainly on hydrological assessments, sediment processes, faunal diversity as 

well as an economical assessment of the ecosystem services, with insufficient information 

on the estuarine vegetation. Nondoda et al. (2011) (in Bate et al. 2011) present vegetation 

distribution maps based on aerial photography of the uMfolozi swamp. However, information 

on the vegetation health/condition or the distribution of macrophyte species has not been 

derived from panchromatic aerial images. Recently the uMfolozi River was reconnected to 

the St Lucia estuary (Bate et al. 2011). This could have important repercussion on the 

estuarine physicochemical and biological processes. Therefore, more exhaustive baseline 

data is needed to monitor changes in the estuary. 

 

The development of Earth Observation (EO) approaches for mapping vegetation 

composition, distribution and condition in the uMfolozi/uMsunduzi/St Lucia estuaries is 

crucial to understanding spatio-temporal dynamics in estuarine processes following the 

reconnection of St Lucia to the uMfolozi, particularly in this large and mostly inaccessible 

region. Compared to traditional fieldwork methods, EO can offer regular spatially continuous 

“snap-shots” of large accessible and otherwise inaccessible areas. Regional mapping of 

biochemical and biophysical parameters of vegetation is possible, and with regular revisits 

over the area, provides a multi-temporal view of directed changes or phenological 

characteristics of the ecosystem. These advantages of EO make it a key tool for 

understanding the ecosystem at large, and provides a means to assess and monitor the 

impact of global change on estuarine systems. 

 

To date, only a few studies have explored the feasibility of applying EO techniques to the 

vegetation in the particular study area (Adam & Mutanga, 2009; Mafuratidze, 2010; Adam et 

al., 2012; Mutanga et al., 2012). These studies assessed a number of wetland vegetation 

types at canopy and image level scale to assess species separability and biomass. Further 

work is required at regional scale to provide spatio-temporal information of the study area. 

Therefore, this study aims at extending on EO data and methods for vegetation assessment, 

as basis for the understanding of estuarine processes in the region of the 

uMfolozi/uMsunduzi/St Lucia estuaries. 
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Figure 1.1: Location of the uMfolozi, uMzunduzi and St Lucia estuaries within 
tertiary catchments W32 and W23. 

 

1.2 Project Aims 

The following are the aims of the project: 

 

1. To spectrally discriminate and map estuarine tree and grass/reed species 

2. To accurately map estuarine habitat types, habitat heterogeneity and land 

use/land cover (LULC) types 

3. To assess the estuarine vegetation condition/health using new multispectral 

imagery such as RapidEye and WorldView-2  



5 
 
 
 
 

4. To explain the physiochemical processes underlying the composition and 

distribution of vegetation 

5. To ensure that the knowledge generated serves to inform sustainable 

management of the uMfolozi/uMsunduzi/St Lucia estuary by developing a data 

dissemination system based on a geoportal consisting of a data viewer for 

relevant stakeholders and conservation managers and to train key personnel in 

EO methods (ensuring uptake) and interpretation of results.  

 

1.3 Structure of the report 

 

The report is structured as follows: 
 

Chapter Description 
Relevant 

Aim 
1. Introduction and 
objectives 

The background, motivation and aims of the study are outlined in 
this section 
 

 

   
2. Spectral 
discrimination of six 
evergreen wetland 
tree species at leaf-
level scale 
 

This chapter investigates the utility of hyperspectral data across four 
seasons for discriminating six wetland tree species at the leaf scale.  
 

1 

3. Mapping 
estuarine habitat 
types 

This chapter evaluates the use of very high resolution multispectral 
satellite imagery and LiDAR for classifying estuarine 
habitat/vegetation types.  
 

 2 

   
4. Remote sensing 
models for 
predicting leaf 
nitrogen and 
phosphorus across 
four seasons for six 
subtropical forest 
evergreen tree 
species 
 

This chapter investigates the capability of hyperspectral models, 
developed from leaf spectra of selected spectral regions and 
seasons, to predict nutrient concentration across season and 
species. Foliar nutrients showed a variation across seasons. The 
results suggest that spectral measurements can be potentially be 
used to quantify nutrient phenology at regional scale and monitor the 
impacts of global change on nutrient phenology and photosynthesis. 
 

3 

5. Assessing the 
effects of Dukuduku 
forest fragmentation 
on leaf nitrogen 
distribution using 
remote sensing 
data 

This chapter explores the utility of new remote sensing tools to 
model the spatial distribution of leaf N in a forested landscape 
undergoing deforestation. Leaf N was mapped using models 
developed from a relatively new spaceborne sensor, RapidEye (5 m 
spatial resolution). A detailed land-cover map derived from another 
new spaceborne sensor, WorldView-2 (2 m resolution) was used to 
assess differences in leaf N between land-cover types. 

3 
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6. Physiochemical 
processes 
underlying the 
composition and 
distribution of 
vegetation 

This chapter investigated three objectives: (i) the present state and 
distribution of the macrophytes of the St. Lucia and uMfolozi 
estuaries; (ii) the present state / health of the mangroves at four sites 
along the Narrows by assessing sediment condition and population 
structure of the trees; and (iii) the feasibility of linking the uMfolozi 
River back to the St Lucia Estuary and the responses of these 
systems to different management scenarios. 
 

4 

7. Geoportal data 
dissemination 

Data produced through this project were compiled in a Web Map 
Services (WMS) viewer accessible through the CSIR’s geoportal. 
Data available include the vegetation and habitat types and species 
maps. 
 

5 

8. Conclusion Summarises the implication of the study.  

 

1.4 Participating organisations 

 

• Council for Scientific and Industrial Research (CSIR) 

• University of KwaZulu-Natal (UKZN) 

• Nelson Mandela Metropolitan University (NMMU) 

• Stellenbosch University (Cikizwa Mbolambi) 
 
1.5 Capacity Building 

 
A number of MSc and PhD students benefitted from this project (Table 1.1). 
 

Table 1.1: Students who benefitted from this WRC project. 

Surname First 
name

Gender Race Degree University Final year 

Davhula Azwifaneli Male African 
(Black)

Masters University of Kwa-Zulu 
Natal (UKZN)

2013/2015

Van 
Deventer 

Heidi Female White Doctorate
University of Kwa-Zulu 
Natal (UKZN) 

2013/2015

Rautenbach Kelly Female White Masters 
Nelson Mandela 
Metropolitan University 

2013/2014

Mbolambi Cikizwa Female African 
(black)

Masters Stellenbosch University 
(SU)

2014/2015
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2 SPECTRAL DISCRIMINATION OF SIX EVERGREEN WETLAND TREE 
SPECIES AT LEAF-LEVEL SCALE 

 

This chapter has been published as Van Deventer H, Cho M.A, Mutanga O. 2013, Do seasonal profiles of foliar 

pigments improve species discrimination of evergreen coastal tree species in KwaZulu-Natal, south Africa? In 

Conference proceedings of the 35th International Symposium on Remote Sensing of Environment, ISRSE, 

Beijing, China. Pp.1-12.  

 

2.1 Introduction 

 

The separability of six wetland tree species was assessed at leaf-level scale using 

biochemical and leaf reflectance measurements. First, we assessed whether foliar pigments 

(carotenoids and chlorophyll) and nutrients (nitrogen and phosphorous) for the six species 

were significantly different from one another using chemical laboratory analysis (Van 

Deventer et al. 2015a). If the foliar pigments and nutrients were to be significantly different, it 

was likely that absorption features related to these in the reflectance of the leaves could 

capture these differences and be optimised for species discrimination. Thereafter we 

investigated whether seasonal profiles of certain absorption features were unique to species 

and therefore enhance the separability of tree species using pigment profiles inferred from 

leaf spectra (Van Deventer et al. 2013; Van Deventer et al. 2015a). Important absorption 

features for species discrimination were determined through the selection of absorption 

features, which relate to plant properties, which showed a high coefficient of determination 

between leaf spectra and nutrients (Van Deventer et al. 2015a; Van Deventer et al. 2015c). 

These absorption features were effectively used to reduce the high dimensionality of the 

hyperspectral data for the tree species classification (Van Deventer et al. 2015b). Methods 

for transforming the data to remove the correlation between bands showed that the PLS-RF 

method was preferable above the PCA-RF method (Van Deventer et al. 2015b). The study 

further investigated which season achieved the highest accuracy to separate between tree 

species with no data reduction and transformation (Van Deventer et al. 2014). Lastly we 

investigated which are the most important spectral bands for separating tree species across 

seasons to improve the classification accuracies with data reduction, transformation and 

band selection, as well as whether combined seasonal information would improve the 

classification above a single season (Van Deventer et al. Submitted).  
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2.2 Study area 

 

The iSimangaliso Wetland Park is situated in a sub-tropical coastal region with mean annual 

precipitation ranging from 1000 to 1500 mm on the coast, to below 1000 mm inland 

(Middleton and Bailey 2008). In summer, temperatures range from 23-30°C and can 

decrease to about 10°C during the winter (Sokolic 2006). A section of the park has been 

assessed in this part of the study, located between Catalina Bay in the north and the 

Maphelane node in the south, and from east of the DukuDuku forest in the west up to the 

coast in the east. 

 

2.3 Methods 

 

Six evergreen wetland tree species from the subtropical coastal, swamp and mangrove 

forests in the iSimangaliso Wetland Park, South Africa, were sampled along the uMsunduzi, 

uMfolozi and St Lucia estuarine systems over four seasons (winter, spring, summer and 

autumn) between 2011 and 2012 (Table 2.1).  

 

Table 2.1: Number of tree species sampled across four seasons in the iSimangaliso Wetland 
Park, South Africa*. 

Tree species Common name 
Acro

nym 

Trees 

Winter 

(n = ) 

Trees 

Spring 

(n = ) 

Trees 

Summer 

(n = ) 

Trees 

Autumn 

(n = ) 

Total 

number 

of trees 

per 

species 

(n = ) 

Avicennia marina White mangrove AM 23 (21) 23 (21) 22 (21) 22 (21) 90 (84) 

Bruguiera 

gymnorrhiza 
Black mangrove BG 20 (19) 19 20 (19) 20 (19) 79 (76) 

Ficus sycamorus Sycamore fig FSYC 15 15 15 15 60 

Ficus trichopoda Swamp fig FT 12 (11) 11 11 11 45 (44) 

Hibiscus tiliaceus Lagoon hibiscus HT  31 (30) 31 (30) 30 30 
122 

(120) 
Syzygium cordatum Waterberry SC 17 17 17 17 68 (68) 

Total per season 118 
(113) 

116 
(113) 

115 
(113) 

115 
(113) 

464 
(452) 

* Species and number of trees were equalised for regression and classification purposes. 

 

Five leaves were sampled from the sun-exposed canopy of mature trees which are more 

than 2x2 m in size. Spectral measurements were taken from each leaf using an Analytical 

Spectral Device spectroradiometer (FieldSpec Pro FR, Analytical Spectral Device, Inc, 

USA.) according to the procedures previously published (Van Deventer et al. 2013; Van 
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Deventer et al. 2015c). The pigment concentrations of each leaf were determined using the 

Datt1998 index for carotenoids and Vogelman3 index for chlorophyll (Van Deventer et al. 

2013). The foliar concentration of nitrogen and phosphorus were extracted for each season 

(Van Deventer et al. 2015c).  

 

A One-way ANalysis Of VAriance (ANOVA), with a post-hoc Tukey Honest Significant 

Difference (HCD) multiple comparisons test, was undertaken to assess whether pigment 

concentrations differed significantly between seasons and species. The uniqueness of the 

mean seasonal pigment profile of species was assessed visually and with two similarity 

measures, including the Spectral Angle Mapper (SAM) and Sum of Euclidian Distances (ED). 

Thereafter we assessed whether seasonally-combined content of either carotenoids or 

chlorophyll improves the number of separable combination above a single season.  

 

The varying relationship between nutrients and reflectance data was assessed through a 

linear regression between nutrient concentration and an NDVI-based vegetation index (Van 

Deventer et al. 2015c). The maximum coefficient of determination (R²) for bands, which 

represent either the centre of known absorption features or established indices of plant 

properties, were compared between seasons to assess how the relationship changes and how 

the nutrients co-vary with other plant properties. The selected bands were then used for tree 

species classification, using a random forest (RF) classification algorithm, and comparing the 

accuracies of untransformed, as well as Principal Component Analysis (PCA) and Partial 

Least Square (PLS) transformations (Van Deventer et al. 2015b). RF was also used in 

assessing the season which achieved the highest classification accuracies using all the bands 

(Van Deventer et al. 2014), as well as for assessing the classification accuracies across 

seasons when using only selected bands (Van Deventer et al. Submitted). The importance of 

the selected bands was determined with RF for each of the seasons, with subsequent analysis 

of the accuracies of the band combinations according to importance rank (Van Deventer et al. 

Submitted). 

 

2.4 Results 

 

The concentrations of carotenoid and chlorophyll varied across the seasons for species (Van 

Deventer et al. 2013). While many species showed similarities of pigment profiles, 

exceptions were noted for some species. Bruguiera gymnorrhiza, for example, showed 

distinctly low levels of pigments compared to the other tree species (Figure 2.1). Visually, the 

mean seasonal profiles of the pigments for each species were unique (Figure 2.1), yet the 
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similarity measures attained accuracies < 52%. The combination of the pigment content of 

all four seasons, showed an improvement in species separability of between 27 and 29% 

compared to a single season (Van Deventer et al. 2013). Spring showed the highest 

percentage of separability for the concentration of pigments, whereas the combined seasons 

improved separability for carotenoids (Table 2.2). 

 
 

 (A)  (B) 

(C)  (D)  

Figure 2.1: Mean seasonal profiles per species over four seasons for (A) carotenoids, (B) 
chlorophyll, (C) nitrogen and (D) phosphorous. Abbreviations of tree species: AM = Avicennia 
marina; BG = Bruguiera gymnorrhiza; FSYC = Ficus sycamorus; FT = Ficus trichopoda; HT = 

Hibiscus tiliaceus; SC = Syzygium cordatum.  
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Table 2.2: Percentage of comparable pairs that are significantly different (p < 0.003 Bonferroni 
corrected for 15 comparable pairs) between the foliar chemical content of six tree species 

across the four and combined seasons. 

Season: Carotenoids Chlorophyll Nitrogen Phosphorous 
Winter 47 27 40 53 
Spring 67 67 73 20 

Summer 40 47 67 20 
Autumn 40 47 60 53 

Combined 73 67 73 60 

 

Foliar nutrient content also showed a high variability among the species, similar to the 

pigments. Similar to the pigments, the foliar nitrogen content showed the highest separability 

in the spring season and the highest separability of > 60% for the spring, summer and 

autumn seasons, compared to the foliar pigments and phosphorous content. The combined-

seasonal data improved the separability for the carotenoids and nutrients. Twenty-two bands 

were selected which represented pigments, nutrients, foliage biomass, leaf water content, 

starch, lignin, tannins, pectin, protein and cellulose plant properties (Van Deventer et al. 

2015c). Of all the seasons, winter showed the highest mean N content and lowest variability, 

whereas the other three seasons showed lower mean nitrogen values, and an increase in 

variability. In contrast, foliar P showed no significant differences between seasons (Van 

Deventer et al. 2015c). The relationship between foliar nutrient concentrations and N was 

lowest in the winter season, and highest for spring for many regions associated with co-

varying organic constituents (Van Deventer et al. 2015c). The highest R² for N was recorded 

in the shortwave infrared (SWIR) for the band combination 2130 and 2240 nm. Across the 

seasons, P showed very low R² values, with the highest value recorded in autumn (R2 = 

0.38, p < 0.01) (Van Deventer et al. 2015c). 

 

The classification of tree species using only the 22 bands (untransformed) at leaf level in 

spring resulted in an accuracy of 84%, a mere 2% less than the accuracy attained by 421 

hyperspectral bands (Van Deventer et al. 2015b). The optimisation of the data through 

transformation and component reduction, showed the PLS-RF to outperform the PCA-RF 

model for both the overall and individual accuracies of the tree species (Van Deventer et al. 

2015b). 

 

Using all bands with no data reduction or transformation, the spring season was found to be 

the best season amongst the four to use for species discrimination (Van Deventer et al. 

Submitted). The highest overall accuracy was attained for spring, and the lowest for winter 

(Van Deventer et al. Submitted). The overall accuracy increased when the combined 

seasons were used.  
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The twenty-two bands relating to plant properties and used effectively for data reduction, 

showed variation in importance for species classification (Van Deventer et al. Submitted). A 

number of Shortwave Infrared region (SWIR) bands showed scaled conditional variable 

importance values of > 50% for all four individual seasons, including 2240, 2250 and 2300 

nm, which are associated with absorption features relating to protein, starch and nitrogen. 

Bands associated with foliage biomass (740, 780 nm) and leaf water content (860 nm) 

achieved > 40% importance values in the winter and autumn seasons, though were ranked  

< 35% for the spring and summer seasons, with the exception of 740 nm in the spring 

season (near 70%). The bands associated with pigments (510, 680 nm) and leaf water 

content (1240 nm), lignin, tannins, pectin and protein (1630, 1690 nm) contributed the least 

(< 20%) to the classification. The band with the lowest importance value across all four 

seasons, was 1900 nm, related starch. In the combined seasons data, the foliage biomass 

band (740 nm) and leaf water content band (860 nm) also had importance values > 50% in 

addition to the three SWIR bands 2230, 2250 and 2300 nm, found important in the four 

individual seasons. For the combined seasons data, the pigment bands 510 and 680 nm 

increased in importance rank from < 20% for the individual seasons to > 50%. In all seasons 

the band 1900 nm, associated with starch, ranked the lowest in importance. 

 

Using the 22 selected bands for data reduction and transforming the data to remove 

correlation using the PLS-RF algorithm, the overall accuracy (OA) showed variation across 

seasons from spring with the highest OA (90±0.6%) to winter with the lowest OA (83±0.9%) 

(Van Deventer et al. Submitted). The combined season showed a significant (p < 0.005, 

Bonferroni corrected) increase in the OA compared to the winter (increase of 9%) and 

summer (increase of 6%) seasons (Van Deventer et al. Submitted). No significant difference 

was noted between the OA of the combined season when compared to the spring and 

autumn seasons (< 2.7% difference). The OA of the spring and autumn seasons were also 

significantly (p < 0.005, Bonferroni corrected) higher to the winter and summer seasons 

respectively 8%, 6%, 5% and 4% (Van Deventer et al. Submitted). 

 

2.5 Discussion 

 

The six wetland tree species showed a high separability at foliar chemical level for nitrogen 

content across the spring, summer and autumn seasons (≥60% of the comparable pairs 

were separable). The tree species were separable for the pigments carotenoids and 

chlorophyll only during the spring season (67% of the comparable pairs were separable) 

however not in the other three seasons. Foliar phosphorus showed the lowest capability of 
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separating between the species across the four seasons. Secondly, the pigment content 

indicated that the spring season is the best season for separating between the six tree 

species (≥67% comparable pairs were separable), whereas a low separability was noted for 

leaf pigments in the winter, summer and autumn (< 47% of the comparable pairs were 

separable). Thirdly, tree species were more separable using the combination of the 

carotenoid and phosphorus content of the four seasons. The combination of seasonal 

biochemical content of chlorophyll and nitrogen resulted in similar number of separable 

comparable pairs achieved in the spring season. The biochemical results raised the 

expectation that absorption features which relate to these leaf chemicals will therefore be 

useful in the classification of tree species, mostly using nitrogen and to a lesser degree the 

foliar pigments (carotenoids and chlorophyll). Furthermore, the results also indicate that the 

spring season may be optimal for species discrimination and that combined seasonal 

information may improve species discrimination. 

 

The study furthermore demonstrated that a changing relationship exists between leaf 

spectra and leaf nutrients across seasons and spectral regions. The co-variants of leaf 

nitrogen, chlorophyll and foliage biomass, did however not co-vary in spring and autumn. 

These results raised the question whether absorption bands of nitrogen would be more 

successful in separating between the six tree species during spring and autumn. 

 

The leaf-level reflectance data resulted in an overall classification accuracy of > 83±0.9% 

across the individual and the combined seasons (Van Deventer et al. Submitted). Spectral 

bands from the SWIR region, relating to protein, starch and nitrogen contributed most to the 

separability of the tree species in a decision-tree classifier, whereas the other biochemical 

and biophysical parameters, such as pigments, foliage biomass and leaf water content 

varied in importance across the seasons. Similar to the results at leaf chemical level, the 

spring season showed the highest overall accuracy (90%±0.6) of all four individual seasons, 

and the combined seasonal information improved the classification accuracy (92±1.3) 

significantly compared to the winter and summer seasons. 

 

Our results therefore suggest that tree species may be more separable when many plant 

properties, other than pigments, are considered. Both the foliar chemical data and 

classification of reflectance data indicated that nitrogen, lignin, protein, starch, cellulose, 

waxes, pectin, tannins, foliage biomass and leaf water content may contribute more to the 

separability of tree species compared to carotenoids or chlorophyll only. Many other studies 
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also suggested that the SWIR region, which relate to leaf structural components, has value 

in tree species classification (Van Deventer et al. 2015a). 

 

The combination of data across phenological phases may capture unique phenological or 

growth patterns of species. Our study was however limited in spatial and temporal extent, 

the climatic region represented as well as in the number of species sampled. Further work is 

therefore required to assess whether these findings are relevant at image level, for other 

species and other regions. 
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3 MAPPING ESTUARINE HABITAT TYPES  

 

M. Lück-Vogel, C. Mbolambi, K. Rautenbach, J. Adams, L. van Niekerk .  

 

3.1 Introduction 

 

The St. Lucia estuary is part of the uMfolozi/uMsunduzi/St Lucia estuarine system which 

forms the largest fluvial coastal plain in South Africa (Van Heerden, 2011) and the largest 

estuarine system in Africa (155 000 Ha). As part of the iSimangaliso Wetland Park it hosts 

the highest biodiversity of wetland habitat types for its size in the whole of southern Africa 

(Cowan, 1999).  However, the paucity of spatial-temporal information on estuarine 

vegetation composition and distribution in South Africa currently undermines a holistic 

understanding of estuarine processes and functioning and subsequently the prediction of 

impacts of major environmental changes. Mapping of the estuarine vegetation would provide 

a baseline for understanding and monitoring of estuarine biological processes.  

 

Remote sensing is widely viewed as an effective way to spatially-continuously undertake 

inventories of vegetation composition, distribution and condition, particularly in large and 

inaccessible regions in many regions of the world. However, in coastal and estuarine 

environments, the very small scale of the habitats, frequently in form of narrow bands along 

the shore, prohibited the application of remote sensing until recently, as most of the 

“conventional” satellite images successfully used in other environments did not provide 

enough spatial detail. Examples are the Landsat 4 to 8 series and the MODIS and NOAA 

AVHRR sensors. Only with the recent upcoming of very high resolution (VHR) imagery e.g. 

from the SPOT-6, RapidEye and Worldview-2 sensors which provide multispectral imagery 

with pixel sizes between 2 and 6 meters, remote sensing of coastal regions has become 

more feasible. In addition, topographic information derived from airborne LiDAR (Light 

Detection and Ranging) technology has proven to improve coastal vegetation mapping 

significantly, in particular when used in combination with multispectral imagery. 

 

The aim of this work was therefore to test and compare the use of VHR SPOT-6, RapidEye 

and WorldView-2 (WV2) satellite imagery with and without combination of LiDAR data for 

mapping relevant vegetation types in the St. Lucia estuary. 

 

In order to add value to real-world estuarine management conditions, the classes to be 

mapped were aligned with existing habitat keys (e.g. from the National Biodiversity 

Assessment, 2012). The intention was to provide guidance on which sensor or sensor 
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combination provides the most accurate spatial information for informing mapping and 

estuarine management, including those areas not under formal protection. The methods, 

results and challenges are presented below. 

 

3.2 Study area 

 

The St. Lucia system is divided into False Bay, North Lake, South Lake and the Narrows. 

Five rivers drain into the system, in order from north to south, the uMkuze, Mzinene, 

Hluhluwe, Nyalzi and Mpate Rivers. In the south the estuary mouth is connected to the 

Indian Ocean by the 21 km long Narrows channel. The lake system is separated from the 

sea by high coastal dunes that flank its eastern bank (Taylor, 2006). The focus of this project 

component however was on the estuarine areas below the 10 metre contour. 

 

The predominant natural estuarine vegetation in the region can be divided into 8 habitat 

units, namely permanently flooded macroalgae and submerged macrophytes, partly flooded 

reeds and sedges and salt marshes, mangroves and swamp forests, and grass and shrub 

vegetation, and lastly floating macrophytes. Table 3.1 below summarises the dominant 

species and gives a brief description of these habitat types. 
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Table 3. 1: Habitat units and their dominant species (Rautenbach, 2015). 

 
Habitat Unit Dominant Species Description 
Macroalgae Ulva intestinalis, Chaetomorpha 

sp., Cladophora sp., Bostrychia 
sp. and Polysiphonia sp. 

Found at estuary margins, as epiphytes and 
associated with mangrove pneumatophores 

Submerged 
macrophytes 

Ruppia cirrhosa, Zostera capensis 
and Stuckenia pectinata 

Plants rooted in substrata whose leaves and 
stems are completely submersed. Found 
predominantly in the Narrows  

Reeds and 
sedges 

Phragmites australis, Juncus 
kraussii and Schoenoplectus 
scirpoides 

Observed at sites with freshwater input at the 
margins, rooted in submerged substrata. 
Juncus kraussii is observed at the vicinity of 
the Forks and the Narrows. 

Mangroves Avicennia marina and Bruguiera 
gymnorrhiza 

Observed in the brackish to saline intertidal 
areas at the Narrows and mouth area 

Grass and 
shrubs 

Sporobolus virginicus, Paspalum 
vaginatum and Stenotaphrum 
secundatum 

Sedge grass and shore slope lawn, observed 
in areas where there is no freshwater input, 
freshwater is provided by rainfall 

Salt marsh Sarcocornia sp., Salicornia 
meyeriana and Atriplex patula 

Succulent species colonize exposed saline 
soils in False Bay and in the mudflats of North 
Lake and are not tolerant to long periods of 
inundation 

Swamp forest Ficus trichopoda, Barringtonia 
racemosa and Voacanga sp. 

Observed on the banks of uMfolozi Estuary, in 
the vicinity of the back channel and Narrows 
and along the Eastern Shores under 
freshwater conditions. 

Floating 
macrophytes  
(not used in this 
study) 

Nymphaea nouchal, Azolla 
filiculoides 

Floating leaved species are commonly 
associated with submerged and deepwater 
aquatics and occur at water depths from 0.5 
to 2m  

 
 

Land use in the vicinity of the estuarine system is diverse. It includes commercial 

(sugarcane) crop production, subsistence agriculture, mining, tourism, commercial and 

subsistence forestry, conservation as well as residential areas. While each of these activities 

benefits from the ecosystem services of the estuarine systems, they also impact on the 

condition in a cumulative way.  

 

The land use in the area changed dramatically during the last 2 decades. Before the 

establishment of the Wetland Park, large areas have been used for commercial forestry, 

introducing alien Eucalypt and Pine species. Since the creation of the Wetland Park, forestry 

is receding, and international eco-tourism is becoming more important. On the abandoned 

forestry units, a quick succession of natural vegetation can be observed. Furthermore, an 

expansion of rural settlements into the area due to a massive population increase 

(immigration from Mozambique and other areas), puts another pressure on natural 

environments. 
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3.3 Input data 

 

3.3.1. Reference habitat map 

As reference map for this study an existing GIS map based on aerial imagery from 2008 was 

used. The map delineates habitats below the 5m contour. This map was originally generated 

by Nondoda (2012). A modified version of this map as presented by Rautenbach (2015) has 

been used for this study which aggregates some of Nondoda’s original classes. Accuracy 

and spatial detail was considered suitable for our purpose. The habitat classes derived from 

this data set are summarised in Table 3.2: 

 

Table 3.2: Estuarine habitat types used by Rautenbach (2015). 

 Submerged Macrophytes 

 Salt Marsh 
 Reeds 
 Swamp Forest 
 Grass and Shrubs 
 Groundwater-fed 

communities 
 Juncus 
 Mangroves 

 

These classes are largely the same as in Table 3.2 above, with the only difference that the 

class “Reeds and sedges” in Table 3.2 here is subdivided into the individual classes Reeds, 

Groundwater-fed communities and Juncus. 

 

Figure 3.1 below shows a subset of Rautenbach’s classification for the area around St Lucia 

town. Note however that some of the classes, e.g. submerged macrophytes, did not occur in 

the displayed region. 
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Figure 3. 1: Subset of 2008 habitat classification map (Rautenbach 2015). Colours correspond 
to classes as in Table 3.2. Grey-scale background: RapidEye band 4 (red edge). 

3.3.2. LiDAR data 

In 2013, the company AAM developed for the iSimangaliso Wetland Park’s GEF project 

“Development, Empowerment and Conservation in the iSimangaliso Wetland Park and 

Surrounding Region Project” a Digital Terrain Model (DTM)1 covering the iSimangaliso 

Wetland Park area. The data consist of high accuracy (1 Sigma) point data of LiDAR derived 

surface information, which has been provided in xyz ASCII format as well as in 0.25 m 

contours in SHP file format. The ASCII format contains very detailed surface information. 

However, files tend to be huge, and require special software to access. In contrast, the SHP 

format is a format that most GIS practitioners can readily use, however, the generalisation of 

the information to derive 25 cm contours means a loss of detail. In order to assess the 

impact of this loss of detail on the habitat classification accuracy, in this project, we used 

both the SHP file contour product and the raw, unthinned xyz point cloud data binned to 1 

meter.  

 

3.3.3. Satellite imagery 

For this project, a series of high resolution data was acquired from the respective 

commercial satellite data providers. Table 3.3 below gives an overview of the respective 

                                                 
1 A digital surface model represents the highest elevation at a point, including also tree canopies and buildings. 
In contrast, digital terrain models represent only soil surface elevation. 
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sensors, the spatial resolution, the available spectral bands and the respective acquisition 

dates.  

 

While the listed SPOT-6 and RapidEye images are covering about the entire area which has 

been mapped by Rautenbach (2015), the available WorldView-2 imagery unfortunately only 

covers the southern part of that area, as the purchase of the more images would have 

exceeded the project budget (Figure 3.2). 

 

Table 3.3: Satellite data used and their specifications 

 

Sensor Resolution (m) Spectral bands Acquisition Date 

WorldView-2 2.0 
8: Coastal, B, G, Y, R, 
RedEdge, NIR1, NIR2 

9 Apr. 2010 

RapidEye 5.0 
5: B, G, R,  
RedEdge, NIR 

18/20 July 2011  

13 Jan. 2012 

SPOT6 5.0* 4: B, G, R, NIR 8 Feb. 2014 

LiDAR 
Rasterised to match 

above 
“1” ca. July/Aug. 2013 

 
3.3.4. Areas used for classification approach 

For the supervised classification approach, not the full coverage of available images was 

used, but only subsets of the total satellite coverage which corresponded largely with the 

extent of the Wetland Park and Rautenbach’s habitat map. In this way, land cover and 

habitat classes were largely excluded for which no reference data were available and whose 

accuracy could not have been assessed (e.g. any agriculture and other transformed areas). 

Included in the accuracy assessment however, were only areas below the 5 metre contour 

(the Estuary Functional Zone as required for the development of Estuary Management Plans 

and Estuary Water Requirement studies). 

 

Figure 3.2 shows the full spatial extent of Rautenbach’s map. The available RapidEye and 

SPOT-6 data cover about the full extent of Rautenbach’s area (the coloured patches), while 

for WorldView-2, only for the southern part of Rautenbach’s data imagery was available. 



26 
 
 
 

 
Figure 3. 2: Outline of Study area. Discontinuous colour patches: 2008 habitat reference map 
(Rautenbach, 2015) and the outline of the high resolution image areas (subsets) assessed in 

this project. Grey-scale background: NIR band of RapidEye 2011 image. 

 

3.4 Methods 

 

3.4.1. Data pre-processing 

The final goal of comparing habitat classifications derived from different combinations of 

input data has been achieved following several pre-processing, data conversion and data 

generation steps. The individual pre-processing, classification and post-processing steps are 

unpacked in the following sections. 
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As a first step, all 15 satellite image files were corrected for radiometric and atmospheric 

effects using ATCOR-2 software, version 8.3.1, implemented in IDL (Richter & Schläpfer, 

2014). This correction allowed for better analysis of the spectral signatures in the actual 

classification approach as described below.  

 

The RapidEye image for July 2011 was provided as seven individual tiles from two separate 

acquisition dates (18 and 20 July 2011), the RapidEye image for 13 January 2012 as six 

individual tiles. The mosaicking of the individual RapidEye tiles allows for an easier handling 

of the data in the following work steps (two images instead of 13, plus one SPOT-6 and one 

WorldView-2 image). 

 

Some of the satellite images originally came in UTM projection with WGS84 Datum, while 

others were provided in Transverse Mercator projection. It was decided to reproject all 

images to the projection of the 2008 reference data: Transvers Mercator, Meridian 33, 

Hartebeesthoek 1994 Datum, Scale factor 1.0. In this way, the best possible geographical 

match was achieved. It is important that the images to be classified overlay with high 

geographic accuracy to the reference data, as spatial misalignments can easily lead to 

misclassifications and reduced accuracies (Townshend et al., 1992).   

 

The LiDAR data for that area were provided in individual small tiles as well. Therefore, in a 

first step, those tiles were identified which cover the SPOT-6, RapidEye and WV-2 mosaics. 

For those, both, the 25cm contour SHP files as well as the unthinned xyz ASCII files binned 

to 1m resolution were converted into a raster format matching the spatial resolution of the 

respective multispectral images (2m, 5m resp.). The individual raster tiles were then 

mosaicked and reprojected to match the projection of the multispectral mosaics. Figure 5.3 

below illustrates the differences in details in the 1m, 2m and 5m rasters derived from the 

unthinned ASCII point cloud, the 25 cm contours and unthinned point clouds respectively. 
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Figure 3. 3: differences in details in the 1m, 2m and 5m rasters derived from the 

unthinned ASCII point cloud, the 25 cm contours and unthinned ASCII point clouds 
respectively (from left to right). Displayed is a 28 metre high coastal dune with its 

landward slope south of the St Lucia estuary. 

 

The data format was then changed from the original float range to unsigned 16bit. This was 

done to enable the stacking of the LiDAR data with the unsigned 16 bit format of the 

multispectral data. During this step, the value range of the LiDAR data has also been 

“stretched” to better match the value range of the multispectral bands.  

 

In a final pre-processing step, the multispectral mosaics were then combined with the 

respective re-scaled LiDAR data. The bands of the resulting data stacks are illustrated in 

Table 3.4 below. 

Table 3. 4: Bands of the respective layer stacks used 
for the supervised classification process. 

Band No WV-2 RapidEye 
2011/12 

SPOT-6 

1 Coastal Blue Blue 

2 Blue Green Green 

3 Green Red Red 

4 Yellow RedEdge NIR 

5 Red NIR LIDAR 

6 RedEdge LIDAR  

7 NIR1   

8 NIR2   

9 LIDAR   
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Altogether 8 (4x2) data stacks were produced as input for the classification process: 

1. the multispectral bands plus the “degraded” 25cm contour-based LiDAR information 

2. the multispectral bands plus the original xyz data based LiDAR information. 

 

3.4.2. Generation of ground reference data 

The training and validation data were extracted from the 2008 reference map (section 3.3), 

consisting of 8 habitat classes:  

- Grass and shrubs 

- Ground water fed communities 

- Juncus (sedge) 

- Reeds 

- Salt marsh 

- Submerged macrophytes 

- Swamp forest 

- Mangroves 

 

Stratified random points were extracted for all 8 classes. It was aimed to create a minimum 

of 20 points per class. This approach was run twice, first for the whole extent of the 

reference map (and covered by the RapidEye and SPOT-6 images) and secondly only for 

the southern part which was covered by the WV-2 image, in order to create a sufficient 

number of points for that smaller area, too. The resulting points were then evenly split and 

the one half saved for use as training points for the classification process and the other half 

for use in the validation of the classification results. 

 

For all resulting points it was visually verified if any of them was in an area impacted by 

clouds or cloud shadows in any of the 4 images. Impacted points were deleted to avoid 

biases in the classification and validation approach. This approach circumvents the 

approach of masking out cloud-infested areas in the satellite images. 

 

Further, it was decided to create additional random points for the land cover classes open 

water and bare soil, as we believed that these classes are 1. highly important in an estuarine 

and coastal context and 2. as the inclusion of training points for these classes would improve 

the overall accuracy of the supervised maximum likelihood classification in narrowing the 

actual feature space for all classes.  
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For the identification of open water and bare soil area, the normalised Difference Vegetation 

Index (NDVI) was calculated for all four images, following the formula NDVI = (NIR- Red) / 

(NIR + Red). The value range for NDVI data is from -1 to +1. It is generally accepted that 

NDVI values for open water are lower than 0, and values for bare soil are in the positive 

range, just above 0, if images are derived from radiometrically corrected images, as in our 

case. 

 

Visual inspection of the actual NDVI data confirmed this rule, only for the RapidEye-derived 

NDVI data the threshold between water and bare soil had to be slightly modified for a proper 

distinction between the two classes.  

 

Table 3.5 below shows the value ranges that were used in the next step, the generation of 

binary masks for water and bare soil respectively, using the ERDAS Spatial Modeller. 

 

Table 3. 5: Value ranges used for stratification of NDVI data for 
the classes water and bare soil. 

Land cover 
type 

NDVI range 
WV-2 

NDVI range 
SPOT-6 

NDVI range 
RapidEye 

Water < 0 < 0 < 0.1 
Bare soil 0-< 0.4 0-< 0.4 0.1-< 0.4 

 

The threshold of 0.4 for delineating bare soil from vegetation has been defined visually from 

the image, using fallow fields, roads and the beach as reference. Strictly spoken though, our 

class “Bare Soil” is likely to include some sparse vegetation, too.  

 

From the derived binary masks, 50 random points per class were extracted, split into two 

subsets and added to the respective training and validation point SHP files generated for the 

habitat data. Points impacted by clouds and cloud shadows were removed for these classes 

as well. For the resulting 10 habitat classes (2008 habitats plus water and bare soil), 

between 170 (WV-2) and 295 (RapidEye) training and validation points respectively were 

used. The variation in point numbers is related to the amount of points which had to be 

deleted due to cloud and cloud shadow impact. 

 

3.4.3. Maximum Likelihood classification 

For all four images spectral training signatures were created for all respective training points 

for all eight respective layer stacks (MS plus 25cm contour-derived DSM, and MS plus xyz-

derived DSM). The resulting spectral signatures were cleaned from obvious spectral outliers 

that would have contributed to biased spectral statistics in the following classification 
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process. Outliers were caused mainly by changes in land cover in the time between the 

reference data (2008) and the actual image acquisition date, such as forest plantation to 

grass and shrubs, or grass and shrubs to swamp forest. Where the analysis of the spectral 

signatures revealed that there are spectral subgroupings within one of the reference classes, 

these subclasses were treated as individual classes during the classification process. As an 

example, the class “Grasses and Shrubs” consisted of areas which were clearly dominated 

by shrubs, while other areas were dominated by grasses, resulting in more tree or grass 

dominated spectral signatures. Here subclasses “Grass and shrubs-woody” and Grass and 

shrubs-grassy” were created. Or some of the reeds were obviously flooded during the image 

acquisition date and looked spectrally different from non-flooded reeds. Keeping these 

spectrally different subgroups of a class separate in the actual classification process has 

shown to produce higher classification accuracies. 

 

The classification process was then run on both LiDAR-version stacks for each image, first 

including all spectral bands per image stack, i.e. including the LIDAR band, and then 

excluding the LiDAR band. For all classifications, Feature Space was selected as non-

parametric rule and Maximum Likelihood as parametric rule in ERDAS’ Supervised 

classification tool.  

 

3.4.4. Post-Processing 

Given the high spatial resolution of the satellite images, the eight classification results looked 

very “noisy”. This means that the vegetation types were disrupted by single classes or 

groups of pixels of another class, mainly as a result of shadow effects in the vegetation 

canopy. It was therefore decided to filter the classification outputs to eliminate those miss-

classified single pixels or small pixel groups consisting of < 8 pixels (Figure 3.4). 

 

Further, where existing, the interim subclasses (e.g. Juncus-flooded and Juncus-non-

flooded) were merged again to the original class types. This had to be done to have the 

same level of class detail as Rautenbach’s habitat map for accuracy assessment purposes. 

 

As the accuracy assessment showed frequent confusion between the classes Juncus and 

Reeds (section 3.4.5), both classes in the classification results of the four stacks including 

the xyz-LiDAR DSM were merged into one new class “Juncus and Reeds”. In order to allow 

for accuracy assessment, these classes were also merged in the ground validation points. 
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Figure 3. 4: Illustration of filtering effects.  
Top: Multispectral WV-2 image for the estuary mouth.  
Centre: raw classification output with lot of “noise”.  

Bottom: classification results for same area, after filtering process. 
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3.4.5. Accuracy Assessment 

Using ERDAS’s Classification accuracy assessment tool, error matrices including the Overall 

Accuracy, the User’s and Producer’s Accuracy, the Errors of commission and omission for 

each class as well as the Kappa coefficient were produced and analysed, based on the 

accuracy analyses with the validation points.  

 
3.5 Results & Discussion 

 

Table 3.6 below gives an overview of the Overall Accuracies and Kappa values for all 20 

classification runs.  

 
Table 3. 6: Overview of accuracies of all classifications 

 

 
3.5.1. Impact of LiDAR DSMs on classification accuracies 

Table 3.6 shows the overall accuracies and kappa values for all 20 classification runs. 

Generally overall accuracies above 70% are considered satisfactory. The Kappa value is 

another frequently used accuracy indicator. It indicates to which probability the derived 

classification is different from a random classification. This means that a kappa of 0.5 

indicates that with 50% probability this class is different from a random classification. 

Compensating for differences in sizes of validation sample numbers, kappas are frequently 

lower than producer’s, user’s and overall accuracies.  

 

Table 3.6 shows that in 5 out of the 8 classifications the additional use of the LiDAR derived 

DSM information improved the classification accuracies (rows 1 to 4 in Table 3.6). In the 

case of the second run of the WorldView-2 image, while causing differences in individual 

class accuracies, the LiDAR did not change the overall accuracy (rows 3 and 4). The LiDAR 

deteriorated the classification results for the first run of the SPOT-6 image (rows 1-2) and the 

second run of the 2012 RapidEye image (rows 3-4).  
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The overall accuracies and kappas for the purely multispectral based classifications of the 

first and second run are about the same for the RapidEye and SPOT-6 images, which was to 

be expected (rows 1 and 3). However there is a significant improvement in the second run of 

the WorldView-2 image (row 3). This might be caused by a slightly better selection of training 

signatures in otherwise identical classification sets. 

 

Accuracies for three of the four classifications including the detailed LiDAR information in the 

second run (row 4) are higher than the respective accuracies for the contour-derived LiDAR 

stacks (row 2). This indicates that the use of more detailed surface data improves vegetation 

classification accuracies. 

 

3.5.2. Classification anomalies between Juncus, Reeds and Grass and Shrubs 

Table 3.7 shows the error matrix for the second run classification result of the WorldView-2 

classification (row 4 in Table 3.7) including the detailed xyz-derived LiDAR data. This matrix 

below shows how many of the reference samples have been classified correctly. For 

example, of the 21 validation points for the class Reeds, 6 points have been classified 

correctly, 9 have been classified as Grass and Shrubs and 6 as Juncus. Altogether, 11 

points have been classified as Reeds (Row total), 6 of which are in fact Reeds, but for the 11 

should have been classified as Juncus and 1 as Grass and Shrubs. The last columns give 

the respective Producer’s and User’s Accuracy and Kappa value per class.  

 

Table 3. 7: Error matrix for the WorldView-2 classification on the stack including the xyz-
derived LiDAR information. Strikingly bad accuracies highlighted in red. 
 

 
 
 

Table 3.7 shows that the accuracies for 4 of the 7 classes with Kappas > 0.7 are quite good, 

including the classes bare soil and water, which, because of their spectral distinctness from 

any vegetation classes, in most land cover classifications yield very high accuracies. 

However, the classes Grass and Shrubs, Juncus and Reeds got confused with each other to 
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a great extent, leading to Kappas as low as 0.26 and Accuracies as low as 28.6% (red 

values in Table 3.13). The analysis of the other 7 classifications of the first and second runs 

shows the same confusion between these three classes.  

 

The reasons for this low representation could not establish with a high degree of certainty 

during this study but could be contributed to the following: 

1. True vegetation change: the estuary experienced significant water level and salinity 

changes during the observation period. This might have led to true vegetation 

changes if compared to the situation in the reference data in 2008. This would mean 

that the WV-2 image from 2010 should be the least affected by this aspect, given the 

greatest temporal “proximity” to the 2008 reference data, and the SPOT-6 image 

from 2014 being the worst. This gradient in accuracy could not be observed though, 

as the effect of some obvious changes have been eliminated during the selection of 

training and reference data (exclusion of points where obvious changes were visible 

in the images, see section 3.4.2). High dynamics in the estuarine vegetation have 

also been reported by Rautenbach (2015) for the period 2008-2013.  

2. Spectral similarity between the classes: The more grassy areas of the class Grass 

and Shrubs might have been misclassified with the non-woody sedges and reeds. 

And reeds might have been confused with sedges. 

3. Small scale vegetation mosaic: in case that the vegetation on the ground appears in 

form of a mosaic of small patches of different vegetation types and that this 

patchiness had been “generalised” in the 2008 reference map, this might misdirect 

the classification in that either the classifier picked variations up correctly but the 

generalised reference data wrongly negated it, or in the form of spectral mixed pixels, 

which are “blurry” and do not pick up boundaries between patches correctly. 

4. Different water levels: All three vegetation types are bound to sites which are low 

lying and prone to (and dependent on) various levels of flooding. So even if the 

vegetation itself did not change between the image and the reference date, various 

levels of flooding, spatially and temporally, might have biased the spectral signatures 

and lead to confusion between these classes. 

5. Accuracy of the reference data: Unfortunately the confidence/resolution of the 

reference vegetation map over the entire study area could not be established. 

Nondoda (2012) however mentioned some problems with the 2008 aerial images due 

to smoke plumes for the northern Lake area. It can therefore not be excluded, that 

those three classes have been confused in the original data by Nondoda (2012). 
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However, for the purpose of estuarine environmental management and reporting, in South 

Africa a distinction is not always made between the classes Juncus (or sedges) and Reeds 

(NBA: Turpie et al., 2012, Van Niekerk and Turpie, 2012). Therefore we found it legitimate to 

merge these two classes in an additional post processing step (section 3.4.4) and validated 

these classifications as well. This aggregation has been done in the final version of 

Rautenbach (2015) as well. As the results in row 5 in Table 3.7 show, this step improved all 

classification results significantly, apart from the 2012 RapidEye result, where the 

improvement was incremental. This leads to the conclusion, that in those cases where the 

merging of the two classes did not significantly improve the overall classification accuracies, 

these were not the (only) problematic classes and that the reasons for the low accuracy 

have to be sought elsewhere. 

 

3.5.3. Analysis of accuracies of other classes 

Out of all classes over all 20 classifications, the classes Submerged macrophytes and 

Swamp forest were the only classes with consistently high accuracies. While in the case of 

Swamp forest, being spectrally very distinct from all other classes, this result is not 

surprising, is it unexpected for Submerged macrophytes. The reasons for this result will have 

to be further investigated. Further, the classes Bare soil and Open water have been 

delineated largely accurately – as expected, apart from the RapidEye classifications, which 

are analysed in more detail in the following sections. 

 

As discussed above, accuracies for Grass and Shrubs were consistently low, the same as 

for Groundwater fed communities. The latter is a summary class for various different classes 

(i.e.  it includes a range of plant/habitat types that are ground-water dependant). This habitat 

type can also be patchy in nature. Therefore, the botanical and spectral heterogeneity of this 

class, as well as different water/flood levels, could be a reason for the misclassifications. 

 

Accuracies of the remaining classes, Salt marsh, Reeds, Juncus, Mangroves, Juncus & 

Reeds either provided consistently moderately satisfactory results or varied between very 

high and very low accuracies between the individual runs. 

 

3.5.4. Comparison of accuracies between sensors 

Generally, WorldView-2 produced the best accuracies and SPOT-6 the second best results, 

while all the RapidEye classifications produced strikingly low accuracies (Table 3.7) with 

overall accuracies between 50.0 and 64.6% and Kappas as low as 0.44 to 0.60. The good 
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WV-2 performance is as expected, given the greatest temporal “proximity” to the 2008 

reference data.  

 

Surprisingly, the 2014 SPOT-6, being the furthest away from the 2008 reference data and 

only having only 4 spectral bands and a pixel size of 5 meters, yielded the second highest 

accuracies. This is unexpected, as misclassification due to habitat change during the 6 years 

between reference data and image acquisition might have been expected to lead to 

misclassification. This again points out the merit of the visual filtering for temporal effects 

during the generation of the reference points (section 3.4.2).  

 

It might be premature though to conclude that WorldView-2 with its highest spectral and 

spatial resolution (8 bands, 2m pixel size) is the most appropriate sensor for estuarine 

habitat classification, as, given to the smaller extent of the available image, the total number 

of classes was lower than in the other images with Submerged macrophytes, Salt marsh and 

Groundwater fed not occurring in that area. A lower number of classes usually increase 

classification accuracies.  

 

RapidEye however, with 5 spectral bands and also 5 meter pixel size produced 

unsatisfactory results for many classes for both images.  The reasons for the bad RapidEye 

performance are analysed further in the following section. 

 
3.5.5. Analysis of RapidEye results using environmental data 

Table 3.8 shows the error matrix of for the 2011 RapidEye classification on the stack 

including the xyz-derived LiDAR information as a typical example for the RapidEye results. 

Strikingly bad accuracies are highlighted in red. 
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Table 3. 8: Error matrix for the 2011 RapidEye classification on the stack including the xyz-
derived LiDAR information. Juncus and Reeds merged into one class. Strikingly bad 

accuracies highlighted in red. 

 

 
 
 

The merged class Juncus & Reeds produces better accuracies than the individual classes, 

but – as expected – still gets confused with Grass and Shrubs. However, in this image, 

Grass and Shrubs also got confused with Bare soil. It has to be remembered though, that 

the Bare Soil mask was produced using an NDVI threshold of 0.4, which is likely to include 

sparsely vegetated areas as well (compare section 3.4.2). It is therefore possible that some 

open Grass and Shrub areas, maybe areas recovering after vegetation die-back/removal 

wrongly fell into the bare soil class. Further, probably the more woody fraction of the Grass 

and Shrubs class got confused to a greater extent with the other two woody classes Swamp 

forest and Mangroves. Apparently RapidEye’s spectral resolution was not good enough to 

distinguish between these spectrally relatively similar classes. 

 

Really striking however is the high degree of misclassification of the Bare Soil and Water 

classes in both, the 2011 and the 2012 RapidEye images. In the literature (and own 

experience), these classes usually produce accuracies of 75-80% or better.  

 

Figure 3.5 and Figure 3.6 might explain the results. At the bottom of Figure 3.6 subsets of 

the Lakes area of the RapidEye and SPOT-6 images are displayed in natural (true) colour. 

The WorldView-2 image unfortunately did not cover this area (compare Figure 3.4). The 

Lakes look very different in all three images. In the July 2011 image, the water level appears 

to be moderately high, in the January 2012 image the water level is very low, and in the 

2014 SPOT-6 image the water level appears to be very high. These observations are 

supported by the measured water levels at the St Lucia Bridge (Figure 3.6). In 2008 at the 

time of the imagery used for the reference map, the water level of the estuary was low, too 
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(Figure 3.6). Therefore, the water level in the WV-2 and RE 2011 image probably represents 

best the water level conditions at the time of the 2008 reference data. The flood events in 

January July and December 2011 might explain the misclassification which is to be found 

close to the water edge in 2011 and 2012, as these flood events might have washed away 

the vegetation in those areas. This result is supported by Rautenbach (2015) who noted: 

“The biggest change in vegetation composition was the overall decrease in salt marsh (by 

57%) and increase in submerged macrophytes (by 96%). After the drought, water level rose 

rapidly as rainfall returned to normal and the Mfolozi River connected to the sea and St. 

Lucia Estuary. This caused an increase in surface area of the water column (which includes 

the Lakes, Narrows, Back Channel, Link Canal and Mfolozi River) from 30 498 ha in 2008 to 

32 624 ha in 2013. The increase in water level and the reduction in salinity in False Bay and 

the lakes (North and South) caused flooding and inundation of the salt marsh habitat, 

reducing the area covered.” 

 
 

 

 

Figure 3. 5: Water level at the St Lucia Estuary, measured at the St Lucia Bridge (Source: C. 
Fox of EKZNNW). Green bars: 4x image acquisition dates and 1x Kelly’s 2013 reference date. 
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Figure 3. 6: Top: Hourly wind speed, measured at Richards Bay, for three days prior to 

respective satellite image acquisition dates. Bottom: true colour image of respective RapidEye 
and SPOT-6 images.  

Wind data source: SADCO. 

 
The colour of the water at the image acquisition dates is another potential source for 

misclassification. In the SPOT-6 image the water looks as water “should look like”. The 

visible slightly brown discolouration indicates some small degree of turbidity, maybe as a 

result of the mixing of the strong winds two days before the image was taken (Figure 3.6, 

top) and the recent flood at that date (Figure 3.5).  

 

In the 2012 RapidEye image, the water looks very turbid and rugged. Figure 3.5 and Figure 

3.6 show that the water level at that time was very low and that the three days preceding the 

image capture a strong (south-easterly) wind was blowing. Under these conditions the water 

column would have been mixed up and very turbid and the water surface very rough with 

wind waves. (The waves are actually visible when zooming into the image.) This explains the 

massive confusion between bare soil and water in this image. 

 

3.6 Conclusions  

 

This project component examined the value of very high resolution multispectral satellite 

imagery acquired between 2010 and 2014 and LiDAR derived digital surface information for 

classifying estuarine vegetation types. Ground truthing reference was a GIS-based 

vegetation map from 2008. Supervised maximum likelihood classification produced 
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satisfactory overall accuracies between 63.6% and 79.0% for the WorldView-2 and the 

SPOT-6 image, while the RapidEye-based classifications produced overall accuracies 

between 50.0% and 64.6%. Analysis of the results showed that the reasons for the 

misclassifications may have been mainly based on environmental conditions rather than on 

technical or sensor-related issues. Therefore, we conclude that all three sensors assessed in 

this project are suitable for mapping coastal and estuarine vegetation. 

 

It is mainly the inherent high dynamic nature of the estuarine environment with massive 

fluctuations in water levels and salinity which cause swift turn-over of vegetation types, 

temporally and spatially. Examples include turnover from Salt marsh to Reeds, or Grass and 

Shrubs to Swamp forest on abandoned Forest plantations. This leads to misleading low 

accuracies in vegetation classifications if the acquisition dates of satellite imagery and 

validation data are too far apart. In the St Lucia estuary, even a 6-12 months difference 

turned out to lead to major vegetation change and hence misclassification, if a major flood 

eradicated entire vegetation patches or a recent wind event biased the image quality. This 

impact was aggravated by the fact that the available reference data were entirely taken 

below the 5m contour (estuary functional zone), i.e. the inherently dynamic estuarine zone 

which are most prone to impacts of changing water level and salinity. For future approaches 

it would be advisable to include some data from higher and environmentally more stable 

sites which are less prone to change over time as reference sites, however it should be 

noted that this will not include the target estuarine habitats. 

 

Further negative impact on the results was caused by physiognomic and thus spectral 

similarity of certain vegetation types, such as grass and reeds, and shrubs and forests. This 

misclassification is technically expected. The additional use of LiDAR-derived Digital Terrain 

Models improved the separability of those classes and improved 5 out of 8 classification 

runs. Further improvement would be achieved with the use of more sophisticated LiDAR-

derived products, such as the combined use of Digital Surface Model (which includes 

vegetation canopy height and Digital Terrain Models (which only include soil surface height) 

to derive the actual vegetation height or LiDAR return intensity information. 

 

Further solutions could include either the use of a sensor with a better (hyperspectral) 

resolution of the satellite imagery or possibly by a more conscience choice of the image 

acquisition date, in cases where spectral separability between classes varies over the 

seasons. The other project components will inform on this aspect.  
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Apart from true vegetation change, we experienced that weather impacts (high water levels 

inundating fringe vegetation and wind events mixing up the water column) cause bias in the 

reflective properties of the satellite imagery and impair the accurate identification of surface 

and vegetation types. 

 

However, as imagery from the optimal observation period is often not available, our research 

also showed that it is essential to also analyse ancillary environmental data such as flood 

levels, wind and weather data to interpret results appropriately. 

 

The results show that the spatial and spectral resolution of modern very high resolution 

imagery is sufficient to satisfactorily map and monitor small scale estuarine vegetation. They 

emphasize however the importance of synchronisation of ground truthing data with actual 

image acquisition times in these highly dynamic environments. 
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4 REMOTE SENSING MODELS FOR PREDICTING LEAF NITROGEN AND 
PHOSPHOROUS ACROSS FOUR SEASONS FOR SIX SUBTROPICAL 
FOREST EVERGREEN TREE SPECIES 

 

This chapter was published in the journal paper: Van Deventer, H.; Cho, M.A.; Ramoelo, A. 2015. 
Capability of models to predict leaf N and P across four seasons for six sub-tropical forest evergreen 
trees. ISPRS Journal of Photogrammetry and Remote Sensing,101: 209-220. 

 

4.1 Abstract 

 

Nutrient phenology of evergreen subtropical forests of southern Africa is poorly understood. 

Foliar nitrogen (N) and phosphorous (P) forms key components of photosynthesis and are 

vulnerable to global change stressors. Remote sensing techniques can potentially map and 

monitor nutrient phenology, yet models to predict across species, seasons and climatic 

regions are deficient. This study evaluates the capability of various models, developed from 

leaf spectra of selected spectral regions and seasons, to predict nutrient concentration 

across season and species. Seasonal differences in foliar N and P were assessed using a 

one-way ANalysis Of VAriance (ANOVA). The relationship between leaf spectra and 

nutrients was assessed using linear regressions between the foliar nutrients and spectral 

indices. The predictive capability of three models was compared using root mean square 

error (RMSE) values. Amongst the four seasons, winter leaves showed the highest mean N 

(2.16%, p < 0.01). However, winter showed the lowest variability of foliar N (coefficient of 

variation = 8%) compared to the variability of the other three seasons (coefficient of variance 

> 35%). In fact, between winter and spring, the variability in foliar N increased by 294%. 

Foliar P did not significantly differ between the four seasons. Predictive models for leaf N 

concentration developed for each season showed a higher level of accuracy, particularly for 

winter, whereas predictive models for leaf P showed low accuracies. Models developed from 

a single season showed a slight increase in error for the summer and autumn, however a 

larger increase in error for the winter season for the evergreen trees. The results suggest 

that spectral measurements can potentially be used to quantify nutrient phenology at 

regional scale and monitor the impacts of global change on nutrient phenology and 

photosynthesis. 

 

4.2 Introduction 

 

Global change has shown significant impacts on the periodic behaviour of plants or 

phenology since the 1970s (Richardson et al. 2013). Most noticeably, the onset and duration 

of the active growth season has been affected across climatic zones, though the impact on 
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the autumnal season is not well established (Zhou et al. 2003; Richardson et al. 2013). 

Several authors have argued that global increase in carbon dioxide and temperature may 

speed up the rates of photosynthesis and respiration in vegetation, though the increased 

rates are dependent on water and nutrient availability (Evans 1989; Penuelas et al. 1995; 

Drake and Gonzalez-Meler 1997; Kirschbaum 2000). Predicting the impact of global change 

on these processes remains difficult, owing to the limitations of simulating regional scale 

ecosystem responses either in laboratories or in situ, particularly for forests (Seppälä et al. 

2009; Lukac et al. 2010; Millard and Grelet 2010; Booth et al. 2012; United States 

Department of Energy (US DOE) 2012; FAO and JRC 2012; Sardans and Peñuelas 2012; 

Richardson et al. 2013). It is, however, generally recognised that global change is causing 

changes to vegetation physiology, condition, composition and distribution, and therefore to 

vegetation phenology, at local to regional scales (Campoy et al. 2011; Sardans and 

Peñuelas 2012). Phenological expression is however unique to species and climate regions, 

therefore, to address uncertainties in vegetation response to global change, our 

understanding of the unique phenology of vegetation types needs to be improved (Reich and 

Oleksyn 2004; Lukac et al. 2010; Richardson et al. 2013).    

 

Tropical and subtropical forests are considered to be some of the most vulnerable systems 

to global warming because of their exposure to multiple stressors (Seppälä et al. 2009). 

Tropical forests are nutrient poor (Reef et al. 2010) and with limited availability of 

phosphorus (Jordan 1985), hence may have limitations in adapting to increased 

temperatures and photosynthesis. In addition, humid subtropical forest areas are highly 

fragmented and have been extensively converted into commercial plantations (Seppälä et al. 

2009). Their resilience and adaptive capacity to global change is therefore considered 

reduced (Seppälä et al. 2009). Despite the sensitivity of these forests to global change, 

seasonal variation of leaf chemicals and translocation in evergreen tropical forests are not 

well understood and often highly simplified in global ecosystem models (De Weirdt et al. 

2012). Furthermore, global change impacts on tropical and subtropical forests vary greatly 

from regional to continental scales (United States Department of Energy (US DOE) 2012). A 

systematic approach to monitor global changes in a comparable way at regional scale is 

deficient.  

 

Monitoring foliar nutrients in tropical and subtropical forests using traditional methods of leaf 

harvesting and transportation to laboratories for analysis implies a number of difficulties. 

These forests are sometimes inaccessible, because of dense overgrowth or located in 

swamp wetlands (United States Department of Energy (US DOE) 2012). Laboratories are 

often not close enough to the collection site which risks the loss of nutrients from leaves 
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during the transportation period. The cost of human resources and laboratory analysis for a 

high number of foliar chemicals and repetitive time periods can increase beyond affordability. 

More cost-effective methods would be required to monitor global change impacts at the 

physiological leaf level and at the regional scale in the long term. Remote sensing, using air- 

or spaceborne imagery has been utilised as a cheaper alternative for assessing foliar 

nutrients of forest canopies at the broad landscape scale. Furthermore, spaceborne sensors 

offer continuous repetitive coverage of areas across the globe and are ideal for monitoring 

nutrients across a number of ecosystems. Various regions of the leaf or canopy 

electromagnetic spectrum have been associated with leaf water, pigments, nutrients and leaf 

biomass absorption or scattering of electromagnetic energy (Curran 1989) (Figure 3.1). High 

spectral (hyperspectral) resolution sensors on airborne and spaceborne platforms have 

enabled the mapping of foliar nutrients since the late 1990s (Smith et al. 2002; Townsend et 

al. 2003; Huang et al. 2004; Mutanga and Kumar 2007; Huber et al. 2008; Kokaly et al. 

2009; Schlerf et al. 2010; Skidmore et al. 2010; Knox et al. 2011). However, the high cost of 

hyperspectral sensors has restricted their routine utilisation for forest nutrient analysis. New 

spaceborne multi-spectral sensors such as WorldView-2 and RapidEye with fewer bands 

adapted for foliar pigment assessment also offer promise for assessing canopy nutrients 

such as leaf N. These multi-spectral sensors have proved successful in mapping foliar 

nutrients at regional scale (Ramoelo et al. 2012; Ullah et al. 2012; Clevers and Gitelson 

2013; Ramoelo et al. 2013; Cho et al. 2013).  

 

The successful employment of remote sensing in monitoring the impact of global change 

across phenologically-unique climate regions requires; (a) the ability to detect and 

characterise the unique patterns of nutrient phenology of various climate regions and (b) 

capable models that can be used to predict nutrients across species, seasons and regions. 

Regardless of the advances made in mapping foliar nutrients with remote sensing at small 

regional scales, a few challenges remain. First, the relationship between foliar nutrient 

concentration and spectral reflectance across species, season and ecosystems remains 

poorly understood. Foliar nutrients are known to vary over seasons, yet it is not well 

established how the empirical relationship between foliar nutrients and spectral information 

reflects seasonal variation. Variations in foliar nitrogen, chlorophyll and carotenoids were 

positively related to seasonal variation of the photochemical reflectance index (PRI) for 

deciduous spruce over two seasons in Japan (Nakaji et al. 2006). The relationship between 

foliar chlorophyll a and leaf spectral vegetation indices varied between the wet and dry 

season for evergreen mangrove tree species in Mexico (Flores-de-Santiago et al. 2013). 

Similarly, a changing relationship between foliar nitrogen and leaf reflectance in the red-edge 

was also found to vary with carboxylation rates for two deciduous species in the growth 
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season of the United States of America (Dillen et al. 2012). In Canada, the relationship 

between chlorophyll predicted from vegetation indices and observed chlorophyll for 

deciduous maple leaves varied over the spring, summer and autumn seasons (Zhang et al. 

2007). The relationship between foliar nutrient and leaf spectral data across different 

seasons has therefore not been well established for evergreen trees or subtropical forests. 

Secondly, models for predicting nitrogen and phosphorus remain difficult as they co-vary 

with related biochemical and biophysical parameters such as chlorophyll, leaf structure, 

foliage biomass and leaf water content (Elvidge 1990; Yoder and Pettigrew-Crosby 1995). 

The relationship between the nutrients and co-varying parameters are however known to 

change over seasons and time (Yoder and Pettigrew-Crosby 1995; Zhang et al. 2007). The 

chlorophyll red-edge position, for example, has often been used as a reliable co-variant in 

the mapping of nitrogen (Cho and Skidmore 2006; Mutanga and Skidmore 2007; Ramoelo et 

al. 2012), yet if the varying relationship between chlorophyll and nitrogen across seasons is 

poorly understood, the mapping and monitoring of nutrient phenology will potentially be 

erroneous. The ability to use the Near Infrared (NIR) and Shortwave Infrared (SWIR) bands 

to decouple nutrients from other co-variants across seasons, remains to be tested. A 

changing relationship between chlorophyll content estimated from leaf spectra and foliar 

chlorophyll content, for example, was observed for the maple species in Canada, where the 

relationship was highest in the spring season for the maple species in Canada, though 

decreased in correlation and accuracy towards summer and autumn (Zhang et al. 2007). 

The ability of nutrient models developed from single-season data to predict across 

phenological phases should be evaluated in model development. Currently, models to 

predict nutrients across species, seasons and climatic zones are deficient (Ferwerda et al. 

2005; Ollinger et al. 2008; Knyazikhin et al. 2012; Ollinger et al. 2013). 

 

This study compared the capability of predictive nutrient models, developed from single-

season and multiple-seasons leaf spectra, to predict nutrient concentration across seasons 

and species. Six evergreen tree species, in a subtropical environment in South Africa, were 

sampled over four seasons (winter, spring, summer and autumn) to assess how the nutrient-

spectral relationship changes over seasons. Thereafter, predictive models were developed 

using the linear regression between leaf spectra and nutrient concentration of the season 

with the highest coefficient of determination (R²) as well as those of a combined-seasons 

data set, and compared to the predictive model of each individual season, to assess the 

capability of the various models to predict nutrients across the seasons. 
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Figure 4.1: Regions of the electromagnetic spectrum known to relate to leaf pigments, foliage, 

biomass, leaf water content, proteins, starches and structural components. 

 

4.3 Materials and Methods 

 

4.3.1. Study area 

The iSimangaliso Wetland Park (28°S, 32°30’E) is located on the east coast of the KwaZulu-

Natal province in South Africa. The area has a humid sub-tropical climate with strong 

seasonal variation in rainfall and temperature (Figure 4.2). Mean Annual Precipitation (MAP) 

ranges between 1 000-1 500 mm (Middleton and Bailey, 2008) and the mean temperatures 

in summer ranges from 23-30°C, with winter temperatures decreasing to approximately 10°C 

(Sokolic 2006). The Park is situated on a coastal plain (Partridge et al. 2010) with sandy 

undulating hills between 10 m to 20 m above mean sea level (a.m.s.l.). The vegetation types 

include wooded grassland, dune vegetation and dune forests, to swamp forests and critically 

endangered mangrove forests (Mucina and Rutherford 2006). A number of evergreen tree 

species are found in the St. Lucia and Maphelane nodes of the iSimangaliso Wetland Park 

(Table 4.1; Figure 4.3).  
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Table 4.1: Number of trees sampled per species and season in St. Lucia, KwaZulu-Natal,  
South Africa. 

Tree species 
Common 
name 

Trees 
Winter 

(n) 

Trees 
Spring

(n) 

Trees 
Summer 

(n) 

Trees 
Autumn 

(n) 

Total number 
of trees per 
species (n) 

Avicennia marina 
White 
mangrove 

21 21 21 21 84

Bruguiera 
gymnorrhiza 

Black mangrove 19 19 19 19 76

Ficus sycamorus Sycamore fig 15 15 15 15 60
Ficus trichopoda Swamp fig 11 11 11 11 44

Hibiscus tiliaceus 
Lagoon 
hibiscus 

30 30 30 30 120

Syzigium cordatum Waterberry 17 17 17 17 68
Total per season: 113 113 113 113 452

 

 

 
Figure 4.2: Mean monthly temperature and rainfall between January 2011 and December 2012 

for the St. Lucia study area, KwaZulu-Natal, South Africa (Harris et al. 2013). 
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Figure 4.3: The St. Lucia study area is located northeast of the city of Durban in the KwaZulu-

Natal Province of South Africa. Six wetland and estuarine tree species were sampled in the 
study area along the uMfolozi River, as well as the St. Lucia, uMfolozi and uMsunduzi 

estuaries. 
 

4.3.2.  Leaf sampling, spectral measurements and laboratory analysis of foliar N  

and P 

Field campaigns were conducted for four seasons (winter, spring, summer and autumn) 

across 2011 and 2012. Sample sites were selected along wetlands and estuaries where tree 

canopies were accessible, mature and sun exposed. Five sunlit leaves were randomly 

sampled across the canopy of each tree (n trees = 452, Table 1). Leaf spectral reflectance 

measurements of the adaxial surface of each leaf were made using the Analytical Spectral 

Device (ASD) plant probe accessory connected to an ASD spectroradiometer (FieldSpec 

Pro FR, Analytical Spectral Device, Inc, USA), with the average scan time set at 10. The 

ASD covers the spectral range between 350 and 2500 nm with a 1.4 nm sampling interval 
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between 350 and 1050 nm range, and ±2 nm between 1050 and 2500 nm. The plant probe 

provides a direct-contact probe which limits ambient light. The radiance measurements were 

converted to reflectance against scans of a white spectralon reference panel. The five leaf 

specimens per tree were combined for nutrient analysis (N and P). The leaves were oven-

dried at 65°C until constant weight was reached. Bemlab Pty Ltd analysed nitrogen 

concentration using a Leco FP528 nitrogen analyser (Horneck and Miller 1998) and 

phosphorus through Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

analysis (Isaac and Johnson 1998). 

 

4.3.3. Data analysis 

 

Differences in leaf N or P concentration between seasons were assessed using one-way 

ANalysis Of VAriance (ANOVA). The alpha levels were corrected for Bonferroni effects to 

decrease the likelihood of committing type 1 error as a result of multiple comparable pairs 

(McDonald 2008). The adjustment is made to ensure that the alpha level (p = 0.05) is not 

merely a reflection of the differences between the dependent (nutrient concentrations) and 

independent variables (combined seasons), but adjusted downwards to assess the 

differences between each combination of individual seasons. The comparison of four 

seasons to one another results in six comparable pairs and therefore the alpha level (p < 

0.05) is adjusted by dividing 0.05 by the six comparable pairs = p < 0.01. Thereafter, the 

linear relationship between foliar nutrients and leaf spectral reflectance was assessed using 

a spectral vegetation index (VI), based on the normalised difference vegetation index 

(NDVI). NDVI is one of the most commonly used vegetation indices where two bands are 

combined and normalized through their difference (Rouse et al. 1973;Tucker 1979). One 

band is traditionally located at the absorption feature of the vegetation parameter in question 

and the other band is used to normalize the absorption band. VI values were computed for 

all possible band combinations (Cho et al. 2009) (Eq. 1). First, the 1 nm spectral reflectance 

ASD data were resampled using a Gaussian model (full-width half-maximum equal to every 

10 nm band spacing between 400 and 2 500 nm) in the Environment for Visualizing Images 

(ENVI) software (v.4.8, ITT Visual Information Systems) to reduce complexity and 

redundancy in the data. Subsequently, the 10 nm data were used to compute VIs for all 

possible band combinations (210!  = 22 155) from the visible (400 nm) to the SWIR 

(2500 nm). This was done to assess the behaviour of the relationship between leaf N or P 

and VIs for various spectral regions associated with pigments, foliage biomass, leaf water 

content, proteins, starch as well as lignin across seasons. A simple linear regression was 

used to determine the strength of the relationship (coefficient of determination (R²)) between 
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each foliar nutrient and the VIs. For each nutrient, the season which attained the highest R² 

between the VI and nutrient concentration, was selected as one of the predictive models for 

evaluation. 

 

)(
)(

),(),(

),(),(
),,(

njni

njni
nji

RR
RRVI

+
−=          (1) 

Where R(i,n) and R(j,n) are the reflectance of any two bands for each sample n.  

 
Foliar N or P was predicted from known absorption regions of the electromagnetic spectrum 

which yielded the highest coefficient of determination (R²) for each nutrient. Absorption 

regions were selected for pigments (500, 510, 670, 680, 700 and 760 nm), foliage biomass 

(740 and 780 nm), leaf water content (860 and 1240 nm), as well as for starch, lignin, 

tannins, pectin, protein and cellulose (1630, 1690, 1900, 2000, 2050, 2060, 2130, 2180, 

2200, 2210, 2240, 2250, 2300 and 2380 nm).  

 

The model with the best predictive capability for each nutrient was selected through 

comparing the root mean square error (RMSE) and percentage error of prediction or relative 

RMSE per season. Model comparison was done to assess the capability of models to predict 

across seasons. RMSE values were calculated for three different predictive models for each 

nutrient across seasons: (a) a model using predicted values for each season (individual-

season model); (b) a model developed from the season providing the highest R² for the 

particular nutrient and applied to all four seasons; and (c) a model developed combining data 

from all four seasons for each nutrient (multiple- or combined-seasons model). The RMSE 

(Eq. 2) was calculated for each model, season and nutrient to compare accuracies.   

 


=

=
n

i
yy

n
RMSE

1
ii )² - ˆ(1

         (2) 

Where ŷi is the predicted nutrient content, yi is the observed nutrient content, and n is the number of 
samples. 

 
For the combined-seasons model, a third of the data for each season was retained as an 

independent data set, whereas the remaining 2/3 of each season was combined into a single 

data set. An iterative bootstrap process (1 000 iterations) using R software (RStudio v. 

0.98.507, © 2009-2013 RStudio, Inc.) divided the combined data set randomly into a training 

(2/3) and test (1/3) data set. A linear model was fit to the training data set between the 

observed nutrient concentration and the vegetation index, and then applied to the test data 

set. The RMSE was then calculated for both the training and test data set and recorded with 

the model coefficients, before each new reiteration. The mean coefficients were thereafter 
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applied to the independent data sets of each season and the RMSE calculated and reported 

per season. The percentage of error was calculated using the mean observed nutrient 

concentration per season for model comparison. The change in percentage error between 

the models was compared to evaluate the capability of each model to predict across 

seasons. 

 

4.4 Results 

 

4.4.1.  Foliar nutrient variations per season  

Amongst the four seasons, winter leaves showed the highest mean N (p < 0.01, Bonferroni 

corrected p = 0.008) (Table 4.2; Table 4.3). However, winter showed the lowest variability of 

foliar N (standard deviation = 0.17) when compared to the other three seasons (standard 

deviation > 0.6). In fact, between winter and spring, the variability increased by 294% 

whereas the variability over the active growth season showed little difference. 

 

Contrary to what was observed with foliar N, foliar P showed no significant differences 

between the four seasons. The transition from winter to spring showed a slight increase in 

variability (8%) for foliar P compared to 294% observed for foliar N. The variability of foliar P 

actually declined by 71.5% between summer and autumn, whereas the variability of foliar N 

showed very little change between these two seasons. 

 

Table 4.2: Descriptive statistics for laboratory-analysed foliar nitrogen (N) and phosphorus (P) 
concentration (%) of the six species over four seasons. 

Foliar nutrient (%) Statistic Winter Spring Summer Autumn 

N 

Min 1.47 0.69 0.57 0.55 

Mean 2.16 1.89 1.75 1.71 

Max 2.51 3.33 3.37 3.37 

Stdev 0.17 0.67 0.63 0.67 

P 

Min 0.05 0.05 0.03 0.04 

Mean 0.17 0.17 0.17 0.14 

Max 0.59 0.93 1.14 0.41 

Stdev 0.13 0.14 0.17 0.08 
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Table 4.3: Intra-season ANalysis Of VAriance (ANOVA) for foliar N and P concentration (%) of 
the six species. 

Nutrient Seasons Winter Spring Summer Autumn 

N 

Winter  

Spring 0.003293 *  

Summer 0.000008 * 0.246426  

Autumn 0.000008 * 0.075883 0.947032 

P 

Winter  

Spring 0.999999  

Summer 0.996919 0.996201  

Autumn 0.244360 0.237694 0.346901 
* –significant (p < 0.01), Bonferroni corrected p = 0.008 

 

4.4.2.  Assessing the seasonal relationship between foliar nutrient concentration and 

leaf spectra  

The relationship between foliar N and leaf spectra varied across seasons (Figure 4.4; 

Table 4.4). Winter showed the lowest correlations between foliar N and leaf spectra 

compared to the other three seasons. The highest R² for winter was recorded in the SWIR 

with a two-band combination associated with protein and starch (R² = 0.22, p < 0.01) 

(Table 4.4). In contrast, spring showed an increase in correlation between foliar N and leaf 

spectra across spectral regions associated with foliar pigments, foliage biomass, leaf water 

content, protein, starches, cellulose and lignin (Figure 4.4; Table 4.4). The region with the 

highest average R² across seasons (0.59) was recorded in the SWIR associated with protein 

absorption bands (2130, 2240), yielding the highest R² in spring (R² = 0.80, p < 0.01), 

followed by summer (R² = 0.77, p < 0.01) and autumn (R² = 0.71, p < 0.01) (Table 4.4). The 

second highest region was also located in the SWIR associated with protein and cellulose 

(2180, 2210), followed by foliage biomass in the red-edge region (740, 780), lignin, tannins, 

pectin and protein in the SWIR (1630, 1690), and then the chlorophyll bands in the red-edge 

region (700, 760). The relationship in the carotenoid pigment region remained relatively 

constant from spring to summer and autumn (R² = 0.37, 0.37, 0.34, p < 0.01), though the 

relationship between foliar N and spectra showed a slight increase (30%) in the bands 

associated with chlorophyll from spring to autumn, as well as for lignin, waxes, protein and 

nitrogen (16%). The relationship showed a decrease from spring to autumn in the region 

associated with foliage biomass (-21%), leaf water content (-57%) and the region of lignin, 

tannins, pectin and protein (-50%). Bands associated with protein or protein bond absorption 

features showed an average decrease from spring to autumn of < 22%), whereas bands 

associated with starch showed a decrease by > -90% from spring to autumn. 
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Compared to leaf N, the relationship between foliar P and leaf spectra also varied over the 

four seasons, but with lower R² values over all four seasons (Figure 4.4; Table 4.4). High R² 

values (R² > 0.25) between foliar P and leaf spectra were recorded for all four seasons in the 

SWIR, compared to the high diversity of regions noted for N. In the winter, the highest 

average coefficient of determination (R²) across the four seasons (R² = 0.25, p < 0.01) was 

recorded in the SWIR region associated with lignin, waxes, protein and nitrogen (2050, 

2380), followed by protein, nitrogen and lignin (2060, 2380). Other high average R² regions 

were mainly associated with protein (2130, 2240), protein and cellulose (2180, 2210) and 

lignin, tannins, pectin and protein (1650, 1690). The SWIR region with the highest average 

R² across all four seasons (2050, 2380), also showed the highest R² in autumn (R² = 0.38, p 

< 0.01).  The pigment region showed a marked increase from winter to spring and spring to 

summer (> 110%). An increase in the relationship was observed from winter to spring 

(> 150%), in the regions associated with chlorophyll, foliage biomass and starch, though a 

decrease was noted from spring to summer (> -66%) for these regions. The band 

combinations protein, protein bonds with cellulose, nitrogen and starch, in general, showed a 

decrease from winter to spring (by > -27%) and spring to summer (by > 6%), though 

increased between summer and autumn between 13-93%. 

 

Spring showed the highest R² between foliar N and leaf spectra and winter the lowest. In 

contrast, the highest relationship between foliar P and leaf spectra was recorded in the 

winter, summer and autumn, and the lowest in spring. Foliar nitrogen and phosphorus 

showed higher R² values with the SWIR region, except for nitrogen in the red-edge regions 

associated with chlorophyll and foliar biomass (Table 4.4). 
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Table 4.4: Maximum linear regression coefficient of determination (R²), extracted from a matrix 
showing the relationship between nutrient concentrations and leaf spectra of the six species, 

for band regions known to relate to leaf features, given per season and nutrient.  

Foliar 
nutrient 

VI 
Band 

combination ● 

Associated 
parameter 

Winter Spring Summer Autumn Average 

N 

510, 680 Carotenoids  0.00 0.37* 0.37* 0.34* 0.27 

700, 760 Chlorophyll 0.09* 0.40* 0.44* 0.52* 0.36 

740, 780 Foliage biomass 0.08* 0.62* 0.49* 0.49* 0.42 

860, 1240 Leaf water content  0.00 0.37* 0.15* 0.16* 0.17 

1630, 1690 Lignin, tannins, 
pectin & protein 

0.06* 0.66* 0.47* 0.33* 0.38 

1900, 2250 Starch 0.01 0.33* 0.13* 0.01 0.12 

2000, 2250 Starch 0.01 0.40* 0.13* 0.03 0.14 

2050, 2380 Lignin, waxes, 
protein & nitrogen 

0.02 0.38* 0.48* 0.44* 0.33 

2060, 2300 Protein & nitrogen 0.02 0.22* 0.00 0.01 0.06 

2060, 2380 Protein, nitrogen & 
lignin 

0.00 0.47* 0.47* 0.37* 0.33 

2130, 2240 Protein  0.09* 0.80* 0.77* 0.71* 0.59 

2180, 2210 Protein & cellulose 0.06* 0.60* 0.63* 0.59* 0.47 

2180, 2240 Protein & nitrogen 0.21* 0.42* 0.41* 0.27* 0.33 

2200, 2240 Protein & starch 0.22* 0.31* 0.30* 0.18* 0.25 

P 

500, 670 Carotenoids 0.06* 0.17* 0.37* 0.10* 0.18 

700, 760 Chlorophyll 0.02* 0.05* 0.00* 0.14* 0.05 

740, 780 Foliage biomass 0.02 0.06* 0.02 0.13* 0.06 

860, 1240 Leaf water content 0.01 0.01 0.00 0.04 0.02 

1650, 1690 Lignin, tannins, 
pectin & protein 

0.17* 0.19* 0.30* 0.19* 0.21 

1900, 2250 Starch 0.04* 0.18* 0.06* 0.06* 0.09 

2000, 2250 Starch 0.01 0.13* 0.03 0.05 0.06 

2050, 2380 Lignin, waxes, 
protein & nitrogen 

0.28* 0.24* 0.09* 0.38* 0.25 

2060, 2300 Protein & nitrogen 0.02 0.02 0.00 0.00 0.01 

2060, 2380 Protein, nitrogen & 
lignin 

0.20* 0.25* 0.13* 0.36* 0.24 

2130, 2240 Protein  0.23* 0.16* 0.15* 0.29* 0.21 

2180, 2210 Protein & cellulose 0.29* 0.15* 0.14* 0.25* 0.21 

2180, 2240 Protein & nitrogen 0.31* 0.20* 0.17* 0.21* 0.22 

2200, 2240 Protein & starch 0.26* 0.19* 0.15* 0.17* 0.19 
● Two-band combinations yielding high correlations were extracted from regions known to be related to pigments 
(Gitelson et al. 2002;Gitelson and Merzlyak 2004;Gitelson et al. 2006); foliage biomass (Mutanga and Skidmore 
2004;Cho et al. 2007); leaf water content (Gao, 1996); proteins & starches (Curran, 1989); waxes & 
protein/enzyme D-ribulose 1-5-diphosphate carboxylase@2050, tannic acid@1660, lignin, pectins & 
protein/enzyme D-ribulose 1-5-diphosphate carboxylase@1680, lignin@2380 (Elvidge 1990). 
* –significant (p < 0.01)  
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Figure 4.4: Contour plots showing the regression (R²) between selected vegetation indices 
calculated from all possible waveband combinations (vertical and horizontal axes) in the  

400-2500 nm range (at 10 nm intervals) and leaf N or P concentrations (%) for the six species.  

 

4.4.3. Comparison of predictive models across seasons  

The individual-seasons model showed the lowest prediction error of leaf N for the winter 

season for the indices developed in the red-edge (chlorophyll and foliage biomass) and 

SWIR regions (protein) of the spectrum (Table 4.5). For the spring, summer and autumn 

seasons, the individual-seasons model of N showed lower error of prediction (%) in the 

SWIR, compared to the red-edge region. When the spring-season model (the spring season 

recorded the highest R² between the VI and N concentration) was used to predict N for the 

other three seasons, the error of prediction (%) increased by 1-5% for the summer and 

autumn seasons for the VIs in both the red-edge and SWIR regions. Applying the spring-

season model to the winter leaf spectra resulted in an increase of the error of prediction by 

11-18%. The combined-seasons model for N, compared to the individual-seasons model, 

showed an increase in error of between 4-7% for the three VIs in winter, a slight decrease in 

error (≤ 4%) for the spring season, though no major changes for the summer and autumn 

seasons.  

 

 The accuracy of the predictive models for leaf P when compared to the leaf N models 

was very low (Error > 46%; Table 4.6). The VI for the lignin, waxes, protein and nitrogen 

bands in the SWIR showed the lowest error of prediction (46%). The combined-season 

model, on the other hand, decreased the error in prediction by 12-28%, though for the SWIR 

region in autumn, only by 3%. 
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4.5 Discussion 

 

4.5.1.  Foliar nutrient variation compared to other evergreen subtropical trees 

Our results of high foliar nitrogen concentration in winter concurred with other evergreen 

tropical and subtropical trees (Cai et al. 2009; Lin et al. 2010). Evergreen Quercus and 

spruce trees in other climatic zones showed similar trends (Chapin and Kedrowski 1983; 

Sabaté et al. 1995; Yasamura and Ishida 2011). These findings support the notion that older 

leaves of evergreen trees are used for storage during the dormant season, and remobilised 

in spring for leaf growth (Cherbuy et al. 2001; Millard and Grelet 2010). Other studies 

showed, however, a lower concentration and variability of foliar nitrogen in winter, compared 

to the other seasons, for evergreen tropical dry and savannah forests (Franco et al. 2005; 

Chaturvedi et al. 2011). Few studies reported detailed observations of variability with mean 

nitrogen concentrations over four seasons or a full phenological cycle. Contrary to our 

findings, Bell and Ward (1984) reported low variability and concentration of foliar nitrogen in 

winter for evergreen trees in a Mediterranean climate, and a high variability and 

concentration in spring (Bell and Ward 1984). 

 

In this study, foliar phosphorus showed relatively similar mean concentrations over the four 

seasons, though the variability was highest in all seasons except autumn. Bell and Ward 

(1984) also found very little variability in mean foliar phosphorus concentration of mature 

evergreen leaves of Eucalyptus wandoo over the seasons, with a high variability in summer 

(Bell and Ward 1984). Other tropical evergreen trees also showed high mean concentration 

and higher variability of foliar phosphorus for the summer season compared to the other 

seasons (Cai et al. 2009; Lin et al. 2010). In evergreen savanna trees, however, foliar 

phosphorus showed a slight decrease from winter to spring, and a significant increase 

towards summer (Franco et al. 2005). In the study of the two evergreen Eucalyptus spp., the 

lowest variability of foliar phosphorus was recorded for winter (Bell and Ward 1984), 

compared to our findings of the lowest variability in autumn. In a tropical forest of Nigeria, 

foliar phosphorus concentrations showed no seasonal variation (Sharma 1983). 

 

4.5.2.  Seasonally varying nutrient-spectral relationship  

The relationship between leaf spectra and foliar nutrients varied over seasons and spectral 

regions. The highest correlation between leaf N and spectra was recorded in spring and the 

lowest in winter, whereas the highest correlation between leaf P and spectra was recorded in 

winter, summer and autumn. Co-variants of foliar N, chlorophyll and foliage biomass did not 
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follow similar patterns of change between spring and autumn, confirming the varying 

relationship over seasons. The variations recorded in the relationship concur with the 

variations noted in the seasonal foliar N patterns, associated with the photosynthesis 

process. Seasonal patterns of N, derived through VIs from leaf spectra, can therefore 

potentially indicate seasonal changes in photosynthetic activity of subtropical evergreen 

trees. All spectral regions used in this study were consistent with other studies for regions 

associated with foliar N, i.e., the red-edge and SWIR, as well as with foliar P, i.e., the SWIR 

region (Curran 1989; Elvidge 1990; Kokaly and Clark 1999; Johnson 2001; Kumar et al. 

2001; Kokaly 2001; Cho and Skidmore 2006; Cho et al. 2010; Ramoelo et al. 2011). 

 

The other high correlation (R² = 0.37, p < 0.01) between foliar P and leaf spectra was found 

between the carotenoid spectral region (500-520 nm) and the red-edge region (680-760 nm) 

which may be indicative of a possible relationship between foliar carotenoids, foliar 

chlorophyll and foliar P occurring at peak productivity in summer. The methyl-erythritol 

phosphate pathway, which is responsible for the production of both carotenoids and foliar 

abscisic acid, controls stomatal opening which is also associated with foliar P (Barta and 

Loreto 2006). The correlation between foliar P and this spectral band combination is, 

however, only high in summer and not in any of the other three seasons.  

 

To our knowledge, our work is the first study noting the variance in the seasonal relationship 

between foliar nutrients and related leaf spectral absorption features. Changing relationships 

between foliar chlorophyll a and related leaf spectra was also observed for evergreen 

mangrove species in a subtropical environment between the wet and dry seasons (Flores-

de-Santiago et al. 2013). Zhang et al (2007) also noted a changing relationship between 

estimated and observed chlorophyll for a deciduous maple species, showing a decline in the 

correlation and accuracy from spring to summer, and an increase in correlation and 

accuracy from summer to autumn. 

 

4.5.3.  Monitoring foliar nutrient phenology using remote sensing models 

A number of models, developed from leaf-level spectra, was assessed in their capability to 

predict foliar nutrient concentration across species and seasons. The RMSE values and 

error of prediction (%) of two models were compared to those of the model developed for 

each individual season: a predictive model of the season in which the highest R² values 

were recorded between a VI and nutrient concentrations, as well as a predictive model 

combining all the seasons. To minimise the influence of individual species on the 
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development of a regression model, a 1000-times iterative bootstrap procedure was used in 

the evaluation of the combined-seasons predictive model. The maximum error ranges of the 

various predictive models for leaf N concentration of the evergreen subtropical trees were 

below 31% and offered relative capable models to predict across species and season. The 

individual-season leaf N model showed the lowest range of error for leaf N with an error 

range between 7-28%. The combined-season leaf N model increased in the prediction error 

range of between 12-29%, while the spring-season model for leaf N showed an increase in 

prediction error of between 15-31%. The predictive models for foliar P were mostly > 40% 

and therefore considered inaccurate in predicting P for these evergreen subtropical trees. 

 

The seasons with the lowest error of prediction was mainly the spring, summer and autumn 

seasons. The error of prediction for these three seasons deviated by < 5.5% from the error 

of prediction of the individual-seasons model. However, the error of prediction increased by 

4-7% when the combined-seasons model was applied to winter, and by > 10% when the 

spring-season model was applied to the winter season. The winter season showed 

significantly higher (p < 0.08) mean observed N concentration, and lower variance, 

compared to the other three seasons. The phenology of these evergreen trees therefore had 

a definite influence on the error of predicting leaf N concentration when a model developed 

in spring was applied to the leaf spectra collected in winter.  

 

The bands with the lowest error of prediction for leaf N concentration was found in the SWIR 

region for the spring, summer and autumn seasons, compared to the bands used in the red-

edge region (related to chlorophyll and foliage biomass). The reversed was observed for 

winter, where the error of prediction was lower in the red-edge region, compared to the 

SWIR region bands. 

 

The various models and bands were assessed as an initial step to assess the potential of 

remote sensing techniques to monitor nutrient phenology across regions and species. A 

number of multi-spectral spaceborne sensors, such as RapidEye (RE) launched in 2008, 

and WorldView-2 (WV2) launched in 2009, is expected to improve vegetation health and 

foliar nitrogen monitoring through the incorporation of a band in the red-edge region. A 

number of multispectral sensors are also planned for deployment, including WorldView-3 

(WV3; 2014), and Sentinel-2 (2015), which will improve the spatial resolution of current 

sensors, and add to the number of red-edge and SWIR bands at higher spectral resolution. 

These sensors are expected to improve nutrient mapping at the landscape level (Clevers 

and Gitelson 2013). The improved spatial resolution of these sensors, will further allow 
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single-canopy species identification and monitoring, overcoming most of the current 

limitations of multispectral imagery. In support of these developments, further research is 

required to improve our understanding of whether the relationship between foliar N and P 

and spectra reflectance features will change annually, under different climatic conditions, at 

canopy scale or for other species. 

 

4.5.4.  Implications for monitoring global change impact on vegetation  

The impact of global change on the seasonal dynamics of nutrients can be potentially 

monitored through the changing relationship of foliar nutrients to spectra, at canopy (satellite 

image) scale. Seasonal patterns of nutrients are expected to differ across climatic zones. 

Remote sensing can contribute to the characterization of foliar nutrient phenology at the 

bioregional scale, and secondly, monitor the impact of global change on these patterns. The 

quantification of foliar nutrients could potentially provide more information on subtle changes 

in magnitude of foliar nutrients, in addition to impacts already noted in phenophases. 

Considering the low photosynthetic activity currently observed in the dormant season, and 

that temperature increases may increase photosynthetic activity, an increase in the 

variability of foliar nutrients, particularly nitrogen, may be expected in future.  

 
4.6 Conclusions 

 

This study found a seasonally changing relationship in foliar nutrients (nitrogen and 

phosphorus) for evergreen subtropical tree species in St. Lucia, South Africa. The 

relationship between foliar nutrients and leaf spectra also varied over the seasons and 

across regions associated with known biochemical and biophysical parameters. A high 

variability in foliar nutrients is assumed to reflect foliar nutrient dynamics, whereas the higher 

mean concentration of foliar nutrients may indicate storage of nutrients during the dormant 

season. Predictive models for leaf N concentration developed for each season showed a 

higher level of accuracy, particularly for winter, whereas predictive models for leaf P showed 

low accuracies. Models developed from a single season showed a slight increase in error for 

the summer and autumn, however a larger increase in error for the winter season for the 

evergreen trees. Global biogeographic patterns of foliar N and P of tropical and subtropical 

forests are limited. Many studies focus on nutrient dynamics of a few species and locations, 

yet monitoring the impact of global change at species level may be difficult and time 

consuming. Remote sensing offers the potential to monitor N and P at canopy level to 

establish biogeographical patterns at the regional scale. Furthermore, the subtle initial 

changes of an increased temperature on photosynthetic activity, is possible through the 
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quantification of nutrient variability over seasons. We recommend further studies on the 

phenology of foliar nutrients at regional scale for a number of species and climatic zones, 

using remote sensing. 
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5 ASSESSING THE EFFECTS OF DUKUDUKU FOREST FRAGMENTATION 
ON LEAF NITROGEN DISTRIBUTION USING REMOTE SENSING DATA 

 

This chapter includes work done by Dr Moses Azong Cho and team, published in the paper by Cho, 
M.A.; Ramoelo, A.; Debba, P.; Mutanga, O.; Mathieu, R.; Van Deventer, H.; Ndlovu, N. 2013. 
Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote 
sensing data. Landscape Ecology, 2013, 28, 8, 1479-1491. 

 

5.1 Abstract 

 

Tropical forest loss resulting from conversion of forest to other land-cover types such as 

grassland, secondary forest, subsistence crop farms and small forest patches affects leaf 

nitrogen (N) stocks in the landscape. This study explores the utility of new remote sensing 

tools to model the spatial distribution of leaf N in Dukuduku, St Lucia. Leaf N was mapped 

using models developed from a relatively new spaceborne sensor, RapidEye (5 m spatial 

resolution). A detailed land-cover map derived from another new spaceborne sensor, 

WorldView-2 (2 m resolution) was used to assess differences in leaf N between land-cover 

types. The results showed that indigenous forest fragmentation in Dukuduku leads to 

significant losses in leaf N as most of the land-cover types (e.g. pasture and subsistence 

farmlands) resulting from forest degradation showed lower leaf N when compared to the 

original indigenous forest.  Further analysis of the spatial variation of leaf N revealed an 

autocorrelation distance of about 50 m for leaf N in the fragmented landscape, a scale 

corresponding to the average dimension of subsistence fields. The availability of new 

multispectral sensors such as RapidEye and WorldView-2 thus, moves remote sensing 

closer to widespread monitoring of the effect of tropical forest degradation on nutrient (e.g. 

N) cycle.  

 

5.2 Introduction 

 

Tropical forest ecosystems play a major role in nutrient and carbon cycling (Vitousek and 

Sanford, 1986; Van der Werf et al., 2009). For example, tropical forests are a major sink of 

atmospheric carbon dioxide and several studies have shown that tropical forest deforestation 

and degradation constituted a major source of global greenhouse emission in the 1990s 

(Malhi and Grace, 2000; Achard et al., 2004; Fearnside and Laurance, 2004; Gibbs et al., 

2007; DeFries et al., 2002). Gibbs et al (2007) put the estimates at about 15-25% of annual 

global greenhouse gas emissions. Whereas, the effects of forest disturbance on carbon 

stocks at the broad landscape level have been widely studied, few studies have modelled 



74 
 
 
 
 

the effects of forest degradation on nutrient stocks (e.g. Nitrogen (N) and phosphorus (P)) 

(e.g. Billings and Gaydess, 2008).  

 

Tropical forest degradation in many parts of Africa is characterised by the clearing of the 

forest for pasture, agriculture or urban development (Van Wyk et al., 1996; Coops et al., 

2004). In most cases, the forest is fragmented into patches of various sizes and shapes. The 

forest patches in most degraded landscape are surrounded by a matrix of different 

vegetation and/or land use types (e.g. mono-crop plantations, small subsistence farms, 

pasture lands) (Saunders et al., 1991; Harrera et al., 2011). The immediate environmental 

consequences of forest fragmentation include soil erosion, loss of biodiversity, invasion by 

alien species, loss of soil fertility, changes in litter and canopy nutrient stocks and vegetation 

productivity (Saunders et al., 1991; Gibbs, 1998; McDonald et al., 2002; Vasconcelos, and 

Luizão, 2004;  Giertz et al., 2005; Lauga and Joachim, 1992; Duguay et al., 2007; Lizee et 

al., 2011). Spatially explicit information on the above factors is rare, let alone on changes in 

foliar nutrient stocks, following forest fragmentation. Saunders et al. (1991) asserted that 

forest fragmentation affects nutrient cycling processes by increased soil heating and its 

effect on soil microorganism and invertebrate numbers and activity, on litter decomposition 

and soil moisture retention. The resulting loss of soil fertility might translate into low foliar 

nutrient stocks.  

 

Nitrogen is an important nutrient for plant growth (Groffman and Turner, 1995). Nitrogen 

taken up by plants in the form of nitrates is used in the synthesis of components such as 

chlorophyll, the carbon fixing enzyme ribulose biphosphate carboxylase (Rubisco) and inert 

structural components in cell tissue (Mooney, 1986). Leaf nitrogen concentration has been 

used as a proxy to assess ecosystem productivity (Mooney, 1986; Smith et al., 2002). 

Nitrogen inputs into an ecosystem include lightning and bacteria fixation of atmospheric 

nitrogen, and decomposition and nitrification of dead organic matter (e.g. litter). Outputs from 

the system include plant uptake, denitrification, leaching and surface runoff.  Thus, forest N 

pools consist of soil N (ammonium, nitrate, and some dissolved organic nitrogen 

compounds), nitrogen in litter and that retained in living plant parts (roots, stems and leaves) 

(Vitousek, 1982). Rates of organic matter decomposition are high in lowland moist tropical 

forest than in temperate forest (Nye, 1960). Greenland and Kowal (1960) argued that 

standing biomass is as important as the soil as a storehouse of plant nutrients, particularly in 

moist tropical forest where vegetation growth is so high and where the reserves of nutrients 

in the soil may be quite rapidly depleted by leaching or absorbed by plants. Vitousek and 

Sanford (1986) asserted that foliar chemistry represents a useful indicator of overall nutrient 



75 
 
 
 
 

status of a plant, where nutrient concentrations in leaves are correlated with nutrient 

concentrations in other plant parts. Leaching and surface runoff of nutrients from moist 

tropical forest patches in a degraded landscape might serve as important nutrient sources 

for surrounding vegetation, including grasslands and subsistence farms. 

 

The question is, how does the conversion of indigenous tropical forest into other land cover 

types e.g. grassland, secondary forest, subsistence crop farms and small forest patches 

affect foliage N stocks in the fragmented landscape? Another question of interest is, at what 

scale does leaf N vary in fragmented or disturbed landscape. The ability to adequately tackle 

the above questions may rely on the capability to accurately map land cover types and leaf 

N concentration at the broad landscape level, a procedure that was rarely achieved before 

the advent of high spectral resolution (hyperspectral) remote sensing (Iverson et al., 1989; 

Groom et al., 2006). Most hyperspectral sensors acquire radiance information in less than 10 

nm bandwidths from the visible to the shortwave infrared (400-2500 nm) (Curran, 2001). The 

narrow bandwidth of hyperspectral data allows for the detection of the subtle absorption 

features of nitrogen in green vegetation (Curran et al, 2001; Cho et al., 2009). However, the 

high cost and limited availability of spaceborne hyperspectral imagery has stymied the 

routine application of this sort of remote sensing for leaf nitrogen analysis at the regional 

scale. Many hyperspectral studies highlighted the region of the red-edge in the 

electromagnetic spectrum (700-760 nm) as having a high potential for accurate estimation of 

leaf chlorophyll and N concentration or content at peak productivity (Horler, 1983; Matson et 

al., 1994; Kokaly and Clark, 1999; Cho and Skidmore, 2006). More recently, new 

spaceborne sensors such as RapidEye (Ramoelo et al., 2012) and Worldview-2 have been 

launched with new wavebands in the red-edge region, for example at 710 nm for Rapideye 

and at 725 nm for Worldview-2 (Adam et al., 2012). These sensors provide us with new 

opportunities to assess leaf N stock at the regional scale. Ramoelo et al. (2012) have 

successfully mapped leaf nitrogen concentration over a large area using the red-edge band 

of RapidEye images in the Kruger National Park, South Africa. 

 

The aims of this study were to (i) ascertain the ability to assess leaf N concentration 

using RapidEye imagery in a fragmented landscape following indigenous forest deforestation 

and (ii) assess the effects of forest fragmentation on leaf nitrogen distribution. The above 

aims were achieved through a detailed land cover classification from WorldView-2 images, 

mapping of leaf N using RapidEye images, an analysis of the differences in the predicted 

leaf N among land cover types and an analysis of the spatial heterogeneity of leaf N. 
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5.3 Material and methods 

5.3.1.  Study site 

The study site is situated in the northern part of KwaZulu-Natal between Mtubatuba town 

and the Indian Ocean, north of Richard’s Bay (Figure 5.1). It consists of three main 

ecosystem types; intact closed canopy forest (inland coastal forest and dune forest), swamp 

forest and fragmented landscape. The inland coastal forest is known as the Dukuduku forest 

(28°25’S, 32°17’E). The Dukuduku forest is the largest patch (6500 ha) of coastal lowland 

forest along the eastern coastline in KwaZulu-Natal. A total of 29% of the Dukuduku forest 

was lost to settlement and subsistence farming activities between 1992 and 2005 (Ndlovu 

2011). The area forms part of the iSimangaliso Wetland Park which is the largest estuary in 

South Africa (Van Heerden, 2011). The study area as demarcated by the Map in Figure 5.1 

is surrounded by large commercial Eucalyptus (to the North) and Sugarcane (to the South) 

plantation. Thus, the study area consists of varying land uses including protected areas, 

commercial farms, communal areas and towns.  

 

 

  

 

Figure 5. 1: Large landscape types. 
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5.3.2. Acquisition of satellite images and pre-processing 

Rapideye imagery (5 m spatial resolution) of the study site was acquired on 21 March 2011. 

The sensor consists of five spectral bands (Blue: 440-510 nm; Green: 520-590 nm; Red: 

630-685 nm; Red Edge: 690-730 nm; NIR: 760-850 nm). The level 1B RapidEye image 

(geometrically and radiometrically corrected) obtained from the image provider were 

atmospherically corrected using ATCOR-2, flat terrain model. ATCOR is based on 

MODTRAN radiative transfer code (Richter and Schlapfer, 2002). Two archive geometrically 

corrected WorldView-2 images (2 m spatial resolution) acquired in April and December of 

2010 were also used in the study to classify land cover types. Worldview-2 consists of 

multispectral bands centred at 425 nm, 480 nm, 545 nm, 605 nm, 660 nm, 725 nm, 835 nm 

and 950 nm. We assessed the geometric accuracies of the two images using ground control 

points and found the WorldView-2 images more accurately corrected as compared to the 

RapidEye image. Using the WorldView-2 as the reference image, we corrected the 

RapidEye image using image-image registration in ENVI software (ITT Visual Information 

Solution, Boulder Co USA). In this study, the WorldView-2 images were used only for the 

land cover classification because of the huge time difference between the image acquisition 

(April and December 2010) and the field campaign to collect leaf N data (March 2011). 

 

5.3.3. Field data acquisition and leaf nitrogen analysis 

Fieldwork sampling of leaf specimens was conducted on the 29 and 30 March 2011. Sunlit 

leaves were collected from 69 randomly selected plots consisting of tree or grass canopies 

along paths in the intact and fragmented landscape. We ensured that each tree or grass 

canopy sampled consisted of a homogenous canopy (same species for the trees and similar 

set of species for the grasses) of about 15 m by 15 m.  The sampled trees and grass plots 

were located between 10 m to about 100 m from the edges of intact forest and paths within 

the fragmented landscape. The number of plots that were trees and grassland were 44 and 

25, respectively. Five and two plots of the grassland plots were wetlands and sugarcane, 

respectively. 

 

The specimens were oven dried for 24 hours at 70oC on the 31 April 2011. The dry leaf 

samples were sent to the Agricultural Research Council-Institute for Tropical and Subtropical 

Crops, South Africa for chemical analysis of leaf N. Leaf N concentration was analysed using 

acid digestion method. Leaf N concentration was expressed as the percentage nitrogen to 

the leaf mass.  
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Additional data were collected for land cover classification in July 2011. The global 

positioning system (GPS) locations of different land cover (LC) types (intact forest, degraded 

forest, grassland/subsistence farms, eucalyptus farms, sugarcane farms) were recorded in 

the field. The points were only collected from homogenous areas (of at least 20 m by 20 m) 

of the land cover types.  

 

5.3.4. Land cover (LC) classification  

The WorldView-2 images were used for the LC classification.  A mosaic of the April and 

December 2010 images were made prior to the classification using ENVI 4.8 software (ITT 

Visual Information Solution, Boulder Co USA). The classification was also conducted using 

ENVI 4.8. The GPS point data for the various land cover types (intact forest, degraded 

forest, grassland/subsistence farms, eucalyptus farms, wetlands and sugarcane farms) were 

overlaid on the image and a region of interest (ROI) consisting of an array of pixels was 

created for each point. Additional ROIs were created for the intact forest and wetland 

grasslands (mainly from the swamp forest) since these were clearly visible on the 

WorldView-2 image. The ROIs were randomly divided into the training and test datasets in 

the following ratio: intact forest (44/17), degraded forest (25/10), grassland/subsistence 

farms (11/6), eucalyptus farms (18/13), sugarcane farms (24/8), wetland grasslands (47/21) 

bare areas and settlements (22/11). The training dataset was used to train the classifier. The 

commonly used maximum likelihood classifier was used in this study. The overall, producer’s 

and user’s accuracies of classification were derived using the test data on a per pixel basis. 

The producer's accuracy is a measure of how accurately the analyst classified the image 

data for each cover-type, while the user's accuracy is a measure of how well the 

classification performed in the field on a per cover-type basis.  

 

5.3.5. Regression analysis and mapping of leaf nitrogen  

The GPS point of the field sample plots were overlaid on the atmospherically corrected 

RapidEye images and the tree or grass canopy spectral profiles were extracted using an 

array of 2-by-2 pixels. Several red-edge spectral indices that have shown great promise for 

leaf nitrogen or chlorophyll estimation in previous studies including normalised difference 

vegetation index (NDVI) (Rouse et al., 1974), Gitelson and Merzlyak index (Gitelson and 

Merzlyak, 1997), Datt index  (Datt, 1998; Datt, 1999) and the MERIS terrestrial chlorophyll 

index (MTCI) (Dash and Curran, 2007) were computed from the spectral profile. After 

exploring the relationship between leaf N and the red-edge indices, the MTCI was chosen for 
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the prediction of leaf N in the study area as it provided the highest coefficient of 

determination (R2) with leaf N.   

 

It should be noted that the MTCI was originally derived for leaf chlorophyll estimation. We 

have used this index to estimate leaf N because leaf chlorophyll is a good correlate of leaf N, 

particularly at peak productivity (Yoder and Pettigrew-Crosby, 1995). The strength of the 

linear relationship between leaf N and the MTCI was assessed using a bootstrapped 

(McGarigal et al., 2000) linear regression (Eq.1) because of the small number of sample 

points.   

ݕ  = ݔ݉ + ܿ          (1) 

 

where y is the leaf nitrogen concentration, x the vegetation index (i.e. MTCI), m the slope and c the intercept on 

the y-axis. 

 
The regression coefficients were computed for 1000 iterative sampling with replacement, i.e. 

for each iteration, 2/3 of the data were randomly drawn and used for calibration of the 

regression model and the remaining 1/3 for validation. For each iteration, the root-mean-

square error (RMSE, Eq.2) of calibration and validation (termed standard error of prediction 

(SEP, same as Eq.2)) were computed. The leaf N for each pixel of the vegetation index 

image was then predicted using Eq.1, whereby, m and c were the average values for the 

1000 iterations in the bootstrapped linear regression.  

ܧܵܯܴ  = ට∑ ሺ௬ି௬ᇱሻమ೙೔సభ ௡          (2) 

 

An MTCI map was derived from the RapidEye image using the ENVI 4.8 bandmaths feature. 

Using the linear regression equation involving MTCI, a leaf N concentration map was 

computed from the MTCI map. To evaluate the effect of forest fragmentation on leaf N stock, 

the land cover map derived from the WorldView-2 imagery was spatially re-sampled to a 

spatial resolution of RapidEye i.e. to 5 m. Lastly, differences in leaf N concentration between 

the different land cover classes were assessed. First, ROIs for the different land cover 

classes were created and overlaid on the leaf N Map using ENVI software. Subsequently, 

leaf N values for the different land cover classes were extracted from the N map and saved 

as text files. Tables for the leaf N values were then created. The differences among the 

various land cover classes were assessed using descriptive statistics including a table of 

mean and inter-quartile ranges, and box plots. 
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5.3.6. Characterising spatial heterogeneity of leaf nitrogen concentration 

The spatial variation or heterogeneity of leaf N in the intact and fragmented regions were 

analysed using semivariogram models (Garrigues et al., 2006; Murwira and Skidmore, 

2006). Semivariogram modelling involves the hypothesis of statistical stationarity i.e. the 

characteristics of the underlying random function are invariant to the shifting of a group of 

pixels from one part of the image to another (Garrigues et al., 2006). In this study, we 

proposed to assess the spatial variation of leaf N from exponential models fitted to 

experimental semivariograms (Eq.3). The exponential model was adopted in this study as it 

provided the best fit when compared to the spherical and Gaussian models.  
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where γ(h) are the semivariances, z(u) is the pixel value at position u in the input map, 

z(u+h) is the pixel value at position u+h in the input map and h is the lag vector representing 

separation (distance) between two spatial points (pixels). We used a lag tolerance of 200 

pixels (600 m). Two parameters that describe a semivariogram are of particular importance 

in this study: (i) the sill represents the point (semivariance) at which a semivariogram levels 

off and (ii) the range represents the lag distance at which a semivariogram reaches the sill. 

The range describes the size or scale of the dominant objects in an image that give rise to 

the semivariogram structure (Jupp et al., 1988).  The semivariograms were modelled using 

the Integrated Land and Water Information System (ILWIS) software (ITC, Enchede, The 

Netherlands). 

 

5.4 Results 

5.4.1. Land-cover classification from WorldView-2 imagery 

An overall classification accuracy of 85% (kappa coefficient = 0.79) was obtained for the 

land-cover classification (Figure 5.2). With the exception of the normal grassland class 

(pasture and farmlands), the producer and user accuracies were in general high (Table 5.1). 

The low user’s accuracy (44%) for the grassland class was due to a miss-classification of 

wetland grassland pixels (16% of wetland pixels) into other grasslands (pasture and 

farmlands). Natural forest remains by far the largest (about 7500 ha) land-cover type in the 

study area followed by wetland grasslands (Table 5.2). The average patch size of natural 

forest, eucalyptus farm, grasslands (pasture and subsistence farms) and sugarcane farms in 
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the fragmented landscape are 5900 m2, 3100 m2, 1500 m2 and 625 m2, respectively; yielding 

an overall patch size of 2781 m2.  

 

Table 5. 1: Classification accuracies for land-cover types in the study area using Rapideye 
imagery 

Land cover type Producer’s 
accuracy (%) 

User’s accuracy 
(%) 

Natural forest (the intact forest and patches in the 
fragmented landscape) 

96 94 

Grasslands (pasture and farmlands) 76 44 
Wetland grasslands 79 97 
Degraded areas (thickets of shrubs,  secondary 
forest trees and invasive aliens) 

88 90 

Eucalyptus farms 94 89 
Sugarcane farms 95 67 
Bare soil and settlements 100 98 

 

Table 5. 2: Surface area of land-cover classes in the study area. 
  Broad landscape types:   

Land cover class (LC)  Fragmente
d 
landscape 
(ha) 

Intact 
forest 
(ha) 

Swamp 
wetland 
(ha) 

Total area 
(ha) 

% of LC 
class: 

Natural forest 1 821 4 430 1 305 7 555 41.7 

Grassland/subsistence 
farms 

1 243 5 366 1 615 8.9 

Wetland grasslands 2 211 94 2 352 4 657 25.7 

Degraded forest 867 18 310 1 195 6.6 

Eucalyptus farms 195 18 0 214 1.2 

Sugarcane farms 683 19 678 1 380 7.6 

Bare soil and settlements 1 150 38 294 1 481 8.2 

Total area (ha) 8 169 4 623 5 305 18 097   

% of landscape type 45 26 29   
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Figure 5. 2: Land cover classes for the study area 

 

5.4.2. Statistics of laboratory measured leaf nitrogen  

The laboratory measured leaf N (Figure 5.3) showed the following statistics; mean = 2.19%, 

maximum = 4.76%, minimum = 0.70% and standard deviation (SD) = 0.94%. The grass leaf 

N concentration (mean = 1.38%) was significantly (p-value < 0.0001) lower than the tree leaf 

N (2.66%). Furthermore, a Shapiro-Wilk normality test conducted on the data showed that 
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the leaf N data for grasses and trees were normally distributed; grass (W = 0.92, p-value > 

0.05) and trees (W = 0.98, p-value > 0.05).  

 

Figure 5. 3:  Laboratory measured leaf N for grasses and trees 

 

5.4.3. Mapping leaf nitrogen from RapidEye imagery 

Amongst the four vegetation indices investigated, the MTCI yielded the highest linear 

regression with leaf nitrogen (R2 = 0.52, SD = 0.05) and the lowest prediction error on the 

test data (SEP = 0.65% i.e. 29% of mean leaf N, SD = 0.08) (Table 5.3, Figure 5.4).  The 

commonly used NDVI yielded the highest prediction error (SEP = 0.77, SD = 0.1) amongst 

the indices applied in this study.  

 

The regression model based on the MTCI (Eq. 4) was used to predict leaf N concentration 

for every pixel on the RapidEye image (Figure 5.5). 

 ሾܰሿ = 0.8926 ∗ ܫܥܶܯ − 0.6103       Eq.4. 

 

where [N] is the leaf N concentration (%). The slope of the line of best fit (0.8926) and the 

intercept (-0.6103) were the means for 1000 bootstrapped iterations.  
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Table 5. 3: Training and validation results for predicting leaf nitrogen concentration based on 
bootstrapped linear regression for 1000 iterations 

Index Formulation (Rλ = 
reflectance at wavelength 
(λ nm)) 

Calibration model Validation 
Av 
R2 

SD 
R2  

Av 
RMSE 

SD 
RMSE 

Av  
SEP 

SD 
SEP 

NDVI (R820 - R660)/(R820 + R660) 0.34 0.05 0.75 0.05 0.77 0.10 
Datt (R820- R710)/(R820 - R660) 0.49 0.04 0.66 0.04 0.68 0.08 
SR R820/R710 0.47 0.05 0.67 0.04 0.70 0.08 
MTCI (R820- R710)/(R710 - R660) 0.52 0.05 0.64 0.04 0.66 0.08 

R2 = coefficient of determination, RMSE = root mean square error for the calibration model, 

SEP = standard error of prediction, Av = average, SD = standard deviation, NDVI = 

normalised difference vegetation index, Datt (named after Datt (1998)), SR = simple ratio, 

MTCI = MERIS terrestrial chlorophyll index 

 

 

Figure 5. 4: Linear relationship between observed and predicted leaf N concentration using 
linear regression models for MERIS terrestrial chlorophyll index (MTCI). RMSE = Root mean 

square error  
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Figure 5. 5: Leaf N concentration in the study area 

 

5.4.4. Differences in predicted leaf nitrogen among land cover types 

Table 5.4 shows the descriptive statistics of predicted leaf N for the large intact forest areas 

(intact inland coastal forest and dune forest) and leaf N of land-cover types in the degraded 

landscape including small natural forest patches, degraded forest patches, grasslands, 

eucalyptus and sugarcane farms.  Among the cover types, eucalyptus farms showed the 

highest average leaf N concentration. The conversion of intact forest into grasslands 

significantly reduces the leaf N stock in the landscape. The Natural forest fragments in the 

disturbed area still showed leaf N concentrations comparable to those of the large intact 

forest areas.  
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Table 5. 4: Statistics of predicted leaf nitrogen 

 Intact 
inland 
forest 

Dune 
forest 

Natural 
forest in 
fragmented 
landscape 

Degraded 
forest in 
fragmented 
landscape 

Grasslands/ 
subsistence 
in 
fragmented 
landscape 

Eucalyptus Sugarcane

Mean 2.93 2.77 2.47 2.27 1.45 3.13 2.03 
1st 
quartile 

2.59 2.48 1.950 1.82 1.26 2.44 1.53 

3rd 
quartile 

3.27 3.09 2.98 2.68 1.56 3.80 2.40 

SD 0.52 0.55 0.70 0.61 0.31 0.96 0.69 
SD = standard deviation 

 

5.4.5. Scale of leaf nitrogen variability 

Leaf N varies at a higher distance (50 m) in the fragmented landscape when compared to 

the intact forest (25 m) (Table 5.5 and Figure 5.6). The lower autocorrelation distance of leaf 

N variability in the intact forest probably correspond to tree crown level variability while the 

autocorrelation distance in the fragmented landscape might depict spatial dependence at the 

scale of subsistence fields (e.g. crop and eucalyptus farms) in the region (i.e. 2500 m2 for a 

rectangular field). It should be recalled that the land-cover classification yielded an average 

patch size of 2781 m2 in the fragmented landscape. 

 

Table 5. 5: Exponential model parameters for semivariograms of leaf nitrogen  

Land cover type Nugget Sill  Range (m) 
Intact indigenous forest 0.05 0.26 25 
Fragmented landscape 0.05 0.5 50 
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Figure 5. 6: Semivariograms of leaf nitrogen for the intact forest and fragmented landscape  

 

5.5 Discussion  

 

This study has demonstrated the utility of RapidEye imagery for mapping leaf nitrogen 

concentration at the broad landscape scale, corroborating the results obtained by Ramoelo 

et al. (2012). Leaf N concentration was mapped with a prediction error equal to 29% of mean 

nitrogen concentration. The accurate mapping of leaf N concentration with Rapideye 

imagery can be attributed to the presence of the red-edge band at 710 nm. MTCI, an index 

derived from the red-edge band at 710 nm provided the highest accuracy of estimation of 

leaf N in this study. Variations in the red-edge reflectance are mostly controlled by 

differences in leaf chlorophyll concentration. Therefore, the positive correlation between leaf 

N and MTCI depends on the positive correlation relationship between leaf N and leaf 

chlorophyll and this relationship has been shown to vary with leaf phenology (e.g. Huang et 

al., 2004). Low cost spaceborne sensors with strategic bands in the shortwave infrared 
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(SWIR) might improve on the spatial modelling of leaf N because most of the spectral 

absorption features of nitrogen are located in the shortwave infrared (Curran, 1989). It is 

hoped that the Sentinel-2, an upcoming spaceborne sensor to be launched by the European 

Space Agency (ESA) with strategically located bands in the visible to SWIR would provide 

new opportunities to routinely assess and monitor leaf N stocks in fragmented and 

subsistence farming landscapes.  

 

The loss of leaf N stock following forest degradation in the tropics is not an unknown 

phenomenon. However, the ability to map leaf N at the broad landscape facilitates the task 

of analysing the effect of forest degradation on the spatial distribution of leaf N on a plot-by-

plot level, thus permitting a better understanding of different landscape patterns and 

processes. This is even more relevant in the tropical forest region of Africa, where more than 

80% of the population depends on subsistence farming for their livelihoods. Mapping leaf N 

at the scale of the RapidEye images (5 m) in the tropical forest systems of Africa would allow 

for a farm-to-farm assessment of leaf N stocks because of the usual small sizes of 

subsistence fields. For example, this study shows that leaf N in the degraded landscape 

varies at a scale (50 m) that might correspond to the size of a subsistence field in the region. 

Thus, the ability to map leaf N at the farm-size scale might provide a greater understanding 

of the different land management or farming practices at that scale. Leaf N maps could be 

used in participatory exercises with the farming communities to create awareness on the 

consequences of forest degradation on leaf N and hence productivity of subsistence farms.  

 

The results of this study show that deforestation and the subsequent conversion of the 

degraded area into grasslands leads to loss of nitrogen from the system. However, patches 

of indigenous forest within the degraded areas still retain relatively high concentration of 

nitrogen in their foliage. This also applies to eucalyptus trees which are exotic species grown 

in the degraded area. The cleared areas in the study site are mostly used for farming of 

crops like sweet potato, maize and sugarcane. The sandy soils in the area are low in fertility. 

Thus, soil fertility in the area is highly dependent on the decomposition of the dead organic 

matter, reason for which crop production quickly declines after one to two years of farming 

on the cleared land. Furthermore, farming methods used in this area are not adequate to 

maintain soil fertility for long periods of time. Farmers often resort to clearing more forest 

area to acquire new fertile lands. The vicious cycle of forest clearance and poor farming 

methods leads to soil depletion and subsequent acquisition of new fertile forest land, 

resulting in a high rate of forest loss.  
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Indigenous forest patches in the degraded area can serve as nutrient sources for the 

surrounding farmlands. Leaching and surface runoff from the forest patches might feed 

adjacent grasslands and farmlands with nutrients. While both exotic and indigenous trees 

have the potential to provide nitrogen replenishment in degraded tropical systems, 

domestication of indigenous tree species has been considered in the past two decades as 

an alternative to subsistence commercial plantations and slash-and-burn operations 

associated with the destruction of tropical and sub-tropical indigenous forests (Sanchez et 

al., 1997; Leakey and Simons, 1998; Simons and Leakey, 2004). Although the commercial 

value of domesticated indigenous trees would not meet those of e.g. Eucalyptus spp. for the 

construction business, agroforestry and non-timber products of domesticated indigenous 

species offer a number of benefits in comparison to commercial plantations: 

 

- indigenous species sustain greater biodiversity more than subsistence exotic 

commercial forestry plantations, 

- pockets of indigenous trees may provide corridors of faunal migration and floral 

dispersion, 

- indigenous trees use less water (Zhou et al., 2002 and are better adapted to soil 

logging conditions in the swamp wetlands, and 

- indigenous forest provide food resources and medicine to poor rural communities.  

 

Thus, mixed farming practices with patches of indigenous tree species should be 

encouraged in fragmented landscapes to help sustain biodiversity in degraded tropical forest 

(Prasad, 2003). On the other hand, allelochemicals in eucalyptus leaf litter may suppress 

growth of understorey vegetation (May and Ash, 1990).   

 

5.6 Conclusions 

 

The following conclusions could be drawn from the study:  

 

- Nitrogen can be mapped at peak productivity using RapidEye sensor. 

- Forest fragmentation significantly affects leaf nitrogen concentration. 

- Eucalyptus trees tend to accumulate as much leaf nitrogen as the natural forest in 

the Dukuduku region.  
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6 PHYSIOCHEMICAL PROCESSES UNDERLYING THE COMPOSITION 
AND DISTRIBUTION OF VEGETATION 

 

This chapter summaries the work done by Ms Kelly Rautenbach in fulfilment of the requirements for 
the degree of Magister Scientiae in the Faculty of Science at the Nelson Mandela Metropolitan 
University (NMMU) under supervision of Professor J.B. Adams in January 2015 titled “Present state of 
macrophytes and responses to management scenarios at the St Lucia and Mfolozi Estuaries”. The full 
thesis can be accessed as a pdf from NMMU. 

 

The St. Lucia Estuary, the largest estuary in South Africa, has been subject to many natural 

(a decade long drought) and anthropogenic impacts. A particular mouth manipulation 

activity, the artificial separation of the Mfolozi River and the St Lucia Estuary in 1952, was 

done to stop the perceived “silting up” of the estuary, but resulted in a decrease in 

freshwater supply. The changes in inflows (both fresh and marine) are controlled by 

management decisions and affect other system parameters such as salinity, water level and 

turbidity, which influence the distribution of biota. Therefore knowledge on the physico-

chemical environment and eco-physiological tolerances of macrophytes will lead to informed 

future management decisions. 

 

The first of the three objectives carried out for this study determined the present state and 

distribution of the macrophytes of the St. Lucia and Mfolozi estuaries. The macrophyte 

habitats mapped in 2008 and 2013 were the submerged macrophytes, reeds and sedges, 

mangroves, grass and shrubs, salt marsh (succulent) and swamp forest. Results indicated 

that low salinity in the lakes and high water level in 2013 caused die-back or expansion of 

particular habitats. Submerged macrophytes, in particular Stuckenia pectinata, grows well in 

water with salinity <15 ppt, therefore this habitat increased by 412 ha (96%) in cover since 

2008. Salt marsh decreased by 553 ha (57%) due to inundation. Since 2008 the reeds and 

sedges increased by 390 ha (in North Lake and the Narrows) due to the salinity decrease. In 

the Narrows the mangroves decreased by 28 ha (9%) in area cover. This was due to the 

drought that persisted for so many years, which caused low water levels and non-tidal 

conditions. 

 

The second objective was to determine the present state / health of the mangroves at four 

sites along the Narrows by assessing sediment condition and population structure of the 

trees. These results were compared to those obtained in 2010. The total density of 

Avicennia marina increased since 2010, however this was due to the large increase in 

seedlings at Site 1, the back channel site. The highest sediment salinity (26 ppt) and 

porewater salinity (29 ppt) was recorded for this site and these results show that this back 



95 
 
 
 
 

channel site was strongly influenced by the open Mfolozi Estuary (increase in marine waters) 

and tidal conditions at the time of sampling in 2013. 

The total density of Bruguiera gymnorrhiza decreased, but an increase in adults was 

recorded at Site 2, the freshwater site. The soil collected from the Bruguiera quadrats was 

fresher and drier than that of the Avicennia quadrats of Site 2. Lack of seedlings (of both 

species) was due to the dense stands of Acrostichum aureum (mangrove fern) and 

Phragmites australis (common reed) and a thick, impenetrable mat of Avicennia 

pneumatophores. 

 

At Sites 3 and 4, the drier sites (where sediment moisture contents were the lowest for all 

sites at 43 and 42% respectively), seedling and sapling density was low, but adults 

increased in density since 2010. Recruitment and survival were impacted by the harsh 

environmental conditions that prevailed prior to 2013 (low water level and non-tidal 

influence), but adults survived. 

 

The results of the test that determined the percentage of aerenchyma of the 

pneumatophores indicated that waterlogging stress did not affect the aerenchyma of the 

pneumatophores. However the period of inundation was probably not significant enough to 

have affected the production of aerenchyma. 

 

The third objective formed part of an ongoing study by the Global Environmental Facility 

(GEF) on the feasibility of linking the Mfolozi River back to the St Lucia Estuary and the 

responses of these systems to different management scenarios: 1) the “do nothing” 

scenario; 2) maintain separate Mfolozi and St Lucia mouths representing an open mouth 

condition; and 3) actively facilitate a single mouth (therefore linking the Mfolozi and St Lucia 

mouths). Data gathered on the eco-physiological tolerances of the dominant macrophyte 

species was used to predict the response of the different habitats to these various 

management scenarios and the results indicated that the best management scenario would 

be to actively facilitate a single mouth (Scenario 3) as the estuary habitats would increase 

significantly because of preferred tidal and saline conditions, as this would represent more 

natural conditions. The results of the study will provide input to recommendations for future 

“adaptive management” strategies for the Global Environmental Facility (GEF) Project. 
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7 GEOPORTAL DATA DISSEMINATION 

 

A geoportal data viewer for the project map deliverables has been created and is hosted by 

the Department of Environmental Affairs (DEA), Branch: Oceans and Coasts, Chief 

Directorate Integrated Coastal Management at  

http://mapservice.environment.gov.za/Coastal%20Viewer/.  

 

Follow the link to the Map Viewer, to access the following Web Map Application (Figure 7.1). 

When clicking on the “More” button, layers can be switched on and off. Tools are provided to 

the left of the Legend box enabling the viewer to zoom in or out. 

 

The Coastal Viewer of DEA allows users to switch layers on and off, as well as zoom in or 

out to view the data at appropriate scales (Figure 7.1). The data is located under Layers > 

Project Data Outputs > St Lucia vegetation (2010-2014) and consists of four vegetation 

layers with associated metadata. The legend of each layer can be expanded by pressing the 

+ button to the left of the layer. 

 

  

Figure 7. 1: Coastal Viewer hosted by the Department of Environmental Affairs.
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8 CONCLUSIONS 

The development of new Earth Observation (EO) methods is essential to providing time-cost 

effective ways of assessing wetland or estuarine processes. Conventional field-based 

surveys are laborious, time-consuming, expensive and risky in the wetland environment. 

This study has explored the utility of earth observation data consisting of remote sensing and 

other ancillary data to provide information on the spatial distribution on the iSimangaliso 

Wetland vegetation types and condition. The general approach consisted of understanding 

leaf-to-spaceborne remote sensing of wetland tree species, vegetation community or habitat 

types and vegetation nutrient status. The physiochemical processes underlying the 

composition and distribution of vegetation in the estuary were also investigated.  

  

Key findings include:  

• Twenty-two spectral bands are optimal for the discrimination of 

uMfolozi/uMsunduzi/St Lucia estuary tree species. These are bands that are related 

to the biochemical and biophysical properties of the leaves 

• Leaf N concentration, an important nutrient in plant growth and development can be 

accurately predicted using remote sensing data. Leaf N variability is highest in spring 

amongst the uMfolozi/uMsunduzi/St Lucia estuary trees when compared to summer, 

autumn and winter.  

• Spatial and spectral resolution of modern very high resolution imagery e.g. 

WorldView-2, RapidEye and SPOT are sufficient to satisfactory map and monitor 

uMfolozi/uMsunduzi/St Lucia estuarine vegetation communities or habitat types. 

• Indigenous forest fragmentation in the uMfolozi/uMsunduzi/St Lucia estuary leads to 

significant losses in leaf N as most of the land-cover types (e.g. pasture and 

subsistence farmlands) resulting from forest degradation showed lower leaf N when 

compared to the original indigenous forest.   

• Low salinity in the lakes and high water level in 2013 caused die-back or expansion 

of particular habitats. 

 

In conclusion, the availability of new multispectral sensors such as RapidEye and 

WorldView-2 moves remote sensing closer to widespread monitoring of estuarine vegetation 

condition including species and nutrient status.   
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Cho MA, Ramoelo A, Debba P, Mutanga O, Mathieu R, Van Deventer H & Ndlovu N 2013. Assessing 

the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data. 

Landscape Ecology, 28(8): 1479-1491. 
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resolution remote sensing imagery: a means to monitor and raise public awareness on the status of 
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7-11 September 2015. 
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Van Deventer H, Cho MA, Mutanga O, Naidoo L, Dudeni-Thlone N. 2014. Identifying the best season 

for mapping evergreen swamp and mangrove species using leaf-level spectra in an estuarine system 
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P across four seasons for six subtropical forest evergreen trees. ISPRS Journal of Photogrammetry 

and Remote Sensing, 101: 209-220. 

 

Van Deventer H. In review. Remote Sensing of wetland tree species in the iSimangaliso Wetland 
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requirements for the degree of Doctor of Geography.  
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