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EXECUTIVE SUMMARY 
 
This report details various accomplishments and findings of the project entitled “The Limits 
of Predictability of the South African Seasonal Climate” funded by the South African Water 
Research Commission from 2010 to 2014. The project has two main goals concerning South 
African seasonal climate: to characterize the degree to which the predictability of seasonal 
forecasts varies from year to year, and to identify causes of such variations; and to 
characterize the degree to which anthropogenic greenhouse gas emissions have altered the 
chance of extreme months. In addition, the project includes a case study extending the 
predictability and attribution methods to a hydrological case study: the stream flow discharge 
into the Okavango Delta, Botswana. 
 
The first part of this project examines the degree to which seasonal predictability, and thus 
the confidence in our forecasts, may be inherently changing through time. Seasonal forecasts 
are probabilitistic in nature, consisting of a range of plausible outcomes. While the skill of 
seasonal forecasts in estimating the resultant real-world realization of seasonal weather has 
been, and continues to be, extensively investigated, not much attention has been given to 
whether the range of forecast plausible outcomes varies with time, and whether knowledge of 
that uncertainty would be a useful addition to seasonal forecast products. This project has 
three aims with regard to characterizing the potential for information content in variations in 
the forecast range of seasonal outcomes. [Sections 1 and 3] 
 
To determine the limits of the predictability of the South African seasonal climate state and 
how these limits depend on the season and on the ocean and land surface forcing 
Most analyses in this project addressing this aim use a unique climate model resource, the 
weather@home/SAF project, which included a large number of “hindcast” (like forecasts but 
with perfect knowledge of the boundary conditions) simulations covering the 1960-2009 
period, using a similar modeling system to that used by the operational seasonal forecast 
service issued by the University of Cape Town. The ranges of simulations exhibit a strong 
east-west gradient in the case of precipitation, and a strong coastal-inland gradient in the case 
of temperature. Interannual variations in the spread of the simulations are larger than 
expected purely by chance given the number of simulations. While the occurrence of El Niño 
and La Niña events in the tropical Pacific (known to strongly influence South African 
climate) are linked to variations in the spread of the simulations, robust relationships are not 
found for other areas of the ocean that are also considered to strongly influence South African 
climate. While some suggestions of interannual variations in the spread of forecasts of stream 
flow in a major hydrological system, the Okavango River, are found, the evidence for a 
relationship is not conclusive. [Sections 2, 4, 5, and 8] 
 
To estimate the contribution of anthropogenic emissions to forecast predictability 
The spread of model simulations shows long-term narrowing and widening trends for both 
monthly rainfall and temperature, with the nature of the trends varying as a function of 
location and season. A narrowing of the width of precipitation spread occurs over inland 

iii 
 



provinces from late austral spring to summer. Trends in temperature spread exhibit narrowing 
tendencies along the coasts from spring to early summer. These long-term trends are larger 
than expected due to sampling considerations, and in some cases amount to an appreciable 
fraction of the average spread of the simulations. While a formal analysis linking the trends to 
anthropogenic emissions is not conducted, anthropogenic emissions are the major long-term 
driver of climate change, especially for temperature, and thus the narrowing and widening 
trends indicate the potential that anthropogenic emissions are substantially altering the nature 
of South African seasonal forecasts. [Section 4] 
 
To characterise the relevance of the limits of predictability in the operational forecast setting 
The analyses of the variations in the spread of the simulations described above indicate some 
potential for added-value in the addition of a measure of confidence to seasonal forecast 
products. The variations in simulation spread found in this project are reflected in variations 
in model forecast skill, indicating that the variations in simulation spread do indeed reflect 
real-world variations in seasonal predictability. Furthermore, some long-term trends in spread 
amounted to a substantial fraction of the averaged simulation spread. However, how 
effectively such a measure of confidence can be implemented depends strongly on how 
seasonal forecasts are presented. When described as an anomaly with respect to some 
baseline climatology, skill and confidence in the forecast may be increasing through time as a 
result of anthropogenic climate change, a somewhat artificial apparent increase in confidence 
that may overwhelm any real increases along the lines of those studied in this project. 
[Sections 4, 5, 8, 9] 
 
The second part of this project examines the degree to which anthropogenic emissions may 
be altering the chance of unusual monthly events. As the climate warms in response to 
anthropogenic emissions, many of the largest impacts are expected to be manifest through 
changes in the frequency and intensity of extreme weather events. There has been much 
attention in the media over the question of whether anthropogenic emissions are “to blame” 
for specific recent damaging weather events, and the question of liability may be emerging as 
a major component of a “loss and damage” mechanism for distributing international climate 
change adaptation funding. This project has one aims with regard to characterizing the 
relation between anthropogenic emissions and extreme weather. [Sections 1, 6, 7, and 8]  
 
To estimate the attribution of the risk of extreme weather events to anthropogenic emissions 
The project included further development of the Weather Risk Attribution Forecast (WRAF) 
service, a regular monthly assessment of the degree to which anthropogenic greenhouse gas 
emissions have altered the chance of weather events around the world (frequently termed 
“event attribution”). Using simulations generated through the WRAF system, it is found that 
event attribution estimates are neither sensitive to the choice of climate model used, nor to 
downscaling methods when examining the chance of flooding events in a hydrological 
system. According to the analyses in this project, anthropogenic greenhouse gas emissions 
have at least doubled the chance of unusually hot months over South Africa during all times 
of the year, and similarly at least halved the chance of cold months. Changes in the chance of 
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unusual rainfall events are less strong, but there does appear to be at least a decrease in the 
chance of unusually wet months during the onset and cessation of the wet season, with a 
concomitant increase in the chance of dry events. Despite recent tendencies toward higher 
floods in the Okavango Delta, analyses in this report indicate that anthropogenic emissions 
have decreased the chance of higher floods as a result of increased evaporation in a warmer 
climate. [Sections 6, 7, 8] 
 
Part of this project comprised the Ph.D. research of K. Lawal at the University of Cape Town 
(UCT). Analysis of simulations generated under this project was also carried out by O. 
Angélil, a South African, as part of his M.Sc. studies at ETH Zurich, Switzerland. Finally, 
output from simulations from this project have been published online through the data portal 
of the International CLIVAR C20C+ Detection and Attribution Project (C20C+ D&A; 
accessible at http://esg.nersc.gov; project “c20c”) and were distributed by USB stick to 22 
African researchers in October 2013. [Section 10] 
 
Work is nearly complete on setting up a new version of the UCT seasonal forecast using a 
more realistic modeling setup and using a much larger number of simulations. The larger 
number of simulations, in particular, is a necessary condition for adding confidence guidance 
into the forecast product. Nevertheless, the forecast system still does not include dynamical 
interaction between the atmosphere and ocean: thus whether the ocean dynamics themselves 
exhibit variations in predictability is something that has not yet been examined with respect 
to the South African seasonal climate. While the results of this project indicate the potential 
for added information content with the addition of confidence guidance on seasonal forecasts, 
the potential for effective implementation in an operational seasonal forecast depends 
strongly on the framework used for communicating the forecasts, as noted above. The larger 
number of simulations, in particular, is a necessary condition for adding confidence guidance 
into the forecast product. Further investigation of how confidence guidance can potentially fit 
within different communication strategies would thus be the next obvious step. [Section 9] 
 
The attribution component of this project served as a trial experiment for the World Climate 
Research Programme’s International CLIVAR C20C+ Detection and Attribution Project, 
both in terms of developing a template and for testing various aspects of the planned 
experimental protocols. Lessons from this trial experiment are being applied in the fulfillment 
of the C20C+ D&A Project’s core experiment, now underway; the University of Cape Town 
is contributing to that core experiment with simulations now underway, which will be 
published on the C20C+ D&A data portal. Lessons for development and operation of the 
Weather Risk Attribution Forecast, a globally unique product, are similarly informing 
development of comparable services in the U.K. and U.S.A. [Section 9] 
 
The event attribution capacity now existing at the University of Cape Town, with extensions 
to hydrological impacts, is especially relevant given recent concern that Africa should be 
developing an attribution capacity to inform climate change adaptation funding mechanisms. 
Facilitation of further development of African capacity for attribution analysis, such as the 
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workshop and fellowship programme being planned with the African Center of 
Meteorological Application for Development (ACMAD) and other institutions outside 
Africa, could thus form a major development in availability of scientific information 
supporting climate change adaptation activities. [Section 9] 
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Figure 1.1  A snapshot of surface air temperature from a simulation of the HadRM3P-50km 

atmospheric model analyzed in this project (Section 2.2). The regional 
HadRM3P-50km regional atmospheric model was run at a spatial resolution of 
50 km, embedded within a global atmospheric model running at 150 km 
resolution. Using thousands of home computers volunteered by people around 
the globe, this modeling pair was run for tens of thousands of years’ worth of 
simulations. 

Figure 2.1  The spatial domain covered by the HadRM3P-50km regional model, denoted by 
the box covering Africa south of 10oN. The full map indicates the CORDEX-
Africa spatial domain used by the benchmark simulations. The dotted rectangles 
denote diagnostic regions, some of which are used in Section 2.5. 

Figure 2.2  Map showing locations of the 96 457 volunteers in 138 countries around the 
world running climateprediction.net on their home computers, as of 7 March 
2012. Separate statistics are not available, but a large fraction of these 
volunteers were running weather@home/SAF simulations. 

Figure 2.3  The number of weather@home/SAF simulations with results recorded on the 
central results server for each month in the 1960-2009 periods. Time series are 
shown separately for each calendar month. Sequences of simulations during the 
20th century were started at 5-year intervals, and due to technical problems in 
running later years of simulation sequences these later years were not as well 
sampled. Each one-year simulation started in December and ended in 
November; with some volunteers discontinuing the simulations, earlier months 
in this December-November year are thus better sampled than later months. 

Figure 2.4  The anomalies of annual average precipitation rate for the inland provinces (the 
Free State, Gauteng, Limpopo, Mpumalanga, and North West province) from 
the weather@home/SAF simulations analyzed in later sections. The solid line 
denotes the ensemble annual mean. In unit of mm day-1. A 1 mm day-1 anomaly 
in precipitation rate corresponds to an annual total anomaly of 360 mm (because 
the climate models run on a 360-day calendar). 

Figure 2.5  The anomalies of annual average precipitation rate for the coastal provinces 
(Eastern Cape, KwaZulu-Natal, the Northern Cape, and the Western Cape) from 
the weather@home/SAF simulations analyzed in later sections.  The solid line 
denotes the ensemble annual mean.  In unit of mm day-1. A 1 mm day-1 anomaly 
in precipitation rate corresponds to an annual total anomaly of 360 mm (because 
the climate models run on a 360-day calendar). 

Figure 2.6  The annual cycle in precipitation and temperature in simulations of the 
HadRM3P-50km model run under different configurations. Region 12 
corresponds to the northeastern half of South Africa while Region 13 
corresponds to the Western Cape area; the exact regional specifications are 
shown in Figure 2.1. The grey and black lines show the results for the different 
model configurations listed in Table 2.3. Data are also shown from the GPCC 
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(Rudolf et al., 2010) and University of Delaware (UDel; Willmott and Matsuura, 
1995) observationally-based data products and from the NCEP2 reanalysis 
(Kanamitsu et al., 2002). 

Figure 2.7  The mean annual cycle of precipitation over each grid cell of the GPCC 
observationally-based data product (Rudolf et al., 2010) in the Western Cape 
area, from the GPCC product and from simulations of the HadRM3P-50km 
model run under different configurations. The location of this region within the 
South African context is visible in Figure 2.1 as “Region 13”. The colored lines 
show the results for the different model configurations listed in Table 2.3. 
Differences between annual cycles between the “cm” and “wm” simulations 
result from differences in the alignment of their spatial grids with local 
topography. Model data have been interpolated to the GPCC spatial grid. 

Figure 2.8  Time series of monthly precipitation anomalies from simulations of the 
HadRM3P-50km model run under different configurations. Region 12 
corresponds to the northeastern half of South Africa while Region 13 
corresponds to the Western Cape area; the exact regional specifications are 
shown in Figure 2.1. The lines with symbols show the results for the different 
model configurations listed in Table 2.3. Data are also shown from the GPCC 
(Rudolf et al., 2010) and University of Delaware (UDel; Willmott and Matsuura, 
1995) observationally-based data products and from the NCEP2 reanalysis 
(Kanamitsu et al., 2002). Values are anomalies from the mean annual cycle. 

Figure 3.1  Annual variations in precipitation rates (mm day-1) as anomaly of the 
climatological average over Limpopo Province (LMP) from a sample of the 
simulations for the month of July. a: mean anomalies of individual ensemble 
members (the black dots). b: the time series of the annual 90th and 10th 
percentiles of the values shown in panel a. c: time series of ensemble spreads of 
the data in panel a as measured by StdDev (standard deviation). d: time series of 
ensemble spreads as measured by RoP (range of possibility, the 10-80th 
percentile range). Red bars on plots of panel c and d represent 80% confidence 
intervals estimated through a Monte-Carlo bootstrap procedure. 

Figure 3.2  Seasonal spatial ensemble spreads for precipitation as evaluated by StdDev (first 
row) and RoP (second row). Third row: correlation coefficient (r) between 
StdDev and RoP. In columns are austral seasons: DJF – summer; MAM – 
autumn; JJA – winter; SON – spring. 

Figure 3.3  Seasonal spatial ensemble spreads for temperature as evaluated by StdDev (first 
row) and RoP (second row). Third row: correlation coefficient (r) between 
StdDev and RoP. In columns are austral seasons: DJF – summer; MAM – 
autumn; JJA – winter; SON – spring. 

Figure 3.4  Correlation coefficients (r) of inter-annual variations between RoP and StdDev 
for precipitation (blue lines) and temperature (red lines) for each province and 
month, calculated over the full period of simulations. Error bars indicate 80% 
confidence intervals estimated through a Monte-Carlo bootstrap procedure. 

Figure 4.1  Seasonal spatial trends (mm day-1 year-1) of ensemble spreads for precipitation 
as evaluated by StdDev (upper row) and RoP (lower row). In columns are 
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austral seasons: DJF – summer; MAM – autumn; JJA – winter; SON – spring. 
Figure 4.2  Seasonal spatial trends (oC year-1) of ensemble spreads for temperature as 

evaluated by StdDev (upper row) and RoP (lower row). In columns are austral 
seasons: DJF – summer; MAM – autumn; JJA – winter; SON – spring. 

Figure 4.3  Monthly trends (mm day-1 year-1) of ensemble spreads for precipitation over the 
nine South African provinces. a: StdDev, b: RoP. Black error bars indicate 80% 
confidence intervals estimated through a Monte-Carlo bootstrap procedure. 
Provincial abbreviations are as stipulated in Table 3.1.  

Figure 4.4  Monthly trends (oC year-1) of ensemble spreads for temperature over the nine 
South African provinces. a: StdDev, b: RoP. Black error bars indicate 80% 
confidence intervals estimated through a Monte-Carlo bootstrap procedure. 
Provincial abbreviations are as stipulated in Table 3.1. 

Figure 5.1  Maps of the correlations between time series of the RoP measure of the 
ensemble spread for provincial precipitation and the observed global SST during 
spring onset of the rain season for all provinces except WCP, for which it is the 
cessation period. The trend was removed from all data before calculations. The 
provinces and their abbreviations are listed in Table 3.1. 

Figure 5.2  Maps of the correlations between time series of the StdDev measure of the 
ensemble spread for provincial temperature and the observed global SST during 
the cold winter season. The trend was removed from all data before calculations. 
The provinces and their abbreviations are listed in Table 3.1. 

Figure 5.3  Correlations between measures of seasonal precipitation spread for the nine 
South African provinces and the indices of large-scale climate variability listed 
in Table 5.1 (AAO, IOD, MEI, and TSA). Black error bars indicate 90% 
confidence intervals estimated through a Monte-Carlo bootstrap procedure. 

Figure 5.4  Correlations between measures of winter and summer temperature spread for the 
nine South African provinces and the indices of large-scale climate variability 
listed in Table 5.1 (AAO, IOD, MEI, and TSA). Black error bars indicate 90% 
confidence intervals estimated through a Monte-Carlo bootstrap procedure. 

Figure 5.5  Average seasonal-provincial ranked probability skill score, RPSS, for 
precipitation as a function of ensemble spread. Measures of spread, StdDev (left 
panels) and RoP (right panels) were sorted into one of four equi-probable bins 
(horizontal axis). Corresponding hindcast and observed precipitation and 
temperature information in each bin were used to calculate RPSS on a seasonal-
provincial basis. Bin 1 contains smallest values of the measures of spread while 
largest values are accommodated in bin 4. 

Figure 5.6  Average seasonal-provincial ranked probability skill score, RPSS, for 
temperature as a function of ensemble spread. Measures of spread, StdDev (left 
panels) and RoP (right panels) were sorted into one of four equi-probable bins 
(horizontal axis). Corresponding hindcast and observed precipitation and 
temperature information in each bin were used to calculate RPSS on a seasonal-
provincial basis. Bin 1 contains smallest values of the measures of spread while 
largest values are accommodated in bin 4. 

Figure 6.1  Schematic of the procedure for producing the seasonal forecasts used in the 
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UCT attribution forecast system. Observed greenhouse gas concentrations are 
imposed for the real forecasts, while pre-industrial concentrations are imposed 
for the non-greenhouse-gas (non-GHG) forecasts. Sea surface temperatures for 
the non-GHG forecasts are modified by subtracting an estimate of the 
geographical warming attributable to historical greenhouse gas emissions. 

Figure 6.2  Time series of monthly temperature and precipitation over South Africa output 
from one of the forecast simulations each of HadAM3P-N96 and HadAM3-N48 
and for each of the real-world and non-greenhouse-gas-world (non-GHG) 
scenarios. Each line shows the time series starting from the hindcast month, 
through the then-current month, and on through the three forecast months. 

Figure 6.3  Monthly surface air temperature and precipitation from the HadAM3P-N96 
attribution simulations. Red and pink denote All-Hist/est1 simulations while 
light and dark blue denote NonGHG-Hist/HadCM3-p50-est1 simulations. See 
Table 6.1 for a description of these simulations. a) temperature over the Niño 
3.4 region of the tropical Pacific, b) temperature at the model grid box located 
over Kimberley, c) precipitation at the model grid box located over Kimberley. 

Figure 7.1  Schematic of the estimation of the Risk Ratio. If we have estimates for the 
probability distribution of some weather metric in both “real-world” and 
“nonGHG-world” conditions, then the RR is the ratio of the area of those 
distribution beyond a certain threshold. 

Figure 7.2  An example attribution forecast from the HadAM3P-N96 model. This shows the 
attribution results forecast in September 2013 for October 2013. Each of the 
regions are assigned one of six classifications based on an analysis of the 
“attribution forecast” simulations described in Sections 6.2.1 and 6.2.2 and in 
Figure 6.1. 

Figure 7.3  Pie charts showing the frequency of occurrence of each of the categories listed 
in the Figure 7.2 legend for unusually hot months over each region during all 
months in the 2008-2011 periods. 

Figure 7.4  Pie charts showing the frequency of occurrence of each of the categories listed 
in the Figure 7.2 legend for unusually cold months over each region during all 
months in the 2008-2011 periods. 

Figure 7.5  Pie charts showing the frequency of occurrence of each of the categories listed 
in the Figure 7.2 legend for unusually wet months over each region during all 
months in the 2008-2011 periods. 

Figure 7.6  Pie charts showing the frequency of occurrence of each of the categories listed 
in the Figure 7.2 legend for unusually dry months over each region during all 
months in the 2008-2011 periods. 

Figure 7.7  The attribution categories assigned to the South Africa/Namibia/Botswana 
region during the January 2009 through October 2011 period. This is the period 
when the three climate models have large ensembles of simulations: 60 for 
HadAM3P-N96, 50 for HadAM3-N48, and 56 for CAM5.1-2degree. Some 
months have been assigned by the “no major change” (green) class and another 
class, in which they are both included as triangles. The colors correspond to the 
same classification as in Figure 7.2. 
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Figure 8.1  Location of the Okavango River Basin. The inset shows annual river discharges 
at Mohembo since 1934. Note the strong multidecadal variability, marked by 
high flows during the 1960s and in the recent few years. 

Figure 8.2  Measured monthly flood hydrographs of the Okavango River at Mohembo for 
the three analyzed years, and discharge statistics for 1934-2012. 

Figure 8.3  Results of 50-member ensemble simulations of Okavango River discharges with 
Pitman model driven by climate simulated by HadAM3P-N96 (top) and 
CAM5.1-2degree (bottom). North Atlantic Oscillation (NAO) and Multivariate 
ENSO Index are included to illustrate their influence on deterministic skill of 
the simulations. 

Figure 8.4  Relationship between deterministic skill and predictability for 50-member 
ensemble simulations of Okavango River discharges with Pitman model driven 
by climate simulated by HadAM3P-N96 for 1965-2012 period. Predictability is 
measured as the 20-80th percentile range of the simulations, while skill is 
measured as the absolute error of the median of the simulations against the 
observed value. 

Figure 8.5  Attribution results for 2009-2011 floods, measured by discharge at Mohembo, 
based on a) bias-corrected HadAM3P-N96 simulations, b) downscaled 
HadAM3P-N96 simulations, c) bias-corrected CAM5.1-2degree simulations. 
Circles display p-value of Mann-Whitney test for differences between “real 
world” and “non-GHG world” ensemble distributions, with solid ones indicating 
significance at 0.05 level. In almost all cases (with the lone exceptional month in 
panel a possibly occurring during the spin-up phase of the simulations), the 
distributions of “real world” and “non-GHG world” are significantly different. 

Figure 8.6  Empirical probability distributions of monthly discharges at Mohembo from a) 
the bias-corrected HadAM3P-N96 simulations, b) the downscaled HadAM3P-
N96 simulations, c) the bias-corrected CAM5.1-2degree simulations. According 
to all three estimates there is a substantial shift away from high discharges 
toward low discharges from the “real world” to the “non-GHG world” scenarios. 

Figure 8.7  Empirical probability distributions of monthly temperature-derived potential 
evapotranspiration (PET) for a selected upstream location (Chinhama): a) bias-
corrected HadAM3P-N96 and b) bias-corrected CAM5.1-2degree simulations. 
With both models there is a substantial shift toward lower PET in the “non-GHG 
world” simulations. 

Figure 8.8  Empirical probability distributions of monthly rainfall for an upstream 
(Chinhama, upper row) and downstream (Mohembo, lower row) location, in the 
bias-corrected HadAM3P-N96 simulations (a, d), the downscaled HadAM3P-
N96 simulations (b, e) and the bias-corrected CAM5.1-2degree simulations (c, 
f). There is little difference in rainfall between the two scenarios at either 
location. 
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Figure 8.9  Monthly discharges at Mohembo, using “real world” rainfall and “non-GHG 
world” air temperatures for a) bias-corrected HadAM3P-N96 simulations b) 
downscaled HadAM3P-N96 simulations and c) bias-corrected CAM5.1-2degree 
simulations. Circles display p-value of Mann-Whitney test for differences 
between “real world” and “non-GHG temperature-world” ensemble 
distributions, with solid ones indicating significance at 0.05 level. The results 
closely match those in Figure 8.5, indicating that the difference in potential 
evapotranspiration between the two scenarios overwhelms any rainfall 
differences. 

Figure 8.10  Empirical probability distributions of monthly discharges simulated with “real 
world” rainfall and “non-GHG world” air temperatures from a) bias-corrected 
HadAM3P-N96 simulations, b) downscaled HadAM3P-N96 simulations, c) 
bias-corrected CAM5.1-2degree simulations. 

Figure 8.11  Fraction of attributable decrease in risk (FADR) for left) total annual discharge, 
and right) maximum monthly discharge 
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LIST OF ABBREVIATIONS AND ACRONYMS USED IN THIS STUDY 
 
AAO   AntArctic Oscillation 
ACCESS  Applied Center for Climate and Earth Systems Science  
ACMAD   African Center of Meteorological Application for Development 
C20C  Climate of the 20th Century  
CAM   Community Atmospheric Model 
CLIVAR  Climate Variability and Prediction (Predictability) 
CORDEX   Coordinated Regional Downscaling Experiment 
CSAG   Climate Systems Analysis Group 
CSIR   Council for Scientific and Industrial Research 
D&A   Detection and Attribution Project  
DJF    Austral Summer (December-January-February) 
ECP    Eastern Cape Province 
ENSO   El Nino-Southern Oscillation 
ERA-INTERIM ECMWF (European Centre for Medium-Range Weather Forecasts) Re- 

Analysis 
ETH    Swiss Federal Institute of Technology, Zurich, Switzerland 
FADR  Fraction of Attributable Risk 
FAR   Fraction of Decrease in Attributable Risk 
FSP    Free State Province 
GGP   Gauteng Province 
GHG   Greenhouse gases 
GPCC  Global Precipitation Climatology Centre  
HadAM3P   Hadley Atmospheric Model version 3p 
HadRM3P   Hadley Regional Model version 3p 
IOD    Indian Ocean Dipole 
JAMSTEC   Japan Agency for Marine-Earth Science and Technology  
JJA    Austral Winter (June-July-August) 
KZP    KwaZulu-Natal Province 
LBNL   Lawrence Berkeley National Laboratory, California, Los Angelis  
LMP   Limpopo Province 
MAM   Austral Autumn (March-April-May) 
MEI    Multivariate ENSO Index 
MLP   Mpumalanga Province 
NCEP  National Centers for Environmental Predictions 
NCP    Northern Cape Province 
NERSC   National Energy Research Scientific Computing Center, U.S.A. 
NOAA  National Oceanic and Atmospheric Administration 
NWP   North West Province 
PET   Potential Evapotranspiration 
PRECIS A U. K. Met Office Hadley Centre's regional climate modeling system 

(pronounced as in the French précis – "PRAY-sea"). 
RoP    Range of Possibility 
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SAF    Southern Africa 
SON   Austral Spring (September-October-November) 
SST    Sea Surface Temperature 
StdDev   Standard deviation 
TRMM  Tropical Rainfall Measuring Mission 
TSA    Tropical Southern Atlantic 
UCLA   University of California, Los Angelis 
UCT   University of Cape Town, Cape Town, South Africa 
U. K.   United Kingdom 
U. S. A.   United States of America 
USB    Universal Serial Bus 
WCP   Western Cape Province 
WCRP   World Climate Research Programme 
WRAF   Weather Risk Attribution Forecast  
WRC   Water Research Commission (South African) 
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1 Introduction 
 
1.1 Motivation 
The prospect of future improvement in seasonal forecasting underpins much of the 
development in frameworks for managing water resources. Yet against that prospect, recent 
progress in forecasting the seasonal climate state has been incremental at best. In this light, 
there is an urgent need to determine how predictable the seasonal climate state is over South 
Africa, given the knowledge of the ocean state, land surface state, and atmospheric 
composition that provide the conditions for predictions. The summer wet season, 
accompanied with a strong El Niño event, is considered the case with the highest 
predictability for a seasonal forecast, but beyond this little is known about the dependence of 
predictability as a function of the external conditions. Is there any predictability in seasons of 
weak hemispheric forcing anomalies, for instance? Some skill in forecasting seasonal 
temperature and temperature-derivatives derives from the fact we are in a changing climate, 
with a reference during a cooler period making a “warmer than normal” forecast increasingly 
likely to be accurate. How does the contribution from this long-term trend compare to those 
from year-to-year variability in the ocean and land state? It is imperative that these 
fundamental questions be addressed in order to confidently move forward with management 
activities which depend on seasonal forecasting. 
 
This report presents results of a first examination of how South African seasonal 
predictability varies from year-to-year and why it does so. It also examines the degree to 
which anthropogenic emissions may have altered the chance of extreme weather events, with 
implications on increasing predictability of the chance of these events under a changing 
climate. This is a climate-model-based study, using a variety of novel climate model data 
products tailored for attacking the aims of the project (Figure 1.1). Overall, the project has 
four main aims as listed in Table 1.1. 
 
1.2 Theoretical basis 
Forecasts of the seasonal climate state depend on three factors: the state of the ocean surface, 
the state of the land surface, and the chemical composition of the atmosphere. The 
atmosphere evolves rapidly from any given initial state, so information on the physical state 
of the atmosphere provides no discernible impact on a forecast months in advance. The ocean 
and land surface, on the other hand, vary more slowly, so their state can be reliably forecast 
months into the future. The influence of the slowly varying anomalies in the state of the 
ocean and land surface on the atmosphere thus provides the principle underlying seasonal 
forecasting. However, the atmosphere still provides plenty of "noise" on top of any 
predictable signal. Understanding of the fundamental limit this imposes on the predictability 
of seasonal forecasts for South Africa remains weak. 
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Figure 1.1 A snapshot of surface air temperature from a simulation of the HadRM3P-50km 
atmospheric model analyzed in this project (Section 2.2). The regional HadRM3P-50km 
regional atmospheric model was run at a spatial resolution of 50 km, embedded within a 
global atmospheric model running at 150 km resolution. Using thousands of home computers 
volunteered by people around the globe, this modeling pair was run for tens of thousands of 
years’ worth of simulations. 
 
Table 1.1 List of project aims 

 
Number Description Sections 
1 To determine the limits of the predictability of 

the South African seasonal climate state and 
how these limits depend on the season and on 
the ocean and land surface forcing 

3, 4, 5, 8 

2 To estimate the contribution of anthropogenic 
emissions to forecast predictability 

4 

3 To estimate the attribution of the risk of 
extreme weather events to anthropogenic 
emissions 

7, 8 

4 To characterize the relevance of the limits of 
predictability in the operational forecast 
setting 

4, 5, 8, 9 

 
Beyond this, the atmosphere is a highly nonlinear dynamical system. This complicates our 
understanding of the predictability of the seasonal forecast – the degree to which an accurate 
prediction is possible. 

 
The predictability is undoubtedly itself also a function of the ocean and land surface states. 
For example, in conditions with weak anomalous surface forcing, there may be little scope 
for an accurate prediction, whereas in conditions with strong forcing, such as an El Niño 
event, the atmospheric state may be highly constrained. There remains little understanding of 
how predictability varies as a function of the surface state, other than the existence of a 

2 

 



relatively higher predictability in summer wet seasons during El Niño events in the tropical 
Pacific. Thus, at the moment it is unknown whether management strategies should require the 
flexibility to focus on strong preparatory measures during some seasons and forecast 
conditions but more open, responsive measures during other cases. 
 
Seasonal forecasts are frequently expressed as anomalies from a historical reference, both due 
to climate model limitations and user relevance. In a changing climate, however, that 
historical reference may be biased and thus may be providing “artificial” (yet relevant and 
useful) skill. In particular, forecasts of warmer-than-normal seasons are more frequent these 
days than forecasts for cooler-than-normal seasons, because “normal” is defined with 
relevance to a cooler past climate (Liniger et al., 2007). It is currently unknown how much 
changes in atmospheric composition, such as increasing greenhouse gas concentrations, are 
contributing to the predictability of seasonal forecasts for South Africa. This contribution is 
highly relevant, though, in understanding the potential usefulness of seasonal forecasting. 
First, if predictability is a strong function of atmospheric composition, then the future 
accuracy and relevance of seasonal forecasting will depend explicitly on international 
activities to reduce emissions of greenhouse gas and various aerosol precursors.  Second, it 
provides a connection between forecasting and longer term climate change.  This is highly 
relevant in Africa, where adaptation in the near-future is the priority climate change issue. In 
particular, the ability to tap international funding mechanisms for climate change adaptation 
activities will likely depend in part on there being a demonstrable impact on current climate 
risks (Huggel et al., 2013). Current climate risk is generally estimated through seasonal 
forecasting, but as yet there has been little study of the climate change contribution through 
the seasonal forecasting framework. 
 
1.3 Outline 
This report starts by describing the various climate model data sets used in the first part of 
this project examining the limits of predictability of seasonal forecasts (Section 2). It then 
contains three chapters dealing specifically with whether predictability varies from year-to-
year over South Africa and why this is the case. Section 3 comprises a discussion of the 
theory behind predictability and presents the two measures of predictability, based on the 
spread of a large ensemble of climate model simulations that will be used in the analysis 
report in the following two sections. Analyses of long-term trends in these two predictability 
measures are presented in Section 4, with analyses of relationships between various large-
scale global climate indices and year-to-year variations in predictability over South Africa 
presented in Section 5. 
 
The report switches to the second part of the project with Section 6, investigating the degree 
to which anthropogenic emissions have altered the chance of unusual weather events. The 
climate model data used in this analysis, some generated as part of this project and some 
obtained from other institutions, is described in Section 6. Section 7 comprises analyses of 
how anthropogenic emissions have altered the chance of extreme monthly weather events 
over South Africa and elsewhere, including application of such analyses in an operational 
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setting. 
 
Section 8 presents a case study which combines the predictability and attribution analyses in 
a hydrological setting, specifically stream flow into the Okavango Delta. Further discussions 
of possible implications of the results of this project are discussed in Section 9, while lists of 
project outputs are included in Section 10. 
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2 Climate model simulations for predictability analysis 
 
2.1 Objectives for simulations in this project 
This project required climate model simulations for analysis. Requirement for these 
simulations varied, and thus the simulations used were a combination of some generated at 
UCT as part of this project as well as simulations received from other institutions. These 
various simulations are described in this section and in Section 6. This section describes the 
simulations used in the analyses of the limits of predictability reported in the first part of the 
report, while Section 6 describes the simulations used in the attribution analyses reported in 
the second part of the report. The various sets of simulations, along with their special 
properties relevant for analyses in this project, are listed in Table 2.1. The simulations, for the 
limits of predictability analysis, reported in this section are also discussed in Lawal et al. 
(2014a, b) and Cerezo-Mota et al. (“Impacts of land-scheme and integration domains on 
African precipitation”, in preparation). 
 
2.2 Experimental design of the weather@home/SAF simulations 
The primary data source indicated in the proposal for this project was an unprecedentedly 
large number of simulations run using the weather@home/SAF effort 
(http://weatherathome.org) through the climateprediction.net facility. The project generating 
these simulations was in collaboration between UCT, the University of Oxford, the U.K. Met 
Office Hadley Centre, and Pennsylvania State University, performed under a separate 
funding source. 
 
This project involved running the HadAM3P-N96 global atmospheric model, simulating 
weather around the globe at approximately 150km resolution. The HadRM3P regional model, 
simulating regional weather, was run in parallel to the global model, receiving input from the 
global model along its regional boundaries and simulating the regional weather at 
approximately 50km resolution (Jones et al., 2004). The regional domain covered the 
southern half of the African continent (Figures 1.1 and 2.1), but in this project we only 
analyzed data over South Africa. 
 
The novel aspect of the weather@home/SAF project was that it used distributed computing to 
produce unprecedentedly large numbers of simulations. In particular, thousands of volunteers 
around the world ran the model in the background on their home desktop computers, quite 
probably including some from South Africa (Figure 2.2 and Table 2.2). Volunteers 
downloaded the model and simulation parameters, ran the model for one year of model time, 
and uploaded results to a central results server. 
 
One year of simulation typically took one week on current desktops given their normal 
workload.  A subsequent simulation on another computer may have started from the final 
weather state of the original simulation, meaning that it is possible to assemble sequences of 
one-year simulation segments into a multi-year simulation. Given this, the strategy was 
chosen to start sequences every five years, starting with December 1964 (U.K. Met Office 
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models have an odd preference for starting in December), in order to economize with first-
year “spin-ups”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 The spatial domain covered by the HadRM3P-50km regional model, denoted by 
the box covering Africa south of 10oN. The full map indicates the CORDEX-Africa spatial 
domain used by the benchmark simulations. The dotted rectangles denote diagnostic regions, 
some of which are used in Section 2.5. 
 
 
The operation of the simulation-sequence feature was not as smooth as anticipated, and so 
while earlier years in each 5-year sequence were well sampled (∼1000), later simulations in 
the sequences were less so (minimum 30) (Figure 2.3). Following discovery of faulty aerosol 
forcing in the post-1999 simulations, a new batch of post-1999 simulation were conducted 
with higher priority and an every-year sampling strategy, producing a jump in numbers post-
1999. Not all simulations counted in this figure were included in the analyses in this project. 
In particular: 

• Careful examination revealed that a small number of simulations had returned months 
with corrupt data. These simulations were removed. 

• Simulations were only retained if they had results for all twelve months. 

6 
 



Table 2.1 List of the various sets of model simulations used in this project, whether generated as part of the project or received from other 
institutions. The sections of this report in which results of analyses of the simulations are reported are also indicated. 

 
 
 
 
 

Institution Model Property Section 
Lawrence Berkeley  
National Laboratory 
(LBNL) 
 

CAM5.1-2degree Large ensembles; multiple decades; 
includes shorter simulations for a natural 
historical world; same experimental 
design as UCT-CSAG/HadAM3P -N96 
simulations 

6, 7, 8 

University of Cape    
Town (UCT-CSAG) 
 

HadAM3P-N96 Large   ensembles; multiple   decades;    
includes shorter simulations for a natural 
historical world; same experimental 
design as LBNL/CAM5.1-2degree 
simulations; updated monthly 

6, 7, 8 

University of Cape    
Town (UCT-CSAG) 

HadRM3P-
50km 

Same experimental design as 
weather@home/SAF simulations; large 
number of output variables 

2.4, 2.5 

weather@home/SAF 
(University of 
Oxford, University 
of Cape Town, U.K. 
Met Office, 
Pennsylvania State 
University, public 
volunteers) 

HadAM3P-N96/ 
HadRM3P-50km 
 

Very large ensembles; multiple decades; 
high spatial resolution 

2.2, 2.3, 
3.3, 4, 5 
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Figure 2.2 Map showing locations of the 96 457 volunteers in 138 countries around the 
world running climateprediction.net on their home computers, as of 7 March 2012. Separate 
statistics are not available, but a large fraction of these volunteers were running 
weather@home/SAF simulations. 
 
 
Table 2.2 List of volunteers in southern African countries running climateprediction.net on 
their home computers, as of 7 March 2012. Separate statistics are not available, but a large 
fraction of these volunteers were probably running weather@home/SAF simulations. 
 

Country Volunteers 
Earth (138 countries) 96 457 
Angola 2 
Botswana 5 
Kenya 2 
Madagascar 1 
Mauritius 3 
Namibia 6 
South Africa 433 

 
 

• To help increase the probability of completion of a given simulation-year, continuation 
simulations were sent out multiple times. This often meant that two copies of the 
simulation-year were completed with results returned to the central results server. 
Sometimes these two copies differ in results because of differences in computer 
hardware or software, but they could also have ended up being identical. Rather than 
trawl through all these multiple realizations to search for duplicates, we simply retained 
one of the realizations. 
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2.3 Characteristics of output of the weather@home/SAF simulations 
The annual mean precipitation values for each province from these simulations are shown in 
Figures 2.4 and 2.5. While the number of simulations differs between years, the data is 
clearly sufficient for revealing certain features. Most relevant, the locations of the spread of 
simulations shift between drier and wetter states. This represents predictability in the annual 
totals based on boundary condition information, mostly from variations in sea surface 
temperatures. 
 
Thus according to this modeling system sea surface conditions were strongly favorable for a 
wet 1995 in all provinces except the Western Cape, for example. The spread of the 
simulations then represents the unpredictable component of the variability, and this spread 
also varies from year to year. Further analysis of the spread of these simulations is reported in 
Sections 4 and 5. 

 
 
Figure 2.3 The number of weather@home/SAF simulations with results recorded on the 
central results server for each month in the 1960-2009 periods. Time series are shown 
separately for each calendar month. Sequences of simulations during the 20th century were 
started at 5-year intervals, and due to technical problems in running later years of simulation 
sequences these later years were not as well sampled. Each one-year simulation started in 
December and ended in November; with some volunteers discontinuing the simulations, 
earlier months in this December-November year are thus better sampled than later months. 
 
 
2.4 weather@home/SAF benchmark simulations 
The weather@home/SAF project uses a regional atmospheric model nested within a global 
atmospheric model. There are some aspects of this arrangement that could constrain model 
behavior. To diagnose the relevance of such factors, a number of simulations were performed 
at UCT using the HadRM3P-50km regional model, as used by weather@home/SAF, under 
different setups following the benchmarking protocols of the Coordinated Regional Climate 
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Downscaling Experiment’s African project (CORDEX-Africa), an international activity 
downscaling global climate model output to better characterize possible future climate 
change (Nikulin et al., 2012). These protocols include driving the model with  
ERA-INTERIM reanalysis data at the side boundaries of the domain, and performing the 
simulations over the 1989-2008 periods. ERA-Interim is considered an improvement over 
earlier reanalysis for driving regional climate models over Southern Africa (Sylla et al., 
2012). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4 The anomalies of annual average precipitation rate for the inland provinces (the 
Free State, Gauteng, Limpopo, Mpumalanga, and North West province) from the 
weather@home/SAF simulations analyzed in later sections. The solid line denotes the 
ensemble annual mean. In unit of mm day-1. A 1 mm day-1 anomaly in precipitation rate 
corresponds to an annual total anomaly of 360 mm (because the climate models run on a 360-
day calendar). 

10 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5 The anomalies of annual average precipitation rate for the coastal provinces 
(Eastern Cape, KwaZulu-Natal, the Northern Cape, and the Western Cape) from the 
weather@home/SAF simulations analyzed in later sections.  The solid line denotes the 
ensemble annual mean.  In unit of mm day-1. A 1 mm day-1 anomaly in precipitation rate 
corresponds to an annual total anomaly of 360 mm (because the climate models run on a 360-
day calendar). 
 
 
The four different configurations investigated are listed in Table 2.3. The experimental design 
examined two specific aspects of the model configuration: the spatial domain; and the land 
surface scheme. Two domains were examined: the weather@home/SAF domain covering 
southern Africa; and the CORDEX-Africa domain covering the entire African continent 
(Figure 2.1). Comparison of these two domains serves to ascertain how the 
weather@home/SAF simulations fit within the context of the CORDEX-Africa. Two 
schemes were used for representing land surface properties: MOSES and MOSES2. Unlike 
MOSES, which does not consider sub-grid-scale heterogeneity, MOSES2 treats each grid box 
as a mixture of five plant functional types (broadleaf trees, needleleaf trees, C3 grass, C4 
grass and shrubs) and four non-vegetated surface types (urban, inland, water, soil and ice) 
(Essery et al. 2001).  By doing this MOSES2 considers a sub-grid within a grid cell and 
surface temperature, short and long wave radiation, radiative and turbulent fluxes, ground 
heat fluxes, canopy moisture content, snow mass and snow melt rate are calculated for each 
surface type in a grid box. MOSES2 also includes a prescribed annual cycle in vegetative 
properties, notably the leaf area index, whereas the parameters in MOSES do not vary in 

11 
 



time. Neither scheme includes a dynamic representation of vegetative processes. The “wm1” 
simulation, using the weather@home/SAF domain and MOSES land surface scheme, 
matches the setup used in the weather@home/SAF project. Further details on these 
simulations are given in Cerezo-Mota et al. (2014). 
 
Table 2.3 Description of various setups used for the benchmarking simulations using the 
HadRM3P-50km model run at UCT. The spatial domains are shown in Figure 2.1. 
 

Label Spatial domain Land surface component 
cm1 
cm2  
wm1  
wm2 

CORDEX-Africa 
CORDEX-Africa 
weather@home/SAF 
weather@home/SAF 

MOSES1 
MOSES1  

   MOSES2  
   MOSES2 

 
 
2.5 Benchmarking the weather@home/SAF simulations 
There is little difference in the annual cycle of precipitation over the northeastern half of 
South Africa (“Region 12”) between the four configurations of the HadRM3P-50km regional 
model that were examined (Figure 2.6). All four configurations overestimate average 
precipitation during the wet season over that region relative to a variety of observationally-
based data products (Figure 2.6). For the Western Cape area (“Region 13”), while the annual 
precipitation totals are comparable between the HadRM3P-50km simulations and 
observationally-based datasets, the HadRM3P-50km simulations have a wet peak that is 
several months early. An important reason for this is visible in plots of the annual cycle at the 
model’s grid resolution (Figure 2.7). While the simulations have a properly timed (but 
usually lower magnitude) peak in the southwestern coastal areas, this winter peak does not 
propagate far enough inland before transitioning to the summer rainfall peak prevalent over 
the rest of the country. When aggregated over the area, this inland discrepancy dominates. 
 
The simulations using the weather@home/SAF domain also result in substantially less 
precipitation than do the simulations using the CORDEX-Africa domain during the March-
April period, which is the wettest in the simulations. This difference is most visible in the 
southern parts of the region (Figure 2.7). Further analysis (not shown) has indicated that this 
results from the phase shift of the different grids used. While both the weather@home/SAF 
and CORDEX-Africa grids are 50×50 km in size, the grids are shifted with respect to one 
another and the alignment of the grids with local topography is such that in the 
weather@home/SAF grid there is a more progressive slope in southern areas of the region 
toward the high-altitude interior, meaning that orographically induced precipitation is lower. 
 
The annual cycle of surface air temperature is comparable between the observations and the 
model simulations (Figure 2.6), although the simulations tend to be 1-2oC cooler over the 
northeastern half of the country (“Region 13”). 
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Figure 2.6 The annual cycle in precipitation and temperature in simulations of the 
HadRM3P-50km model run under different configurations. Region 12 corresponds to the 
northeastern half of South Africa while Region 13 corresponds to the Western Cape area; the 
exact regional specifications are shown in Figure 2.1. The grey and black lines show the 
results for the different model configurations listed in Table 2.3. Data are also shown from 
the GPCC (Rudolf et al., 2010) and University of Delaware (UDel; Willmott and Matsuura, 
1995) observationally-based data products and from the NCEP2 reanalysis (Kanamitsu et al., 
2002). 
 
The month-to-month anomalous variability in precipitation closely matches the GPCC and 
UDel observational datasets over both regions, but the NCEP2 reanalysis product is 
completely uncorrelated (Figure 2.8). Temporal correlations between the simulations and 
observations can be considered something of a hindcast test, with the regional model being 
driven by reanalysis (i.e. an hindcast estimate of the weather that was actually experienced) 
surface boundary conditions and along the side boundaries of the domain. Not surprisingly, 
the simulations using the weather@home/SAF domain have a substantially higher correlation 
with both observational datasets than do those using the CORDEX-Africa domain, as the 
closer regional boundaries can exert more control over the weather simulated in the interior 
of the domain. The temperature time series from the weather@home/SAF-domain 
simulations also have a higher correlation with the observational and reanalysis datasets, in 
this case sharing at least two thirds of the variance. Further details on these and other 
analyses are given in Cerezo-Mota et al. (2014). 
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Figure 2.7 The mean annual cycle of precipitation over each grid cell of the GPCC 
observationally-based data product (Rudolf et al., 2010) in the Western Cape area, from the 
GPCC product and from simulations of the HadRM3P-50km model run under different 
configurations. The location of this region within the South African context is visible in 
Figure 2.1 as “Region 13”. The colored lines show the results for the different model 
configurations listed in Table 2.3. Differences between annual cycles between the “cm” and 
“wm” simulations result from differences in the alignment of their spatial grids with local 
topography. Model data have been interpolated to the GPCC spatial grid. 
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Figure 2.8 Time series of monthly precipitation anomalies from simulations of the HadRM3P-50km model run under different 
configurations. Region 12 corresponds to the northeastern half of South Africa while Region 13 corresponds to the Western Cape area; the 
exact regional specifications are shown in Figure 2.1. The lines with symbols show the results for the different model configurations listed 
in Table 2.3. Data are also shown from the GPCC (Rudolf et al., 2010) and University of Delaware (UDel; Willmott and Matsuura, 1995) 
observationally-based data products and from the NCEP2 reanalysis (Kanamitsu et al., 2002). Values are anomalies from the mean annual 
cycle. 
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3 Prediction, descriptions and measures of the limits of  
   predictability 
 
3.1 Prediction 
This section describes some of the theoretical and methodological background behind the 
analyses of the limits of predictability reported in Sections 4, 5, and 8. It is derived from 
discussions in Lawal et al. (2014a, b). 
 
Prediction, a statement of anticipated weather in a particular area during a stated time period, 
can be short-, medium-, or long-range (Buckle, 1996). Short-range predictions, generally for 
one, two, or three days in advance, are typically the most detailed. Forecasts for three to six 
days are medium-range, while those for weeks, a month or more in advance are known as 
long-range forecasts. Temperature and precipitation are the main climate variables 
communicated in medium- and long-range forecasts, and are usually expressed as departures 
from the climatic mean i.e. anomalies. Long-range prediction, synonymous with seasonal 
climate forecasting, is an attempt to provide useful and reliable information about the 
outlooks of weather that can be expected in the coming months. It is always a probabilistic 
forecast of the climatic anomalies on the seasonal time-scale. 
 
The importance of a timely and reliable prediction of seasonal climate over South Africa 
cannot be ignored. The information from seasonal climate forecasts, expressed as anomalies 
from a historical reference period, is needed for planning and risk management in various 
socio-economic sectors such as agricultural activities, health, water resources management, 
environmental management, engineering, etc. (Johnston et al., 2004). Timely and reliable 
prediction of seasonal climate can help reduce the damages from extreme climate events. Its 
usefulness also extends to insurance markets where it assists in the operational task of 
preparing for major pay-outs. Therefore, a forecast is only useful if it is reliable because a 
wrong forecast can lead to wrong decisions and also can reduce the trust of the public in 
using forecast information for planning. 
 
However, there are limits to predictability, the extent to which a skilful forecast is possible, of 
seasonal climate. Suspected reasons for these are: (1) complexities in the interactions of land, 
ocean and atmosphere; (2) knowledge of the initial states of ocean, land and atmosphere; and, 
(3) variations in chemical composition of the atmosphere. 
 
Climate over any region, especially South Africa where climate variability is high, is 
determined by complex interaction between the land, ocean and atmospheric processes. Most 
of these interactions are yet to be fully understood (Houghton, 1991; Pennell and Reichler, 
2010). For instance, seasonal forecasting over South Africa tends to be more reliable during 
the El-Niño years than the non El-Niño years when the main processes that dominate 
atmospheric circulations are not well known (Tyson and Preston-Whyte, 2000; Johnston  
et al., 2004; Landman and Beraki, 2010). 
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Nonlinearities in the atmosphere complicate our understanding of the atmospheric physics 
and predictability of the seasonal climate as timely and reliable seasonal climate predictions 
depend on knowing the initial states of the ocean surface, land surface and that of the 
atmosphere (Pielke et al., 2006). The ocean and land surface vary more slowly than the 
atmosphere, therefore, their state can be predicted, to some degree of accuracy, months into 
the future. In sharp contrast to these slow variations, the atmosphere can always diverge 
rapidly from an initial state, resulting in little added value of knowledge of the initial state 
when forecasting months ahead. Therefore, influences of the slowly varying anomalies in the 
state of the ocean and land surfaces on the atmosphere provide the principle underlying 
seasonal forecasting. Despite this, atmosphere still produces plenty of noise on top of any 
predictable signal. Tyson and Preston-Whyte (2000) define noise as random fluctuation in a 
parameter caused by effects other than the one being studied. Understanding of the 
fundamental limits this noise imposes on the predictability of seasonal climate over South 
Africa remains weak. 
 
Any change in the chemical composition of the atmosphere can significantly alter its 
predictability. Variations in the atmospheric chemical compositions, such as dust and gas 
contents, may influence climate by altering the transparency of the atmosphere for incoming 
and outgoing radiations (Buckle, 1996). Studies such as Hegerl et al. (2007) and Stott et al. 
(2010) have shown that an increase in atmospheric green-house gases (GHG), since the pre-
industrial era, has led to global warming over the last century. Since this will alter the long-
time climatology, the baseline for calculating seasonal climate anomalies, it will limit the 
predictability of the seasonal climate. How much changes in atmospheric chemical 
composition, such as increasing anthropogenic greenhouse gases (GHG) concentration, 
contribute to the predictability of seasonal climate over South Africa is currently unknown. 
 
3.2 Descriptions of the limits of predictability 
There are on-going debates about the extent to which the atmosphere is predictable beyond a 
few days, that the uncertainties in weather predictions are primarily an initial value problem, 
and that errors in the initial conditions are the dominant source of error in weather 
forecasting. Studies such as Lorenz (1975), Molteni et al. (1996) and Luo et al. (2011) argue 
that these errors grow rapidly and limit the weather predictability horizon to the order of a 
week or less. When model errors are ignored, predictability of weather events a few days in 
advance is essentially limited by the accuracy of atmospheric initial value conditions 
(Rowell, 1998; Luo et al., 2011). Therefore, seasonal climate predictions and inter-annual 
climate projections face boundary conditions problems because the atmosphere cannot on its 
own produce predictable random variations that can persist for months Zwiers (1996). The 
sources of these boundary conditions are obtainable from predictable but slow processes such 
as changes in ocean circulation. The ocean, which is highly viscous, is not mixing rapidly, is 
vertically stable (i.e. the heating is at the top), and has a large heat capacity, provides the 
climate with a memory of the system. This memory results in atmospheric deviations that can 
last for months, or years. While it is not something we examine in this project, variations in 
land cover may also be an important source of boundary conditions Boer (2000). 
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Rowell (1998), Kumar et al. (2003) and Reichler and Roads (2004) have made attempts at 
investigating the temporal-spatial distribution of atmospheric predictability. They based their 
studies primarily on theoretical, statistical, and numerical models and gave qualitative 
estimates of atmospheric predictability, such as information on regions with either higher or 
lower predictability. It is noted that model deficiencies strongly influence their estimates of 
atmospheric predictability. Nevertheless, some studies have quantified the limits of 
atmospheric predictability. Luo et al. (2005, 2007 and 2008) and Keenlyside et al. (2008) 
showed that tropical climate signals have some degree of predictability from on the order of a 
few seasons to 1-2 years based on current state-of-the-art fully coupled models. For instance, 
Luo et al. (2011) showed that with a perfect warming trend and/or a perfect model, global 
surface air temperature and precipitation could be predicted beyond two years in advance 
with an anomaly correlation skill above 0.6. Furthermore, Li and Ding (2011) used a 
nonlinear local Lyapunov exponent (NLLE) algorithm to investigate temporal spatial 
distributions of predictability limits of the daily geopotential height and wind fields. While 
there has been some dispute on the relevance of the Lorenz (1975) two-dimensional vorticity 
equation that they analyzed (Straus and Shukla 2005; Rotunno and Synder 2008), Li and 
Ding (2011) nevertheless noted that limits on atmospheric predictability varies widely with 
region, altitude, and season; and concluded that limits on noticeable predictability of the daily 
geopotential height and wind fields are generally less than 3 weeks in the troposphere and 
approximately 1 month in the lower stratosphere. These imply that a three-dimensional 
structure of predictability limit exists in the atmosphere. See also González-Miranda (1997), 
Kumar et al. (2003) and Reichler and Roads (2004). 
 
This project aims to estimate what the theoretical range of forecasts is for a variety of seasons 
and ocean states, in the context of a single forecasting model system, and thus establish the 
theoretical limits as to how much we may be able to improve seasonal forecasts. This 
knowledge gap will be filled by examining the spread of output from a regional climate 
model, specifically the regional component of the Hadley Centre Atmospheric / Regional 
Model version 3 (HadAM3P-N96/HadRM3P-50km) modeling system, run in a hindcast 
framework. Many simulations of this regional model, with slightly different initial conditions, 
will be employed to investigate the characteristics of the measures of the limits of 
predictability of seasonal forecasts over South Africa (see Section 2.2 for details on the 
simulations). 
 
3.3 Measures of the limits of predictability 
Ensemble spreads of many simulations of the HadAM3P-N96/HadRM3-50km modeling 
system, with slightly different initial conditions, are utilized to represent the theoretical range 
of forecasts for various climatic seasons over South Africa. The range is quantified using two 
measures: the Standard Deviation (StdDev) and the “Range of Possibility” (RoP). The 
StdDev describe all of the data and can be estimated accurately from small samples, but it is 
also very sensitive to outliers. RoP, the 10-90th percentile range, can essentially be 
considered the opposite of StdDev in all these three aspects. With these differences, the two 

18 
 



 

measures are complementary and thus give an indication of the sensitivity of conclusions to 
the particulars of how ensemble spread is measured. Therefore, analyses of spreads of 
ensembles of many simulations from the regional model as depicted in Figure 3.1 are carried 
out. 
 

 
 
Figure 3.1 Annual variations in precipitation rates (mm day-1) as anomaly of the 
climatological average over Limpopo Province (LMP) from a sample of the simulations for 
the month of July. a: mean anomalies of individual ensemble members (the black dots). b: 
the time series of the annual 90th and 10th percentiles of the values shown in panel a. c: time 
series of ensemble spreads of the data in panel a as measured by StdDev (standard deviation). 
d: time series of ensemble spreads as measured by RoP (range of possibility, the 10-80th 
percentile range). Red bars on plots of panel c and d represent 80% confidence intervals 
estimated through a Monte-Carlo bootstrap procedure. 
 
 
Ensemble spreads as measured by RoP and StdDev vary with time (see Figure 3.1 panels c 
and d). It also varies with space and austral seasons (Figures 3.2 and 3.3), for precipitation 
and surface air temperature respectively. Ensemble spreads show that larger spreads are 
concentrated where the seasonal average values are higher. Higher ensemble spreads for 
precipitation are found over the central and north-eastern areas of the country during spring 
(SON), summer (DJF) and autumn (MAM). The regions of higher precipitation spread 
migrate towards the south-west, southern and eastern coasts during winter (JJA) following 
the patterns of seasonal rainfall distributions (Figure3.2). 
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Ensemble spreads for temperature are lower than those for precipitation and more uniform 
along the coasts than inland (Figure 3.3). This may be as a result of prescribed sea surface 
temperature used in the weather@home/SAF setup; hence, coastal areas in the HadRM3P-
50km model may be constrained to follow the prescribed ocean temperature. Higher spreads 
are found inland where temperature variability is higher. 
 
Seasonally, correlation coefficients between the RoP and StdDev measures of precipitation 
spread are generally around 0.7 and relatively uniform across the country and seasons (Figure 
3.2). Correlation coefficients for temperature spreads are lower than those for precipitation 
and somewhat less homogenous (Figure 3.3). 
 
There also exist large degrees of linear associations in measures of ensemble spreads 
provincial scales. The provinces are listed in Table 3.1 along with their abbreviations used 
throughout this report. The temporal correlations for the two measures at provincial scales are 
depicted by Figure 3.4 which shows correlation coefficients of inter-annual variations 
between RoP and StdDev for each month and province. These correlation coefficients are 
displayed for both parameters on provincial and monthly basis. For precipitation, there are 
strong direct relationship between the two measures, with correlations ranging between 0.4 
and 0.96 in all the provinces. Similarly, average correlation between the inter-annual 
variations between measures of ensemble spread for temperature is strong, 0.38 < r < 0.93 for 
all provinces, although slightly lesser when compared to those for precipitation. 
 
Table 3.1 List of the nine South African provinces along with the abbreviations used to label 
them throughout this report 

 
Abbreviation Province name 
ECP  Eastern Cape Province 
FSP  Free State Province 
GGP Gauteng Province 
KZP  KwaZulu-Natal Province 
LMP  Limpopo Province 
MLP  Mpumalanga  Province 
NCP  Northern Cape Province 
NWP  North West Province 
WCP  Western Cape Province 

 
 
Seeing as the StdDev and RoP measure the ensemble spread in rather different ways, high 
correlations coefficients indicate that, for the most part, the two measures are each recording 
the same variations in spread. In that case, it appears conclusions based on either of these two 
measures (or on both) are rather insensitive to the choice of measure. However, there are 
some locations and months with correlations between the two measures that are lower, due to 
changes in the shape of the frequency distributions. In these cases, results can be sensitive to 
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the choice of measure. Seeing as that the method of measuring variations in the limits of 
predictability must match the method of describing forecasts, the implication is that the 
degree to which variations in the limits of predictability might be usable in an operational 
setting may depend strongly on the method used to communicate the forecast. 
 
 

 
 
Figure 3.2 Seasonal spatial ensemble spreads for precipitation as evaluated by StdDev (first 
row) and RoP (second row). Third row: correlation coefficient (r) between StdDev and RoP. 
In columns are austral seasons: DJF – summer; MAM – autumn; JJA – winter; SON – spring. 
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Figure 3.3 Seasonal spatial ensemble spreads for temperature as evaluated by StdDev (first 
row) and RoP (second row). Third row: correlation coefficient (r) between StdDev and RoP. 
In columns are austral seasons: DJF – summer; MAM – autumn; JJA – winter; SON – spring. 
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Eastern Cape (ECP)                       Free State (FSP)             Gauteng (GGP) 

 
KwaZulu-Natal (KZP)           Limpopo (LMP)             Mpumalanga (MLP) 

 
Northern Cape (NCP)           North West (NWP)              Western Cape (WCP) 

 
 
Figure 3.4 Correlation coefficients (r) of inter-annual variations between RoP and StdDev for 
precipitation (blue lines) and temperature (red lines) for each province and month, calculated 
over the full period of simulations. Error bars indicate 80% confidence intervals estimated 
through a Monte-Carlo bootstrap procedure. 
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4 Variations in the potential spread of seasonal forecasts  
    over South Africa 
 
4.1 Spatial details of long-term trends 
This section reports on the existence of interannual variability and long-term trends 
in the limits of predictability, using the simulations discussed in Section 2.2 and the 
methods outlined in Section 3. It describes work reported in Lawal et al. (2014b). 
 
Inter-annual linear trends have been calculated from the time series of the two 
measures of spread, StdDev and RoP, introduced in Section 3.3 and Figure 3.1, 
using the output from the regional model from the weather@home/SAF simulations 
(Section 2.2). If “cases with large (small) ensemble spread should be associated with 
large (small) forecast uncertainty” (Grimit and Mass, 2007) is assumed; then, 
negative trends of ensemble spread will indicate a narrowing of the range of possible 
monthly values from the forecasts, and vice-versa for positive trends. 
 
Figures 4.1 and 4.2 contain respectively precipitation (mm/day/year) and surface air 
temperature (oC year-1) spatial seasonal trends of ensemble spreads as evaluated by 
the two measures of spread. In Figure 4.1, precipitation RoP trends show tendency 
for widening, which is not so strongly reflected by StdDev, suggesting that there 
exist inter-annual variations in the shape of the distribution. Relatively speaking, 
coastal areas are dominated by widening of ensemble width (positive trends) in DJF. 
Extreme north and western coast areas are dominated by narrowing of ensemble 
spreads (negative trends) in MAM. The central parts of the country and the northern 
parts of Northern Cape Province (NCP) are under the influence of narrowing trends 
in JJA. 
 
For temperature, Figure 4.2, both measures show similar spatial structure, although 
RoP has a general tendency toward a widening spread in DJF and MAM relative to 
StdDev. While coastal areas experience a narrowing of ensemble width in SON, 
narrowing trends are confined to inland positions in JJA. In DJF and MAM, on the 
other hand, inland areas experience a widening trend. 
Figures 4.1 and 4.2 focus on spatial details at the expense of sub-seasonal details and 
uncertainty characterization; therefore, the next section discusses evaluation of these 
trends on provincial levels and on a monthly basis. Inter-annual linear trends, based 
on sample of size 30 to 1000 sub-sampled at size 30 to 100, was evaluated from the 
time series of these two measures shown in Figure 3.1. A Monte-Carlo bootstrap re-
sampling method, in line with Buckland (1983), Johnson (2001), and Buhlmann 
(2002), was used to characterize sample uncertainty in the results. The values from 
available simulations for each year were selected at random with replacements and 
the calculations performed again on these re-sampled data, with these processes 
repeated one-thousand (1000) times in order to generate an empirical frequency 
distribution function of results consistent with the simulation data. 
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4.2 Sub-seasonal details and uncertainty characterization in long-term trends 
Some provinces have experienced a widening (positive trends, reflecting looser 
constraints on the forecast atmospheric state) or narrowing (negative trends, 
reflecting tighter constraints on the forecast atmospheric state) of the ensemble 
spreads as indicated in Figures 4.3 and 4.4. The thick bars in Figures 4.3 and 4.4 
indicate the sample means, while the error bars represent the 80% confidence 
intervals estimated through Monte-Carlo bootstrap procedures. As expected for 
Gaussian distributions, trends in the StdDev measure are generally less than half as 
large as those in the RoP measure. 
 
The majority of the trends in Figure 4.3, monthly trends in ensemble spread for 
precipitation over the nine South African provinces, are positive from autumn to the 
middle of spring (October), except for a dip in winter. Trends in the precipitation 
spread range from narrowing of 7.5 mm to a widening of 75 mm over the half-
century period according to the RoP measure, and a narrowing of 12 mm to a 
widening of 15 mm according to the StdDev measure. In general the central and 
eastern provinces experience a narrowing of ensemble width from November to 
January, with some provinces such as Limpopo (LMP) and Mpumalanga (MLP) also 
experiencing narrowing later into summer. The southern coastal provinces (Eastern 
Cape (ECP) and Western Cape (WCP)) experience a widening in most months, 
however, the NCP shows little change. Zero trends in ensemble spreads are sparsely 
distributed and do not follow specific pattern in either measure. 
 
Figure 4.4 shows monthly trends of ensemble spread for surface air temperature over 
the nine South African provinces. There is distinct duality between the coastal and 
inland provinces. For the most part, inland provinces exhibit widening trends. 
Coastal provinces exhibit narrowing of the ensemble spreads from September to 
December. The trends in the temperature spread range from a narrowing of 0.3oC to 
a widening of 1.125oC over the full periods according to the RoP measure, and a 
narrowing of 0.03oC to a widening of 0.5oC according to the StdDev measure.  
 
Of the 108 province-month realizations for each variable and measure, 45 of the 
RoP cases and 62 of the StdDev cases for precipitation have the zero trends outside 
their 80% confidence intervals; 62 of the RoP cases and 71 of the StdDev cases for 
temperature do so as well. At random, only 22 cases would be expected, indicating 
that these trends are generally reflecting real changes occurring within the climate 
model framework. By inference, the range of possible seasonal forecasts, as 
represented by RoP and StdDev, can vary from one year to another over South 
Africa. These ranges depict the limits to quantitative prediction of seasonal climates 
over South Africa. Recall that this experiment was carried out within the framework 
of the HadAM3P / HadRM3P model pair, which is not used in any contemporary 
seasonal forecast service, therefore, the possibility exists that the exact values of 
these trends in ensemble spread are specific to this model pair and may not reflect 
those in other forecast model setups. However, the presence of these trends in this 
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modeling setup is highly suggestive of possible similar trends in contemporary 
active multi-model prediction settings. Such trends may thus be useful in the 
characterization of skills of current forecasts in relation to the assessment of past 
skill. Therefore, relationship of these measures of spread with forecast skills shall be 
treated in the later stage of this paper. 
 
In relations to operational applications, this experiment has not considered what may 
be the driving forces or the physical processes behind the variability in the long-term 
trends of the ensemble spreads. The variability of these trends may be remotely-
forced or locally-based. Suggestive factors that may cause the variability in these 
trends are (1) the model and its simulation techniques; (2) trends in the mean state of 
the atmosphere which may lead to more possibility for spreads; (3) a shift in the 
frequency of weather patterns; (4) changes in cloud cover which could affect the 
variability of temperature by altering the radiative balance of the source of energy; 
(5) changes  in  sea  surface  temperature;  (6)  atmospheric  composition which 
alters atmospheric transparency thereby affecting the climatology  of  which  
seasonal  prediction  is based; etc. Investigating the roles of these factors, either 
remotely-forced or locally-based, is the subject of the next chapter (Section 5). 
 

 
 
Figure 4.1 Seasonal spatial trends (mm day-1 year-1) of ensemble spreads for 
precipitation as evaluated by StdDev (upper row) and RoP (lower row). In columns 
are austral seasons: DJF – summer; MAM – autumn; JJA – winter; SON – spring. 
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Figure 4.2 Seasonal spatial trends (oC year-1) of ensemble spreads for temperature as 
evaluated by StdDev (upper row) and RoP (lower row). In columns are austral 
seasons: DJF – summer; MAM – autumn; JJA – winter; SON – spring. 

27 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Monthly trends (mm day-1 year-1) of ensemble spreads for precipitation over the 
nine South African provinces. a: StdDev, b: RoP. Black error bars indicate 80% confidence 
intervals estimated through a Monte-Carlo bootstrap procedure. Provincial abbreviations are 
as stipulated in Table 3.1.  
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Figure 4.4 Monthly trends (oC year-1) of ensemble spreads for temperature over the nine 
South African provinces. a: StdDev, b: RoP. Black error bars indicate 80% confidence 
intervals estimated through a Monte-Carlo bootstrap procedure. Provincial abbreviations are 
as stipulated in Table 3.1. 
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5 The relationship between South African seasonal climate  
    predictability and climate indices 
 
5.1 Preamble and justification 
This section reports on whether interannual variations in the limits of predictability are 
themselves potentially predictable, using the simulations discussed in Section 2.2 and the 
methods outlined in Section 3. It also examines whether variations in the limits of 
predictability relate to forecast skill in the real-world setting. Broadly speaking, year-to-year 
variations are found in some months to be related to the state of the El Niño/Southern 
Oscillation phenomenon, and an expected relationship between the limits of predictability 
and of forecast skill exists for the climate model configuration used in this project. This 
section is based on work reported in Lawal et al. (2014a, b). 
 
A question on whether the nature of seasonal forecast predictability, for a particular location 
and time of year, varies from year to year in a way that is itself predictable has been answered 
in the last chapter. It was found that the inter-annual variability and long-term trends in the 
ensemble spreads of monthly temperature and precipitation over the South African provinces 
was larger than expected based on error sampling alone. This suggests that there may be 
potential to characterize predictability in the corresponding forecasts, in other words adding a 
quantitative estimate of the skill of a forecast that can vary from year to year. However, one 
requirement to realize that potential will be the existence of predictors of the variations in the 
ensemble spreads which are in turn predictable to some degree.  This constitutes an 
unanswered question from the last chapter. In view of this, we hereby aim to advance the 
understanding of predictability of South African seasonal climate by examining the 
relationship of variations in sea surface temperature (SST) and indices of large-scale climate 
variability with variations in the ensemble spread of atmospheric model simulations. 
 
Studies such as Landman and Goddard (2005), Landman et al. (2005), and Friederichs and 
Paeth (2006) carried out investigations on the relationship between the SSTs and the chaotic 
South African seasonal atmospheric states; they found strong relationships between the SSTs 
and the ensemble mean in an ensemble forecast system. Murphy (1988b) and Tang et al. 
(2008) acknowledged that in an ensemble forecast system ensemble mean is the most 
superior among all the other ensemble attributes such as ensemble spread and signal-to-noise 
ratio. The reason for this is because studies found little or no relationship between the 
ensemble spread and the forecast skills of the ensemble mean (Kumar et al., 2000; Tippett et 
al., 2004; Tang et al., 2008). They are rather of the opinion that predictability is more related 
to signals in the initial conditions and amplitudes of ensemble mean anomaly based on 
climate prediction models used. Nevertheless, studies have also found that ensemble spreads 
can be utilized to assess the reliability and skill of a forecast (Murphy, 1988b; Whitaker and 
Loughe, 1998; Tang et al., 2008; Nester et al., 2012). Therefore, the year to year variations in 
the ensemble spreads reflect variations in the predictability of seasonal forecasts. A yet to be 
answered question is – are there SST influences on seasonal climate predictability via 
ensemble spread? Answering this will assist forecasters and modelers alike on some aspects 
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of physical processes that climate models should be able to simulate well in order to improve 
on the seasonal climate predictability issues. 
 
5.2 Domain, datasets and analysis procedures 
Here, the domain of study remains the Republic of South Africa. Emphasis will also be on 
provincial averages while provincial abbreviations are the same as those used in the 
preceding chapters. Hottest and coldest seasons in terms of temperature will be discussed 
while that of wet seasons will be discussed in term of onset (spring), peak (summer) and 
cessation (autumn) of precipitation. Precipitation results over South Africa for the dry season 
(winter) are largely meaningless except over the Western Cape Province (WCP) which has its 
rainy season during this period. 
 
The same measures of spread as used in Section 3.3 and 4 are utilized for both parameters. 
Global gridded monthly observed SST, Kaplan SST-V2 data, was acquired from the Physical 
Science Division (PSD) of National Oceanographic and Atmospheric Administration 
(NOAA/OAR/ESRL) based in Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd; 
Parker et al., 1994; Reynolds and Smith, 1994; Kaplan et al., 1998). Correlation coefficients, 
r, between the global gridded SST and the provincial measures of ensemble spread were 
calculated and analyzed for the relevant seasons and both climate variables. This would 
indicate which areas of the ocean surfaces the South African predictability measures are 
sensitive to. De-trending operations were carried out on the measure of spreads and the 
observed SST used in this study. The reason for de-trending is because this study is interested 
in the year to year variability relevant to seasonal forecasting rather than the long-term trends. 
However, analyses without the de-trending showed negligible differences. 
 
5.3 Correlations of provincial-seasonal ensemble spread with global SST 
Figures 5.1 and 5.2 show an illustrative subset of maps indicating correlations between the 
observed SST and the provincial measures of ensemble spread. The maps in Figure 5.1 are of 
the correlations between the provincial precipitation RoP and the observed SST during the 
onset of the rain season, austral spring, in eight of the provinces and the cessation season for 
WCP. Figure 5.2 displays the maps of the correlations between the provincial temperature 
StdDev and the observed global SST during the winter season. Generally, r ranges from -0.82 
to +0.86 for both parameters and measures of spreads. Both provincial precipitation and 
temperature ensemble spreads significantly co-vary with SSTs at various oceanic regions. 
This co-variability differs from season to season. Most province have significantly 
positive/negative spread-SST correlations over the mid latitude to Antarctic / southern zones 
of the Pacific, Atlantic and Indian Oceans. Many provinces also exhibit some significantly 
positive/negative correlations over the tropical axis of these Oceans. 
 
Since these measures of spread co-vary with SST globally, the oceans may provide useful 
predictors of variations in seasonal predictability. Some aspects of oceanic variability are so 
generally useful for describing seasonal forecasts that they are summarized in convenient 
indices. Some of these indices represent variations in ocean temperature signals in the 
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tropical, mid latitudinal and southern parts of Pacific, Atlantic and Indian Oceans where we 
have noted significant correlations. Thus, there is the possibility that along with being useful 
predictors of seasonal climate over South Africa, these indices may also be useful predictors 
of the potential skill of that forecast. 
 
The climate indices to be considered are (1) Antarctic Oscillation (AAO), (2) Indian Ocean 
Dipole (IOD), (3) Multivariate ENSO Index (MEI) and (4) Tropical Southern Atlantic (TSA). 
See Table 5.1 for the summary of each of these indices. The AAO is a measure of 
atmospheric circulation rather than SSTs, but we include it here because it is such a dominant 
descriptor of southern mid-latitude circulation. AAO measures the pressure gradient between 
the Southern Hemisphere pole and mid latitudes (Kalnay et al., 1996; Rayner et al., 2003), 
and thus equator-ward / pole-ward shifts of the southern mid latitude storm track (Thompson 
and Wallace, 2000). The El Niño/Southern Oscillation (ENSO) has influence on South 
African precipitation anomalies (Fauchereau et al., 2009; Landman and Beraki, 2010) which 
may occur through modulation of the local Walker circulation and SSTs in the neighboring 
Indian and Atlantic Oceans (Reason et al., 2000; Reason and Jagadheesha, 2005). IOD phases 
are more active during autumn-cessation period; the IOD describes the center of the Walker 
circulation ascending branches over the eastern Indian Ocean and the south eastern corner of 
the South Atlantic Ocean (Izumo et al., 2010). Williams et al. (2008) showed that TSA, 
through several idealized climate model experiments, exhibited a self-evident boost in daily 
rainfall and rainfall extremes over southern Africa, via locally-based effects such as increased 
convection and remotely-based effects such as an adjustment of the Walker-type circulation. 
All of these indices are thus relevant to the large-scale seasonal circulation over the South 
African region. 
 
Data for these climatic indices were also acquired from the website of the Physical Science 
Division (PSD) of National Oceanographic and Atmospheric Administration 
(NOAA/OAR/ESRL) based in Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd). All 
temporal and spatial information are from 1961 to 2009. Provincial-seasonal measures of 
spread were correlated with the climatic indices on seasonal time scales. The data used in this 
study have different sample sizes for each year, hence a Monte-Carlo bootstrap re-sampling 
procedure (Stephenson and Doblas-Reyes, 2000; Johnson, 2001; Buhlmann, 2002) was used 
to sample uncertainty in the results, with the re-sampling conducted 1000 times. 
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Figure 5.1 Maps of the correlations between time series of the RoP measure of the ensemble 
spread for provincial precipitation and the observed global SST during spring onset of the 
rain season for all provinces except WCP, for which it is the cessation period. The trend was 
removed from all data before calculations. The provinces and their abbreviations are listed in 
Table 3.1. 
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Figure 5.2 Maps of the correlations between time series of the StdDev measure of the 
ensemble spread for provincial temperature and the observed global SST during the cold 
winter season. The trend was removed from all data before calculations. The provinces and 
their abbreviations are listed in Table 3.1. 
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Table 5.1 List of climate indices used in this study. All indices except the IOD were obtained from 
 http://www.esrl.noaa.gov/psd/data/climateindices/list/.  
 

Climate index Abbreviation Description Reference 
Antarctic 
Oscillation 

AAO Normalized difference in the zonal mean sea-level 
pressure pattern between 60oS and 40oS. It is a 
measure of equator-ward / pole-ward shifts in the 
southern mid latitude storm track. Source:  
http://www.esrl.noaa.gov/psd/data/correlation/aao.data 

Kalnay et al. 
(1996), Rayner et 
al. (2003) 

Indian Ocean 
Dipole 

IOD A shift of SST between positive, neutral and negative 
phases over the western and eastern Indian Ocean. It 
interacts with El Nino – Southern Oscillation (ENSO). 
Constructed from SST variability over the Indian 
Ocean for 35oE-115oE and 25oS-20oN domain. 

Annamalai et al. 
(2005), Izumo et al. 
(2010) 

Multivariate ENSO 
Index 

MEI Measure of combined atmosphere – ocean El Nino – 
Southern Oscillation (ENSO) phenomenon, 
representing shifts of warm surface waters and 
associated atmospheric convection back and forth 
across the tropical Pacific Ocean. Source: 
http://www.esrl.noaa.gov/psd/data/correlation/mei.data 

Rasmusson and 
Carpenter (1982), 
Wolter and Timlin 
(2011) 

Tropical Southern 
Atlantic 

TSA A measure of SST gradient in the Gulf of Guinea. 
Source: 
http://www.esrl.noaa.gov/psd/data/correlation/tsa.data 

Enfield (1999) 
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5.4 Correlations of provincial-seasonal precipitation spread with climate indices 
Panels on Figure 5.3 depict the seasonal correlations between the precipitation spread for the 
nine South African provinces and climate indices. Average r spans between +/-0.47; but 
when the error bars are considered, r spread across +/-0.8 which are more notice-able during 
peak (summer) and dry (winter) seasons. The correlations range from significantly weak to 
strong relationships in both directions of direct and inverse proportions. There is a high 
degree of agreement between the correlations using the RoP and StdDev measures. Clear 
cases of non-zero r agreements can be found in dry (winter) season MEI for Northern Cape 
Province (NCP) and WCP. Eastern Cape Province (ECP) measures of spread correlated 
significantly with AAO while Gauteng Province (GGP) correlated with TSA. However, 
provincial rainfall totals in this season are so small as to have any impacts, except over ECP 
and WCP. During the spring (onset) season measures of spread over many provinces 
correlated significantly with more than one climate index. For instance, Free State Province 
(FSP) and GGP correlated significantly with IOD. FSP, GGP, NCP, North West Province 
(NWP) and WCP also correlated significantly with MEI while FSP and GGP also responded 
to TSA. During the summer rain peak, both measures of spread agreeably correlated 
significantly with MEI over WCP. In autumn (cessation) period, only FSP measures of 
spread correlated significantly with TSA. Few instances of major differences are in AAO 
over Limpopo Province (LMP) and (ECP) during peak and onset seasons respectively. In 
general, the degrees of correlations differ from index-to-index, season-to-season and 
province-to-province. There is no gross spatial pattern to the correlations at the national scale. 
 
Figure 5.3 is summarized in Table 5.2, which shows the frequency of province-season 
combinations with correlations inconsistent with zero at the 10% significant level. For each 
season in the table, if the indices and the measures of spread are independent, then 
approximately 1 out of 9 provinces per index would be expected to be significant by random 
chance; counts above 1 are thus suggestive that we are finding evidence of physically-based 
co-variation. The 1-in-9-expected-by-chance rule of thumb should be considered a bare 
minimum, rather than sufficient; because the provinces are hardly independent of each other 
climatologically. Therefore, on seasonal time-scale, MEI is the most influential regarding 
precipitation predictability over South Africa. MEI is the only index that has more than the 
required statistical provincial-seasonal realizations during rainfall onset and peak periods. 
However, its influence is zero during cessation period when TSA dominates. Furthermore, 
IOD and TSA processes may also determine precipitation predictability during the onset 
period. 
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Figure 5.3 Correlations between measures of seasonal precipitation spread for the nine South 
African provinces and the indices of large-scale climate variability listed in Table 5.1 (AAO, 
IOD, MEI, and TSA). Black error bars indicate 90% confidence intervals estimated through a 
Monte-Carlo bootstrap procedure. 
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Table 5.2 Frequency of significant correlations between provincial-seasonal predictability 
measures and the large-scale climate indices listed in Table 5.1. At random, only 1 out of 9 
provinces per index are expected to have correlations significantly different from zero at the 
two-sided 10% significant level. On precipitation side, note that the peak and dry seasons are 
respectively dry and wet seasons for WCP. 

 

Climate 
index 

Precipitation Temperature 
Season RoP StdDev Season RoP StdDev 

AAO Peak 
(Summer) 

0 2 Hot 
(Summer) 

0 0 
IOD 0 1 1 2 
MEI 2 3 3 7 
TSA 0 1 4 4 
AAO Cessation 

(Autumn) 
0 0    

IOD 0 0   
MEI 0 0   
TSA 1 3   
AAO Dry 

(Winter) 
1 1 Cold 

(Winter) 
0 0 

IOD 1 0 1 3 
MEI 2 4 2 6 
TSA 2 1 0 1 
AAO Onset 

(Spring) 
1 0    

IOD 3 5   
MEI 4 6   
TSA 2 3   

 

 
5.5 Correlations of provincial-seasonal temperature spread with climate indices 
The seasonal correlations between the measures of spread for the nine South African 
provinces and climate indices for temperature are illustrated on the panels of Figure 5.4 for 
summer and winter. In similarity to precipitation analysis, no province, no season and no 
climate index demonstrates any particular pattern in the seasonal-provincial distributions of r 
during these two seasons. Potential correlations span from -0.6 to +0.8. There exist some 
degrees of structural similarities between the RoP and StdDev graphical representations on 
Figure 5.4. Both measures of spread agreeably in summer correlated significantly with MEI 
over ECP, KwaZulu-Natal Province (KZP) and WCP; with IOD over ECP and with TSA 
over FSP, MLP and NWP. In winter, measures of spread over KZP and WCP correlated 
significantly with MEI. 
Summaries of the frequency of significant correlations are given in Table 5.2. The table 
shows the frequency of province-season combinations with correlations inconsistent with 
zero at the 10% significant level; where the condition is the same as that of precipitation on 
seasonal time-scale. That is, only 1 out of 9 provinces per index is expected to have a 
significant correlation in a given season by random chance. Therefore, this implies that IOD 
and MEI processes have significant influences on the South African near air surface 
temperature predictability measures in both summer and winter. However, MEI has more of 
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the required statistical provincial-seasonal realizations than IOD in both seasons. TSA’s 
influences on the measures of temperature predictability is restricted only to summer season. 
 
Precipitation over WCP and ECP in winter and year-round respectively results from frontal 
activities which are modulated by southern mid-latitude circulation (Tyson and Preston-
Whyte, 2000). The AAO reflects the equator-ward / pole-ward variations in the position of 
the southern mid latitude storm track (Thompson and Wallace, 2000). Thus, the general lack 
of significant co-variability between the measures of spread and AAO over WCP and ECP 
suggests that the predictability of variations in the frequency and intensity of mid-latitude 
flows structures, such as cut-off-lows, are not related to the variations in the frequency and 
intensity themselves, at least in a linear way.  
 
 

 
 
Figure 5.4 Correlations between measures of winter and summer temperature spread for the 
nine South African provinces and the indices of large-scale climate variability listed in Table 
5.1 (AAO, IOD, MEI, and TSA). Black error bars indicate 90% confidence intervals 
estimated through a Monte-Carlo bootstrap procedure. 
 
 
This study has been able to establish the facts that the South African provincial measures of 
predictability significantly co-vary with the observed global SST far and near on seasonal 
time scale, suggesting that the climatic driving factors / forces may be locally or remotely 
based. It further answered the probing question of whether there are any SST influences on 
seasonal climate predictability via ensemble spreads. Results from this study revealed that the 
degrees of co-variability differ from index-to-index, season-to-season and province-to-
province. There are no clear large-scale patterns in the seasonal-provincial correlations, 
whether in space or across seasons. This study affirms that ENSO, as described by MEI, is 
the most influential in the predictability of seasonal precipitation over South Africa. It is the 
only climate index that has more than the required statistical provincial-seasonal realizations 
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during rainfall peak period in summer. This is in line with the earlier findings of Fauchereau 
et al. (2009) and Landman and Beraki (2010) that ENSO has the largest influence on South 
African precipitation anomalies. The IOD and also appear to have some role in influencing 
predictability in other seasons. This study is also indicating that there may be limits to the 
extent to which year-to-year variations in the predictability of seasonal climate forecasts 
might be understood, either because: (1) all significant climate predictors are of tropical 
origin; (2) the responses of predictability measures to predictors are, on the average, weak; 
(3) predictors are more complex in nature than can be represented by the traditionally simple 
climate index,  or (4) because the responses in predictability measures are nonlinear in nature. 
 
5.6 Statements of cautions 
The results presented here come from analysis of a single climate modeling system; therefore, 
the robustness of the results to model selection is unknown. Moreover, this modeling system 
is not particularly modern and certainly does not represent a state-of-the-art model. But this 
study could not be conducted with a computationally expensive state-of-the-art model, 
because no computational resources exist, at the moment, for running the large ensembles of 
simulations required to precisely characterize variations in ensemble spread; therefore, these 
data sets are currently unique. Whether another model would reveal the same relationship is 
unknown, consequently the specific values should not be taken too literally. 
 
Another concern is that this study only looked for linear relationships between predictors and 
the variations in predictability. Although significant correlations were found, there was no 
indication of the mechanism for causation. It may be that climate indices are influencing the 
atmosphere in a way that affects predictability, or that climate indices are responding to some 
other driver which is also affecting the seasonal climate predictability over South Africa; 
such a driver could be elsewhere within the climate system or could be external in nature, for 
instance through anthropogenic emissions. 
 
Despite the removal of linear trends from the time series of the analysis, nonlinear responses 
to external drivers may still be present in the data, as suggested by the mostly positive 
correlations for temperature predictability against SSTs globally. Beyond all these, the 
mechanisms through which various predictors could affect the spread of simulations over 
South Africa remain undefined. 
 
5.7 Implications of spread variations on forecast skill 
Are these variations in simulation spreads in anyway supported by the observations? We 
investigated by a briefly evaluating seasonal forecast skills using ranked probability skill 
score (RPSS; Murphy, 1988a; Wilks, 1995). RPSS is more a measure of forecast relative 
accuracy. It compares the performance of an ensemble forecasting system against a simple 
climatological forecast through 
 
RPSS  =    1  −    RPSfcst 
                            RPSclim 
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where RPSfcst is the ranked probability score for the forecast, which assesses how well the 
ensemble forecast predicted the category, in a discrete set of categories, into which the 
observations fell, and RPSclim is score if we a adopted a simple forecast of the probabilities 
observed over some climatological period. Murphy (1988a) and Wilks (1995) have shown 
that positive skills are normally desirable and that they represent a minimal level of 
acceptable performance by forecasts. The University of East Anglia Climate Research Unit 
(CRU; Mitchell and Jones, 2005) monthly dataset for precipitation and near surface air 
temperature were used as observations in our calculations of the RPSS. 
 
On provincial basis we sorted seasonal values of measures of spread, StdDev and RoP, from 
each year into four equi-probable bins. Bin 1 contains the smallest values of the measures of 
spread while largest values are accommodated in bin 4. Corresponding hindcast and observed 
precipitation and temperature information in each bin were used to calculate RPSS on a 
seasonal-provincial basis. The results are graphically depicted in Figures 5.5 and 5.6 for 
precipitation and temperature respectively. For precipitation, all provinces and seasons 
exhibit patterns of lines tilting down towards the right, effectively showing that the narrower 
the ensemble spread the higher the skill of the hindcast. Both measures of spread also 
exhibited seasonal movements of skills. Figure 5.5 shows that almost all provinces are of 
positive RPSS in summer; the positive RPSS tends to negative in autumn and spring as bin 2 
and beyond are approached while all provinces are of negative RPSS in winter. Figure 5.6 
show that while tilting also exists for some seasons and provinces for temperature RPSS-
spread comparisons, slopes for other seasons and provinces are not easily noticeable, in 
contrast to precipitation. Seasonal movements of skill in temperature are almost similar to 
those of precipitation, except for less obvious crossing of zero axes of RPSS as bins 
containing wider spreads are being approached. 
 
Distributions of RPSS on Figures 5.5 and 5.6 show that there is observational evidence that 
the ensemble spread emanating from HadRM3P, the regional model used in this study, reflect 
some fundamental issues about the real climate system. To further support this, it is pertinent 
to note that most of the El Niño and La Niña years as displayed on 
http://ggweather.com/enso/oni.htm and as used by Landman and Beraki (2010) and Browne 
(2011) fall within bins 1 and 2. 
 
The skill scores shown in Figures 5.5 and 5.6 are often not that high, sometimes not 
achieving the positive values normally considered desirable. Despite this, there is a clear 
linear relationship between the spreads of the ensemble of simulations and the skill scores, 
particularly for precipitation. Such a relationship could only arise if the ensemble spreads are 
reflecting true variations in the predictability from year to year. Given the low skill scores but 
strong relationship between the scores and the ensemble spreads, it may be that, at least for 
this model, the limits of predictability are in fact more predictable than the central forecast 
estimate itself. 
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Figure 5.5 Average seasonal-provincial ranked probability skill score, RPSS, for precipitation 
as a function of ensemble spread. Measures of spread, StdDev (left panels) and RoP (right 
panels) were sorted into one of four equi-probable bins (horizontal axis). Corresponding 
hindcast and observed precipitation and temperature information in each bin were used to 
calculate RPSS on a seasonal-provincial basis. Bin 1 contains smallest values of the measures 
of spread while largest values are accommodated in bin 4. 
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Figure 5.6 Average seasonal-provincial ranked probability skill score, RPSS, for temperature 
as a function of ensemble spread. Measures of spread, StdDev (left panels) and RoP (right 
panels) were sorted into one of four equi-probable bins (horizontal axis). Corresponding 
hindcast and observed precipitation and temperature information in each bin were used to 
calculate RPSS on a seasonal-provincial basis. Bin 1 contains smallest values of the measures 
of spread while largest values are accommodated in bin 4. 
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6 Simulations used in the attribution analyses 
 
6.1 Purpose of simulations 
This section begins the second part of the report, which examines the degree to which 
anthropogenic emissions may have altered the chance of monthly extreme events occurring. 
This section reports on the generation and characterization of simulations specifically 
designed for the task, and the application of these simulations to the problem of evaluating 
the attribution of the chance of extreme weather events to anthropogenic emissions will be 
discussed in Sections 7 and 8. In essence, those analyses involve the comparison of output 
from simulations driven under real world conditions against the output from simulations 
driven under conditions that might have been had anthropogenic greenhouse gas conditions 
never occurred. This section elaborates on descriptions in Stone et al. (“Designing a real-time 
weather risk attribution forecast system”, in preparation). 
 
The attribution studies reported in later sections are based on two sources of climate model 
simulations which are described in this section. The first source, generated at the University 
of Cape Town (UCT), comes in two forms: a forecast mode, and a hindcast mode. The 
second source of simulations from Lawrence Berkeley National Laboratory, U.S.A. (LBNL), 
follows a nearly identical experimental setup; but have only been generated in hindcast mode. 
The models used are HadAM3P-N96 (at about 1.5o spatial resolution), HadAM3-N48 (about 
3o), and CAM5.1-2degree (about 2o). All three are models of the atmosphere and land surface 
processes, thus they have been run under changing atmospheric composition, sea surface 
temperatures, and sea ice coverage. Specific details of the simulations are listed in Table 6.1 
and in the following two sections. 
 
6.2 UCT/HadAM3P-N96 and UCT/HadAM3-N48 simulations 
 
6.2.1 Reference real-world forecasts 
The Climate Systems Analysis Group (CSAG) at the University of Cape Town has been 
issuing seasonal weather forecasts since 2002 (issued at http://www.gfcsa.net/csag.html, 
Browne et al., 2011). Until June 2010, these forecasts were generated with a version of the 
U.K. Met Office’s HadAM3 model (Pope et al., 2000). This version of HadAM3, run at N48 
resolution (3.75o longitude by 2.5o) with 19 vertical levels, includes the mixed phase 
precipitation scheme as this has been found to improve the model precipitation over southern 
Africa (Wilson, 2000). Starting in June 2010, the publicly posted forecasts have been 
generated using the HadAM3P version of the U.K. Met Office model which is used as the 
standard driving global model in the PRECIS regional modeling project (Jones et al., 2004). 
HadAM3P shares the same underlying dynamical core as HadAM3, but uses more recently 
developed physical parameterization schemes and runs at N96 resolution (1.875o longitude by 
1.25o) with 19 vertical levels. Neither model is of the resolution generally used in current 
state-of-the-art seasonal forecasting activities, but are rather more comparable to the coupled 
atmosphere-ocean models used both in the international CMIP5 project which formed the 
benchmark for the most recent Assessment Report of the Intergovernmental Panel on Climate 
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Change and also in the current international CMIP5 project serving the upcoming Assessment 
Report. However, HadAM3P at N96 is considered capable of resolving synoptic systems, 
while HadAM3 at N48 indicates some comparison for the potential importance of resolving 
these features. 
 
Table 6.1 Simulations performed at UCT (HadAM3P-N96 and HadAM3-N48) in 
contribution to this project, and simulations obtained from LBNL (CAM5.1-2degree) 
following the same experiment setup. The right-most column lists the number of simulations 
generated following the specifications in the other columns with each simulation differing 
only in the exact weather state set at the start of the simulation. 
 

Label Description Model Period N

 

All-Hist/est1 Driven with observed 
increases in greenhouse 
gas concentrations and 
monthly variations of 
sea surface properties 
(Produced toward 
Deliverable 1) 

HadAM
3P-N96 

1960-01-01 
to 2013-07-
31 

10 

2008-09-01   
to 2011-10-
31 

50 

HadAM
3-N48 

1960-01-01   
to 2008-12-
31 

10 

2009-01-01   
to 2013-07-
31 

50 

CAM5.1
-2degree 

1959-01-01   
to 2012-12-
31 

56 

NonGHG-
Hist/ 
HadCM3-
p50-est1 

Like the All-Hist 
simulations but with 
greenhouse gas 
concentrations at pre-
industrial levels and the 
ocean cooled 
accordingly (Produced 
toward Deliverable 5) 

HadAM
3P-N96 

2008-11-01   
to 2013-07-
31 

10 

2008-09-01   
to 2011-10-
31 

50 

HadAM
3-N48 

2009-01-01   
to 2013-07-
31 

50 

CAM5.1
-2degree 

2008-01-01   
to 2012-12-
31 

56 

 
 
The generation of the forecasts follows a standard two-tiered approach, as outlined in Figure 
6.1. For a forecast generated and issued in March, a 10-member initial condition ensemble of 
simulations is started from the beginning of January and run through the end of June, 
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providing a three-month forecast coverage (i.e. April-June in this example) (Figure 6.2). 
Monthly mean sea surface temperatures (SSTs) for mid-January and mid-February are taken 
from the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation 
version 2 (OI.v2) observational products (Reynolds et al., 2002). SSTs for later months are 
estimated by adding the observed February SST anomaly from the 1960-2000 climatological 
mean to the climatological means of these later months. Daily SSTs are estimated through 
linear interpolation between the middles of the months; thus, in the March forecast January is 
the only month to have entirely observationally-based SSTs. A seasonally varying 
climatology of sea ice coverage is used, with obvious issues for forecasts in high latitudes. 
The atmospheric and land-surface initial conditions are taken from the end of the first month 
in the previous month’s forecast simulation (e.g. for the March forecast they come from the 
end of December in the February forecast). No assimilation of data from observational 
measurements or analyses is performed, which is crucial for the attribution forecast because 
otherwise results would be strongly conditioned on the atmospheric state experienced under 
anthropogenic greenhouse gas forcing. This approach also means that concatenation of the 
first months of subsequent forecast simulations results in continuous hindcast series, which 
are also contiguous with the ten climatological hindcast simulations started in 1960. Of 
course, strictly speaking these hindcasts are “AMIP-style” simulations because the initial 
conditions are not derived from actual observed states, but the distinction disappears in the 
structural framework of this forecasting system. 
 
In this report, we discuss forecasts generated from December 2008 through to February 2014 
using both HadAM3-N48 and HadAM3P-N96 (Table 6.1). Some of the earlier forecasts were 
actually generated after the fact, but as if it was in real-time. The HadAM3-N48 forecasts 
described here are not the same as those issued publicly prior to June 2010, and differ in 
some specifics and in use of computing platform from those earlier publicly issued forecasts. 
These new HadAM3-N48 forecasts continue to be generated for research purposes and for 
the attribution forecast product described in this report but are not currently included as part 
of the publicly issued seasonal forecast. 
 
6.2.2 Counterfactual “non-greenhouse-gas” forecasts 
For each of these two forecast models, a second 10-member ensemble of simulations is 
generated to estimate what the forecast might have been had human activities never emitted 
greenhouse gases. For these non-greenhouse-gas, or “non-GHG”, forecasts the prescribed 
greenhouse gas concentrations in the model are reduced to pre-industrial values and the 
prescribed SSTs are altered according to an estimate of the warming attributable to our 
historical greenhouse gas emissions (Figure 6.1). These non-GHG forecasts are identical to 
the real forecasts in all other respects, including in sea ice coverage. The non-GHG 
simulations were initially started from the October 2008 initial conditions of the real 
forecasts’ hindcasts (i.e. for the December 2008 issue), and have been run separately from the 
real forecasts since then.  
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Figure 6.1 Schematic of the procedure for producing the seasonal forecasts used in the UCT 
attribution forecast system. Observed greenhouse gas concentrations are imposed for the real 
forecasts, while pre-industrial concentrations are imposed for the non-greenhouse-gas (non-
GHG) forecasts. Sea surface temperatures for the non-GHG forecasts are modified by 
subtracting an estimate of the geographical warming attributable to historical greenhouse gas 
emissions. 
 
 
The warming attributable to greenhouse gas emissions is estimated using an optimal total 
least squares regression analysis (Allen and Stott, 2003; Stott et al., 2003) on data from the 
HadSST2 dataset of gridded observational measurements (Rayner et al., 2006) and output 
from simulations of the HadCM3 coupled ocean-atmosphere climate model (Stott et al., 
2006). This analysis estimates objective scaling factors by which the amplitudes of the 
modeled response patterns to various external forcings should be adjusted to match the 
observations. The analysis here indicates that the response of the HadCM3 coupled ocean-
atmosphere model to anthropogenic greenhouse gas forcing should be adjusted by a factor of 
1.3. In order for these forecasts to be generated in real-time, we are currently unable to follow 
Pall et al. (2011) in generating large ensembles sampling the uncertainty in the attributable 
pattern and scaling factor; thus we use only this single pattern-scaling estimate for now. This 
attributable SST warming estimate is subtracted from the SSTs used in the seasonal forecast 
as indicated schematically in Figure 6.1. 
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Figure 6.2 Time series of monthly temperature and precipitation over South Africa output 
from one of the forecast simulations each of HadAM3P-N96 and HadAM3-N48 and for each 
of the real-world and non-greenhouse-gas-world (non-GHG) scenarios. Each line shows the 
time series starting from the hindcast month, through the then-current month, and on through 
the three forecast months. 
 
 
6.2.3 Additional hindcast simulations 
In addition to the above sets of 10 simulations generated with both models, additional sets of 
50 simulations were generated with both models and for both scenarios (real-world and 
nonGHG-world) in hindcast mode (Table 6.1). These simulations cover the September 2009 
(after spin-up) to October 2011 period. These are fully consistent with the hindcast output 
from the HadAM3P-N96 forecast, but because of slight configuration differences, the  
50-member HadAM3-N48 simulations must be considered separately from the 10-member 
forecast simulations. 
 
6.2.4 Simulations with an updated model configuration 
An additional set of simulations generated at UCT are nearing completion. These simulations 
are with the HadAM3P-N96 model, run specifically under the protocols of the C20C+ 
Detection and Attribution Project (Section 6.5.1). These simulations are currently in the 
“hindcast” mode and have been augmented in the following ways from the HadAM3P-N96 
simulations described above: 

• Inclusion of time-varying aerosol burdens, stratospheric ozone, stratospheric (volcanic) 
aerosol burden, and solar luminosity in the “real-world” simulations, whereas these 
were not varied through time in the above simulations. 

• Inclusion of time-varying land covers in both the “real-world” and “natural-world” 
simulations, whereas land cover was not varied in the above simulations. 

• Inclusion of time-varying sea ice coverage, whereas only the climatological mean 
annual cycle was used in the above simulations. 
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• As with the above simulations, a 10-member ensemble of “real-world” simulations has 
been run from 1960 to present. However, an additional 40 simulations have been run 
starting in 1996. 

• The counterfactual world is for a “natural world” in which all anthropogenic emissions 
had never occurred. 

• 50 “natural world” simulations are being run for the 1996 to present period.  
• Ocean surface temperatures for the “natural world” simulations have been cooled 

according to the “CMIP5/est1” estimate forming the common benchmark estimate for 
the C20C+ Detection and Attribution Project (Stone, 2014). 

• Sea ice coverage has been altered in the “natural world” simulations for consistency 
with the cooler ocean according to the method of Pall et al., 2011 (Stone 2014). 

 
Two additional sets of simulations for the “natural world” scenario, but each set using a 
different attributable ocean warming estimate than the “CMIP5/est1” estimate, are also 
planned. Together, these simulations will comprise a full contribution to the core experiment 
of the C20C+ Detection and Attribution Project. Additionally, these new simulations will 
form the basis for an updated UCT seasonal forecasting system. While generated as part of 
this project, these simulations have not yet been analyzed in the studies reported in the 
following sections. 
 
6.3 LBNL/CAM5.1-2degree simulations 
Lawrence Berkeley National Laboratory has produced a similar set of simulations 
(corresponding to the hindcast mode) with the CAM5.1-2degree model. This model as a 
completely different origin from the HadAM3 models and thus can be considered useful for 
ascertaining the sensitivity of results to structural and parameter uncertainty in model 
formulation. These simulations number 56 for both real-world and nonGHG-world scenarios 
and cover the January 1959 through December 2012 period for the real-world simulations 
and the January 2008 through December 2012 period for the nonGHG-world simulations. 
These simulations included some interannual variations in atmospheric composition not 
included in the HadAM3 runs. They used the same NOAA OI.v2 sea surface temperatures 
and greenhouse gas attributable warming estimate. However, they also included observed 
variations in sea ice coverage as well as an adjustment of sea ice coverage in the nonGHG-
world scenario for consistency with the cooler ocean temperatures (Pall et al., 2011; Stone, 
2014). 
 
6.4 Characteristics of the output of these simulations 
Estimates of the degree to which anthropogenic emissions have altered the chance of extreme 
events based on these simulations, as discussed in the following sections, depend on the 
simulations spanning the range of possible weather realizations during the time period and at 
the location under investigation. However, the simulations introduced above have been 
produced with atmospheric models. The anomalous ocean state, for instance whether an El 
Niño event has occurred, is purely prescribed based on observations. Thus conclusions in the 
following sections are conditional on the observed ocean state. How much does this matter? 
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Figure 6.3 shows monthly output at two different locations. The average temperature over the 
Niño 3.4 region of the tropical Pacific is a standard measure of the El Niño/Southern 
Oscillation (ENSO) phenomenon. As expected, 1.5m surface air temperatures over this 
region from the HadAM3P-N96 model are tightly constrained by the prescribed ocean 
surface temperatures 1.5m below the measurement height. Thus within each scenario, 
interannual variations in the sea surface temperatures overwhelm inter-simulation spread. For 
the model grid box situated over Kimberley, Northern Cape, however, the situation is very 
different. Kimberley is used here to represent a continental location far from local interaction 
with ocean. In this case model spread dominates over the interannual variability, but there do 
remain instances of interannual differences, for instance in the earlier cessation of the wet 
season simulated in 2009 than in subsequent years.  Thus, it appears that while the 
conditionality on observed sea surface temperatures may not be a major issue in many cases, 
it remains important that attribution studies examine sensitivity to it. The simulations 
discussed in this section, are the first to comprise multiple years for the nonGHG-world 
scenario and thus are the first to permit examination of this sensitivity. 
 
 

Temperature  Temperature Precipitation 
 
 

Niño 3.4  Kimberley Kimberley 
 
 
 
 
 
 
 
 
Figure 6.3 Monthly surface air temperature and precipitation from the HadAM3P-N96 
attribution simulations. Red and pink denote All-Hist/est1 simulations while light and dark 
blue denote NonGHG-Hist/HadCM3-p50-est1 simulations. See Table 6.1 for a description of 
these simulations. a) temperature over the Niño 3.4 region of the tropical Pacific, b) 
temperature at the model grid box located over Kimberley, c) precipitation at the model grid 
box located over Kimberley. 
 
 
6.5 Application of simulations beyond this project 
 
6.5.1 International CLIVAR C20C+ D&A Subproject 
The International CLIVAR Climate of the 20th Century Plus Project (C20C+) is an 
international collaboration of approximately two dozen climate modeling groups around the 
world. At the C20C+’s 5th Workshop in Beijing, China, in 2010, it was agreed that C20C+ 
would adopt a new core project, name the “Detection and Attribution Subproject” (D&A 
Subproject) (Kinter and Folland, 2011). Following trial experiments and other preparatory 
work, the importance of the D&A Subproject as a core element of C20C+ was reaffirmed at 
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the 6th Workshop in Melbourne, Australia, in 2013. 
 
The C20C+ D&A Subproject will generate a large number of atmospheric climate model 
simulations of the past 50 years representing plausible alternative realisations of weather 
given the climatic boundary conditions that have been observed 
(http://portal.nersc.gov/c20c). These boundary conditions include anthropogenic radiative 
forcings (such as greenhouse gas concentrations, sulphate aerosol burden, etc.), natural 
radiative forcings (changes in the solar luminosity, explosive volcanic eruptions), and ocean 
surface conditions (temperature, sea ice coverage). These models will also generate large 
numbers of simulations driven under conditions representing plausible estimates of what the 
climate might have been in the absence of past anthropogenic emissions. Together, these 
simulations will be used for analysis of past trends in extreme weather events, attribution of 
changing probability of extreme events, and for other analyses of climate variability. 
 
The UCT/HadAM3P-N96 All-Hist/est1/v1-0 (“real-world”) and NonGHG-Hist/HadCM3-
p50-est1/v1-0 (“nonGHG-world”) simulations under taken in the project reported here, along 
with the LBNL/CAM5.1-2degree simulations, have served as a trial experiment for the 
C20C+ D&A Subproject. These simulations are thus serving as the template for the core 
experiment of the C20C+ D&A Subproject now underway since late 2013. In addition, the 
UCT/HadAM3P-N96 All-Hist/est1/v2-0 and NonGHG-Hist/CMIP5-est1/v2-0 simulations 
run under this project constitute UCT’s contribution to the core C20C+ D&A Subproject; 
given the early starting date relative to other institutions, UCT’s simulations will be amongst 
the first completed. 
 
6.5.2 Analysis by other researchers 
The role of the All-Hist/est1/v1-0 and NonGHG-Hist/HadCM3-p50-est1/v1-0 simulations of 
UCT/HadAM3P-N96 as a trial experiment for C20C+ includes being published on the 
C20C+ D&A Subproject’s data portal at http://esg.nersc.gov (under project “c20c”). 
Researchers at the following institutions have specifically reporting downloading and 
analyzing the UCT and LBNL simulations: 

• ETH Zurich, Switzerland 
– Angélil, O., D. A. Stone, M. Tadross, F. Tummon, M. Wehner, and R. Knutti. 

2014. Attribution of extreme weather to anthropogenic greenhouse gas 
emissions: sensitivity to spatial and temporal scales. Geophysical Research 
Letters, submitted. 

• Lawrence Berkeley National Laboratory, U.S.A. 
– See talks, posters, and papers in preparation by D. Stone and M. Wehner listed 

in Section 10.1. 
• Stanford University, U.S.A. 
• University of Melbourne, Australia 

– Lewis, S., and D. Karoly. Can we attribute Australia’s record 2010-2012 rainfall 
to a particular cause? Poster at 6th Workshop of the International CLIVAR 
C20C Project, Melbourne, Australia, November 2013. 
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Output from these simulations was also distributed by USB memory stick to 22 African 
(including South African) researchers at the Africa Climate Conference in Arusha, Tanzania, 
in October 2013.  
 
Taken together, the HadAM3P-N96 and CAM5.1-2degree simulations described above 
constitute a unique data set. While “event attribution” ensembles representing the real world 
and a natural world that might have been have been generated at a handful of stations 
worldwide, the simulations described above are the only ones to span multiple years. They 
are also the only case where two climate models have been run under the same experimental 
setup, thus allowing a crude form of inter-model comparison for the first time. 
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7 Attribution of extreme events to anthropogenic greenhouse gas  
    emissions 
 
7.1 Experimental approach 
This section describes analyses of the monthly climate output from the attribution simulations 
described in Section 6. In particular, these analyses were designed to estimate the degree to 
which anthropogenic emissions have altered the chance of unusual monthly weather events. 
This comprises one experimental approach to characterizing the degree to which 
anthropogenic emissions have altered the occurrence of extreme weather events, frequently 
termed “event attribution” (Stott et al., 2013). This section elaborates on results presented in 
Stone et al. (“Designing a real-time weather risk attribution forecast system”, in preparation) 
and Stone et al. (“Human contribution to extreme monthly weather over South Africa”, in 
preparation). 
The approach used here follows the risk-based methodology described in Stone and Allen 
(2005). While Stone and Allen (2005) used the “Fraction Attributable Risk” (FAR) measure, 
in this section we adopt the “Risk Ratio” (RR) measure (Figure 7.1). If the chance of the 
event under current real-world climate conditions is Preal and the chance under the 
conditions of a counterfactual contemporary world in which human had never emitted 
greenhouse gases is PnonGHG, then the Risk Ratio is: 
 
RR =  Preal  
                 PnonGHG 
Note that the FAR is related to the RR through AR = 1 − 1   
                                                                                            RR                                             (1) 
 
 

 
 

 
 
 
 
 
 
 
Figure 7.1 Schematic of the estimation of the Risk Ratio. If we have estimates for the 
probability distribution of some weather metric in both “real-world” and “nonGHG-world” 
conditions, then the RR is the ratio of the area of those distribution beyond a certain 
threshold. 
 
 
In the analyses reported in this section, we have estimated the Preal and PnonGHG values 
from the climate model simulations discussed in Section 6. This estimation is either from 
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direct sampling of the empirical distribution, in cases where the threshold falls well within 
the main area of the distribution, or from a Gaussian fit to the model output (or the logarithm 
of in the case of precipitation) in cases where the threshold falls within the tails of the 
distribution. More advanced statistical estimation techniques exist, but within the current 
experimental nature of the project these estimation methods have proven sufficient robust. 
 
7.2 Monthly attribution forecast 
The Weather Risk Attribution Forecast (http://www.csag.uct.ac.za/daithi/forecast/), started 
prior to this project but further developed as part of this project, produces monthly estimates 
of the degree to which our emissions have altered the chance of unusual events.  This is a 
systematic system, meaning that events are defined prior to occurrence. Advantages of this 
approach are:  

• Selection of events is not biased by events that occurred or for which we expect a 
certain attribution result; 

• Estimates can be made as part of a seasonal forecast system as described in Section 6, 
i.e. estimates are available at the time of occurrence of the events, rather than one year 
later. 

 
One outcome of this setup is that many attribution estimates end up being for events that do 
not end up occurring. 
Events are defined for each month along the following criteria: 

• 58 regions, each approximately 2 Mm2 in size, are used shown in Figure 7.2. These 
regions are based on political and economic bodies, on the basis that responses to 
extreme events tend to be coordinated along these regional definitions. 

• The thresholds used are the 1-in-10 year threshold experienced during the previous 
years starting in 1960. Thresholds are estimated from the same calendar month in 
those previous years. 

• Thresholds are applied for unusually hot months, cold months, wet months, and dry 
months. 

 
An example of the forecast result for October 2013, issued in September, is shown in Figure 
7.2 for the HadAM3P-N96 model. Based on input from others on how various potential users 
might interpret results, these maps simplify the numerical results through classification into 
six categories. These categories are based on the primary RR thresholds of “there is a 
change” and “the change is at least a factor of two”. They do not reflect the best estimate of 
the actual change, but, based on a Monte Carlo uncertainty analysis, what we can say with 
confidence: 

• If we are confident that the chance has at least doubled (red) 
• If we are confident that the chance has at least increased, but we cannot confidently say 

it has at least doubled (yellow) 
• If we are confident that the chance has at least halved (dark blue) 
• If we are confident that the chance has at least decreased, but we cannot confidently say 

it has at least halved (light blue) 
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• If we cannot say anything confidently about an increase or decrease in the chance (grey) 
• If we are confident that the chance has no more than doubled or halved (green) 

 
The first five categories listed above are mutually exclusive and comprehensive. However, 
the green “not much change” category overlaps the yellow and light blue “at least some 
change” and grey “cannot detect change” categories. 
 
The attribution forecast service’s website posts results for the one-month lead forecast, as 
shown in Figure 7.2, and then posts updated results three months later when the “hindcasts”, 
using observed rather than forecast sea surface temperatures, are available. Analyses have 
indicated that there are no systematic differences between the forecast and hindcast 
attribution estimates (not shown). 
 
The example shown in Figure 7.2 is typical of most months. According to the calculations, 
we are confident that the chance of an unusually hot October 2013 was at least doubled 
because of anthropogenic greenhouse gas emissions over most regions, while the chance of 
the month being unusually cool was at least halved. The tendency for northern high-latitude 
regions to have less confidence in there being as large an increase in the chance of a hot 
month becomes stronger in the northern winter months. This contrast between high latitudes 
and lower latitudes is the combined consequence of the higher atmospheric variability in 
higher latitudes and the neglect of atmospheric variability of oceanic origin in the tropics in 
the lower latitudes. Together, these mean that generally globally uniform (to first order) 
warming shift occurs against very different backgrounds of climate variability. Current 
monthly attribution maps for precipitation, based on 10 simulations, tend to reflect sampling 
noise rather than underlying signals. Analyses on the larger hindcast ensembles covering 
2009-2011 described in Section 6.2 do indicate systematic patterns, however, as will be 
described in the following subsections. 
 
 
7.3 Collective analysis 
Two questions emerge from the maps shown in Figure 7.2. 

• Are the spatial patterns seen in Figure 7.2 stable from month to month? 
• If a different climate model had been used, would the map have looked similar? 

 
Fortunately, the simulations described in Section 6 are able to address both these questions. 
 
Figure 7.3 shows the frequency of occurrence of each of the categories for unusually hot 
months in each region for all 36 months in the January 2009 through December 2011 period. 
The colours used in the pie charts are identical across to those used in Figure 7.2. These 
results come from analysis of 60 simulations of HadAM3P-N96 for both the real-world and 
nonGHG-world scenarios, 50 simulations for HadAM3-N48, and 56 simulations for 
CAM5.1-2degree. Figure 7.4, 7.5, and 7.6 shows the results for unusually cold, wet, and dry 
months respectively. 
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Unusually hot                                                                            Unusually cold 
 
 
 
 
 
 
 
 
 
 
Unusually wet                                                                             Unusually dry  
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 An example attribution forecast from the HadAM3P-N96 model. This shows the attribution results forecast in September 2013 
for October 2013. Each of the regions are assigned one of six classifications based on an analysis of the “attribution forecast” simulations 
described in Sections 6.2.1 and 6.2.2 and in Figure 6.1. 
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For many lower latitude regions, particularly the African regions, the “confident in at a 
doubling” of the chance of unusually hot events category occurred in all 36 months. Results 
are less consistently confident of a large change in northern high latitudes. There are two 
reasons for this. First, because sea ice coverage was not expanded for the HadAM3P-N96 and 
HadAM3-N48 nonGHG-world simulations, these models are seeing -1.8◦C water when they 
should be seeing much colder ice. This factor is visible in the difference between the results 
of these two models and of CAM5.1-2degree, which did include a sea ice expansion in the 
nonGHG-world simulations. Second, to first order these maps are comparing the magnitude 
of the mean warming signal to the magnitude of the interannual variability. Because 
interannual variability in temperature is greater in the northern high latitudes than elsewhere 
in the world, particularly than in the tropics, the more or less uniform warming does not so 
clearly exceed the interannual variability. Similarly, the magnitude of the interannual 
variability in the tropics may be underestimated in these simulations, which do not include 
possible realisations of the ocean other than what was observed. Broadly, this results in 
unusually cold months (Figure 7.4), except of course that the dominant categories are for “at 
least a decrease” and “at least a halving” of the chance. 
 
Not surprisingly, the results for unusually wet and dry months (Figures 7.5 and 7.6) are not as 
monochromatic as for the temperature extremes. All three models show a frequent “at least 
an increase” in the chance of an unusually wet month conclusion for northern high and mid 
latitudes, with a shift toward the “at least a decrease” and “no major change” categories in the 
low latitudes, including South Africa. The results for unusually dry months are largely the 
opposite. The models generally share a similar structure in results within the African 
continent as well, with East Africa behaving more like higher latitudes for dry events (“at 
least a decrease” in the chance), and more equatorial regions having more of a tendency for 
the “at least an increase” category. 
 
Broadly, then, these analyses address our two questions. First, the spatial patterns visible in 
the maps for temperature events in the Figure 7.2 example are representative of general large 
scale characteristics of attributable signals, at least as within the experimental setup of these 
climate models. The spatial patterns for precipitation extremes are less strong, but 
nevertheless are indicative of tendencies over the continental areas. Second, the results are 
quite robust against the selection of climate model, even on the sub-continental scale. 
 
7.4 Results for South Africa, Namibia, and Botswana 
In this section we focus on the region including South Africa, which also includes Namibia 
and Botswana. For temperature, each country has contributed to the results according to its 
surface area. For precipitation, though, the contribution reflects the total precipitation 
occurring within in each country, thus because South Africa is generally wetter than the other 
two countries, the precipitation results are strongly biased toward wetter regions of South 
Africa. 
 
The attribution category assigned to this region, for each month of the January 2009 through 
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October 2011 period, are shown in Figure 7.7. For hot and cold events, the results are 
remarkably strong and consistent. Analyses of both the HadAM3-N48 and CAM5.1-2degree 
indicate that we are confident that the chance of a hot event was at least doubled because of 
our emissions in every single month during that period; results from HadAM3P-N96 are 
nearly as strong. For cold events, analyses of all three models indicate that we are confident 
that the chance was at least halved for all of the months. 

 
For unusually wet dry months, all three models agree that whenever a confidence change in 
the chance is notable, it is for an increased chance of dry months and a decreased chance of 
wet months (Figure 7.7). Generally, however, there is no notable change in the chance during 
the December-February wet season months, with the most notable and consistent changes 
being in the transition months. While the models are usually consistent with one another in 
terms of assigned class, there may be some differences between years. This latter result raises 
the intriguing, and challenging, prospect that attribution results for wet and dry events over 
this region are actually somewhat sensitive to the prescribed ocean temperatures in this 
atmospheric modeling experimental setup. 
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Figure 7.3 Pie charts showing the frequency of occurrence of each of the categories listed in 
the Figure 7.2 legend for unusually hot months over each region during all months in the 
2008-2011 periods. 

59 
 



 

C
A

M
5.

1-
2d

eg
re

e 
H

ad
A

M
3-

N
48

 
H

ad
A

M
3P

-N
96

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.4 Pie charts showing the frequency of occurrence of each of the categories listed in 
the Figure 7.2 legend for unusually cold months over each region during all months in the 
2008-2011 periods. 
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Figure 7.5 Pie charts showing the frequency of occurrence of each of the categories listed in 
the Figure 7.2 legend for unusually wet months over each region during all months in the 
2008-2011 periods. 
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Figure 7.6 Pie charts showing the frequency of occurrence of each of the categories listed in 
the Figure 7.2 legend for unusually dry months over each region during all months in the 
2008-2011 periods. 
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Unusually cold months 
 

 

 

                                   
 
Unusually wet months 

                       

                         

                         

                                  
 
Unusually dry months 

                 

                          

                         

                                  
 
 
Figure 7.7 The attribution categories assigned to the South Africa/Namibia/Botswana region 
during the January 2009 through October 2011 period. This is the period when the three 
climate models have large ensembles of simulations: 60 for HadAM3P-N96, 50 for 
HadAM3-N48, and 56 for CAM5.1-2degree. Some months have been assigned by the “no 
major change” (green) class and another class, in which they are both included as triangles. 
The colors correspond to the same classification as in Figure 7.2. 
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8 Attribution of floods in the Okavango Basin 
 
8.1 Background 
This section comprises a case study of the predictability and attribution techniques developed 
in earlier sections to a hydrological system, specifically streamflow discharge into the 
Okavango Delta, Botswana. It uses simulations discussed in Section 6 and methods 
introduced in Sections 3 and 7. This section summarizes research on the attribution of the 
chance of high floods reported in (Wolski et al., 2014), with the addition of some analysis of 
the limits of predictability not yet published. 
 
The Okavango Basin in southern central Africa (Figure 8.1) has experienced high floods in 
2009-2011 (Figure 8.2, with considerable economic and societal impacts: villages and houses 
were flooded, bridges closed or washed away, water and electricity supply interrupted. The 
hydrology and climate conditions in that system cause that flooding occurs as a result of 
accumulation of individual rainfall events during entire rainy season occurring over a 
relatively large area, rather than as a result of intense short events of limited spatial extent. 
This offers an opportunity to apply the risk-based event attribution methodology in a context 
of spatial and temporal scales different from these used in typical attribution studies, such as 
that of Pall et al. (2011) and Kay et al. (2011). 
 

 
 
Figure 8.1 Location of the Okavango River Basin. The inset shows annual river discharges at 
Mohembo since 1934. Note the strong multidecadal variability, marked by high flows during 
the 1960s and in the recent few years. 
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8.2 Study site 
The Okavango basin is located in central Southern Africa (Figure 8.1) and extends across a 
relatively smooth climatic gradient from a high rainfall zone in the highlands of Angola, 
towards the semi-arid north of Botswana. The climate of the basin is affected by the 
interaction of three air masses: cold dry air from the southern Atlantic, warm moist air from 
the southern Indian Ocean and warm moist air from the equatorial Atlantic, and influenced by 
the movement of the Inter-tropical Convergence Zone (ITCZ) and the Zaire Air Boundary 
(ZAB). The rainy season occurs during the austral summer (October-April) and accounts for 
95% of total annual rainfall. 
The hydrological system is broadly divided into two parts: the upper, having a character of a 
typical river catchment, runoff from which contributes 2/3 of water balance inputs to the 
lower part; and the lower part consisting of the Okavango Delta wetlands and terminal rivers, 
where the water’s ultimate sink is evaporation to the atmosphere. The annual flood takes the 
form of a mono-modal (only in higher rainfall years bimodal) event, with flood peak 
progressively delayed in the downstream direction, such that at the inflow to the Okavango 
Delta it occurs 3 months and in terminal parts of the system 6-7 months after the middle of 
the rainy season (Figure 8.2). 
 

 
 
Figure 8.2 Measured monthly flood hydrographs of the Okavango River at Mohembo for the 
three analyzed years, and discharge statistics for 1934-2012. 
 
 
8.3 Methods 
This study follows the attribution method developed by Stone and Allen (2005) and Stott  
et al. (2004), and applied in the context of attribution of hydrological extreme events by  
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Pall et al. (2011) and Kay et al. (2011).  
 
The main aspects in which the current study differs from these earlier studies is in that Pall et 
al. (2011) and Kay et al. (2011) analyzed events at time scales in the order of hours to weeks 
with recurrence interval of approximately 300 years, while our focus is on accumulation of 
events during the entire rainy season occurring on average once in 4-25 years. As a 
consequence, while the other studies used an ensemble of 1000 simulations to adequately 
sample rare conditions, our study could be limited to 50 ensemble members. Additional 
differences are in that the other studies used several estimates of the attributable ocean 
surface warming, whereas we use a single estimate. In contrast, we focus on resolving other 
aspects of the modeling setup, specifically studying across multiple years and climate models. 
Like those other studies, we examine the greenhouse gas contribution specifically, rather than 
the full anthropogenic contribution (i.e. we do not consider the contribution of anthropogenic 
aerosols). 
 
In this study we use two atmospheric climate models: HadAM3P-N96 (Section 6.2) and 
CAM5.1-2degree (Section 6.3. For simulating hydrological conditions in the Okavango 
catchment we use a semi-conceptual hydrological model of the catchment, developed earlier 
and used in numerous earlier studies (e.g. Wilk et al., 2006; Hughes et al., 2011; Wolski et 
al., 2012b), known as the Pitman model.  The model runs on a monthly time step, and 
discretizes the Okavango catchment upstream of Mohembo (Figure 8.1) into 22 sub-
catchments. The model accounts for processes of evaporation, transpiration, infiltration, 
surface runoff, interflow, groundwater recharge, groundwater transport and channel flow. The 
model uses monthly rainfall and monthly air temperature as inputs, and outputs monthly river 
discharge at the outlet of each sub-catchment. 
 
Considering that the region is characterized by a relatively low topographic relief and NE-
SW rainfall gradient which is well reflected in the climate model rainfall fields and that the 
catchment hydrological model uses data at a coarse spatial sub-basin and monthly time scale, 
we decided to perform main part of the analyses using the climate model output directly from 
both climate models. We have, additionally, downscaled rainfall based on the TRMM 3B42 
dataset and HadAM3P-N96, for which a set of variables used in the process was readily 
available. This data set was meant to provide information on influence of GHG emissions on 
the daily rainfall intensities, which could have had impact on runoff unnoticed in monthly 
data. Importantly, the downscaled data set is not meant to form the basis for comprehensive 
sampling of errors and uncertainties arising during various ways of linking climate models 
and hydrological models – for that, we would need a number of downscaling and bias-
correction procedures. Rather, it provides information about the order of magnitude of 
possible systematic errors and uncertainties involved in such linking. 
 
For the direct use of climate model output to drive the hydrological model, the monthly 
climate model variables of rainfall and temperature were firstly re-gridded to a higher 
resolution (0.1 degree) using a binomial interpolation. Subsequently, aerial averages for each 
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sub-catchment were calculated. Since raw climate model rainfall and temperature data are 
known to contain biases, time series of rainfall and temperature were bias corrected. Two 
correction procedures were used: scaling of mean and variance, and histogram equalization. 
But since differences between results of the two procedures were not qualitatively different, 
only the first one is presented here. In that procedure a multiplier and an offset are derived on 
a calendar month-to-month basis, such that mean and variance of the “real world” ensemble 
for the 1960-2002 periods match these of the reference dataset in the same period (in this case 
Pitman model dataset developed by Wilk et al. (2006)). The multipliers and offsets are then 
applied to individual climate model datasets for the 2008-2011 period for both “real world” 
and the “non-GHG world” (non-greenhouse-gas world) ensembles (Sections 6.2 and 6.3). 
The advantage of this simple solution is that the Pitman model can be used with climate 
model data without the need for its re-calibration. 
 
For downscaling we have used a procedure based on self-organizing maps (SOM 
downscaling or SOM-D, Hewitson and Crane, 2006). Since temperature data could not be 
downscaled due to lack of daily observations, the hydrological model was run with 
downscaled rainfall and bias-corrected climate model temperatures. The downscaling was 
performed only for HadAM3P-N96 data. 
 
In order to ascertain a relative contribution of differences in rainfall and temperature between 
the “real world” and “non-GHG world” on flood attribution results, a simple sensitivity 
analysis was performed. Specifically, a set of simulations was designed to describe a world 
that might have been had rainfall been affected by greenhouse gas emissions but temperature 
had not. Thus the hydrological model was run with rainfall data from the “real world” climate 
model simulations but temperature data from the “non-GHG world” simulations. 
 
The risk-based approach compares the chance of exceedance of a threshold in the "real 
world" mode (Preal) against the chance of exceedance of that same threshold in the “non-
GHG world” (PnonGHG). Recent event attribution assessments have used the fraction 
attributable risk (FAR) measure to quantify the degree to which the forcing from CO2 
emissions has increased the chance of a specific event (Stone and Allen, 2005): 
 
FAR = 1 −     PnonGHG  
                           Preal 
 
For a situation when risk increases due to anthropogenic forcing, the FAR falls into the range 
of 0-1, with 1 expressing a situation when the given event never occurs in the reference “non-
GHG world” conditions and thus is entirely attributable to the forcing, and 0 indicating no 
influence of the forcing onto the probability of that event. 
 
In the case of our study, simulations with both climate models indicate reduced probability of 
occurrence of high floods in the “real world” conditions, with the consequence that Preal  
< PnonGHG and FAR < 0. FAR, perhaps more appropriately named FAIR, is useful for 
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characterising the fraction of attributable increased risk. Therefore we have reversed the 
index definition to express the fraction of decrease in risk that is attributable to GHG-induced 
climate change, i.e.: 
 
FADR = 1   −        Preal  
                            PnonGHG 
 
Thus, fraction of attributable decrease in risk (FADR) falls in the range of 0-1 when 
emissions have resulted in a decrease in the chance of the event. Calculations of FADR and 
uncertainty associated with it were performed for two flood indices: total annual discharge 
and maximum monthly discharge. For that, Preal and PnonGHG were drawn, using a 
bootstrapping procedure, from log-normal probability distributions approximating the 
distributions of the considered indices for each of the analysed years, obtained from ensemble 
simulations with the bias-corrected and the downscaled climate model data. 
 
8.4 Aspects of predictability of the Okavango hydro-climate 
Here we report on an analysis of how much the limits of predictability of Okavango 
discharge, as measured by the spread of simulations, varies from year to year, following from 
the analysis in Section 4. The observed and simulated annual mean stream flow discharge at 
Mohembo is shown in Figure 8.3 for all years since 1965. Stream flow discharge of the 
Okavango River at Mohembo integrates the hydroclimatic conditions in the entire upper 
catchment, and is the main determinant of conditions in the Okavango Delta and thus is a 
good expression of the overall system’s state. The simulated hydro-climates were derived for 
a 10-member initial condition ensemble of HadAM3P-N96 and a 50-member ensemble of 
CAM5.1-2degree (Section 6.2 and 6.3). Both climate models were forced with 1960-2011 
observed sea surface temperatures and radiative forcing. Climate model data (rainfall and 
temperatures over the Okavango River catchment) were bias-corrected (for bias in mean and 
in variance, but with preservation of ensemble spread) and used to force the hydrological 
model of the Okavango River catchment. Total annual discharges were calculated for the 
November-October hydrological year. 
 
Both ensembles maintain relatively good probabilistic skill, although this can be partly 
attributed to the bias correction of the input data. Importantly, there are systematic 
differences between observations and ensemble means that are to a certain degree 
contemporaneous between the two climate models. Neither of the climate model ensembles is 
able to adequately envelope the dry period of occurring in 1993-1999 and the wet period 
occurring in 2010-2011 period. In order to assess the possible influence of large scale climate 
variability modes on these differences, indices expressing two of such variability modes – 
NAO and ENSO – are plotted in the figures. There appears not to be any clean-cut 
relationships between these indices and ensemble-observations differences, neither between 
these indices and observed discharges. 
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Figure 8.3 Results of 50-member ensemble simulations of Okavango River discharges with 
Pitman model driven by climate simulated by HadAM3P-N96 (top) and CAM5.1-2degree 
(bottom). North Atlantic Oscillation (NAO) and Multivariate ENSO Index are included to 
illustrate their influence on deterministic skill of the simulations. 
 
 
The spread of discharge in the simulations in Figure 8.3, as measured by the 20-80th 
percentile range, varies noticeably from year to year. Are such variations related to hindcast 
skill, as was found in Section 5.7 for rainfall over South Africa? The relationship between the 
spread of simulations and the skill is plotted in Figure 8.4. Here the model skill is measured 
as the absolute error of the median of the model simulations relative to the observed value.  
At either extreme of the predictability measure there are some indications of a relation with 
model skill. In particular, the two years with the narrowest range have relatively good skill, 
while the two years with the widest range have relatively bad skill. However, as a whole, a 
clear relationship encompassing all years is not visible. An important caveat here is that the 
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simulations have had difficulty in reproducing some of the decadal variability visible in the 
observed time series in Figure 8.3 and that may be contaminating the visibility of any 
relationship that might exist. For instance, the years with the worst skill, during the mid-to-
late 1990s are clearly doing so because the models have failed to accurately represent the 
distribution of possible stream flow for those years, irrespective of whether the models 
predicted a large uncertainty for those years. 
 
 

 
 
Figure 8.4 Relationship between deterministic skill and predictability for 50-member 
ensemble simulations of Okavango River discharges with Pitman model driven by climate 
simulated by HadAM3P-N96 for 1965-2012 period. Predictability is measured as the 20-80th 
percentile range of the simulations, while skill is measured as the absolute error of the median 
of the simulations against the observed value. 
 
 
8.5 Attribution results 
In this section we move on toward examining the degree to which emissions have contributed 
to the chance of high floods in the Okavango Basin, following from the techniques 
implemented in Section 7. Comparison of the “real world” and “non-GHG world” 
simulations of Okavango River discharges at Mohembo indicate overall lower discharges in 
the “real world” conditions (Figure 8.5). The difference is observed consistently during the 
three analyzed years, during low and high flow stages and across the post-processing methods 
and climate models. The differences are relatively large compared to uncertainty in each of 
the ensembles (visualized through the 10th and 90th percentiles), and the differences are 
statistically significant at 0.05 significance level (assessed with a Mann-Whitney test on a 
month-to-month basis). The effects on the distribution of monthly river discharges during the 
three analyzed years are manifested through generally less frequent discharges of magnitude 
exceeding 1000 Mm3 month-1 in the “real” versus “non-GHG” worlds, and more frequent 
discharges in the range of 500-700 Mm3 month-1 (Figure 8.6). 
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Figure 8.5 Attribution results for 2009-2011 floods, measured by discharge at Mohembo, 
based on a) bias-corrected HadAM3P-N96 simulations, b) downscaled HadAM3P-N96 
simulations, c) bias-corrected CAM5.1-2degree simulations. Circles display p-value of 
Mann-Whitney test for differences between “real world” and “non-GHG world” ensemble 
distributions, with solid ones indicating significance at 0.05 level. In almost all cases (with 
the lone exceptional month in panel a possibly occurring during the spin-up phase of the 
simulations), the distributions of “real world” and “non-GHG world” are significantly 
different. 
 

 
 
Figure 8.6 Empirical probability distributions of monthly discharges at Mohembo from a) 
the bias-corrected HadAM3P-N96 simulations, b) the downscaled HadAM3P-N96 
simulations, c) the bias-corrected CAM5.1-2degree simulations. According to all three 
estimates there is a substantial shift away from high discharges toward low discharges from 
the “real world” to the “non-GHG world” scenarios. 
 
The differences in river discharges and runoff components between “real world” and “non-
GHG world” result, obviously, from a combination of the differences in rainfall and 
differences in air temperature. We have visualized the differences in air temperature through 
distributions of monthly air temperature-derived potential evapotranspiration  
(PET, calculated within the hydrological model using the Hargreaves formula, Hargreaves 
and Samani, 1985) for a selected location in the upper part of the basin (Figure 8.7). There is 
a clear shift in the distribution of monthly PET by approximately 14-20 mm month-1, 
reflecting the “real world” simulations being approximately 1.5oC warmer than the “non-

71 
 



 

GHG world” ones. 
 

 
 
Figure 8.7 Empirical probability distributions of monthly temperature-derived potential 
evapotranspiration (PET) for a selected upstream location (Chinhama): a) bias-corrected 
HadAM3P-N96 and b) bias-corrected CAM5.1-2degree simulations. With both models there 
is a substantial shift toward lower PET in the “non-GHG world” simulations. 
 
Differences in monthly rainfall are less pronounced to the extent that in bias-corrected 
HadAM3P-N96 simulations no differences are noticeable (Figure 8.8). In the two other sets 
of simulations there are fewer months  with  rainfall  around  150  mm month-1  (x-axis  value  
of  o5 log(mm month-1)  in  Figure  8.8)  in  the  “real world” compared to “non-GHG world”, 
an effect stronger in the upstream (northern) sub-catchments. 
 
Downscaled HadAM3P-N96 results allow for assessment of differences between the “real 
world” and “non-GHG world” in terms of the structure of daily rainfall that underlie the 
monthly signal. Analysis (not shown) indicates that there is a decrease in number of rain days 
in the upper (northern), and a no change or minimal increase in the lower (southern) part of 
the Okavango catchment. There is, however, no clear signal in changes of rainfall intensities, 
in median or in higher percentiles. The overall effect is that of lower monthly and seasonal 
totals in the northern, upstream part of the catchment, and not changed or minimally higher 
totals in the southern, lower part of the catchment in the “real world” simulations compared 
to the “non-GHG world” simulations. The higher rainfall only occasionally leads to higher 
surface runoff as the latter is conditioned on the status of soil moisture, which is depleted due 
to higher evapotranspiration. Since surface runoff from the southern sub-catchments is a 
minor component of stream flow (which is generated mainly in the higher rainfall zone in the 
northern sub-catchments), the effect is insignificant at the scale of the basin. 
 
The “non-GHG world-temperature” simulations (i.e. simulations with “non-GHG world” 
temperatures and “real world” rainfall) allow a diagnosis of the relative role of rainfall and 
temperature in the river discharge signal. Results from the two climate models differ in the 
role and contribution of air temperature/PET and rainfall (Figures 8.9 and 8.10). Had 
AM3P-N96-based “non-GHG world-temperature” simulations have fewer higher discharges 
(>1000 Mm3 month-1) in the “real world” mode, as well as more frequent lower discharges 
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(<1000 Mm3 month-1), both in the bias-corrected climate model and the downscaled datasets 
(Figure 8.10). These effects are similar in character, although smaller in magnitude, to the 
cumulative effects of both rainfall and temperature (Figure 8.6). In HadAM3P-N96 
simulations, therefore, rainfall and air temperature seem to “act” in the same direction, and 
their effects cumulate. 
 

 
 
Figure 8.8 Empirical probability distributions of monthly rainfall for an upstream 
(Chinhama, upper row) and downstream (Mohembo, lower row) location, in the bias-
corrected HadAM3P-N96 simulations (a, d), the downscaled HadAM3P-N96 simulations (b, 
e) and the bias-corrected CAM5.1-2degree simulations (c, f). There is little difference in 
rainfall between the two scenarios at either location. 
 
 
CAM5.1-2degree-based “non-GHG world-temperature” simulations produce a different 
effect. The rainfall differences between “real world” and “non-GHG world” are minimal and 
do not induce noticeable changes in river discharges (Figure 8.10). Therefore, the overall 
effect i.e. fewer high discharges and more frequent low discharges (as visible in Figure 8.6) 
must be driven by increases in evaporation caused by the warmer air temperature, and not by 
changes in rainfall. 
 
Given that GHG emissions have affected the discharge distributions in the simulations, we 
can ask how this is reflected in the chance of large discharge events. We consider the chance 
of total annual discharges corresponding to these that occurred in 2009, 2010 and 2011, i.e. 
10860, 12730 and 13890 Mm3 year-1 respectively. These levels correspond to 78th, 92nd and 
96th percentile of observed range of discharges (obtained from log-normal probability density 
function fitted to the 1934-2011 observations). For peak monthly discharges, the analogous 
values are: 1920, 2370, 2400 Mm3 month-1, and 80th, 94th and 95th percentile. Distributions of 
FADR values for each of the 2009-2011 years estimated using each of the three model 
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combinations are shown in Figure 8.11. There are specific similarities and differences 
between the three years and three model setups. On the one hand, results for 2010 and 2011 
are generally consistent across the model combinations, indicating that the chance of the 
observed events is at least a factor of three lower than it would have been without emissions, 
with most likely values between 6 and 8. However, while the three model setups agree on the 
existence of an influence for 2009, the downscaled HadAM3P-N96 results indicate very 
strong reduction of the chance (at least a factor of 10) of high discharge risk attributed to 
emissions while for the bias-corrected CAM5.1-2degree and HadAM3P-N96 the reduction is 
lower, by a factor of 4 and 2 respectively. 
 

 
 
Figure 8.9 Monthly discharges at Mohembo, using “real world” rainfall and “non-GHG 
world” air temperatures for a) bias-corrected HadAM3P-N96 simulations b) downscaled 
HadAM3P-N96 simulations and c) bias-corrected CAM5.1-2degree simulations. Circles 
display p-value of Mann-Whitney test for differences between “real world” and “non-GHG 
temperature-world” ensemble distributions, with solid ones indicating significance at 0.05 
level. The results closely match those in Figure 8.5, indicating that the difference in potential 
evapotranspiration between the two scenarios overwhelms any rainfall differences. 
 

 
 
Figure 8.10 Empirical probability distributions of monthly discharges simulated with “real 
world” rainfall and “non-GHG world” air temperatures from a) bias-corrected HadAM3P-
N96 simulations, b) downscaled HadAM3P-N96 simulations, c) bias-corrected CAM5.1-
2degree simulations. 
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Figure 8.11 Fraction of attributable decrease in risk (FADR) for left) total annual discharge, 
and right) maximum monthly discharge 
 
 
Even considering uncertainty in FADR estimates, it is clear that the three sets of simulations 
agree in that there is reduction in risk of floods of magnitudes corresponding to those 
observed in 2009-2011. This decrease in risk is significant at the 0.01 level (i.e. given our 
results there is less than 1% chance that the risk actually increased), in all but HadAM3P-N96 
simulations for 2010, where the p-value is 0.05 for peak monthly discharge. 
 
8.6 Discussion and conclusions 
This study demonstrates the application of the “time-slice” method of estimating attributable 
risk of Pall et al. (2011) in the context of a large, relatively poorly gauged catchment subject 
to annual flood events. In terms of strengths, this evaluation has been possible using a 
relatively moderate modeling resource (compared, for example, to ensembles of atmosphere-
ocean climate models). The method, as used here, also demonstrates the ability to derive 
results which are robust to different ways in which the analysis may be approached, such as 
the selection of particular years and choice of an atmospheric model. We have clearly 
demonstrated that consistent conclusions may be reached i.e. that greenhouse gas emissions 
have decreased the chance of large discharge events in the Okavango basin. 
 
However, this study also highlights some important aspects with the approach that bear 
consideration. Most particularly, previous studies with the time slice approach (Pall et al. 
2011; Kay et al. 2011) only examined a single year and noted that the sensitivity of results to 
the choice of year was unknown. Under this approach, the estimated effect of emissions is 
conditional on the pattern of ocean surface temperatures realized in the given year. For 
instance, during the period covered by this study an El Niño event occurred in the tropical 
Pacific in 2009-2010, while a La Niña event occurred there in 2010-2011 and 2008-2009 was 
a neutral year. It could be that the effect of emissions is different depending whether the 
prescribed ocean is in a neutral, El Niño, or La Niña state. In our study we found differences 
in the estimated magnitude of the attributable risk of Okavango flooding across the three 
years. An analysis of what aspects of the ocean are important in determining these differences 
would require a larger number of years to be analyzed, but it is noteworthy that the results 
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presented here indicate that the “time-slice” approach should not be applied just to one year 
but rather to a collection of years (with different SST conditions) during the era of interest. 
Resources for such analyses are promised by the C20C+ Detection and Attribution Project 
(Kinter and Folland, 2011, http://portal.nersc.gov/c20c). 
 
In terms of the Okavango, like Kay et al. (2011), we have found an important role of the 
thermal aspect of climate change on the risk of extreme flood events. In the case of the 
Okavango, though, unlike in England, anthropogenic emissions cause reduction or minimal 
change in rainfall, which combines with increase in temperature leading to an overall 
reduction in flood likelihood. At least some of the temperature impacts likely results from the 
nature of hydrological processes generating Okavango floods: the flat topography and 
permeable soils favor infiltration and cause runoff to be dependent on antecedent soil 
moisture and groundwater levels, which in turn are moderated by evaporation. This combines 
with the large size of the catchment and causes the annual event to integrate over a large 
number of variable rainfall episodes spread out over space and time, whilst evaporation 
continues apace. 
 
Ultimately, this analysis has revealed an attribution paradox. Recent years have experienced a 
trend toward high floods in the Okavango (Jury, 2012). This effect arises during an era of 
climate change driven by emissions of greenhouse gases; and is seemingly consistent with the 
general expectation of intensification of weather and increase in extreme floods, under a 
warmer climate. As a consequence the observed increases in flood magnitudes are often 
registered as caused by anthropogenic climate change by the affected public and authorities. 
Our modeling analysis indicates, however, that those emissions can in fact substantially 
decrease the risk of flooding, driven by the well-understood mechanism of increased 
evaporation in a warmer world, combined with relatively minor simulated changes in 
precipitation. In this context, the occurrence of the 2009-2011 high floods can be taken as 
evidence that the interannual variability in anomalous ocean temperatures may be more 
important in determining flood risk than the overall ocean warming. 
 
Our results are broadly consistent with the results of several modeling studies on hydrological 
conditions under climate change projections carried out previously for the basin (Andersson 
et al., 2006; Hughes et al., 2011; Wolski et al., 2012a, b). These, similarly to our work, 
indicate a lack of agreement between climate models in direction and magnitude of projected 
rainfall, and a consistent increase in air temperatures, and thus PET. The resulting overall 
tendency of the multi-climate-model ensemble is towards drier conditions and lower flooding 
in the future. The confidence in our results is subject to limitations of models and methods, 
and there are several aspects that have to be considered in that context. These do no relate just 
to our study, but are faced by any study dealing with hydrological effect of changing climate, 
so we expand on them below. 
 
First is the quasi-periodic multi-decadal climate variability. Quasi-periodic oscillations in the 
Okavango discharges have been detected by McCarthy et al. (2000), and related to region-
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wide signal in rainfall revealed in paleoclimatic records (Tyson et al. 2002). The years 
analyzed in our study fall within the peak of the 60-80 year quasi-periodic cycle. Jury (2012) 
indicated a relation between tropical multi-decadal oscillations and signals in the Atlantic, 
and rainfall in the Okavango region, suggesting that the former are partly responsible for the 
increase in rainfall and river discharges observed since the mid-1990s, leading to that peak. In 
this context, our results show that in the world without anthropogenic emissions, the 
magnitude of discharges during that peak would likely have been higher. This conclusion is, 
however, reliant on the assumption that the underlying SST/climate system dynamics leading 
to that peak would have occurred in the “non-GHG world”.  At this stage, this assumption 
cannot easily be verified. The influence of anthropogenic global warming on global modes of 
climate variability and their manifestations at local scales is the subject of intense research 
and coherent results are only beginning to emerge. For example, Power et al. (2013) show 
intensification of El-Niño-driven drying in the western Pacific Ocean and rainfall increases in 
the central and eastern equatorial Pacific under projected future climate. The influence of 
ENSO on the Okavango is, however, limited, and the anthropogenic climate change-driven 
transformation of the processes underlying Okavango multi-decadal quasi-periodicity has not, 
to our knowledge, been studied. Understanding of these will be needed to obtain a greater 
confidence not only in our results, but also in results of any climate change projections in the 
Okavango region. 
 
Second is the revealed sensitivity of results to increases in air temperatures. This effect is 
reliant on the assumption that an increase in air temperature leads to an increase in PET – 
implicit in our use of a temperature-based method of estimation of PET applied in the 
hydrological model. Although that assumption is physically feasible and justifiable, several 
recently published studies indicate that in real systems, increases in air temperature may not 
be associated with increases in evaporation (e.g. Hoffman et al., 2011). The decoupling of 
temperature and evaporation results from the influence of weather variables such as 
cloudiness and humidity, or secondary effects of land cover, changes in which may 
counteract the effect of increasing temperature.  It is uncertain whether such weather 
dynamics occur in the Okavango region, as there are no long-term data enabling relevant 
analyses. However, Wolski (2009) has performed comparison of PET changes based on data 
from 7 climate models and using Hargreaves, Penman-Monteith and Penman methods, the 
two latter utilizing climate-model-derived humidity, wind speed and incoming solar radiation.  
There were no systematic differences between the methods, with PET sensitivity to 
temperature in the order of 2-3% oC-1. This gives us confidence that our assumption is 
correct, at least within the climate model domain. 
 
Third is the issue of uncertainties involved in the hydrological model. To that extent, Hughes 
et al. (2011) have conducted sensitivity analysis of the Pitman hydrological model of the 
Okavango by perturbing a set of its parameters within plausible ranges, and contrasted these 
with uncertainty range resulting from spread of multi-climate-model climate projections.  
Their results indicate that while hydrological model uncertainty is not trivial and translates 
into a simulated range of 10% of peak flows, intra-climate-model uncertainty gives a wider 
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range of 70% of peak flows. In our simulations, range of the initial condition ensemble is 
even wider: in the order of 100-170% of mean value of peak monthly discharge, with a 
consequence that the model uncertainty plays a minor role in the interpretation of results of 
the attribution procedure. 
 
Lastly, our results face the issue of uncertainties involved in the process of transforming 
output of coarse resolution climate models into hydrological model input. This issue is 
illustrated by the differences in results obtained from downscaled and bias-corrected climate 
model data. To quantify that uncertainty would demand a much larger ensemble of data 
processing procedures — there are numerous generic statistical downscaling procedures in 
use, a large number of possible combinations of a regional model and a global model for 
generating dynamically downscaled variables, and a plethora of bias correction procedures in 
use and development (Maraun et al., 2010). In view of this diverse landscape of procedures, 
the task of systematic assessment of uncertainties exceeds the scope of this project and 
necessitates the use of subjectively selected (in our case on the basis of experience of 
working with) methods. Forthcoming initiatives such as CORDEX (Giorgi et al., 2009) and 
the C20C Detection and Attribution Project (Kinter and Folland, 2011; 
http://portal.nersc.gov/c20c) promise resources and data enabling more systematic analyses, 
similar to these achieved through CMIP3 (Meehl et al., 2007) and CMIP5 (Taylor et al., 
2012) in terms of climate model results. 
 
In summary, even considering the context of numerous sources of uncertainty, our results are 
robust across the two climate models and the various data processing procedures in terms of 
general conclusion — that the probability of occurrence of high floods during 2009-2011 in 
the current climate is likely lower than it would have been in a climate without anthropogenic 
greenhouse gases, although the exact magnitude of this decrease remains unquantified. This 
result contributes to the body of knowledge informing the climate change adaptation planning 
in the Okavango basin. 
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9 Conclusions and recommendations 
 
9.1 Summary of products from this project 
In the proposal for this project, four main products were envisaged: atmospheric model 
hindcast simulations; scientific papers; a public paper; and an improved seasonal forecast 
product. Further specifics on these envisaged products are listed in Table 9.1. Most of these 
products have been delivered as envisaged, while some have taken a slightly different format 
following from developments within and outside the project. 
 
Table 9.1 Four products envisaged from this project in the project’s proposal 
 

Product Target Group Application 
Atmospheric model  
hind-cast 
simulations 

Researchers in 
climate and 
climate-related 
fields 

Public climate model data for 
the analysis of historical trends 
and variations in climate and 
the risk of extreme weather 

Scientific papers Seasonal 
forecasters, 
technical   users   of   
seasonal forecast 

 

Scientific papers describing the 
results for use in evaluating the 
applicability of seasonal 
forecasting 

Public paper Users of seasonal 
forecast products 

Paper describing the 
implications of the results for 
the usefulness of seasonal 

 Improved   seasonal   
forecast product 

Users  of  the 
CSAG  seasonal 
forecast 

A  seasonal  forecast  product  
based  on more informed 
understanding of capabilities 

 
 
9.1.1 Atmospheric model hindcast simulations 
A first set of these simulations were produced as described in Section 6.2. Output from these 
simulations has been posted on the data portal of the International CLIVAR C20C+ Detection 
and Attribution Project (http://esg.nersc.gov, project “c20c”) and distributed by USB stick to 
22 African researchers. 
 
A second set of these simulations, reported in Section 6.2.4 using an updated model 
configuration and following the protocols of the International CLIVAR C20C+ Detection and 
Attribution Project (Section 6.5.1), are currently nearing completion and will also be 
published on the C20C+ D&A Project portal. 
 
9.1.2 Scientific papers 
Scientific manuscripts arising from this project are listed in Section 10.1. At the time of 
submission of this report, one M.Sc. thesis has been published, two papers were in press, two 
papers are under review, and three papers and a Ph.D. thesis remain in progress. In addition, 
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work from this project has been presented in 15 talks and 10 posters at conferences and 
workshops. Other researchers are also currently analyzing climate model output generated 
under this project and preparing papers (Section 6.5.2). 
 
9.1.3 Public paper 
A public paper has not been written at this stage, but rather public communication of the 
project has taken other forms: 

• Three media interviews concerning the Weather Risk Attribution Forecast service 
(Section 10.1.6). 

• An upgrade to version 3 of the Weather Risk Attribution Forecast web site and 
continued monthly attribution assessments on the web site. 

 
9.1.4 Improved seasonal forecast product 
The results of the investigations into the degree to which uncertainty in seasonal forecasts 
may vary as a function of time have revealed the possible existence of such variations, 
particularly in terms of long-term trends. The possibility of integrating that knowledge in 
terms of an operational seasonal forecast, however, requires some further work, as detailed 
below. 
 
The new simulations described in Section 6.2.4 will form the basis of an updated UCT 
seasonal forecast system running under a more realistic configuration producing a larger 
number of simulations. While some separation of products should be maintained, insights 
into the characterization of extreme events will be incorporated into the seasonal forecast 
product, providing forecasts of the chance of unusually extreme seasons. 
 
9.2 Conclusions from the investigations forming this project 
The studies reported in Sections 4, 5, and 8 revealed that, within a forecast model setting, 
there are variations in seasonal predictability through time, as represented by the spread of 
the model simulations. In particular: 

• These variations in predictability were found to be related to the skill of the forecasts 
when evaluated by observations, this indicating that the variations visible in the 
ensemble of model simulations are indeed reflected in real-world predictability. 

• There exist long-term trends in these variations in predictability, some of which amount 
to a substantial fraction of the average predictability. These long-term trends vary 
according to season and location across South Africa. 

• Just like it affects the mean forecast, the El Niño/Southern Oscillation may affect the 
uncertainty in seasonal forecasts. However, overall the relation to other indices of 
ocean states otherwise useful for seasonal prediction did not show substantial links to 
the uncertainty. Overall the links were not as strong as might have been expected, but 
this may have related to the linear nature of the analysis conducted in this study. 

• In the setting of one particular hydrological system case study (Section 8), variations in 
predictability appeared weak. Given the ensemble size of simulations used, the 
analysis was not particularly powerful, however. 
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The studies reported in Sections 7 and 8 reveal some robustness in estimates of the degree to 
which anthropogenic emissions have affected the occurrence of extreme events. In particular: 

• Estimates appear to be largely insensitive to selection of climate model. 
• Estimates do appear to have some sensitivity to the conditionality imposed by the 

prescribed sea surface temperatures, revealed through differences in results from year 
to year under near-identical anthropogenic forcing states. 

• Analysis of model simulations indicates that temperature extremes over South Africa 
have been strongly affected by anthropogenic greenhouse gas emissions, while 
precipitation extremes have only been moderately affected during the transition 
seasons. 

• Effects of emissions on hydrological extremes may be mostly arising through the 
warming signal, rather than through changes in precipitation. 

• A rather simple systematic service for event attribution can result in consistent and 
stable conclusions. 

 
9.3 Implications of results from this project 
 
9.3.1 Predictability of seasonal forecasts 
The analyses of the limits of predictability indicate some potential for adding some measure 
of confidence to seasonal forecasts. But how well this can be implemented depends largely 
on how seasonal forecasts are presented. In this project, seasonal forecasts were interpreted as 
being a “best estimate” with an uncertainty range. But many meteorological services adopt 
different ways of presenting forecasts. A popular method is to use three classes: “below 
average”, “near average”, and “above average”. These can also be described as “low”, 
“medium”, and “high”, or with cold/hot or dry/wet adjectives. In practice these classes are 
determined as the terciles of the distribution of realized weather from past years during some 
climatological reference. While a confidence measure could be added to these forecasts, it is 
unlikely that this confidence would be determined from the sources of variations in 
predictability examined in this project. Instead, in a changing climate, the difference of the 
current climate for the reference climatological climate dictates both the prediction and, 
probably, the confidence (Liniger et al., 2007). For instance, seasonal forecasters at the U.K. 
Met Office have found that their current tendency to never forecast much of a chance of a 
cold season and to do so with high confidence, has two consequences. First, it means there is 
little information content in their forecasts. Second, it means that the public often think the 
Met Office has made a bad forecast when the summer is not unusually hot: people tend to 
only remember the past few years, and thus they are basing their evaluation on a much more 
recent — and warmer – reference period. Thus possible implementation and usefulness of 
forecast uncertainty characterization as evaluated in this project may depend strongly on the 
framework used for communicating the forecast. 
 
9.3.2 Climate change drivers of hydrological extremes 
The analysis of the Okavango floods described in Section 8 reveal that the sensitivity of 
hydrological systems to climate change may differ markedly in nature from their sensitivity 
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to interannual variability. While South Africa does experience a stronger variation in 
temperature during the annual cycle than other parts of Africa, it is still fair to say that 
hydrological systems in South Africa are moisture-controlled: that is, they are controlled by 
when, where, and how much precipitation falls, not by temperature variations. However, in 
the climate change context temperature is changing markedly while rainfall, if changing at 
all, is changing by a relatively small amount against a large background interannual 
variability. Already, it seems, the chance of extreme floods may have decreased from past 
decades due simply to the evaporation from the larger warming. This sensitivity of catchment 
flows to warming was also found in a much wetter and cooler environment, autumn flooding 
in England and Wales (Kay et al. 2011), suggesting that it may be a fairly robust 
characteristic of the climate change impact on hydrological systems. The recognition of an 
important role of temperature in hydrological systems, thus moving away from the historical 
seasonal forecasting paradigm, will thus not only be important for climate change impact 
studies but also for seasonal forecasting itself. 
 
9.3.3 Operational event attribution services 
This project continued development of an operational event attribution service. That 
development to Version 3 involved some modifications arising from experiences from the 
previous Version 2, most notably a shift from 10 Mm2 regions to 2 Mm2 regions, which both 
are more relevant to many potential users and also tend to more closely reflect the spatial 
scale of many more notable weather events. The method of using political/economic 
definitions, based on responses to events, also provides a framework for examining impact 
events. These regions are being adopted in other studies beyond those in this project. 
 
The Weather Risk Attribution Forecast (WRAF) remains the world’s only real-time 
systematic attribution service and thus has been closely watched by meteorological agencies 
(such as the U.K. Met Office leading the European Union FP7 EUCLEIA project, and U.S. 
NOAA) who are considering applying their considerable expertise and skill to implement 
their own operational services. The WRAF is thus serving as a feasibility study for many. 
Notably, results from the attribution forecast have proven robust and stable. 
 
There are some aspects of the WRAF though that requires development, beyond standard 
improvement of climate modeling elements. Most particularly, while professing to consider 
“weather risk”, the WRAF is currently only considering weather probability. Getting to risk 
and thus making results relevant for most potential users will require two steps. First, results 
will have to move beyond weather events, to consider “impact events”. For instance, we are 
currently planning on feeding the output from the new HadAM3P-N96 simulations described 
in Section 6.2.4 through the VIC hydrological model over Africa, thus providing stream flow 
time series for the analysis of the chance of flooding and low flows. Switching from weather 
events to hydrological events will require a modified consideration of what constitutes an 
event: the monthly definitions currently used, which are already questionable for rainfall 
during the dry season over southern Africa, will not be appropriate for river systems with an 
annual flood. The second step will require a comparison against other drivers of change, for 
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instance the effect of land cover change on flooding. Once the various possible drivers in the 
chance of flooding are considered, it will be possible to characterize the relative importance 
of anthropogenic emissions (Huggel et al., 2013). 
 
9.3.4 African capacity in the detection and attribution of climate change and climate  
         change impacts 
The WRAF is a service developed in Africa which has no equivalent elsewhere in the world, 
thus there is already some African capacity for event attribution analysis. However, given the 
potential importance of event attribution for African nations within a prospective “loss and 
damage” framework for allocation of climate change adaptation funding (Huggel et al., 
2013), development of a continental capacity for event attribution analysis that does not 
depend on foreign generosity is crucial, a point recognized in the conclusions of the Africa 
Climate Conference in Arusha, Tanzania, in October 2013. 
 
In this light, UCT and the African Center of Meteorological Application for Development 
(ACMAD) are leading activities to begin building capacity in event attribution analysis. UCT 
took the first steps with dissemination of its climate model output to 22 African scientists at 
the African Climate Conference. Current work is focusing on funding a workshop and 
subsequent fellowships, both with UCT and ACMAD and with several non-African 
institutions. 
 
9.4 Where we stand after this project 
This project explored the possibility for expanding seasonal forecast products in two 
directions: toward providing additional information about the confidence of the forecast; and 
toward a separate product assessing the degree to which anthropogenic emissions have 
affected extreme weather, but which runs in parallel with a seasonal forecast product. 
 
In terms of the first new direction, this project was an exploratory study. While long-term 
trends in the spread of seasonal forecast simulations, considered a proxy for confidence in 
this context, were found to potentially be considerable, the development of understanding of 
the cause if interannual variations was, to some degree, not self-consistent. While the 
relationship between popular ocean surface predictors and the variations in confidence do not 
appear to be very strong, there was nevertheless a clear relationship between the pattern of 
variations in confidence and variations in forecast skill: considering that this modeling system 
often had low forecast skill, this leaves open the possibility that confidence in the forecast 
itself may be as or more predictable than the “best estimate” forecast itself. The main next 
step from this project will be in determining how this confidence information can be 
effectively included as part of existing seasonal forecast products, with a particular 
consideration of their communication approaches. 
 
In terms of the second new direction, this project started with an existing “event attribution” 
product, developing it further and examining patterns in the results. As discussed above, there 
are two main next steps in this area. The first is to improve and promote communication of 
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the product within Africa (and beyond), as a cornerstone of capacity development in “event 
attribution” research. The second is to move the product away from being a purely 
meteorological product toward one that actually provides information on the attribution of 
weather risk, including how the anthropogenic contribution to change compares against other 
drivers of risk; as highlighted in Section 8, hydrological systems would seem to provide the 
ideal first target in this regard. 
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10 List of products 
 
10.1 Publications, presentations, and interviews arising from this project 
 
10.1.1 Published and accepted papers 

• Angélil, O. 2013. Spatial and temporal influences on human attribution to extreme 
weather risk: a global study. M.Sc. thesis, ETH Zürich, Zurich, Switzerland, 73pp. 

• Wolski, P., D. Stone, M. Tadross, M. Wehner, and B. Hewitson. 2014. Attribution of 
floods in the Okavango Basin, Southern Africa. Journal of Hydrology, 
doi:10.1016/j.jhydrol.2014.01.055, accepted. 

• Angélil, O., D. A. Stone, M. Tadross, F. Tummon, M. Wehner, and R. Knutti. 2014. 
Attribution of extreme weather to anthropogenic greenhouse gas emissions: 
sensitivity to spatial and temporal scales. Geophysical Research Letters, accepted. 

 
10.1.2 Submitted papers 

• Lawal, K., D. Stone, T. Aina, C. Rye, and B. Abiodun. 2014. Trends in the potential 
spread of seasonal forecasts over South Africa. International Journal of Climatology, 
submitted. 

• Lawal, K., D. Stone, B. Abiodun, C. Rye, and T. Aina. 2014. On the relationship 
between South African seasonal climate predictability and climate indices. Climate 
Dynamics, submitted. 

 
10.1.3 Papers in preparation 

• Cerezo Mota, R., A. Favre, D. Stone, R. Jones, and B. Hewitson. Impacts of land-
scheme and integration domains on African precipitation. 

• Lawal, K. A. Limits of predictability of the South African seasonal climate. Ph.D. 
Thesis. 

• Stone, D. A., O. Angélil, C. Lennard, M. Tadross, M. F. Wehner, and P. Wolski. 
Human contribution to extreme monthly weather over South Africa. 

• Stone, D. A., C. Lennard, M. Tadross, M. F. Wehner, O. Angélil, M. R. Allen, J. Imbers 
Quintana, P. A. Stott, and P. Pall. Designing a real-time weather risk attribution 
forecast system. 

 
10.1.4 Talks 
February 2012:  Stone, D. A. “Playing through a real-time attribution service: questions and  

thoughts”. International Detection and Attribution Group Meeting, National Center for 
Atmospheric Research, Boulder, Colorado, United States. 

September 2012:  Lawal, K. A. “Assessing the predictability of South African seasonal  
climate using HadRM3P”. 5th Annual Science Symposium 2012, 7-8 September, 
University of Cape Town, Cape Town 

September 2012:  Lawal, K. A. “Assessing the predictability of South African seasonal  
climate using HadRM3P”. The  Annual  Conference  of  the  South  African  Society  of  
Atmospheric  Sciences,  26-27  September, Cape Town 
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November 2012: Lawal, K. A. “Assessing the predictability of South African seasonal  
climate using HadRM3P ensemble spreads”. National Global Change Conference,  
26-28 November, Boksburg 

September 2012: Lawal, K. “Assessing the predictability of seasonal climates over South  
Africa using HadRM3P”. University of Cape Town’s Science Postgraduate Students 
Council 5th Annual Science Symposium 2012, University of Cape Town, Cape Town. 

October 2012: Lawal, K. “Assessing the influences of extreme climatic events on the  
predictability of South African seasonal climates”. SATREPS Symposium on 
Prediction of Climate Variations and its Application in the Southern African Region, 
CSIR International Conference Center, Pretoria. 

March 2013: Stone, D. “First contributions to the C20C Detection and Attribution Project”.  
Climate 2013, Lawrence Berkeley National Laboratory, Berkeley, California, United 
States. 

May 2013: Lawal, K. “Investigating the variations in the predictability of South African  
seasonal climates through HadRM3P ensemble spreads”. International Conference on 
Seasonal to Decadal Prediction, Toulouse, France. 

June 2013: Stone, D. “First contributions to the C20C Detection and Attribution Project”.  
12th International Meeting on Statistical Climatology, Jeju, South Korea. 

June 2013: Wolski, P. “Sensitivity of extreme rainfall events in Africa attributable to  
anthropogenic radiative and SST forcing”. 12th International Meeting on Statistical 
Climatology, Jeju, South Korea. 

October 2013: Lawal, K. “On the relationship between South African seasonal climate  
predictability and climate indices”. Africa Climate Conference, Arusha, Tanzania. 

October 2013: Stone, D. “The weather risk attribution forecast for Africa for October 2013”.  
Africa Climate Conference, Arusha,  Tanzania. 

November 2013: Stone, D. “First contributions to the C20C Detection and Attribution  
Project”. 6th Workshop of the International CLIVAR Climate of the 20th Century 
Project, Melbourne, Australia. 

December 2013:  Stone, D. “First contributions to the C20C+ Detection and Attribution  
Project”. Fall Meeting of the American Geophysical Union, San Francisco, United 
States. 

 
10.1.5 Posters 
August 2012: Lawal, K. A. “The limit of predictability of South African seasonal climates:  

assessing the predictability of South African seasonal climate using HadRM3P”. The 
workshop on Dynamics and Predictability of High-impact Weather and Climate Events, 
6-9 August, Kunming, China 

September 2012: Stone, D. “The weather risk attribution forecast for September 2012”.  
Attribution of Climate and Weather Extremes: Assessing, Anticipating and 
Communicating  Climate  Risks,  Oxford, United Kingdom. 

September 2012: Wolski, P. “Attribution of floods in the Okavango Delta, Botswana”.  
Attribution of Climate and Weather Extremes: Assessing, Anticipating and 
Communicating Climate Risks, Oxford, United Kingdom. 
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November 2012: Lawal, K. “Assessing the predictability of South African seasonal climate  
using HadRM3P ensemble spreads”. National Global Change Conference, Boksburg. 

December 2012: Stone, D. “The weather risk attribution forecast for December 2012”.  
Attribution of Climate and Weather Extremes: Assessing, Anticipating and 
Communicating Climate Risks, Oxford, United Kingdom. 

December 2012: Wehner, M. “First contributions to the Climate of the 20th Century  
Detection and Attribution Project”. American Geophysical Union’s Fall Meeting, San 
Francisco, California, United States. 

April 2013: Lawal, K. “Assessing the variations in the predictability of South African  
seasonal climate with HadRM3P ensemble spreads”. European Geophysical Union 
General Assembly, Vienna, Austria. 

June 2013:  Lawal, K. “Investigating the trends in the potential spread of seasonal  
predictability over South Africa provinces”. 12th International Meeting on Statistical 
Climatology, Jeju, South Korea. 

June 2013:  Stone, D. “The weather risk attribution forecast for July 2013”. 12th  
International Meeting on Statistical Climatology, Jeju, South Korea. 

October 2013: Lawal, K. “On the relationship between South African seasonal climate  
predictability and climate indices”. African Climate Conference, Arusha, Tanzania. 

 
10.1.6 Interviews 
February 2012:  The Weather Risk Attribution Forecast being operated and studied in this  

project was featured in the article “Is this climate change?” in NCAR/UCAR’s 
AtmosNews (https://www2.ucar.edu/atmosnews/attribution/attribution-demand). 

November 2012: The Weather Risk Attribution Forecast being operated and studied in this  
project was featured and quoted in the article “Extremely bad weather” in ScienceNews 
(https://www.sciencenews.org/article/extremely-bad-weather). 

June 2013: The Weather Risk Attribution Forecast being operated and studied in this project  
was featured and quoted in the article “Deadly heat waves intensify as summers sizzle” 
in livescience (http://www.livescience.com/37292-heat-waves.html). 

 
10.2 Data and results arising from this project 

• Output from climate model simulations performed under this project have been 
published on the Earth System Grid Federation under project “c20c” 
(http://portal.nersc.gov) and are freely accessible.  The list of simulations is given at 
http://portal.nersc.gov/c20c/output_data/UCT-CSAG_HadAM3P-N96.pdf 

• Output from climate model simulations performed under this project were distributed 
by USB stick to 22 African (including South African) researchers at the African 
Climate Conference, Arusha, Tanzania, October 2013. 

• Monthly event attribution assessments performed under this project are posted on the 
Weather Risk Attribution Forecast (http://www.csag.uct.ac.za/daithi/forecast). 
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10.3 Input to international activities 
• Experience from this project informed the assessment of the attribution of climate 

change risk in the upcoming Fifth Assessment Report of Working Group II of the 
Intergovernmental Panel on Climate Change, due for publication in March 2013. 

• Experience in systematic event attribution developed through this project have informed 
event attribution plans of: 

– The International Detection and Attribution Group (see talks and posters listed 
in Section 10.1) 

– The Attribution of Climate-related Events activity (see talks and posters listed in 
Section 10.1) 

– The European Union FP7 EUCLEIA project, for which a member of this project 
is a scientific consultant 

– The U.S. Department of Energy CASCADE project 
• The experimental design of the weather risk attribution system further developed and 

operated within this project has formed the basis for the experimental design of the 
World Climate Research Programme’s International CLIVAR C20C+ Detection and 
Attribution Project. 

• UCT is collaborating with other institutions throughout Africa, particularly the African 
Center of Meteorological Application for Development (ACMAD), to develop a 
continental event attribution activity, with a large focus on capacity development. 

 
10.4 Student participation in the project 
Two students were involved in aspects of this project. 

• K. A. Lawal was fully funded from this project and lead the research on the “limits of 
predictability” component described in Sections 3, 4, and 5. He has two papers 
currently submitted to peer-reviewed journals, and has presented 8 talks and 5 posters 
at national and international meetings. 

• O. Angélil, an M.Sc. student at ETH Zürich, Switzerland, was not funded by this 
project. However, his interaction with the project is notable in two respects. First, he 
is a South African citizen. Second, he analyzed the HadAM3P-N96 simulations 
generated under this project in collaboration with members of this project, and his 
analyses have had strong impacts on the event attribution analyses reported in Section 
6 and 7. He has a successful M.Sc. thesis and one peer-reviewed paper in press 
describing these analyses. 
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