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EXECUTIVE SUMMARY 
 
In this project, magnetic ion imprinted polymers with high recognition for uranyl (UO2

2+) and 
chromium Cr(VI} ions were prepared for the first time. The prepared magnetic ion imprinted 
polymers were characterised and optimised in the laboratory. They were then applied to 
wastewaters from acid mine drainage and influent from wastewater treatment plant.  

The optimum extraction parameters in batch format for magnetic ion imprinted polymers for 
urany ions were found to be sample pH of 4, 50 mg of magnetic ion imprinted polymers for a 
25 ml sample volume. The optimum contact time was found to be 45 minutes at a stirring 
speed of 1500 rpm. The lower maximum extraction time implies that the magnetic ion 
imprinted polymers have fast binding kinetics. Under these optimum conditions, the recovery 
of urany ions was found to be above 80%. The binding of urany ions on the magnetic ion 
imprinted polymers were found to follow pseudo second order kinetics with rate constant (k2) 
and correlation coefficient (R2) ranging between 0.273-0.678 and 0.9811-0.9992 respectively. 
This implied a chemisorptions interaction of the uranyl ions with the magnetic polymers. The 
adsorption of uranyl ions onto the polymers fitted both Freundlich and Langmuir models. The 
maximum adsorption capacity was found to be around 1.2 mg g-1 which is in the same range as 
other magnetic ion imprinted polymers but lower than other ordinary polymers or imprinted 
polymers without magnetic ions. Despite low binding capacity, the prepared magnetic ion 
imprinted polymers when tested for selectivity were found to have superior selectivity for uranyl 
ions compared to major competitors of Fe3+, Pb2+, Ni2+ and Mg2+ that have similar ionic radius. 
The selectivity order observed was as follows: UO2

2+ > Fe3+ > Pb2+ > Ni2+ > Mg2+. The same 
selectivity and recovery was observed when the magnetic ion imprinted polymers were 
applied to wastewaters from acid mine drainage and influent from wastewater treatment 
plant.  

The optimum extraction conditions for the prepared magnetic ion imprinted polymers for Cr 
(VI) were found to be as follows; sample pH of 4, adsorbent amount of 20 mg for a 25 ml 
sample volume. The extraction time was 40 minutes at stirring speed of 1500 rpm. The low 
extraction time indicates fast binding kinetics of Cr(VI) to the prepared polymers. At 
optimum conditions, the recovery of Cr(VI) was above 80%. The maximum adsorption 
capacity for the magnetic polymers was found to be 6.20 mg g-1. The optimum time for the 
adsorption of the Cr (VI) analyte was determined as 40 minutes at stirring speed of 600 rpm. 
The binding of Cr(VI) on the magnetic ion imprinted polymers were found to follow pseudo 
second order kinetics. This implied a chemisorptions interaction of the Cr(VI) ions with the 
magnetic polymers. The adsorption of Cr(VI) onto the polymers fitted neither Freundlich nor 
Langmuir models. The prepared magnetic ion imprinted polymers were found to very 
selective towards Cr(VI) compared to other ions such as SO4

2-, F-
 and NO3

-. The order of 
selectivity of anions followed the trend: Cr2O7

2- > SO4
2- > F- > NO3

-. 

The prepared magnetic materials may not be suited for remediation of polluted wastewater 
for uranyl and Cr(VI) ions on a large scale because of high cost of preparing them but are 
very good as sample extraction materials before final quantification. This is very important 
because direct analysis of these metal ions from wastewaters is a huge challenge because of 
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other interfering ions. Since the materials can be reused more than six times, this makes them 
cheap materials for sample extraction purposes. Besides, in sample extraction, only few mg 
of material is used ranging from 25-500 mg depending on the sample volume. 
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Chapter One: Background 

 

1.1 Introduction 

One of the most critical global issues is water pollution (Brown, 1996; Ramakrishna et al., 
2006) and it has led to alteration of the physiochemical properties of water (Richardson, 
1988). Pollution of water bodies due to the indiscriminate disposal of heavy metals has been a 
concern for a long time. The rapid increase in the levels of environmental pollution over 
recent decades has resulted in increasing concern for people's well-being and for global 
ecosystems (Kot and Namiesnèik, 2000). Inorganic pollutants of great physiological 
significance are heavy metals (Ramakrishna et al., 2006), because of their toxicity towards 
aquatic-life, human beings and the environment (Qdaisa and Moussab, 2004, Luo et al., 
2011). Pollution due to heavy metals is now seen as a priority (Fu and Wang, 2011). There is 
a lot of evidence in literature that trace back pollution generation to anthropogenic sources in 
the quest for exploiting nature as a source of means of livelihood by man (Agbontalor, 2007). 
Industrialization and urbanization have caused excessive discharge of heavy metals into the 
environment (Khan et al., 2004). 

 Mining industry accounts for major environmental threats in countries like South Africa 
because it has large reserves for several minerals (Ochieng et al., 2010). As an example, 
South Africa is the world's largest producer of ferrochrome which holds about 70% of the 
world’s total chrome reserves, mostly located in the Bushveld Igneous Complex (BIC) ores 
and produces 75% of the world’s ferrochrome. In some cases, platinum group’s metals 
(PGMs) contain chromium as well. The so called Witwatersrand Basin has a lot of gold 
tailing dumps that are source of pollution either from dust particles or from acid mine 
drainage. The issue of AMD is a hot subject in South Africa and is always in the media. This 
is because of the catastrophic effects of AMD on animals, plants and the environment. In 
order to assist the mining industry with the mitigation of AMD, the Department of Minerals 
and Energy (DMR) in South Africa had subsidies for the months of January, February and 
March 2010 worthy R7.5 million. However due to the extent of the problem, this amount fell 
dangerously short of the funds that are necessary to treat AMD. 

 Acid mine drainage (AMD) is highly acidic water, usually containing high concentrations of 
metals, sulphides and salts. AMD have been identified to be the single most significant threat 
to South Africa’s environment. In South Africa, this is being driven home by the AMD 
problems being experienced at the East Rand operations of Pamodzi Gold. Pyrite (FeS2) is 
responsible for starting acid generation. When pyrite is exposed to oxygen and water, it will 
be oxidized, resulting in protons release. Mining increases the exposed surface area of 
sulphur bearing rocks. The oxidation process occurs in undisturbed rocks as well but at a 
slower rate. These wastewaters containing heavy metals such as uranium and chromium are 
directly or indirectly discharged into the environment killing aquatic life  
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(Fu and Wang, 2011). Both uranium and chromium in their hexavalent states are very toxicity 
because they are very mobile and can easily cross the biological membranes. Direct water 
contamination also arises from many other industries such as metal cleaning; metal finishing 
(Luo et al., 2011), textile industry (Halimoon and Yin, 2010) and wastewater treatment plant 
influents. 

The most common remediation techniques in the removal of heavy metals from water include 
chemical precipitation (Pavlović et al., 2007), ion exchange (Mier et al., 2001; Wojtówicz 
and Stokłosa, 2002; Bai and Bartkiewicz, 2009), electrodeposition (Meunier et al., 2006; 
Lewinsky, 2007), membrane technology (Sanga et al., 2008; Ahmad et al., 2011), lime 
neutralization and phytoremediation (Lone et al., 2008; Liao and Chang, 2004; Raskin et al., 
1997). Most of these remediation techniques have got disadvantages such as creating by 
products that are toxic, expensive in terms capital and operational costs and requires 
specialised personnel (Nameni et al., 2008; Luo et al., 2011; Zhan et al., 2011).  

This has led to the search of new techniques and/or materials that can be used for remediation 
of such polluted wastewaters. Most of the research now is focused on new materials that are 
selective and cheap that can be used for removal of metal ions from wastewater streams. 
These materials are usually contained in a large column and wastewater is pumped through 
trapping the target compounds. The trapped metals ions are eluted and the column is 
regenerated for further use. Magnetic synthetic polymeric sorbents are such new materials 
that are currently studied for use in remediation of wastewaters (Zhao et al., 2010; Wang  
et al., 2011; Fan et al., 2012). However, many of the studied magnetic polymers are not 
selective because they are synthesized without a template molecule (Zhao et al., 2010; Wang 
et al., 2011; Fan et al., 2012). The incorporation of a template during polymerisation allows 
to prepare polymers that are highly selective towards the target chemical during use (Oliveira 
et al., 2004). This is because after polymerisation; the template is removed leaving a 
magnetic polymer that has cavities complimentary to the template in size, shape and 
functionality.  
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Chapter Two: Literature Review 
 
2.1 Background on uranium  

The main use of uranium in the civilian sector is to fuel commercial nuclear power plants as 
it is commonly understood as a material storing huge amounts of energy and its only 
commercial application is as nuclear fuel (Sarangi and Beri, 2000). This requires uranium to 
be enriched with the 235U isotope and the chain reaction to be controlled so that the energy is 
released in a manageable way (Uranuim-U). Sarangi and Beri (2000) noted that the growth of 
uranium mining normally follows the pattern of growth nuclear power generation capacity in 
most countries. This relationship of supply and demand of uranium over time is shown in 
Figure 2.1. 

 

Figure 2.1: Supply and demand of uranium. 

Uranium is widely distributed throughout the Earth`s crust and almost all types of rocks 
contain some amount of uranium (Montgomery, 1995). Uranium is also present in river 
water, ground water and even seawater (Sarangi and Beri, 2000). The average uranium 
concentration in the Earth’s crust is approximately 2.7 ppm (Brookins, 1988). Mining is, 
however, done in areas where concentration is high enough to make profit. This is therefore 
restricted to certain areas of various countries and while other countries have very little 
deposit and have to import enriched uranium for energy purposes. Table 2.1 shows some 
reported uranium concentration in different matrices. 
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Table 2.1: Typical concentration ranges in different environmental matrices. 

Matrix 
Typical concentration 

range (ppm) 
Reference 

Soil 0.0-11.7 UNSCEAR, 1993 
Air 2.2 x 10-8-1.0 x 10-7 NCRP, 1999 

Surface water 3.0 x 10-5-2.1 x 10-3 WHO, 2001 
Groundwater 4.0 x 10-5-2.0 x 10-3 WHO, 2001 

Major sources of radioactive waste and contamination emanate from the production of 
electrical power and weapons from nuclear fuels, nuclear weapons’ tests, fuel reprocessing, 
and nuclear accidents (Hu at al., 2010). Other sources of uranium include by-products of 
mining activities of other minerals such as gold and copper (Ginder-Vogel et al., 2006). The 
process of using uranium for nuclear fuels or nuclear weapons generates a lot of uranium 
waste that has always been a problem for long term storage. Every 900 kg of natural uranium 
enriched for nuclear energy purposes contains about 120 kg of enriched uranium and the 
remaining 780 kg is depleted uranium (DU). In order to make a nuclear reaction occur, there 
has to be a greater percentage of the more fissionable 235U in the fuel than occurs in nature. 
The enrichment process converts U3O8 into a gas, uranium hexafluoride (UF6), which enables 
the uranium to be enriched from a 235U content of 0.7% to about 3 to 4%. The enriched UF6 is 
converted back into UO2 and formed into fuel pellets. For weapons grade uranium, this 
content can even go up to much higher levels of 90% 235U. DU is obtained as a by-product in 
the enrichment process of natural uranium. DU is distinguished from natural uranium by 
lower relative concentrations of 0.25 to 0.30% 235U (Bleise et al., 2003). 

2.1.1 Uranium mining as a source of pollution 

Various technologies are available for mining of uranium as summarized in Table 2.2. These 
methods have been changing over time with evolving of new technologies coupled with 
mining challenges arising from reaching deep ores. In 1990, about 55% of world production 
came from underground mining, but this shrunk dramatically to 33% from 1999. ISL mining 
has been steadily increasing its share of the total. In 2010 production was as shown in  
Table 2.2. 

Table 2.2: Methods used in the mining of uranium. 

Method tonnes U % 

Conventional underground 15,095 28 

Conventional open pit 13,541 25 

In situ leach (ISL) 22,108 41 

By-product 2920 5 
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Conventional mining involves removing mineralized ore from the ground, breaking it up and 
treating it to remove the minerals being sought. These causes mine tailing dumps that are a 
source of AMD. On the other hand, ISL involves leaving the ore where it is in the ground, 
and recovering the minerals from it by dissolving it and pumping the pregnant solution to the 
surface where the minerals can be recovered. Consequently, there is little surface disturbance 
and no tailings or waste rock generated as with other methods such as open pit. However, if 
air and water enter the underground ISL and the ore is pyrite bearing, AMD drainage might 
result too. In conventional underground mining where shafts are drilled down the earth to 
reach the ore bearing minerals. The mined ore is taken to the surface for extraction and this 
also creates mining dumps that are a source of AMD. The production of uranium in South 
Africa has generally been a by-product of gold or copper mining. In Africa, gold and uranium 
mining are typically accomplished together, as both methods process large amounts of rocks 
for very small yields. 

2.1.2 Toxicity and fate of uranium 

Uranium atoms decay into other atoms that are also radioactive and commonly called "decay 
products." Radioactivity decay is a spontaneous process and cannot be accelerated or slowed 
down by any chemical or physical means (Montgomery, 2005). Uranium and its decay 
products primarily emit alpha radiation, however, lower levels of both beta and gamma 
radiations are also emitted. Alpha particles travel up to 50 mm in air and only a few microns 
in rocks before being absorbed and this makes them very safe. Beta particles have a travelling 
range of about 3 m in air and about 2 mm in rocks. Gamma rays have a high penetrating 
power and it can take a thick sheet of metal such as lead or concrete to reduce them 
significantly. 206Pb, the last element on the list of uranium decay series is stable and non-
radioactive. It does not decay, and therefore has no half-life. The half live of 238U is about 4.5 
billion years, 235U about 700 million years, and 234U about 250 thousand years. In general, 
235U and 234U pose a greater radiological health risk than 238U because they have much 
shorter half-lives. They decay more quickly and are therefore more radioactive as compared 
to 238U. Naturally occurring uranium contains three isotopes, namely 238U, 235U, and 234U 
(Bleise et al., 2003). Krachler and Carol (2011) noted that the use of uranium needs an 
appropriate knowledge of the isotopic composition of the material considered. Of the 
naturally occurring uranium radioisotopes, 238U is by far the most abundant in terms of mass 
composition with a composition of 99.28% followed by 235U at 0.72% and 234U at 0.006%. 

On average, approximately 90 µg of uranium exists in the human body from which about 
66% is found in the skeleton, 16% in the liver, 8% in the kidneys and 10% in other tissues 
(WHO, 2001). Excessive exposure of uranium and its compounds cause kidney toxicity. This 
exposure can be through breathing air containing uranium dusts or eating substances 
containing uranium, which then enters the bloodstream. Once in the bloodstream, uranium 
compounds are filtered by the kidneys where serious damage can be inflicted at high blood 
concentrations. Virtually all of the observed or expected effects are from nephrotoxicity 
associated with deposition in the kidney tubules and glomeruli damage at high blood 
concentrations of uranium (ranging from about 50 to 150 mg depending on the individual). 
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Studies have shown that uranium causes birth defects in foetuses and infants and that the risk 
of leukaemia is increased. Uranium also mutates human DNA and chromosomes and deforms 
them. Since uranium isotopes mainly emit alpha particles that have little penetrating ability, 
one possible radiological toxicity source can be from some of the radioactive decay products. 
This is indeed the case as it was already proved in the 1920`s that contamination with radon 
(Schnessberger disease), a decay product of 238U, can cause bronchial and lung cancer. For 
these reasons, several research groups have been stimulated, for many years, to investigate 
the chemistry and toxicology of uranium in all its chemical forms in order to assess the 
potential chemical and radiological risk for the environment and human health (Berto et al., 
2011).  

2.1.3 Uranium speciation 

The need to determine different species of trace elements in environmental and biological 
materials is important since the effects or toxicity of an element and its behaviour depend to a 
great extent on its chemical form and concentration (Kot and Namiesnèik, 2000). The 
geochemical speciation of uranium influences its solubility, mobility and biological 
availability in the environment. Geochemical speciation information on uranium has been 
used to evaluate potential in situ remediation approaches (Lovely et al., 1991; U.S. DOE, 
1999; Fredrickson et al., 2000). 

Since the mobility and transport of uranium in soils occurs via water it is of great importance 
to investigate the aqueous chemistry of this element and its speciation in natural waters 
(Berto et al., 2011). Some previous studies already underlined the importance and complexity 
of uranium speciation in ground waters mainly in the context of uranium milling for 
predicting radionuclide migration and for remediation strategies on contaminated sites 
(Teprat et al., 2009). The distribution of uranium ions in aqueous solution is dependent on 
both the solution pH and the total uranium concentration (Kotrba et al., 2011).  

In nature, uranium ions normally occur in tetravalent and hexavalent form. The hexavalent 
form is easily soluble in acidic water (Sarangi and Beri, 2000). In oxygen-containing 
groundwater, uranium is most commonly found predominantly in the hexavalent oxidation 
state, U(VI), (Langmuir, 1978; Sandino et al., 1992; Farrel et al., 1999; Kilislioglu and 
Bilgin, 2003; Ginder-Vogel et al., 2006; Konstantinou, 2007) a highly soluble, mobile and 
therefore troublesome form. In these oxidizing conditions, the uranyl predominates and 
behaves as strong acid in a Lewis acidity scale (Kotrba et al., 2011). Uranyl ions show high 
capacity of interacting with a variety of organic and inorganic ligands to form complex 
species of different stabilities (Kotrba et al., 2011). In systems with high dissolved carbonate 
concentrations, uranyl-carbonate complexes may become dominant (Gascoyne, 1992) and it 
forms soluble carbonate complexes in solution, Figure 2.2 (Langmuir, 1978; Pavel et al., 
2009). These stable dissolved ternary complexes can effectively compete with mineral 
surfaces as "reservoirs" for U(VI) (Grenthe et al., 1992). 

The hydrolysis of the uranyl ions in aqueous solution is significant at high pH values. A 
larger number of uranyl hydroxides, oxyhydrates and uranates are known, but 
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and alcohols, but their limited solubility in non-aqueous solutions has seen a continued 
interest in the development of new chromium(VI) reagents for the effective oxidation of 
organic substrates, especially under mild aprotic conditions. Considering this drawback, new 
polymer supported dichromates based on quaternised polyvinylpyridine were synthesized by 
several groups including that of Tamami and Kiasat (1997). Polymer supported solid phase 
organic reagents have an advantage that excess reagents and by-products can easily be 
separated from the reaction product which is not the case with their monomeric counterparts 
(Sherrington and Hodge, 1988). 

2.2.1 Chromium mining as a source of pollution 

The world has large reserves of chromite estimated to be 12 billion tons. Of this, over 95% of 
the world’s chromium resources are concentrated in Southern Africa and Kazakhstan. The 
world's largest producer of ferrochrome is South Africa having about 70% of the world's total 
chrome reserves. Chromium is normally mined in the form of the mineral chromite 
(Cammarota, 1992). These are mostly located in the Bushveld Igneous Complex (BIC) ores 
covering an area of approximately 12 000 square kilometres. In total, there are 10 mining 
sites around South Africa (Mining industry of South Africa). In total, the combined 
chromium ore reserves exceed 450 million tons, calculated to a depth of 300 metres, with an 
annual production capacity of more than 4 million tons. An estimation of over 200 000 jobs 
and a contribution of over R42 billion in Gross Domestic Product per annum by South 
Africa’s chrome value (www.meraferesources.co.za), underscores the importance of this 
chromium to the nation. 

All of the mining activities of chromium that involves both underground and open pit 
produce a lot of mine tailing dumps that are a source of AMD. The dust particles from these 
mine tailing dumps is a source of air pollution. 

2.2.2 Speciation and fate of chromium in the environment  

Chromium is one of those heavy metals which exist in variable oxidation states of which the 
trivalent Cr(III) and hexavalent Cr(VI) oxidation states are the most common in the 
environment (Toral et al., 2009). The oxidation states of chromium can go from -2 to +6. The 
electron configuration of the element in the ground state is 3d54s1, while that for the trivalent 
state is 3d34so and that for the hexavalent state is 3d°4so. Chromium(III) oxidation state is the 
most stable form of chromium. Energy is required to convert the trivalent state to lower or 
higher states. The negative standard potential (Eo) of the Cr(III)/Cr (II) metal ion couple 
signifies that Cr (II) is readily oxidized to Cr(III), and Cr (II) species are stable only in the 
absence of any oxidant (Kotas and Stasicka, 2000). The reduction potential of Cr (II) is -0.91 
V and that of Cr(III) is -0.74 V (De la Guardia and Morales-Rubio, 2003).

 

Just like other metals, chromium enters the environment as a result of effluents discharged 
from industries (Gómez and Callao, 2006). Once it enters the natural water system, chromium 
exists primarily in trivalent and hexavalent forms (Chen-Jen, 2002). The need to study 
chromium speciation emanates from drastic differences in biochemical properties of Cr(III) 
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depending on concentration and pH (Neagua and Mikhalovsky, 2010; Namasivayam and 
Sureshkumar, 2008; Chanda and Rempel, 1993), Figure 2.4. 

 
Figure 2.4: Species distribution diagram of Cr(III) and Cr(VI) in an aqueous system 
(Hagendorfer and Goessler, 2008). 

According to Toral et al. (2009), the different species of Cr(VI) in aqueous solutions are 
given by equilibrium equations 2.1 and 2.2. 

      HCrO4
-   → H+ + CrO4

2-         K = 3.2 x 10-7
       (2.1) 

2HCrO4
-  → Cr2O7

2- + H2O       K = 33.1  (2.2) 

Changing between the chromate and dichromate requires making the solution acidic or 
alkaline. In acidic solution yellow dichromate is favoured while in alkaline solution, 
chromate blue colour is seen. 

The structures of the chromate and dichromate anions shows that the Cr-O bond lengths are 
166 pm and 163 pm, respectively, and the bridging Cr-O bond is 179 pm, while the Cr-O-Cr 
bond angle is 126o (Shupack, 1991). The structures of these two anionic forms of chromium 
are based on the sharing of a corner of the tetrahedral structure of the chromate ion as 
polymerization proceeds as pH is lowered, (Figure 2.5). 
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Figure 2.5: Structures of the (a) chromate and (b) dichromate anions. 

2.2.3 Health and environmental concerns of chromium 

One of the major causes of environmental pollution is the discharge of various heavy metals 
into the environment through various industrial wastewaters. These include chromium which 
is one of the most toxic and has become a serious health concern (Parka et al., 2005). The 
consequences of ingesting Cr(VI) are severe and will generally occur immediately after the 
incident. However, the likelihood of carcinogenic and cancer effects of oral exposures to 
Cr(VI) are dependent on the doses taken. Ingestion of very high concentrations of Cr(VI) of 
normally greater than 200 mg L-1 by humans can result in gastritis, nephrotoxicity and 
hepatotoxicity (Paustenbach et al., 2003). Because of the reductive conditions in the stomach, 
conversion of ingested Cr(VI) to Cr(III) prior to absorption is limited and this partly explains 
the lack of toxicity at lower pH (De Flora et al., 1987). The respiratory system has a low 
efficiency and capacity in the reduction of Cr(VI). This implies that cells are protected from 
toxic effects. However continual exposure to chromium increases the chances of lung and 
nasal cancer. Owing to the corrosive nature of some chromium(VI) compounds, dermal 
exposure can lead to dermal ulcers and at high doses, systemic toxicity can lead to severe 
effects on the renal, haematological and cardiovascular system or even death. 

2.3 South African regulation on waste and pollution 

The National Environmental Management Act, 1998 (Act 107 of 1998) (NEMA), replacing 
the Environmental Conservation Act, 1989 (Act 73 of 1989), is the principal law through 
which environmental management is practiced and regulated in South Africa. However, 
NEMA is used in association with a lot of other Acts. Examples of these are; the White Paper 
on Integrated Pollution and Waste Management (2000), the National Water Act, 1998 (Act 
36 of 1998), Air Quality Act, 2004 (Act 39 of 2004), Mining and Environmental impact 
guide (2008). The South African Constitution (1996) also stipulates that everyone has the 
right to an environment that is not harmful to their health and well-being. The Consumer 

(a) (b)
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Protection Act, CPA, which came into effect on 1 April 2011 includes the regulation of goods 
and services with actual or potential environmental and/or health impacts. 

The South African government published, in 1999, a National Waste Management Strategy, 
NWMS, which presented a long-term plan for addressing key issues, needs and problems 
experienced with waste management. The 2008 National Radioactive Waste Disposal 
Institute Act provides for the establishment of a National Radioactive Waste Disposal 
Institute which manages radioactive waste disposal in South Africa. The responsibility for 
nuclear waste disposal has been discharged by the South African Nuclear Energy 
Corporation, NECSA. NECSA is a state corporation responsible for most nuclear energy 
matters including wastes and safeguards. The South African Bureau of Standards also sets 
regulation limits of various pollutants in different environmental compartments. 

2.4 Water contamination and permissible limits of U(VI) and Cr(VI) 

Most anthropogenic uranium arises from gold and copper mining (Todorov and Ilieva, 2004). 
Each year, large amounts of AMD containing uranium are leached into river and streams 
(Wang et al., 2011). Further, uranium contamination of groundwater is a widespread 
environmental problem (Riley and Zachara, 1992). Studies on groundwater at some 
contaminated sites have uranium contents up to 50 mg L-1 (Junghans and Helling, 1998; 
Meinrath et al., 2003; Jerden and Sinha, 2003). This value is more than 1600 times larger 
than the US EPA threshold value of 30 μg L-1. Based on the risks posed by uranium and 

chromium, many countries and international organizations have proposed strict levels to limit 
discharge of these into water (Wang et al., 2011). Some of the limits are shown in Table 2.3. 

Table 2.3: Maximum allowable limits of uranium and chromium(VI) in water by different 
bodies. 

Body 
U maximum allowed 

limit (µg L-1) 
Cr(VI) maximum allowed 

limit (µg L-1) 
 

U.S. EPA* 30     50  
Canadaж 20 50  
WHO‡ 20 50  

South Africa˕ ≤ 15 ≤ 7  
* (US EPA, 1999), ж (Health Canada, 1999) and ‡ (Shin et al., 2002), ˕(DWA, 1999) 

South Africa generally has problem of AMD from gold mining activities that also contain 
uranium (Tutu et al., 2009; Bakatula et al., 2012). The dust particles from tailing dumps are 
also blown by wind to nearby places and in the end are washed down into streams and rivers 
by rainfall and these contain uranium and chromium. Radionuclides contained in uranium 
tailings emit 20 to 100 times as much gamma-radiation as natural background levels on 
deposit surfaces. Some researchers have found out that gamma radiation levels decreasing 
rapidly with distance from the pile (Diehl, 2011).  
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2.5 Conventional methods of uranium and chromium removal 

A number of conventional methods have been used for the removal of both chromium and 
uranium in various environmental compartments. However, the conventional methods have 
both advantages and disadvantages. In some cases, disadvantages exceed the advantages as 
seen in Table 2.4. This has therefore led to continued research in removal technologies. 
Current research is focused on improving the existing ones or developing new ones 
altogether. Some of the conventional technologies are briefly discussed below. 

Table 2.4: Advantages and disadvantages of some convectional removal techniques (Wang  
et al., 2010). 
 

 

 

 

 

 

 

 

 

 

 

Method Disadvantages  Advantages 

Chemical 
precipitation 

pH dependence  
Difficult separation  
Adverse effect by chelating agents  
Result in sludges  
Chemical required 

Simple and cheap 

Ion exchange 

Sensitive to particles  
High operational costs  
No selectivity to alkaline metals 
Membrane fouling 

No sludge 
generation  
Pure effluent 
recovery possible 

Membrane 
technology 

Membrane fouling 
Limited life of membrane 
Expensive  
High pressure 

Pure effluent 

Flocculation Chemicals required  
Depend on basin design 

Generate very fine 
particles of 
precipitates 

Flotation Less selective for heavy metals Costly 

Electrodialysis

Takes time  
Large electrode surface area used  
Fouling  
Expensive 

Metal selective 
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2.5.1 Bioremediation  

This is the use microorganisms such as bacteria to remediate polluted environmental 
compartments. For uranium(VI) bioremediation, a possible viable alternative approach is that 
of reducing the soluble and thus mobile U(VI) to relatively insoluble U (IV) which 
precipitates in solution (Lovley et al., 1991; Finneran et al., 2002; Anderson et al., 2003) 
using microorganisms. This can prevent further migration and spread of the uranium 
contamination (Kelvin et al., 2005). Several researchers, like that at Stanford University and 
Oak Ridge National Laboratory (ORNL) have shown that several common types of bacteria 
can be used to convert an unstable form of uranium, U(VI), into a more stable form, U (IV). 
This reduces the environmental and health threat of uranium contamination (Ginder-Vogel  
et al., 2006). 

Numerous common dissimilatory metal reducing bacteria (DMRB) and sulphate reducing 
bacteria (SRB) are known. These include Shewanella, Geobacteraceae, and Desulfovibrio 
species. They couple the oxidation of organic matter and H2 to the reduction of U(VI) 
resulting in U (IV) and the subsequent precipitation of uraninite (UO2) (Gorby and Lovley, 
1992; Fredrickson et al., 2000) a sparingly soluble phase. Figure 2.6 demonstrates how 
Geobacteraceae species can be used to effectively remove uranium from contaminated 
groundwater by reducing soluble U(VI) to the relatively insoluble U(IV) with organic 
compounds serving as electron donors. 

 

 

Figure 2.6: Uranium(VI) reduction driven by microbial respiration (modified from Ginder-
Vogel et al., 2006). 

Polti et al. (2009) provided quantitative information on the reduction of Cr(VI) in soil 
samples by an indigenous actinomycete. Streptomyces sp. MC1. This species, previously 
isolated from sugarcane demonstrated its ability to reduce Cr(VI) in liquid minimal medium. 
Chatterjee et al. (2011) studied the Cr(VI) reduction capability of a bacterial strain 
Cellulosimicrobium cellulans in two environments, of nutrient-supplemented and non-
supplemented. In the former, the bacterial strain was observed to reduce 54.89% Cr(VI) from 
the wastewater. In their study, Mishra et al. (2012) investigated the Cr (VI) resistance in 
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Lactobacillus strains and they also evaluated the reduction of Cr (VI) by the same species. A 
complete bacterial reduction of 32 mg L-1 of Cr (VI) was observed within 6 to 8 hours. 

2.5.2 Permeable reactive barriers (PRBs) 

Permeable Reactive Barriers are trenches or fence-like arrays of non-pumping wells placed in 
the subsurface at depths of up to 45 m to intercept the flow of contaminated ground water 
(Freethey et al., 2002). The fill materials contained within the PRBs react by degrading or 
sequestering the dissolved contaminants. The PRBs act as large in-situ filters for cleaning up 
ground water. Some of the advantages for the use of PRB technologies are that they offer 
lower operating costs, are highly energy efficient and require no surface facilities or ground 
water pumping (Freethey et al., 2002; Morrison and Spangler, 1992; Shoemaker et al., 1995). 
The use of PRBs is a relatively new technology that offers promise to overcome these 
problems encountered with conventional methods such as pump-and-treat which is 
ineffective especially when dealing with large contaminated areas. Two commonly used 
PRBs contaminant-removal mechanisms are: (a) precipitation reactions in which metal 
contaminants are sequestered within freshly formed mineral phases, and (b) oxidative 
degradation of contaminants by particulate iron metal. For PRBs to be cost-effective they 
should be reusable for a longer period of time. They should not be susceptible to clogging or 
rapid passivation by reaction products. 

2.5.3 Chemical precipitation 

Chemical precipitation is a method of wastewater treatment where chemicals are added to 
form particles which settle and remove contaminants. It is a favourable method especially 
when dealing with large volume of matter which contains heavy metal ions in low 
concentration (Eisazadeh, 2008). The solubility of precipitated metal compounds should be 
known for the successful implementation of the chemical precipitation approach. If a metal 
can form an insoluble compound, then the compound can be removed via clarification and 
filtration (Amer, 1998). However, this technique has a disadvantage that it produces a large 
amount of sludge precipitate that requires further treatment (Acheampong et al., 2010). Iron 
mediated reductive precipitation of redox active metal species has been proposed for the 
removal of soluble metals and radionuclides from contaminated ground water (Cantrell et al., 
1995). Cantrell et al. (1995) and Gu et al. (1998), attributed the removal of the soluble 
uranium to reductive precipitation of U(VI) to less soluble U (IV) species and adsorption of 
the uranyl to iron corrosion products. Zero valent iron can reduce uranium species adsorbed 
on its surface (Fiedor et al., 1998). Under anaerobic conditions, the thermodynamics of U(VI) 
reduction by zero valent iron can be described by the following redox couples (Pourbaix, 
1966): 

    UO2
2+ + 2e = UO2

o   E = 0.221 + 0.0295 log [UO2
2+]     (2.3) 

    Feo = Fe2+ + 2e    E = 0.440 - 0.0295 log [Fe2+]     (2.4) 
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Iron can be used to precipitate chromium(VI). However, this is pH dependent as 
investigations of Olazabal et al. (1997) showed. Precipitation equilibria and spectroscopic 
studies of the Cr(VI)/Fe(III)/H2O system have been performed and the identified precipitates 
which existed were FeOHCrO4, FeOHCrO4·2Fe(OH)3 and Fe(OH)3, depending on the pH 
used. Gheju and Balcu (2011) investigated the total removal of chromium from Cr(VI) 
aqueous solutions by reduction with scrap iron and subsequent precipitation of the resulted 
cations with NaOH. Another precipitation reagent is sodium metabisulphite which was used 
by Ramakrishnaiah and Prathima (2012) as reducing agent for the reduction of hexavalent 
chromium to trivalent chromium. Their results showed that total chromium can be removed 
from synthetic and industrial effluents by chemical. 

2.5.4 Ion exchange 

Ion exchange is an exchange of ions between two electrolytes or between an electrolyte 
solution and a complex using solid polymeric or materialistic ion exchangers. Synthetic 
resins have been widely reported to be efficient in removing uranium from contaminated 
groundwater. Pakalns (1980) stated that Chelex-100 resin (a weakly acidic metal-chelating 
resin) conditioned at pH 4.6 separated uranium from fresh and saline waters. Diphonix is also 
a chelating resin that was found to remove uranium from water at near-neutral pH conditions 
(Chiarizia et al., 1997). At low pH conditions, uranium was found to be strongly adsorbed by 
strong-base anion exchange resins (DowexTM 1-X8 and Purolite A-520E) (Gu et al., 2004). 

2.5.5 Phytoextraction 

Phytotechnologies involving use of plants for pollutant removal have gained importance 
during the last two decades. The sequestration of heavy metals in plants is achieved mainly 
by absorption and accumulation mechanisms (Dhir, 2010). Phytoremediation technology 
involving use of aquatic plants can provide an economical and eco-friendly option for 
treating wastewaters containing heavy metals (Dhir, 2010). Many plants have been used for 
the remediation of uranium from soils and aquatic environments and some of them are 
Brassica juncea and Brassica chinensis (Huang et al., 1998), Lemna gibba L. (duckweed) 
(Mkandawire et al., 2004). 

Ipomoea aquatica exhibits uniform absorption characteristics showing over 75% removal of 
added Cr(VI) and this plant was selected due to its easy establishment, tolerance and growing 
easiness. Since in its use it showed no toxicity symptoms, it a potential phytoremediant 
(Weerasinghe et al., 2008). Revathi et al. 2011 successfully used a hyperaccumulator, 
sorghum plant, phytoremediation of chromium metal from polluted soil of Ranipet Tanneries. 

Phytoremediation has many limitations which include death of the plants if contaminant 
concentrations are too high. The toxicity and bioavailability of biodegradation products is not 
always known. The success of phytoremediation may be seasonal depending on location. 
Other climatic factors will also influence its effectiveness. If the plants contain high levels of 
heavy metals, disposal of harvested plants can be a problem. 
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2.5.6 Electrodialysis 

Electrodialysis is a decontamination technique used to transport salt from one solution, the 
diluate, to another solution, the concentrate, by applying an electric current in an 
electrodialysis cell. Inside an electrodialysis unit, the solutions can be separated by alternately 
arranged anion exchange membranes, permeable only for anions and cation exchange 
membranes, permeable only for cations. By this, two kinds of compartments are formed. By 
applying a current, cations within the diluate move toward the cathode passing the cation 
exchange membrane facing this side and anions move towards the anode passing the anion 
exchange membrane. A further transport of these ions, now being in a chamber of the 
concentrate is stopped by the respective next membrane. Zaheri et al. (2010) investigated the 
ability of electrodialysis for continuous removal of uranium from aqueous solutions in a 
bench scale unit. 

2.6 Adsorption techniques 

The shortfalls of the conventional methods have prompted the use of adsorbents as an 
alternative approach. Adsorption techniques are used mainly for metal recovery from dilute 
solutions. Thus, to find out an effective adsorbent that can be used repeatedly to adsorb 
metals is particularly important (Wang et al., 2011). Some of the common adsorbents that 
have been used to remove uranium(VI) and chromium from wastewaters are reviewed in the 
next section. 

Zeolites are hydrated aluminosilicate materials having cage-like structures with internal and 
external surface areas of up to several hundred square meters per gram and cation exchange 
capacities of up to several milliequivalents per kilogram. At least 41 types of natural zeolites 
are known to exist, and many others have been synthesized. Both natural and synthetic 
zeolites are used in industry as adsorbents (Baker et al., 2009). Camacho et al. (2010) used 
clinoptilolite zeolite to remove uranium from groundwater. Mongolian natural zeolite was 
applied to adsorptive removal of hexavalent chromium contained in tannery wastewater 
(Bolortamir and Egashira, 2008). 

Activated carbon with low polar properties is a typical adsorbent commonly used for the 
removal of polar organic material in water and wastewater (Ying et al., 1990). Adsorption 
using commercial activated carbon (CAC) can also remove heavy metals such as Cd, Ni, Cr 
and Cu from wastewater (Demirbas et al., 2004, Ahn et al., 2009). Pellet-600 and PVA-300 
with high mesoporous volumes and surface area were used by Yue et al. (2009) as a low-cost, 
chemically activated carbon materials. Their findings were that these two showed more 
effective removal efficiency of Cr(VI) from water than commercially available activated 
carbons tested. Acharya et al. (2009) activated carbon prepared from Tamarind wood with 
zinc chloride. They also studied the uptake of chromium(VI) on this adsorbent and the results 
indicated effective adsorption of chromium(VI) from aqueous solutions. 

Due to a large surface area, small, hollow and layered structures, carbon nanotubes (CNTs) 
have already been investigated as promising adsorbents (Chen et al., 2009). Extensive efforts 
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have been put in the utilization of CNTs for removal of metal ions. Unlike many adsorbents, 
CNTs possess different features that contribute to the superior removal capacities such as 
fibrous shape with high aspect ratio, large accessible external surface area and well developed 
mesopores (Gupta et al., 2011). Recently, it was shown that magnetic CNTs are very 
promising materials for efficient removal of heavy metal ions from aqueous solutions. 
Magnetic CNTs are composed of metallic cores of the diameter range of 5-100 nm, which are 
completely wrapped in carbon coatings of thickness range 1-5 nm. The carbon coatings 
perfectly isolate the encapsulated nanoparticles. The crystallinity of these coatings is similar 
to carbon nanotubes. The magnetic CNTs-based sorbents are fully mobile as they can be very 
easily moved and separated by external permanent magnets. 

2.7 Magnetic nanoparticles 

One of the most important research and development frontiers in modern science is 
nanoscience (Faraji et al., 2010). Nanoparticle materials have drawn a lot of attention because 
most of their physical properties differ significantly from those of the corresponding bulk 
materials (Franco et al., 2005; Burke et al., 2002; Dimitrov and Wysin, 1994). These 
properties include electrical, optical, magnetic, and chemical properties (Hyeon, 2002). In 
literature, there are many nanoparticles that have been used and they include metals such as 
gold, iron, nickel, platinum, silver, cobalt, semiconductors like cadmium selenite, lead 
selenite, or hybrids like CdSe/Zn selenite (ZnS) (Burda et al., 2005). Among these magnetic 
particles, metal oxides are often preferred over pure metals (Schmidt, 2007: Ramanujan and 
Yeow, 2005) because they are more stable to oxidation. An example of these metal oxides is 
magnetite, Fe3O4.  

These magnetic nanoparticles, have attracted a lot of attention over the past years and have 
found wide applications in many biomedical fields such as bioseparation, site-specific drug 
delivery and magnetic resonance imaging (Pankhurst et al., 2003). Good physicochemical 
properties of magnetic nanoparticles are taken advantage of in order to make full use of them. 
The ideal magnetic nanoparticles are expected to be of high magnetic properties, small size 
with narrow size distribution and superparamagnetic characteristics (Yang et al., 2004). 
Magnetic susceptibility is normally used to characterize magnetic materials and these 
materials can be classified into three main categories namely, ferromagnetic, paramagnetic 
and diamagnetic. In antiferromagnetism, which includes certain metals and alloys in addition 
to some ionic solids, there is a spontaneously alignment of electrons at relatively low 
temperatures into opposite directions throughout the material. This antiparallel arrangement 
implies that there is no net spontaneous magnetization. Iron, Co and Ni are materials 
associated with ferromagnetism, together with their alloys. There are also many other 
materials which exhibit ferromagnetic behaviour. Typical ferromagnetic substances show 
permanent spontaneous magnetization even without external applied fields. For a 
ferromagnetic material, a material specific constant, magnetic susceptibility is greater than 
the susceptibility of paramagnetic or diamagnetic materials. In ionic compounds, such as 
oxides, more complex forms of magnetic ordering can occur as a result of crystal structures. 
One type of magnetic ordering is called ferrimagnetism where the magnetic structure is 
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Figure 2.8: The Hysteresis loop of a superparamagnetic material. 

From the hysteresis loop, a number of primary magnetic properties of a material can be 
determined, and these include coercivity and remanence. In superparamagnetism, 
magnetization does not return to zero and hysteresis behaviour is observed. The intercept of 
the magnetization curve with the flux density (B) axis gives the remanent magnetization, 
while the intercept with the magnetizing force (H) axis gives the coercivity. 
Superparamagnetic materials have high saturation magnetization and zero coercivity and 
remanence which make them distinguishable from ferromagnetism and paramagnetism. 

2.7.3 Magnetite and its magnetic properties 

Among all known iron oxides, magnetite, Fe3O4, presents the most interesting and unusual 
behaviour because of the presence of both divalent and trivalent iron states, Fe2+ and Fe3+, in 
the cubic inverse spinel structure (Daou et al., 2006; Ravikumar and Bandyopadhyaya, 2011). 
Its formula can be written as [Fe3+][Fe3+Fe2+]O4. In stoichiometric magnetite, the ratio of 
Fe3+/Fe2+ = 2. Both Fe2+ and Fe3+ are present in the final product. The magnetic properties 
reflect the splitting of the 5d orbitals, as shown in Figure 2.9 for octahedral and tetrahedral 
coordination of the Fe atoms by oxygen atoms. The small splitting between the two sets of d 
orbitals caused by oxide ligands means that all Fe3+ ions have five unpaired electrons and all 
Fe2+ ions have four unpaired electrons, Figure 2.9. Fe3+ and Fe2+ ions that are in octahedral 
sites are ferromagnetically coupled through a double exchange mechanism. The electrons 
spin of the Fe3+ and Fe2+ in the octahedral interstices are aligned in a parallel manner. 

The hopping of electrons between Fe2+ and Fe3+ ions in the octahedral sites at room 
temperature renders magnetic and metallic properties to magnetite. The Fe3+ ions in 
tetrahedral and octahedral sites are antiferromagnetically coupled through the intervening 
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oxygen atom and their spins are anti-parallel. Thus, the Fe3+ spins in the tetrahedral and 
octahedral sites cancel and what remains are unpaired spins from the Fe2+ ions in octahedral 
sites.  

 
Figure 2.9: Electronic configuration in magnetite. 

2.7.4 Synthesis of magnetic nanoparticles  

Magnetic properties of magnetic nanoparticles can be tailored by their particle sizes and size 
distributions. The particle sizes and size distributions of magnetic nanoparticles are in turn, 
affected by their synthetic routes (Chin et al., 2011). Tartaj et al. (2003) further noted that the 
performance of nanoparticles will be dependent on their chemical and physical 
characteristics. In order to take maximum advantage of those novel properties, synthetic 
protocols are needed in which significant control can be exercised over those parameters 
(Chen et al., 2007). For these reasons, numerous physical and chemical synthesis approaches 
have been developed to produce Fe3O4 nanoparticles in order to obtain the desired properties 
(Chin et al., 2011). Some of these synthetic routes are briefly discussed in the following 
section. 

2.7.4.1 Co-Precipitation 

Co-precipitation is the simplest chemical pathway to synthesize magnetite (Burda et al., 
2005; Laurent et al., 2008). This method has attracted a lot attention as it is environmental 
friendly because the synthesis is carried out in aqueous solutions without using any organic 
solvents under mild reaction conditions at relatively low temperatures (Iwasaki et al., 2009). 
The synthesis involves addition of the ferrous and ferric salts to an aqueous solution followed 
by the addition of a base, equation 2.5, in an alkaline hydrolysis reaction (Finotelli et al., 
2008). A black Fe3O4 precipitate forms upon addition of a base. 
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    Fe2+ + 2Fe3+ + 8OH- → Fe3O4 + 4H2O             (2.5) 

Magnetite can be formed over a wide pH range for given concentrations of Fe2+ and Fe3+. A 
complete precipitation of Fe3O4 is expected in the pH range of 7.5-14 while maintaining a 
molar ratio of Fe2+:Fe3+ at 1:2 under an inert atmosphere. However, under oxidative 
environment, Fe3O4 may be oxidized to other forms of iron oxide as given by the equations 
2.6 and 2.7 (Kim et al., 2003). 

         Fe3O4 + 0.25 O2 + 4.5 H2O  →  3 Fe(OH)3                  (2.6) 

         Fe3O4 + 0.25 O2  →  1.5 Fe2O3                     (2.7) 

 
2.7.4.2 Thermal decomposition 

Highly crystalline and monodisperse Fe3O4 nanoparticles have been synthesized by 
conducting reactions at high temperature (>200oC) through thermal decomposition of 
organometallic precursors in nonpolar organic solvents (Sun et al., 2003; Park et al., 2005). 
Park et al. (2005), performed a thermal decomposition of iron pentacarbonyl, [Fe(CO)5], for 
the preparation of monodisperse γ-Fe2O3 nanoparticles with average diameters in the 
nanoscale range. They achieved this by controlling the molar ratio of [Fe(CO)5] and the 
surfactant, oleic acid. This synthetic route is however unpopular since [Fe(CO)5] is very 
expensive and toxic. Chin et al. (2011) used different concentrations of iron (III) 
acetylacetonate, Fe(acac)3 and varied volumes of polyethylene oxide in a quest to study their 
effects on the particle size of Fe3O4 nanoparticles formed. In their research, Maity et al. 
(2009) proposed a mechanism for solubility of the as-prepared by using surface charges and 
surface coating of the magnetite nanoparticles in aqueous suspension. They also used thermal 
decomposition of Fe(acac)3 in tri(ethyleneglycol).  

2.7.4.3 Microemulsion 

For microemulsion to occur, the mixture system has to consist of an oil phase, a surfactant 
phase and an aqueous phase (Koutzarova et al., 2006). Generally in this method, nano-
particles are synthesized in oil-in-water micro-emulsions by suspending a ferrous salt-
surfactant to a water solution. The magnetic precipitate will then form as soon as a base is 
added to the reaction mixture (Thorek et al, 2006). In water-in-oil micro-emulsions, the 
aqueous phase is dispersed as micro-droplets surrounded by a monolayer of surfactant 
molecules in a continuous non-aqueous (hydrocarbon) phase. The soluble metal salt will 
reside within the aqueous droplets surrounded by the oil (Ha et al., 2008). In this method, co-
precipitation occurs in tiny droplets of water embedded with a surfactant, so-called reverse 
micelles, which are distributed in an oil phase (Makovec et al., 2005). Nassar and Husein 
(2005) subjected FeCl3

 
bulk solid powder to the action of microemulsion formed with sodium 

bis (2-ethylhexyl) sulfosuccinate. Iron chloride was first solubilized in water of the 
microemulsions and then reacted with sodium hydroxide to eventually form the iron oxide 
nanoparticles.  
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2.7.4.4 Hydrothermal synthesis 

Hydrothermal synthesis is a method to produce metal oxide crystals from metal salt aqueous 
solutions by application of heat (Dawson, 1988; Matijevic and Hsu, 1987). For example, 
hydrothermal treatment of iron salt could generate iron oxides when the applied conditions 
are appropriate (Mohapatra and Anand, 2010). 

Hu et al. (2010) developed a hydrothermal method to fabricate sheet-like and pseudo-
octahedral magnetite crystals. NaOH was added to K4[Fe(CN)6] aqueous solution with 
constant stirring. Hydrothermal treatment was done at 160oC after which magnetite 
precipitate was collected. In another study, Togashi et al. (2012) synthesized water 
dispersible magnetite (Fe3O4) nanoparticles in an aqueous environment under high 
temperature and pressure in the presence of 3, 4-dihydroxyhydrocinnamic acid by using a 
tubular flow reactor. Haw et al. (2010) synthesized Fe3O4 nanoparticles by precipitating 
FeSO4·7H2O and FeCl3 in NaOH. However, prior to the addition of a base, dilute HCl was 
used to prevent the formation of other iron oxides. The precipitated black product was 
immediately added into a Teflon-lined stainless steel autoclave which was then placed in a 
furnace at 200oC for 1 h.  

2.7.5 Coating of magnetite 

Due to the van der Waals’ forces and magnetic dipole-dipole interactions resulting from 
residual magnetic moments, unmodified magnetite nanoparticles have a tendency to 
agglomerate and flocculate, Kim et al. (2003), thereby inhibiting the advantages of the 
specific properties by single-domain (Sun et al., 2005). This is also true for ferrofluids which 
are stable colloidal suspensions of single domain ferro or ferrimagnetic particles in a liquid 
carrier (Voit et al., 2001). Among other parameters, Häfeli et al. (2002) noted that surface 
coating and aggregation tendencies can influence the overall magnetic responsiveness of 
magnetic particles. Coating of the magnetite particle surfaces can effectively prevent 
agglomeration and this is achieved by covering the magnetite with a surfactant or coating 
layer. Coating of the ferrofluids enables stabilization of the particles against gravimetrical 
forces and to avoid strong interaction and also agglomeration of the particles (Voit et al., 
2001). 

Selection of the appropriate core and monolayer material will then become critical as each 
layer or coating agent dictates a specific function (Lodhia et al., 2010). There are several 
choices of coating agents which include organosilanes, having C18 or aminopropyl groups, 
polymers (Inoue et al., 1990), biomass, hemimicelles/admicelles of ionic surfactant, alkyl 
carboxylates and many others.  

As already mentioned, these polymeric networks of the coating agents or surfactants 
encapsulate oxide monodomains and hold them apart against clustering together. Apart from 
this, the formation of a polymer layer on the surface of the magnetite nano-particles prevents 
further oxidation (Kim et al., 2003). According to Lee et al. (2003), if not properly coated, 
iron oxide can produce secondary contaminants when it comes into contact with water and 
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These recognition sites mimic the binding sites of biological receptor molecules such as 
antibodies and enzymes (Karim et al., 2005; Haupt and Belmont, 2008). The concept of 
molecular imprinting was first introduced in 1931 and has attracted wide interest from the 
beginning of the 1970s. Organic polymers with predetermined ligand selectivities were 
prepared independently in 1972 by Wulff and Sarhan (1972) and Klots and Takagishi (1972) 
(Park and Seo, 2002). Over decades of research, molecularly imprinted polymers (MIPs) 
have gained more and more acceptance with respect to their application as polymeric 
antibodies in analytical chemistry and separation science (Yu and Lai, 2010). 

The use of MIP sorbents was firstly directed at extracting of organic chemicals from complex 
samples. Pichon and Chapuis-Hugon (2008) and Turiel and Martin-Esteban (2010) have 
reviewed the role of MIPs for selective extraction of various organic compounds. Recently, a 
lot of publications have also been reported on selective extraction of metal ions using ion 
imprinted polymers, IIPs. IIPs are similar to MIPs but they can recognize metal ions after 
imprinting and retain all the advantages of MIPs (Daniel et al., 2005). Roa et al. (2004; 2006) 
have reviewed the metal ion imprinted polymers as novel materials for selective recognition 
of inorganics. Metal ion-imprinted resins which could adsorb the target metal ion from 
weakly acidic solutions were first reported by Nishide et al. (1976). Ion imprinted polymers 
are currently being increasingly explored in many techniques because of many outstanding 
advantages such as predetermined selectivity in addition to being simple and convenient to 
prepare (Metilda et al., 2004). The selectivity of these IIPs comes from the specificity of the 
ligand on the coordination geometry of the ion-template complex, coordination number of the 
ions, charges on the ions and on their sizes (Zhan et al., 2011). The synthesis process of IIPs 
is easy, low-cost and the resulting polymers are stable, versatile and resistant to a wide range 
of pHs, solvents and temperatures (Scorrano et al., 2011). 

2.8.1 Magnetic ion imprinted polymers 

Ion-imprinted polymers cannot be separated rapidly and effectively after treatment from 
polluted water. If the ion-imprinted polymers encapsulating Fe3O4 as magnetic cores could be 
synthesized, the adsorbing polymers would be separated easily by use of external magnetic 
fields replacing the centrifugation and filtration process in a convenient and economical way 
(Zhan et al., 2011; Philippova et al., 2011; Ansell, 2008; Pan et al., 2011). Synthesis and 
properties of magnetic polymer beads constitute a new topic of research rapidly developing in 
the last 15 years. The magneto responsive polymeric beads benefit from the combination of 
features inherent to both their components: magnetic particles and polymers. Magnetic 
separation method is considered rapid and effective as compared to the traditional 
centrifugation and filtration techniques. Synthesis of magnetic polymer beads is generally 
performed in three different ways (Philippova et al., 2011): 

 Synthesis of magnetic particles inside polymer matrix.  

 Synthesis of the polymer in the presence of magnetic particles. 

 Preparation of from pre-formed polymer and magnetic particles. 
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2.8.2 Types of template/monomer interactions 

A crucial step in the synthesis of imprinted polymers is the prearrangement stage. At this 
stage, a complex is formed between the template and a functional monomer or a number of 
functional monomers. This complex is formed through a pre-polymerization reaction. The 
quantity and quality of the imprinted polymer recognition sites relates directly to the function 
of the mechanisms and extent the functional monomer-template interactions present in the 
pre-polymerization mixture (Karim et al., 2005). Depending on the type of interaction 
between functional monomer(s) and template involved in the imprinting and binding 
processes, molecular imprinting can be classified into three different categories (Esfandyari-
Manesh et al., 2011; Turiel and Martín-Esteban, 2010) namely, the covalent, the 
semicovalent or sacrificial spacer and the non-covalent approaches. 

 In the covalent approach, reversible covalent bonds are formed between the template and the 
functional monomer(s). However, this approach is not so popular since it is not easy to come 
up with an appropriate template-monomer complex in which covalent bond formation and 
cleavage are readily reversible under mild conditions. Non-covalent imprinting is based on 
the formation of relatively weak non-covalent interactions between selected monomer(s) and 
template molecule before polymerization. The monomer(s) and template are simply mixed 
together and allowed to interact via self assembly (Cai and Gupta, 2004). Non-covalent 
imprinting approach uses intermolecular forces such as hydrogen bonding, electrostatic, 
hydrophobic interactions, ion pairs, dipole-dipole interactions, and van der Waals forces to 
form template-functional monomer(s) species in solution (Mayes and Whitcombe, 2005). 
This technique of non-covalent approach is most widely used because of the easiness of 
removing the template from the MIP resulting in greater number of affinity sites (Jiang et al., 
2007). The imprinting process in semi-covalent imprinting is approached in the same way as 
the covalent method (Tulla-Puche and Albericio, 2008). However, this approach differs from 
covalent imprinting in that the rebinding step is non-covalent in nature (Qi et al., 2010). 
When the template, covalently embedded in the polymer matrix is removed from the MIP, 
functional groups capable of interacting non-covalently with the template species are left 
behind in the MIP at the cleavage site (Tulla-Puche and Albericio, 2008). 

2.8.3 Polymerization reagents  

There are several factors and reagents that influence polymerization, and hence the 
subsequent performance of the imprinted polymers. These include the nature of monomers, 
crosslinkers, porogen, template, initiator used, method of initiation, polymerization time and 
the dielectric constant of the porogens employed. Some of these reagents are reviewed in the 
following section. 
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2.8.3.1 Functional monomers 

Excess of functional monomers will result in the presence of monomer units that are not 
complexed to templates. These monomers can undergo dimerization on their own. In their 
study to establish the effect of dimerization of the monomers, Zhang et al. (2010) used excess 
methacrylic acid (MAA) and realized that the accessible recognition sites were effectively 
diminished, thereby reducing the efficiency of the imprinting process. This was so because 
MAA has a strong tendency to form hydrogen-bonded dimers (Malosse, et al., 2008; Ansell 
et al., 2008 and Ansell and Wang, 2009). 

Methacrylic acid is the most commonly used functional monomer because it can be used to 
synthesize MIPs of high selectivity for a large number of target molecules. It however fails 
for some targets, and therefore, other monomer combinations need to be found (Lanza and 
Sellergren, 2004). Figure 2.11 shows some other common functional monomers that can be 
used. 
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N

N

N
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CF3
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OH

NH(C2H5)
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N COOH
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2-Vinylpyridine 4-Vinylpyridine 4 (6)-Vinylimidazole

Trifluoromethylacrylic acid

4-Vinylbenzyliminodiacetic acid

N,N`-Diethyl-4-vinylbenzamidin

 

Figure 2.11: Common functional monomers used in imprinted polymerizations. 

2.8.3.2 Cross-linkers 

In order to have a permanent induced memory, the imprinted polymer needs to be rigid 
enough and the polymer needs to be macro-porous so as to allow the template molecules to 
easily diffuse in and out. To satisfy this, 80 mol% of the crosslinking monomer needs to be 
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added as a reagent in the polymerization mixture (Idziak, 2000). Cross-linking monomers 
have two or more functional groups that are able to bind with the polymer chain to form a 
rigid three dimensional structure (Arnold et al., 1999; Moreno-Bondi et al., 2008). The 
control of the morphology of the polymer matrix by cross-linking monomers is found in all 
types of polymer forms. 

Approximately 80-90% of the imprinted polymers are composed of the cross-linking 
monomers and the other 10-20% comprises of other polymerization reagents. Having realized 
this large proportion of the cross-linking monomer in the polymer, Spivak and Sibrian-
Vazquez (2002) directed their focus on the designing of cross-linking monomers for 
molecular imprinting in order to improve the performance of MIPs. 

The most common cross-linking monomers have been EGDMA and DVB, which are 
commercially available. These cross-linking monomers are inexpensive and readily available 
in large quantities. In other applications of imprinted polymers, economic prices 
considerations are of less concern. Instead, cross-linking materials which give the best 
performance are used. Cross-linkers also control the hydrophobicity of the imprinted 
polymers. Hydrophobicity of the polymer is important in imprinted polymers because it 
influences the target analyte mass transfer into the cavity of the polymer. For example, non-
polar analytes require a hydrophobic background. Since diffusion of the porogenic solvent is 
also dependant on the degree of cross-linking, the cross-linking monomers, together with 
their concentrations should be carefully selected in order to give maximum performance. 
Figure 2.12 shows some commonly used cross-linkers. 
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Figure 2.12: Common cross-linkers used in imprinted polymerization. 

2.8.3.3 Initiators  

The initiation step within the polymerization reaction is a two part process in which the 
initiator breaks up into free radicals. These radicals will then attach themselves onto 
monomers, thereby forming monomeric radicals. The cleavage of the radicals is normally as 
a result of subjecting them to heat, electromagnetic radiation or chemical reaction, which will 
homolyse them to radicals with higher reactivity than the monomer radicals. However the 
reactivity must be low enough to allow the initiator radical to react with the monomer.  

Azo and peroxide initiators with bond energies of 105-170 kJ mol-1 are particularly useful in 
this regard and are the mostly used initiators in the synthesis of molecular imprinted polymers 
(Sellergre, 2003). Azoinitiators (R-N=N-R) normally have tertiary R groups that are able to 
stabilize the incipient radicals (Moad and Solomon, 1995).  

2.8.3.4 Porogen 

Most imprinting techniques reported to date have employed relatively apolar and aprotic 
porogens such as toluene or chloroform (Yoshizako et al., 1998). These choices of porogens 
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are clearly useful for obtaining accurate formation of the assembly (Yoshizako et al., 1998). 
In their investigations, Gladis and Rao (2004) found out that the selectivity varies with the 
polarity of the porogen used during polymerization. Uranyl-IIPs prepared in  
2-methoxyethanol porogen gave high retention capacity and selectivity over thorium as 
compared to other porogens which were methanol, tetrahydrofuran, acetic acid, 
dichloroethane, N, N-dimethyl formamide and toluene. 

Haginaka et al. (2008) also investigated the effect and influence of various porogens on the 
performance of the MIPs on the uptake of d-chlorpheniramine. Of the four porogens used, the 
specific surface areas and pore volumes followed the order toluene > phenylacetonitrile > 
benzylacetonitrile > chloroform.  

In general, a low polarity solvent is normally chosen to preserve the interaction between the 
functional monomer(s) and the template during the pre-polymerization reaction. This came as 
an observation that there is a high correlation between the dielectric constant and the 
hydrogen bond donor/acceptor ability of the porogen (Mirsky and Yatsimirsky, 2011),  
Table 2.5. 
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Table 2.5: Examples of porogens used in molecular imprinting preparation and their physical 
properties. 

      
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Mirsky and Yatsimirsky, 2011 

Name 

 
Chemical 
structure 

Dielectric 
constant 
(20oC) 

H-
Bonding 

Toluene 2.4 Poor 
 

Chloroform               

ClCl

Cl 4.8 Poor 
 

Acetone 

O

21.0 Moderate 
 

Acetonitrile    N 36.6 Moderate 
 

Dimethyl sulfoxide   

S

O 47.2 Moderate 
 

Methanol  OH 33.0 Strong 
 

Water  H
O

H 80.1 Strong 
 

*Benzene 2.3 Poor 
 

*Dimethylformamide
H N

O

36.7 Poor 
 

*1-Propanol OH 20.1 Strong 
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2.8.4 Approaches in preparation of IIPs 

2.8.4.1 Cross-linking of bifunctional reagents with linear chain polymers 

In this approach, a linear polymer is formed with one ligand (with two functional groups) 
capable of forming metal-ligand complex. The ligand has functional groups that can help to 
polymerize at the same. A good example is 4-vinyl pyridine. Polymerization is performed in 
the presence of a metal ion in a suitable solvent. The ligand therefore acts both as monomer 
and cross linker forming a linear polymer. Nishide et al. (1976) cross linked poly  
(4-vinylpyridine) with 1, 4-dibromobutane in the presence of metal ions such as Cu(II), 
Zn(II), Co(II), Ni(II), Hg(II) and Cd(II) as templates. The linear polymer can also be made up 
of two different monomers. Both or one of the monomers can act as a ligand for the metal 
ion. Kabanov et al. (1979) is reported to have cross linked a copolymer of diethyl vinyl 
phosphonate and acrylic acid with N, N-methylene diacrylamide in the presence of metals. 
Figure 2.13 shows a typical linear chain polymer from bifunctional reagent. 

 

Figure 2.13: An example of a linear polymer with 4-VP anchored in the polymer matrix. 

2.8.4.2 Chemical immobilization 

In this approach, a vinylated ligand is chemically immobilized in the polymer matrix Figure 
2.14. The ligand is chemically anchored to the cross linked polymer. It is the common used 
method for preparing IIPs (Rao et al., 2006). A new IIP based on chemical immobilization 
has been reported for palladium ions by Rao et al. (2006). The IIP was synthesized by bulk 
polymerization using palladium iodide/thiocyanate-4-vinyl pyridinium ternary ion association 
complex in the presence of 2-hydroxyethymethacrylate and ethylene glycol diamine 
methacrylic acid (Daniel et al., 2006). Along the same lines, platinum IIP has been reported 
(Daniel et al., 2005). Many other IIPs based on this approach have been prepared for metal 
ions such as those of copper (Say et al., 2003), nickel (Ersoz et al., 2004), calcium and 
magnesium (Rosatzin et al., 1991) and zinc (Chen et al., 1997). 
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Figure 2.14: An example of the chemical immobilization approach in IIP preparation (Rao  
et al., 2006).  

2.8.4.3 Surface imprinting 

This approach involves emulsion polymerization using a functional monomer, an emulsion 
stabilizer, a polymer matrix forming co-monomer and print template. It is thus specific to 
emulsion polymerization. It is called surface imprinting because the microspheres are allowed 
first to form but before they are fully swollen, a metal ion is added to achieve complexation 
with ligand on the surface and then polymerization proceeds at room temperature. After 
polymerization, the template is removed which results in polymeric resins with functional 
groups on the surface giving recognition sites with preferential rebinding potential for the 
template ions. Surface imprinting is also called water-in-oil or oil-in-water emulsion IIPs. A 
number of IIPs have been reported for various metal ions such as Cu(II), Ni(II) and Co(II) 
(Tsukaghoshi et al., 1993; 1995; Yu et al., 1992; Okubo et al., 1987; Watanabe and Bunseki, 
1977). It is however not as popular as chemical immobilization approach. Figure 2.15 shows 
an example of the preparation using this approach. 
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Figure 2.15: An example of surface imprinting approach in IIP preparation (Uezu et al., 
1998). 

2.8.4.4 Trapping 

This is a method that involves a vinylated and non vinylated chelating agent (Rao et al., 
2006). Polymerization results in chemical bonding of the vinylated ligand as in chemical 
immobilization. However, the non-vinylated ligand does not have any polymerizable groups 
and is just trapped inside the polymer matrix. This method is also very common. Perhaps it is 
as common as chemical immobilization. Many IIPs have been prepared for various ions such 
as those of dysprosium (Biju et al., 2003), erbium (Kala et al., 2004), neodymium 
(Gopikrishna et al., 2005), uranium (Gladis and Rao, 2003; 2004), palladium (Daniel et al., 
2003; 2004), mercury (Liu et al., 2005), etc. Figure 2.16 shows the example of the 
preparation using this approach. 
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polymerizations have been used (Rao et al., 2004; 2006). Table 2.6 gives a summary of the 
various polymerization techniques that have been reported. Various types of polymerization 
are briefly discussed below. 

Table 2.6: Summary of some reported IIPs and polymerization techniques used. 

Template
Polymerization 

approach 
Polymerization 

technique 
Reference 

Cu(II) 
Chemical 

immobilization 
Suspension Qi et al., 2008 

Cr(III) 
Chemical 

immobilization 
Suspension Birlik et al., 2007 

Pb(II) 
Chemical 

immobilization 
Suspension Zhu et al., 2009 

Hg(II) 
Chemical 

immobilization 
Suspension Wu et al., 2007 

CH3-Hg 
Chemical 

immobilization 
Suspension 

Buyuktiryaki et al., 
2007 

UO2
2+ 

Chemical 
immobilization 

Bulk Preetha et al., 2006 

UO2
2+ Trapping Suspension 

Sadeghi and Mofrad 
et al., 2007 

Zn(II) 
Surface 

imprinting 
Emulsion Uezu et al., 1998 

Cd(II) 
Surface 

imprinting 
Emulsion Fang et al., 2005 

2.8.5.1 Bulk polymerization 

Presently, most MIPs are synthesized by the classical bulk polymerization method (Pérez  
et al., 2000). The formed bulk polymers will then be crushed, ground and sieved to obtain 
particles mainly in the 25-50 μm size range (Pichon and Chapuis-Hugon, 2008). Grinding of 

the polymers normally produce particles that are irregularly shaped, polydisperse and usually 
include a large portion of fine particulate materials which are of no real use. Extensive 
sieving and sedimentation is done to achieve a narrower size distribution and to remove fine 
particles (Wang et al., 2006). With all the steps involved, it is evident that bulk 
polymerization is time consuming, labour-intensive and wasteful as well since only 30-40% 
of the ground polymer is recovered as useable material. A polymer yield of useful particles 
can be even as low as 20% (Brüggemann et al., 2000). 
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2.8.5.2 Precipitation polymerization 

The main difference between bulk polymerization and precipitation polymerization is in the 
amount of the volume of the porogenic solvent used (Mohajeri et al., 2011). The key point in 
precipitation polymerization is the use of a porogen in which the monomers are soluble in it 
but the resulting polymers are not (Biffis et al., 2012). 

2.8.5.3 Suspension polymerization 

Suspension polymerization is an important process in industrial polymerization practice 
(Polacco et al., 2000). In aqueous suspension polymerization systems, one or more monomers 
are dispersed into droplets. This is normally achieved by rapid stirring as well as addition of 
small amounts of water-soluble dispersing agents (Kalfas et al., 1993). The size of the 
monomer droplets can be controlled by adjusting the stirring speed. Oil soluble initiators are 
normally used and the polymers are produced inside the drops in the same manner bulk 
polymers are produced (Brooks, 2010).  

The function of the stabilizers in suspension polymerization is to hinder the coalescence of 
the functional monomer(s) droplets and of the formed polymer particles whose tendency to 
agglomerate may become critical when the polymerization has advanced (Kalfas et al., 
1993). Wang et al. (2006) used liquid paraffin as a dispersing agent. Water and liquid 
perfluorocarbon have generally been used as an aqueous continuous phase and an organic 
phase respectively (Wang et al., 2006). 

The temperature that is normally used for suspension polymerizations is usually in the range 
of 40-90oC under atmospheric pressure or it can be elevated to around 160oC but at elevated 
pressure since operation must always be below the boiling point of the continuous phase 
(Kalfas et al., 1993).  

2.8.5.4 Emulsion polymerization 

Emulsion polymerization is a unique chemical process widely used to produce waterborne 
resins with various colloidal and physicochemical properties (Büttiker et al., 2011). 
Dvorakova et al. (2010) synthesized nanosized MIP particles by non-aqueous emulsion 
polymerization. Their motivation was that the standard emulsion polymerization for MIP 
synthesis of using water disrupts the functional monomer-template interactions. This is owing 
to the strong polarity and high hydrogen bonding capability of water. Ultimately, the 
efficiency of the imprinting process is greatly reduced. In Pickering emulsion, dispersed 
liquid droplets are stabilized by solid particles instead of conventional surfactants. The 
stabilizing particles are located at the interface between the two immiscible liquids, thereby 
preventing coalescence. She et al. (2011) used SiO2 as stabilizing particles. 

2.8.6 Application of imprinting technology 

Synthetic molecularly selective receptors such as MIPs and IIPs find a widespread 
application in many areas of science as depicted in Figure 2.18. A particularly promising 
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application of IIP is in solid phase extraction, SPE, where it is used to pre-concentrate and/or 
separate target species from other co-existing ions from complex matrices (Daniel et al., 
2005). Not much has been reported for use of these materials for environmental remediation. 
MIPs as sorbents with better selectivities than those of traditional SPE adsorbents have 
recently been introduced as novel adsorbents for the extraction and clean-up of target 
compounds from various matrices such as wastewater or river water samples (Ersöz et al., 
2004; She et al., 2010). 

 

Figure 2.18: Scheme outlining the main applications envisaged for MIPs and IIPs, adapted 
from Sellergren and Allender, 2005. 

In polymeric sorbents, the chelating functionality usually consists of some type of mono-,  
bi-, or polydentate moieties with donor groups contain atoms like nitrogen, oxygen and 
sulphur. A review of some recent synthetically-prepared polymeric sorbents obtained by 
immobilizing a particular type of chemical moiety on magnetic materials is presented in 
Tables 2.7. Some polymeric sorbents have high capacity. The higher capacity of the sorbent 
is very important in applications to real samples. This is because of possible competition for 
adsorption with other anions such as SO4

2- for Cr(VI) (Pakade et al., 2011). High capacity of 
the polymer allows the Cr(VI) to still being extracted in the presence of such competitors. 
The situation could be different for selectivity polymers such as ion imprinted polymers 
where even with low adsorption capacity is still capable of binding target metal ion (Pakade 
et al., 2011). However, even in such selective polymers, the cavities might still be large 
enough to allow co-extraction of other competitors like F- (Pakade et al., 2011). 

The synthetic polymeric sorbents or modified natural sorbents in theory should have high 
selectivity and fast mass transfers kinetics because the final functional groups of the sorbents 
are tailored to bind target metal ions. However, in many reported publications, selectivity 

Therapeutics
Drug delivery
Oral absorbers
 Blood purification
 Therapeutic monitoring

Chemical sensors

Environmental analysis

Bioanalysis

Analytical separations (SPE)

Preparative separation
 Enantiomer separations
 Scavengers

Enzyme-like catalysts

Drug discovery
 Library screening tools
 Library screening tools



 

40 
 

studies are often not done and this makes it difficult to compare performance on this aspect. 
The equilibration time seem to depend on the actual sorbent and not the type. However, on 
average, synthetic polymeric sorbents and modified natural sorbents seem to have low 
equilibration time (20-60 min), thus with fast mass transfer kinetics. Most sorbents, 
regardless of the type, work best in acidic pH of the sample. This is perhaps expected 
especially since Cr(VI) is negatively charged so a sorbent with positively charged functional 
groups is needed for this metal ion. Most of these functional groups are amine based and 
therefore work best in acidic media that favours the positive charge on the functional group 
(Zhao et al., 2010). Duranoglu et al. (2010) observed the reduction of Cr(VI) to Cr(III) 
during the adsorption of the former onto activated carbon derived from acrylonitrile-
divinylbenzene copolymer at sample pH of 2. This might not influence the overall adsorption 
if the formed Cr(III) is also adsorbed by the sorbent. For sorbents that are selective for 
Cr(VI), this reduction process could lower the amount adsorbed.  

Most application of the prepared sorbents is to remediate polluted wastewaters such as acid 
mine drainage water where the pH of such wastewaters is generally acidic (Pakade et al., 
2011). Most reported polymers are therefore very suitable for application to such polluted 
wastewaters. The only disadvantage is that at such low pH, samples have also high 
concentration of Fe3+ and SO4

2- which are the major competitors for adsorption with uranium 
and Cr(VI), respectively (Pakade et al., 2011; 2012). Duranoglu et al. (2010) studied the 
various anionic competitors (Cl-, NO3

-, SO4
2-, PO4

3-) during the adsorption of Cr(VI) onto 
activated carbon derived from acrylonitrile-divinylbenzene copolymer at sample pH of 2. 
Factors that influence adsorption of these competitors include size, charge and hydration 
degree. In their study, Duranoglu et al. (2010) experienced a maximum fall in adsorption of 
Cr(VI) by the sorbent owing to PO4

3-. The reason for this is that PO4
3- has more negative 

charges and is also polyatomic with similar molecular dimensions and consequently same 
hydration degree (Duranoglu et al., 2010). Cl- has similar charge to Cr(VI) but has higher 
charge density due to the small molecular dimensions. However it has higher hydration than 
HCrO4

-. Cl- had therefore the least influence on adsorption of Cr(VI) on the sorbent. In the 
pH range of 1-6, chromium ions coexist in forms of Cr2O7

2-, HCrO4
-, Cr3O10

2- and Cr4O13
2- of 

which HCrO4
 - is the most dominant while at higher pHs, CrO4 

2- and Cr2O7 
2- are the most 

dominant species (Garg et al., 2007). 
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Table 2.7: Polymeric sorbents for the removal of U(VI) and Cr(VI) from environmental 
samples. 

Sorbent Target 
Binding 
capacity 
(mg g-1) 

Equilib
rium 
time 
(min) 

Initial 
pH 

Reference 

Ion-imprinted chitosan 
composite magnetic 
microspheres 

U(VI) 9 30 3.5 Wang et al., 2011 

3-Aminopropyl 
triethoxysilane on silica 
coated Fe3O4 

U(VI) 26 30 4.0 
Sadeghi and 

Aboobakri, 2012 

Magnetic Fe3O4-SiO2 
composite particles 

U(VI) 52 16 6.0 Fan et al., 2012 

Magnetic poly-(MA-DVB) 
graft dendrimer 
microspheres 

Cr(VI) 232 12 3.0 Wang et al., 2012 

Biofunctional magnetic 
beads 

Cr(VI) 7 480 1.0 Li et al., 2008 

Magnetic poly-(GMA-
EGDMA) 

Cr(VI) 138 120 2.0 
Bayramoglu and 

Arica, 2008 
Ethylenediamine on Fe3O4 
magnetic polymer 
 

Cr(VI) 137 
 

30 2.5 Zhao et al., 2010 

Ethylenetriamine on Fe3O4 
magnetic polymer 
 

Cr(VI) 
150 

 
30 2.5 Zhao et al., 2010 

Triethylenetetramine on 
Fe3O4 magnetic polymer 
 

Cr(VI) 
204 

 
30 2.5 Zhao et al., 2009 

Tetraethylenepentamine on 
Fe3O4 magnetic polymer 
 

U(VI) 370 30 2.5 Zhao et al., 2010 

Tetraethylenepentamine on 
Fe3O4 magnetic polymer 
 

Cr(VI) - 60 2.0 Yao et al., 2012 

N, N`-bis (3-
methoxylsalicylidene)-1,2-
phenylenediamine on 
Fe3O4  
 
 

U(VI) 94 360 2.0 
Zhang et al., 

2012 
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2.8.7 Concluding remarks 

It is clear from a review of remediation technique that current available technologies have got 
limitations especially for treating acid mine drainage because of extreme pH, high amounts of 
other anions (e.g. sulphates) and cations (e.g. Iron). Efforts are being devoted to improving 
the traditional techniques or developing new techniques. One area that is currently exploited 
is the use of large columns packed with appropriate sorbent for trapping target chemicals in 
acid mine drainage water. The problem with is finding new materials that can withstand harsh 
conditions such as extreme pH of acid mine drainage and that is selective towards the target 
chemicals. Traditional silica columns cannot without extreme pH conditions and are not 
selective. Normal linear or branched polymers that are insoluble in water are not selective but 
can withstand extreme pH conditions. The so called smart polymers especially based on 
molecularly imprinted polymers are a potential alternative because they are selective and can 
withstand extreme pH conditions. In order to avoid parking these sorbents as in columns that 
has got problems of flow blockage, alternative set-ups are required. One possible approach is 
holding these sorbents using a strong magnet in a flow system. For this to be feasible, one 
need to prepare magnet ion imprinted polymers instead of normal ion imprinted polymers. 
The project thus focused on preparing magnetic ion imprinted polymers for Cr(VI) and 
U(VI). In literature, many polymers that been prepared that can trap Cr(VI) or U(VI). 
However, very little has been done on preparing magnetic ion imprinted polymers for these 
metal ions. Further, few literature that is available never carried out a detailed study on the 
selectivity of such materials or application to acid mine drainage. This is very important for 
feasibility studies of the potential application of these materials. The reusability of such 
materials is also not demonstrated especially under extreme conditions of acid mine drainage. 
During leaching of the template from the prepared polymer, the magnetite can also be 
leached out and no detailed documentation of this is available including best possible 
leaching solutions. This project tried to fill some of the gaps in magnetic ion imprinted 
polymer materials mentioned above. 
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Chapter Three: Research Aims

 

3.1 Aims 

The aims of the project were as follows: 

a) To prepare magnetic nano composite materials based on molecularly imprinted polymers 
specific for chromium(VI) and uranium(VI). 

b) To characterize the prepared magnetic nano composite beads in order to understand their 
morphology and functional groups. 

c) To study the binding, capacity and selectivity of the prepared magnetic nano composite 
beads for chromium(VI) and uranium(VI) in deionised water, acid mine drainage and 
wastewater treatment plants influent. 

d) To discuss of the results with relevant stakeholders such as the mining industry. 

e) To apply for provisional patent on the synthesis of magnetic nano composite beads for 
Cr(VI) and uranium(VI)  

3.2 Key questions 

1. Can the synthesized nano-magnetic IIPs be used in the remediation and recovery of 
U(VI) and Cr(VI) from wastewaters? 

2. Is the adsorption of U(VI) and Cr(VI) onto synthesized nano-magnetic IIPs selective? 

3.3 Significance of the research  

Most methods of adsorption of metal ions in wastewaters are non-selective. In this study, 
effective and selective removal of U(VI) and Cr(VI) from acid mine drainage and wastewater 
using nano-magnetic IIPs was established. The preparation and use of magnetic materials for 
remediation of polluted wastewaters is a relatively new field. The South African mining 
sector has huge problems with polluted wastewaters. The potential use of selective sorbents 
based on magnetic materials is therefore of interest. 

3.4 Hypothesis 

Nanomagnetic-ion imprinted polymers can be used to selectively remove U(VI) and Cr(VI) 
from wastewaters and the polymers removed from the solutions by application of an external 
magnetic field. The performance of nano-magnetic IIPs is better than that of nano-magnetic 
NIPs in the uptake of uranium and chromium from wastewaters. 
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3.5 Novelty 

Although the technology of smart polymers based on molecularly imprinted polymers is now 
well known, preparation of magnetic ion imprinted polymers for U(VI) and Cr(VI) is still 
very scarce (Wang et al., 2011). 

This study is therefore one of the first ones that has made attempt to prepare smart polymers 
for U(VI) and Cr(VI) that are magnetic. Further, this study carried out a detailed study on the 
selectivity of the prepared magnetic ion imprinted polymer which has rarely been done in 
previous studies (Li et al., 2008; Bayramoglu and Arica, 2008 Zhao et al., 2010; Wang et al., 
2011; Fan et al., 2012).  

3.6 Scope and limitations 

The project attempted to prepare magnetic selective polymers for chromium(VI) and uranium 
using molecular imprinting technology in order to try and fulfil the project aims. The 
synthesis of the magnetic ion imprinted polymers was made by modifying some of the 
existing procedures from literature. The modified procedures are therefore new in the sense 
that there is very little literature on the magnetic ion imprinted polymers for the studied metal 
ion complexes. Magnetite was prepared, coated with anchoring ligands and then 
polymerization for the formation of ion imprinted polymers was performed in the presence of 
coated magnetic nano particles. The final magnetic ion imprinted polymers were 
characterised and optimised for the binding of these metal ions in deionised water and real 
samples. Objectives a, b and c were thus fulfilled. The study even went further to study the 
binding kinetics of the prepared magnetic ion imprinted polymers.  
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Chapter Four: Materials and Methods 
 

4.1 Chemicals, stock solutions and equipment 

4.1.1 Chemicals  

For the synthesis of magnetite, FeCl2∙4H2O and FeCl3∙6H2O, of analytical grades supplied by 
Sigma Aldrich (Steinheim, Germany) were coprecipitated in the presence of NH4OH from 
Sigma Aldrich (Steinheim, Germany). Methanol, from Sigma Aldrich (Steinheim, Germany), 
was used for washing magnetite.  

For the synthesis of the magnetic polymers, the following chemicals were used: ethylene 
glycol dimethacrylate (EDGMA), methacrylic acid (MAA),  
1,1`-azobis(cyclohexanecarbonitrile), salicylaldoxime (SALO), 4-vinylpyridine (4-VP),  
2-methoxyethanol as well as surfactants for coating magnetite,  
γ-methacryloxypropyltrimethoxysilane (γ-MPS) and oleic acid (OA) all purchased from 
Sigma Aldrich (Steinheim, Germany). The imprint, uranyl nitrate (UO2(NO3)2·6H2O) was 
bought from BDH Chemical Ltd, (Poole, England). All other chemicals used were of the 
highest analytical grades and were from Sigma Aldrich (Steinheim, Germany). The leachants 
used for uranyl removal were HCl and NaHCO3 all from Sigma Aldrich (Steinheim, 
Germany).  

Deionized water was prepared from Millipore instrument (Massachusetts, USA) and was 
used in preparation of all aqueous solutions. Analytical grade solutions from Merck 
(Darmstadt, Germany) were used to prepare different buffers systems for pH optimization 
and adjustments: for pH 1 and 2, HCl/KCl was used, Na2HPO4/citric acid was used for pH 3, 
CH3COOH/CH3COONa was used for ph 4, 5 and 6, borax/H3BO3 was used for pH 7, 8 and 9.  

4.1.2 Stock solutions  

A uranium(VI) stock solution was prepared by dissolving an appropriate amount of uranyl 
nitrate hexahydrate in one litre of deionized water with 0.05% (v;v) HNO3. Stock solutions of 
1000 mg L-1 (for selectivity of Cr(VI)-magnetic ion imprinted polymers) were prepared by 
dissolving the following appropriate amounts of dried salts in 1 L volumetric flasks:  
NaF, NaNO3, KH2PO4, Na2SO4 and Na2Cr2O7∙2H2O. All salts were purchased from Sigma 

Aldrich (Steinheim, German). A 1000 mg L-1 stock solution of chromium(VI) was prepared 
by dissolving an appropriate amount of sodium dichromate, Na2Cr2O7 (analytical reagent 
grade) in deionized water. Working solutions were prepared daily from the stock solution 
through serial dilutions. The stock solution was stored at 4°C when not in use. 
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4.1.3 Equipment 

All pH measurements were performed on a 766 Calimatic pH meter equipped with a Shott 
N61 pH electrode from Knick (Berlin, Germany). In batch adsorption studies, a Laser 
Photo/Contact Tachometer DT-1236L from Lutron (Taipei, Taiwan) was used to measure the 
rotational speed of the magnetic stirrer. A Fritsch pulveriser (Idar-Oberstein, Germany) was 
used to crush the synthesized bulk polymers for homogenization.  

4.2 Analytical and characterization equipment 

All instruments used in this study for quantification and determination of analytes (U(VI) and 
Cr(VI)) in solution as well as characterization of U(VI) and Cr(VI) magnetic ion imprinted 
polymers and other materials are briefly described below. 

4.2.1 Ultraviolet visible (UV-vis) spectroscopy)  

A Varian Cary 50 Conc, UV-Vis spectrophotometer with a Varian Cary 1E double beam 
spectrophotometer (Palo Alto, CA, USA) scanning from 200 to 750 nm was used for obtaining 
UV-Vis absorption spectra.  

4.2.2 Raman spectroscopy 

Raman spectra were acquired using a Jobin-Yvon T64000 Raman spectrograph from Wirsam 
Scientific (Pty) Ltd (Johannesburg, South Africa) operated in single spectrograph mode and 
the 514.5 nm of an argon ion laser as the excitation source. An Olympus BX40 microscope 
attachment was used to focus the incoming light on the sample and the backscattered light 
was dispersed via a 600 lines mm-1 grating onto a liquid nitrogen cooled CCD detector for 
acquisition via LabSpec v 4.18 software. 

4.2.3 Transmission electron microscopy (TEM) 

A FEI TECNAI SPIRIT (TEM-EDS) electron microscope (Eindhoven, Netherlands) was 
used. Approximately 0.2 g of the powdered samples where put in eppendorf tubes where  
1 mL of methanol was added. The mixtures were then sonicated for 15 minutes. After this, an 
aliquot was drawn and applied to a Cu grid coated with carbon film. For the excess liquid to 
dry, the grids were placed on the Whatman filter paper for about 5 minutes. These were then 
loaded into the TEM microsope where they were viewed under an electron microscope. 

4.2.4 Size distribution 

Because of their ultra small size, the actual diameter of each particle cannot be measured 
precisely, hence the use of particle size distribution. To achieve this, the size diameters for 
both the uncoated magnetite and the γ-MPS coated magnetite were done on the respective 
TEM micrographs by use of the image j, a public domain image processing program. 
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4.2.5 Powder X-ray diffraction (PXRD) analysis  

A crystallographic study was performed on a synthesized iron oxide powder by a D2 Bruker 
Powdered X-ray Diffractometer (Karlsruhe, German), using Cu Kα radiation (= 1.5418 Å). 
The positions and the intensities of the peaks are used for identifying the underlying structure 
(or phase) of the material. The particle sizes of the magnetic nanoparticles were deduced 
from PXRD using Scherrer equation which can be written as in equation 4.1: 

 

Where D	ഥ  is the mean size of the ordered (crystalline) domain, which may be smaller or 

equal to the grain size, k is shape factor, λ is the wavelength of the radiation corresponding to 

the Cu Kα peak, β is the full-width at half maximum (FWHM) and θ is the Bragg`s angle. 

The factor 57.3 is used for conversion of β from degree to radians. The Scherrer equation is 
limited to nano-scale particles. It is not applicable to grains larger than about 0.1 μm. 

4.2.6 Brunauer, Emmett and Teller (BET) analysis 

Surface area, pore volume and pore size were determined for both the uranyl-imprinted 
magnetic polymers and the control polymers. The effect of 1 mol dm-3 HCl and  
1 mol dm-3 NaHCO3 leachants on surface area formation was also investigated. An amount of 
0.2 g of each of the above samples was degassed in N2 at 150oC for 4 hours prior to analysis 
with the Micromeritics Flow Prep 060 instrument (Aachen, Germany). After the degassing 
stage, surface area, pore volume and pore size were determined at -196oC. This was achieved 
through N2 adsorption and desorption using the Micromeritics Tristar surface area and 
porosity analyzer. BET is the commonly used gas sorption model which extends the model of 
gas sorption to multi-layer. It is normally solved graphically by plotting 1/[v(p/po)-1] versus 
p/po. The BET specific surface areas of the polymeric adsorbents are calculated from the 
corresponding isothermal adsorption of nitrogen within the partial pressure range of 5% to 
35% (p/po) by use of the BET equation 4.2: 

       

 

 
Where p is adsorbate pressure, po is adsorbate vapour pressure and v is adsorbed volume vm is 
monomolecular layer volume and c is a quantity related to heats of adsorption and 
liquefaction. These two constants can be calculated from the slope, s, and the intercept, i, 
through use of equations 4.3 and 4.4. 
 
 
 
 

D = 	57.3kλ
βCosθ  (4.1) 

(4.2) 
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4.2.7 Fourier-transformed infra red (FTIR) 

Fourier-transformed infra red spectra were recorded in the frequency range of 400-4000 cm-1 
using a Bruker FTIR spectrometer, Model Tensor 27 (Ettlingen, Germany) and the spectra 
were recorded in the solid state. This technique is useful in the identification of functional 
groups in a sample. 

4.2.8 Thermo-gravimetric analysis (TGA) 

Thermogavimetric analysis for the prepared materials was performed with Perkin Elmer Pyris 
1 TGA Thermogavimetric Analyser (Massachusetts, USA) using nitrogen as the purge gas, at 
a flow rate of 20 mL min-1 and a heating rate of 5oC per minute from 0-1000oC. This 
technique was used to investigate changes in a sample weight as the heating temperature was 
changed. These changes are usually associated with weight loss resulting from dehydration or 
decomposition of the sample as the temperature increases. About 0.05 g of the sample was 
used for the thermal gravimetric analysis.  

4.2.9 Carbon, hydrogen, nitrogen and sulphur (CHNS) analysis 

A LECO-932 CHNS analyser from LECO Corporation (Michigan, USA) was used to 
determine the amount of carbon, hydrogen and nitrogen in the organic moiety which coated 
the magnetite. The products of combustion in CHNS analysis are CO2, H2O, N2 and SOx, 
though depends on composition. High temperature combustion was used as the means of 
removing the elements from material. Samples (2 mg) were weighed into tin boats, 
compressed and encapsulated into capsules and taken to sample loading and then dropped 
into the furnace. The sample was combusted in the heated oxygen rich environment. 
Programmable control of the direct oxygen jet injection during high-temperature combustion 
guaranteed complete combustion. The gaseous combustion products were purified, separated 
into their components by special adsorption traps, and sequentially analyzed with universally 
used thermoconductivity detector (TCD). Calibration was performed with corn gluten for this 
CHNS test. 

 (4.3) 

(4.4) 
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4.2.10 Diffuse reflectance spectroscopy (DRS)  

Varian Cary 500 UV-Vis-NIR spectrophotometer using a diffuse reflectance attachment from 
SMM Instruments (Johannesburg, South Africa) was used in the scanning range of 200 to 
1000 cm-1. In DRS, different types of iron oxides exhibit different colours. These differences 
are the basis for distinction to some extent among Fe oxides. The analysis of corresponding 
DRS can be used to identify and characterize different types of iron oxides.  

4.2.11 Atomic force microscopy (AFM) 

Atomic force microscopy was applied to study pore formation in the polymer from the study 
of the images of the samples before and after leaching of the uranyl ions. A Veeco/Digital 
Instruments Dimension 3100 Scanning Probe Microscope (Santa Barbara, USA) was used in 
AFM-tapping mode.  

4.2.12 Ion chromatography (IC) analysis 

Metrohm 762 Compact Ion Chromatograph (Leonberg, Germany) with a Metrosep A Supp 5 
(6.1006.520) 150 × 4.0 mm analytical column was used for the determination of fluoride, 
nitrate, sulphate and phosphate anions. The eluent solution was of the composition of 1.0 mM 
NaHCO3 and 3.2 mM Na2CO3. The eluent was pumped at 0.7 mL min-1. The suppressor 
solution was 50 mM H2SO4 and deionized. All the solutions, including eluents used were 
degassed by ultrasonication and filtered through a 0.45 μm filter paper before being used in 
the IC. 

4.2.13 Inductively coupled plasma-optical emission spectrometer (ICP-OES)  

ICP-OES from Spectro Genesis End-on-plasma Spectro Analytical Instruments (Pty) Ltd, 
(Johannesburg, South Africa), was used for the determination of the metals’ concentration in 
multi-elemental solutions with parameters shown in Table 4.1. 
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Figure 4.2: The heating programme for uranium in the graphite furnace. 

 

4.3 Synthesis of the magnetic IIPs and NIPs  

4.3.1 Synthesis of the magnetite 

Synthesis via the co-precipitation of ferrous and ferric salts in an alkaline medium (Thorek et 
al., 2006) was used. A volume of 180 mL of an aqueous solution containing 11.2 mmol Fe3+ 
and 5.6 mmol Fe2+ was heated to 50oC. After heating, 12.5 mL of ammonia was added under 
vigorous stirring. After 30 min, the reaction was heated and kept at 90oC for 30 min again. 
An inert atmosphere of N2 was used for the whole experiment. After completion of the 
reaction, the black precipitate was collected by an external magnetic field, washed with water 
and ethanol and dried under vacuum. 

4.3.1.1 Coating of magnetite with γ-MPS 

In this study γ-methacryloxypropyltrimethoxysilane (γ-MPS) was used as a coating agent. 
This was chosen because of its physio-chemical properties. γ-MPS have the hydrophobic 
olefinic end which ushers a platform for polymerization.  

Kan et al. (2010) approach was used to modify the magnetic nanoparticles with a double 
bond. In this method, 4 mL γ -MPS was added dropwise into the mixture of solvents of 
ethanol and water (1:1, v/v) containing dispersed Fe3O4 nanoparticles and the reaction was 
carried out for 12 h at 40oC under N2 gas. Then the product was separated and washed by 
ethanol for several times and dried under vacuum. In these conditions, the methoxyl groups 
are firstly hydrolyzed to produce the hydrophilic silanol groups which directly covalently 
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bond with the hydroxyl groups around the magnetite. On the other end of the γ-MPS, there is 
a hydrophobic olefinic group which ushers a platform for polymerization with the monomers 
during polymer preparation stage. 

4.3.1.2 Coating of magnetite with oleic acid 

An amount of 1.0 g Fe3O4 particles was dispersed in 200 mL ethanol under ultrasonication, 
and then 5 mL oleic acid was added dropwisely into the above mixture under stirring at 80oC 
for 1 h. The oleic acid coated Fe3O4 particles were isolated by application of an external 
magnetic field and washed with water and ethanol to remove redundant oleic acid (Zhao  
et al., 2010). 

4.3.1.3 Bulk polymerization 

The polymers were synthesized according to the method  of Singh and  Mishra (2009) with 
some modifications. Ion-imprinted polymers were prepared by thermal polymerization. The 
imprint ion (0.270 g) was complexed with 2 mM salicylaldoxime (SALO) and 2 mM  
4-vinylpyridine (4-VP) in 10 mL of 2-methoxyethanol in which 2 g of the functionalized 
magnetite was suspended. The above ternary complex solutions were then mixed with 
12 mmol of methacrylic acid (MAA), 36 mmol of ethylene glycol dimethacrylate (EGDMA) 
and 50 mg of 1,1`-azobis(cyclohexanecarbonitrile). The polymerization mixture was cooled 
to 0oC and purged with N2 for 10 min, sealed and thermally polymerized in an oil bath at 
80oC while stirring for 3 h. The bulk polymers were dried at 70oC to remove the solvent 
(porogen). The polymers were then washed with ethanol, then ethanol and water mixture with 
increasing amounts of water until only water was used, Table 4.2. Finally, the resulting 
polymer was then ground and sieved to obtain the ion-imprinted polymers in the size range of 
27 and 53 μm. Magnetic NIPs were prepared likewise except that the imprint ion was not 

included. 

Table 4.2: Volume composition of the polymer washing solution. 

Wash number 1 2 3 4 5 

Ethanol (mL) 10 6 5 4 0 

Water (mL) 0 4 5 6 10

 

4.3.1.4 Precipitation polymerization 

In precipitation polymerization, the same protocol for the bulk polymerization was followed 
except that the volume of the porogenic solvent, 2-methoxyethanol, was increased ten-fold to 
100 mL. 

4.3.1.5 Leaching of γ-MPS and OA based polymers 

An amount of 3 g of the magnetic polymer (from bulk and precipitate) was transferred to a 
250 mL volumetric flask upon which a 100 mL of 2 mol dm-3 HCl was added. The mixture 
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was stirred gently for 6 hours, after which filtration was done under vacuum. The filtrate was 
retained for metals analysis. A freshly prepared HCl leachant, with the same concentration 
and volume as above, was added to the magnetic polymer. This procedure was repeated for 
three more times.  

A second leachant, 1 mol dm-3 NaHCO3 was used in the same way as HCl leachant. Leaching 
of the oleic acid functionalized magnetite was done in the same way as γ-MPS based 
polymers but only 1 mol dm-3 NaHCO3 was used. The magnetic NIPs were subjected to the 
same treatment.         

4.3.2 Optimization of parameters for U(VI) uptake 

Sample pH, magnetic polymer amount, contact time and initial U(VI) concentration were 
optimized. Optimization of was achieved by varying one parameter while keeping the others 
constant. All experiments were carried out in triplicates. The influence of these parameters 
was evaluated by calculating the extraction efficiency or recovery as shown in  
equation 4.5: ۳ܖܗܑܜ܋܉ܚܜܠ	ܡ܋ܖ܍ܑ܋ܑ܎܎܍	(%) = (۱૙ି	۱܍)ܗ۱ 	× 	૚૙૙ 

Where: Co (mg L-1) is the initial concentration and Ce (mg L-1) represents the final 
equilibrium concentration after adsorption. 

The adsorption capacity, q (mg g-1), is defined as mass of substrate bound on a gram of 
adsorbent. Equation 4.6 shows the mathematical equation for the calculation of the adsorption 
capacity in which Co (mg L-1) and Ce (mg L-1) are as described for in equation 4.5 and V (L) 
is the volume of the sample solution and the mass of the adsorbent is given as W (g) (Zeinali 
et al., 2010; Kumar and Kirthika, 2009; Maarof and Hameed, 2004). 

  

4.3.2.1 Effect of sample pH  

In this study, 2 mg L-1 of uranium solutions were prepared from a 1000 mg L-1 stock solution 
in 8 volumetric flasks. In order to investigate the effect of sample pH, the uranium solutions 
were adjusted between pH 2-9 and 25 mL of these were then transferred to 30 mL vials 
where 20 mg of an adsorbent (magnetic IIP and NIP) were added. After this, the uranyl-IIP 
mixture was allowed to equilibrate with stirring at 1500 rpm for 45 minutes. The loaded 
magnetic-IIPs were then separated from the mixture by application of an external magnetic 
field and the filtrate analyzed for uranium content. All adsorption experiments were carried 
out at room temperature. 

q	 = (C0 − Ce)VW  

(4.5) 

(4.6) 
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4.3.2.2 Effect of the amount of magnetic polymer  

Adsorption was carried out in a series of 30 mL vials at room temperature. Each vial was 
filled with 25 mL of an initial concentration of 2 mg L-1 solution of uranium. An optimized 
sample pH was used. The added magnetic polymer mass was varied between 10 to 100 mg. 
After stirring the solution for 45 minutes at 1500 rpm, separation of the magnetic polymers 
was achieved by use of a magnet. The solution was then analysed for uranium content from 
which the amount adsorbed on the polymer was calculated. 

4.3.2.3 Effect of contact time  

In order to establish the optimum contact time and adsorption kinetic behaviour of the 
magnetic polymers, adsorption of uranium onto the magnetic polymers was investigated at 
various time intervals (10-90 min).  

The initial concentration of uranium was kept constant at 2 mg L-1. The optimized amount of 
the polymer was added into 25 mL uranium solution. This mixture was then mixed at room 
temperature under a stirring speed of 1500 rpm. After adsorption, the polymers were 
separated from aqueous phase by use of an external magnetic field and the supernatant 
analyzed for uranium. Mass balance was then used to calculate the amount of uranium 
adsorbed onto the polymer. All adsorption experiments were carried out at room temperature. 

4.3.2.4 Effect of initial uranium concentration  

Adsorption was carried out in a series of 30 mL vials at room temperature. Each vial was 
filled with 25 mL of uranium solution of five varied initial concentrations ranging from  
0.5-10 mg L-1. The pH and amount of the magnetic polymer used were those optimized. After 
stirring the solution for the optimum period of time at 1500 rpm, separation of the magnetic 
polymers was achieved by use of a magnet. The solution was then analysed for uranium 
content from which the amount adsorbed on the magnetic polymers was calculated. 

4.3.2.5 Selectivity of the magnetic polymers 

Stock solutions (1000 mg L-1) were prepared by weighing out an appropriate amount of the 
salts, namely: U(NO3)2·6H2O, Ca(NO3)2·6H2O, Mg(NO3)2·6H2O, Pb(NO3)2, Ni(NO3)2·6H2O 
and Fe(NO3)3·9H2O by dissolving them in de-ionized water. The pH adjustments were 
conducted using an appropriate buffer system that gave maximum adsorption capacity in 
section above. The working standard solution was obtained by serial dilution of the stock 
solution. For selectivity studies, a binary metal solution was made from 2 mg L-1 of U(VI) 
and of another metal ion. Aliquots of 25 mL of these binary metal solutions were transferred 
to 30 mL vials where the optimized weight (50 mg) of the magnetic IIP was added. A batch 
adsorption experiment was then performed at room temperature for a prescribed time of 45 
minutes at 1500 rpm. Separation of the polymers was then carried by application of a 
magnetic field. The metals remaining in solution were then quantified with ICP-OES but 
uranium was quantified with GFAAS. The respective magnetic NIP was used for the control 
experiment. 
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The distribution coefficients, Kd, of UO2
2+, Mg2+, Fe3+, Ni2+ and Pb2+ were calculated using 

equation 4.7: 
 Kd	 = 	 (Co − Ce)VCo W  

  
 
Where: Kd is the distribution coefficient (L g-1) and the other variables are as described for 
equations 4.5 and 4.6. Equation 4.8 was used to calculate the selectivity coefficients for the 
binding of a uranyl ion in the presence of other competing ion in a binary system: 
 K =	Kd(UO22+)Kd(B)  

 
 

Where: K represents the selectivity coefficient and B represents U(VI) competing ions 
mentioned above. The value of K gives an indication as to how selective the polymer is for 
U(VI) ions in the presence of other competing species in solution. If K = 1, it means 
competing ions and uranyl ions are bound equally. A large value of K is therefore preferred 
indicating that the magnetic polymer favours uranyl ions.  

Another important parameter is the relative selectivity coefficient, K’, which represents the 
enhanced effect of imprinting on selectivity and adsorption affinity for the template onto the 
polymer. The K’ of the magnetic-IIP against the magnetic-NIP was calculated using equation 
4.9: 
 K′ =	 KIIPKNIP  

 

Where: KIIP and KNIP are the selectivity coefficients of the IIP and NIP, respectively. 

4.3.2.6 Reusability of the magnetic uranyl IIPs 

In order to test the stability and reusability of the magnetic imprinted polymers, a 25 mL 
uranyl solution with an initial concentration of 2 mg L-1 was exposed to 50 mg of the 
magnetic polymers. After 45 min of extraction and equilibration, the aqueous solution was 
filtered and the magnetic polymer particles were transferred to another sample vial. After 
filtering the mixture, the filtrate was analyzed for U(VI) content while the magnetic polymer 
residues were regenerated by leaching out uranium with 25 mL of 1 M HCl solution at a 
stirring rate of 1500 rpm at room temperature for 45 min. These magnetic polymers were then 
used for the next rebinding studies. 

4.3.3 Kinetic modelling 

Kinetic modelling is important in order to gain insight into the mechanism and rate 
controlling steps affecting the kinetics of adsorption. 

(4.7) 

(4.9) 

(4.8) 
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Adsorption data can be modelled using the Elovich equation, Intraparticle diffusion Weber-
Morris kinetic model, the film diffusion model according to the Reichenberg equation, the 
film diffusion model according to Vermeulen’s approximation, pseudo-first order or pseudo-
second order models. The last two are the most widely used models for the adsorption of a 
solute from aqueous solution and were the ones used in this research. 

4.3.3.1 Pseudo-first-order kinetic model 

The pseudo-first-order kinetic model is given by: dqtdt = 	 k1	(qe − qt ) 
 

Where: qt (mg g-1) is the amount of adsorbed metal ion on the adsorbent at time t (min), 
qe (mg g-1) the amount adsorbed at equilibrium and k1 (min-1) is the rate constant of first-
order adsorption. 

After integration between boundary conditions t = 0 to t and qt = 0 to qe, equation 4.10 
becomes: 

log	(qe −	qt	) = 	 log qe − k12.303 t
 

Where: qe and k1 can be determined from the intercept and slope of the plot, respectively. A 
plot of log (qe – qt) against t gives a straight line and the constants qe and k1 are obtained from 
the intercept and gradient respectively. 

4.3.3.2 Pseudo-second-order kinetic model 

Pseudo-second order mode is applied when the applicability of the first-order kinetics 
becomes unattainable. It is based on the sorption capacity of the solid phase. The equation of 
pseudo second-order is given in the equation below. 
 dqtdt = 	 k1(qe − qt)2 

 

Where: k2 is the rate constant of second-order model. For boundary conditions t = 0 to t and 
qt = 0 to qe, equation 4.12 becomes: tqt = 1k2qe2 + 1qe t 

 

The plot of 
 versus t should give a straight line if pseudo-second-order kinetic model is ܜܙܜ

applicable and qe and k2 can be determined from the slope and intercept of the plot, 
respectively. 

(4.11) 

(4.10) 

(4.13) 

(4.12) 
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4.3.4 Adsorption isotherm models 

Equilibrium relationships of how adsorbates interact with the adsorbent materials are 
generally described by adsorption isotherms. These adsorption isotherms are important for 
optimization of the adsorption mechanism pathways, expression of the surface properties and 
capacities of adsorbents (El-Khaiary, 2008; Thompson, 2001). In literature, there are many 
adsorption isotherms which include models like Langmuir, Freundlich, Dubinin-
Radushkevich, Temkin and BET but the first two still remain the two most commonly used 
adsorption isotherm equations (Kinniburgh, 1986). The applicability of the isotherm 
equations is judged by the value of their correlation coefficients, R2 and is also used in order 
to understand the extent and degree of favourability of adsorption (Treybal, 1981). 

4.3.4.1 Freundlich isotherm model 

The Freundlich model is an empirical equation which assumes that the adsorbent has a 
heterogeneous surface composed of adsorption sites with different adsorption potentials. The 
model equation is as follows: 

qe = KfCe1n  
 

Where: qe (mg g-1) is amount adsorbed at equilibrium and Ce (mg L-1) is the equilibrium 
concentration. Kf (L g-1) and n are equilibrium constants and Freundlich coefficients which 
are temperature dependent and are related to adsorption capacity and intensity, respectively. 
The linearized form of the Freundlich sorption isotherm is: 
 

    

lnqe = 	 lnKf + 1n lnCe 
 

A plot of lnqe versus lnCe gives a linear graph where coefficients Kf and n can be 

calculated from the intercept and slope respectively; 
૚ܖ is an indicator of adsorption 

effectiveness. The Freundlich coefficient, n, should have values in the range of 0 < n < 1 for a 
favourable adsorption reaction. 

4.3.4.2 Langmuir isotherm model 

The Langmuir equation is based on a kinetic approach and assumes a uniform surface, a 
single layer of adsorbed material and constant temperature. The model is useful when there is 
a strong specific interaction between the surface and the adsorbate so that a single adsorbed 
layer forms and no multi-layer adsorption occurs. It also assumes that the surface is 
homogeneous. The Langmuir isotherm can be expressed by the equation: 

qe	 = 	 qmbCe1 + bCe  

 

(4.14) 

(4.16) 

(4.15) 
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Where: qe (mg g-1) is the substance amount of adsorbate adsorbed per gram of the adsorbent, 
qm (mg g-1) is the maximal substance amount of adsorbate per gram, b (mg-1 dm3) is the 
adsorption constant, Ce (mg dm-3) is the equilibrium concentration of the adsorbate in 
solution. The linearized form of the Langmuir equation becomes: 1qe	 = 	 1qmbCe + 1qm  

 

A plot of 
૚܍ܙ versus 

૚۱܍ gives a straight line and the constants qm and b are obtained from the 

intercept and gradient respectively. 

4.3.5 Sampling sites 

The performance and potential future application of the magnetic U(VI) IIPs on the removal 
of hexavalent uranium from wastewater samples in the presence of other competing metal 
ions was tested on two types of waters. These were the acid mine drainage from Germiston 
and the treated wastewater effluent from Goudkoppies Wastewater Treatment Plant in 
Soweto. The sampling sites from which the real waters were sampled from are shown 
encircled in red in Figures 4.3 (b) and 4.4 (b). The Germiston area is located in the Central 
Rand area and is part of the Witwatersrand Basin where some 70 different ore minerals have 
been identified in the conglomerates. The most abundant ones include pyrite (FeS2) and 
uranite (UO2). This site is near an old gold mining tailings dump that underwent reprocessing. 
The other sampling site, Goudkoppies Wastewater Treatment Plant treats domestic and 
industrial wastewater from the City Centre and South-Eastern areas of Johannesburg before 
being discharged to a stream that eventually flows into Klip River. Raw water treatment at 
Goudkoppies involves several stages; among them are degritting, digestion and chlorination.

(4.17) 
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4.3.6 Application of magnetic U(VI) IIPs to real water samples 

The samples were collected, treated and stored according to published procedures (Parks  
et al., 2004) and before the application of magnetic IIPs to real water samples, analysis of the 
metal content in these samples was performed with ICP-OES in triplicate. The pH and 
conductivity of solutions were measured in the field. The extraction of U(VI) from real water 
sample was then carried out in batch mode.  

Mine decant sample from Germiston was buffered at pH 4 and divided into three 150 mL 
portions, which were spiked with 0, 5 and 10 mg L-1 of uranium solution. In triplicate, 25 mL 
of each sample was contacted with 20 mg of magnetic IIP particles while stirring at room 
temperature for 45 min. The uranium adsorbed on magnetic IIP particles was then leached 
out with 20 mL of 3 M HCl solution at a stirring rate of 1500 rpm at room temperature for 45 
min. All solutions were then filtered through a 0.45 μm filter paper and analysed for uranium 
content using ICP-OES.  

Goudkoppies wastewater was buffered at pH 4 and divided into four 25 mL portions which 
were spiked with 0, 1, 5 and 10 mg L-1 uranium. These solutions were then subjected to the 
same treatment as the AMD water sample from Germiston (described above). 

4.4 Synthesis of imprinted polymers for Cr(VI) recovery 

4.4.1 Synthesis of magnetic poly (4-vinylpyridine) 

Prior to the synthesis of poly (4-vinylpyridine), the monomer 4-vinylpyridine was distilled at 
65oC to remove the inhibitor, hydroquinone (Berkowitz et al., 1958). 

An amount of 2.5 mg of γ-MPS-coated magnetite was added to a volume of 28 mL of the 
distilled 4-vinylpyridine. This mixture was then transferred to a 50 mL volumetric flask to 
which 50 mg benzoyl peroxide was added with magnetic stirring. The flask was then placed 
into an oil bath at 85oC for 2 hours and then the temperature was elevated to 135oC where it 
was maintained for an hour. The whole reaction was performed under an inert atmosphere of 
nitrogen. The polymerization was then stopped by cooling it to 0oC. All the unreacted  
4-vinylpyridine monomers were removed by washing the poly (4-vinylpyridine) with 35 mL 
of methanol. The free bulk poly (4-vinylpyridine) polymer was recovered by heating off the 
methanol solvent by use of Rotavapour II (Buchi, Switzerland).  

4.4.2 Synthesis of poly (4-vinylpyridine) 

The synthesis of non magnetic poly (4-vinylpyridine) followed exactly the same procedure 
for the synthesis of poly (4-vinylpyridine) except that γ-MPS-coated magnetite was not 
added.  
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4.4.3 Preparation of magnetic and poly (n-propyl-4 vinylpyridinium) bromide 

Quaternization of magnetic and non-magnetic poly (4-vinylpyridine) was achieved by 
refluxing 11.34 g of magnetic and non-magnetic poly (4-vinylpyridine) in 40 mL of DMF 
with a slight stoichiometric excess of 1-bromopropane (10 mL). These reactions were carried 
out for 42 hrs at 60oC.  

4.4.4 Preparation of magnetic and non-magnetic poly (n-propyl-4-vinylpyridinium) 
dichromate 

Magnetic poly (n-propyl-4-vinylpyridinium) bromide was dissolved in 50 mL of DMF 
containing 0.34 g of dissolved sodium dichromate. This solution was stirred at room 
temperature for 2 hours. Magnetic poly (n-propyl-4-vinylpyridinium) dichromate was then 
obtained by driving off the excess solvent by use of a rotary vapour. The corresponding 
magnetic NIP was similarly synthesized except that the dichromate imprint was excluded. 

4.4.5 Leaching of chromium 

After polymerization has ceased, the synthesized magnetic IIPs and NIPs of chromium were 
ground and sieved to a particle size range of 27-53 μm range. The particles were then washed 
repeatedly with de-ionized water to remove all unreacted pre-polymerization reagents. The 
imprinted chromium was then removed by stirring 5 g of the magnetic polymers in 100 mL of 
1 M HCl for 6 hours. Magnetic IIP and NIP particles were filtered through a 0.45 μm filter 
paper where the filtrate was analyzed for chromium content and the residue was subjected to 
the a fresh HCl leachant for the same period of time. This cycle was repeated several times 
until the chromium content detected in the filtrate was almost zero.  

4.5 Optimization of parameters for Cr(VI) uptake  

4.5.1 Effect of initial pH of Cr(VI) solution  

The effect of pH on the adsorption of Cr(VI) onto the magnetic IIP and NIP was investigated 
in the pH range of 2-8. This was achieved by stirring 25 mg of the polymer particles at a 
stirring speed of 600 rpm in a 25 mL solution of Cr(VI) with initial concentration of 5 mg L-1 
for 60 min at room temperature. After 60 min, the solution was equilibrated for 10 min 
followed by filtration and the chromium content was then determined by FAAS.  

4.5.2 Effect of the amount of the magnetic polymer  

After adjusting the pH of the sample solution to pH 4, a batch adsorption was carried out in a 
series of 30 mL vials at room temperature. Each vial was filled with 25 mL of an initial 
concentration of 5 mg L-1 chromium solution. The added magnetic polymer mass was varied 
between 5 to 120 mg. After stirring the solution for 60 minutes at a stirring speed of 600 rpm, 
separation of the magnetic polymers was achieved by use of a magnet. The solution was then 
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analysed for chromium content from which the amount adsorbed on the magnetic polymer 
was calculated. 

4.5.3 Effect of contact time on chromium(VI) adsorption  

The effect of contact time on the extraction of Cr(VI) was investigated by stirring 20 mg of 
magnetic IIP and NIP at room temperature in a solution containing 25 mL of 2 mg L-1 of 
Cr(VI) at a fixed pH. The time intervals investigated were 5, 15, 45, 60 and 90 min. After 
each stirring time, the Cr(VI) amount was determined as described earlier.  

4.5.4 Effect of initial concentration of chromium(VI) on its uptake 

The effect of 25 mL of various initial Cr(VI) concentrations (2, 5, 8 and 10 mg L-1) on the 
adsorption removal efficiency by magnetic IIP and NIP was investigated by stirring the  
20 mg of the magnetic polymers at room temperature. The initial pH of the solutions was 
adjusted to that optimized above. After 45 min. the mixture was filtered and the filtrate was 
analyzed for Cr(VI) content with the FAAS. 

4.5.5 Selectivity studies on the adsorption of Cr(VI) by magnetic IIP 

Four point calibration standards were prepared from a mixture of four anions, namely,  
F-, NO3

-, SO4
2- and PO4

3-. The concentrations used were 1, 5 and 10 and 20 mg L-1. Selective 
adsorption of Cr(VI) onto magnetic polymers was investigated by means of binary mixtures 
with other anionic species which were F-, NO3

-, SO4
2- and PO4

3-. The initial concentration of 
Cr(VI) and the other analyte was 2 mg L-1. Twenty five millilitres of these mixtures were 
then equilibrated with 20 and 65 mg of magnetic IIP and NIP respectively. After adjusting the 
pH to 4 with NaOH and HCl, the contact time was set at 45 min and the stirring rate was  
600 rpm. These experiments were performed in a batch mode and the unadsorbed 
concentration of each anionic species was measured using ion chromatography and AAS for 
the dichromate. The results obtained were used to calculate the distribution ratios, the 
selectivity coefficients and the relative selectivity coefficients through application of 
equations 4.7, 4.8 and 4.9 respectively. 

4.5.6 Reusability of chromium(VI) IIP  

The stability and reusability of the magnetic polymers was investigated by adding to the  
50 mg of the polymer 2 mg L-1 chromium(VI) solution. Other conditions used where those 
optimum in previous experiments. The contact was allowed for 45 min after which the 
mixture was filtered. The magnetic polymer residue was then stripped off the adsorbed 
chromium(VI) by stirring it in a 20 mL solution of 1 M NaOH for 20 min. This was followed 
by filtration and analysis of dichromate anions in the filtrate by FAAS. This procedure was 
repeated for a number of times in order to investigate the stability and reusability of these 
magnetic polymers. 



 

64 
 

Chapter Five: Results and Discussion 
 

 

5.1 Synthesis and characterization of magnetic uranyl-imprinted polymers 

5.1.1 Synthesis of the magnetite 

The synthesis of magnetite by co-precipitation of the ferrous and ferric salts produced a black 
precipitate upon increasing of pH by addition of ammonia. The magnetic response of the 
magnetite towards a magnet is demonstrated in Figure 5.1. 

 

Figure 5.1: Magnetic response of magnetite. 

Since this synthesis is carried out in aqueous environment, it means there is likely to be water 
and hydroxyl ions adsorbed on the surface of the magnetite as depicted in Figure 5.2. 

 
Figure 5.2: Magnetite showing the adsorbed hydroxyl ions. 
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These silica matrices are formed through hydrolysis of γ-MPS in basic alcohol/water 
mixtures. The silanol groups (Si-OH) will then be transformed to siloxane bonds (Si-O-Si) 
through condensation (Kan et al., 2010). When hydrolyzed, Figure 5.4, the other end of  
γ-MPS with the methyl groups produced hydrophilic silanol groups that bonded covalently 
with the hydroxyl groups around the magnetite, Figure 5.5. The silica layer formed on the 
surface of the magnetite could screen the dipolar attraction between the magnetite which 
favours the dispersion of this magnetite in the liquid media and also protects them from 
leaching in acidic environments. Coating also prevented oxidation of the magnetite to 
maghemite in aqueous media.  

Chen et al. (2011) used 3-methacryloxyproyltrimethoxysilane with three alkoxides which 
was hydrolyzed for 5 h to produce a hydrophilic end. Apart from γ-MPS, there is a wide 
range of coating agents that have been reported in literature. For instance, Ma et al. (2011) 
successfully encapsulated the magnetite within methacrylic acid. Qian et al. (2008) prepared 
paramagnetic magnetite/polystyrene nanocomposite by firstly modifying the magnetite 
nanoparticles with a Y-shaped surfactant (12-hexanoyloxy-9-octadecenoic acid).  

 

Figure 5.4: The hydrolysis of γ-MPS. 
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Figure 5.5: Coating of the magnetite with the hydrolysed γ-MPS. 

 

Figure 5.6 shows a pictorial illustration of the central magnetite coated with γ-MPS. 

 
Figure 5.6: An illustration of the arrangement of γ-MPS around the magnetic core. 
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These three phases of iron oxide (magnetite, hematite and maghemite) have very distinct bulk 
Raman spectra and this was used to determine the phase of the uncoated and coated iron oxide 
particles. The nanoparticles showed a diagnostic Raman peak at around 672 cm-1 which 
corresponds to magnetite (Tang et al., 2003). Other assignments of the band positions for 
phase identification were compiled by Slavov et al. (2010) and are presented in Table 5.3. 
Iron oxide and γ-MPS-iron oxide under study are also included in the table together with their 
corresponding wavelength bands. 

Table 5.3: Raman bands for magnetite, maghemite and hematite. 

 Iron oxide Wavelengths (cm-1) 
 
Literature 

Fe3O4 (magnetite) 193, 306, 538, 668  
γ-Fe2O3 (maghemite) 350, 500, 700  
α-Fe2O3 (hematite) 225, 247, 299, 412, 497, 613  

Observed Iron oxide 667  
 γ-MPS-iron oxide 670, 1400, 1600  

The presence of the strong peaks around 667 cm-1 in Figures 5.12, 5.13 and 5.14 indicated 
that the phase of the iron oxide present was magnetite (Fe3O4). 

According to Wang et al. (1990), all carbon systems show only a few prominent bands, no 
matter the final structure, and these intense bands occur between 1000-2000 cm-1. In this 
work, the carbon system used was from γ-MPS, which is an organic moiety, had a lot of 
carbon atoms. The exact peaks of the carbon peaks in the Raman spectrum for this γ-MPS 
were identified at 1400 cm-1 and 1600 cm-1. 

However, the same peaks, but of low intensity, were observed in the unmodified magnetite. 
This was unexpected and can be attributed to some organic contamination. It can be therefore 
concluded that the synthesized iron oxide was magnetite and it remained in this phase even in 
γ-MPS-Fe3O4 as evidenced by the presence of the 670 cm-1 band. This might have been a due 
to the use of a nitrogen protective layer purged for 10 minutes during functionalization which 
prevented oxidation of the magnetite.  
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Figure 5.12: Raman spectrum of pure magnetite.  

 

Figure 5.13: Raman spectrum of the unmodified magnetite. 

 

Figure 5.14: Raman spectrum of the γ-MPS modified magnetite. 
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their study. The curve in Figure 5.16 is skewed to the right of the mean implying that most of 
the particles were having a greater diameter than the mean. This can be attributed to the 
agglomeration of the superparamagnetic particles. 

For the γ-MPS coated magnetite, a total of 110 particles were measured from 8 TEM images 
for particle size distribution, Figure 5.17. The mean size diameter of the γ-MPS coated 
magnetite was found to be 13.35 ± 1.36 nm. The increase in diameter supports the idea that 
magnetite was coated with γ-MPS.  

 

 

Figure 5.16: Particle size distribution of the uncoated magnetite. 
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5.1.4.1 Atomic force microscopy (AFM) 

Imaging of unleached magnetic IIPs using tapping mode AFM proved difficult, as the tip was 
repelled from the surface it was supposed to image. The encircled black spots highlighted in 
the optical view of the magnetic IIP in Figure 5.25 are the magnetic particles responsible for 
this repulsion. However, imaging of the leached magnetic polymers was successful. This was 
made possible by the fact that some magnetite was lost during leaching hence the residual 
magnetite did not have sufficient power to repel the AFM probing tip. 

Figures 5.26 and 5.27 are the AFM images of 20 µm2 magnetic IIPs leached with  
1M NaHCO3 and 1M HCl solutions respectively. From the two Figures and the surface 
roughness data in Figure 5.29, it can be concluded that HCl was stronger leachant than 
NaHCO3. Figure 5.30 shows a three dimensional AFM image of NaHCO3 leached polymer 
and it clearly shows the pores formed by the leaching of the uranyl ions from the polymer 
surface.  
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Figure 5.25: Optical view of magnetic IIP with an AFM tip of width ~25 micro metres. 

 

Figure 5.26: AFM image of NaHCO3 leached magnetic IIP. 
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Figure 5.29: A three dimensional AFM image of NaHCO3 leached polymer. 

5.1.4.2 Brunauer, Emmett and Teller (BET) surface area analysis 

Typical BET surface area measurement is given in Figures 5.30. The results demonstrated 
that there was an increase in the surface area of the magnetic polymers as a result of leaching 
action. The bulk unleached IIP had a measured surface area of 8.8 m² g-1 whilst that of the 
corresponding HCl and NaHCO3 leached were increased to 88.1 and 65.2 m² g-1 respectively. 
These values are single point surface area measured at p/po = 0.2998. The results show 
consistence with the other characterization techniques, like the AFM results. These results 
show that the leaching with HCl resulted in magnetic polymers with a greater surface area. 
This is because there was a greater leaching of the uranyl from the polymer as well as the 
magnetic core as supported by the EDS results. The removal of these two ions left some 
voids which enhanced the surface area, because these pores became available for the nitrogen 
adsorption in the BET analysis. On the other hand, leaching with NaHCO3 did not remove the 
uranyl as well as the magnetite completely. The implication of this is that the BET surface 
area was kept low because some of these two ions are still much present and embedded in the 
polymer matrix of the magnetic IIPs. The monomolecular layer volume, vm and BET 
constant, c, for the bulk polymers were calculated from the slopes and intercepts of such plots 
such as in Figure 5.30 and the results are summarized in Table 5.4. 
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As a comparison, imprinted polymer nanospheres for uranium prepared by complexing 
uranyl ion onto quinoline-8-ol functionalized 3-aminopropyltrimethoxysilane modified silica 
nanoparticles by Milja et al. (2011), had BET surface areas of 134.69 and 188.87 m2 g-1 for 
the IIP and NIP respectively. This was evidently higher that the surface areas obtained in this 
research and was probably due to the strength of the monomer-template interaction and/or the 
strength and type of the leachants used. However, Ahmadi et al. (2010) found a BET surface 
area of 18.5 m2 g-1 for the unleached polymer particles. As expected, the porosity changed 
after the removal of uranyl ions from the IIP particle to 33.2 m2 g-1 which was far less than 
what was obtained in our studies. They prepared their adsorbent by copolymerizing of a 
ternary complex of uranyl ions with styrene and divinylbenzene. 
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Figure 5.30: (a) The nitrogen adsorption-desorption isotherms for the unleached bulk 
magnetic IIP and (b) its corresponding BET plot.  
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Table 5.4: BET surface areas and constants for the bulk magnetic IIPs. 

 
BET surface 
area (m² g-1) 

vm C 

Unleached magnetic IIP 8.8 2.09 94.86 

HCl leached magnetic IIP 88.1 2.10 95.20 

NaHCO3 leached magnetic IIP 65.2 15.43 129.6 

5.1.4.3 Fourier-transformed infra red (FTIR) analysis 

Figure 5.31 shows three spectra of the unleached IIP, leached IIP as well as the NIP of 
magnetic bulk polymers. The close similarities in these three spectra point to the fact that 
these three magnetic polymers have the same structural backbone. In all these magnetic 
polymers, it should be noted that EGDMA was used in excess for structural rigidity. Again, 
all these magnetic polymers were prepared using 2-methoxyethanol, which indicates that 
these magnetic polymers have similar polymeric matrices. 

The absorption peaks at 1455-1470 cm-1 and 1350-1493 cm-1 may be assigned to C=N groups 
of salicylaldoxime in magnetic IIP and NIP. There was an observable change in C=N 
stretching frequency to higher region in the leached magnetic polymer and this proved the 
successful removal of uranyl ion from the magnetic polymer. Singh and Mishra (2009) 
synthesized similar polymers selective of uranyl though they were not magnetic. They also 
found similar frequency bands at 1456-1460 and 1359-1391 cm-1 for the IIP (leached and 
unleached) and the NIP. 

Salicylaldoxime (SALO) was used as one of the functional monomers but it should be borne 
in mind that it was not chemically bound in the magnetic polymer matrix. It is instead trapped 
inside the magnetic polymer during the polymerization reaction. This is the case for both the 
bulk and the precipitation routes. Since SALO plays a role of binding the uranyl template 
directly, there was need to establish whether it will be still anchored even after leaching. The 
N=O stretching frequency observed at 1155-950 cm-1 showed that SALO was still trapped in 

the magnetic polymer matrix after even after leaching. 
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Figure 5.32: Thermo-gravimetric analysis results for γ-MPS-Fe3O4. 

 

Figure 5.33: Thermo-gravimetric analysis of precipitation magnetic polymers. 
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Figure 5.34: Thermo-gravimetric analysis of bulk magnetic polymers. 

At temperatures above 600°C, there was a complete decomposition of γ-MPS from the 
metallic oxide core, Fe3O4. The small initial weight loss of magnetite around 100°C was 
likely due to the loss of physically adsorbed water on the magnetite as well as 
dehydroxylation of the internal hydroxyl groups.  

5.1.5 Magnetic response 

The magnetic response of the Fe3O4, functionalized Fe3O4, unleached and leached magnetic 
polymer showed an expected decreasing trend with the bare magnetite (Fe3O4) exhibiting the 
strongest response and the leached magnetic polymers the least. This can be explained by the 
fact that the magnetic core will be embedded inside the polymer matrix of the magnetic IIPs 
and NIPs. They will be far inside the polymer implying that the magnetic force between it 
and the external magnet will be diminished (F is inversely proportional to r2). 

5.1.6 Optimization of parameters for U(VI) uptake 

The prepared magnetic ion imprinted for U(VI) are summarized in Table 5.5: 
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Table 5.5: Summary of the prepared types of magnetic ion imprinted polymers for U(VI). 

Polymer 
number 

Type of polymerisation Coating agent Leaching solution 

1 Bulk Oleic acid HCl 

2 Bulk Oleic acid NaHCO3 

3 Bulk γ-MPS HCl 

4 Bulk γ-MPS NaHCO3 

5 Precipitation Oleic acid HCl 

6 Precipitation Oleic acid NaHCO3 

7 Precipitation γ-MPS HCl 

8 Precipitation γ-MPS NaHCO3 

 

For each type of magnetic ion imprinted polymer, the corresponding non imprinted polymer 
was also prepared giving four non imprinted polymer types. This was used for comparison 
and as control. 

5.1.6.1 Effect of sample pH  

The adsorption efficiencies of uranyl ions by magnetic polymers at various pH values are 
presented in Figures 5.36-5.39. 

The general trend for all magnetic polymers was as expected, i.e. the magnetic IIPs had 
superior extraction efficiencies compared to their corresponding magnetic NIPs. Bearing in 
mind that the magnetic polymers are to be used in AMD there was a need to investigate the 
efficiency of these magnetic IIPs and NIPs in acidic conditions as well. The variation of the 
adsorption percentages with the pH is clearly noticeable as they are lower in acidic medium 
whereas at pH > 4, the adsorption of uranium reached the maximum. 

This result is important as it indicates that the pH plays an influential role in the adsorption of 
uranium. Complex formation between 4-VP, SALO, MAA and uranyl ions present in a 
sample is pH dependent. The low uptake of uranium at low pH values may be due to the fact 
that there is a higher concentration of H+ ions which are preferentially adsorbed ahead of 
uranium.  

Another point for the low uptake of uranium at low pH is that the amine and the hydroxyl 
chelating groups in the polymer matrix are protonated. This protonation means that the lone 
pairs for coordination with the cationic uranyl will not be present for coordination. There will 
be rather electrostatic repulsion of the cationic uranyl from the adsorption sites in the 
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Figure 5.37: Effect of sample pH for OA NIP bulk NaHCO3 leached (Experimental 
conditions: Same as those in Figure 5.36). 
 

 
 

Figure 5.38: Effect of sample pH for γ-MPS IIP precipitate NaHCO3 leached (Experimental 
conditions: Same as those in Figure 5.36). 
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Figure 5.39: Effect of sample pH for γ-MPS IIP precipitate HCl leached (Experimental 
conditions: Same as those in Figure 5.36). 

5.1.6.2 Effect of the amount of magnetic polymer 

Figures 5.40-5.44, illustrate a clear dependency of the amount of uranium adsorbed on the 
quantity of the adsorbent used. It was found that with the increasing dosage of the magnetic 
adsorbent the amount of removal of uranium increased steadily to an almost constant value. 
For most magnetic polymers, the maximum uranium uptake was found when the mass of the 
magnetic polymer was about 50 mg which was then taken as the optimum dose. 

In the work of Ahmadi et al. (2010), a ternary complex of UO2
2+ with N, N-ethylenebis 

(pyridoxylideneiminato) and 4-vinylpyridine was synthesized and polymerized with styrene 
and divinylbenzene. They found that the changes in the extraction percentage in the range of 
0.05-0.5 g were very small and they took 100 mg of polymer particles to be effective for 
enrichment. For imprinted polymer nanospheres for uranium were prepared by complexing 
uranyl ion on to quinoline-8-ol functionalized 3-aminopropyltrimethoxysilane modified silica 
nanoparticles, the optimum amount of material required for the abstraction of uranium was 
found to be 20 mg (Milja et al., 2011). In another research, N, N`-bis  
(3-methoxylsalicylidene)-1,2-phenylenediamine on Fe3O4 by Zhang et al. (2012) showed that 
the adsorption capacity of uranium(VI) increased with the increase of adsorbent dose at  
m < 20 mg and then remains almost constant at m > 20 mg. Therefore, 20 mg was taken as 
the optimum mass of the adsorbent. 
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Figure 5.40: Adsorption efficiency obtained by varying the mass of (a) γ-MPS IIP ppt-HCl 
leached and (b) γ-MPS NIP ppt-HCl leached. Experimental conditions: Sample pH, 4; sample 
volume, 25 mL; uranium concentration, 2 mg L-1; Contact time, 45 minutes; stirring speed, 
1500 rpm; temperature, room temperature. 

 

Figure 5.41: Adsorption efficiency obtained by varying the mass of (a) γ-MPS IIP bulk-
NaHCO3 leached and (b) γ-MPS NIP bulk-NaHCO3 leached (Experimental conditions: Same 
as those in Figure 5.40). 
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Figure 5.42: Adsorption efficiency obtained by varying the mass of (a) OA IIP bulk-
NaHCO3 leached and (b) OA NIP bulk-NaHCO3 leached (Experimental conditions: Same as 
those in Figure 5.40). 

 

Figure 5.43: Adsorption efficiency obtained by varying the mass of (a) γ-MPS IIP ppt-
NaHCO3 leached and (b) γ-MPS NIP ppt-NaHCO3 leached (Experimental conditions: Same 
as those in Figure 5.40). 
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Figure 5.44: Adsorption efficiency obtained by varying the mass of (a) OA IIP ppt-NaHCO3 

leached and (b) OA NIP ppt-NaHCO3 leached (Experimental conditions: Same as those in 
Figure 5.40). 

5.1.6.3 Effect of contact time 

The relationships between the amounts of uranium adsorbed and contact time for different 
magnetic polymers are shown in Figures 5.45-5.49. Under the used experimental conditions, 
it was observed that there was an increase in the amount of uranium adsorbed by all magnetic 
polymers from 0 to 45 minutes, after which equilibrium was reached. A contact time of 45 
minutes was therefore selected as the optimum time as it was sufficient for the attainment of 
equilibrium. A further increase in time had no effect on the adsorption of uranium onto the 
magnetic polymers. As expected, the adsorption performances of the magnetic IIPs were all 
higher than of the corresponding magnetic NIPs.  

Other studies for the selective uranyl uptake have demonstrated long abstraction times. For 
instance, from the prepared magnetic Schiff of N, N`-bis (3-methoxylsalicylidene)-1, 
2-phenylenediamine synthesized by Zhang et al. (2012) it was observed that the adsorption 
rate increased rapidly during the initial stages of the adsorption process. After that, uptake 
rate slowly declined with lapse of time and tends to be equilibrium at 6 h. This was extremely 
slower than our prepared magnetic IIP. On the other hand some polymeric adsorbents which 
were faster in the uptake of uranium(VI) were prepared by Wang et al. (2011); Sadeghi and 
Aboobakri (2012); Fan et al. (2012) with the first two at 30 min and the last 16 min. 
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Figure 5.45: Effect of contact time on the uptake of uranium by (a) γ-MPS IIP ppt-HCl 
leached and (b) γ-MPS NIP ppt-HCl leached. Experimental conditions: Sample pH, 4; sample 
volume, 25 mL; uranium concentration, 2 mg L-1; polymer weight, 50 mg; stirring speed, 
1500 rpm; temperature, room temperature. 

 

Figure 5.46: Effect of contact time on the uptake of uranium by (a) γ-MPS IIP bulk-NaHCO3 
leached and (b) γ-MPS NIP bulk-NaHCO3 leached (Experimental conditions: Same as those 
in Figure 5.45). 
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Figure 5.47: Effect of contact time on the uptake of uranium by (a) OA IIP bulk-NaHCO3 
leached and (b) OA NIP bulk-NaHCO3 leached (Experimental conditions: Same as those in 
Figure 5.45). 

 

Figure 5.48: Effect of contact time on the uptake of uranium by (a) γ-MPS IIP ppt-NaHCO3 

leached and (b) γ-MPS NIP ppt-NaHCO3 leached (Experimental conditions: Same as those in 
Figure 5.45). 
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Figure 5.49: Effect of contact time on the uptake of uranium by (a) OA IIP ppt-NaHCO3 

leached and (b) OA NIP ppt-NaHCO3 leached (Experimental conditions: Same as those in 
Figure 5.45). 

5.1.6.4 Effect of initial uranium concentration  

Figures 5.50-5.53 present the dependence of adsorption capacities of various uranium ion 
concentrations onto different magnetic polymers for fixed magnetic polymer dose, contact 
time and sample pH. A point of note is that all magnetic polymers showed similar trends. As 
the amount of uranium ions concentration increased so was the adsorption capacity. This can 
be attributed to the increasing number of U(VI) ions in solution that competed for a finite 
number of binding sites on the magnetic polymer surface. This equilibrium loading of uranyl 
ions per unit mass of the magnetic polymer increased almost linearly upon increasing the 
initial concentration of U(VI) ions in solution up to an adsorption capacity of between 0.8 and 
1.2 mg g-1 for all polymers investigated. After reaching maximum adsorption, any further 
increase in the U(VI) concentration only saturated the binding sites, therefore there wasn`t 
any further increase in the amount of adsorbed U(VI) ions. In all cases, adsorption 
performance of magnetic IIPs was always higher than their corresponding magnetic NIPs. 
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Figure 5.50: Effect of initial concentration on the uptake of uranium by (a) γ-MPS IIP bulk-
NaHCO3 leached and (b) γ-MPS NIP bulk-NaHCO3 leached. Experimental conditions: 
Sample pH, 4; sample volume, 25 mL; polymer weight, 50 mg; stirring speed, 1500 rpm; 
temperature, room temperature. 

 

Figure 5.51: Effect of initial concentration on the uptake of uranium by (a) OA IIP bulk-
NaHCO3 leached and (b) OA NIP bulk-NaHCO3 leached (Experimental conditions: Same as 
those in Figure 5.50). 
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Figure 5.52: Effect of initial concentration on the uptake of uranium by (a) γ-MPS IIP ppt-
NaHCO3 leached and (b) γ-MPS NIP ppt-NaHCO3 leached (Experimental conditions: Same 
as those in Figure 5.50). 

 

Figure 5.53: Effect of initial concentration on the uptake of uranium by (a) OA IIP ppt-
NaHCO3 leached and (b) OA NIP ppt-NaHCO3 leached (Experimental conditions: Same as 
those in Figure 5.50). 
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5.1.6.5 Selectivity studies  

Competing ions which have similar size to the uranyl ion and which are likely to coexist with 
uranium in environmental samples were chosen for selectivity studies and are shown in Table 
5.6. Additionally, all but Fe(III) of the competing ions have the same charge as the uranyl 
ion. 
 

Table 5.6: Physical properties of the uranyl ion together with those of its competitors. 

Metal ion 
Crystal radius 

(pm) 

Hydrated 
radius 
(pm) 

Hydration energy 
(kJ mol-1) 

UO2
2+ 95 - - 

Pb2+ 132 401 1480 

Mg2+ 72 300 1828 

Ni2+ 69 600 2106 

Fe3+ 63 - - 

Competitive adsorption of the binary mixtures UO2
2+/Ni2+, UO2

2+/Fe3+, UO2
2+/Pb2+ and 

UO2
2+/Mg2+ were investigated in an equilibration-adsorption batch systems and the results are 

summarized in Figures 5.54-5.58. In this approach, the concentration of the un-adsorbed ions 
was determined by AAS. From these Figures, it was shown that the recovery of U(VI) was 
much higher than that of the competing ions (Ni2+, Fe3+, Pb2+ and Mg2+), demonstrating that 
the cavities in the magnetic uranyl IIP had higher affinity for U(VI) because of imprinting. 

Tables 5.7-5.11 summarize the distribution coefficient (Kd), the selectivity coefficient (K) 
and the relative selectivity coefficient (K`) values of the competing ions with respect to the 
target UO2

2+ ions. 

 

Figure 5.54: Extraction efficiencies of ions extracted by the magnetic IIP and NIP of γ-MPS 
bulk-NaHCO3 leached from the spiked 2 mg L-1 binary mixtures of solutions. 

-20

0

20

40

60

80

100

U(VI) Ni(II) Fe(III) Mg(II) Pb(II)

R
em

ov
al

 e
ff

ic
ie

nc
y 

(%
)

Metal ion

Magnetic IIP

Magnetic NIP



 

105 
 

Table 5.7: Kd, K and K` values for the magnetic IIP and NIP of γ-MPS bulk-NaHCO3 in 
binary mixtures. 

UO2
2+ 

cationic 
competitor 

Kd (L g-1) K 
K` UO2

2+ 

IIP 
UO2

2+ 
NIP 

Magnetic 
IIP 

Magnetic 
NIP 

Magnetic 
IIP 

Magnetic 
NIP 

Ni2+ 3.07 2.83 0.18 1.33 17.06 2.13 8.01 

Fe3+ 2.85 2.78 5.95 0.41 0.48 6.78 0.07 

Mg2+ 3.12 3.18 0.10 0.13 31.20 24.46 1.28 

Pb2+ 2.93 3.03 0.33 1.17 8.88 2.59 3.43 

 

 

Figure 5.55: Extraction efficiencies of the ions extracted by the magnetic IIP and NIP of  
γ-MPS ppt-NaHCO3 leached from the spiked 2 mg L-1 binary mixtures of solutions.  

Table 5.8: Kd, K and K` values for the magnetic IIP and NIP of γ-MPS ppt- NaHCO3 leached 
in binary mixtures. 

UO2
2+ 

cationic 
competitor 

Kd (L g-1) K 
K` UO2

2+ 
IIP 

UO2
2+ 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 

Ni2+ 2.03 0.85 0.12 0.61 16.92 1.39 12.17 

Fe3+ 1.88 0.81 0.53 1.17 3.55 0.69 5.14 

Mg2+ 1.79 0.89 0.19 0.50 9.42 1.78 5.29 

Pb2+ 1.93 0.86 0.23 0.95 8.39 0.91 9.22 
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Figure 5.56: Extraction efficiencies of the ions extracted by the magnetic IIP and NIP of  
γ-MPS ppt-HCl leached from the spiked 2 mg L-1 binary mixtures of solutions.  

Table 5.9: Kd, K and K` values for the magnetic IIP and NIP of γ-MPS ppt-HCl leached in 
binary mixtures. 

UO2
2+ 

cationic 
competitor 

Kd (L g-1) K 
K` UO2

2+ 
IIP 

UO2
2+ 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 

Ni2+ 6.64 1.42 0.21 0.41 31.62 6.76 4.68 

Fe3+ 6.76 1.41 0.01 0.10 676.00 14.10 47.94 

Mg2+ 6.19 1.53 0.08 0.09 77.38 17.00 4.55 

Pb2+ 6.85 1.49 0.10 0.27 68.50 5.52 12.41 
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Figure 5.57: Extraction efficiencies of the ions extracted by the magnetic IIP and NIP of  
OA ppt-NaHCO3 leached from the spiked 2 mg L-1 binary mixtures of solutions.  

Table 5.10: Kd, K and K` values for the magnetic IIP and NIP of OA ppt-NaHCO3 leached in 
binary mixtures. 

UO2
2+ 

cationic 
competitor 

Kd (L g-1) K 
K` UO2

2+ 
IIP 

UO2
2+ 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 

Ni2+ 1.58 0.81 0.10 0.61 15.80 1.33 11.88 

Fe3+ 1.63 0.75 0.58 1.08 2.81 0.69 4.07 

Mg2+ 1.19 0.82 0.09 0.49 13.22 1.67 7.92 

Pb2+ 1.84 0.63 0.41 0.84 4.49 0.75 5.99 
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Figure 5.58: Extraction efficiencies of ions extracted by the magnetic IIP and NIP of  
OA bulk-NaHCO3 leached from the spiked 2 mg L-1 binary mixtures of solutions.  

Table 5.11: Kd, K and K` values for the magnetic IIP and NIP of OA bulk-NaHCO3 leached 
in binary mixtures. 

UO2
2+ 

cationic 
competitor 

Kd (L g-1) K 
K` UO2

2+ 
IIP 

UO2
2+ 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 
Magnetic 

IIP 
Magnetic 

NIP 

Ni2+ 0.97 2.31 0.20 0.08 4.85 28.88 0.16 

Fe3+ 1.01 2.28 1.09 0.09 0.93 25.33 0.04 

Mg2+ 0.96 2.25 0.10 0.09 9.60 25.00 0.38 

Pb2+ 0.96 2.24 1.48 0.20 0.65 11.20 0.06 

 

Because Fe(III) has a smaller ionic radius of 63 pm, it had an ability to enter into the 
imprinting sites of the magnetic polymers freely, hence it showed highest Kd, K and K` 
values than its competing counterparts. It was interesting to note that although Mg(II) has a 
similar ionic charge and ionic radius, its adsorption performance in the imprint sites of the 
magnetic polymers was poor. This could probably arise from its arrangement in coordination 
geometry. Kd values are the ratios of how the concentration of a particular ion equilibrates 
between the imprinted polymer and the aqueous environment. It gives the extraction ability of 
a unit mass of the polymer for a particular ion in a unit volume of solution. As shown in 
Tables 5.7-5.11, the Kd values for all magnetic IIPs are higher for UO2

2+, as compared to 
those of competing ions. Among the competing ions, Fe(III) had the highest Kd because it 
occupies sizeable fractions of the imprinting sites because it perfectly fitted the fabricated 
recognition sites to a far greater extent than other competing ions. Another observation from 
Tables 5.7-5.11 is that the selectivity coefficients of magnetic IIP were higher than those of 
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magnetic NIPs. The functional monomers immobilized within the polymer matrix of the host 
magnetic IIPs had strict configurations suitable for the guest uranyl ions. Furthermore, the 
ionic recognition was also influenced by the nature of metal ion, its ionic radius and charge. 
In conclusion, for all synthesized magnetic polymers, it was generally be deduced that the 
relative order of magnitude of metal sorption followed the order: UO2

2+ > Fe3+ > Pb2+ > Ni2+ 
> Mg2+. These results were in agreement from those of Pakade et al. (2012) who found the 
selectivity order UO2

2+ > Fe3+ > Cu2+ > Co2+ > Mn2+ > Zn2+ > Ni2+. Their IIP was not 
magnetic though, but was just a ternary complex of a uranyl imprint with  
1-(prop-2-en-1-yl)-4-(pyrid-2-yl) piperazine and methacrylic acid which they crosslinked. 
Closer to this work, Singh and Mishra (2009) observed an almost similar trend of selectivity 
with the order of Th4+ > UO2

2+ > Fe3+ > Zn2+ > Co2+ > Cu2+ > Ni2+ > CrO4
2- > Mn2+ as 

deduced from the distribution ratios they reported. 

5.1.6.6 Reusability of the magnetic uranyl imprinted polymers 

The repeated use of the magnetic U(VI)-imprinted polymers is a key factor that determines 
the applicability of these adsorbents in decontamination of wastewaters. In order to show the 
reusability and regeneration of the magnetic U(VI)-imprinted polymers, sorption-desorption 
cycles were repeated 6 times by using the same adsorbents repeatedly. These sorption-
desorption cycles of the five magnetic U(VI)-imprinted polymeric sorbents with their 
corresponding controls are shown in Figures 5.59-5.63. The results clearly demonstrated that 
the magnetic U(VI) imprinted beads can be used repeatedly without significant decrease in 
their adsorption capacities. Similar polymers, though not magnetic, showed good reusability 
and stability towards uranyl ion up to the tenth cycles of repeated experiments (Singh and 
Mishra, 2009). For Pakade et al. 2012, the stability of the polymers were observed up to the 
eighth cycle of reuse, maintaining a 99% recovery of the uranyl from aqueous solution. 
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Figure 5.59: Reusability and stability of magnetic IIP and NIP of γ-MPS ppt-HCl leached. 
Adsorption conditions: Amount of materials, 50 mg; solution pH 4; solution volume, 25 mL; 
contact time, 45 min, U(VI) concentration, 2 mg L-1, Desorption conditions: Solution volume, 
25 mL; contact time, 45 min, [HCl] leachant, 1 M. 

 

Figure 5.60: Reusability and stability of magnetic IIP and NIP of γ-MPS bulk-NaHCO3 
leached. Adsorption conditions: Amount of materials, 50 mg; solution pH 4; solution volume, 
25 mL; contact time, 45 min, U(VI) concentration, 2 mg L-1, Desorption conditions: Solution 
volume, 25 mL; contact time, 45 min, [HCl] leachant, 1 M. 
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Figure 5.61: Reusability and stability magnetic IIP and NIP of OA bulk-NaHCO3 leached. 
Adsorption conditions: Amount of materials, 50 mg; solution pH 4; solution volume, 25 mL; 
contact time, 45 min, U(VI) concentration, 2 mg L-1, Desorption conditions: Solution volume, 
25 mL; contact time, 45 min, [HCl] leachant, 1 M. 

 

Figure 5.62: Reusability and stability magnetic IIP and NIP of γ-MPS ppt-NaHCO3 leached. 
Adsorption conditions: Amount of materials, 50 mg; solution pH 4; solution volume, 25 mL; 
contact time, 45 min, U(VI) concentration, 2 mg L-1, Desorption conditions: Solution volume, 
25 mL; contact time, 45 min, [HCl] leachant, 1 M. 
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Figure 5.63: Reusability and stability magnetic IIP and NIP of OA ppt-NaHCO3 leached. 
Adsorption conditions: Amount of materials, 50 mg; solution pH 4; solution volume, 25 mL; 
contact time, 45 min, U(VI) concentration, 2 mg L-1, Desorption conditions: Solution volume, 
25 mL; contact time, 45 min, [HCl] leachant, 1 M. 

5.1.7 Kinetic modelling 

Table 5.12 gives the calculated results of the pseudo first and second-order rate equation. 
When the two modelling approaches are compared, the pseudo-second-order model showed 
better correlation because of the high values of correlation coefficients based on the linear 
regression, R2 > 0.97. 

Table 5.12: Summary of results of calculated kinetic parameters of pseudo-first order and 
pseudo-second order for U(VI) adsorption with an initial concentration of 5 mg L-1. 

Pseudo first-order Pseudo second-order 

Polymer* R2 k1 (L min-1) qe (mg g-1) R2 k2 (g mg-1 min-1) qe (mg g-1) 

1 0.982 0.052 1.005 0.9811 0.042 1.354 
2 0.928 0.093 2.163 0.9721 0.039 1.142 
3 0.915 -0.026 11.32 0.9940 0.157 1.012 
4 0.602 0.048 3,035 0.9976 0.183 0.910 
5 0.962 0.061 0.419 0.9992 0.261 0.961 
6 0.928 0.056 0.542 0.9988 0.163 0.901 
7 0.885 0.088 1.100 0.9979 0.163 1.008 
8 0.986 0.054 0.478 0.9988 0.163 0.859 
9 0.979 0.071 0.659 0.9982 0.163 0.923 
10 0.991 0.057 0.612 0.9977 0.163 0.864 

Polymer*: 1. γ-MPS IIP ppt-HCl leached, 2. γ-MPS NIP ppt-HCl leached, 3. γ-MPS IIP bulk-NaHCO3 leached, 4.  
γ-MPS NIP bulk-NaHCO3 leached, 5. OA IIP bulk-NaHCO3 leached, 6. OA NIP bulk-NaHCO3 leached, 7. γ-MPS IIP 
ppt- NaHCO3 leached, 8. γ-MPS NIP ppt- NaHCO3 leached, 9. OA IIP ppt- NaHCO3 leached, 10. OA NIP ppt-NaHCO3 

leached. 
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The correlation coefficients values of all pseudo first orders were generally lower than those 
of the pseudo second orders` thereby showing bad quality of linearization. Again, the  
qe values obtained (0.478-11.32 mg g-1) from pseudo first orders differed greatly with the 
experimental values which means reaction cannot be safely be considered as pseudo first-
order.  

Generally, the pseudo second-order gave the best fits and it could therefore be used to predict 
the kinetics of adsorption of uranium onto the magnetic polymers. Riva et al. (2008) attached 
different functional groups to the backbone of synthetic polymers in order to improve the 
effectiveness of uranyl-binding properties. The polymers obtained after modifications were 
poly (N-(3-dimethylamino) propylmethacrylamide), poly ((3-dimethylamino) 
propylacrylate), poly (4-acryloylmorpholine-co-acrylic acid), poly (N-(3-dimethylamino) 
propylmethacrylamide-co-4-vinyl pyridine), poly ((3-dimethylamino,) propylacrylate-co-
acrylic acid) and poly (N-(3-dimethylamino) propylmethacrylamide-co-acrylic acid) which 
gave the adsorption capacities of 2.80, 2.85, 2.40, 3.25, 2.95 and 3.25 mg g-1 respectively. As 
can be noted, these polymers are endowed with multi ligands and have expectedly higher 
adsorption capacities as compared to the polymer synthesized in this work. 

5.1.8 Adsorption isotherm modelling 

The profiles obtained from the study of the effect of initial uranium concentration, Figures 
5.50-5.53, were used to obtain Langmuir and Freundlich adsorption isotherms. 

5.1.8.1 Langmuir model 

The Langmuir constant, b, can be used to determine the type of interaction between the 
adsorbate and adsorbent using the dimensionless separation factor, RL. This factor is defined 
quantitatively by equation 5.1, (Hall et al., 1966): 

ۺࡾ                        = 	 ૚(૚ା۱࢈૙)   
Where Co is the initial metal concentration (mg L-1) and b is the Langmuir constant (L g-1). 
Based on the quantity of RL values, the affinity of adsorption of the analyte of interest unto 
the adsorbent can be classified into categories shown in Table 5.13. The Langmuir constant, 
b, as well as qm, can be deduced from the slopes and intercepts of the Langmuir plots. 

Table 5.13: Types of adsorption with respect to Langmuir isotherms. 

RL Adsorption type 

RL = 0 Irreversible 
0 <	RL < 1 Favourable 

RL = 1 Linear 
RL > 1 Unfavourable 

 

5.1 
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All RL values obtained for U(VI) adsorption onto magnetic polymers (IIPs and NIPs) were in 
the range of 0.13-0.93 and are summarized in Table 5.14. These values showed that 
favourable adsorption occurred in all magnetic polymers used. 

Table 5.14: The Langmuir constants and the RL values for adsorption of U(VI) on magnetic 
polymers. 

Magnetic polymer b (L g-1) qm (mg g-1) RL R2 
γ-MPS IIP bulk-NaHCO3 leached 3.34 1.94 0.13 0.965 
γ-MPS NIP bulk-NaHCO3 leached 0.16 16.6 0.76 0.999 
OA IIP bulk-NaHCO3 leached 0.09 67.1 0.85 1.000 
OA NIP bulk-NaHCO3 leached 0.04 45.5 0.93 1.000 
γ-MPS IIP ppt-NaHCO3 leached 0.09 67.1 0.85 1.000 
γ-MPS NIP ppt-NaHCO3 leached 0.22 7.4 0.69 0.999 
OA IIP ppt-NaHCO3 leached 0.95 2.9 0.34 0.982 
OA NIP ppt-NaHCO3 leached 0.66 2.6 0.43 0.992 

5.1.8.2 Freundlich model 

The constants Kf and n are calculated from the intercept and slope of the Freundlich plots and 
are presented in Table 5.25. These values were found to be in the range of 1.0-6.0 and 1.0-1.3 
respectively. According to Treyball (1980), the values of n between 1 and 10 are considered 
as good adsorbent and this implies that all magnetic polymers synthesized were effective in 
the uptake of uranium adsorption. 

Table 5.15: Freundlich constants of different uranium magnetic polymers. 

Magnetic polymer n Kf (L g-1) R2 
γ-MPS IIP bulk-NaHCO3 leached 1.21 3.09 0.966 
γ-MPS NIP bulk-NaHCO3 leached 1.05 2.39 0.996 
OA IIP bulk-NaHCO3 leached 1.00 5.77 1.000 
OA NIP bulk-NaHCO3 leached 1.00 1.59 1.000 
γ-MPS IIP ppt-NaHCO3 leached 1.00 5.77 1.000 
γ-MPS NIP ppt-NaHCO3 leached 1.07 1.43 0.997 
OA IIP ppt-NaHCO3 leached 1.07 2.07 0.980 
OA NIP ppt-NaHCO3 leached 1.11 1.24 0.993 

  
 

5.1.9 Application of magnetic U(VI) IIPs to real water samples 

Germiston water had a pH of 2.6, oxidation reduction potential of 436 mV and conductivity 
of 680 µScm-1. The pH of the water sample was 2.6 which is very acidic and this was 
expected because of the effect of AMD. In the vicinity of the water source, there are disused 
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mines (as can be seen in the background of Figure 4.3 (a), which were previously engaged in 
open cast and deep mining. These activities led to the exposure of the pyrite rock, FeS2, to air 
and water which further led to the formation of H2SO4 which decanted into the water body 
where the samples were collected. A reduction oxidation potential of 436 mV showed 
oxidative conditions. This meant that most metals in the AMD water were subjected to 
oxidative environments. A high conductivity value of 680 μS cm-1 indicated that most metals 
which constituted the sample, some of which are shown in Table 5.16, were in their ionic 
form. This resulted from the action of the highly acidic water which leached out metallic ions 
as it flowed down to water bodies. When the method was applied to real water samples, high 
extraction efficiencies of over 81% and 64% were obtained for the magnetic IIP and NIP 
respectively, Table 5.17-5.21. This was a demonstration of the suitability of the magnetic 
sorbent to selectively remove uranium from complex aqueous matrix. The developed method 
proved to be suitable for quantitative removal of uranium in wastewaters.  

Table 5.16: Metal composition in real water samples. 

 
Mine wastewater 

Wastewater from 
treatment works 

Metal 
Mean 
(mg L-1) 

SD 
Mean 
(mg L-1) 

SD 

Al 648 0.014 0.104 0.012 
Au 0.273 0.005 0.007 0.001 
Ca 0.123 0.054 23.88 0.003 
Co 22.950 0.003 0.044 0.001 
Cr 0.836 0.027 - - 
Cu 11.250 0.002 0.029 0.001 
Fe 1.800 0.001 - - 
Hg 0.675 0.032 0.030 0.005 
Mg 541 0.016 11.85 0.001 
Mn 72.05 0.005 0.165 0.001 
Ni 48.3 0.004 0.108 0.001 
Pb 0.428 0.049 - - 
U 8.500 0.015 - - 
Zn 54.750 0.004 0.023 0.002 
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Table 5.17: Application of magnetic γ-MPS IIP bulk-NaHCO3 leached and the 
corresponding NIP on unspiked and spiked real water samples. Sample pH = 4; solution 
volume = 25 mL; sorbent mass = 20 and 65 mg for the magnetic IIP and NIP respectively. 

 
Table 5.18: Application of magnetic OA IIP bulk-NaHCO3 leached and the corresponding 
NIP on unspiked and spiked real water samples. Sample pH = 4; solution volume = 25 mL; 
sorbent mass = 20 and 65 mg for the magnetic IIP and NIP respectively. 

 

  

Sample 
Uranium concentration (mg L-1) % Recovery 

Spiked 
Determined Magnetic  

IIP 
Magnetic 

NIP Magnetic IIP Magnetic NIP 
AMD - 8.50 (0.02) 8.50 (0.02) - - 

67 
66 

- 
65 
67 
66 

5.00 13.23 (0.01) 11.34 (0.03) 78 
10.0 17.58 (0.05) 15.17 (0.04) 76 

WWTP - < > ∙ۺ۲  - ∙ۺ۲
1.00 0.97 0.08) 0.81 (0.02) 78 
5.00 4.75 (0.05) 4.20 (0.01) 76 
10.0 9.80 (0.03) 8.30 (0.07) 78 <   .Below detection limit and SD values in parenthesis : ∙ۺ۲

Sample 
Uranium concentration (mg L-1) % Recovery 

Spiked 
Determined Magnetic  

IIP 
Magnetic 

NIP Magnetic IIP Magnetic NIP 
AMD - 8.50 (0.02) 8.50 (0.02) - -  

5.00 12.29 (0.03) 10.87 (0.06) 73 63  
10.0 17.21 (0.07) 14.99 (0.08) 74 65  

WWTP - < > ∙ۺ۲   - - ∙ۺ۲
1.00 0.92 (0.03) 0.77 (0.02) 74 62  
5.00 4.50 0.06) 3.80 (0.07) 72 61  
10.0 9.30 (0.02) 7.80 (0.01) 74 64  <   .Below detection limit and SD values in parenthesis :∙ۺ۲
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Table 5.19: Application of magnetic γ-MPS IIP ppt-NaHCO3 leached and the corresponding 
NIP on unspiked and spiked real water samples. Sample pH = 4; solution volume = 25 mL; 
sorbent mass = 20 and 65 mg for the magnetic IIP and NIP respectively. 
 

 

Sample 
Uranium concentration (mg L-1) % Recovery 

Spiked 
Determined Magnetic  

IIP 
Magnetic 

NIP Magnetic IIP Magnetic NIP 
AMD - 8.50 (0.02) 8.50 (0.02) - -  

5.00 12.15 (0.08) 9.59 (0.07) 72 57  
10.0 16.47 (0.06) 13.32 (0.03) 71 57  

WWTP - ∙ ∙ - -  
1.00 0.88 (0.04) 0.72 (0.02) 70 56  
5.00 4.45 (0.06) 3.75 (0.02) 71 60  
10.0 9.10 (0.02) 7.60 (0.02) 73 61  

∙: Below detection limit and SD values in parenthesis.  

Table 5.20: Application of magnetic OA IIP bulk-NaHCO3 leached and the corresponding 
NIP on unspiked and spiked real water samples. Sample pH = 4; solution volume = 25 mL; 
sorbent mass = 20 and 65 mg for the magnetic IIP and NIP respectively. 

 
  

Sample 
Uranium concentration (mg L-1) % Recovery 

Spiked 
Determined Magnetic  

IIP 
Magnetic 

NIP Magnetic IIP Magnetic NIP 
AMD - 8.50 (0.02) 8.50 (0.02) - -  

5.00 11.75 (0.04) 9.18 (0.05) 70 54  
10.0 15.73 (0.04) 12.40 (0.03) 68 54  

WWTP - < > ∙ۺ۲   - - ∙ۺ۲
1.00 0.87 (0.05) 0.66 (0.04) 70 53  
5.00 4.30 (0.07) 3.40 (0.06) 69 54  
10.0 8.70 (0.03) 6.80 (0.02) 70 54  <   .Below detection limit and SD values in parenthesis :∙ۺ۲
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Table 5.21: Application of magnetic γ-MPS IIP ppt-NaHCO3 leached and the corresponding 
NIP on unspiked and spiked real water samples. Sample pH = 4; solution volume = 25 mL; 
sorbent mass = 20 and 65 mg for the magnetic IIP and NIP respectively. 

5.2 Synthesis and characterization of magnetic Cr(VI) polymers  

5.2.1 Synthesis of magnetic poly (4-vinylpyridine) 

4-vinylpyridine was homopolymerized and copolymerized with functionalized magnetite as 
shown in the schemes in Figure 5.64. The expanded structure of the magnetic poly  
(4-vinylpyridine) is shown in Figure 5.65. 

Sample 
Uranium concentration (mg L-1) % Recovery 

Spiked 
Determined Magnetic  

IIP 
Magnetic 

NIP Magnetic IIP Magnetic NIP 
AMD - 8.50 (0.02) 8.50 (0.02) - -  

5.00 10.94 (0.03) 8.75 (0.07) 65 52  
10.0 15.36 (0.06) 11.47 (0.01) 66 50  

WWTP - < > ∙ۺ۲   - - ∙ۺ۲
1.00 0.82 (0.06) 0.63 (0.04) 66 50  
5.00 4.15 (0.01) 3.25 (0.02) 66 52  
10.0 8.10 (0.08) 6.40 (0.09) 65 51  <   .Below detection limit and SD values in parenthesis :∙ۺ۲
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Figure 5.64: Synthetic routes of (a) homopolymer and (b) magnetic polymer of poly  
(4-vinylpyridine) where the black dot indicates γ-MPS coated magnetite. 

 
Figure 5.65: Structure of magnetic poly (4-vinylpyridine). 

5.2.2 Quaternization of magnetic poly (4-vinylpyridine) 

In order to remove metallic oxy-anions in aqueous environments, a positive charge has to be 
introduced by contacting poly (4-vinylpyridine) particles with acids such as hydrochloric acid 
(Barakat and Sahiner, 2008). However, in order to introduce a permanent positive charge in 
the polyelectrolyte, an alkyl group was chosen in this study. N-propyl reacted with the 
pyridine nitrogen to give quaternized magnetic poly (4-vinylpyridine). In order to have a high 
positive charge building up in the polymer, a solvent of high dielectric constant should be 
used (Masamoto et al., 1960). In this work, DMF was used as a solvent and the bromide ions 
formed diffused away from the pyridinium ions of the cationic polyelectrolyte. The proposed 
reaction of the n-propyl bromide with magnetic poly (4-vinylpyridine) is shown in Figure 
5.66. 

*

N N N N
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Figure 5.66: Reaction for the quaternization of magnetic poly (4-vinylpyridinium) bromide. 

Due to the neighbouring group effect, quaternization of the poly (4-vinylpyridine) does not 
occur with quantitative conversions and typically, 65-70% quaternization are most common 
with most alkyl halides (Dautzenberg et al., 1994). However, in their research, Bicak and 
Gazi (2003) found out that methyl iodide is likely to give high quaternization yields of up to 
95%.  

Another reason of not achieving 100% quaternization was discussed by Sonmez and Bicak 
(2002). They pointed out that some small percentages of pyridine groups remain embedded 
deep in the polymer matrix and may remain unreacted. Hence the reaction to introduce a 
charge on the polyelectrolyte only represents quantitative quaternization of the pyridine rings 
in accessible positions of the crosslinked matrix.  
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ion. The addition of sodium dichromate to magnetic poly (4-vinylpyridinium) bromide is 
demonstrated in Figure 5.68. 

 

Figure 5.68: Substitution reaction of the bromide ions from magnetic poly  
(4-vinylpyridinium) bromide by dichromate ions. 

5.2.3.1 Fourier-transformed infra red (FTIR) analysis 

Evidence of the embedment of dichromate into the magnetic polymer is shown by the 
resonance peak of the Cr-O and Cr=O bonds at 943 cm-1 in the spectra in Figures 5.69. In two 
separate studies by Arslan et al. (2006) and Ortiz-Palacios (2008), these resonance peaks 
were assigned to 943 and 934 cm-1 respectively. 
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Figure 5.73: Leaching of chromium and iron from the magnetic IIP. 

 

Figure 5.74: Washing of magnetite from magnetic NIP. 

5.2.4.1 Brunauer, Emmett and Teller surface analysis 

The BET surface area calculations gave good straight line data fits, as shown in Figures  
5.75 (b) used as an example for a partial pressure range of 5% to 35%. Similar plots were 
obtained for other polymers shown in Table 5.22. By application of BET equations, the BET 
constant, c, was found to be 64.81 and the monomolecular layer volume, vm, was 5.54 for the 
unleached non-magnetic poly (n-propyl-4-vinylpyridinium) dichromate polymer. As for the 
unleached magnetic poly (n-propyl-4-vinylpyridinium) dichromate polymer, c was 8.71 and 
vm was 0.23. The surface areas for the unleached magnetic and unleached non-magnetic poly 
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(n-propyl-4-vinylpyridinium) dichromate polymer were found to be 1.00 ± 0.02 m² g-1 and 
25.4 ± 0.3 m² g-1 respectively. 

After leaching of the chromium from the magnetic IIP, there was an increase in the surface 
area to 132 ± 1 m² g-1 which corresponded to 132% increase. However, even though there 
was an increase in the surface area of the magnetic NIP (16.8%), it was not as significant as 
that obtained from the magnetic IIP. The BET constants, c, for the leached magnetic IIP and 
NIP were found to be 163 and 124 respectively. The monomolecular layer volumes, vm, were 
30.5 and 6.7 respectively. All the BET surface areas and constants for the magnetic polymers 
are summarized in Table 5.22. Bayramoglu and Arica (2008), found that the specific surface 
area of the IIP and the corresponding NIP particles to be 34.5 m2 g-1 and 21.7 m2 g-1 
respectively which indicated the presence of microporous on the surface of the  
Cr(VI)-imprinted particles. 

 
 

 

Figure 5.75: (a) The nitrogen adsorption-desorption isotherms for the unleached non-
magnetic poly (n-propyl-4-vinylpyridinium) dichromate polymer and (b) its corresponding 

BET plot. 
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Table 5.22: BET surface areas and constants for the magnetic polymers. 

 

BET surface area 
(m² g-1) 

vm c 

Unleached non-magnetic 25.4 5.54 64.81 

Unleached magnetic 1.0 0.23 8.71 

Leached non-magnetic 132 30.5 163 

Leached magnetic              16.8 7.7 124 

5.2.4.2 Thermo-gravimetric analysis (TGA) analysis 

In order to gain insight into the thermal changes in the magnetic polymers, the thermal 
stability was probed with TGA. Thermal degradation profiles of leached and unleached 
Cr(VI) magnetic polymers are shown in Figure 5.76. The maximum weight loss occurred at 
425°C, corresponding to degradation of the polymer backbone, and a small peak that 
occurred at around 220°C can be attributed to the loss of moisture from the magnetic 
polymers. It can also be observed from the TGA spectrum of the Cr(VI) loaded magnetic 
polymer that the maximum weight loss due to the decomposition of the backbone occurred at 
a slightly lower temperature. This indicated that the unleached magnetic polymer was slightly 
more stable than the leached one. It was also observed that the leached and unleached Cr(VI) 
magnetic polymers had total weight losses of 82.5 and 59.2%. The remaining mass 
corresponds to the presence of Cr(VI) and magnetite in the unleached magnetic polymer and 
magnetite in the leached magnetic polymer.  

In almost similar studies by Toral et al. (2009), where they quaternized the polymer with an 
octyl moiety, the stability of the Cr(VI) loaded polymer was also stable as compared to the 
leached one. The decomposition of the two polymers occurred at around 500 and 400oC 
respectively. However, in terms of the residual weight of the leached polymer, they found it 
to be close to 100%. In our work it was observed to be 59.2% because of the embedded 
magnetite in the polymer matrix.  
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Figure 5.76: Thermogravimetric analysis of chromium magnetic polymer. 

5.2.5 Optimization of parameters for Cr(VI) uptake 

5.2.5.1 Effect of sample pH 

Sample pH dictates the speciation of metals in solution and also the form of protonation on 
the active sites within the adsorbent. The positive charge on the quaternized nitrogen is 
responsible for the Cr2O7

2- uptake and other anions. Since the hydroxyl ions are possible 
competitors for dichromate sorption, it therefore becomes apparent that sample pH affects 
this adsorption. This effect is demonstrated in Figure 5.77. 
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Figure 5.77: The effect of pH and also the demonstration of the chromate/ hydroxyl 
competition. 

The effect of pH on the removal of Cr(VI) was investigated in the pH range of 1-10 at room 
temperature. The experimental results are presented in Figure 5.78 where it was observed that 
the maximum adsorption occurred at pH 2-6. The optimum pH for the uptake of Cr(VI) was 
then chosen to be 4 which corresponded to 90 and 73% Cr(VI) removal for the magnetic IIP 
and NIP respectively. The Cr(VI) removal efficiency decreased at pH values greater than 6 
for both the magnetic IIP and its control polymer. Beyond this pH, there is an anticipated 
strong competition between hydroxyl ions and the dichromate ions in solution. These two 
anions compete for the fabricated active adsorption sites on the magnetic polymers. Similar 
results were obtained by Bayramoglu and Arica (2008) who showed that at high acidic pH of 
2-4, adsorption was very high and decreased rapidly after pH 5. However, they did not 
quaternize their polymers but rather they used 4-VP as a functional monomer. Their  
Cr(VI)-ion imprinted poly (4-vinyl pyridine-co-2-hydroxyethyl methacrylate) particles were 
prepared by bulk polymerization. On poly (4-vinylpyridine) coating onto a granular activated 
carbon Fang et al. (2007) observed a 90% Cr(VI) removal at a pH of 2 which was almost 
maintained but decreased sharply at pH 6 to 8 and no apparent sorption was observed when 
pH was above 9. After firstly forming a linear copolymer from 4-VP and styrene, Pakade  
et al. (2011) prepared an IIP selective of Cr(VI) by quaternizing the linear copolymer with 
1,4 dichlorobutane. The pH trend they got did not show a drop in Cr(VI) absorption after pH 
4-5 because their pH only ranged from 1 up to 4. 
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Figure 5.78: Effect of sample pH. Experimental conditions: Polymer amount, 20 mg; sample 
volume, 25 mL; chromium concentration, 5 mg L-1; contact time, 45 minutes; stirring speed, 
600 rpm; temperature, room temperature. 

5.2.5.2 Effect of the amount of the adsorbent 

The removal of chromium by magnetic polymers at different adsorbent doses (5-120 mg) 
from a Cr(VI) concentration of 5 mg L-1 was investigated. The results (Figure 5.79) showed 
that, initially, the percent removal of Cr(VI) increased with the increase in the dose of 
magnetic polymers due to the greater availability of the adsorption sites within the adsorbent. 
For the magnetic IIP, the increase in adsorbent dosage from 5.0 to 20 mg resulted in an 
increase from 47 to 95% in adsorption efficiency of Cr(VI) ions whilst an increase from 83 to 
around 90% was observed for the dose from 5.0 to 65 mg for the magnetic NIP. The optimum 
amounts of magnetic polymer were then chosen to be 20 and 65 mg for the magnetic IIP and 
NIP respectively. Considering an initial volume of 25 mL for both the magnetic IIP and NIP, 
the normalized volume became 0.8 g L-1 and 2.6 g L-1 respectively. 

Investigating the effect of polypyrrole/Fe3O4 nanocomposite dosage on adsorption of Cr(VI) 
from aqueous solution showed that Cr(VI) removal efficiency increased with an increase in 
polypyrrole/Fe3O4 dose (Bhaumik et al., 2011). The extent of Cr(VI) removal from 50 mL of 
200 mg L-1 Cr(VI) solution changed from 16.3% at a dose of 25 mg to 100% at a dose of  
100 mg which is equivalent to an optimum of 2 g L-1 of polypyrrole/Fe3O4. In another study 
by Hadjmohammadi et al. (2011), who used pine needles powder as a biosorbent, the uptake 
of Cr(VI) from 50 mL of 50 mg L-1 solutions, the adsorbent dose reached a plateau at 0.5 g of 
sorbent. This translated to 10 mg L-1. Using tetraethylenepentamine on Fe3O4 magnetic 
polymer adsorbent, Yao et al. (2012) found a proportion of 20 mg per 250 mL (0.8 mg L-1) 
water sample would ensure efficient preconcentration of Cr(VI). 
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Figure 5.79: Adsorption percentages obtained by varying the mass of magnetic polymers for 
chromium adsorption. Experimental conditions: Sample pH, 4; sample volume, 25 mL; 
chromium concentration, 5 mg L-1; contact time, 45 minutes; stirring speed, 600 rpm; 
temperature, room temperature. 

5.2.5.3 Effect of contact time 

Cr(VI) removal by magnetic polymers as a function of contact time is shown in Figure 5.80. 
Cr2O7

2- uptake was not fast and the maximum uptake was observed within 30-35 min for both 
the magnetic IIP and NIP. Before this time, there was a high rate of accumulation of the 
analyte in the adsorption sites within the magnetic polymer matrix. After reaching 
equilibrium, there was no further increase of adsorption of Cr(VI) as all the adsorption sites 
were saturated. A similar trend was observed by Yao et al. (2012) who used 
tetraethylenepentamine on Fe3O4 magnetic polymer as an adsorbent. Their results showed 
that the rate of Cr(VI) uptake was initially high, followed by a much slower subsequent 
adsorption quantity leading gradually to an equilibrium condition. A contact time of 60 min 
of stirring was considered enough to reach maximum values of separation and 
preconcentration of C r (VI) ions (Yao et al., 2012). 
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Figure 5.80: Effect of contact time on the uptake of chromium by magnetic polymers. 
Experimental conditions: Sample pH, 4; sample volume, 25 mL; shromium concentration,  
5 mg L-1; polymer weight (20 mg for magnetic IIP and 65 mg for magnetic NIP); stirring 
speed, 600 rpm; temperature, room temperature. 

5.2.5.4 Effect of initial Cr(VI) concentration 

The results obtained for the effect of initial concentration on the uptake of chromium by 
magnetic IIP and NIP are presented in Figure 5.81. An initial chromium concentration of  
1-20 mg L-1 was investigated. In this experiment, the magnetic polymer dose was fixed as 
well as the contact time and solution pH of which the values are indicated in the caption of 
Figure 5.80. It was observed that the magnetic polymers` Cr(VI) removal increased 
significantly from 1-2.5 mg L-1 and 1-1.5 mg L-1 for the magnetic IIP and NIP respectively. 
An initial Cr(VI) concentration of 5 mg L-1 was taken to be the optimum. After this value, 
equilibrium was attained as there was no appreciable increase in the amount of the analytes 
adsorbed on the magnetic polymers. The maximum adsorption capacities for the magnetic 
polymers corresponding to the considered optimum Cr(VI) concentration of 5 mg L-1 were 
6.20 and 1.87 mg g-1 for the magnetic IIP and NIP respectively. 
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Figure 5.81: Effect of initial concentration on the uptake of chromium by magnetic IIP and 
NIP. Experimental conditions: Sample pH, 4; sample volume, 25 mL; polymer weight,  
(20 mg for magnetic IIP and 65 mg for magnetic NIP); contact time 35 min; stirring speed, 
600 rpm; temperature, room temperature. 

5.2.5.5 Selectivity of Cr(VI) 

Competing anions are known to influence Cr(VI) uptake. However, because HCl was used as 
a leachant, it was likely that the chloride ion would have interfered with the selectivity 
studies, hence it was not used. The other ions selected, such as the sulphate and phosphate 
ions were selected as potential competitors because of their chemical similarities to the 
dichromate ion with respect to charge and oxy-ionic nature. Figure 5.82 is an example of the 
IC chromatogram of a 5 mg L-1 anionic mixture standard. Similar chromatograms of 1, 10 
and 20 were obtained and were used to construct calibration curves for the respective anions, 
Figure 5.83. For the binary mixture, Cr2O7

2-/anionic competitor, the anion was also 
determined by IC and an example is illustrated for the fluoride ion in Figure 5.84. However, 
the equilibrium dichromate concentrations for all binary systems were determined by use of 
FAAS after the construction of a calibration curve, Figure 5.85. The selectivity performances 
of the magnetic polymers are summarized in Figure 5.86 and Table 5.23. The order of 
selectivity of the investigated anions followed the sequence: Cr2O7

2- > SO4
2- > F- > NO3

-. 

Pakade et al. (2011) investigated the influence of coexisting ions on the uptake of Cr(VI) 
onto 1, 4 dichlorobutane quaternized linear copolymer. Their findings were that the 
selectivity order was Cr2O7

2- > SO4
2- > F- > PO4

3- > NO3
- > Cl-. After considering two 

Cr(VI) competitors, Neagu and Mikhalovsky (2010) found that there was also a rather 
remarkable selectivity towards hexavalent chromium over the sulfate anion. The full order of 
selectivity was Cr2O7

2- > SO4
2- > Cl- which was almost what was obtained in our studies. 

However, the same authors reported that the adsorption selectivity for the common anions 
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Figure 5.86: Extraction efficiencies of anions extracted by the magnetic Cr(VI) IIP and NIP 
from 2 mg L-1 spiked binary mixtures of solutions.  

Table 5.23: Kd, K and K` values for the magnetic Cr(VI) IIP and NIP in binary mixtures. 

Cr2O7
2- ion 

Competitor 

Kd (L g-1) K K` 

Cr2O7
2- 

IIP 
Cr2O7

2- 
NIP 

Magnetic 
IIP 

Magnetic 
NIP 

Magnetic 
IIP 

Magnetic 
NIP 

Magnetic 
NIP 

SO4
2- 11.70 3.06 1.98 0.30 5.91 10.20 0.58 

F- 23.50 1.90 1.69 0.22 13.91 8.64 1.61 

NO3- 33.00 5.53 0.79 0.035 41.77 158 0.26 

 
5.2.5.6 Reusability of Cr-magnetic polymers 

Since the reusability of the magnetic polymers is an important factor, six adsorption-
desorption cycles were performed, Figure 5.87. What was observed was that the magnetic 
polymers maintained their stability as well as their chromium abstraction capacity of 98.5% 
and 89% for the magnetic IIP and NIP respectively. This high robustness of the imprinted 
polymers has the significance that they can be cleaned, thereby regenerating their adsorption 
capabilities. For up to 5 cycles, the IIP synthesized by Pakade et al. (2011) was still stable as 
it showed 96% extraction efficiency. 
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Figure 5.87: Reusability and stability magnetic IIP and NIP selective to chromium. 
Adsorption conditions: Sample pH, 4; sample volume, 25 mL; polymer weight, (20 mg for 
magnetic IIP and 65 mg for magnetic NIP); contact time 35 min; initial dichromate 
concentration, 5 mg L-1; stirring speed, 600 rpm; temperature, room temperature, Desorption 
conditions: Solution volume, 20 mL; contact time, 20 min, [NaOH] leachant, 1 M. 

5.2.6 Kinetic modelling 

5.2.6.1 Pseudo-first order kinetics 

The correlation coefficients values for the pseudo-first and second order kinetics were 
calculated from the plots of Figures 5.88 and 5.89 respectively.  

 

Figure 5.88: Pseudo first-order plots for the adsorption of chromium onto magnetic 
polymers. 
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5.2.6.2 Pseudo-second order kinetics 

 

Figure 5.89: Pseudo second-order plots for the adsorption of chromium onto magnetic 
polymers. 

Table 5.24: Calculated kinetic parameters of pseudo-first and second orders for initial Cr(VI) 
concentration of 5 mg L-1. 

Pseudo first-order Pseudo second-order 

Polymer R2 k1 (L min-1) qe (mg g-1) R2 k2 (g mg-1 min-1) qe (mg g-1) 

IIP 0.9114 0.121 11.256 0.9987 0.078 3.098 
NIP 0.9808 0.083 3.682 0.9959 0.029 2.178 

It was observed that correlation coefficients values of the pseudo-second order kinetics 
produced better quality of linearization compared to the pseudo-first order kinetics. Moreso, 
the adsorption capacity values obtained by this method were much closer to those reported 
before in this work (6.20 and 1.87 mg g-1 for the magnetic IIP and NIP respectively). A 
pseudo-second order further suggests that the type of interaction between the target template 
and the adsorbent surface was chemisorptions as a rate controlling step (Wang et al. 2011). 
This interaction was probably due to the exchange of electrons on the dichromate and the 
quaternized nitrogens. 

5.2.7 Freundlich and Langmuir isotherm modelling 

Figure 5.90 and 5.91 present the Freundlich and the Langmuir isotherm model for magnetic 
IIP and NIP respectively. 
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Figure 5.90: (a) Freundlich and (b) Langmuir isotherm model for magnetic IIP. 
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Figure 5.91: (a) Freundlich and (b) Langmuir isotherm model for magnetic NIP. 

Table 5.25: The Langmuir and Freundlich constants for adsorption of Cr(VI) on magnetic 
polymers. 

 Langmuir isotherm Freundlich isotherm 
Magnetic polymer b (L g-1) qm (mg g-1) RL R2 n Kf (L g-1) R2 
Cr- IIP 4.23 3.8 0.05 0.881 2.23 2.90 0.841 
Cr -NIP 1.67 2.3 0.11 0.992 2.59 0.78 0.911 

Since the separation factors for both the magnetic IIP and NIP are within the range of zero 
and unity, Cr(VI) adsorption onto magnetic polymers was deemed favourable. This indicates 
the suitability of the adsorbent to extract the targert from aqueous solution (Zhou et al., 
2012). 
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Chapter Six: Conclusions and Recommendations for future work 

6.1 Conclusions 

The imprinting technique proved that a memory of the targets U(VI) and Cr(VI) can be 
induced in the magnetic polymer such that in subsequent use, even in the presence of other 
competing ions in aqueous media, selectivity was enhanced. After adsorption the adsorbents 
were traditionally removed from the solutions via centrifugation and filtration. This approach 
is however not economically viable on a large industrial scale. The technique of endowering 
magnetic particles into the polymer matrix, as demonstrated in this research, makes the whole 
polymer particles magnetic and this necessitated their easy removal from solutions. The 
successful incorporation of the magnetite into the polymer was evident from the FTIR where 
a band at was observe implying that the general objective of this to synthesize magnetic 
polymers selective to U(VI) and Cr(VI) was realized. 

Both magnetic IIPs and NIPs showed potential in the uptake of uranium and chromium from 
contaminated solutions as these imprinted magnetic polymers were successfully applied for 
the selective extraction of the respective analytes from various complex samples which were 
AMD and treated wastewater effluent. Adsorption capacities for the Cr(VI) magnetic IIP 
were 6.20 and 1.87 mg g-1 for the magnetic IIP and NIP respectively and the order of 
selectivity for the U(VI) magnetic IIP was UO2

2+ > Fe3+ > Pb2+ > Ni2+ > Mg2+ and that for the 
Cr(VI) magnetic IIP was: Cr2O7

2- > SO4
2- > F- > NO3

-. Magnetic IIPs always expectedly 
showed a higher uranyl and dichromate uptake as compared to their corresponding magnetic 
NIPs.  

The uptake of the uranyl was made possible by the presence organic ligands (functional 
groups) with oxygen and nitrogen atoms that provided lone pairs of electrons to the cationic 
uranyl ion through coordinate bonding. For the adsorption of the Cr(VI), quaternization 
enabled the extraction of anionic dichromate target. 

6.2 Recommendations for future work 

 There is need to carry out the polymerization reaction in aqueous media rather than 
the organic solvents in order to avoid the swelling and shrinkage of magnetic 
polymers. This however means changing of the initiator to those compatible with 
water. 

 The application of the synthesized magnetic polymers can be applied to a pilot plant 
scale and ultimately to real environmental systems. It is therefore important to carry 
out the same adsorption studies in a continuous flow system that mimic a river 
system. In this approach, the magnetic polymers need to be contained in cartridges 
such as those used in SPE. 

 To use natural adsorbents like chitosan, cellulose that can be compatible with 
magnetic materials. This is because synthetic polymeric reagents becomes expensive 
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especially when large quantities are required to decontaminate large volumes of 
wastewaters in real environmental situations. Most natural adsorbents are cheap and 
readily available. 

 To try other methods for coating the magnetite wholly as this is important so that no 
part of the exposed magnetic core takes part in the adsorption of the uranyl and 
dichromate ions from solution. Adsorption studies of the uranyl and dichromate ion 
by a bare magnetite should also be carried out to show its contribution in the case of 
partial coating. 

 In this study, only oxygen and nitrogen bearing functional monomers were used (for 
uranium magnetic IIP). It is however important that monomers with electron lone pair 
donating atoms like sulpfur be investigated in order to see if there can be an 
improvement in the adsorption capacity. 
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Appendix  

A.1 Calculation of the amount of γ-MPS on the surface of the magnetite using CHNS 
Analysis 

Mass of the sample  = 2 mg 

C in the sample  = 20.16% 

Mass of carbon in the sample = 20.16% x 2 

    = 0.4032 mg 

      Ligand concentration = (૙.૝૙૜૛	ܠ	૚૙ష૜)૚૛  

    = 3.36 x 10-5 moles (in 2 mg-sample)  

  Ligand concentration per g = 
(૜.૜૟	ܠ	૚૙ష૞)(૛.ܠ	૚૙ష૜)  

    = 16.8 mmol C g-1 

The three other values for the ligand concentration per gram were similarly calculated and the 
values were both 15.8 mmol C g-1. 

Ligand concentration = (11) x (16.1) 

   = 177.1 mmol H g-1 

Mass of H per g = (177.1) x (1) 

   = 177.1 mg H g-1 

   = 17.71% 

A.2 Calculation of the amount of OA on the surface of the magnetite using CHNS 
Analysis 

Mass of the sample  = 2.05 mg 

% C in the sample  = 4.627% 

Mass of carbon in the sample = 4.627% x 2.05 

    = 0.9485 mg 

      Ligand concentration = (૙.ૢ૝ૡ૞	ܠ	૚૙ష૜)૚૛  

    = 7.9 x 10-5 moles (in 2 mg-sample) 
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Ligand concentration per g = 
(ૠ.ૢ	ܠ	૚૙ష૞)(૛.૙૞	ܠ	૚૙ష૜) 

    = 38.1 mmol C g-1 

Ligand concentration = (33) x (3.85) 

   = 42.35 mmol H g-1 

Mass of H per g = (42.35) x (1) 

   = 42.35 mg H g-1 

   = 4.24% 

A.3 PXRD analysis: Particle size analysis 
 

     ۲	ഥ  = 
૞ૠ.૜∙ܓ∙ૃ઺۱ܛܗી   

   = 
૞ૠ.૜∙ܓ∙ૃ઺۱ܛܗી  

          = 
(૞ૠ.૜)(૙.ૢ)(૚.૞૝૚ૡ)(૙.ૠ)(۱ܛܗ	૚ૠ.૞)  

              = 119.1 Å 

         = 11.9 nm 
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