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EXECUTIVE SUMMARY 
 
 
The main objective of the project was to contribute to the incorporation of uncertainty 

assessments in practical water resource decision-making in South Africa. There are three 

main components to this objective. The first is the quantification of realistic levels of 

uncertainty that are as low as possible given the available information (reducing uncertainty). 

The second is the availability of tools to implement uncertainty analysis across the broad 

spectrum of data analysis and modelling platforms that form part of practical water resources 

assessment (including hydrological and water resources yield models). The third relates to 

the issue of using uncertain information in the process of making decisions about the design, 

development or operation of water resources systems. The latter includes social, political and 

economic uncertainties as well as the hydrological uncertainties that are directly addressed 

in this report. None of these are independent and all are associated with the fundamental 

issue that all of the role players should understand the key concepts of uncertainty and that 

virtually all of the information we use to make decisions is uncertain. One of the major 

challenges in this project as well as the previous WRC-supported project on uncertainty 

methods, was the lack of understanding of some of the key issues, or a lack of appreciation 

of the importance of uncertainty in all water resources decision-making. This was evidenced 

by the lack of support by both the DWA and the WRC for a proposal to undertake a ‘real’ 

practical demonstration project that emerged from this project and which was intended as a 

partnership between scientific researcher groups, consulting engineering service providers 

and state institutions (DWA) to move ahead and identify (and resolve) any further stumbling 

blocks in the implementation of uncertainty principles in practice.  

 

Internationally, the science of hydrology has embraced the concepts of uncertainty and it is 

almost impossible to get a hydrological modelling study published in a recognized journal 

unless an analysis of the uncertainties is included. This is largely because of the enormous 

contribution that was made by the IAHS PUB decade. These concepts, and the importance 

of uncertainty in both science and practice, have also been included in the new IAHS decade 

on change in hydrology and society (Panta Rhei). While South Africa has a long history of 

using models for water resources assessments, uncertainty approaches are relatively new to 

the country and have not been embraced by either scientists or practitioners. There has been 

a tendency to think of uncertainty approaches as being in the realm of academic science and 

that they cannot be used in practical situations. The result is that many present day water 

resources allocations are made using extremely approximate information and with no attempt 

to assess how potential errors may affect the risks of making certain decisions. The future is 

even more uncertain and many climate change projects conclude that adaptation of some 
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form is necessary. However, hardly any of these take into account the huge uncertainties 

associated with future climate projections and therefore fail to discuss the implications of 

uncertainty on adaptation decision-making. This report makes yet another attempt to 

convince the South African community of scientists and practitioners in hydrology that 

uncertainty assessments are possible, that they can be implemented in practice and that it 

should be possible to incorporate them into decision-making. 

  
The overall conclusion with respect to reducing uncertainty is that there is nothing better than 

good observed data and good understanding for reducing uncertainties. One of the important 

issues is that we have to acknowledge and understand the uncertainties in our observed 

data before we can even begin to think about reducing the uncertainty. The report includes 

two quite detailed studies based on a progressive reduction in uncertainty using as much 

information as is available, some that might be considered ‘hard’ data (stream flow gauging 

stations within the region) and some that is certainly ‘soft’ data (conceptual understanding 

and published information about expected hydrological processes from other areas). These 

assessments involve a considerable amount of detailed analysis of the simulation ensembles 

(both parameter space and output results) which is very time consuming and is not practical 

for normal operational model use. Performing uncertainty analyses on large basins with 

many sub-catchments is very difficult and confusing. There is simply such a large uncertainty 

space (even without uncertain climate inputs) that resolving the interactions and the inter-

dependencies is almost impossible. These conclusions led to further research on the 

methods used for uncertainty assessments.  

 

A revised approach to including uncertainty in the modelling of large basins with many sub-

areas has been developed and it includes two steps to avoid some of the practical problems 

that were experienced in previous work on this project related to the interpretation and further 

use of uncertain ensemble outputs from the Pitman model. The first step involves the use of 

regional or local constraints to limit the parameter sets that can be considered behavioural in 

the simulation of natural (un-impacted) incremental flows for each sub-basin. These 

parameter sets are saved and then used with uncertain water use parameters (sampled 

independently) in the second step of the model when the cumulative flows at the outlet of all 

sub-basins are simulated. One of the advantages of the approach is that where there are 

high confidence gauged data, the constraints can be set with very narrow uncertainty 

bounds, while in ungauged areas these could be much wider. The approach therefore allows 

for different levels of uncertainty to be included in basins where the hydrological response in 

some areas is well understood and known, but where other areas have much higher 

uncertainty. 
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One of the important issues about the practical use of hydrological model uncertainty 

analysis, is the need to link the outputs of the uncertainty version of the Pitman model with 

existing approaches used for water resources yield analysis. The revised approach ensures 

that all of the natural incremental flows generated as part of the full set of ensembles are 

behavioural relative to what is known (from observed data or regional analysis) about the real 

catchment responses. The methods have been developed to be compatible with both the 

traditional approach of using stochastic stream flow sequences in the yield model and the 

emerging approach of using stochastic rainfall sequences within the hydrological model. The 

relatively simple yield analyses included in this report are designed to illustrate the 

differences between using stochastic stream flow analysis with uncertainty, combined 

stochastic rainfall and parameter uncertainty and stochastic rainfall uncertainty with separate 

parameter uncertainty. It is apparent that there are differences between the results obtained 

using stochastic stream flow and stochastic rainfall analyses that could be related to the non-

linear transformation of rainfall into runoff. While the statistics of a stream flow time series will 

be preserved during stochastic stream flow generation methods, this may not be the case 

when stochastic rainfall data are used to force a hydrological model.  

 

The overall conclusion is that the project has demonstrated that including uncertainty 

analysis as part of the widely used Pitman hydrological model (Hughes, 2013) is a practical 

proposition and that the uncertainty outputs can be successfully linked to existing water 

resources yield models. This statement should be qualified by the consideration that all of the 

research for this project has made use of the IWR’s SPATSIM version of the Pitman model, 

while it is recognized that almost all practitioners use the WRSM2000 software in which 

uncertainty options have yet to be included. It is therefore up to the community of 

hydrological and yield model practitioners to decide how best to proceed into the future. The 

project team have demonstrated the potential, identified some of the likely shortcomings, and 

suggested some ways forward that include possible revisions to computer code and software 

architecture. However, it is now up to the user community to respond to these initiatives and 

suggestions. 

 

The final chapter of the report offers some initial ideas about the use of uncertain information 

in decision-making. The Institute for Water Research at Rhodes University has initiated an 

MSc level study to review international approaches to decision-making in the face of 

uncertainty and to conduct some pilot studies in the Crocodile River basin where other IWR 

research activities have the potential to offer support. Some preliminary results of these 

studies are presented in chapter 4. 
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Throughout this, and the previous WRC, project, attempts have been made to achieve a 

balance between the development of new scientific approaches based on sound hydrological 

principles and international experience with the practical considerations associated with the 

use of models for water resources assessments, planning and management. The degree to 

which these overall objectives have been achieved can only really be measured by the 

impact of the project outcomes on the approaches applied in the future. The techniques that 

have been developed have already been successfully applied by Rhodes University research 

staff and students and the results published internationally or presented at international 

conferences.  

 

The report makes a single important recommendation and that is that the hydrological 

science and water resources practice communities within South Africa (including those 

organisations that fund research and practice) start to take the concepts of uncertainty far 

more seriously than they have in the past. 
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1. INTRODUCTION 
 
This document represents one of the final reports for the Water Research Commission 

project on ‘Implementing uncertainty analysis in water resources assessment and planning’ 

(K5/2056). The other report volume addresses the part of the project that dealt with 

uncertainties in understanding and modelling surface water-groundwater interactions (Tanner 

and Hughes, 2014). The project duration was three years (April 2011 to March 2014) and the 

participants were the Institute for Water Research at Rhodes University and IWR Water 

Resources (a private consultancy company). There were 7 deliverable reports generated 

during the project and these can all be found on the website of the Institute for Water 

Research at Rhodes University (http://www.ru.ac.za/static/institutes/iwr/uncertainty/).  

 

This project represented a follow-up of the successfully completed previous project (K5/1838; 

2008 to 2011) that initiated uncertainty research in South Africa (Hughes et al., 2011). The 

first project concentrated on developing a framework for uncertainty estimation and some of 

the tools necessary for application of the Pitman model within this uncertainty framework. 

The second project concentrated on uncertainty issues in surface-groundwater interactions 

(Tanner and Hughes, 2014) as well uncertainty reduction and the practical application of 

uncertainty analysis. Both of these projects should be seen within the context of international 

research of the same type through the Science Decades of the International Association of 

Hydrological Sciences (IAHS). The PUB (Predictions in ungauged basins) decade was 

concluded in 2012 and had a very large component of uncertainty analysis (Hrachovitz et al., 

2013; Blöschl et al., 2013) as well as addressing some aspects of uncertainty in practice 

(Whitfield et al., 2014). The new science decade was launched in 2013 with the theme of 

‘Everything Flows (Panta Rhei)’ and is designed to address change in hydrology and society 

(Montanari, 2013), and inevitably retains some of the uncertainty issues that came out of the 

PUB programme. 

 

Many of the PUB contributions to the issue of uncertainty, understandably, deal with the topic 

in a truly scientific manner, but this does not always translate into practical methods of 

uncertainty analysis that can be used in water resources assessments. Sometime the range 

of uncertainty might be set unrealistically high precluding the use of the outputs in water 

resources decision-making. In other cases the length of time required (and the complexity) to 

complete an uncertainty analysis might render it impractical for real-world applications, 

particularly if this analysis is to be coupled to a yield analysis that already takes a long time in 

many complex water resources decision-making situations. There are therefore two main 

focus areas of this report: how can uncertainty be reduced and how can uncertainty be 
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included as part of practical water resources assessments (typically linked to yield analysis). 

These two topics are not independent of each other and arguably, practical applications of 

uncertainty involve the reduction of uncertainty. While always seeking to reduce uncertainty 

as far as possible to ensure that decisions are made on the basis of reliable information, it is 

important to carry realistic uncertainty estimates through to the decision-making process to 

avoid a false sense of confidence that could lead to poor decisions being made. 

 

The report is divided into two main sections. The first investigates the quantification of 

realistic uncertainty bounds and approaches to reducing uncertainty. The second addresses 

a range of issues associated with the practical application of uncertainty analysis in water 

resources assessments that includes the framework for the application of uncertain 

hydrological models, the use of stochastic rainfall sequences in hydrological models as an 

alternative to using stochastic stream flow sequences in water resources yield models, 

computer run-time issues in uncertainty analysis and propagating uncertainty from 

hydrological models into yield models. A relatively short third section is included to initiate the 

debate about the use of uncertain information in decision-making approaches – a topic that 

the project team did not address in detail during the project, but which they consider to be of 

vital importance and should be more fully addressed in the near future. 

 

A relatively complete literature review of uncertainty issues was included in the previous 

projects final report (Hughes et al., 2011) and is not repeated here, however, more recent 

contributions to the local and international literature are included in the appropriate sections 

of this report. Similarly, the previous report included a relatively detailed introduction to the 

concepts of uncertainty and that is not repeated here. Readers who are new to these 

concepts are directed to the previous Water Research Commission report (Hughes et al., 

2011), or to many of the international or local sources of literature (see e.g. Beven, 2000; 

Pappenberger and Beven, 2006; Beven, 2009; Hughes et al., 2010). The earlier report 

presented a framework for uncertainty assessments (chapter 2 of Hughes et al., 2011) and 

the details of this framework are not repeated here.   
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2. REDUCING UNCERTAINTY 
 

The fact that there are uncertainties within any system of water resources assessment and 

planning should not come as a surprise to anyone. The various models that are used 

(hydrology, water resources yield and various decision support tools) are all dealing with 

complex interactions within the natural and human environments, as well as complex 

interactions between these two environments. The many variables and processes (both 

natural and anthropogenic) that are part of these complex interactions are not all measurable 

at the temporal and spatial scales appropriate to developing a full understanding of their 

operation. The fact that the networks of measurements that exist fall very short of what it is 

possible to measure just adds to the problem. While the existence of uncertainty therefore 

should not be a surprise, it is perhaps surprising that the uncertainties have not been fully 

acknowledged in the past.  

 

It has been pointed out on many occasions that there is little point in developing methods to 

reduce uncertainty (or in fact to quantify uncertainty) if it is not acknowledged, not 

understood, nor used within the decision-making process. These issues have been 

recognized in other disciplines as evidenced by the three paragraph quote from an article by 

Robert Johnson (Executive Director of the Institute for New Economic Thinking in New York) 

published in Time Magazine (Jan. 30, 2012). Parts of the quote have been changed (see 

italics), but with the original wording added in parenthesis: 

 

“First, hydrologists (economists) should resist overstating what they actually 

know. The quest for certainty, as philosopher John Dewy called it in 1929, is a 

dangerous temptress. In anxious times like the present, experts can gain great 

favor in society by offering a false resolution of uncertainty. Of course, when the 

falseness is later unmasked as snake oil, the heroic reputation of the expert is 

shattered. But that tends to happen only after the damage is done.” 

 

“Second, hydrologists (economists) have to recognize the shortcomings of high-

powered mathematical models, which are not substitutes for vigilant observation. 

Nobel Laureate Kenneth Arrow saw this danger years ago when he exclaimed 

‘The math takes on a life of its own because the mathematics pushed toward a 

tendency to prove theories of mathematical, rather than scientific interest.’” 

 

“Hydrological (financial-market) models, for instance, tend to be constructed with 

building-blocks that assume stable and anchored expectations. But the long 
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history of water resources (financial) crisis over the past 200 years belies that 

notion. As far back as 1921, Frank Knight of the University of Chicago made the 

useful distinction between measurable risk and ‘unknown unknowns’, which he 

called radical uncertainty. Knight’s point was that in a period of radical 

uncertainty, expectations couldn’t be anchored because they have nothing to 

latch onto. Hydrological (financial) theories and regulatory designs that hinge on 

the assumption of stable and anchored expectations are not resilient enough to 

meet the challenges presented by real water resources variability (financial 

markets) in radically uncertain times.” 

 

Clearly there are overlaps between the issues of uncertainty in the disciplines of economics 

and hydrology (or water resources science). One of the ‘radical uncertainties’ that face water 

resources management is arguably the impacts of climate change on water resources, but 

there are almost certainly many others related to the lack of sufficient ‘vigilant observation’. 

While we therefore will always strive for a reduction in uncertainty in our hydrological 

estimates and predictions, the message from the economics parallel is that we should only 

do that realistically and not end up with ‘false resolutions of uncertainty’. The implication is 

that we will always be left with some uncertainty in the decision-making process and the 

extent to which we have to reduce this further is dependent upon the risks involved in making 

decisions with such information. The very clear message is therefore that the need to reduce 

uncertainty, and the extent to which we have to achieve this is not independent of the way in 

which the information is used within a decision-making process.  

 

Arguably, uncertainty cannot be reduced unless it is understood, both qualitatively and 

quantitatively. It is also true that in certain circumstances we do not fully understand the 

sources of uncertainty and therefore cannot properly (realistically) quantify them. Therefore it 

can be argued that a substantial contribution to uncertainty reduction can be made through a 

better quantitative understanding of different sources of uncertainty and their relative 

contribution to total uncertainty. This issue is partly reflected in some of the contents of this 

report, which do not directly address uncertainty reduction, but rather address improvements 

in the understanding of certain sources of uncertainty. The context of the WRC project is 

uncertainties in water resources assessment and planning. This means that uncertainties in 

both our knowledge of the past and our ability to predict the future are equally relevant.  
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2.1 Uncertainties in our knowledge of the past 

 

Given perfect observed records of ‘adequate’ length to characterise temporal variability, 

there would be very little uncertainty in our ability to quantify historical water resources 

availability. However, this is almost never achieved and is arguably almost impossible to 

achieve given the complexity of water resources decision-making. We have many very good 

(but not perfect) stream flow gauging records, but even these are not always adequate for 

some water resources decision-making. In some cases they are impacted by poorly defined 

and largely un-quantified variations in upstream impacts, in other cases the gauging methods 

do not allow for the full range of flows to be accurately monitored. At the same time, there 

may be water resources decisions that require more information than can be accurately 

determined from only stream flow gauges. An example would be the joint development of 

surface and groundwater resources. There are techniques that can be used to approximate 

the groundwater contributions to stream flow from the flow records themselves (hydrograph 

or so-called ‘baseflow’ separation approaches), but all of these are subject to a great deal of 

uncertainty and do not explicitly allow for the complex processes associated with the 

interactions of rainfall, surface runoff, soil water drainage, recharge to groundwater and re-

emergence of groundwater in springs and rivers. A further source of uncertainty exists if it is 

necessary to consider different water resources development issues in different parts of a 

gauged basin. Even basins with moderate catchment areas (less than 100 km2) can have 

very spatially variable response characteristics and it is typically not realistic to consider that 

all parts of the basin will contribute equally (or be dominated by the same runoff generation 

processes and temporal patterns) to the runoff observed at the basin outlet. The estimation 

of available water resources in the basins of the country that are considered to be ‘gauged’ 

can therefore still be considered to be uncertain. The implication is that additional data, 

understanding and/or ‘modelling’ (in the broadest context of the word and including even 

simple data analysis and interpretation) will be required to provide the information necessary 

to make an informed management decisions. These additional resources will all come with 

some degree of uncertainty.   

 

Hydrological scientists involved in the IAHS PUB (Prediction in Ungauged Basins) 

programme (Hrachovitz et al., 2013; Hughes et al., 2014b) often refer to uncertainty and 

prediction issues in data rich, data poor and data scarce regions (with large parts of southern 

Africa identified as being data scarce). However, the question of data richness depends not 

only on the amount of data, but also on whether or not the data are directly appropriate for 

the type of water resources management and planning decisions that have to be made. This 

is the difference between data richness from a purely hydrological perspective and from a 
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practical water resources management perspective. While there are potential sources of 

uncertainty in the use of gauged data, there are clearly many more in the majority of 

situations where there are no gauged stream flow data and where it is necessary to rely on 

one or more of the many hydrological and water resources assessment modelling tools that 

are available within South Africa and internationally. As soon as we introduce models into the 

estimation approach, we introduce many more sources of uncertainty than those associated 

with available data. Quantifying these uncertainties as well as understanding how they 

interact is extremely difficult in ungauged situations where we do not have the data required 

to assess the results. Even understanding which sources are independent (or not) is 

extremely difficult, but nevertheless important from the point of view of quantifying the total 

uncertainty in the final result (appropriate estimates of water resources availability). These 

sources of uncertainty can be summarized as: 

• Input climate data uncertainties (rainfall, evaporation demand, etc.), including 

uncertainties in the actual measured data, the degree to which the available data are 

spatially and temporally representative and the extent to which the available data are 

adequate to represent what is being simulated in the model (e.g. the use of 

temperature-based potential evaporation estimation equations, or such as pan data). 

• Uncertainties in the climate data processing tools (and the assumptions inherent in 

their application) that might be used to extend, fill or spatially extrapolate from the 

available climate data to provide the necessary inputs to a hydrological or water 

resources system model. 

• The structure of the model and whether it is appropriate for the basin under study. 

Model structural uncertainties include many issues associated with the conceptual 

design of the model and the way in which water fluxes and storages are represented by 

the mathematical formulations of the model. They also include related issues of model 

temporal and spatial scale. While, there are many discussions in the hydrological 

modeling literature that attempt to resolve these issues, the practical reality is that the 

choice of model to be used for specific water resources assessments is often 

constrained by personal preference or institutional convention. The impacts of 

structural uncertainty are also not entirely independent from the skill and experience of 

the user. 

• A source of uncertainty that is arguably related to the previous point is the methods 

used for parameter estimation. This is a huge topic that is very complex and difficult to 

resolve. Parameter uncertainty and the best (or most appropriate) methods of 

parameter estimation have been at the forefront of discussion in the hydrological 

modelling literature for many years (Blöschl et al., 2013; Hrachovitz et al., 2013). 

However, from a practical perspective, we are not very far advanced from where we 
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were many years ago when hydrological models first became part of the toolbox 

typically used by water resources engineers. There are many issues associated with 

the application of uncertainty principles in model parameter estimation and this project 

has addressed some of them. This is also a topic where the issues of quantifying 

uncertainty in a realistic way versus reducing uncertainty become quite fuzzy. 

• Uncertainties in the data that are used to assess modelling results are also related to 

the issue of parameter uncertainty. This is true whether local data are used (i.e. 

gauging stations within the basin being modelled), or whether regional data are used to 

either assess the model results or to constrain the parameter estimation process. 

 

2.2 Uncertainties in our ability to predict the future 

 

All of the uncertainties in our knowledge of the past are equally relevant to our ability to 

predict the future. However, there are many additional uncertainties that have to be included 

when attempting to predict the future: 

• The uncertainties in the input climate data will be much greater in predicting the future. 

This applies to all future predictions, whether they are short-term (flood forecasts), 

medium term (seasonal forecasts) or much longer-term (climate change projections). 

The additional uncertainties exist even without assumptions about non-stationarity, but 

they clearly become far greater if it is assumed that future climates will be non-

stationary. Many water resources management decisions (whether infrastructure 

planning and design, or setting operating rules) are based on the analysis of historical 

data and therefore include some assumptions that the patterns of the past will be 

somehow repeated into the future, or that future changes in pattern can be predicted. 

Stochastic analyses can be used to add some components of uncertainty to this type of 

analysis, but it remains difficult to establish whether the uncertainty added through the 

use of stochastic sequences is real or simply a statistical artifact. 

• A specific sub-set of the above source of uncertainty is the use of GCM outputs and 

downscaling methods to provide inputs to hydrological models. There are many GCMs 

and several different types of downscaling and all of them produce different results – 

very different in some situations (Hughes et al., 2014a). There does not appear to be 

any real clarity about which results are more likely than others and therefore, from an 

uncertainty analysis perspective, they all have to be treated as equally likely. 

• There is a strong likelihood that changes in future climates will lead to other changes in 

the landscape (vegetation, land cover and land use, etc.). Parameter sets (either a 

single set or many sets defining uncertainty) established on the basis of historical 
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conditions are therefore not likely to be applicable in the future. However, it will always 

be difficult to define what should be changed and in what direction. 

 

2.3 Opportunities for reducing uncertainty 

 

This section introduces some of the approaches and opportunities that may exist for reducing 

uncertainty, or improving the ability to quantify uncertainty, in a very general way. These 

approaches include the collection of new data to fill spatial or temporal gaps, the collection of 

data to develop understanding of processes (and therefore improve the application of a 

model) and the development of new analysis approaches that make better use of existing 

(and new) data: 

• Reducing uncertainty through improvements in the national hydrometeorological data 

collection network and the way in which the existing data are analysed. 

• Reducing uncertainty through improvements to model structures and specifically the 

inclusion of sub-models to deal with specific hydrological processes (e.g. wetland 

storages and exchanges with stream flow). 

• Improving understanding of processes and their interactions through short-term 

focused field observations with the intention of improving model parameter estimation 

and for ensuring that model results are generated for the right reason. This approach 

overlaps with the second volume of the project final report that is focused on improved 

understanding and modelling of surface-groundwater interactions (Tanner and Hughes, 

2014). 

• Improving some of the techniques for accounting for uncertainty and propagating 

uncertainty through a model. The objective of these studies is not so much on 

uncertainty reduction, but on ensuring that uncertainty is being represented in the 

model in an appropriate way. 

• Assessing the uncertainty introduced into models through the use of stochastic 

sequences of rainfall and stream flow. 

• Assessments of how uncertain observed flow data can contribute to reducing 

uncertainty with a hydrological model – this is similar to the traditional approaches to 

calibration, but is also an extension of the use of various data sources to constrain 

model uncertainty (Kapangaziwiri et al., 2012; Westerberg et al., 2013) that formed a 

major component of the previous WRC project on uncertainty (Hughes et al., 2011). 

• Further investigation of climate change uncertainties and how these should be 

incorporated into hydrological and water resources systems models.  
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• The use of new data products (e.g. EO data) and techniques to assimilate these data 

into hydrological models. 

  

Not all of these topics are discussed in detail in the report, while some of them were already 

covered in the final report of the first WRC project on uncertainty (Hughes et al., 2011).  

 

2.4 Input climate data uncertainties 
 
Inevitably, uncertainties in the climate data that are used to force hydrological models are 

critical components of any output uncertainties. Unfortunately, the data that are available to 

quantify these uncertainties are under threat due to budget cutbacks or lack of understanding 

of the critical importance of data within some of the government agencies responsible for 

collecting the data.  

 

2.4.1 The value of data 

 

All scientists and engineers understand the value of data, because it affects the way in which 

they generate results and the confidence that they have in those results (even if they do not 

explicitly quantify the uncertainty). However, placing any kind of monetary value on data is a 

completely different matter. It is also very difficult to quantify the value of data if the 

uncertainty associated with not having it is never acknowledged when we make decisions. 

 

A recent study for the Department of Water Affairs (DWA, 2012) attempted to place a value 

on the various monitoring programmes of the Department including the surface flow, 

groundwater, national chemical and the national microbial monitoring programmes. From the 

literature review of this type of study, it was noted that, while estimates of cost are relatively 

straightforward, it is much harder to quantify benefits. This is partly because they are difficult 

to identify, there exits co-sharing of benefits and there is a lack of standard procedures. 

Interestingly, no mention is made of the costs associated with making poor decisions without 

data or with uncertain information. Arguably, this is because there are no data available (or 

methods) to analyse the costs of such occurrences. The DWA (2012) report therefore 

focused on quantifying the benefits of data approximated by the economic value of 

contributions to various water use sectors. The report also details the results of a 

macroeconomic impact assessment. The main inputs to the benefit calculations were based 

on a Delphi Technique through workshops with key stakeholders in the water sectors that 

benefit from the monitoring programmes. The surface flow monitoring programme has the 

highest net present value (R12.243 million) but the lowest benefit cost ratio (6.45 versus an 
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overall ratio of 10.77 for all programmes). Some sensitivity analyses were included that 

attempt to show the effects of budget changes in the monitoring programmes. Surprisingly 

the report suggests that all of the programmes are relatively close to the optimum budget 

with respect to benefit cost ratios. However, the report also clearly shows the rapid decrease 

in benefit cost ratios if the budget allocations are decreased. On the one hand the latter 

conclusion is what (as hydrologists) we might expect, but the former does not seem to agree 

with general consensus that we do not have enough data. 

 

It is encouraging to note that the Department of Water Affairs is taking the role of information 

very seriously and that they have made efforts to evaluate the benefits of their data collection 

programmes. While there are some difficulties of directly linking the outputs of the DWA 

(2012) study to issues of making decisions with uncertain information, the report clearly 

identifies the economic value of data. It is unfortunate that a similar study has not been 

published on the value of other data used in hydrological and water resources assessment 

modelling that are not managed by the DWA. Specifically, this comment refers to the national 

network of rainfall observation stations that appears to have seriously deteriorated over the 

last 10 years or more.    

 

Many previous studies have clearly demonstrated the importance of uncertainties in rainfall 

and evapotranspiration demand data and have attempted to improve the quantification of 

climate variables through analysis of the existing data (Lynch, 2004) or using satellite 

observations (Hughes and Mallory, 2008; Sawunyama and Hughes, 2008). However, the fact 

remains that it is very difficult to reduce the uncertainties without additional data and 

unfortunately these are simply not available. 

 

2.4.2 Uncertainties in rainfall inputs to models 

 

The uncertainties in rainfall inputs to models are derived from several factors, mostly 

associated with the available data, but some are also related to the structure of the 

hydrological models. The latter are associated with the spatial and temporal scales used 

within the model structure. 

 

Model scale issues: One of the criticisms of coarse scale models is that they are not able to 

represent the spatial and/or temporal variability within the real world. This criticism is 

certainly valid, but we are all too frequently faced with the problem that even if we use finer 

spatial and temporal scales, we do not have the data to adequately quantify the variability. 
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There is therefore still a great deal of doubt about which is worse and generates the most 

output uncertainty: 

• High resolution inputs, but with high uncertainty in their estimates? 

• Lower resolution inputs that smooth the variability, but with unknown uncertainties?  

 

From a spatial scale perspective, most hydrological models can be run at higher spatial 

resolutions if the input data and expected hydrological response characteristics can be 

adequately quantified (Hughes et al., 2013b). The situations where such an approach would 

be considered appropriate are those catchments that have steep topographic, rainfall and 

runoff generation gradients from mountain tops down to flatter plains areas. Unfortunately, 

they are also the areas where the observation data that are available to define the rainfall 

gradients (dominated by strong orographic effects) are simply not available. It is therefore 

feasible to approximately estimate the uncertainty (we expect more rainfall on the mountains 

than is gauged lower down in the catchment) but it is not feasible to reduce the uncertainty 

without some additional data to verify the assumptions that are made. A stream flow gauging 

station at the outlet of the total catchment (or better still, several gauges located at different 

places within the catchment) would possibly allow the rainfall inputs to the model to be 

‘calibrated’ (together with the model parameters), but this type of situation is rare in the real 

world of practical water resources assessment.  

 

The temporal scale used within models has always been a somewhat contentious issue and 

there is little doubt that monthly time scale models are unable to represent the highly variable 

relationships between monthly rainfall amounts and daily (or less) distributions of rainfall. 

This is particularly relevant to semi-arid climate zones where short time-interval variations in 

rainfall (and subsequent runoff) can be highly variable and associated with high degrees of 

spatial variability. However, we are again faced with the paradox of wishing to represent the 

inputs to models with high resolution, but not having sufficient data, or sufficiently reliable 

data, to achieve this. The overall conclusion is that while daily time-step models almost 

certainly represent better modelling platforms than monthly time-step models from a scientific 

perspective, the advantages are not always achievable because of the limitations of the 

available input data. Nevertheless, it is encouraging to note that the daily version of the 

Pitman model has been re-introduced as part of the WR2012 WRC project. Hughes et al. 

(2013a) were certainly able to demonstrate that a daily version of the model has a great deal 

of potential as a modelling tool for more than just stream flow simulations. 

 

One of the versions of the Pitman model that has been included with SPATSIM allows for 

stochastic rainfall inputs together with uncertain distributions of parameters. This could also 
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be used to examine the uncertainty effects of a number of different rainfall input time series 

and not just those generated by a stochastic rainfall model. For example, it would not be 

difficult to develop a simple ‘error model’ around existing WR2005 rainfall data time series 

and generate additional time series of rainfall that represents the uncertainties. However, we 

are left with not only the problem of what information to use to define the ‘error model’ but 

also how are we going to reduce that uncertainty? The overall conclusion is that we have 

the modelling tools available to explore the possible effects of uncertainties in rainfall 

data, but we frequently do not have the information available to define the 

uncertainties, nor reduce them. 

 

The main data observation issues are associated with obtaining data to adequately 

describe the spatial and temporal variability of rainfall over a catchment. The problem is what 

constitutes ‘adequately’, given that we already know that doing this ‘accurately’ is virtually 

impossible at a national scale (i.e. it is possible to achieve locally, under ideal conditions, but 

not for the whole country). What is ‘adequate’ is partly determined by the nature of the rainfall 

variability, the characteristics of the hydrological response and the purpose of the modelling 

study. There are many areas where rainfall is highly variable at short time scales, but less so 

at the time scales that are adequate for simulating water resources availability and therefore 

coarse scale data that smooth the shorter-term and finer spatial scale variations are often 

adequate. For flood modelling within the same region, the coarse resolution data would be 

totally inadequate. 

 

It is a widely recognized fact that no system of measuring rainfall is able to accurately 

measure the amount of water that reaches the surface of a catchment. All the different 

measuring systems (rain gauges – of different types, radar, satellite imagery, etc.) measure 

different things. However, hydrologists have generally accepted ground-based rain gauges 

as the standard and typically all other measurement systems are either compared with rain 

gauge observations, or calibrated against them. This may not be the ideal approach because 

rain gauges are subject to many different catch errors (particularly in areas of steep 

topography where turbulence substantially affects catch) and have to be converted from 

point observations to areal estimates for use with catchment scale hydrological models. If we 

are to move away from this approach to ones that integrate several different observation 

platforms, then it is essential that we consider a number of uncertainty issues: 

• As already noted, we do not have ANY observations in many topographically steep 

areas and therefore validation of any rainfall data product is almost impossible. 

• We have many years of historical rainfall data that are of vital importance in generating 

long time series of stream flow data. While we accept that these are uncertain, they are 
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all we have and we cannot go back very far in time with alternative data products 

based on radar or satellite. 

• The implication of the previous point is that new data products should be made 

compatible in some way with the historical data, or the historical data should be bias 

corrected to agree with the new data products. The latter is, however, not the best 

option as many of our water resources assessments have been made with hydrological 

models calibrated against the historical data and these same parameter sets are used 

with updated rainfall data to update the resource assessments. If the historical rainfall 

data are going to be changed, the hydrological models will almost certainly need to be 

re-calibrated. 

• It should be clearly recognized that any new methods will not be likely to reduce current 

uncertainties, largely because the existing uncertainties are not quantified. The new 

methods will, however, offer many opportunities for improving the way in which we 

quantify uncertainty in rainfall inputs. The quantification of the uncertainties may 

provide greater evidence of the need for improved monitoring networks. 

 

The project referred to as ‘Revision of the mean annual precipitation (MAP) estimates over 

southern Africa’ (WRC K5/2241) that started during 2013 proposes to use a number of 

different methods to improve the daily rainfall database of South Africa and inter alia 

generate a 1 minute grid of daily rainfall (back to 1950) with confidence limits. It is also 

intended to bias correct the TRMM 3B42RT satellite 3-hourly rainfall data (available since 

2000) at a 0.25 degree grid. These are ambitious proposals and should benefit the 

hydrological modelling community when the project begins to generate outputs. Although 

they are unlikely to have a large impact on the reduction of our existing uncertainties in many 

parts of the country, they will provide a lot more information on the quantification of those 

uncertainties.  

 

We are left with the major conclusion that the only way to substantially reduce uncertainty in 

the rainfall inputs to hydrological models is to improve the monitoring network in key 

locations. Given that the current trend in South Africa and many other parts of the world is 

completely the opposite (i.e. reductions in the number of observation stations), future 

hydrological simulations can be expected to get more uncertain and not less uncertain. The 

project team is aware of initiatives by the WRC as well as other interested parties to try and 

reverse this trend of reducing hydrometeorological information and these initiatives should be 

supported by all scientists, engineers and water resources managers who rely on such data. 

As we move into future uncertainties, it is imperative that observational data are available to 

check the trends of change suggested by climate and hydrological models. 
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2.4.3 Uncertainties in evapotranspiration inputs to models 

 

The data used to estimate potential evaporation inputs into models have always been 

uncertain and there appear to be different opinions about the impacts of these uncertainties 

on total modelling uncertainty. Many of these differences could be related to the specific 

climate region and the extent to which the actual evapotranspiration is dependent upon water 

available or input energy (potential evapotranspiration - PE). Hughes et al. (2013a) recently 

demonstrated the benefits of including estimates of daily evaporation demands over fixed 

seasonal distributions in a daily version of the Pitman model applied to two sites. Figure 2.1 

shows some results for the Manubi Forest (Eastern Cape coastal area) based on fixed 

seasonal distribution values and distributions based on daily estimates of PE using weather 

station data. Figure 2.2 shows a comparison of the daily estimates of PE for a small study 

catchment in Grahamstown using fixed seasonal distributions (based on WR90) and values 

for ET0 derived from weather station data. The differences are very clear at the daily scale, 

but it is also apparent that some monthly mean values would be very different (see days 500 

to 600) and therefore would also affect the results of a monthly time-scale model. Certainly, 

within the daily model used in the Hughes et al. (2013a) study, the simulation results for soil 

moisture (Manubi Forest) and stream flow (Grahamstown site) were greatly improved when 

the more detailed potential evapotranspiration data were used. The conclusion is that 

providing more detail in the input evapotranspiration data should improve the outputs of a 

model and reduce the uncertainties. However, any reduction in uncertainty must be 

measured against some validation data. While this could be done in a catchment with 

gauged stream flows (as in the Grahamstown study), it would be better to have a more direct 

method of assessing whether the actual evapotranspiration simulations obtained from a 

model are sufficiently representative of reality. Such information is almost totally lacking from 

ground based observation networks (except in a few small scale research studies such as 

the Manubi Forest) and therefore remote sensing products (Mu et al., 2011) offer an 

opportunity in this regard. 
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Figure 2.1 Manubi Forest simulated actual evapotranspiration (with fixed seasonal 

distribution and distributed using daily PE estimates) compared with field 

estimated values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Grahamstown site: daily PE using fixed seasonal distributions based on WR90 

compared with scaled ET0 values derived from weather station data (both use 

the same mean annual value of PE). 
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MODIS evaporation products: One possible area of research that has been explored 

internationally, but less so in South Africa, is the use of Earth Observation data (satellite 

imagery, such as MODIS) to provide additional information about spatial and temporal 

patterns of evaporative loss and soil moisture. In a study in the Western Cape, Műnch et al. 

(2013) concluded that it was very useful to have some MODIS data to improve the 

simulations of evaporative losses from the coastal Sandveld area, where there are no stream 

flow data available for calibration purposes. 

 

Figure 2.3 illustrates MOD16 actual evapotranspiration time series for a 6 grid (1 * 1 km) 

transect across the headwaters of quaternary catchment K40B and a 16 grid transect from 

the headwaters to the coast (north-south), while Figure 2.5 provides an integrated view of all 

the data compared to Pitman simulated ETa. It is immediately apparent from all three Figures 

that the range of estimates for individual MODIS grid squares is extremely high and that 

many of the estimates are significantly greater than the available input rainfall. While the 

latter is physically possible on a seasonal basis, it is not possible for this to happen 

consistently over the whole time series. Taking the average MOD16 evapotranspiration 

signal over the entire K40B catchment also generates results that are totally inconsistent with 

the rainfall data. A further issue is that the MOD16 data do not seem to reflect any time 

series differences in catchment wetness as reflected in the rainfall variability. 

 

An examination of differences in the ground conditions (based on Google Earth imagery) 

between those grid squares that suggest either very high or very low evapotranspiration 

depths reveals no possible explanations for these differences. The overall conclusion is that, 

within this specific geographical region of the country (southern parts of the coastal region 

between the Outeniqua Mountains and the sea) there is far more uncertainty within the 

MODIS data products than within the ability of the Pitman model to realistically simulate 

actual evapotranspiration. The MODIS data are therefore of no use in constraining model 

outputs. The implication is that if the MODIS data are to be used in other parts of the country 

additional checks on the validity of the data are certainly required. However, it is not clear 

what information could be used for such checks. 
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Figure 2.3 K40B: Monthly MOD16 ETa data for 6 grids (left side: East-West) across the 

headwaters and for 16 grids (right side: North-South) from the headwaters to 

the catchment outlet (the grey lines represents the WR2005 monthly rainfall 

data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 K40B: Range of monthly MOD16 ETa data for the 22 grids used in Figures 6.4 

and 6.5, ETa simulated by the Pitman model and the WR2005 rainfall data. 

 

Figure 2.5 compares the MOD16 ETa data averaged over 4 grids to the south of 

Grahamstown that represents the same area used in the Hughes et al. (2013a) study. The 

MODIS data are compared with ET0 estimates from a local weather station (based on 

Penman Monteith estimates) and the actual evapotranspiration simulated using a daily 

version of the Pitman model. The start of the modelling period (early December 2010) was 
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particularly dry and that is reflected in the large difference between the ET0 and simulated 

ETa values. However, the MODIS data suggest actual evapotranspiration values that are 

very similar to the weather station ET0 data. The converse is true for the wet winter of 2011 

when the simulated ETa data are much closer to the potential evaporation estimates, while 

the MODIS data are much lower. However, there is one short period where the MODIS data 

do increase in response to rainfall. While this report does not suggest that the simulated ETa 

data are accurate, they do at least follow the known patterns of moisture availability, while 

this is not the case with some of the MODIS data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Grahamstown: MOD16 ETa data for 4 grids, compared with ET0 data from the 

Rhodes University weather station and a simulation of ETa using a daily 

version of the Pitman model. 

 

Figure 2.6 presents perhaps the most rigorous assessment of the MODIS data using field 

estimated ETa data for the Manubi Forest (Hughes et al., 2013a). The figure illustrates the 8 

day MOD16 totals for closely adjacent forest and grassland areas and for the field estimated 

forest data based on calibrations against Eddy Covariance observations. During the period at 

the end of summer and through most of winter, the field estimates and MOD16 data are very 

well matched. However, this is not the case for the spring and early summer months at the 

start and end of the field observation period. A more encouraging result is the consistently 

large difference between the MOD16 forest and grassland ETa estimates, the forest being 

almost twice the grassland on average. This scale of increased evapotranspiration is, 

however, somewhat higher than is conventionally considered acceptable and suggests that 
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the relationships between evapotranspiration losses between different vegetation types 

should be re-investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Manubi Forest: MOD16 ETa data for 4 grids within the forest and 2 grids in a 

grassland area to the south, compared with field estimated ETa data using 

local weather station data. 

 

While the potential for using MODIS data to constrain the actual evapotranspiration outputs 

of hydrological models and to improve our understanding of land cover-evapotranspiration 

relationships has been recognized by a number of authors (see additional references in 

Műnch et al., 2013), the assessments carried out as part of this project suggest that care 

must be taken in the use of the MODIS data. The southern Cape (K40B) example suggests 

that there are large differences between individual MODIS grids that cannot be readily 

accounted for or explained by other information, making the value of the MODIS data 

extremely suspect in this region. The Grahamstown example indicates that the variation in 

MOD16 estimates do not fit very well with the expected patterns of evapotranspiration based 

on quite good local knowledge of the water balance of the area, supported by Pitman model 

simulations. While it is possible that the patterns of simulated ETa shown in Figure 2.2 are 

ignoring some additional losses to evapotranspiration, it is unlikely that the low MODIS 

estimates during the wet winter of 2011 can be considered realistic. The Manubi Forest data, 

based on accurate local ground observations, confirm that there are potential problems with 

some of the MOD16 data.     
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2.5 Reducing the uncertainty in the parameter ensembles 

 

The issues of parameter uncertainty were discussed at length within the previous project 

report (Hughes et al., 2011). However, a scheme that allows for parameter uncertainty to be 

reduced in a systematic way in all situations remains elusive. This may not be achievable 

given the large diversity in available data and catchment complexities, not to mention the 

large degree of equifinality that is known to exist in the structure of the Pitman model. The 

latter refers to the high level of interaction between the model parameters and the fact that it 

is easily possible to get very similar solutions from many different combinations of parameter 

values. During the course of this project the whole issue of constraining parameter values 

with very little information was re-visited.  The purpose of this was to contribute to reducing 

uncertainty and to determine if there are better and more practical approaches to parameter 

estimation. The first of these is discussed in the section of the report, while the latter forms 

part of Chapter 3.  

 

Figure 2.7 illustrates the generic uncertainty framework suggested by Kapangaziwiri et al., 

(2012). Part of the process involves parameter estimation procedures based on physical 

basin properties proposed by Kapangaziwiri (2008 and 2010), which may be affected by the 

spatial of modelling. These issues are discussed in the next sub-section. However, it was 

also decided to assess an alternative approach that starts with quite large ranges for the 

parameters and then uses some constraints on the output ensembles to progressively 

reduce the parameter ranges and (hopefully) the output uncertainty. These approaches were 

applied to a single catchment in the southern Cape and then to the Caledon River basin 

consisting of 31 quaternary catchments.  

 

2.5.1 Scale effects in the parameter estimation process 

 

Hughes et al. (2010a) investigated the uncertainty in the groundwater parameters of the 

Pitman model and the effects on sustainable groundwater abstractions in the semi-arid 

catchment L21E (712 km2), a part of the Buffalo River in the Karoo region of the Western 

Cape Province. The initial approach treated the catchment as a single spatial unit and 

uncertainty in the main groundwater parameters with a fixed recharge depth resulted in a 

sustainable yield range of 700 to 970 *103 m3 y-1. It is assumed that the recharge area is 

mostly on the higher ground where the soils are shallower, while the abstraction boreholes 

are expected to be in the valley bottoms where the water is needed for agricultural activities 

(stock watering and a limited amount of irrigation and domestic use). A second approach 

therefore involved dividing the area into two model spatial units, one to represent the 
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recharge area and one to represent the abstraction zone. The main differences between the 

ground water parameter values that were assumed for the two zones are:  

• The maximum monthly recharge parameter is assumed to be much higher for the 

recharge sub-catchment. 

• The gradient parameter that controls downstream groundwater outflow is higher for 

the recharge zone. 

• The drainage density parameter is lower for the recharge zone. 

• The riparian loss parameter is lower for the recharge zone. 

The sub-division of the total area resulted in a reduction in yield from 855 *103 m3 y-1 to 

between 720 and 640 *103 m3 y-1 for recharge zones of 30% and 70% of the total area 

respectively (based on parameter values giving the same input and output water balance  for 

the catchment as a whole). Without further information about the real ground water 

processes that occur within this region, it is difficult to reach firm conclusions. However, the 

division of the total catchment into the two zones is conceptually sensible and it is 

encouraging that the model results are consistent with expectations associated with the 

effects (on sustainable abstraction volumes) of delays in recharge water reaching the sub-

surface zones where abstractions are assumed to take place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 A generic framework for uncertainty analysis (based on Kapangaziwiri et al., 

2012) 

 

The study referred to in the previous paragraph did not involve the parameter estimation 

routines but throughout the duration of project, the application of the parameter estimation 

process was always found to be more difficult and uncertain in catchments where there are 
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Region 5 - H10 sub-quaternary analysis
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substantial spatial variations in the land type data, either because the catchments were 

covered by several land types, or because there is a lot of variation in topography, soil depth 

or soil texture within a land type. Several assessments were therefore made to determine 

whether reducing the scale of modelling would reduce the uncertainty in the output 

ensembles and ensure that they became more behavioural (Hughes et al., 2013b). 

 

Figure 2.8 presents the results of a sub-quaternary model application on catchments H10A to 

H10C (headwaters of the Breede River in the Western Cape). These catchments are ringed 

with steep mountain topography and have relatively flat valley floors. The mountains are the 

higher rainfall and groundwater recharge areas and have shallow soils and steep slopes. The 

valley bottoms have much deeper soils and are expected to be the groundwater discharge 

areas. H10A was sub-divided into 3 sub-basins, while H10B and C were divided into 2 sub-

basins. Figure 2.8 illustrates a substantial reduction in uncertainty, especially for H10B. The 

naturalized observed data suggest that the simulated outflows from H10C are all greater than 

observed, however, a problem with the naturalization process has been noted at this site 

which is heavily impacted by farm dams and has many missing peak values in the daily 

record. Further details of the process followed are provided in the published paper (Hughes 

et al., 2013b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Changes in the ensemble Q/P ranges for H10A to H10C as a result of the 

model scale reduction. 

 

The brief example provided in this section, as well as later sections that refer to southern 

Cape and Caledon River catchments, suggest that at least some of the observed stream flow 
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data available for South Africa is uncertain. This uncertainty may be related to the accuracy 

and completeness of the daily flow records (i.e. missing high flows when the rating table is 

exceeded), or it may be related to the effects of upstream developments and the extent to 

which the data can be assumed to represent natural conditions. Where there are upstream 

developments, it has been traditional practice to remove these from the records through a 

process of naturalization, which is inherently uncertain given the general lack, or poor 

accuracy, of the available water use data. It is therefore considered to be incorrect to 

consider that a single naturalized stream flow record can be used to constrain (or calibrate) 

the outputs from a hydrological model, unless the confidence that can be expressed in the 

observed record is very high. One of the approaches that could be adopted is to incorporate 

uncertainty into the naturalization process taking into account uncertainties in the impacts of 

upstream developments and adding a random error component to the measured stream 

flows. 

 

2.5.2 Constraining uncertainty: Southern Cape example (Quaternary catchment K40A) 

 

The South African Department of Water Affairs (DWA) gauging station K3H003 lies on the 

Diep River at the outlet of a 72 km2 topographically steep catchment (mean slope of 28%) in 

the area of the southern Cape between the Outeniqua Mountains and the coast. The geology 

consists of fractured quartzites of the Table Mountain Sandstone Series.  The natural 

vegetation consists of scrub bush (fynbos) on the steep slopes and mountain tops, with 

dense deciduous forest in the lower parts of the catchment and the river valleys. Much of the 

indigenous forest was replaced before stream flow gauging began with managed pine and 

eucalypt plantations covering approximately 40% of the catchment. The soils are shallow, 

stony and sandy in the mountain areas, but can be much deeper with a high organic content 

in the foothills and valleys. The gauged catchment is part of catchment K40A (87 km2). The 

climate inputs to the model are relatively uncertain, largely due to the steep topography and 

the lack of records for the mountain areas. However, Table 2.1 suggests that most estimates 

of mean annual rainfall are relatively similar (700 to 750mm), while mean annual potential 

evapotranspiration has been estimated to be 1 400mm.  

 

Table 2.1 lists the parameter values and some objective functions that have been used in 

five previous Pitman modelling studies (Pitman et al., 1981; Hughes, 1985; Midgley et al., 

1994; Bailey and Pitman, 2005; Kapangaziwiri, 2010). Only the last two studies included the 

groundwater routines of the model and the 2010 study was based on uncertain parameters 

estimated using physical basin properties derived mostly from AGIS (2007). The 1981, 1994 

and 2005 results are based on the regional parameter values generated by these national 
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assessments, the 1985 results are based on local calibration, while no calibrations were 

used for the 2010 ensemble results. Some of the groundwater parameters used for the 2005 

and 2010 studies are not shown, but are referred to in the next paragraph. 

 

Table 2.2 itemises the steps followed in a simplified revised uncertainty assessment using 

uniform distributions for all parameters (Table 2.3, column 2). The period simulated was for 

Oct. 1960 to Sept. 2005, while the observed flow data covers the period  Oct. 1961 to the 

present day (the additional year of simulation was to ensure a model warm up period). The 

objective of the revised assessment was to begin with relatively large uncertainty (covering 

all possible parameter values based on many years of model experience) and attempt to 

identify additional information that could be used to constrain the uncertainty in some 

parameters. The observed data are not used in the first 4 steps of the analysis (Table 2.2) 

except to evaluate the results in terms of the three objective functions listed in Tables 2.1 

and 2.3. Some parameter values have been fixed at the same values used in the 2010 study: 

SL and SLG = 0 mm, TL = 0.25 months, drainage density = 0.2, transmissivity = 20 m2 d-1 

and storativity = 0.001.  While these will have an impact on the time distribution of low flows, 

it will be smaller than many of the other parameters and will not affect the overall simulated 

flow volume. In a similar way the uncertainties in the rainfall inputs, potential 

evapotranspiration and coverage of commercial afforestation have also been ignored. The 

focus is therefore on the main runoff generating parameters. The final step (5) used the 

observed data to identify the ensembles that met certain criteria associated with 5 objective 

functions (Table 2.2). Three of these are those used to evaluate the outputs from all steps, 

but step 5 also included the Nash-Sutcliffe coefficient based on the inverse of the data values 

(CE(Inv) – strong emphasis on low flows) and the % bias based on natural log transformed 

flows. 

 

Table 2.2 refers to some constraints that were used in steps 1 to 4 to identify which of the 

total of 10 000 ensembles could be considered behavioural. The unit runoff and flow duration 

curve (FDC) constraints were based on records from 10 stream flow gauging stations located 

in the same region between the Outeniqua Mountains and the coast. As all of the upstream 

catchments have varying areas of commercial afforestation and this effect was included in 

the Diep River simulations (assumed to be 40% coverage), the constraints were adjusted to 

account for afforestation based on the recommended regional adjustments to natural flows 

provided in Gush et al. (2002). An additional constraint was based on the expected range of 

mean annual recharge depth using regional data (DWAF, 2005).  
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Table 2.1 Previous applications of the Pitman model to the Diep River catchment 

 

Model Attempts 1981 1985 1994 2005 2010 
Rainfall (mm y-1) 750 750 706 706 706 

Parameters 
PI1 (mm) 1.5 1.5 2.1 1.5 2.0±0.1 
PI2 (mm) n/a 10.0 4.0 4.0 2.6±0.1 
% Veg2 n/a 54.3 66.7 5.0 40.0 
FF n/a 1.1 1.1 1.1 1.3 
PEVAP (mm y-1) 1400 1400 1400 1400 1400 
ZMIN (mm mnth-1) 0 0 0 50 50±5 
ZAVE (mm mnth-1) 200 125 100 142 235 
ZMAX (mm mnth-1) 400 250 200 235 1160±20 
ST (mm) 250 100 100 120 100±5.0 
FT (mm mnth-1) 40 38 50 25 35±2.5 
POW 2.0 1.7 2.0 2.0 2.0±0.05 
GW (mm mnth-1) n/a n/a n/a 2.0 16.0±2.8 
GPOW n/a n/a n/a 2.0 3.0 
R 0.0 0.17 0.0 0.0 0.0 : 0.2 
TL (mnth) 0.0 0.0 0.25 0.0 0.25 
Riparian % n/a n/a n/a 0.2 0.2 

Objective Functions 
CE 0.67 0.68 0.65 0.61 0.50 : 0.62 
CE(ln) 0.59 0.61 0.48 0.59 0.39 : 0.63 
%Bias 5.6 -16.3 23.3 8.0 -40.7 : 1.2 

 

Notes: PI1 and PI2 refer to the interception parameter for Fynbos bush and plantation forest, 

respectively, while FF refers to the factor by which PEVAP is increased over the 

forested area (% Veg2). For the 2010 study, Mean±St.Dev is used to denote a normal 

distribution of uncertainty while Min : Max is used for a uniform distribution. CE and 

CE(ln) are the Nash and Sutcliffe (1970) coefficients of efficiency based on ordinary 

and natural log transformed flows, while % Bias refers to the % bias in the simulated 

mean monthly flow relative to the observed value. 
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Table 2.2  Sequence of steps in constraining parameter values ranges 

 

Step Information source  Constraints Results summary 
1 10 stream flow gauges 

in the same 
physiographic region 
and GRAII (DWAF, 
2005). 

Estimates of mean monthly 
unit runoff (m3 km2 mnth-1) 
and non-dimensional FDC 
percentage points at Q10, 
Q50 & Q90 (relative to mean 
monthly flow). Groundwater 
recharge limited to between 
15 and 30 mm y-1. 

Limits ST to < 300 mm 
and ZMAX to < 280 
mm. Suggests limits to 
behavioural ratios of 
FT/POW and 
GW/GPOW. 

2 Results from step 1.  Same as in step 1. 
Limits to maximum values of 
ST and ZMAX. 
POW and GPOW fixed. 

No extra information 
provided about how 
parameter ranges can 
be reduced. 

3 Some additional 
assumptions about 
interception and 
evapotranspiration. 

Same as in step 2. 
Range of PI1, PI2, FF and 
Riparian % parameter 
values reduced. 

Greater frequency of 
some parameter 
values in behavioural 
ensembles. 

4 Step 3 constraints plus additional information based on 
the frequency of behavioural values for parameters 
ZMIN, ST, FT, GW and R (see Table 3). 

Behavioural range not 
changed but many 
more behavioural 
ensembles. 

5 Observed data at 
K4H003. 

Combination of 5 Objective 
functions: CE>0.6, 
CE(ln)>0.65, CE(Inv)>0.5, 
%Bias and %Bias(ln)<±10%.

Reduces the range of 
some parameters, but 
there remains 
substantial equifinality 
even in 11 ensembles. 

 

 

Tables 2.2 and 2.3 indicate that, while only 74 out of 10 000 ensembles were accepted as 

behavioural after step 1, there were relatively few differences in the parameter value ranges 

of the behavioural and non-behavioural  ensembles. Apart from some constraints on the 

ranges of ST and ZMAX, the only other clear results were that only certain ranges of 

FT/POW and GW/GPOW could be considered behavioural. Step 2 therefore involved fixing 

POW and GPOW and limiting the range of ST, ZMAX and GW. This resulted in somewhat 

more behavioural simulations (419) and slight improvements in the worse values of the 

objective functions. However, the behavioural and non-behavioural parameter ranges 

remained similar. Step 3 involved applying some literature data (Dye and Versfeld, 1992; 

Everson et al., 2011) to reduce the range of the interception and evapotranspiration 

parameters. While this resulted in more behavioural parameters (803), it had a slightly 

negative impact on some of the objective functions (Table 2.3). It was originally intended to 

make use of the MOD16 actual evapotranspiration (ETa) data product (Mu et al. 2011) to 

further constrain some of the model outputs. However, the MOD16 data for this region show 

very large variations between adjacent MODIS pixels that do not make any sense and also 
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suggest ETa values that are often much higher than the monthly rainfalls. Step 4 was based 

on a more detailed analysis of the behavioural and non-behavioural parameter sets than 

simply their ranges and reduced the ranges using the more frequently occurring parameter 

values within the 803 behavioural ensembles at the end of step 3. 

 

Table 2.3 Parameter ranges and objective functions for some of the steps listed in Table 

2.2 

 

Model Runs Step 1 Step 2 Step 3 Step 4 Step 5 

PI1 (mm) 1.5 : 2.5 1.5 : 2.5 1.4 : 1.6 1.4 : 1.6 1.7 : 2.4

PI2 (mm) 3.0 : 5.0 3.0 : 5.0 2.8 : 3.2 2.8 : 3.2 3.0 : 5.0

% Veg2 40.0 40.0 40.0 40.0 40

FF 1.2 : 1.5 1.2 : 1.5 1.2 : 1.3 1.2 : 1.3 1.2 : 1.5

PEVAP (mm y-1) 1400 1400 1400 1400 1400

ZMIN (mm mnth-1) 0 : 100 0 : 100 0 : 100 20 : 80 11 : 78

ZAVE (mm mnth-1) 0.5 * (ZMIN+ZMAX) 

ZMAX (mm mnth-1) 150 : 500 150 : 280 150 : 280 150 : 280 176 : 268

ST (mm) 100 : 500 100 : 300 100 : 300 120 : 200 165 : 470

FT (mm mnth-1) 20 : 100 20 : 100 20 : 100 25 : 55 21 : 71

POW 1.8 : 3.0 3.0 3.0 3.0 1.9 : 2.8

GW (mm mnth-1) 20 : 100 25 : 50 25 : 50 40 : 50 26 : 100

GPOW 2.0 : 5.0 4.0 4.0 4.0 2.0 : 4.3

R 0 : 0.5 0 : 0.5 0 : 0.5 0.25 : 0.5 0.0 : 0.15

Riparian % 0.1 : 0.5 0.1 : 0.5 0.2 : 0.4 0.2 : 0.4 0.15 : 0.49

Objective functions after application of MMQ, FDC & GW recharge constraints. 

No. of ensembles 74 419 803 3644 11

CE 0.47 : 0.63 0.47 : 0.64 0.41 : 0.64 0.41 : 0.63 0.6 : 0.63

CE(ln) 0.07 : 0.68 0.24 : 0.64 0.11 : 0.64 0.12 : 0.61 0.65 : 0.71

%Bias -15.5 : 

48.2

-15.5 : 

55.5

-15.5 : 

66.7

-13.9 : 

67.3 

-9.7 : -1.0

 

 

Figure 2.9 illustrates the differences in the range of simulated flows for the un-constrained 

(‘Total’) and constrained results for a 10-year period after step 3, while Figure 2.10 illustrates 

the same results using flow duration curves based on the total simulated data record and 

including the behavioural outputs from step 4 (‘Final constrained’).  Figure 2.11 illustrates the 
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results for the 11 ‘best’ results after step 5 that are effectively calibrated based on multiple (5) 

objective functions. Perhaps the most obvious result is the fact that a large amount of 

equifinality remains within the parameter sets even when the observed data are used to 

constrain the 10 000 ensembles to the best 11 (Table 2.3, column 6). There is very little 

change in the behavioural results between steps 3 and 4, but there are far more behavioural 

ensembles (803 to 3644). The unit runoff constraint was the least effective, while the 

recharge constraint was the most effective in reducing the number of behavioural ensembles. 

Figure 2.10 illustrates that the observed data tends toward the lower limits of the ensembles 

for moderate to all but the highest flows and this is confirmed by the high positive values of 

the % bias values (Table 2.2). One possible explanation is that the correction of the observed 

data from the 10 local gauging stations for the effects of commercial forestry using data from 

Gush et al. (2002) has not accounted for enough runoff reduction at moderate to high flows 

(affecting the unit runoff and FDC 50% and 90% constraints). The implications are that a 

more localised assessment of afforestation impacts on flow would be required to develop 

more appropriate constraint boundaries. 

 

The overall conclusion of this, admittedly, limited uncertainty exercise is that the uncertainty 

can be reduced in an ungauged catchment using regional information together with a 

detailed assessment of the parameter space, but that there are limitations to this reduction 

as demonstrated by Figures 2.9 and 2.10. It is also important to recognise that any observed 

data used to develop regional constraints must be representative of the conditions being 

simulated in the ungauged catchment. It is pertinent to note that the final ranges of 

parameter values, determined after steps 1 to 4, are quite different from those obtained in the 

earlier 2010 study (Table 2.1) that used physical basin properties (Kapangaziwiri, 2010) to 

estimate parameter uncertainty, while the results are relatively similar. Which are the more 

physically appropriate parameter sets remains unclear and would involve either more 

information than is currently available, or a more detailed examination of the parameter 

space coupled with conceptual reasoning that was beyond the scope of this relatively brief 

example. It is also possible that these differences are not able to be resolved and that they 

are a reflection of the real uncertainties in the nature of the runoff response of this catchment 

coupled with the equifinality of the model structure and parameter set. 

 

The important message revealed by this analysis is the extent of the model parameter 

equifinality in this catchment, a situation that could quite easily have been predicted given the 

nature of the catchment and the complexities of the runoff generation processes. This 

effectively means  that a further reduction of the parameter uncertainty will only be able to be 

achieved by an improved understanding of the runoff dynamics of the catchment 
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(quantitative estimates of the different sources of runoff), such that these could be translated 

into additional constraints on some parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Diep River (K4H003): Time series of observed (black line) and the range of 

ensembles before (black dotted) and after (grey) applying constraints to step 3 

(Table 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Diep River (K4H003): Flow duration curves of observed (black line), range of 

ensembles before (black dotted) and after (grey) applying constraints to step 3 

and final range after step 4 (grey dotted). 
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Figure 2.11 Diep River (K4H003): Time series of observed (black line) and the 11 ‘best’ 

simulations selected from 10 000 ensembles (grey band) based on 5 objective 

functions (see text for details). 

 

2.5.3 Caledon River Basin: Constraining natural flow simulations. 
 
The Caledon River represents a much more complex example of uncertainty analysis for 

several reasons. The first reason is that there is a great deal of distributed water use 

(irrigation from farm dams and from the river, coupled with some municipal supplies) within 

the catchment that impacts on the interpretation of the observed stream flow data. These 

data are also very limited and there are no gauges to represent the steep mountain sub-

catchments that drain the Lesotho parts of the basin (Figure 2.12). A further reason is that 

the whole uncertainty analysis becomes complicated by the differential effects of upstream 

sub-catchment uncertainty on the uncertainty outputs of downstream sub-catchments. The 

same type of constraint analysis used in the K40A analysis can therefore only be applied to 

headwater sub-catchments (i.e. no inflows from upstream areas that will have different 

parameters for any given member of the output ensemble).  

 

One of the important issues is the grouping of the 31 quaternary catchments into groups that 

are assumed to have similar directions of uncertainty. This is important if the range of output 

uncertainty at the catchment outlet is to be reasonably consistent with the ranges of 

uncertainty in the upstream areas. This concept and the way in which the structured 

uncertainty version of the Pitman model has been coded were discussed in previous project 
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report (Hughes et al., 2011). Table 2.4 lists the quaternary catchments, their groupings and 

some of the characteristics that have been used to determine the groupings. Table 2.5 lists 

the gauging stations that are available in the area, some of which were used to develop the 

regional constraints. As with the southern Cape example it was decided to use uniform 

distributions to represent the parameter uncertainty, thus avoiding the need for any 

assumptions about mean values, the shapes of the distributions (normal or log-normal) and 

the extent of any outliers. 

 

 

Figure 2.12 The Caledon River basin showing modelled sub-basins and some of the 

stream flow gauging stations. 

 

Establishing the constraints: The same constraints were used as in K40A. The 

groundwater recharge data were obtained from DWAF (2005) and the range of uncertainty 

was based on the lowest recharge estimates of the three that are available in the GRAII 

(DWAF, 2005) database for the quaternary catchments falling into each group (Table 2.6, 

columns 4 and 5). The constraints given in Table 2.6 are in % rainfall and are 

dimensionalised for use with individual quaternary catchment by the mean monthly rainfalls 

used in the simulations (WR2005 data). 

 

Table 2.5 provides information on most of the gauging stations that could be useful for 

setting the mean monthly flow and flow duration curve constraints. However, all of them have 
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their limitations and some are of little value. Gauge D2H012 has a relatively long record, but 

is affected to some extent by poor high flow measurements and abstraction impacts on low 

to moderate flows. It also covers two of the quaternary groups. The observed (after some 

corrections to the high flows) mean monthly flow depth (5.4 mm) is expected to be under-

estimated but not to the same extent that is reported in either WR90 (9.3 mm) or WR2005 

(5.9 mm). The under-estimation is expected to effect the Q90 estimates the most. 

 

Table 2.4 Uncertainty groups for the Caledon basin. 

 

Zone Sub-basins Mean annual 
rainfall (mm) 

Characteristics 

1 D21A, B, C, D, J, K, L 839-1021 Steep eastern headwaters in the Lesotho 
Maluti mountains. Possibly some stock 
grazing. 

2 D21E, F, G, H 
D22A, B, C, D 

682-782 Undulating topography in the northern 
headwaters with some steep areas. 
Intensive agriculture in the valley bottoms.

3 D22G 
D23C, D, H 

519-688 Dry southwestern tributaries with 
undulating to flatter topography and 
intensively cultivated. 

4 D22E, F, J, K 
D23B, F, G 

705-817 Undulating topography with some steep 
headwater areas. Extensively cultivated in 
South African and dense rural populations 
with over-grazing in Lesotho.  

5 D22H, L 
D23A, E, J  

541-730  Lower basin valley bottom areas with 
generally flatter topography and 
intensively cultivated. 

 
 
D2H005 and D2H020 are both on the main Caledon River, have a number of problems with 

uncertainties in the accuracy of the gauged flows and are heavily impacted. They are not 

therefore useful for developing constraints. While D2H001 appears to have a relatively good 

record (after some adjustments to high flows based on data from a nearby flood section), it 

represents the accumulation of flows from most of the quaternary catchments and therefore 

can’t be used for constraints. However, it is useful to compare these records with the 

uncertainty outputs from D23F which is close to the basin outlet. However, it must be 

remembered that this gauging record reflects many upstream water uses that will also not be 

stationary. 
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Table 2.5 Stream flow gauging stations 

 

Gauge 

No. 

Catchment 

area (km2) 

Records Zones Details  

D2H012 518 1968-2011 1 & 2 High flows poorly quantified; some farm 

dam and land use change effects. 

D2H005 3 857 1941-1956 1 & 2 High flows moderately well quantified; 

many farm dams, abstractions and land 

use impacts; some domestic return flows. 

D2H020 8 399 1982-2010 1, 2 & 4 High flows moderately well quantified; large 

and poorly quantified impacts of Maseru 

city abstractions plus all upstream impacts. 

D2H003 1 424 1934-1954 3 High flows well quantified; some 

agricultural abstractions but assumed to be 

relatively small (note that the period of 

record is before the construction of a large 

dam). 

D2H022 12 852 1988-2010 All Stable river section and subject to many 

uncertainties. 

D2H001 13 421 1926-1978 All High flows very badly quantified in early 

parts of record; many accumulated 

upstream abstraction impacts.  

D2H034 1 082 1992-2012 2 Recent gauge with records since 1999. 

Highly impacted catchment with many 

farms dams and irrigation. 

D1H006 2 969 1949-2013 1 Makhaleng River in Lesotho.  

D1H032 1 074 1986-2013 1 Senqunyane River – 16 years of record 

available prior to Mohale Dam construction.

 

 

Gauge D2H003 represents group 3, the driest parts of the catchment, and has a record that 

pre-dates any of the large dams within this area. However, it is assumed that some 

distributed agricultural water use was occurring even before 1934 and therefore the observed 

data are expected to under-estimate flows, particularly low to moderate flows. The mean 

monthly observed flows of 1.6 mm are substantially lower than the values given in either 
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WR90 (3.8 mm) or WR2005 (3.1 mm) and it is difficult to justify an almost doubling in mean 

volume on the basis of the likely agricultural water use in the 1940’s and 1950’s. 

 

Gauge D2H034 (representing group 2) will be heavily impacted by distributed agricultural 

water use and therefore the 2.9 mm mean monthly flow will definitely be an under-estimate. 

WR90 and WR2005 both suggest that the values should be in the region of 4.6 to 6 mm 

month-1.  

 

Gauges D1H006 and D1H032 both drain the eastern slopes of the Lesotho mountains and 

have very large mean monthly runoff values of 16.8 mm and 29.6 mm, respectively. Both of 

these catchments have more consistently steep and mountainous terrain than the Group 1 

Caledon catchments and even more so for the Group 4 catchments. WR90 and WR2005 

suggest mean monthly flows of between 13 mm and 22 mm for D1H006 and D1H032, 

respectively. Developing constraints for Groups 1 and 4 is therefore difficult because of the 

high variability.  

 

The flow duration curve (FDC) constraints were based on the same gauges (with the same 

problems of interpretation) and all of the constraints are given in Table 2.6 (as unit runoff 

values or non-dimensional values). While it is accepted that some of the constraint 

boundaries are subjective, attempts have been made to ensure that they are at least 

realistic. Group 5 is made up of catchments in the lower parts of the catchment through 

which the main Caledon River flows. They have been allocated runoff and FDC constraints 

that are the same as Group 3 on the basis of the much lower rainfall in this area.  

 

Table 2.6 Constraints developed for the quaternary catchment groups of the Caledon 

River basin.  

 

Group 

Mean 

monthly flow 

(mm) 

Mean monthly 

recharge (% 

Rainfall) 

Flow duration curve constraints 

(values are factors * mean monthly flow) 

Q10 Q50 Q90 

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

1 10.0 17.0 4.7 8.3 2.5 3.0 0.35 0.55 0.04 0.08

2 2.8 6.0 2.5 3.7 2.0 2.7 0.15 0.25 0.02 0.05

3 1.2 3.2 0.8 2.5 2.0 2.5 0.15 0.25 0.02 0.05

4 6.0 10.0 1.2 7.2 2.5 3.0 0.35 0.55 0.04 0.08

5 1.2 3.2 1.0 4.2 2.0 2.5 0.15 0.25 0.02 0.05
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Stage 1 of the uncertainty analysis: Table 2.7 lists the parameter value ranges that have 

been used at the start of the first stage of the uncertainty analysis. The assumption is that 

these cover the range of likely values for all of the quaternaries and that some parameters 

(e.g. the interception parameter {PI}, routing parameter {TL} and the drainage density 

{DDENS}) can remain fixed as they are expected to have little influence on the ensemble 

outflows if their values are restricted to sensible ranges based on previous experience and 

the information on the physical basin properties. Most of the ranges have been set the same 

for all groups, while some are slightly different based on known physical catchment 

characteristics. POW has been fixed at a value of 3.0 to avoid the well-known interactions 

between POW and FT and because a value of 3.0 represents a relatively high degree of non-

linearity in the relationship between soil moisture and interflow. 

 

Table 2.7 Initial parameter ranges for all groups 

 

Group 1 2 3 4 5 

Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

PI 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

ZMIN 10 100 10 100 10 100 10 100 10 100

ZMEAN  Set at 0.5 * (ZMIN + ZMAX) for all Groups  

ZMAX 200 1000 200 1000 200 1000 200 1000 200 1000

ST 60 500 60 500 60 500 60 500 60 500

POW 3 3 3 3 3 3 3 3 3 3

FT 0 20 0 20 0 20 0 20 0 20

GW 5 50 5 50 5 50 5 50 5 50

R 0 1 0 1 0 1 0 1 0 1

TL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

GPOW 3 6 3 6 3 6 3 6 3 6

DDENS 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.4

Trans 10 50 10 50 10 50 10 50 10 50

S 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004

Slope 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

Depth 25 25 25 25 25 25 25 25 25 25

Riparian 0.2 0.6 0.2 0.8 0.2 0.8 0.2 0.6 0.2 1.2
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The first stage in the uncertainty analysis is to run 10 000 ensembles with the parameter 

ranges given in Table 2.7 and identify narrower parameter ranges for sample catchments in 

each group based upon the five output constraints listed in Table 2.6. This process is 

illustrated below using several representative catchments. The term ‘behavioural’ is used to 

distinguish those ensembles falling within the constraints. 

 

Stage 1 constraint results for D23C (Group 3): 

• The number of behavioural ensembles was reduced to 28 and most of the reductions 

resulted from the Q50 and Q90 constraints. 

• Few of the individual parameter ranges were reduced (see Table 2.7 for the original 

ranges): 

o ZMIN range reduced to 30 → 100. 

o ZMAX range reduced to 400 → 994. 

o FT range reduced to 0.8 → 8.4. 

o R range reduced to 0 → 0.67. 

• However, the range of some parameter combinations were substantially reduced: 

o The range of the ratio of GW/GPOW was reduced from 0.8 → 16.7 to 1.1 → 9.5. 

o The relationships between R (evapotranspiration parameter) and ST and FT suggested 

that only certain combinations of these parameters are behavioural (Figure 2.13). 

These suggest that if R is fixed to a specific value the range of other parameters can 

be further constrained. It was eventually decided to constrain R to between 0.4 and 0.6 

and fix GPOW at 5, which allowed FT, GW and ST to be further constrained. 

• The ranges that have been determined for stage 2 of the analysis are given in Table 

2.8. 

• As Group 5 has no sub-catchments that are not on the main Caledon River (and 

therefore the output flow metrics include upstream flows and cannot be compared to 

the constraints), the revised ranges for most parameters were set the same as for 

Group 3. The range for GW was increased to allow for the higher range of the recharge 

constraint. 

 

Stage 1 constraint results for D22A (Group 2): 

• The number of behavioural ensembles was reduced to 767 after applying the first three 

constraints, but only 3 and 2 ensembles remained after using the Q50 and Q90 

constraints, respectively. There is a possibility that the constraints for this region are 

miss-matched and the Q50 upper constraint was relaxed to 0.35 (from 0.25 given in 

Table 2.6). This extended the number of final ensembles to 10. 
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• Similar effects were found for Group 2 as listed above for Group 3, including 

relationships between R and other parameters (see Figure 2.13). These allowed some 

parameters to be highly constrained. 

• The revised parameter ranges for Group 2 are given in Table 2.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 Behavioural relationships between parameter R and FT, GW/GPOW and ST 

for catchment D23C. 

 

 

Stage 1 constraint results for D22J (Group 4): 

• The number of behavioural ensembles was reduced to 233 after applying all five 

constraints with the FDC constraints having the biggest effect. 

• There were very few reductions in the range of individual parameters (rather than 

relationships between parameters) and only the minimum value of ZMAX was 

increased (to 320). 

• There are, however, some relationships between R values and other parameters as 

with the previous groups. It was again decided to fix the range of R to 0.4 to 0.6 and 

GPOW to 5, which helps to constrain some of the other parameters (Table 6.8). 

• Although there is a weak relationship between R and ST, the biggest cluster of ST 

values (given 0.4≤R≤0.6) lies in the range of 100 to 250. Similar analyses of the results 

suggest constraints for GW and FT (Table 2.8). 

 

Stage 1 constraint results for D21A (Group 1): 
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• The number of behavioural ensembles was reduced to 14, although the Q90 maximum 

constraint had to be increased to 0.15 to achieve this, implying some inconsistencies in 

the constraints affecting low flows (i.e. Q90 and recharge). 

• There were very several reductions in the range of individual parameters (rather than 

relationships between parameters), including ZMAX, FT, GW, R, GPOW. 

• There are some relationships between R values and other parameters as with the 

previous groups. It was decided to fix the range of R to 0.3 to 0.5 and fix GPOW at 5, 

which helps to constrain some of the other parameters (Table 2.8). 

 

There are no headwater catchments that fall into group 5 and therefore the constraint 

analysis is more difficult. It was therefore decided to use the group 3 parameter ranges for 

group 5 with the exception of the Riparian parameter, which is expected to be higher in the 

main Caledon channel area.  

 

The individual sub-catchment constraints were combined to assess the results at D23F (the 

location of D2H001). The mean monthly flow constraints were summed for all catchments, 

while the FDC constraints were calculated as relative area weighted sums. The recharge 

constraint is always a local constraint to the specific sub-catchment and does not need to be 

changed. The constraint analysis results for D23F resulted in 1 417 behavioural ensembles 

after the use of the first two constraints and 216 after applying the Q10 constraint. As might 

be expected, there were no ensembles that were also within the final two constraints (Q50 

and Q90). The reason for this is that there are very few ensembles where individual sub-

catchments fall within the local (i.e. specific sub-catchment) Q50 and Q90 constraints and 

therefore it is unlikely that these behavioural ensembles will be grouped together at the outlet 

of D23F. Thus there will always be combinations of upstream behavioural and non-

behavioural results, leading to no downstream behavioural results. The objective of stage 2 

is therefore mainly to increase the sample size of behavioural ensembles in the expectation 

that these will be combined to generate at least some downstream behavioural results. 

 

Stage 2 of the uncertainty analysis: On the basis of the stage 1 results, which found that 

most of the reductions in ensemble numbers were associated with the Q50 and Q90 

constraints, it is clear that the main focus of the stage 2 assessment should be on low flows. 

This is supported by the fact that no low flow behavioural ensembles are found in the 

downstream areas (D23F). 
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Stage 2 constraint results for D23C (Group 3): 

• The number of behavioural ensembles was increased to 1560 and as with stage 1 

most of the reductions resulted from the Q50 and Q90 constraints. 

• None of the individual parameter ranges were reduced but there were clear indications 

of more frequent parameter values within the behavioural ensembles and there were 

more frequent combinations of certain variables than other combinations. 

• It was also noted that there are more ensembles greater than the maximum Q90 

constraint than there are below the minimum Q90 constraint and therefore the 

minimum value (1.0) of FT may be too high and the range has been shifted 

downwards. 

• The revised parameter ranges are given in Table 2.9. 

• As group 5 parameter ranges and constraints are the same it was decided to eliminate 

group and make all of those catchments behave in the same direction as group 3, 

except for the Riparian parameter which remains as group 5 with generally higher 

values. 

 

Stage 2 constraint results for D22A (Group 2): 

• The number of behavioural ensembles was 339 and as with stage 1 most of the 

reductions resulted from the Q50 and Q90 constraints. The maximum Q50 constraint 

was increased during stage 1 and this clearly has affected stage 2 in that most of the 

ensembles did not reach as low as the minimum constraint values for Q10 to Q50. This 

result was borne out by checking D21F, which also falls within group 2. In this 

catchment only 10 ensembles were behavioural and the parameter ranges suggest 

lower values of FT and GW than the minimums given in Table 2.8. 

• The revised parameter ranges for group 2 are given in Table 2.9. 

 

Stage 2 constraint results for D22J (Group 4): 

• The number of behavioural ensembles was 1256.  

• The revised parameter ranges for group 2 are given in Table 2.9. 

 

Stage 2 constraint results for D21A (Group 1): 

• The number of behavioural ensembles was reduced to 6 and this is partly a 

consequence of allowing the Q90 maximum to be increased to 0.15 in stage 1. 

• There were very several reductions in the range of individual parameters including 

ZMIN, ZMAX, FT, GW, R, S and T.  
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• The FT and GW lower limits were reduced to below the minimum values of stage 1 to 

try and extend the number of low flow ensembles (Table 2.9). 

 

Table 2.8 Parameter ranges for all groups after stage 1.  

 

Group 1 2 3 4 5 

Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

PI 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

ZMIN 10 100 35 90 30 100 10 100 30 100

ZMEAN  Set at 0.5 * (ZMIN + ZMAX) for all Groups  

ZMAX 400 1000 400 1000 400 1000 320 1000 400 1000

ST 120 190 100 160 100 220 100 250 100 220

POW 3 3 3 3 3 3 3 3 3 3

FT 2.5 6.0 2.0 4.8 1.0 4.0 2.5 8.0 1.0 4.0

GW 16 30 16 19 5 15 8 28 5 20

R 0.3 0.5 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6

TL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

GPOW 5 5 5 5 5 5 5 5 5 5

DDENS 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.3 0.4 0.4

Trans 24 50 35 40 10 50 10 50 10 50

S 0.001 0.003 0.001 0.004 0.001 0.004 0.001 0.004 0.001 0.004

Slope 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

Depth 25 25 25 25 25 25 25 25 25 25

Riparian 0.2 0.6 0.5 0.6 0.2 0.8 0.2 0.6 0.2 1.2
 

Table 2.9 Parameter ranges for all groups after stage 2.  

 

Group 1 2 3 4 5 

Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

PI 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 n/a n/a

ZMIN 40 80 80 90 30 80 30 80 n/a n/a

ZMEAN  Set at 0.5 * (ZMIN + ZMAX) for all Groups  

ZMAX 470 970 470 900 650 800 450 700 n/a n/a

ST 120 140 130 160 110 160 110 140 n/a n/a

POW 3 3 3 3 3 3 3 3 n/a n/a

FT 2.0 4.5 1.0 3.8 0.0 3.0 3.5 7.0 n/a n/a

GW 12 22 12 18 5 12 12 25 n/a n/a

R 0.3 0.45 0.4 0.5 0.4 0.5 0.4 0.6 n/a n/a

TL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 n/a n/a

GPOW 5 5 5 5 5 5 5 5 n/a n/a

DDENS 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.3 n/a n/a

Trans 40 50 35 40 30 50 10 50 n/a n/a

S 0.001 0.001 0.001 0.004 0.001 0.003 0.001 0.004 n/a n/a
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Group 1 2 3 4 5 

Parameter Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

Slope 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 n/a n/a

Depth 25 25 25 25 25 25 25 25 n/a n/a

Riparian 0.3 0.6 0.5 0.6 0.4 0.8 0.2 0.6 0.8 1.2
 

Stage 3 of the uncertainty analysis: The main objective of the stage 3 analysis is to 

generate a sufficiently large number of behavioural ensembles at the gauged catchment 

D23F (D2H001) to allow for uncertainty bands to be drawn, but within the constraints. 

Essentially this requires that there are a relatively large number of behavioural ensembles in 

each of the headwater catchments to allow for random combinations that are both 

behavioural and non-behavioural at the downstream assessment point. 

 

Stage 3 constraint results for D23C (Group 3): 

• The number of behavioural ensembles was increased to 4166 with most of the non-

behavioural ensembles falling into the Q50<0.15 range (i.e. under-simulated in 

moderate flows). 

 

Stage 3 constraint results for D22A (Group 2): 

• The number of behavioural ensembles was increased to 1412 with a relatively large 

number under-simulating the recharge minimum constraint. Within the recharge 

constrained group, most of the non-behavioural simulations over-estimated Q50 and 

Q90. The implication is that the recharge and moderate to low flow constraints are not 

very compatible. This will always be a potential problem area as the two constraints are 

based on very different data and analyses.   

 

Stage 3 constraint results for D22J (Group 4): 

• The number of behavioural ensembles was increased to 3361. The highest possible 

values of the recharge, Q10 and Q50 metrics were not represented in the behavioural 

ensemble set. 

 

Stage 3 constraint results for D21A (Group 1): 

• The number of behavioural ensembles was increased to 2097. Within this ensemble 

set the highest possible recharge and Q50 values were not represented, and neither 

were the lowest possible Q10 and Q90 values. However, overall the behavioural 

ensemble set represents the range of constraints quite well.  
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The final step in the analysis of the stage 3 results is to compare the outputs at key gauging 

stations, bearing in mind that these represent developed conditions and probably non-

stationary time series with respect to water use. However, before this can be achieved it is 

necessary to calculate appropriate constraints at the downstream sites. The mean monthly 

flow (MMQ) constraint can be estimated as the sum of the upstream MMQ constraints, while 

the recharge constraint is local to the downstream quaternary and remains the same. The 

FDC constraints (Q10, Q50 and Q90) could be based on catchment area weighting or on 

mean monthly flow weighting and it was decided to use the latter. The other issue is that 

behavioural downstream ensembles may be combined with non-behavioural upstream 

ensembles (over- or under-simulations in some upstream areas being compensated for with 

under- or over-simulations in other catchments). This can be resolved when only two or three 

sub-catchments are involved (by selecting those ensembles that are only behavioural 

throughout the total catchment), but is much more difficult for the total catchment when over 

30 sub-catchments are involved. Strictly speaking, to achieve a totally correct result 

downstream it would be necessary to further constrain all of the upstream ensembles until 

they are all locally behavioural. Given the equifinality in the model, this is almost certainly not 

possible. The output results for stage 3 are compared with previous estimates of uncertainty 

ranges that were largely based on subjective estimations of normal distributed parameter 

uncertainties. 

 

Stage 3 results at D2H012 (D21D and D21E): The use of integrated constraints for the 

outlet of D21E led to 4744 behavioural ensembles, while D21D had a total of 3082 

behavioural ensembles. 1696 ensembles were jointly behavioural for the headwater 

catchment (D21D – Group 1) and the downstream catchment (D21D – Group 2) and these 

have been used to plot the full range of uncertainty in Figure 2.14.  In this example the 

observed data have been approximately corrected for under-measurement of high flows and 

for the effects of farm dams. The old (stage 2) and new (stage 3) uncertainty ranges are not 

very different, although the new range is slightly wider particularly at high flows. 

 

Stage 3 results at D2H003 (D23C and D23D): The use of integrated constraints for the 

outlet of D23D led to 4573 behavioural ensembles, while D23C had a total of 4166 

behavioural ensembles. 2552 ensembles were jointly behavioural for both catchments (both 

in Group 3) and these have been used to plot the full range of uncertainty in Figure 2.15. The 

new bands of uncertainty appear to be similar to the old simulations, with the width of the 

range being somewhat higher for the high flows, which is probably a better reflection of the 

real uncertainty.  
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Figure 2.14 Comparison between the previous uncertainty results (Left side) and those 

based on the constraint analysis (Right side) with patched observed data for 

D2H012. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.15 Comparison between the previous uncertainty results (Left side) and those 

based on the constraint analysis (Right side) with patched observed data for 

D2H003. 

 

 

Stage 3 results at D2H001 (outlet of D23F): It is not really possible to select only those 

ensembles that are behavioural throughout the catchment above D23F as this would entail a 

great deal of ensemble matching. It would be possible to automate this, but such an 

approach has not been developed yet and at present most of this type of analysis relies upon 

the use of spreadsheets. The uncertainty bands plotted in Figure 2.16 therefore reflect the 

ensembles that are behavioural at D23F regardless of whether the contributing catchments 

D2H003 
Old Sim. Lower 
Old Sim. Upper 
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are also behavioural. It is apparent that the main effect has been to reduce the moderate to 

high flows and to increase the range of uncertainty in most parts of the FDC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 Comparison between the previous uncertainty results (Left side) and those 

based on the constraint analysis (Right side) with patched observed data for 

D2H001. 

 

General comments: More confidence can be expressed in the revised uncertainty ranges 

because they are based on better defined constraints than previously. The constraints have 

been used to reduce the initial range of parameter values to ones that are considered 

behavioural for each of the sub-catchments. However, this means that only the behavioural 

ensembles have to be selected from the full set, a process that currently involves quite a 

substantial effort in the use of the sorting facilities of spreadsheets for each of the stages of 

the uncertainty analysis. If this type of approach is likely to be useful in practice it requires 

further automation through the creation of a post-processing method that allows for various 

methods of analyzing the full details of the output ensembles. This will be addressed for the 

next deliverable on practical approaches to uncertainty assessment. 

 
2.5.4 Caledon River Basin example for developed conditions. 
 
Previous estimates of water use for irrigation from the farm dams were largely based on the 

farm dam volumes. However, additional information provided from WRP Consultants 

suggests that the original estimates of irrigation areas could be very under-estimated. The 

extent to which this is likely to impact on downstream flows largely depends on whether the 

WRP estimates are realistic, as well as whether the estimates of farm dam volumes (as well 

as the simulated inflows) can support such expanded irrigation areas. This also depends to a 

certain extent on the seasonal distributions of water use. If the majority of the seasonal water 

use for irrigation is during the dry winter months, then it will largely have to be met from 
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storage with minimal inflows. However, if part of the requirement is within months of higher 

flow then wet season storage will be used and more upstream inflows will be intercepted by 

the farm dams, causing reduced downstream flows. In revising the water use estimates a 

more detailed assessment of Google Earth images was employed together with a 

comparison between the original estimates and the WRP estimates. The overall conclusion 

was that there remains a large degree of uncertainty in any of the estimates as it is not 

always possible to distinguish between dryland farming and irrigated agriculture. It is evident, 

however, that the WRP estimates appear to be extremely high in many areas (Table 2.10). 

 

The quite detailed examination of Google Earth suggests that many of the areas included in 

the data obtained from WRP are not irrigated. The evidence for this is partly based on the 

visual signal of the fields (dry conditions) and partly on the lack of a clearly available water 

source in the vicinity, either from a perennial river or from farm dams. It is possible that some 

‘dry’ fields are irrigated at times of the year other than those covered by the Google images, 

however, the second bit of evidence (no water source) is much more difficult to account for. 

The final minimum and maximum irrigated areas have been approximately quantified to 

represent the overall uncertainty in expected irrigation water use.  

 

The data provided by WRP was very useful in terms of identifying the dominant crop types 

and therefore improving the estimates of seasonal distribution of water use. The crops are 

dominated by pasture/lucerne (25%), maize (25%), maize/wheat (18%) and wheat (13%). It 

is very possible that many of the summer grain crops are in fact not irrigated most of the 

time. The seasonal distribution of irrigation requirements that was used in the present day 

uncertainty analysis was therefore a weighted distribution dominated by lucerne and wheat 

(based on WR90 data) and is given in Table 2.11. It is, however, accepted that the validity of 

this distribution is substantially uncertain. 

 

In assessing the results of the present day uncertainty model runs, it must be noted that not 

all of the ensembles can be considered behavioural from a natural hydrology perspective. 

However, as the output summary statistics include the effects of variability in the natural and 

water use parameter sets, it is very difficult to isolate the uncertainties and only select those 

ensembles that are naturally behavioural. This is a serious shortcoming of the uncertainty 

approach and will be difficult to overcome unless natural parameter uncertainty ranges are 

established that result in all 10 000 ensembles being behavioural. This, however, is not 

straightforward to achieve as it is not only individual parameter value ranges that affect 

whether a result is behavioural or not, but also the combinations of parameter values. 

Filtering out the results (i.e. rejecting non-behavioural natural simulations) during the model 
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run would be possible, but would be achieved at the expense of much longer model runs. 

This is because the natural simulations would have to be assessed first (before adding 

abstraction impacts) and some would be rejected and the parameter space re-sampled. 

Obtaining 10 000 final ensembles would therefore require many more model runs. 

 

Table 2.10 Dam volumes (m3 * 106) and irrigation areas (km2) estimated by different 

methods (domestic direct abstractions are in m3 * 103 y-1).  

 

Dam 
Vol 

% 
Area 

Direct abstraction Dams 
Irrig. 

WRP Google Final 

Domestic Irrig. Min Max 

D21A 391 50 100.0 0.0 0.35 1.23 0.40 0.35 0.50

D21B 0 0 100.0 0.0 0.00 0.00 0.10 0.00 0.00

D21C 240 20 100.0 0.0 0.20 0.50 0.03 0.10 0.40

D21D 630 50 400.0 0.0 0.50 9.40 1.10 0.50 1.50

D21E 2660 70 0.0 2.5 2.20 13.70 4.40 2.50 5.00

D21F 4440 70 0.0 0.0 3.50 36.30 2.20 2.20 4.00

D21G 2200 50 0.0 0.0 1.80 11.80 1.30 1.30 2.50

D21H 3130 20 275.0 0.0 2.50 11.50 0.75 1.00 3.00

D21J 35 5 75.0 0.0 0.03 0.00 0.00 0.00 0.10

D21K 60 5 80.0 0.0 0.07 0.00 0.00 0.00 0.10

D21L 1200 20 100.0 0.0 1.00 0.00 0.00 1.00 2.00

D22A 10595 90 0.0 0.0 8.80 29.80 3.70 5.00 10.00

D22B 8300 85 0.0 0.0 6.50 33.60 1.70 5.00 10.00

D22C 4000 90 120.0 0.0 3.00 5.50 0.30 1.00 4.00

D22D 12000 85 90.0 8.4 12.50 53.40 14.50 10.00 20.00

D22E 0 0 65.0 0.0 0.00 0.00 0.00 0.00 0.00

D22F 280 10 225.0 0.0 0.22 0.00 0.00 0.00 0.50

D22G 21000 90 0.0 0.0 15.00 57.80 3.90 5.00 20.00

D22H 7900 70 14000.0 0.0 6.00 18.30 3.10 3.50 7.00

D22J 0 0 110.0 0.0 0.00 0.00 0.00 0.00 0.00

D22K 0 0 110.0 0.0 0.00 0.00 0.00 0.00 0.00

D22L 6600 60 5000.0 0.0 5.50 11.30 1.10 1.50 6.00

D23A 10000 80 0.0 0.0 6.00 5.60 1.40 1.50 7.50

D23B 20 5 65.0 0.0 0.02 0.00 0.00 0.00 0.10

D23C 41600 100 0.0 0.0 30.00 48.60 25.00 25.00 40.00

D23D 22000 85 0.0 0.0 19.00 39.40 28.00 19.00 32.00

D23E 14500 60 1000.0 0.0 10.00 22.70 6.20 6.00 12.00

D23F 3500 100 0.0 0.0 3.20 1.70 2.30 2.00 3.50

D23G 9600 70 200.0 0.0 6.00 6.10 0.50 1.00 6.00

D23H 19000 85 0.0 0.0 15.00 38.30 3.90 5.00 20.00

D23J 14000 85 0.0 0.0 10.00 28.20 6.20 7.00 15.00
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Table 2.11 Seasonal distribution of irrigation requirements (mm) 

 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

67 47 56 48 36 28 19 15 18 30 61 92 

 

The analyses presented below are based on the locations where there are some observed 

data. The results are presented as frequency distributions of Q10, Q50 and Q90 simulated 

values for natural conditions (total ensemble set and behavioural results) and present day 

conditions (total ensemble set). Any shifts in the distribution of the total ensemble set for 

present day conditions to account for behavioural natural simulations can be inferred from 

the two natural flow distributions.  

 

Present day results at D2H012 (D21D and D21E): Figure 2.17 illustrates the results for the 

outlet of D21D. There are not large differences in the two frequency distributions for natural 

conditions and therefore there is no real need to consider shifts in the present day 

distributions. The observed data suggest values for Q10, Q50 and Q90 of 8.7, 1.1 and 0.08 

m3 * 106, respectively. The higher flows are expected to be under-represented (poor high flow 

gauging), while the record starts in 1966 and might represent somewhat lower water use 

than has been accepted for the present day. The simulation results therefore can be 

considered to be representative based on the available evidence. However, there are some 

indications that the lower estimates of water use (Table 2.10) are perhaps more appropriate 

than the higher values. 

 

Present day results at D2H034 (D22A and D22B): These sub-catchments were not 

evaluated in detail during the natural simulation tests, but a recently built (1991) gauge is 

available to assess the results. Both sub-catchments have a large number of farm dams and 

apparently a substantial amount of irrigation. All of the water use has been assumed to be 

extracted from farm dams, while the % catchment areas contributing has been set to 90% 

and 85% for D22A and D22B. This means that despite the large volumes of water 

abstracted, the simulations do not show zero flows (Table 2.12), while there are zero flows 

for approximately 35% of the time in the observed record. It is possible that some of the 

irrigation requirements are satisfied by pumping direct from the river. A reservoir supplying 

Ficksburg has been included in the simulation at the outlet of D22B and therefore it is quite 

surprising that zero flows are not simulated. This issue would have to be further investigated 

as part of a refinement of the present day uncertainty model runs. The observed data values 

for Q10 and Q50 fall within the (rather large) uncertainty range. 
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Figure 2.17 D21E (D2H012): Comparison between the frequency distributions of 

simulated Q10, Q50, Q90 for natural conditions (all ensembles and only 

behavioural ensembles) and for present day conditions (all ensembles). 

 

Table 2.12 Simulation results compared with observed flows for D22B and D2H034 (all 

values given in m3 * 106 month-1). 

 

 Simulation range Observed 

Q10 4.36 to 11.51 9.22 

Q50 0.07 to 1.35 0.38 

Q90 0.006 to 0.038 0.00 
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Present day results at D2H003 (D23C and D23D): The observed record at D2H003 is an 

old record and not expected to reflect present day conditions. However, a similar frequency 

analysis to that done for D21E has been undertaken for these sub-catchments (Figure 2.18) 

and the position of the observed data points has been included as arrows. As might be 

expected in this intensively cultivated area, the differences between natural and present day 

are very large even for the Q10 flows. There are a number of major reservoirs in this part of 

the Caledon and the agricultural water use is expected to be very high.  

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 D23D (D2H003): Comparison between the frequency distributions of 

simulated Q10, Q50, Q90 for natural conditions (all ensembles and only 

behavioural ensembles) and for present day conditions (all ensembles). 

 

With respect to comparisons between the simulated and observed data, it is more difficult to 

be conclusive as the records are from 1935 to 1954 when there would have been some 

water use but much less than today. It is also unlikely that high flows have been measured 

with a great deal of accuracy leading to under-representation of flow volumes at Q10 and 

Q50 (as illustrated in Figure 2.18). As with D21E, there is unfortunately not enough 
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information to adequately validate the model results, nor to reduce the uncertainty any 

further. It is interesting to note that there is much more agreement between the different 

sources of information about irrigations areas for these catchments than in most of the other 

parts of the basin. 

 

Present day results at D2H001 (Outlet of D23F): Figure 2.19 presents the frequency 

results for D23F and as might be expected the difference between the total and behavioural 

distributions for natural conditions are quite large. This is related to the ‘mixing’ of all 

simulations from upstream catchments. The arrows on the figures indicate the positions of 

the observed values for Q10, Q50 and Q90, the first two being quite uncertain due to the 

need to correct the high flow observations at the gauging station.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 D23F (D2H001): Comparison between the frequency distributions of simulated 

Q10, Q50, Q90 for natural conditions (all ensembles and only behavioural 

ensembles) and for present day conditions (all ensembles). 
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There is very little shift in the behavioural Q10 simulations (from the total ensemble set), but 

surprisingly the present day simulations show quite a large impact. This result may be 

somewhat counter-intuitive given that the main abstractions are based on relatively small 

farm dam storage or direct abstractions (rather than large impoundments which might be 

expected to attenuate high flows). However, this result was carefully checked and does 

appear to be realistic, given that the model includes quite a large amount of irrigation even 

during the wet season. There is a substantial downward shift in the natural behavioural 

simulations relative to the total and therefore the fully behavioural present day simulations 

would be expected to similarly shifted to the left. This is reasonably consistent with the 

observed data (1927 to 1973) which would, arguably, be expected to over-represent 

moderate to low flows under more intensive water use in present day conditions. Similarly, 

the present day low flow (Q90) distribution is expected to be shifted to the left if non-

behavioural natural flows were excluded and this would introduce a much higher frequency 

of very low flows that would be similar to (or even less than) the observed Q90 value (0.12 

m3 * 106). 

 

Despite the assumed limitations of the observed data in terms of representing present day 

conditions it is nevertheless useful to look at the range of objective functions of the full 

ensemble set (Table 2.13). The results are surprisingly good given the very large 

uncertainties that have been included as part of the model and the fact that the level of 

development in the observed sequence is non-stationary and increases over time. The time 

series for the best overall ensemble member are shown in Figure 2.20. 

 

Table 2.13 Objective functions measuring the goodness of fit between the simulated 

present day ensembles and observed data at D2H001 (Coeff. Eff. is the Nash-

Sutcliffe coefficient). 

 

Objective Function Range for all 

ensembles 

Best 

overall 

No. ensembles better 

or equal to  

Coeff. Eff. 0.668 to 0.742 0.715 0.7 7391 

Coeff. Eff. (ln values) 0.179 to 0.469 0.469 0.4 626 

% Monthly bias -28.7 to 7.8 -14.1 ± 10.0 2537 

% Monthly bias (ln values -9.9 to 20.0 8.2 ± 10.0 6551 
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Figure 2.20 Observed versus simulated flow for the ensemble member with the best 

overall values for the objective functions (see Table 2.13, column 3). 

 

Caledon River Basin – summary of uncertainty sources and reduction: The Caledon 

River basin represents a very good practical example of uncertainty analysis in hydrology as 

there are so many sources of uncertainty and very little observed data to resolve the 

uncertainties. The sub-sections below summarise the main uncertainties as well as the 

attempts that have been made in this study to reduce them. 

 

Rainfall: There are many uncertainties in the rainfall inputs for the mountainous Lesotho 

parts of the basin, but these have not been dealt with in this project as there are no additional 

data to either define the uncertainties or reduce them. 

 

Evapotranspiration demands: There are also very few data to define the uncertainties in 

evapotranspiration. However, it would be useful to try and apply MODIS data to this basin to 

see if it is possible to identify spatial variations in actual evapotranspiration that could be 

linked to either natural processes or the use of irrigation water.  

 

Natural hydrology parameter values: The report has detailed a 3-stage process that 

involved the use of four constraints on the model outputs and a detailed examination of the 

parameter space for behavioural and non-behavioural ensembles. As with the Southern 

Cape example, it was found that the initial parameter ranges could be quite significantly 

reduced and the number of behavioural ensembles increased. The process is much more 
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complex in the Caledon because of the number of sub-catchments and the interactions 

between them when examining the outputs at downstream sub-catchments. This process 

was, however, made slightly easier by grouping the sub-basins on the basis of their expected 

physical properties. 

 

Present day water use: The data that are available to quantify farm dam volumes, water 

use from these dams, as well as direct abstractions from the river (for irrigation, rural 

domestic use and town use) are not adequate to properly define the necessary parameter 

values of the model. While uncertainty in most of these has been included it is very difficult to 

know if the range of uncertainty is appropriate or not. 

 

Observed flow data: In many catchments, the practical reduction of uncertainty can be 

achieved by using local observed data to constrain the model outputs. This is much more 

difficult in the Caledon because of the short records lengths of most gauges, the inaccuracies 

in the observation of high flows (or high flows simply not measured) and the poor knowledge 

of actual water use. Thus, it is almost impossible to understand exactly what the gauge 

records represent in terms of the mix of natural and impacted conditions. The records are 

expected to be highly non-stationary, but there is not enough additional information to define 

the variations over time. 

 

2.6 SUMMARY OF UNCERTAINTY REDUCTION 
 
The final part of this chapter concentrated on two quite detailed uncertainty reduction 

attempts in the Diep River (single sub-catchment) and Caledon River (31 sub-catchments) 

basins. It is essential to note that these assessments resulted in some reduction in 

uncertainty but involved a considerable amount of detailed analysis of the simulation 

ensembles (both parameter space and output results) that was mostly carried out using 

spreadsheets. This is very time consuming and is not practical for normal operational model 

use. One of the options is to develop software that can be used to post-process the 

ensemble data and automatically perform the type of analyses that have been done for this 

study. It can also be noted that performing uncertainty analyses on large basins with many 

sub-catchments is very difficult and confusing. There is simply such a large uncertainty 

space (even without uncertain climate inputs) that resolving the interactions and the inter-

dependencies is almost impossible.  One of the main conclusions is that while there are 

approaches that can be used to reduce uncertainty, they can become quite time-consuming 

and are therefore unlikely to be adopted in practice unless they are supported by efficient 

and effective means of implementing them. This is always a major problem when it comes to 
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applying uncertainty principles in practice – adopting new approaches to either the 

application of models or the use of model outputs (in decision-making) is always constrained 

by the traditional practices of the user group and reluctance to adopt new methods unless 

they are fully supported by efficient and reliable software. The next chapter is related to the 

use of uncertainty methods in practice and will address some of these issues in more detail 

and describe some of the software enhancements that have been developed to try and 

resolve some of the practical concerns. 
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3. PRACTICAL ISSUES OF UNCERTAINTY ANALYSIS 

 

Introducing uncertainty analyses into standard modelling practice will never be achieved if 

the efforts and computer run-time required to obtain a result are excessive. It is therefore 

essential that these problems are addressed. The previous chapter outlined a process of 

uncertainty analysis that involves the use of local or regional constraints on hydrological 

behavior, but the analysis was performed manually once the ensembles had been 

generated. This is clearly not a practical approach and led to the development of an 

alternative two-step approach. 

 

3.1 Revised approach to uncertainty analysis for the pitman model 
 
 
The structured uncertainty approach that was used for the Caledon River example discussed 

in Chapter 2 (and for previous uncertainty assessments in this project) works very well for 

single or headwater catchments and is relatively practical to implement. The output 

ensemble time series results are written to the SPATSIM database, while summary data 

(including the values of the constraints referred to above) and all parameter values are 

written to a text file. It is relatively straightforward to sort the output file using constraint 

values and identify those ensembles that can be considered behavioural based on whether 

the results fall within the bounds of the regional constraints. However, this process is not 

straightforward for basins with many sub-catchments. The previous project identified the 

problem of uncertainty being largely cancelled out if simple independent random sampling is 

used across all sub-basins. The uncertainty in the headwater catchments is adequately 

defined by the input parameter ranges, but the downstream uncertainty is substantially 

reduced as both generally higher and lower flow simulations from the sub-basins are mixed 

to generate the downstream ensembles (Figure 3.1). This approach was later replaced with a 

structured sampling method that uses sub-basin groups within which the uncertainty always 

moves in the same direction for a specific parameter (i.e. increasing a parameter in one sub-

basin of the group will be associated with similar increases in the same parameter for the 

other groups). The method also involved a prior estimate of what would be expected in the 

downstream uncertainty and rejected some samples to ensure that these expectations were 

met. The details of this structured sampling approach are not provided here, largely because 

a new approach has now been adopted. Figure 3.2 provides an example to compare with 

Figure 3.1 and it is clear that the uncertainty is better preserved with the structured approach. 
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Figure 3.1 Unstructured sampling: Upstream (A) and downstream (B) uncertain flow 

duration curves for the Caledon River with 31 sub-basins (based on 90% of all 

output ensembles from a model run using 10 000 samples). 

 

While the structured approach to sampling largely preserves the uncertainty, a problem 

exists with the post-modelling analysis of the results with respect to regional constraints and 

the selection of ensemble time series to carry forward into further analysis using a yield 

model or any other kind of water resources assessment. The essence of the problem is that 

we can select downstream ensembles that lie within some behavioural criteria (regional 

constraints or uncertain bounds around observed flow data), but it is quite difficult and time 

consuming to identify those ensembles that are behavioural for all sub-basins within the 

basin as a whole. Thus, we can find behavioural downstream ensembles that can be made 

up of complex mixtures of behavioural and non-behavioural upstream inputs. It is therefore 

quite likely that out of 10 000 ensembles a very small number (if any) are made up of 
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behavioural ensembles everywhere and the identification of which these are is very time 

consuming. This problem prompted a different approach that involves 2 steps and which is 

explained in the following sections of the report. 
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B: D23J Structured
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Figure 3.2 Structured sampling: Upstream (A) and downstream (B) uncertain flow 

duration curves for the Caledon River with 31 sub-basins (based on 90% of all 

output ensembles from a model run using 10 000 samples). 
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3.1.1 Step 1 in the revised approach for simulating uncertainty ensembles 

 

Step 1 involves reading in regional constraint bounds as an additional input to the model. 

These constraint bounds may be obtained by different methods, some of which were 

discussed in Chapter 2 and were largely based on observed flow data within the region. It is 

also possible that the constraint bounds could be very small if observed data are available for 

a specific sub-basin. Effectively, the width of these bounds represents the uncertainty in our 

knowledge of the hydrological response of the each sub-basin given the climate inputs used 

with the model. Setting these bounds is therefore a critical component in terms of 

representing realistic uncertainty in the output ensembles. 

 

The first step of the new model approach is designed to have uncertainty only applied to the 

natural runoff parameters of the model and therefore the constraints are associated with 

natural runoff characteristics. Uncertainty in the water, or land use, parameters are included 

as part of step 2. Step 1 only simulates incremental flows in each sub-basin and makes no 

attempt to route or sum flows in a downstream direction. The model is run repeatedly for up 

to a maximum of 100 000 times on each sub-basin and for each ensemble the simulated 

values of 5 constraints are calculated and compared with the input regional/observed 

constraints. If the simulations fall within the regional constraint bounds then the full 

parameter set and the constraint values are saved back to the SPATSIM database. This 

process is repeated until 2 000 parameter sets have been saved or until the limit of 100 000 

model runs has been reached for that sub-basin. The process is based on simple random 

sampling of all the input parameter ranges (either normally or uniformally distributed 

probability density functions) and no attempt is made to search the parameter space to 

optimize the parameters that generate results to find outputs within the regional constraint 

bounds. The five constraints used in the current version of the software are MMQ (mean 

monthly runoff in m3 * 106), MMR (mean monthly groundwater recharge in mm), Q10, Q50, 

Q90 (percentage points of the flow duration curve expressed as a fraction of MMQ) and 

%Zero (% number of months of zero flows). 

 

Figure 3.3 illustrates the approach used in Step 1 and three possible extremes of outcome. 

In Figure 3.3A the parameter bounds and constraint bounds are compatible, and the 

constraint bounds are compatible with each other. The outcome is that the required 2 000 

parameter sets are found quite quickly and it is likely that far less than 100 000 test runs of 

the model would be needed. Figure 3.3B illustrates a situation where the constraint bounds 

are not compatible with each other and therefore no ensembles are found that meet all of the 

behavioural requirements. This situation could arise, for example, if the mean monthly 
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recharge constraint is inconsistent with the Q90 and % zero flow constraints. Figure 3.3C 

illustrates a situation where the ‘cloud’ of test model results is largely inconsistent with the 

constraints. This situation could occur if the parameter bounds reflect sub-humid runoff 

characteristics (relatively high baseflows), while the constraints are based on assumptions of 

arid conditions (low baseflows and some zero flows).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Step 1 in the revised approach to uncertainty estimation with the Pitman 

model. 

 

It is therefore important that both the input parameter bounds (defining the uncertainty 

distribution functions - pdfs) and the constraints are appropriately quantified. If the parameter 

bounds are too large it is possible that the 100 000 runs will not be enough to identify 2 000 

behavioural results, while too narrow ranges might not be adequate to represent the real 

uncertainty. The parameter bounds may also be biased towards generating too much or too 

little runoff or groundwater recharge relative to the constraints. There is therefore an element 

of ‘calibration’ involved in suitably matching the parameter ranges or  pdfs with the constraint 

bounds and additional software has been developed to assist in this process. 

 

Figure 3.4 illustrates the new component of the model that allows the parameter space within 

the saved ensembles to be explored, as well as the range of the 5 constraints: 
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• The second column lists the sub-basin names that were included in the model run and 

one can be selected for analysis. 

• The left hand column lists all of the parameter values and up to 5 can be selected for 

plotting in the graphs on the right side of the screen.  

• The lower text box lists the selected parameters and their ranges (at present the 

software is designed to be used with uniformly distributed parameter uncertainties). 

• The frequency of saved parameters falling into 10 evenly spaced groups between the 

minimum and maximum parameter values are plotted on the five graphs. 

• The values of the constraints for the saved parameter sets are used to plot the 

frequencies within 5 groups in the top left hand graph. 

 

 

 

Figure 3.4 Illustration of the new tool designed to help with determining appropriate 

parameter bounds in step 1 of the revised uncertainty modelling approach. 

This is an example of a successful sub-basin where 2 000 behavioural 

ensembles were found. 

 

Figure 3.4 illustrates that the 2 000 saved results for 5 constraints (excluding % zero flows 

which is always 0 in this example) are relatively evenly distributed within the input constrain 

ranges. It is also evident that at least some of the parameter values are evenly distributed 

over their input uncertainty range. The conclusion is that the parameter uncertainty ranges 
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and the constraint ranges are consistent with each other and that this sub-basin is properly 

‘calibrated’. 

 

Figure 3.5 shows a sub-basin where only 388 ensembles were saved and therefore where 

further parameter adjustment is needed (or where the constraint ranges should be checked 

and re-evaluated). Figure 3.5 illustrates that while the simulated FDC90 (low flows) values 

are reasonably well distributed throughout the constraint range, the others are all grouped at 

the lower ends of the constraint bounds and that further adjustment of the parameter ranges 

would be required to achieve 2 000 ensembles, given the climate inputs (rainfall and 

potential evaporation demand) that were used as inputs to the model. This last point should 

be emphasized as these inputs could also be uncertain. Examination of the parameter 

graphs in Figure 3.5 suggests that the main problem lies with the range of the ZMIN and 

ZMAX values as the behavioural parameter sets all tend towards the lower values of the 

ranges (notably ZMAX) and that these parameter values should be reduced. One of the 

advantages of the approach based on simulating sub-basins without downstream linkages is 

that the whole model would not have to be run to re-calibrate a few sub-basins. This could 

save a great deal of time as the model run for the 31 sub-basin Caledon River takes 

approximately 5 hours. 

 

 

 

Figure 3.5 Illustration of a sub-basin that requires further ‘calibration’ of the parameter 

bounds to achieve 2 000 behavioural ensembles. 
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3.1.2 Step 2 in the revised approach for simulating uncertainty ensembles 

 

Figure 3.6 illustrates the process used during step 2 of the revised approach. At the start of 

the model run the saved parameter sets (noting the assumption that these are designed to 

represent natural conditions) are sorted on the basis of the 6 simulated constraint values 

from generally wetter to drier. As with the previous approach to structured sampling, the sub-

basins are grouped and random samples are drawn from the saved parameter sets using the 

groups. A random number between 0 and 1 is generated for each group (RNDi), while an 

additional random number between 0 and 0.1 is generated for each sub-basin (RNDj). The 

latter is used to introduce some within-group variation. These are combined and scaled to a 

number between 1 and the number of saved parameter sets for the specific sub-basin (2 

000) and this number is used to seek within the ranked parameter sets to retrieve the 

parameter values.  

 

The program also reads the table of values used to set the parameter pdf’s in step 1 but after 

it has been modified to include uncertainty in some of the water use and downstream routing 

parameters. Random samples for these parameters are then generated independently of the 

samples taken from the saved parameters (but also used a structured sampling approach 

based on the sub-basin groups). The full set of parameter samples are then used to run the 

total model for all sub-basins and generate the cumulative flows at all sub-basin outlets. 

 

 

 

Figure 3.6  Illustration of the process used in step 2 of the revised uncertainty model. 
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Figures 3.7 to 3.9 illustrate some of the outputs of the model for the Caledon River basin 

using frequency distributions of standardized indices of three of the constraints (MMQ, Q10 

and Q90). The standardized indices on the horizontal axes are based on the fractional 

deviations of the simulated values for all of the 10 000 ensembles from the ensemble mean 

for the natural flow simulations for that sub-basin. This allows the upstream and downstream 

frequency distributions to be directly compared. The graphs include the simulations of natural 

conditions as well as present day conditions which are largely based on uncertainty in the 

volume and abstractions from farm dams. The observed values are also indicated on the 

graphs. 

 

As with the previous approach to structured sampling (Figure 3.2) there has been some loss 

of uncertainty (narrower frequency distributions) in a downstream direction, but a large 

proportion of the uncertainty has been retained. While the observed values for the 

constraints do not always fall within the simulated present day frequency distributions, this is 

not really surprising given the large uncertainty in the observed data and the fact that the 

time periods of the observed and simulated data are different. It is also possible that the 

ranges of some of the water use parameters could be re-examined. 

 

 

  
 

 

Figure 3.7 Example outputs using standardized flow indices for MMQ at an upstream 

(D21E) and downstream (D23F) sub-basin. 
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Figure 3.8 Example outputs using standardized flow indices for Q10 (high flows) at an 

upstream (D21E) and downstream (D23F) sub-basin. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Example outputs using standardized flow indices for Q90 (low flows) at an 

upstream (D21E) and downstream (D23F) sub-basin. 

 

The overall conclusion of the Caledon River test case is that the revised 2-step approach 

achieves most of the objectives, in that: 

• All downstream ensembles are made up of behavioural (based on constraint ranges) 

upstream contributions. 

• Uncertainty is ‘largely’ preserved, certainly better than the original independent 

(unstructured: Figure 3.1) sampling and as well as the structured sampling (Figure 

3.2). 

• The method is a useful approach for combining constrained uncertainty in natural 

hydrological responses with relatively un-constrained uncertainty in water use 

impacts. 
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• The method generates ‘realistic’ uncertainty bounds in an approach that is practical to 

apply. 

 

One of the outcomes of the trial run on the Caledon River is that this would seem to be a 

plausible approach that could be applied to the whole country to generate sets of uncertain 

parameter values to represent natural flow conditions for all 1 946 quaternary catchments in 

the country (including Lesotho and Swaziland). The process would initially involve 

establishing regional constraint ranges that can also be locally modified to account for those 

quaternary catchments where observed data exist. Existing simulations (WR90, WR2005 

and WR2012), as well as observed data and indices of physical basin properties, could be 

used to guide the process of both setting the constraints and establishing initial parameter 

ranges.   

 

The approach has also being applied to the Great Ruaha River basin in Tanzania through 

the PhD programme of a student from the University of Dar es Salaam (Ms Madaka Tumbo). 

The constraint bounds for all of the sub-basins were initially based on an analysis of 24 

observed flow records, of which 15 are located on headwater rivers that correspond to 

modelled sub-basins. The initial parameter bounds were largely based on some manual 

calibration test runs of the model. While it was found that it was quite quick to identify 

appropriate parameter bounds in some sub-basins, there were others where Step 1 of the 

revised approach had to be run several times (with adjustments to both the constraint and 

parameter bounds) before 2 000 behavioural outputs could be generated. Further 

investigation of this problem identified several of the stream flow records that had periods 

where the data could not be relied upon and which had quite large effects on the estimated 

constraints. It was also found to be difficult to establish suitable constraints and parameter 

bounds for some of the incremental downstream sub-basins where there were few or no 

clues contained in the observed data about their response characteristics. One of the 

conclusions from this study of the Great Ruaha River basin is that the revised uncertainty 

approach allows a great deal of information to be integrated at the basin level which allows 

for a better understanding of the available data as well as the uncertainties. It was also noted 

that the application of the 2 step approach should probably be iterative and that a relatively 

coarse scale (i.e. quite large constraint and parameter bounds) first attempt should be 

followed by revisions that focus on reducing the uncertainty in areas where the available data 

are considered to be more reliable. In the case of the Great Ruaha River basin this would 

almost certainly result in reduced upstream uncertainty (in those areas that have quite good 

flow data and where there are a number of rainfall stations), but may not have an appreciable 

effect on the downstream uncertainties because of the other parts of the basin that are not 
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gauged and where the climate inputs are also very uncertain and because of a major wetland 

area in the centre of the basin that will always be difficult to model. 

 

3.2 Model efficiency and software considerations 
 
 
Mr Dale Tristram of the Rhodes University Computer Science Department has been 

investigating the problem of excessive computer run time and the software architecture of the 

existing versions of the Pitman model. The current versions of the uncertainty models being 

used at Rhodes are all written in Delphi and are attached to the SPATSIM software 

framework, accessing the data from the SPATSIM database tables. For the Caledon River 

example with 31 sub-catchments and 10 000 ensembles the structured sampling version of 

the model (without stochastic inputs) takes about 2.5 hours to complete, while the stochastic 

rainfall version, that generates 250 000 ensembles, takes 45 hours. These are generally 

unacceptable run times for practical purposes. 

 

Mr Tristram’s work has been based on using different software languages as well as the 

possibility of using Graphical Processing Units (GPUs) as cost effective accelerators. The 

basis for these different tests is that GPUs can very effectively deal with problems that map 

well to a Single Instruction Multiple Data (SIMD) architecture. In hydrological terms this is 

equivalent to running the same model many times with different inputs, which is the very 

essence of uncertainty models. The description of the computer science details and some 

preliminary results have been published (Tristram et al., 2014) and Table 3.1 summarises a 

typical example using the structured uncertainty version of the model for a test area of 3 sub-

catchments and 50 000 ensembles. Table 3.1 clearly indicates that up to 14 times 

improvements in run time can be achieved on ordinary CPUs by using a different software 

language and that this improvement can be greatly extended by using GPU architecture. 

However, one of the issues is that almost all of the really significant improvements would not 

be easily achieved by typical scientific programmers and would require specialist computer 

scientists to make the necessary changes. The benefits are very clear and if these 

performance measures can be considered applicable to the stochastic uncertainty version 

then the Caledon run time would reduce from 45 hours to just over 3 hours for the best CPU 

option, to less than 1 hour for the simplest GPU option and to no more than 15 minutes for 

the option with 2 GPUs.  

 

While there are cost considerations in terms of installing GPUs into computers, the benefits 

will far outweigh the costs if uncertainty runs of hydrological models are likely to become 
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standard practice. The project team is currently engaged with integrating more efficient 

versions of the uncertainty models into SPATSIM. 

 

Table 3.1 Model performance for different software architecture implementations. 

 

Model implementation Time (secs) Performance measure 

Delphi 2933.7 1.0 

C# (single-threaded) 1691.1 1.7 

C# (multi-threaded) 335.3 8.7 

OpenCL (CPU) 204.8 14.3 

OpenGL (GPU – not optimized) 58.8 49.8 

OpenGL (GPU) 28.9 101.3 

OpenCL (2 * GPUs) 14.5 202.3 

 

 

3.3 Including stochastic rainfall uncertainty in hydrological models 

 

This section of the report investigates the use of stochastic rainfall generation methods within 

hydrological models as an alternative to using stochastically generated stream flows within a 

yield model. The latter has been the traditional approach in South Africa for many years and 

is based on the generation of a single historical hydrological time series (for each input node 

of the yield model) from a hydrological model, together with stochastic stream flow 

generation within the yield model. The result is a number of different stream flow sequences 

used to determine yield estimates, from which a yield probability curve can be derived.   

 

It is useful to re-examine some of the basic concepts that underlie the conventional approach 

to yield analysis (Basson et al., 1994) in the light of recent approaches to uncertainty 

analysis in hydrological modeling. Chapter 2 of Basson et al. (1994) refer to two types of 

generated sequences used in yield analyses. The first are deterministic sequences ‘…used 

mainly to fill in and extend incomplete streamflow sequences via rainfall runoff models’ 

(Basson et al., 1994). They continue by suggesting that ‘stochastic streamflow sequences 

purport to offer alternatives to the historic sequence of what might have been in the past, or 

what might plausibly be in the future’. Figure 3.10 attempts to summarise these concepts 

within a more general uncertainty framework. 
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In Figure 3.10 ‘hydrological uncertainty’ is designed to represent the degree of confidence in 

our knowledge of the historical patterns of stream flow. No distinction is made in this report 

between knowledge based on measured stream flows or simulated (by a hydrological or 

rainfall runoff model) stream flows. The reason for this is that many of the available stream 

flow gauging records are either incomplete, subject to unknown inaccuracies or have 

measured stream flows that are affected by poorly quantified upstream impacts. It is typically 

assumed that the historical hydrology inputs to a yield model represent the ‘natural’ situation 

and that the yield model will simulate the development effects (storage, abstractions, return 

flows, land use effects on stream flow reduction, etc.). Even where stream flow gauges are 

assumed to measure flows accurately across a wide range of possible flows, the records still 

have to be ‘naturalized’ to remove the historical development effects. Many of the effects are 

far from being stationary and are typically not very well documented. There is therefore a 

large degree of uncertainty in the process of naturalizing any observed stream flow record. 

Most of the stream flow gauging stations in South Africa do not, however, measure flows 

accurately across a wide range of possible discharges. Many of the older designs of weirs 

have long thin plate crests such that small variations in low flows cannot be accurately 

determined and are subject to temporary interference from in-channel vegetation detritus and 

sedimentation of the weir pools. The accuracy of the low flow records are therefore open to 

question and highly dependent on regular maintenance of the gauging station. At the other 

extreme, many gauges have a very low limit to the stage-discharge rating curve and any 

estimates of larger flows (if they exist at all) are based on surveyed flood levels and hydraulic 

estimation equations. The result is that observed stream flow data frequently contain long 

gaps that have to be in-filled and that the measurements themselves are subject to 

indeterminate inaccuracies.  

 

There are many different approaches to filling in gaps and correcting stream flow records to 

account for gauge inaccuracies. All of them, together with the methods used for 

naturalization, are effectively models that contain assumptions and are all subject to 

uncertainty. Where gauges do not exist (or are considered inappropriate for use), rainfall-

runoff models are frequently used to simulate the historical hydrology from historical records 

of rainfall and other climate variables. The catchment-specific response to the climate forcing 

data is represented by the parameters of the rainfall-runoff model and appropriate values for 

these may be determined in several different ways including calibration against some 

observed data, regionalization from parameter sets calibrated in adjacent (or similar) 

catchments, or through direct estimation from physical catchment properties. 
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Figure 3.10 Distinction between stochastic and hydrological uncertainty based on a short 

period of simulated flows. 

 

The width of the hydrological uncertainty band illustrated in Figure 3.10 will therefore be 

dependent on the amount and perceived quality of any observed data (stream flow and 

climate data) that are available and the techniques (patching, naturalization, hydrological 

modeling, etc.) used to generate representative historical time series of natural flow data.  

 

Figure 3.10 refers to the stochastic uncertainty as representing all possible sequences of 

flow and this is what has been traditionally included as ‘uncertainty’ in the yield analyses. 

This definition is approximately similar to that used in Basson et al. (1994) and is associated 

with the fact that relatively short periods of historical time series (measured or simulated) 

may not adequately represent all possible sequences of stream flow, even under stationary 

conditions. This is an important consideration, given that the yield of a system involving 

storage is very dependent upon the most critical sequence of flows, rather than the lowest 

possible flows over a relatively short period of time. The length of that critical sequence is 

partly dependent upon the volume of storage and partly on the sequence characteristics of 

the natural flow. The stochastic stream flow sequences used within the yield model are 

considered to originate from the same population (and have the same statistical behaviour) 

as the historical time series. The approaches that have been used within South Africa are 

based on multi-site stream flow modelling to preserve spatial correlations and are 

documented in chapter 4 of Basson et al. (1994). 
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In considering the two sources of uncertainty identified in Figure 3.10, it is immediately 

apparent that they are not independent. The statistical properties of the individual uncertainty 

ensemble members of historical stream flow time series could be very different from each 

other and therefore stochastic sequences generated from them could similarly have different 

properties. There are additional complications if the hydrological uncertainty across the many 

different sub-basins (or incremental natural hydrology nodes) in a complex implementation of 

a yield model are considered to be independent. The sampling space required to represent 

the uncertainty becomes huge and intractable from a practical point of view. Within each 

node of the yield model the use of 500 hydrological uncertainty ensembles together with the 

generation of 500 stochastic stream flow sequences results in 250 000 possible 

combinations. The number of possible combinations across a total catchment with (say) 100 

nodes becomes a number which is too large to even contemplate from a practical computing 

point of view. The issue of adequately representing the uncertainty sources and their 

independence in a manner which is also practical is therefore a critical issue. One of 

the questions that was raised in the previous project is whether a stochastic rainfall model 

can be used with the hydrological models to combine all the uncertainty elements within a 

single model and whether this will make the uncertainty sampling problem easier to manage 

in a practical way. 

 

3.3.1 Probability issues in yield modelling 

 

Before discussing the issue of uncertainty sampling and the most practically appropriate 

approaches to combining uncertainty sources, it is important to discuss some of the issues 

related to the interpretation of probability in yield modelling. It became apparent during the 

previous project that there existed some differences of interpretation between individuals and 

groups with different backgrounds and experience.  Basson et al. (1994) define ‘Base Yield’ 

as ‘the lowest yield level recorded when a reservoir/system of a given configuration is fed by 

a given inflow sequence of a fixed length while attempting to satisfy a given target draft 

associated with a specified temporal (monthly) demand pattern (for water) under a specific 

operating policy’. ‘Firm Yield’ is ‘the maximum base yield that can be abstracted from a 

reservoir/system of unique configuration for a given inflow sequence, temporal demand 

pattern and operating policy’. It follows that abstractions that are greater than the firm yield 

will be subject to periodic failure and using a single historic sequence it would possible to 

determine the reliability of a specific abstraction on the basis of the number of failures. This 

could be expressed as a probability of failure or as an annual return period of failure. 
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When stochastic sequences are used to generate measures of reliability for base or firm 

yield, Basson et al. (1994) plot the curve as the exceedence probability of a range of base 

yields (i.e. each stochastic sequence will generate a different base yield), but they also 

attach recurrence intervals to the probabilities (see Figure 2.12 in Basson et al., 1994, page 

41). Given the standard interpretation of recurrence intervals (similar to an annual flood peak 

analysis) this suggests that the different base yields resulting from the stochastic analysis 

WILL occur over an extended period of time. However, this assumes that all of the stochastic 

sequences will occur, while the alternative interpretation is that these stochastic sequences 

represent uncertainty in the expected occurrence of the volume of inflows over the critical 

period for the reservoir/system configuration. The implication is that some critical period 

volumes contained within the full suite of stochastic sequences may NOT occur. This makes 

no difference whatsoever to the yield probability diagrams as long as the horizontal axis is 

not re-defined as a recurrence interval (or return period). The uncertainty interpretation of 

these diagrams is therefore that there is only a single firm yield for the reservoir/system 

configuration (including the temporal demand pattern and operating policy) and that this is 

determined by the real inflow sequence (assumed to be stationary) over a long period of 

time. However, as we are not able to quantify what the real long-term inflow sequence will 

be, the stochastic analysis based on a relatively short period of historical observations (or 

simulations) allows us to quantify the uncertainty (as probabilities of exceedence) in the firm 

yield. 

 

While this may all seem like a rather pedantic approach to interpreting the yield probability 

curves it becomes very important if additional sources of uncertainty are added to the 

analysis. Adding hydrological uncertainty to the conventional interpretation (that includes the 

concept of recurrence interval) involves a different process than if the stochastic and 

hydrological uncertainties are combined into a single expression of uncertainty. In the former 

case an ensemble of historical flow sequences would be generated by a hydrological model 

and each one treated to stochastic analysis within a yield model, generating multiple firm 

yield lines. The approach of identifying yields with different recurrence intervals (RI) could still 

be applied, but now the firm yield associated with (say) a 1:50 year RI would not be a single 

value but a frequency distribution of values determined by the hydrological uncertainty. This 

is illustrated in Figure 3.11 where the red lines represent stochastic yield analysis results 

using a wide range of historical hydrology uncertainty ensembles. The frequency distribution 

shown at the 42% exceedence probability is designed to illustrate that the hydrology 

ensembles (and therefore the estimated yields) are not all considered equally probable. This 

type of situation would result where uncertain parameter inputs into a rainfall-runoff model 

are based on normal distributions. However, if the parameter inputs are based on uniform 
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distributions it is possible that all of the hydrology ensembles could be considered equally 

likely. 
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Figure 3.11 Adding hydrological uncertainty to conventional stochastic yield analysis 

(black line represents the yield analysis based on the median hydrological 

ensemble, while the red lines represent yield analyses using other 

ensembles). 

 

Figure 3.11 is the type of diagram that would be produced if many hydrological ensembles 

were all subject to stochastic analysis in the yield model – a process that would be very time 

consuming in all but simple systems. Fortunately, there is a possible alternative based on 

pre-processing the hydrology ensembles and only passing 3 to the yield model for stochastic 

analysis. The pre-processing would be based on ranking the hydrology ensembles on the 

basis of the minimum flow volume over the critical duration for the system. Identifying the 

characteristics of the minimum flow frequency distribution and deciding on appropriate 

uncertainty probabilities (the median plus the ensembles equalled or exceeded 90% and 

10% of the time for example) would allow three flow ensembles to be selected for stochastic 

yield analysis.  

 

Adding hydrological uncertainty based on the second (uncertainty) interpretation of the 

stochastic model results would have to be dealt with in a different way. In this case all of the 

yield estimates from all of the stochastic sequences run with each hydrological ensemble 

would be treated as uncertainty estimates of the ‘real’ yield and the yield probability curve 

would look something like that shown in Figure 3.12. Note that it is now no longer appropriate 
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to associate the exceedence probabilities with recurrence intervals. The part of the curve in 

Figure 3.12 that lies between approximately 75% and 25% probability is very similar to the 

yield curve based on stochastic sequences using the median hydrology ensemble. While the 

parts of the two curves that correspond with each other will clearly depend on the degree of 

uncertainty in the hydrology ensembles and this example has used hypothetical data, the 

result should be very similar for all situations. The conclusion is therefore that yield 

assessments based on a probabilities of exceedence of between about 75% and 25% would 

not be affected by including hydrological uncertainty. 
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Figure 3.12 Adding hydrological uncertainty to stochastic yield analyses that are also 

treated as uncertainty estimates of the real yield (the same data are used as 

in Figure 3.11). 

 

Differences in interpretation: Considering the hypothetical results shown in Figure 3.11 

(and assuming an 85 year length of record for the historical flow ensembles) the 1:100 year 

yield would be estimated as approximately 83 * 106 m3 if the hydrological uncertainty is 

ignored. Including the hydrological uncertainty would suggest that there is a 90% probability 

that the 1:100 yield would be greater than about 75 * 106 m3, while there is a 5% probability 

that the 1:100 year yield would be greater than about 92 * 106 m3. As pointed out by at least 

one participant in the workshops held as part of the previous WRC uncertainty project these 

expressions of reliability are compound statements of probability. However, the use of the 

recurrence interval expression for the stochastic component means that the two probabilities 

can be separated. 
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The interpretation of the results presented in Figure 3.12 cannot be expressed using a 

recurrence interval approach and all that can be said is that the ‘real’ firm yield will be greater 

than 60 * 106 m3 with 80% confidence and greater than about 94 * 106 m3 with 20% 

confidence. 

 

The differences in interpretation of essentially the same data arise as a direct result of the 

differences in interpretation of the stochastic sequences. As already noted, the first 

interpretation relies on the assumption that all of the sequences will occur over a long 

enough time period and therefore they can be used to express the ranking and the 

exceedence probabilities of the outcomes in terms of recurrence intervals. This is not true of 

the second interpretation in which it is assumed that the stochastic sequences represent the 

uncertainty in the ability of an historical sample of flows to represent all possible sequences 

within a much longer, stationary period. 

 

Implications of interpretation differences: One of the proposed approaches to 

incorporating both sources of uncertainty (hydrological and stochastic) is to substitute the 

stream flow stochastic model in the yield model with a rainfall stochastic model in the 

hydrological model. From a modeling perspective, this is potentially very attractive as it 

allows both sources of uncertainty to be combined in a single model. It is also attractive from 

the perspective of adding observational uncertainty into the rainfall inputs to the hydrological 

model, through some additional error terms added to the parameters of the stochastic rainfall 

model. However, this type of approach would generate a single ensemble of flow time series 

which would be equivalent to the second interpretation discussed in the previous section. It 

would be possible, but much more difficult, to isolate the stochastic uncertainty components 

from the other uncertainties so that these could be treated differently when the ensemble 

members are processed through the yield model (i.e. the equivalent of the first type of 

interpretation discussed above). 

 

This report has made no firm conclusions about the correctness of either the first or second 

interpretation options. It is suspected that the majority of the water resource engineering 

community in South Africa will agree with the first interpretation option, largely because this 

is the approach that is aligned with the conventional approach to yield analysis without any 

hydrological uncertainty. However, that does not mean that it is the most statistically correct 

approach.  
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3.4 Examples of stochastic yield analysis with uncertainty 

 
 
During the course of the project, several trials of stochastic rainfall analysis were carried out, 

but the one that has been included in the final report is based on the use of the most up-to-

date versions of the uncertainty models. To assess the effects of different types of 

uncertainty on reservoir yield analyses, the example of Nyaka Dam and the outlet of 

quaternary catchment X31E have been used. Three different types of analysis have been 

used and all are based on WR2005 rainfall data and existing simulations of the hydrological 

regime as background. The uncertainty ranges of the model parameters are all based on the 

approach discussed in section 3.1 of this report. The flow constraints (Table 3.2) were based 

on the assumption that the existing natural hydrological simulations (obtained from Mr 

Stephen Mallory) are realistic, but with some uncertainty. The groundwater recharge 

constraints were based on the low to moderate estimates available from the GRAII database. 

Figures 3.13 and 3.14 illustrate the parameter bounds that have been used as well as the 

results of the parameter constraining analysis. All of the other parameter values were fixed at 

appropriate values based on past experience. The top left graph in both diagrams illustrate 

that the results for the saved parameter sets tend to favour the lower range of the MMQ and 

Q10 constraints, are fairly well distributed for the recharge constraint, tend to have a quite 

low range for the Q50 constraint and favour the lower range of the Q90 constraint. The 

diagrams also illustrate that there is no obvious bias in the range of accepted parameter 

values relative to the original input uncertainty bounds (lower left table of values in Figures 

3.13 and 3.14). 

 

Table 3.2 Constraints used in establishing parameter uncertainty bounds for natural flow 

(no afforestation) simulations. 

 

Constraint Lower bound Upper bound 
Mean monthly flow (m3 * 106) - MMQ 7.5 10.5 
Mean monthly GW recharge (mm) 4.5 8.0 
Q10 (fraction of MMQ) 2.0 2.2 
Q50 (fraction of MMQ) 0.5 0.7 
Q90 (fraction of MMQ) 0.20 0.25 
% Zero flows 0 0 
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Figure 3.13 Outputs of the parameter constraining analysis for ZMIN, ZMAX, ST, POW 

and FT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Outputs of the parameter constraining analysis for GW, R, GPOW and 

Riparian strip %. 
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The following text explains the approaches that have been used to assess various methods 

of stochastic analysis. 

 

Step 1 using stochastic stream flow analyses (traditional approach) 

 

1A. Step 1A involves the use of the existing hydrological input data coupled with the 

existing conventional yield analysis. 

 

1B.  Step 1B involves generating uncertainty ensembles based on parameters that more 

or less bracket the existing input data. Three ensembles representing wet, moderate 

and dry situations are extracted and used as inputs to the yield model with stochastic 

stream flow included. The forestry is taken out of the yield model and included as part 

of the uncertain parameter sets used with the Pitman model. The parameter 

uncertainty method is unconstrained but uses the same parameter ranges given in 

Figures 3.13 and 3.14 with additional uncertainty (using uniform distributions) added 

for the % area of afforestation (55-70%) and the FF parameter (1.2 to 1.4) used to 

scale up potential evaporation for the forest areas. The main difference between the 

unconstrained parameter uncertainty method and the new approach, adopted in Step 

2, is the fact that parameter combinations are possible that result in ensemble outputs 

that will be beyond the range of the constraints provided in Table 3.2 and therefore 

higher overall parameter uncertainty. 

 

Step 1 therefore represents 4 stochastic stream flow runs of the yield model.  

 

Step 2 using stochastic rainfall data provided by Mr Bennie Haasbroek. 

 

Use the stochastic rainfall data and the new approach to setting uncertainty bounds using 

constraints (Table 3.2) to generate 250 000 mixed (rain and parameter) ensembles and 

extract a sample of 500 ensembles based on an appropriate critical period for the dam for 

processing through the yield model. The parameter uncertainties are made up of a 

combination of sampling from the constrained saved parameter sets plus random sampling 

from the uniform distributions of the % area of afforestation and FF parameter. 

 

An additional assessment is made using the old version of the Pitman model with stochastic 

rainfall inputs (i.e. not using the constrained natural parameter sets). However, to avoid an 

excessive number of yield model runs, this assessment is only based on the critical period 

frequency analysis of the Pitman model outputs.  
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This will mean 1 run of the yield model (without stochastic stream flow) with 500 sets of input 

flow data. 

 

Step 3 Stochastic rainfall analysis based on separating stochastic and parameter 

uncertainty  

 

During earlier discussions it was noted that it might be important to distinguish between 

stochastic uncertainty (where traditionally probabilities are converted to return periods) and 

hydrological uncertainty due to varying model parameter values. Step 2 does not make this 

distinction and all of the sources of uncertainty are lumped together in a single set of 

ensembles. Step 3 therefore involves extracting the minimum and maximum parameter 

uncertainty ensembles for each stochastic rainfall input. Thus two sets of 500 ensembles are 

generated and each set subjected to yield analysis to generate two yield probability curves 

representing the upper and lower bounds of hydrological uncertainty. The minimum and 

maximum ensembles could be based on mean annual runoff or minimum flow over a defined 

critical period and the latter has been used in this project so that the Step 2 and Step 3 

results are more compatible. 

 

3.4.1 New software to facilitate analysis of the output ensembles 

 

A facility to sort and analyse the ensemble outputs from the Pitman model was added to 

SPATSIM some years ago when the uncertainty versions of the model were created. 

However, it was not comprehensive enough for the analyses that are proposed above and 

therefore was modified during this phase of the project. Table 3.3 lists the input/output 

requirements of the ‘model’ that is referred to as the ‘Stochastic Ensemble Sorter’, while 

Figure 3.15 provides an example screen shot of the computer program. The notes below 

explain more about the use and operation of the program. 
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Table 3.3 Input/output requirements (links to SPATSIM attribute data) for the Stochastic 

Ensemble Sorter program. 

 

Number Attribute Description 
1 Catchment ID Sub-catchment names. 
2 Rainfall Input Ensembles (T/S) Stochastic rainfall ensembles used as 

input to the Pitman model. 
3 Flow Ensembles (T/S) Output stream flow ensembles 

generated by any of the uncertainty 
versions of the model and stored within 
a SPATSIM attribute. 

4 Output Sample Ensembles (T/S) An output generated by the sorter 
program representing a 500 sample of 
the total ensemble set. 

5 Output Rainfall Min. Ensembles (T/S) Outputs generated by the sorter 
program representing 500 samples of 
the total ensemble set but based on 
the minimum and maximum for each 
rainfall group used as input to the 
Pitman model. 

6 Output Rainfall Max. Ensembles (T/S) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15  Example screen shot of the Stochastic Ensemble Sorter program 
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Note 1: The list of sub-catchments is provided so that any part of the total basin can be 

analysed separately. 

 

Note 2: If the stochastic rainfall uncertainty version of the Pitman model is used then 250 

000 output ensembles are typically generated (assuming 500 input rainfall sequences and 

500 parameter samples). This represents too much data to save to SPATSIM and instead 

the outputs are stored in binary files. The options under Note 2 therefore allow the user to 

decide which type of ensemble set is to be analysed. If the binary file option is selected then 

this file can be sourced from C drive or from the default SPATSIM data folder used for the 

specific SPATSIM application. If the ‘From SPATSIM Ensembles’ option is chosen then the 

data stored in SPATSIM attribute requirement 3 (Table 3.3) are used in the analysis. The 

SPATSIM stored data can be a full ensemble set (e.g. 10 000 generated by the normal, non-

stochastic, version of the uncertainty Pitman model, or can be one of the 500 sample sets 

generated by this program (see Step 5). The latter can then be used to test that the 500 

samples generated are a realistic sample of the full ensemble set by examining the shape 

and range of the frequency distributions.  

 

Note 3: The ensemble frequency analysis can be based two main methods of classifying the 

ensembles; mean annual runoff or a critical period minimum flow. If the latter is selected the 

user can specify the length of the critical period. The mean annual runoff analysis is simply 

based on the annual flows for each year of the record. If the critical period analysis method is 

selected then, for each ensemble, the total flow over all possible durations of the period are 

calculated and the minimum value is determined and used in the frequency analysis. 

 

Note 4: The ensembles are sorted using either the mean annual runoff or critical period 

criteria and the frequencies of ensembles calculated for 20 evenly spaced groups between 

the minimum and maximum values. The list box gives the group boundaries, while the 

histogram plot provides the frequencies and a visual impression of the frequency distribution. 

The boundary values and frequencies can be copied into an excel spreadsheet for further 

analysis and plotting.  

 

Note 5: The two buttons under this note allow for an unstructured sample of 500 ensembles 

to be generated and saved to SPATSIM (500 Sample Ensembles), as well as two sets of 

ensembles structured according to the stochastic rainfall sequences (500 Min/Max 

ensembles for each rain group). The latter is used to generate the outputs required for Step 3 

of the stochastic yield analysis referred to above and in section 3.4.4 below. The parameter 

uncertainty ensembles that form part of each set of stochastic rainfall inputs are sorted (see 
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Note 3) and the minimum and maximum found for each rainfall input. These are then saved 

back to SPATSIM and can be used as inputs (item 3 in Table 3.3) in a separate run of the 

ensemble sorter program (see also Figure 7.18 which illustrates the sort results for a full set 

of 250 000 stochastic rainfall/parameter uncertainty ensembles as well as the sets of 500 

minimum and maximum rainfall group samples). 

 

Note 6: The final output option allows for the minimum and maximum monthly time series to 

be generated to a text file for a set of ensembles. This process is based on searching 

through each month of all ensembles and identifying the minimum and maximum monthly 

flows. These two output time series can then be used to plot either two time series or flow 

durations that represent the full band of uncertainty across all ensembles (using the 

ensemble data stored in attribute 3 of Table 7.3). 

 

At this stage of the development of the SPATSIM uncertainty modelling software, this 

ensemble sorting facility has provided all of the tools necessary to analyse the ensembles 

and generate outputs that can be passed on to the yield model. However, if additional 

facilities are required in the future it will be relatively straightforward to add to the program. 

 

3.4.2 Step 1 Results: Traditional stochastic stream flow analysis with uncertain 

parameters 

 

Figure 3.16 illustrates the results for Step 1. The yield results for the median ensemble are 

very similar to the IWAAS (existing yield analysis), given the fact that the IWAAS Pitman 

model calibrations would be different to the ensemble results used in this study and the fact 

that the afforestation effects were added as a demand in the yield model for the IWAAS 

results, while they are included as part of the Pitman model simulations in this study. The 

parameter uncertainty bounds have had an approximately ±10% impact on the yield for all of 

the exceedence percentages.  

 

3.4.3 Step 2 Results: Stochastic rainfall analysis combined with uncertain 

parameters 

 

The main Pitman approach used in Step 2 was to generate 250 000 ensembles based on the 

500 stochastic rainfall inputs combined with 500 parameter samples accessed from the 

saved natural parameter sets coupled with random sampling of the afforestation parameters. 

Figures 3.17 and 3.18 show the frequency distributions of the ensemble outputs based on all 

ensembles for the 60 month minimum flow (assumed to represent the critical period for 
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storage of Nyaka Dam) and the mean annual flow. These are referred to as ‘New Stochastic 

Analysis’ in Figures 3.17 and 3.18. The ‘New Parameters’ line in Figure 3.17 represents the 

frequency distribution of minimum flows for the 10 000 ensembles using only the WR2005 

rainfall data (no stochastics). The ‘Old Stochastic Analysis’ refers to the results based on no 

constraints on the parameter sampling (i.e. not using the saved natural parameter sets, but 

simply sampling from the full range of possible parameter values). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Comparison of yield results for Step 1 (IWAAS represents the existing yield 

analysis). 

 

As might be expected the width of the frequency distribution for no stochastics in Figure 3.17 

is much less than either of the results using stochastic rainfall. In addition the maximum 

frequency of the mean annual flow distribution is higher for the new analysis compared to the 

old. These are both expected results. The former is based on the additional uncertainty 

added by the use of stochastic rainfall sequences, while the latter is a reflection of the 

narrower band of parameter uncertainty in the new approach and associated with the 

constrained parameter samples. What is less easy to understand is why the latter result is 

not reflected in the comparison between the old and new approaches when the 60 month 

minimum flow is used, nor why the ‘Old Stochastic’ analysis results are both biased towards 

lower flows. One possible answer to this is related to the link between the parameter ranges 

used in the new version of the Pitman model and the constraints listed in Table 3.2. Figure 

3.13 suggests that there is a potential bias towards lower MMQ vales relative to the full range 

used for that constraint and this could point to the fact that there other parameter 
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combinations that did not meet the constraint range would be generally lower (rather than 

higher than the constraint range). Hence, unconstrained parameter sampling would result in 

generally lower flows rather than both lower and higher. Figure 3.19 illustrates the combined 

uncertainty (stochastic and parameter) yield results and, not unexpectedly, the range of 

possible yields has increased. Interestingly, the effect is greater at high yields and low 

frequencies of exceedence and this is not straightforward to explain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17  Comparison of frequency distributions of 60 month minimum flow.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18  Comparisons of frequency distributions of mean annual flow. 
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Figure 3.19 Comparison of yield results for Step 2 (IWAAS represents the existing yield 

analysis). 

 

3.4.4 Step 3 Results: Stochastic rainfall analysis based on separating stochastic and 

parameter uncertainty 

 

Figure 3.20 illustrates the results based on the frequency analysis of the minimum 60 month 

flow volume for the total 250 000 ensembles compared with the minimum and maximum 

parameter uncertainty ensembles (500 each) for each stochastic rainfall group. Figure 3.21 

illustrates the yield results for Step 3. The shapes of the frequency distributions of minimum 

60 month flow volumes shown in Figure 3.20 conform to what might be expected, as do the 

shapes of the resulting yield curves to a certain extent (Figure 3.21). Comparing this result 

with the previous one in Step 2, it is apparent that the maximum and minimum yields are 

more or less identical for the full set of ensembles. However, the results are quite different to 

the Step 1 results Figure 3.16) using stream flow stochastic analysis and the same 

parameter uncertainties. These differences are mostly evident at low exceedence 

percentages (i.e. low return periods) while the differences are quite small for the 1:100 year 

yield (approximately 55 to 77 m3 * 106 for the stochastic stream flow sequences and 58 to 80 

m3 * 106 for the rainfall stochastic analysis).  

 

Providing an explanation for these differences is not straightforward without a great deal of 

further analysis of the rainfall stochastic sequences and (probably) a great deal of 

speculation about the interaction between these and the uncertainty ranges of the 

parameters. However, it is likely that the increased rainfall within the wetter stochastic rainfall 

sequences has a marked non-linear effect on simulated runoff, regardless of the parameter 
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sets that are used. The consequence would be higher stream flow values even when 

generally ‘drier’ (or lower runoff generation) parameter sets are used. The inevitable result is 

that the statistical properties of the stream flow ensembles generated through the stochastic 

rainfall process with any given uncertain parameter set would not be the same as the 

statistical properties of the historical stream flow record generated with the same parameter 

set. Figure 3.15 illustrates that the stream flow stochastic analysis results in almost a linear 

shift in the yield curves away from the curve based on simulated stream flows without 

parameter uncertainty. This implies that many of the statistical properties (apart from the 

mean) have been preserved even when uncertain parameters are used.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 Comparison of frequency distributions of 60 month minimum flow for minimum 

and maximum ensemble results within each rainfall group. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 Comparison of yield results for Step 3 (IWAAS represents the existing yield 

analysis). 
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The relatively simple yield analyses included in this report are designed to illustrate the 

differences between using stochastic stream flow analysis with uncertainty (step 1B), 

combined stochastic rainfall and parameter uncertainty (step 2) and stochastic rainfall 

uncertainty with separate parameter uncertainty (step 3). It is apparent that there are 

differences between steps 1 and 3 that could be related to the non-linear transformation of 

rainfall into runoff. However, this requires further investigation on many more catchments and 

probably a deeper theoretical assessment of the differences between using stochastic 

stream flow and stochastic rainfall methods. This project team had neither the resources, nor 

time, to complete such a detailed analysis. 

 
 
3.5 Using climate change data with the uncertainty models 

 
Using the uncertainty models with future climate data obtained from downscale GCMs and 

RCMs is a relatively trivial issue as it is only necessary to replace the historical climate inputs 

with time series representing possible future conditions and changing the parameter 

uncertainty bounds to represent possible land cover (or other) conditions. Several climate 

change studies were completed during the course of the project, including one for the 

Caledon River basin using inputs from 9 statistically downscaled GCMs (data obtained from 

the Climate Systems Analysis Group at the University of Cape Town). The results indicate 

that the band of output uncertainty increases substantially, but there are no indications of 

general drying or wetting. The results are not presented in any more detail in this report as it 

is understood that the downscaled data have been revised and the authors are reluctant to 

publish results on what are out-of-date future projections. The main point is that the outputs 

from GCMs and RCMs are changing all the time as the climate modellers revise and improve 

their approaches. The majority of the effort involved in running the hydrological models for 

climate change scenarios is associated with pre-processing the climate data provided by the 

climatologists. This can be a substantial amount of work when there are a number of sub-

basins involved and when several climate scenarios or several climate models are involved. 

By the time some of these data are released and processed through the hydrological models 

they are often out of date.  

 

An alternative approach has therefore been suggested by the project team, but has not been 

tested because the methods and associated software have still to be developed. The basic 

concept behind the suggested method is that the rainfall sequences generated by climate 

models for a future climate are expected to have different statistical properties to the outputs 

from the model that relate to the past period (typically referred to as the baseline period). 

One additional issue is that the baseline simulations from all of the models are usually quite 
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different and all of them are different from historical rainfall data (Hughes et al., 2014). The 

suggested method is therefore designed to identify the shifts in the statistical/stochastic 

properties of the rainfall simulations between the baseline and future for a range of different 

GCMs and downscaling methods. The statistical properties would be the monthly means, 

standard deviations and skewness, serial and spatial autocorrelation or any other properties 

that are used within a stochastic model. 

 

The steps in the suggested process are outlined below: 

 

Step 1: Historical rainfall records (HPTS) are used to generate stochastic parameters 

(SPH).  

HPTS    >    SPH    >     Historical stochastic sequences. 

 

Step 2: Use several downscaled GCM rainfall products consisting of baseline rainfall data 

(BPTS: 1960 to 2000) and a future time series (FPTS: 2030 to 2065, for example) 

and apply the same stochastic rainfall model to both. 

BPTSi    >    SPBi      Baseline stochastic parameters for CC model i. 

FPTSi    >    SPFi       Future stochastic parameters for CC model i. 

 

Step 3: Calculate the changes between present and future in stochastic properties of 

rainfall for all models (i) and all appropriate stochastic parameters. 

∆SPi = (SPFi – SPBi)    

  

Step 4: Run the stochastic rainfall model based on random samples from ∆SPi  to modify 

the stochastic parameters established from the historical rainfall data (SPH) when 

generating each stochastic sequence (assume that all of the GCM outputs are 

equally possible and therefore assume a uniform distribution of ASPi). The 

resulting stochastic rainfall sequences can then be used directly with the 

uncertainty version of the Pitman model. 

   SPH + Random (∆SPi) > Range of possible future stochastic sequences.  

  

The objective would be to generate future time series that are conditioned on the stochastic 

properties of the historical data but modified to account for the range of possible future 

changes. No individual GCM would be identifiable (nor do they need to be) within the final 

stochastic sequence. Any updates in the likely range of statistical property changes based on 

new climate change information can be easily applied through changes in the ASPi arrays, 

thus saving a substantial amount of work in pre-processing many different rainfall time 



88 
 

series. It is also assumed that a similar process could be applied to input evaporation 

demand data that will presumably change with future temperature changes. 
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4. DECISION-MAKING WITH UNCERTAIN INFORMATION 

 

Within Beven’s (2009) book on Environmental Modelling, chapter 6 deals with decision-

making under uncertainty (see also Beven, 2000 and Beven and Alcock, 2011) and refers to 

one possible approach (Info-Gap Analysis) that was developed by Ben-Haim (2006) and has 

been applied in many different disciplines including water resources assessments (Korteling 

et al., 2012). A detailed explanation of the approach as well as many references on its 

application can be found at (http://en.wikipedia.org/wiki/Info-gap_decision_theory). In 

summary the approach involves the use of 3 models, each of which is linked to the previous 

ones: 

• The first is a model of the situation around which a decision is required – such as the 

yield of a reservoir. As part of this model an estimate is made which is assumed to be 

substantially wrong. The uncertainty model determines how distant other values are 

from the first estimate (the best guess perhaps). 

• The second model is the robustness/opportunity model. For this we require a minimal 

level of a desired outcome and given the uncertainties of the first model, how uncertain 

can we be of achieving this outcome (robustness). Conversely, given a better outcome 

(higher yield perhaps) than the estimates, how uncertain must we be for this outcome 

to be possible (opportunity or opportuneness). 

• To make a decision (the third model), the robustness or the opportunities are 

optimized. For a minimum desired outcome, which decision is more robust (can still be 

achieved with the most uncertainty)? Alternatively, for a more beneficial outcome, 

which decision requires the least uncertainty for achieving the outcome?  

 

Info-Gap analysis does not use probability distributions and measures the deviation of 

possible errors, but not the probability of different outcomes. The stated advantage is that it 

is not sensitive to any assumptions that are made about the probabilities of different 

outcomes. However, the approach does include the concepts of what are ‘closer’ or ‘more 

distant’ (from a first estimate) outcomes. Reading through some of the various applications of 

the method it is not very straightforward to understand how it can be linked to the type of 

hydrological and yield estimation uncertainty analyses that have formed part of this research 

project. Part of the problem is that the language and terminology used in many of the 

publications is not very familiar to hydrologists who have not been involved in the application 

of decision theory. 

 

The paper by Korteling et al. (2012) provides a direct example (although focused on UK 

water issues, but which are not that different to some of the key water resources decision 
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issues in South Africa) related to water resources planning. They also make use of Multi-

Criteria Decision Analysis (MCDA) that has been used in the South African water resources 

sector previously (Joubert et al., 1997, for example). The MCDA method ‘is used to combine 

results for multiple criteria over multiple-steps of increasing uncertainty’. Info-Gap analysis is 

applied for the individual analysis of the multiple criteria. The example provided is based on a 

single reservoir that supplies roughly 89% of the demand (residential, commercial and 

agricultural), while the remainder is supplied from a regional supply scheme. The 

uncertainties that are accounted for in the example include climate change impacts (supply-

side parameters), demand forecasts (demand-side parameters), accuracy of metering (both 

supply and demand) and cost. They considered 81 possible management options that 

included increases in reservoir volume, increases in transfers from the regional scheme, 

increases in water treatment, increased water use efficiency, domestic rainwater collection 

for different purposes, use of grey water and many combinations of these primary options. 

Part of the assessment (robustness) was based on a reservoir management risk metric 

(MMR) calculated as the product of the probability of the reservoir dropping below the 

drought management curve and the average deficit below this curve. The opportuneness of 

different management options was measured by a safety margin deficit (volume of water 

between the optimal management curve and the drought management curve – or the 

optimum and minimum acceptable reservoir volumes at different times of the year). Further 

details of the example are not repeated here, but it should be clear that the example includes 

a very comprehensive range of possible management options, as well as quite a lot of detail 

about the uncertainty sources.  

 

There is little doubt that hydrologists and probably water resources engineers will require 

additional expertise from other disciplines if they are to confront the issues associated with 

making decisions with uncertain information. Whether info-gap analysis combined with some 

other methods are appropriate or not has yet to be determined. Durbach and Stewart (2012), 

as well as Hajkowicz and Higgins (2006) present a number of options, the former focusing on 

uncertainty and MCDA, the latter on different MCDA techniques for water resources 

management. Neither of them refer to info-gap analysis. Hall et al. (2012) made a 

comparison between Info-Gap analysis and Robust Decision-Making. It remains somewhat 

unclear which is the most appropriate method to use in different situations. It will therefore be 

necessary to establish some test cases to ensure that whatever type of decision-making tool 

is to be used is compatible with the types of uncertainty information that is being generated 

through the methods suggested by this (K5/2056) and the previous WRC uncertainty project 

(K5/1838). 
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4.1 A starting point for uncertain decision-making 

 

This project did not spend a great deal of time on the decision-making issues linked to 

uncertainty, but has initiated an MSc level study that will investigate some of the questions of 

linking uncertainty to decision-making. The first step was to set up a trial hypothetical model 

of a water resources decision-making problem and look at how uncertain input information 

might affect the process. This initial test study that has been undertaken by Mr Gregory 

Pienaar is based on some of the concepts presented in Hughes and Mallory (2009) designed 

to integrate the effects of shortfalls in water supply across different water use sectors. The 

basic idea was that it should be possible to determine the approximate shape of the 

relationship between relative impact (0 to 100) and shortfall (0 to 100%, where 100% 

represents total loss of the water supply). The impact is measured on a nominal scale and 

could be determined using different criteria for different water sectors (i.e. financial, social, 

environmental or a combination). The overall impact of a shortfall in supply for a community 

would then be based on sector weightings that can take into account various socio-

economic, strategic, political and environmental factors. With respect to uncertainty, the initial 

trial was designed to see how evaluations of this nature might be affected by uncertain 

simulations of time series of available water. 

 

The test case was designed around quaternary catchment X22F in the headwaters of the 

Crocodile River and a large part of the uncertainty in the stream flow simulations was 

assumed to be related to the impacts of commercial afforestation. The uncertainty version of 

the Pitman model was run for the whole catchment (X22D, E and F – total area of 639 km2) 

and the range of simulations compared with the gauged stream flow records at X2H005 to 

ensure that the simulations were representative. Figure 4.1 shows the uncertainty results 

based on the mean annual runoff that varies between about 70 and 120 * 106 m3.  

 

The median ensemble was used to generate ‘B’ and ‘D’ category ecological Reserve 

requirement using the revised desktop model (Hughes et al., 2012) and the low flow Reserve 

requirements at various FDC % points were expressed as a fraction of the equivalent 

baseflows separated from the total flows of the median simulation ensemble. The Reserve is 

therefore considered as the first user in the system and the required water use is defined as 

a fraction of the monthly natural baseflow, but with the fractions varying depending on the 

position of the natural baseflow on the FDC. An additional three users are defined to 

represent a rural community water supply, commercial cash crop irrigation and irrigation of 

pastureland. All of the users in this first example are assumed to abstract water direct from 
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the river without any form of reservoir storage. The users therefore are assumed to only have 

access to the baseflow component of the stream flow and therefore the analysis is based on 

separated baseflows and the high flow components assumed to be inaccessible for use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Screen shot of the ensemble sorter program for X22F to illustrate the 

simulated uncertainty for 10 000 ensembles. 

 

Figure 4.2 provides an example screen shot of the new program that has been developed to 

analyse the impacts of various decisions and the uncertainties associated with the input data. 

Note 1 refers to the table of user information that includes an impact index (see also Note 2) 

a community weight factor and an annual demand. The latter is supported by a table of 

seasonal distribution fractions for users 1 to 4. Note 2 shows the deficit versus impact curves 

for the different users based on the impact index given in the table above. In this example the 

community water supply has been assumed to have the lowest use but the biggest impact of 

shortages. Note 3 illustrates that although 10 000 ensembles of stream flow are available the 

user can take a sample of any size (in Figure 3.23 this is 500). Notes 4 and 5 refer to the 

various decision options that have been included. The first level of decision refers to the way 

in which the ecological Reserve is treated; either being always met at the B level of 

protection, always met at the D level or treated as a user and therefore competes in the 
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same way for water as other users. Note 5 offers several possible second level decision 

options: 

• Equal allocation refers to providing the same amount of water to each user until 

either their requirements are met or the available water runs out. Clearly this option 

will favour users with the lower requirements. 

• Proportional allocation refers to allocating the available water on the basis of the 

proportion of their individual requirements relative to the total requirement for all 

users. 

• Proportional allocation with community weighting is the same as the previous on but 

with an allowance for the assumed community importance of each user. 

• Equal individual sector impacts refers to an allocation approach that tries to equalize 

the relative impacts across all users (given the first decision level the affects the 

Reserve allocation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Screen shot of the water use uncertainty program for X22F. 

 

Note 6 provides the graphs of frequency distributions of the impacts for each user and the 

total weighted impact for the community as a whole. Note 7 is simply a key to the impact 

groups plotted in the graphs. The impact frequency values are calculated from the maximum 
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impacts in all years of all ensembles and therefore integrate inter-annual variations with 

uncertainties across all of the ensembles used in the sample. The frequency of zero impacts 

is given in the title of each graph. 

 

Figure 4.2 does not allow for the uncertainties related to the simulated stream flows to be 

resolved and therefore an additional level of analysis is provided through clicking on the 

button at the bottom of the screen (Figure 4.3). This analysis looks at the impacts within all of 

the months of the uncertain simulations. The user first selects which water user to deal with 

and up to four impact groups (middle top). The horizontal axes of the bar graphs refer to the 

number of months where the selected impacts occur within individual uncertainty ensembles. 

The number of months are counted within 10 groups (top right list). Thus, for the >70 to 80% 

impact group (bottom left graph), for 10% of the ensembles there is only 1 month with such 

an impact, 15% of the ensembles have 2 months, 45% have >2 to 5 months and 20% have 

>5 to 10 months of such impact. The uncertainty in the very high impact group (>90 to 100%) 

is very large with ensembles showing almost no months of impact, while others (16%) have 

>50 to 100 months of high impact.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Screen shot of the sector impacts due to input stream flow uncertainty.  
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While some of the impacts appear to be very high, it should be remembered that this simple 

hypothetical example is based on quite substantial uncertainty in low flows consequent upon 

different assumptions about the impact of afforestation and that all of the users are 

abstracting directly from the river without storage – a high risk water supply option.  

 

The nest step in the development of this approach is to include a simple reservoir water 

balance component within the new program so that allocation from storage (and reservoir 

operating rules) can be included in the analysis. The objective of developing these models is 

not necessarily to create final tools for water resource allocation decision-making, but to use 

them to demonstrate the approach (proof of concept) to using uncertain input information in 

decision-making tools. Ideally, these concepts will then be adopted (and probably adapted) 

for use in existing water resources allocation decision-making methods. 
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5. CONCLUSIONS AND RECOMMENDATIONS  

 

The main objective of the project was to contribute to the incorporation of uncertainty 

assessments in practical water resource decision-making in South Africa. There are three 

main components to this objective. The first is the quantification of realistic levels of 

uncertainty that are as low as possible given the available information (reducing uncertainty). 

The second is the availability of tools to implement uncertainty analysis across the broad 

spectrum of data analysis and modelling platforms that form part of practical water resources 

assessment (including hydrological and water resources yield models). The third relates to 

the issue of using uncertain information in the process of making decisions about the design, 

development or operation of water resources systems. None of these are independent and 

all are associated with the fundamental issue that all of the role players should understand 

the key concepts of uncertainty and that it is a simple fact of life that virtually all of the 

information that we use to make decisions is uncertain, some more than others. One of the 

major challenges in this project as well as the previous WRC supported project on 

uncertainty methods (Hughes et al., 2011), was the lack of understanding of some of the key 

issues, or a lack of appreciation of the importance of uncertainty in all water resources 

decision-making. This was evidenced by the lack of support by both the DWA and the WRC 

for a proposal to undertake a ‘real’ practical demonstration project that emerged from this 

project and which was intended as a partnership between scientific researcher groups, 

consulting engineering service providers and state institutions (DWA) to move ahead and 

identify (and resolve) any further stumbling blocks in the implementation of uncertainty 

principles in practice. Towards the end of this project it was also proposed to launch a 

technology transfer project that would add quantitative uncertainty analysis to the ongoing 

updates to the national water resources assessment projects (WR90, WR2005, WR2012, 

etc., etc.). The proposed cost of this project was a minor fraction of the current and likely 

future costs of keeping the knowledge of available water resources updated at the national 

scale and yet it was not accepted. Clearly there is a long way to go before the concepts of 

incorporating uncertainty into water resources assessments are accepted as being important. 

 

Internationally, the science of hydrology has completely embraced the concepts of 

uncertainty and it is almost impossible to get a hydrological modelling study published in a 

recognized journal unless an analysis of the uncertainties is included. This is largely because 

of the enormous contribution that was made by the IAHS PUB decade (Hrachovitz et al., 

2013; Blöschl et al., 2013; Whitfield et al., 2014). These concepts, and the importance of 

uncertainty in both science and practice, have also been included in the new IAHS decade 

on change in hydrology and society (Panta Rhei: Montanari et al., 2013). While South Africa 
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has a long history of using models for water resources assessments, uncertainty approaches 

are relatively new to the country (Hughes, 2013) and have not been embraced by either 

scientists or practitioners. Pappenberger and Beven (2006) asked many questions about why 

uncertainty approaches were not considered practical, but it would seem that at least in 

South Africa these questions remain unanswered. There has been a tendency to think of 

uncertainty approaches as being in the realm of academic scientists and that they cannot be 

used in practical situations. The result is that many present day water resources allocations 

are made using extremely approximate information and with no attempt to assess how 

potential errors may affect the risks of making certain decisions. The future is even more 

uncertain and many climate change projects conclude that adaptation of some form is 

necessary (Beven, 2011). However, hardly any of these take into account the huge 

uncertainties associated with future climate projections and therefore fail to discuss the 

implications of uncertainty on adaptation decision-making. 

 

This report makes yet another attempt to convince the South African community of scientists 

and practitioners in hydrology that uncertainty assessments are possible, that they can be 

implemented in practice and that it should be possible to incorporate them into decision-

making. 

 

5.1 Reducing uncertainty  

 
The overall conclusion with respect to reducing uncertainty is that there is nothing better than 

good observed data and good understanding for reducing uncertainties. One of the important 

issues is that we have to acknowledge and understand the uncertainties in our observed 

data before we can even begin to think about reducing the uncertainty. Observed data are 

hardly ever perfect and it will always be difficult to quantify climate inputs to models. Even if 

the data are collected accurately they typically refer to a specific point or small area and the 

uncertainty is associated with extrapolation to other areas.  Some new work on quantifying 

rainfall variations (with uncertainty) for the whole of South Africa is being undertaken on 

behalf of the WRC and we look forward to some of these results with great anticipation. Even 

if the rainfall estimates are likely to be only small improvements on our existing data, the 

explicit inclusion of uncertainty is certainly a step in the right direction. This section of the 

report also looked at using MODIS data for constraining the actual evapotranspiration 

outputs (and associated parameter values) of models. While there have been very positive 

reports in some of the literature on the use of the EO data, some of the limited assessments 

reviewed did not return very favourable results and it is clear that MODIS data, while 

potentially useful, should be treated with caution.  
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The final part of the chapter on uncertainty reduction concentrated on two quite detailed 

studies in the Diep River (single sub-catchment) and Caledon River (31 sub-catchments) 

basins. The approach was based on a progressive reduction in uncertainty using as much 

information as is available, some that might be considered ‘hard’ data (stream flow gauging 

stations within the region) and some that is certainly ‘soft’ data (conceptual understanding 

and published information about expected hydrological processes from other areas). Further 

assessments of uncertainty and attempts to reduce it within surface water-groundwater 

interaction studies are included in the companion report on this project (Tanner and Hughes, 

2014). It is important to note that these assessments involve a considerable amount of 

detailed analysis of the simulation ensembles (both parameter space and output results) that 

was mostly carried out using spreadsheets. This is very time consuming and is not practical 

for normal operational model use. One of the options is to develop software that can be used 

to post-process the ensemble data and automatically perform the type of analyses that have 

been done for this study. It can also be noted that performing uncertainty analyses on large 

basins with many sub-catchments is very difficult and confusing. There is simply such a large 

uncertainty space (even without uncertain climate inputs) that resolving the interactions and 

the inter-dependencies is almost impossible. This was identified as a critical area of research 

that needed further investigation for practical uncertainty analyses and the outcomes of that 

research are covered in chapter 3 of the report.  

 

5.2 Uncertainty analysis in practice 

 

A revised approach to including uncertainty in the modelling of large basins with many sub-

areas has been developed and it includes two steps to avoid some of the practical problems 

that were experienced in previous work on this project related to the interpretation and further 

use of uncertain ensemble outputs from the Pitman model. The first step involves the use of 

regional or local (based on observed stream flow data) constraints to limit the parameter sets 

that can be considered behavioural in the simulation of natural (un-impacted) incremental 

flows for each sub-basin. These parameter sets are saved and then used with uncertain 

water use parameters (sampled independently) in the second step of the model when the 

cumulative flows at the outlet of all sub-basins are simulated. As with previous versions of 

the uncertainty model, sub-basins can be grouped and both the natural parameter sets and 

the individual water use parameters structured in a way that allows groups of sub-basins to 

follow patterns of uncertainty that are similar. 

 

One of the advantages of the approach is that where there are high confidence gauged data, 

the constraints can be set with very narrow uncertainty bounds, while in ungauged areas 
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these could be much wider. The approach therefore allows for different levels of uncertainty 

to be included in basins where the hydrological response in some areas is well understood 

and known, but where other areas have much higher uncertainty. 

 

Some additional software has been developed to facilitate the process of matching the 

uncertainty ranges of the natural model parameters to the constraints used in step 1. 

Experience of using this approach thus far suggests that a great deal of care is needed to 

ensure that the constraint bounds are compatible with each other and with the parameter 

bounds. The new software can help to identify the potential problems when less than 2 000 

behavioural ensembles are generated from step 1 for some sub-catchments and this speeds 

up the process of achieving a final result for a whole basin. This approach is also currently 

being applied and further tested in the Great Ruaha River basin in Tanzania by a PhD 

student from the University of Dar es Salaam. Part of this study is looking at the impacts of 

observed stream flow data uncertainties on establishing the constraints used for step 1 of the 

revised approach. 

 

One of the important issues about the practical use of hydrological model uncertainty 

analysis, is the need to link the outputs of the uncertainty version of the Pitman model with 

existing approaches used for water resources yield analysis. The revised approach and 

some new software tools have improved the practical value of the uncertainty assessments 

in the following way: 

• The revised approach ensures that all of the natural incremental flows generated as 

part of the full set of ensembles are behavioural relative to what is known (from 

observed data or regional analysis) about the real catchment responses. 

• The methods have been developed to be compatible with both the traditional approach 

of using stochastic stream flow sequences in the yield model and the emerging 

approach of using stochastic rainfall sequences within the hydrological model. 

• The hydrological model generates many more simulated stream flow ensembles than 

can be typically used within the yield model. A new, fairly comprehensive, model utility 

has been developed that can be used to extract appropriate information from a full set 

of ensembles for use with a water resources system yield model. One of the options in 

this utility program is to be able to generate outputs that either combine parameter and 

stochastic uncertainty or separate them out when stochastic rainfall inputs are 

combined with parameter uncertainty. This was previously identified as a very 

important practical issue by members of the project Reference Group. 

The introduction to the sections of the report on the combination of hydrological model 

parameter uncertainty and stochastic analysis raises some issues about the interpretation of 



100 
 

probability information in yield analyses when different forms of uncertainty are combined. 

The report does not make any firm conclusions about these interpretations and it is 

necessary for these to be resolved through discussions amongst the community of 

practitioners.  

 

The relatively simple yield analyses included in this report are designed to illustrate the 

differences between using stochastic stream flow analysis with uncertainty, combined 

stochastic rainfall and parameter uncertainty and stochastic rainfall uncertainty with separate 

parameter uncertainty. It is apparent that there are differences between the results obtained 

using stochastic stream flow and stochastic rainfall analyses that could be related to the non-

linear transformation of rainfall into runoff. While the statistics of a stream flow time series will 

be preserved during stochastic stream flow generation methods, this may not be the case 

when stochastic rainfall data are used to force a hydrological model. However, this requires 

further investigation on many more catchments and probably a deeper theoretical 

assessment of the differences between using stochastic stream flow and stochastic rainfall 

methods. This project team had neither the resources, nor time, to complete such a detailed 

analysis. 

 

The overall conclusion is that the project has demonstrated that including uncertainty 

analysis as part of the widely used Pitman hydrological model (Hughes, 2013) is a practical 

proposition and that the uncertainty outputs can be successfully linked to existing water 

resources yield models. This statement should be qualified by the consideration that all of the 

research for this project has made use of the IWR’s SPATSIM version of the Pitman model, 

while it is recognized that almost all practitioners use the WRSM2000 software in which 

uncertainty options have yet to be included. It is therefore up to the community of 

hydrological and yield model practitioners to decide how best to proceed into the future. The 

project team have demonstrated the potential, identified some of the likely shortcomings, and 

suggested some ways forward that include possible revisions to computer code and software 

architecture (Tristam et al., 2013). However, it is now up to the user community to respond to 

these initiatives and suggestions. 
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5.3 Decision-making and uncertainty 

 

The final chapter of the report offers some initial ideas about the use of uncertain information 

in decision-making. While this was meant to be a quite important part of the project, the 

project team could not make a great deal of progress because of the lack of interest and 

engagement with key decision makers. However, the Institute for Water Research at Rhodes 

University has initiated an MSc level study at its own cost to review international approaches 

to decision-making in the face of uncertainty and to conduct some pilot studies in the 

Crocodile River basin where other IWR research activities have the potential to offer support. 

Some preliminary results of these studies are presented in chapter 4. 

 

5.4 Final observations and recommendations 

 

Throughout this, and the previous WRC, project attempts have been made to achieve a 

balance between the development of new scientific approaches based on sound hydrological 

principles and international experience with the practical considerations associated with the 

use of models for water resources assessments, planning and management. The degree to 

which these overall objectives have been achieved can only really be measured by the 

impact of the project outcomes on the approaches applied in the future. The techniques that 

have been developed have already been successfully applied by Rhodes University research 

staff and students in studies as diverse as large scale modelling of some southern African 

river basins to smaller scale evaluations of surface-groundwater interactions, climate change 

and development impact assessments. The value of the project results to future hydrological 

research within South Africa has therefore already been demonstrated. Many of the 

principles and results of the project have already been published internationally or presented 

at international conferences.  

 

The report makes a single important recommendation and that is that the hydrological 

science and water resources practice communities within South Africa (including those 

organisations that fund research and practice) start to take the concepts of uncertainty far 

more seriously than they have in the past. 
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 APPENDIX A: LIST OF ABBREVIATIONS 

 
AGIS.  Agricultural Geo-referenced Information System. 

CE  Coefficient of Efficiency (Nash Coefficient): a statistical objective function. 

CV  Coefficient of Variation (Standard Deviation / Mean). 

DWA Department of Water Affairs (formerly DWAF, Department of Water Affairs and 

Forestry). 

EO Earth Observation data (Satellite Imagery, for example). 

EWR Environmental Water Requirements. 

FDC Flow Duration Curve. 

GCM  Global Climate Model or General Circulation Model. 

GIS  Geographical Information Systems. 

GRA II  Groundwater Resource Assessment. 

IAHS  International Association of Hydrological Sciences. 

IPCC  Inter-governmental Panel on Climate Change. 

IUGG  International Union of Geophysics and Geodesy.  

IWR  Institute for Water Research, Rhodes University. 

MAE  Mean Annual Evaporation or Evapotranspiration. 

MAP  Mean Annual Precipitation. 

MAR  Mean Annual Runoff. 

MCM  Million Cubic Metres or m3 * 106. 

ML  Mega Litres or m3 * 103. 

P  Precipitation. 

PDF  Probability Density Function. 

PE  Potential Evapotranspiration. 

PUB  Prediction in Ungauged Basins (an IAHS research programme). 

Q  Stream Flow Discharge 

Q10, Q90 10th and 90th percentage point on a flow duration curve. 

RCM  Regional Climate Model 

SPATSIM Spatial and Time Series Information Modelling. 

SD  Standard Deviation. 

WRC  Water Research Commission of South Africa. 

WR90  Water Resources of South Africa 1990. 

WR2005 Water Resources of South Africa Update 2005. 
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