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EXECUTIVE SUMMARY

A STOCHASTIC DAILY CLIMATE MODEL FOR

SOUTH AFRICAN CONDITIONS

Anabela de Gusmao Brandao and Walter Zucchini

Motivation

Effective water resources management is essential in a country like South Africa which

is particularly prone to the adverse effects of drought. This will only become feasible when

the risk associated with drought occurrences can be reliably assessed.

Present methods of assessing the risk of adverse weather conditions are based on rainfall

and streamflow only and do not take account of the many other climatic factors such as

evaporation, humidity, wind run, temperature etc. Such factors play an important role in

establishing drought conditions, especially in the agricultural sector.

Methods, such as those based on the Palmer drought index, are purely descriptive and

are designed to quantify what has happened in the past rather than what is likely to happen

in the future. These methods are therefore of limited use for planning purposes.

This project arose from a need to develop reliable methods to generate artificial climate

sequences over any period of the year and thereby enable water resources and agricultural

planners to assess the probable consequences of decisions whose outcomes depend on climate

factors. For example, sequences generated by a suitable model could be used as the input

to plant yield models associated with crops such as maize, wheat and sugar cane, and

thereby provide the probability distribution of yield under alternative options regarding, for

example, planting date, cultivar and irrigation strategy.

The climate model to be developed in the course of this project was seen as a logical

extension of the daily rainfall model which was developed in a previous Water Research

Commission project (WRC Report No. 91/1/84 - 91/3/84). The latter model has been

used by a number of institutions involved in Forestry, Agriculture, Nature Conservation,

as well as by individual researchers at a number of universities and the South African

Museum. It is offered as one of the data products available from the Computing Centre
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of Water Research. The climate model, incorporating several additional variables, would

therefore supplement the rainfall model.

Objectives

The objective of this project was to develop a stochastic model for the simultaneous

description of climate variables at fixed locations on a daily basis. The variables to be

analysed were rainfall, sunshine duration, maximum and minimum temperature, maximum

and minimum relative humidity, evaporation and wind run.

Once a suitable model was identified the object was to develop methodology to estimate

the relevant parameters from a given historical record and then to develop algorithms to

generate artificial daily climate sequences at the given site.

A further objective of the project was that the technicalities of the methodology de-

veloped should be transparent to the user, that is, the results should be accessible to users

with limited or no knowledge of statistics.

Summary of results

We investigated the properties of the only daily climate model (Model 1) that has

been described in the literature. A number of limitations of this model were identified and

four alternative models were constructed, Models 2, 3, 4 and 5. (Model 2 was designed

as a prototype for the subsequent models and is described in the report for the sake of

completeness rather than as a suitable model in its own right.)

The new models, which vary in complexity, are designed to form a compatible family.

This allows one to select a model of appropriate complexity for the particular historical

record that is available. In general the simpler models outperform more complex models

when the historical record is short (as is presently the case at almost all sites in South Africa)

whereas the latter can be expected to become increasingly applicable as more data becomes

available. Furthermore the compatibility property allows one to model the different climate

variables using components from any one of Models 3, 4 and 5 and then to combine these

into a single multivariate daily climate model.

To fulfil its purpose a daily climate model must incorporate all the important properties

exhibited by climate variables. These include the seasonal cyclical behaviour of climate, its

short-term persistence, the interrelationships between the different variables (for example

between rainfall and humidity) and the boundedness of some of the variables (for example
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the upper and lower limits of maximum and minimum relative humidity). In addition the

behaviour of each of the variables on wet days is different to that on dry days. For example,

on average, the maximum temperature on dry days is higher than it is on wet days. All

these properties have to be preserved, not only qualitatively, but also quantitatively by the

climate model.

The results of this project confirm that it is indeed possible to construct models that

preserve the above properties. This is in spite of the fact that the historical records which

are presently available in South Africa are extremely short for the purpose of modelling a

process of the complexity of daily climate. (The length of the records available to us ranged

from 6 to 12 years.) An additional factor which reduces the effective length of the records

for this type of modelling is the average number of rainy days which, in many parts of South

Africa, is quite small.

The models were calibrated at six sites, namely Elsenburg (South Western Cape), Kaka-

mas (Northern Cape), Middelburg (Eastern Central Cape), Nelspruit (Eastern Transvaal),

Cedara (Natal) and Hoopstad (Orange Free State) which, within the constraints of the data

available to us, were selected to represent as wide a variety of climate types as possible.

Extensive validation tests were carried out and our results show that, on the whole, the

models perform remarkably well.

There is no clear-cut answer regarding which model will perform best. As mentioned,

one would expect the simpler models to outperform the more complex alternatives when

the data records are short. For some sites Model 1 preserves the properties of some of

the climate variables better than the more complex alternative models. At other sites the

opposite was found to be the case. We therefore recommend that, at new sites, each of the

models be applied and tested before a final selection is made.

A major theoretical obstacle that had to be overcome in the course of the project was

that of developing methods which could accommodate records with missing observations,

with invalid recordings and with outlying observations. Although we had access to some

of the best historical records that are available in South Africa, there weTe considerable

gaps and imperfections in these records (amounting to between 1% and 13% of the total

record lengths for the records which we examined). As climate variables are both serially

correlated and cross-correlated it is not possible to simply ignore missing values. Methods

had to be developed to incorporate the estimation of missing values as part of the parameter
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estimation procedure.

A substantial portion of the research effort in this project was directed to deriving the

mathematical theory for the climate models which were developed. This material, which is

rather technical and thus is not accessible to the general user, includes the development of

estimation methods both for the individual climate variables as individual time series models

and then for the multivariate series which combines these models so as to synchronise the

various climate variables.

The second major component of the project was the preparation of computer programs

to implement the theory. In order to make the software accessible to as wide a variety of

users as possible it was decided at the outset that all programs would be such that they

could be implemented on micro-computers. Secondly, it was decided that no use should

be made of licensed software packages which may not be available to some potential users.

Thus the programs which are listed in this report are self-contained and are coded in

ANSI FORTRAN 77, (the HUGE attribute in programs 6 and 8 is an extension to the full

ANSI standard but this can be omitted without any problems on a mainframe) a language

for which compilers are generally available. This includes the programs to estimate the

parameters and to generate the required artificial climate sequences.

An objective of the project was that the results of the project should be accessible to

users with limited or no knowledge of statistics. This objective has been mostly met, but

with the following qualification. The programs that have been developed to generate the

climate sequences are accessible by any user who can operate a micro-computer. Such a

person would not have to know anything about programming but merely how to run an

existing program. We envisage that most users of the methodology will only be interested

in making use of the generating program.

Some training is required to apply the methodology at a new site, that is, to estimate

the model parameters from a given historical record. We estimate that, with instruction,

it would take a competent pncgranner' between two to three weeks to learn how to make

efficient use of the estimation software provided. Most of the training would be concerned

with methods for preparing the data for estimation. This aspect of the methodology simply

cannot be automated since it requires judgement.

Thus we must distinguish between two types of users; those who wish to calibrate the
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model for a new site and those who wish to use the model for a site that has already been

calibrated. The former task requires some training but the latter does not. This issue is

discussed in the recommendations below.

We believe that the main objectives of the project have been met. We have demon-

strated that the models which were investigated in the course of this project meet all the

requirements that can be reasonably expected of models for a phenomenon of the complexity

of daily climate.

Recommendations

Quality of historical records

The main obstacle to the application of the techniques described in this report on a

large scale is the lack of suitable historical records. This refers to both the quantity and

the quality of available data. The records which were used for this report represent some of

the best available in South Africa. Nevertheless, for the purpose of modelling daily climate,

they are barely adequate. Although there is little that can be done to increase the length

of records except to wait for more data to be collected, it should be possible to improve

the quality of historical records. In particular it would be useful if some measure of the

reliability of the observations were also recorded on a regular basis. As we have repeatedly

pointed out in the body of the report, one of the problems which we encountered was that

of identifying incorrect observations. This task would be considerably simplified if one had

some index of reliability associated with (ideally) each recording or set of recordings.

Transfer of technology

For the methods developed in this project to realise their full potential it will be nec-

essary to calibrate the models at many more sites. As was pointed out, no special training

is required to use the programs for generating climate sequences once the parameters of

the model have been estimated. However, some training is required to use the programs to

prepare the data for estimation and to carry out the estimation for a new site.

We recommend that the Computing Centre for Water Research (CCWR) be approached

to acquire the expertise to implement the estimation techniques and with the help of users,

gradually build up a data base of estimates of the model parameters for as many sites as

possible in South Africa. The CCWR already offer a similar data product, namely the

parameter estimates of a daily rainfall model for 2550 sites in South Africa. These arose

from a previous Water Research Commission project (Zucchini and Adamson (1984)). The
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CCWR also offer the artificial rainfall generating program which can be applied to any of

these sites. Thus the programs developed in the course of this project constitute a logical

extension of a service that the CCWR already offer.
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CHAPTER 1

INTRODUCTION

Climate is a critical factor in determining the variety and abundance of vegetation and

animal life that can exist in a region. It imposes limits on agricultural and other human

activities that are economically feasible. Thus it is not surprising that various aspects

of climate, such as precipitation, temperature, solar radiation, humidity, wind speed and

others, are recorded on a regular basis throughout the world.

The purpose of measuring these climate variables is to extend our knowledge of the

behaviour patterns of climate and thereby, among other things, to identify those activities

which are feasible and to determine how these may be most profitably carried out. For this,

one has to take account of the fact that both the climate process and human requirements,

such as demand for water, are dynamic processes which are stochastic rather than determin-

istic in character. For example, the annual rainfall in most regions of South Africa varies

considerably from year to year and it is obviously inadequate to base water-related decisions

solely on the average annual rainfall; the entire distribution of annual rainfall needs to be

considered.

Statistical theory provides an ideal framework for expressing our knowledge about the

properties of climate. Firstly, it provides a means of quantifying our knowledge in a precise

manner. Secondly being designed to describe stochastic phenomena, the theory provides a

conceptual framework which accommodates notions such as uncertainty and risk, thereby

providing a convenient basis for rational decision making in the face of uncertainty. Thirdly,

statistical methodology provides an effective means of synthesising and analysing the infor-

mation contained in large data sets such as daily climate records. In particular the theory

enables one to quantitatively distinguish the systematic patterns in climate (such as the

seasonal cycles) from the random fluctuations about these patterns and to express this

information in terms of a statistical model.

As well as providing a concise description of the patterns that exist in the different

components of climate, a statistical model can be used to generate artificial climate sequences

which preserve the properties of real climate sequences, that is, artificial sequences that

are indistinguishable from real climate sequences. Among other things, artificial climate

sequences are useful as inputs to crop growth models which can then be used to determine

1-1
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the distribution of yield, the risk of crop failure due to adverse climate, optimal planting

dates, the potential profitability of irrigation, and so on. For such purposes artificial climate

sequences generated by a good stochastic model are more useful than the original historical

record. Firstly, they are free of the typical imperfections which are especially prevalent

in historical climate records, for example, incorrect recordings and missing observations.

Secondly, the historical records presently available in South Africa are mostly quite short

and thus only reflect a small fraction of the different climate sequences that could occur.

It is sometimes argued that artificial sequences generated by a stochastic model con-

stitute no more than complicated extrapolations of the historical record. However, a model

contains more than the information that can be extracted from a single historical record. It

contains our knowledge (in the form of model assumptions) about the behaviour of climate

derived from theory and from observations at other locations. For example, it is reasonable

to assume that certain average properties of climate variables vary smoothly with time.

Such assumptions give the model a structure which may not be evident in a single short

historical record.

The main objective of this project has been to develop a stochastic daily climate model

for South African conditions. The time resolution was taken as one day because climate data

commonly available are recorded on a daily basis. The variables included in the model are

rainfall, maximum and minimum temperature, maximum and minimum relative humidity,

evaporation, wind run and sunshine. In fact the models that have been developed can be

used to model a subset of the set of variables in cases where some of the above set are not

available. Alternatively, it is possible to augment this list if measurements on additional

variables are available.

As already mentioned the model needs to preserve the important properties of daily

climate sequences. These were identified as being:

a) Seasonality. Each of the climate variables exhibits seasonal behaviour, that is, the

recordings fluctuate about a curve which has a cyclical pattern with a period of one year. The

shape of the curve is approximately sinusoidal which suggests that it can be parsimoniously

approximated by a truncated form of its Fourier representation.

b) Wet/dry day effect. The probability distribution of the climate variables on wet

days is different from their distribution on dry days. For example, the maximum relative

1-2
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humidity is generally higher on wet days than on dry days; and the opposite is true for the

number of sunshine hours. Thus it is necessary to treat dry days and wet days differently

in the model.

c) Autocorrelation. The individual variables exhibit short-term persistence over and

above that attributable to seasonality. Generally there is a positive correlation between

readings on successive days. This type of persistence needs to be incorporated into the

model.

d) Cross—correlation. Apart from the wet/dry day effect already mentioned, the vari-

ables are cross-correlated. For example, there is a positive correlation between minimum,

temperature and maximum temperature on the same day. To preserve this property it is

not possible to model the climate variables separately — they have to be modelled jointly.

e) Boundedness. The values of some of the variables are bounded, for example, relative

humidity lies in the range 0% to 100%. Other variables are bounded with respect to others,

for example, the minimum temperature on any one day must not be higher than the maxi-

mum temperature on the same day. To preserve this type of property the variables have to

be transformed.

f) Non-normality. The probability distribution of climate variables does not follow the

normal distribution. This is problematic because there is practically no other multivari-

ate distribution available that is both sufficiently flexible and mathematically tractable to

deal with a phenomenon as complex as climate. It is therefore necessary to transform the

variables to achieve normality.

Taken together these properties indicate that we are dealing with a multivariate time

series which is non-stationary and which contains a number of variables with special prop-

erties. In particular rainfall has the property that it is partly discrete (there is a non-zero

probability that it does not rain) and partly continuous (the rainfall depth on rainy days is

a continuous random variable). There is no standard statistical model which can be applied

directly to such a multivariate time series. A special model has to be constructed for the

daily climate process.

Although there is an extensive literature on the modelling of daily rainfall sequences,

apart from Richardson (1981), very little work has been reported on models which describe

the joint probability distribution of several components of climate. Richardson proposed

1-3
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separating the observations into two sequences; one for observations which occurred on wet

days and one for those which occurred on dry days. For each of these two sequences the

seasonal mean and standard deviation of each variable is estimated separately and then a

new time series (of residuals) is obtained by deseasonalising the original observations using

the appropriate means and standard deviations, depending on whether the observations

occurred on wet days or on dry days. The (multivariate) time series computed in this way

has mean zero and variance unity and is modelled using a single multivariate autoregressive

model.

Richardson's model (Model 1) is probably the simplest structure that has the potential

of preserving properties (a) to (d), outlined above, in a sufficiently flexible form. To accom-

modate (e) and (f) it is necessary to make suitable transformations of the variables at the

very start of the modelling procedure. Such transformations are required for all the models

which were considered.

At the start of the project Model 1 was fitted to six years of record (1979-1984) at

Elsenburg. The model was found to fit some aspects of the historical records quite well

but performed poorly on certain other aspects. In particular the annual standard deviation

for wind run, maximum and minimum humidity were systematically underestimated. The

(lagged) cross-correlations between some of the variables (e.g. maximum temperature and

minimum temperature) were not preserved by the model. However the most noticeable

deficiency was found to be that the model did not preserve the serial correlation structure of

many of the variables. This was attributed to the lack of flexibility of Model 1 in this respect.

In particular the model is based on the assumption that the serial correlation function does

not depend on the wet/dry status of the days in question. In fact the correlation between

variables on two successive days depends on whether the two days are both wet, both dry,

wet followed by dry or dry followed by wet. It was therefore decided to develop a model

which incorporates additional flexibility in its autocorrelation function, that is, a model

which allows for the serial correlations between variables on successive days to depend on

their wet/dry status.

In developing a model for a process as complex as daily climate there are two conflicting

objectives. On the one hand it is desirable to construct a model that is as flexible as possible

so that it can accommodate as many of the special features of the process as possible.

On the other hand additional flexibility can only be achieved by increasing the number
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CHAPTER 1 Introduction

of unknown parameters in the model. These parameters have to be estimated from the

historical record. Now, for a record of given length, increasing the number of parameters

that has to be estimated decreases the precision of the estimates, on average. Put differently,

if a model has too many parameters it becomes too specific to the particular historical record

that is available and less representative of the population of typical climate sequences that

could arise. The appropriate complexity of a model depends on the length of the historical

record. In general, simpler models which depend on only a small number of parameters will

outperform more complex models if the historical record is short, but the reverse is true if the

record is large. A second issue is that some of the climate variables are more appropriately

modelled by simpler structures than others. It is therefore not always optimal to use the

same model for all the components of climate.

The strategy that we adopted to circumvent the above difficulties was to develop a

family of models of varying degrees of complexity ranging from the simplest feasible model

to more complex alternatives. This allows one to select the particular model from the family

which is most appropriate for the historical record that is available. In addition the family

which was developed is such that the individual models within the family are compatible

in the following sense. One can use different submodels for each of the individual climate

variables and then combine these into a multivariate model at the last stage of the modelling

procedure. Thus, for example, it is possible to fit a simple model to wind run but a more

complex model to minimum temperature. This compatibility feature of the family thus

allows for additional flexibility.

Three compatible models were developed which we will refer to as Models 3, 4 and

5 (Model 2 was developed as a prototype to the others and is included in the report for

the sake of completeness). Models 3 and 4 are two alternative relatively simple models

whereas Model 5 is more general than each of them. Thus one would expect Models 3

and 4 to be suitable for short data records (as are presently available in South Africa) and

Model 5 to become preferable as the historical data base increases in length. The method of

maximum likelihood was used to estimate the parameters. Since the likelihoood equations

are extremely complex, it was necessary to develop numerical methods to carry out the

estimation. This involved deriving the first and second derivatives of the likelihood function

(given in Chapter 3) and the development of procedures to compute initial estimates of the

parameters.
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One of the major problems which we encountered in applying the estimation procedures

was the presence of missing observations and also of outliers, mainly in the form of incorrect

readings (e.g. outside the admissible range of values). It is necessary to filter the data in

order to remove such outliers before attempting to estimate the parameters — this introduces

additional gaps in the record. Thus the estimation procedure that was developed had to be

able to cope with the problem of missing values.

Some aspects of the lack of fit of Model 1 which were identified at the start of the

project were later found to be attributed, at least in part, to outlying observations. In

fact, a conclusion of this project is that in many respects Model 1 outperforms the more

sophisticated models developed here. All the models considered here are strongly influenced

by outlying observations. This fact makes it necessary to pay special attention to the quality

of the historical record before attempting to fit a model.

In order to objectively determine which member of the family of models is most ap-

propriate in a given situation a model selection criterion is used. The Akaike's Information

Criterion (AIC) is proposed for this purpose.

Six sites were selected to evaluate the performance of the models considered in this

report. The choice of the sites was, of course, constrained by the availability of suitable

historical records. Within this constraint we attempted to represent, as well as possible, the

various climate regions of South Africa. The sites chosen were:

Elsenburg — South West Cape

Kakamas — Northern Cape

Middelburg — Eastern Central Cape

Nelspruit — Eastern Transvaal

Cedara — Natal

Hoopstad — Orange Free State.

The aim of model validation is to establish that the models preserve the important

properties of the historical records, at least to an appropriate degree, so that the generated

sequences can be regarded as representative of the population of sequences which could

occur.

An objective of this project was that the technicalities of the methodology should be
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transparent to the user, that is, the results should be accessible to users with limited or

no knowledge of statistics. Here one must distinguish between the person who fits the

model to observations at a new site and the person who uses the fitted model to generate

artificial climate sequences, A limited amount of training is required to apply the estimation

techniques using the software that is provided, but once the parameters of the model have

been estimated at a particular site, the software provided to generate artificial climate

sequences is accessible to anyone who can run a computer program.

In order to make the methodology accessible to as wide a variety of users as possible,

it was decided at the outset of the project that all the software developed would have to be

such that it could be implemented on micro computers. Secondly, it was decided that no

use should be made of licensed software which may not be available to some potential users.

The programs listed at the back of this report are self-contained — no additional software

is required either to estimate the parameters or to generate artificial climate sequences.

This report is structured as follows:

The preliminary statistical analysis of the data is described in Chapter 2. This includes

a description of the data, the types of difficulties encountered in detecting and dealing with

faults in the data and the statistics computed to identify the structures present in the climate

sequence.

Chapter 3 gives a theoretical description of the five climate models which were inves-

tigated and of the methods used to estimate the model parameters. The contents of the

chapter are technical and very detailed and thus rather demanding of the reader. Fortu-

nately it is not necessary to absorb all this detail in order to understand the remainder of

the report. We recommend that the reader who is not concerned with the mathematical

development of the models simply skip over this chapter. Details on the implementation of

the models to the historical records are given in Chapter 4. The algorithms for implement-

ing the theory are listed in Chapter 5. These include algorithms for generating artificial

climate sequences. These algorithms are intended to bridge the gap between the formulae

given in Chapter 3 and the FORTRAN programs given in Appendix D. Extensive tests were

performed on the fitted models in order to assess their performance in preserving the impor-

tant properties of climate sequences. The results of this model validation investigation are

summarized in Chapter 6. A summary of the findings of the study and the main conclusions

are given in Chapter 7.
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There are 5 Appendices: Appendix A explains the choice of the Fourier approximation,

L , Appendix B describes the properties of the Fourier series approximation, Appendix

C gives an algorithm, known as the Cholesky decomposition, which rewrites a matrix as a

product of a triangular matrix with its transpose. This is needed to generate normal random

numbers with a covariance matrix £ . Appendix D gives information on where a list of the

ANSI FORTRAN 77 programs used in this study can be obtained. Appendix E describes

the EM algorithm, a very general iterative method for maximum likelihood estimation in

incomplete data sets. The EM algorithm is used in this study to estimate and fill missing

values in the climate data sets.



CHAPTER 2

THE DATA SET AND PRELIMINARY ANALYSIS

It is to be expected that data records collected over a long period of time will contain

gaps, and usually the number of gaps increases in proportion with the size of the data set.

The data sets considered in this study are no exception to this.

Gaps occur for two reasons. Firstly, a high proportion of the observations are missing.

Although missing observations are relatively easy to detect, they lead to complications in

the analysis. In particular, the multivariate time series models considered here require

simultaneous observations of all the variables. Furthermore, the serial correlation structure

in the series does not allow one to simply discard observations as one would do if the

observations were serially independently distributed.

Secondly, some of the readings are incorrect (or incorrectly recorded). These are often

quite difficult to detect, especially if the values fall within the feasible range of the variable

under consideration. This problem is particularly difficult to deal with satisfactorily.

This chapter describes the general format of the data sets used, some of the problems

encountered and the method used to overcome them. Finally, some preliminary analyses

performed for initial model identification are discussed.

The data set

(a) Format

The climate variables of interest are:

- rainfall (mm)

- maximum temperature (°C)

- minimum temperature (°C)

- A pan evaporation (mm)

- sunshine duration (hours)

- windrun (km/day)

- maximum humidity {%)

- minimum humidity (%)
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CHAPTER 2 The data set and preliminary analysis

Not all stations have records for evaporation, however, as it is easily derived from

other climate variables, it is not essential to include it in the models. Whenever readings

are available, evaporation is kept purely to demonstrate the elasticity of the models in that

variables can be omitted or incorporated without the model structure changing. The number

of variables is simply increased.

The unit of measurement for each variable is shown above in brackets following the

variable name.

Three properties of the time series (discussed later) determine how the final data set

for parameter estimation must be constructed. Firstly, simultaneous observations for all

variables are required as one is dealing with a multivariate time series. As data collection of

some variables (humidity, for example) has only been started recently, only years for which

measurements are available for all variables simultaneously can be used. The only exception

is rainfall as it is modelled independently of the other variables.

Secondly, continuous data is required because of the seasonally and serial-correlation

structure in the time series. Large gaps in the data caused by shutting down a station for

a long period of time and then reopening it at a later stage, cannot be treated as missing

values. Only the sequence previous to or following the closing (depending on which period

is longer) may be used.

Finally, records should begin on 1 January and end on 31 December. This restriction

simplifies the algorithms and the programming. However, it is not necessary to waste data

in order to meet this requirement if only a few months are missing in a year. For example,

if the original available record starts on 1.2.1978, then one should code the days 1.1.1978—

31.1.1978 as missing and then regard the record as starting on 1.1.1978.

(b) Quality

There is always a possibility of readings being recorded incorrectly. The type of record-

ing error which can easily be identified is when the value recorded lies outside the permissible

range, for example a recorded value for sunshine duration of 25 hours. In addition, a variable

may have values which, although within a feasible region, are nevertheless incorrect. This

cannot be established with any certainty. The fact that one is clearly dealing with data sets

that are not "clean" and that preliminary work done showed the models to be extremely

sensitive to "unclean" data, a thorough procedure to detect possible errors in the records is
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necessary.

From model assumptions, the residual fcime series obtained after fitting Model 1 (any

other model can be used) to the climate series, is normally distributed with mean zero and

standard deviation of unity. Therefore, 99.7% of the residual values should lie within the

interval (-3, 3). In the present case, it is almost impossible to tell whether large residuals

reflect model misfit or poor data, therefore large residuals were examined for possible oc-

currences of outliers. Preceding and succeeding values can give an indication whether or

not these values should be considered as outliers. Observations across the variables at these

times also show what patterns to expect. For example, Barry and Charley (1968) state that

evaporation can be expressed by:

- duration of sunshine

- mean air temperature

- mean air humidity

- mean wind speed.

Thus, one would expect to see an increase of evaporation with an increase of sunshine

duration.

Outliers are treated as missing values.

(c) Treatment of leap years

Whenever a leap year occurs, the value observed on the 29 February is added to the

value observed on 28 February for the variables

- rainfall and

- evaporation.

For the variables

- maximum temperature

- minimum temperature

- sunshine duration

- windrun

- maximum humidity, and

- minimum himidity,

2-3



CHAPTER 2 The data set and preliminary analysis

the mean of the observed values of the 29 February and 28 February replaces the

observed value of 28 February.

If the 28 February has a missing value then it is replaced by the observed value of 29

February.

Distinctive features of the time series useful for model identification

The station chosen for preliminary analyses was Elsenburg in the Cape Province (Lat-

itude 33°51/ , Longitude 18°50' ). Any station could have been chosen for this purpose as

they all display similar features.

(a) Seasonal!ty

A simple moving average smooth was used to filter the series. This is given by

2LTT
l=-L

where mt is the mean of the time series at time t , i.e.

1 v-
*=i

where Xitt is the observation made at time t of the ith year,

i = 1,2,. . . , / , / being the number of years for which data is available,

t = 1,2,..., 365

and L is the lag.

Lags of 10, 25, 50 and 100 days were applied.

Note that in the above equation, because mt is cyclic one has that

= mi

mo

and so on.

Figure 2.1 shows the smooth plots for the various variables.
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FIGURE 2.1 Simple moving average smooth (lag=50)for all variables of

Elsenburg
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CHAPTER 2 The data set and preliminary analysis

From the smooth plots it can be concluded that each time series of the variables is

seasonal, has a cyclic period of one year and has a sinusoidal shape.

(b) Autocorrelation

Table 2.1 shows the autocorrelation for each variable up to lags of three.

The following abbreviations for each variable will be adopted in the annotation of tables

and figures:

max temp — maximum temperature

min temp — minimum temperature

evapo — evaporation

sunshine — sunshine duration

max hum — maximum humidity

min hum — minimum humidity

From Table 2.1 it can be seen that the variables are autocorrelated, i.e. there is a

short-term persistence within each variable.

TABLE 2.1 Autocorrelation coefficients

Variable

rainfall

max temp

min temp

evapo

sunshine

windrun

max hum

min hum

Lag 1

0.23

0.77

0.69

0.76

0.52

0.38

0.32

0.53

Lag2

0.08

0.59

0.54

0.70

0.30

0.10

0.15

0.33

Lag3

0.05

0.51

0.48

0.66

0.22

0.02

0.08

0.27

(c) Cross-correlation

Intuitively, one would expect climate variables to be related to each other in some way,
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for example one would expect the amount of evaporation to be related to the temperature.

In fact, as already mentioned, evaporation can be expressed approximately in terms of the

other variables. The interdependence among the variables was determined by computing

the lag cross-correlation coefficients of the time series. These cross-correlation coefficients

are shown in Table 2.2. These results confirm that the variables are indeed interdependent.

TABLE 2.2 Cross—correlation coefficients between variables

Variables Lag cross-correlation

max temp - min temp
max temp - evapo
max temp - sunshine
max temp - wind
max temp - max hum
max temp - min hum

min temp - evapo
min temp - sunshine
min temp - windrun
min temp - max hum
min temp - min hum

evapo - sunshine
evapo - windrun
evapo - max hum
evapo - min hum

sunshine - windrun
sunshine - max hum
sunshine - min hum

windrun - max hum
windrun - min hum

max hum - min hum

0.42
0.65
0.52
0.07
0.12
0.42

0.65
0.43
0.01
0.17
0.44

0.50
0.09
0.12
0.37

0.03
0.00
0.16

0.05
0.12

0.44
0.74
0.65

-0.17
-0.21
-0.57

0.61
0.25
0.22

-0.18
-0.32

0.59
0.04

-0.18
-0.46

-0.18
-0.06
-0.33

-0.08
-0.06

0.52
0.78
0.63

-0.14
-0.27
-0.71

0.51
0.06
0.26

-0.18
-0.07

0.75
0.12

-0.29
-0.61

-0.20
-0.19
-0.70

-0.10
0.18

0.72
0.64
0.34
0.07

-0.19
-0.39

0.50
0.17
0.14

-0.05
-0.13

0.50
0.12

-0.30
-0.47

-0.02
-0.24
-0.50

-0.12
0.17

0.73
0.56
0.24
0.11

-0.08
-0.26

0.48
0.23
0.07

-0.05
-0.20

0.39
0.13

-0.17
-0.37

0.08
-0.15
-0.32

-0.06
-0.01

0.16 0.32 0.32 0.17 0.07

(d) Time series observations differ depending on the wet or dry status of the

day-

It is known that on days that rain occurs, a marked change also occurs in other climatic

variables, for example, temperature and sunshine duration are more likely to be below

normal on rainy days than on dry days. Humidity, on the other hand will be above average on
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a rainy day rather than on a dry day. This property of the climate variables was investigated

to determine whether the difference was significantly distinct.

The observations of all variables were found to be significantly different depending on

whether rain had or had not occurred in that time period. Figure 2.2 shows the mean time

series of each variable conditioned on the wet or dry status of the day. Table 2.3 shows a

comparison of the mean for each variable conditioned on the wet or dry status of the day.

TABLE 2.3 Mean for conditioned time series

Variable Dry state Wet state

max temp 24.14 18.13

min temp 10.43 10.91

evapo 6.71 2.76

sunshine 9.73 4.15

windrun 177.7 245.8

max hum 91.9 94.3

min hum 36.8 55.1

Having concluded that climatic variables vary depending on whether rain or no rain

has occurred, it remains to examine whether the amount of rainfall is related in any way

to the observations of the climate variables. Figure 2.3 shows the graphs of rainfall versus

each climate variable. From these plots it is concluded that there is no visible pattern to

the values of the climate variables in relation to the amount of rainfall.

(e) Rainfall is a "strange" variable

The rainfall variable is somewhat unusual from a statistical point of view in the sense

that it exhibits different properties from those of the other climatic variables. The distri-

bution of rainfall is both discrete and continuous. The occurrence or non-occurrence of

rainfall is considered as discrete, while on the times that it does rain, the depth of rainfall

has a continuous distribution.

Another distinctive feature of rainfall is that especially in a country like South Africa,

the proportion of rainy days is relatively small.

2-9



CHAPTER 2 The data set and preliminary analysis

FIGURE 2.2 Mean time series conditioned on status of day
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CHAPTER 2 The data set and preliminary analysis

FIGURE 2.3 Daily mean rainfall versus daily mean climate for all variables
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Concluding remarks

The above preliminary analysis establishes a number of facts. Firstly, the individual

climate variables exhibit seasonal fluctuations and these fluctuations appear to follow a

sinusoidal pattern. This would suggest that the mean function of each variable could be

parsimoniously modelled by means of a truncated Fourier series. Secondly, the individual

variables are serially correlated (even after this seasonal fluctuation has been taken into

account). In other words, the individual climate variables constitute time series and have to

be modelled as such. This preliminary analysis would suggest that an autoregressive model

might be suitable to describe the autocorrelation structure of the variables. Here one has to

keep in mind that the number of parameters in the final model must be kept to a minimum

in order to avoid the usual statistical problems associated with estimating a large number

of parameters. An autoregressive model is ideal in this respect.

Finally, the variables are cross-correlated, that is, they do not vary independently of

each other. It follows that it is not possible to model climate by separately modelling its

component variables; a multivariate time series model is required.

Seeing that the variable rainfall has some extra properties that have to be taken into

consideration and that the remaining climatic variables differ depending on the state of the

rainfall variable, it is proposed that the rainfall variable should be determined independently

of the other variables and then to condition the other variables for a given day on whether

the day was wet or dry.

As no pattern was found between different precipitation amounts and the climate ob-

servations, it was decided to consider a non-rainy day as one with a precipitation amount

of zero and a rainy day as one with a rainfall depth greater than zero.
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CHAPTER 3

THE MODELS

The preliminary analysis described in Chapter 2 established that sequences of climate

variables exhibit a number of distinctive features. In particular the distribution of each

climate variable varies seasonally, the variables are serially correlated, they are dependent,

and finally the distributions of the variables depend on the wet or dry status of the day under

consideration. Any useful model for the simultaneous discription of climate sequences must

of course preserve all these properties.

The models considered here are constructed in two stages. One begins by constructing

a model for the rainfall process. This provides synthetic sequences of wet and dry days. The

remaining variables are then modelled according to the wet or dry status of each day. Thus

the joint distribution of all the variables other than rainfall changes not only with season

but also with changes in wet or dry status.

The rainfall component of the five models to be discussed is common to all five models

and is thus described first. The first of the five models is due to Richardson (1981), the

remaining four are new.

The rainfall model

Several models have been proposed for simulating daily precipitation. (Gabriel and

Neumann, 1962; Richardson, 1981; Roldan and Woolhiser, 1982; Stern and Coe, 1984; Zuc-

chini and Adamson, 1984.) Most precipitation models are specified by a discrete occurrence

process describing the sequence of wet and dry days, and a continuous distribution function

for the amount of precipitation of days with rain. The parameters of the model are allowed

to vary seasonally.

A model to describe the occurrence of wet and dry sequences of days

A first-order Markov chain is used to describe the occurrence of wet and dry days. By

this one assumes that the state of day t depends on the state of the previous day, t — 1 .

This does not imply that the state at time t is independent of the state on day t — 2, t — 3 ,

etc . . . , but rather that the information given by t — 1 is equivalent to all the information

given by t—l,t — 2, etc . . . . One also assumes that, except for the seasonally, the process

is stationary.
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A first-order Markov chain has been found to be an adequate model for precipitation

occurrence in many different regions. (Gabriel and Neumann, 1962; Caskey, 1963; Weiss,

1964; Hopkins and Robillard, 1964; Haan et al, 1976; Smith and Schreiber, 1973; Woolhiser

and Prengram, 1979; Richardson, 1981; Roldan and Woolhiser, 1982; Zucchini and Adam-

son, 1984.) The order of the Markov chain may of course be increased, but this has to be

done at the cost of increasing complexity and the number of parameters in the model. A

further problem arises if one attempts to increase the order of the Markov chain in arid

areas, namely the estimation of the probability that a rain day follows two or more con-

secutive rain days. In arid areas there are relatively few runs of three or more consecutive

rain days and thus there is hardly any data on which to base estimates of this conditional

probability. (Note that this has to be estimated for each day of the year.) Finally, it was

demonstrated in Zucchini and Adamson (1984) that a first order Markov chain provides an

adequate description of the occurrence of wet and dry sequences of days in the complete

range of South African conditions.

(a) Notation and preliminaries

The day will be used as the time unit. That is, the year is divided into NT(= 365)

equal intervals, denoted by t = 1,2,..., NT . A day with total rainfall greater that 0 mm

is considered as a wet day.

The following notation will be used:

R represents the occurrence of rain (i.e. wet day).

R represents the non-occurrence of rain (i.e. dry day).

For t - l ,2, . . . , iVT

NR(t) is the number of times it was wet in period t .

NR{t) is the number of times it was dry in period t .

NRR(t) is the number of times it was dry in period t — 1 and wet in period t .

NRR(t) is the number of times it was dry in period t — 1 and dry in period t .

NRR(t) is the number of times it was wet in period t — X and wet in period t .

ND(t) = NRR(t) + NRR{t) is the number of times that it was dry in period t — 1 and

there was an observation (wet or dry) in period t .

NW(t) = NRR{t) + NR~R(t) is the number of times that it was wet in period t - 1 and
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there was an observation (wet or dry) in period t .

probability that period t is wet given that period t — 1 is wet.

Probability that period t is dry given that period t — 1 is wet.

fcke probability that period t is wet given that period t - 1 is dry.

*ke probability that period t is dry given that period t — 1 is dry.

Then **/«(*)+ *£/*(*) = 1

Therefore the transition probabilities are fully defined given n\R/J2(*)> *"#/#(*) and the

wet or dry state on day t — 1 , and one only needs to estimate these two probabilities.

From elementary probability theory we have

NRR(t)~B(NW{t)t xR/R(t))

N~RR(t) - B{ND{t)} »ra/S(t)), t = 1,2,...,NT

where B(N,TT) denotes the binomial distribution with parameters N and TT .

(b) Estimation

The functions TTRJR^) and ^R/-^(t) are estimated using the same method but differ-

ent data. To simplify the notation in what follows, one makes use of the following generic

names:

Let M(t) - B(MM(t), ?r(t)), t= 1,2,..., NT.

First we note that the binomial distribution belongs to the exponential family. There-

fore we have a set of independent random variables M(t),t = 1,2,..., NT , each with a

distribution from the exponential family; each M(t) depends on a single parameter TT(£)

and the distributions of all M(t)} t = 1,2,... ,NT , are of the same form (i.e. all bino-

mial). Thus the properties of a generalized linear model are satisfied, and estimates of 7r(t)

may be obtained by using the theory for estimation for generalized linear models. (Dobson,

1983.)

The probabilities n(t) are assumed to be functions of linear combinations of parameters

7 l , 7 2 , . . . , 7 L , L<NT . That is
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where g is the link function and A(£,£) is a linear combination of the 7̂  .

To ensure that the estimated values of n{t) are restricted to the interval [0,1] , one

uses the logit link function, given by

To obtain the linear combination of the 7,-, \(t, L) , we look at some of the properties

of n(t) , namely that it is a smooth, periodic and approximately sinusoidal shaped function.

Transforming 7r(£) , using the logistic transformation, to a logit A(i) given by

one obtains a representation which still has the same properties as 7r(t) , and thus we can

approximate X(t) by the first few terms of its Fourier representation. This approximation

has been used by Stern and Coe (1984) and Zucchini and Adamson (1984).

The exact Fourier representation of A(i) is given by

NT

7<W(*)» t= 1,2,..., NT

where
« . ™ _ fcos(w(t-

- 1 • t — 1 9 ATT

and
2TT

NT

Define the function X(t, L) by

-KM*), t = 1,2,...,NT; L<NT
*=i

where <p%(t) is defined as before and L is the order of the Fourier series approximation.

One is thus making the following approximation:

For some L < NT

\{t,L)tv\{t) , t= 1,2,..., NT.
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A procedure to choose the order of the Fourier series approximation (i.e. the value of

L ) will be discussed later. Generally this approximation is accurate for small values of L .

The number of parameters, L , is always chosen to be an odd number. The reason for this

choice is given in Appendix A. An outline .of the properties of the Fourier representation

are given in Appendix B.

The log-likelihood function of the observed values as a function of the probabilities

7r(t) , is given by

*(*(*); MM) =
NT

= £
t=l

M M { t ) l o g ( 1 " * W ) + I o g

Therefore, the log-likelihood function of the observed values as a function of the parameters

71,72,-.. , 1L is given by

NT

£(7;M(t)) = Z_*
t=l

M(t)\(t,L) - MM(t) log(l + «*<«•*>) + log

The score vector U with respect to 7J , 72, • • •, 7x h&s elements given by

Uj =

NT

t = i

e ( , )
since VarfM(t)) = MM(t) -. .,, ..-..- and

a n d s o

Similarly, the information matrix Ix X i h ^ elements given by

NT e\{t,L)

t=i

A(t,L)
Since 7 , , n , , = 7r(f)(l - ?rft)) it follows that

(1 + eA">I'>)2

t=l
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The maximum likelihood estimates for 71,72, • • • , 7 L are then obtained by solving the

iterative equation

where m indicates the mth approximation and 7 is the vector of estimates.

Some initial approximation 7 °̂) is used to evaluate l(°) and U^ , then the iterative

equation is solved to give 7^) which in turn is used to obtain better approximations for

I and U , and so on until adequate convergence is achieved. When the difference between

successive approximations 7^^ and 7(m~1) is sufficiently small, ^m) is taken as the

maximum likelihood estimate vector.

(c) Model selection

Whenever a model is fitted to observed data, two types of discrepancy arise. The

discrepancy due to approximation (the fewer the number of parameters fitted, the higher

the value of this discrepancy) and the discrepancy due to estimation (the more parameters

fitted, the higher the value of this discrepancy). When choosing the number of parameters to

be fitted, one attempts to minimize the combined effect arising from the two discrepancies.

Selection of the number of parameters, L , may be done by using the criterion of

the Kullbach-Leibler measure of discrepancy. (Linhart and Zucchini, 1982; Zucchini and

Adamson, 1984.)

Under the assumption that for some LQ, \{t) is exactly fitted by LQ parameters, i.e.

= \{t,L0), Lo< NT,

the above method leads to the Akaike Information Criterion where

where £(7; M{t)) is the log-likelihood function given before.

Each value of L leads to a different approximating model. The criterion is computed

for L = 1,3,5,... and the model which leads to the smallest value of the criterion is

selected.

The AIC criterion is much easier to compute than the full Kullbach-Leibler discrepancy

and leads to almost identical results if the discrepancy due to aproximation is small (which

it is in this application).
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The distribution of rainfall on days when rain occurs

Several models have been proposed for the distribution of precipitation amounts given

the occurrence of a wet day. These include the exponential (Todorovic and Woolhiser,

1975; Richardson, 1981); gamma (Ison et at., 1981; Buishand, 1977; Stern and Coe, 1984);

two-parameter gamma (Buishand, 1978); three-parameter mixed exponential (Woolhiser

and Pegram, 1979); kappa (Mielke, 1973); lognormal and Weibull (Zucchini and Adamson,

1984).

Woolhiser and Roldan (1982b) found that out of the exponential, gamma and mixed

exponential distributions, the latter fitted the model of precipitation amounts best. Zucchini

and Adamson (1984) found that for stations in South Africa, the lognormal distribution did

not fit some stations, while the Weibull seemed to provide better fits.

It is known that the distribution of precipitation depths when rain occurs is positively

skewed (i.e. smaller amounts occurring more frequently than the larger amounts) and that

it exhibits the same seasonal variability as found with the probabilities ir(t) . To account

for this seasonality, the simplest solution is to fit a family of distributions and then to allow

the parameters to change over the year, where these parameters are expressed in terms of

its Fourier series approximation.

The method of modelling precipitation amounts is adopted from Zucchini and Adamson

(1984). Here one does not fit any model initially, the first two moment functions of the

distribution are fitted instead. These are then used to estimate the parameters (by the

method of moments) to any desired two-parameter model. Different families can be fitted

to a single record, e.g. one for the rainy season and a second for the dry season.

(a) Notation

The year is divided into NT equal intervals denoted by ( = 1,2..., NT .

M(t) represents the number of times that it rained in period t .

R(i, t) represents the rainfall depth on the ith year that it rained in period t , where i =

C represents the coefficient of variation which we assume to be constant for all t (Zucchini

and Adamson, 1984).

fi(t) represents the mean rainfall per rainy day in period t = 1,2,...,JVT .
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(b) Estimating the mean and coefficient of variation

As observed before fj.(t) can be approximated by its truncated Fourier series represen-

tation and thus reducing the number of parameters to be estimated. That is, we make the

approximation:

( ) { ) t= l ,2, . . . , iVT; L< NT

where /x(£) is defined as

NT

] £ W M t = 1,2,...} NT
i=l

and
L

Y m<Pi{t) t= 1,2,..., NT; L<NT

and (pi{t) is defined as before.

Define m[t) to be the observed means for each period, i.e.

^ *() 1 2 J V T i l 2 M ( i ) ; M(t) > 0

where m(t) is not defined when M(t) — 0 , i.e. it never rained in period t .

We use the method of least squares on m(t) to estimate fi±, y-2) - • • P-L •> that is, mini-

mize
NT

wo-/!(«,£))' a)
with respect to the /i^, i = 1,2, . . . , £ . Approximations to the least squares estimators

when some of the M(t) = 0 , something which occurs often in arid regions, are given by

NT

t) (2)

where
NT

M (*)>0

«i

The m(t) in (1) are given the same weight and so periods which had very little rainfall

have a large influence in the estimates of fi(t) . To overcome this difficulty, the following

criterion is used instead:
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Minimize
NT

= s + Z^ Af (*)(»"(*) ~ M(*, •&)) (4)
t=i

with respect to fa, i = 1,2,..., L .

By adding and subtracting m(t) inside the squared term of (3), S((i) can be rewritten

as
NT

where

t=l *=1

and m{t) is defined as before if M(t) ^ 0 and m(t) = 0 if M(t) — 0 .

To minimize (4) set its partial derivatives equal to zero:

t = i

These L equations can be solved using the Newton—Raphson iteration method. For

this, we need the second partial derivatives:

NT

t = i

Denote the ith element of the vector /(fc) by

*), 1 = 1,2,... ,£ (5)

and the (t,j)th element of the matrix F^K^ by

i",i = i, 2 , . . . , L (6)
t=i

where k denotes the kth iteration.

Then an algorithm to estimate pj, i = 1, 2 , . . . , L is given by:

Step 1: Obtain initial estimates Mi »—»A*i using (2) and compute

Step 2: Compute / ^ using (5) and F^ using (6).

3-9



CHAPTER 3 The Models

Step 3: Compute the vector 8^ which is the solution to the system of L linear equations

given by

Step 4: Set

Step 5: Test for convergence, e.g. if the elements of f^ are sufficiently close to zero. If

the convergence criterion is met, stop, otherwise increase k by 1 and go to Step

2.

Note that F*-k> is symmetric. This fact can be used to reduce the number of compu-

tations performed.

An estimator of C is given by:

C =

(c) Selecting the number of parameters

NT

L= 1,3,5,...

would be a suitable discrepancy on which to base the selection, except that some M(t) are

zero and so only approximately unbiased estimators are available. The reliability of this

criterion is therefore difficult to determine.

If one is prepared to make distributional assumptions, then selection criteria are rela-

tively easy to derive, for example based on the Kullbach-Leibler discrepancy.

A reasonable procedure is to select L for a parametric family of models and then use

the same L in the estimation of /j(t) .

(d) Fitting the Weibull farmly

Zucchini and Adamson (1984) found the Weibull family to fit the rainfall depth models

for stations in South Africa and so this family was used to model the observed rainfall

amounts on days that rain was recorded.

Having estimated the mean value function jj.(t) and the coefficient of variation, C ,

one can apply the method of moments to estimate the parameter functions of the Weibull

distribution.
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Denote the scale parameter by a(t), t = 1,2,... ,NT and the shape parameter by

0.

Now

C =
}
J

To obtain /3 as a function of C a rational function approximation has to be derived

as no closed expression of this function is available.

The following approximation has been obtained from Zucchini and Adamson (1984):

- _ 339.5410 + 148.445C + 192.7492C2 + 22.4401C3

1 + 257.1162C + 287.8362C2 + 157.2230C3

Using the relationship

= a(t)T{l + IIP) t = 1,2,..., NT

we obtain the estimator

MODEL FOR CLIMATE SEQUENCES

Little attention has been given to stochastic modelling of climatic variables such as

maximum and minimum temperature, evaporation, sunshine duration, windrun, and max-

imum and minimum humidity. Recently, though, there have been some models proposed

to stochastically simulate possible sequences of maximum and minimum temperature and

solar radiation. (Goh and Tan, 1977; Nicks and Harp, 1980; Richardson, 1981; Larsen and

Pense, 1982.) Bruhn et al (1980) looked at minimum relative humidity as well.

Variables such as temperature, evaporation, sunshine duration, windrun and humidity

are not as difficult to model statistically as precipitation because there is not a high propor-

tion of zero observations and the distributions of these variables are not as skewed as the

rainfall distribution.

In the models that follow, because the cross-correlation between the variables is non

zero, the variables are considered to reflect a continuous multivariate stochastic process with

the parameters conditioned on the wet or dry status of the day.
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Model 1: Multivariate model for climate data proposed by Richardson (1981)

The approach taken here to model the climate variables is the method suggested by

Richardson (1981). The weather variables evaporation, windrun, maximum, and minimum

humidity have been added to the multivariate process.

(a) Notation

Partition the year into NT(= 365) equal intervals, denoted by t = 1,2,... ,NT .

NV is the number of variables.

NY is the number of years observed.

W represents the occurrence of rain.

D represents the non-occurrence of rain.

Yiit is the precipitation amount on period t of year * , i = 1,2,..., NY .

Siit is the generic name for the observation at period t of the ith year.

fi^ is the generic name for the mean for a dry day on period t (i.e. Yi|t = 0) .

pY 1S the generic name for the mean for a wet day on period t (i.e. Yi>t > 0) .

cr]? is the generic name for the standard deviation for a dry day on period t .

&Y IS **ne generic name for the standard deviation for a wet day on period t .

Xi,t is the generic name for the residual component at period t and year i .

Po(j,k) is the lag 0 cross-correlation coefficient between variables j and k .

Pi(j,k) is the lag 1 cross-correlation coefficient between variables j and k .

Pi(j) is the lag 1 serial correlation for variable j .

(b) The model and assumptions

Each variable is modelled in the same way. The procedure given below to model Sitt

is carried out once for each variable to be included in the multivariate model.

The distribution of Sitt is seasonal and so its parameters, e.g. the mean and standard

deviation, are allowed to vary seasonally. As was the case with the parameter functions

of the rainfall model, it can be reasonably assumed that the parameter functions of the

climate variables are smooth, periodic and sinusoidal in shape. This would again lead one

to expect that they can be accurately approximated by the first few terms of their Fourier
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representation.

The truncated Fourier representations for the daily means and standard deviations for

wet days and for dry days are given by:

}
} if Yiit>0

if Yi't=°

where
( cos(w(t -

w = 2n/NT and

aj*', a f , ^ , ^P are the coefficients of the respective Fourier series and, L is the order

of the Fourier series approximation, i.e. we assume that for some L < NT

L NT

and
L NT

t=i *=i

where the above two equations hold for both wet and dry days. (Whenever W or D is

omitted it means that the equation applies for both.)

The number of parameters, L , does not have to be the same in all instances, i.e. the

number of parameters for the means of wet days can differ from that for dry days. The same

applies for the standard deviations. To avoid complicating the notation, it will be assumed

in what follows that L refers to the number of parameters of the particular parameter

function under consideration.
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The estimation of the Fourier coefficients will be discussed later.

The approach used by Richardson (1981) is to determine the daily means and standard

deviations of each variable conditioned on the wet or dry status of each day where Fourier

series is used to smooth their seasonality. The time series Siit is then reduced to a time

series of residual elements by removing the periodic means and standard deviations. This

residual time series is given by the equations:

Si* ~ I** if y . , - o

Xi.t \
w

itt

This standardization leads to a residual series for each variable that is stationary in the

mean and standard deviation with mean zero and standard deviation of unity.

The serial correlation and cross-correlation coefficients are then calculated to describe

the time dependence and the interdependence (respectively) of the residual series.

The model proposed for generating residual series for each variable is the weakly sta-

tionary process suggested by Matalas (1967) given by

Xi,t = A Xi,t-i + B ei>t (7)

where 6^t is a {NV x 1) matrix of independent random components that are normally

distributed with mean zero and a variance of unity, i.e.

eiti~NID{0tl).

A and B are (NVxNV) matrices whose elements are defined in such a way that the

sequence generated will have the desired serial correlation and cross-correlation coefficients.

This model is based on the assumption that the residuals of the variables are normally

distributed and that the serial correlation of each variable may be described by a first-order

linear autoregressive model.

(c) Estimation

Firstly, a method for estimating the matrices A and B will be considered.

From the properties of the distribution of €itt and x*,t w e have that

E(*,t) = 0

and
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Post multiplying (7) through by xTt-i > fc^e transpose of Xi,t-i J a nd taking expecta-

tions we have

(8)

Define

and

Mo = E[Xitt-ixlt-i\

Mo is an (NV x NV) matrix whose elements are the lag 0 cross-correlation coeffi-

cients and Mi is an (NV x NV) matrix whose elements are the lag 1 cross-correlation

coefficients.

The matrices may be written as

Mo =

and

1 po{l,2) . . .
Po(2,l) 1 . . . Po(2,NV)

1 J

/»i(M) . . . Pl(2,NV)

\Pl(NV,l) Pl(NV,2) . . . pi(NV) J

where po(j,k) is the lag 0 cross-correlation coefficient between variables j and k, Pi(j,k)

is the cross-correlation coefficient between variables j and k with variable k lagged 1

day in relation to variable j , and p\(j) is the lag 1 serial correlation for variable j . We

can thus rewrite (8) as

Mi = AMQ since ^[^i,t^f,t-i] = 0*

Since Mo is a variance covariance matrix, it is non-singular, and therefore its inverse exists.

The matrix A is given by
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Postmultiplying (7) through by xf,t anc* taking expectations one gets

Mo = AM? + BBT

since E[€iit€ft] = I , the identity matrix.

Therefore, the matrix B is given by the solution to

BBT - M o - MXMQ^M?.

The Cholesky decomposition (Appendix C) can be used to solve for B .

Now, we will discuss the method to obtain parameter estimates for the coefficients of

the truncated Fourier series.

The functions p4 and at are estimated using the same method but different data

sets. The theory will thus be discussed for the mean function fzt only.

Let St be the daily mean vector for Sitt and assume that it is given by the linear

model

with

This is a special case of a generalized linear model because the elements St are independent

with distributions N(}it,<r$) where

Also the normal distribution is a member of the exponential family (provided the a\ are

regarded as known). In this case the link function, g , is the identity function, i.e.

L

1 = 1

where X)»=i ^ ^ ( O represents the truncated Fourier series of the mean function fxt , and

<Pi(t) is defined as before.

The log-likelihood function of the observed mean values as a function of the mean

function fj.t is given by:
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Therefore, the log-likelihood function of the observed values as a function of the parameters

ai,ot2,...,ctL is given by

ATT

The score vector U with respect to ot\} a2,..., OCL has elements given by

_ de(et;St) _ NT

U3 ~ a«. ~~

since

E(St) = fit ,

Var(5t) = o\ ,

t = l .

and

Similarly, the information matrix ILXL has elements given by

t=l

The maximum likelihood estimates for Q£I,CK2, • • • ,

iterative equation

are then obtained by solving the

where m indicates the mth approximation and 5 is the vector of estimates.

When the difference between successive approximations a^m^ and ci(m~i> is suffi-

ciently small, a(m) is taken as the maximum likelihood estimate vector.

(d) Model selection

The order of the Fourier series approximation, L , for the conditioned mean func-

tion and for the conditioned standard deviation function is selected by Akaike Information

Criterion, AIC, where

where E(a; $) is the log-likelihood function of the model. Each value of L leads to a

different approximating model. The criterion is computed for a = 1,3,5,... and the

model which leads to the smallest value of the criterion is selected.

3-17



CHAPTER 3 The Models

Model 2: Multivariate model for climate data

Although Model 1 appeared to be satisfactory in many respects, it performed poorly

in some respects. In particular the annual standard deviation for windrun, maximum and

minimum humidity were systematically underestimated. The (lagged) cross-correlations

between some of the variables (e.g. maximum temperature and minimum temperature)

were not preserved by the model. However the most noticeable deficiency was found to be

that the model did not preserve the serial correlation structure of many of the variables.

This was attributed to the lack of flexibility of Model 1 in this respect. In particular the

model is based on the assumption that the serial correlation function does not depend on

the wet/dry status of the days in question. In fact the correlation between variables on two

successive days depends on whether the two days are both wet, both dry, wet followed by

dry or dry followed by wet. It was therefore decided to develop a model which incorporates

additional flexibility in its autocorrelation function, that is, a model which allows for the

serial correlations between variables on successive days to depend on their wet/dry status.

Model 2 was developed as a prototype to Models 3, 4 and 5. It attempts to deal with

the mentioned deficiency in Model 1.

(a) Notation

Partition the year into NT(= 365) equal intervals, denoted by t = 1,2,... NT .

NV is the number of variables.

NY is the number of years observed.

W represents the occurrence of rain.

D represents the non-occurrence of rain.

N(D) is the set of time periods t such that period t was dry.

N(W) is the set of time periods t such that period t was wet.

Y{tt is the precipitation amount on period t of year i> i = 1,2,.. ,,NY .

S{tt is the generic name for the observation at time t of the ith year.

p.f is the generic name for the mean for a dry day on period t (i.e. Y{ti = 0) .

\i^ is the generic name for the mean for a wet day on period t (i.e. Y{jt > 0) .
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aD is the generic name for the standard deviation for a dry day.

aw is the generic name for the standard deviation for a wet day.

0D is the coefficient of the AR(1) process, given a dry day.

6W is the coefficient of the AR(1) process given a wet day.

C(D) denotes the number of elements in the set N(D) .

C(W) denotes the number of elements in the set N(W) .

Then T = C(D) + C(W) .

Since all variables are modelled in the same way, the representation will be given for

modelling one variable. The same procedure is then repeated for each of the remaining

climate variables.

(b) Model and assumptions

The Model under consideration is given by:

where i = 1,2,..., NY and t = 1,2,... ,NT .

That is, the residual time series Xi,t is obtained by removing the periodic mean and

the standard deviation from the observed time series Si,t • The resulting time series thus

has a mean of zero and unit variance.

Assume \i,t is generated by an autoregressive process of order p (AR,(p)) denned as

Xi,t =

where {e»,t} is a set of independent, normally distributed variables with mean zero and

variance of unity, i.e.

That is, Xi,t 1S regressed on past values of X:,t instead of on independent variables

as on the classical multiple regression.

The assumption that Xi,t is described by an autoregressive process can be substanti-

ated by arguments put forward by Cochrane and Orcutt (1949). The sources of autocorre-

lation in the error term can be:
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(i) When modelling climatic variables, errors in modelling arise from faulty descriptions of

these variables. Since these variables are themselves autocorrelated, this type of error

will be autocorrelated.

(ii) Error terms may arise from omitting variables from the analysis because these variables

are either not available or their importance is not realised or because the influence they

have is so small that it is not convenient to insert them. As already indicated these

variables are autocorrelated and, therefore, one may expect the resulting error terms

to be also autocorrelated.

An autoregressive process of order 1, AR(l), sometimes called the Markov process, was

chosen to describe Xi,t • The reason for this choice will be discussed later. To simplify the

formula, the theory will only be shown for an AR(1) process from now on. The order of

the process can be increased to any order desired, but this has to be done at the cost of

increasing both the complexity and the number of parameters to be estimated.

The form of Xi,t is thus given by:

Xi,t ~ #Xi,t-i + ei>t

where ei>t ~ JV7D(0,l) i = 1,2,...,NY; t = 1,2,.. .,NT .

The model that incorporates the different wet and dry sequences is given by:

$i>t — fit aD $i,t-l ~ fit-l r J
D * D *°r a " ^ s e ( l u e n c e

a

or
W C W

& 77? for a wet sequence.
o

5 ^ & 77?

The seasonal mean function, fit »is approximated by its truncated Fourier series rep-

resentation, i.e.

L

«f ¥>tM if * d r y

and
L

*; (pi(t) it t wet

where <pi{t) is denned as before and L is the order of the Fourier series representation.
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(c) Estimation

The procedure to estimate the parameters af,aY^0D^8w^aD and aw \ j = l , 2 , . . . , i

is now discussed.

Since €jf( ~ NID(0,1) , the density function of e^t is given by

1 I 2

yflx 2 *'*

Therefore the joint likelihood function, conditioned on the wet and dry status of the

day is given by
L{i>) = L{<*f,*Y,0D,ew,vD,vw-yeiit)

n f(ei>t\D) TT f(ei,t\W)
t£N(D) t£N(W)

where f(e{tt\D) represents the density function of att given that a dry day has been

observed, and /(ci,t|W) represents the density function of e,-̂  given that a wet day has

been observed.

Substituting the density function, one obtains

exp - -
I t£N(DD)

Making the following transformation

ti,t = -$*&!.

where the Jacobian of the transformation is given by

, i = 1,2,...,

0

k=i

NY NT

t = l t = l
0 -Of a I/a-

since we are dealing with a triangular matrix. Taking into account the dry and wet status

of the day, the Jacobian can be rewritten as
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then the joint likelihood function is given by

r

E
.w

t,t-i ~Mt-i

,w - 2

and the log likelihood function is given by

= - - log(2x) - C(D) - C(W)

teN(D)

.D \2

\W ,w
h-irW

Maximum likelihood estimates can be obtained by minimising £(•$) . That is, the first

partial derivatives with respect to the parameters are set to zero.

The first partial derivatives with respect to the parameters are given by

.D c. . . _ ,,D

doD - E {^,
•?.i

rD

W

da? rD
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E Si,t~ ,w

ew<pj(t-x)
w +

 aw

The parameter estimates are given by

(1)

$D= \C{D)

^ " _ (4)

l
where

t€N(D)

3-23



CHAPTER 3

and

The Models

- 1

(6)

where

and

A 2 =

These equations cannot be solved explicitly and therefore have to be solved iteratively.

Note that

Ht is a function of the a, where the ctj are functions of 9

6 is a function of fj,t and

a is a function of \it and 9 .

The following algorithm can be performed to estimate the parameters.

Algorithm

Step 1: Estimate initial fit by approximating by it Fourier series transformation and

estimating the parameters c*i by the method mentioned in the previous models.

Step 2: Estimate 9 using (1) and (2)

Step 3: Estimate a using (3) and (4)

Step 4: Estimate fit using (5) and (6)

Step 5: Test for convergence of all parameters, i.e. when the percentage change in pa-

rameter estimates is sufficiently small. If convergence is not met, return to Step

2.

To model the multivariate time series the covariance matrix of the residuals of the

different climate variables is needed.
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The cross-correlation matrix, E , has elements Rjk , where

The Models

-
NY NT NY NT NY NT

=1 t=l
T2

t = l t = l t = l (=1

NY NT iVT

NY NT

t=l t=l

JVT

,=1 i= ,=1 tr:

where e\3^ denotes the residual time series of variable j , j = 1,2,..., NV

and e) / denotes the residual time series of variable k, k = 1,2,..., NV .

(d) Model Selection

The order of the autoregressive process is selected in the same way as in the previous

models, as is the order of the Fourier series approximation.

A major problem was encountered in Model 2, in that a high proportion of information

is discarded. The reason why this problem occurs is explained by means of an example.

Suppose the following sequence has been observed

day t 1 2 3 4 5 6 7 8 9 10 11 12

status of day D D W D W W D W D D D W

By definition, N(D) and N(W) represent the sets of time periods t such that t

was dry or wet respectively. Thus, N(D) consists of the elements

and N{W) of

{1,2,4,7,9,10,11},

{3,5,6,8,12}.

In Model 2, one is only interested in conditioning the parameters into dry and wet

sequences, therefore one is restricting the status of time period t — 1 to be the same as

that of t .Thus, given that day t was dry, the model is given by

S- — aD S- - — uP
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and one does not consider the case of

Sj,t ~ V? a Si,t-i — Pt-i
C * ~ aD ~ e cW •

Similarly for when t is wet.

Therefore, when constructing N(D) and N(W) , only sequences of at least two dry

(or two wet) consecutive days can be used. In this case, N(D) has elements

{2,10,11}

and N{W)

{6}.

Thus, a high proportion of the observations are discarded. This led to the development of

Model 3 and therefore Model 2 is of no further interest.
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Model 3: Multivariate model for climate data

The two previous models condition the parameters of the model on the wet or dry

status of the day. When generating climate sequences these models represent conditions in

which a wet day follows a wet day and a dry day follows a dry day but fail to explain the

relationship between conditions such as a wet day following a dry day or a dry day following

a wet day.

To generate representative climate sequences these sequences must be related to the

sequences of rain and no-rain days. To achieve this relationship, the parameters of the

model must be conditioned on the four possible sequences in the rainfall variable:

1. a dry day follows a dry day,

2. a wet day follows a wet day,

3. a wet day follows a dry day,

4. a dry day follows a wet day.

(a) Notation

P a r t i t i o n the year in to NT(= 365) equal intervals , denoted b y t = 1 , 2 , . . . , N T

NV is the number of variables.

NY is the number of years observed.

W represents the occurrence of rain.

D represents the non-occurrence of rain.

DD represents the sequence when day t - 1 was dry and day t was dry.

WW represents the sequence when day t - 1 was wet and day t was wet.

DW represents the sequence when day t — 1 was dry and day t was wet.

WD represents the sequence when day t — 1 was wet and day t was dry.

T represents the total number of observations, i.e. NY NT .

N(DD) is the set of time periods t such that period t was dry and period t - 1 was

dry, t = l , 2 , . . . , r .

N(WW) is the set of time periods t such that period t was wet and period t — 1 was

wet.
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N(DW) is the set of time periods t such that period t was wet and period t— 1 was

dry.

N(WD) is the set of time periods t such that period t was dry and period t — 1 was

wet.

Y{it is the precipitation amount of period t of year i , i = 1,2,. . . ,NY .

Sitt is the generic name for the observation at time t of the ith year.

pif is the generic name for the mean for a dry day on period ( .

fj>Y is the generic n a m e for the mean for a wet day on period t .

aDD is the generic name for the s t anda rd deviation given sequence DD .

cr is the generic name for the s t anda rd deviation given sequence WW .

aDW is the generic name for the s t anda rd deviation given sequence DW .

aWD is the generic name for the s tandard deviation given sequence WD .

$DD is the coefficient of t he AR(1 ) process given sequence DD .

QWW JS t ^ e coefficient of the AR(1) process given sequence WW

9DW is the coefficient of the AR(l) process given sequence DW .

Q\VD -ls t n e coefficient of the AR(1) process given sequence WD .

C(DD) is the number of elements in the set N(DD).

C(WW) is the number of elements in the set N(WW) .

C(DW) is the number of elements in the set N(DW) .

C(WD) is the number of elements in the set N(WD) .

Then T = C(DD) + C(WW) + C(DW) + C(WD) .

(b) Model and assumptions

The time series Sij is reduced to a time series of residual elements, Xi,t > by removing

the periodic means and the standard deviation for the appropriate sequence, i.e.

Si,t ~ Pt
Xi,t =

a

This results in a time series with zero mean and standard deviation of unity, which is

assumed to follow an AR(1) process, i.e.

Xi,t = 0 Xt,*-i + e,-if
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where eitt ~ NID(Q,l) % = 1,2,.. .JVT; t = 1,2,... ,NT .

The model that incorporates the different wet-dry sequences is then given by:

c. ,,DD c. , ,.DD
^ ' t * ~~ r't nDD °*,t—\ rt—1 -r j . t j J J ^ J

e*<*= — — C D — — D o — y ~ w a s ^ a y w a s *̂
c W c ,W

ei,t = '' ww
l $ww~h—w^ i~1 if day t — 1 was wet and day t was wet.

5' — uw S- _i — uD

e*'* = *' oiyf 0£>w"_iJ—^^ t - if day t — 1 was dry and day t was wet.

c D c, __ W
= *' w.P * ^W '-D——ryp-— is day i — 1 was wet and day t was dry.

The parameter fit for this model, and for the models following, was only conditioned

on the rain and no-rain status of the day. This was done to simplify the model, otherwise for

each sequence one would have two equations. For example, if sequence DD has occurred,

then

e{ t = Si>t " M* - gPpft . t - i -Mt- i .f t h e s e q u e n c e DDD w a s observed
Guu auu

or
DD c, _ aWDc. _ UDD c, _ aWD

t t = ljt nn 9DD ' nn if the sequence T^DZ? was observed

This not only increases the number of parameters to be estimated but in addition we

are no longer assuming that all the information we need of previous values of the model is

given by the value of the previous day. The state of the second previous day is also required.

As already discussed, it is reasonable to appproximate the mean function jit by its

truncated Fourier representation, i.e.

L

? $>*V'"W i ^ dry

and

*?&(*) if t wet

where <pi(t) is defined as before and L is the order of the Fourier series approximation.
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(c) Estimation

The procedure to estimate the parameters aftafr,9DD,9ww
19

WD
t9

DW
t<TDD,<rww

i

aDW,aWD; j = 1,2,... ,£ is now discussed.

Maximum likelihood estimates can be obtained by observing that since e{tt ~ NID(Q, 1),

then the density function of e^t is given by

f(ei>t) = - = exp ( - - eit)
y/ ZTT *•

Therefore the joint likelihood function conditioned on the four different sequences is given

by

f(eiti\DD)

,aww,<TDW<TWD; ei>t)

f(eitt\WW) f(ei>t\DW) JJ f(eitt\WD)
teN(WD)

where f(ei)t\DD) represents the density function of e,if given that the sequence DD has

been observed, and similarly for the other density functions.

1 1
{eitt\DDf+

t^N(WW)

t£N{DW)

One now makes the following transformation

§i,t ~ fit
ti,t =

The Jacobian of the transformation is given by

,i = 1,2,..., = l ,2, . . . ,JVr; p = 1,2,... ,NT.

dSn

I/a 0 . . .
-9/ff 1/ff 0 NY NT

o -e/a- I/O-

since we are dealing with a triangular matrix.
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Taking into account the conditional sequences imposed on c,-)t , the Jacobian is given

= 11 aDD 11 aww 11 aDW 11 a
WD'

teN(DW)

Then the joint probability density function of Si,t is given by

r.(i/,\ =

~i) \°VD)

\C(DD)

\aww)

v C{WW)

a"" )TDW

sC(DW)

e x p < - -
,DD

W

+ E
t£N(DW)

+ E

, D

TDW

D W

and the log likelihood is given by:

= — log(27r) - C(DD) log(aDD) - C(WW)

- C(DW) logfij0^) - C(WD) log(

t€N(DD)

DD

DD

+ E
teN(w

+ E

E

rDW
-̂

^ • D V ^

D W

Maximum likelihood estimates can be obtained by minimising £(ij>) and this is achieved

by setting its partial derivatives with respect to the parameters equal to zero.
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The first partial derivatives with respect to the parameteers are given by:

$$DD
t£N(DD)

.DD ,,DD
Pt-l ,D

QQWW
teN(ww)

,w WW ,w
rWW

rww

.w
rWW

W* D

QQWD = E
,D ,W

rWD U WD

,W

rWD

da?
Si,t- ,DD ,DD

+ rDD

TDW DW DW

WD

am
daf E ,w .w

ww

+
t^N(DW)

E

<TD W D W

rWD rWD

C(DD)
rDD

t£N{DD)
r D O ~DD
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C(WW) f RlEdaww
 aww L^t \ pWW v

 aww

WD WD
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The parameter estimates are given by:

QDD _

E

E

r e M1* aDD

t€N(DD)

a = r(DW)

t£N{WD)

E wW-™^ E
) V ' t<=N{DD)

E

iL E
' JV(W
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where

and

L_ v
~ (1rDD\2 Z ^

D

E

E
J teN(DD)

E

t€N(WD)

E

E
t€N(DW)

E
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The estimate for a.y is given by

where

E (^)f-7^^W E

E

E
tGN(WD)

= -7gewv E

t(=N(DW)

E
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E

E

+ E

;

^ 7 E E«

E

J

These equations cannot be solved explicitly and therefore the Newton-Raphson itera-

tion method is used to solve them. The second partial derivatives are required to use this

method and these are given by

QQDDQQDD = - E
teN(DD)

d0DDd0ww ~ d0DDd9DW ~ d6DDd0WD ~

.
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QQDWQ0DW

QQDWQQWD ~ U

(

QQDWfoDD

Q0WDQ0WD

Si, -

d0DWd<TWD ~~

~
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dafdaD
t€N(DD)

+DD • nDD ) \ rfDD T ^ D D

+ aWD )\9WD

dafda™

+

dafdaDD E
D D

(aDD)2 {aDDf

• 1

= 0

T
rDD^2 tjDD ' aDD

dafdaDW E
t£N(DW)

{aDW) TDW\2

E
D W

WD
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Z^ \ ~ww rWW

= 0

dayd(7ww E ,w iWW ,w
rWW fWW

TWW\2 (aww) rWW\2

rWW + rww

t - 1

rWW\2

E ,w ,D

TDW TDW

12 / \ fjDW

d2tg>)
dafd<?WD ~WD -8

fWD

$- 1$)
rWD\2

«HrD9i(*-l)
rWD

C(DD) E
t€N{DD)

,.D

rDD rDD

*

+ I

(<TDD)3

,.D

{<T

d<TDDduww daDDd<rWD
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d<rwwdoww

dawwdoDW

doDWdaDW

daWDdaWD

C(WW)
{ +*• W W \ 2
I ^ i

(2Si>*-
\* (<TW

C(DW)

C(WD)

\ V

^ v *

! ) , nW^

\ >
/ ,/

- tlW

t ) , QD\

t£N{WD)

t ) , nWl

| / Ji,* ~ Hi AWWJ

\ \ aww

q W \

' / v^W\3 )1°" ^ /

{ / O W O
i / S • + — II r'

{{ <J»W °
S- — uD \

? \a^f )

DSitt-i - t*t-i)\ 1
(rrWD\2 } (

The Models

aww )

aDW )

aWD )

The following algorithm is used to estimate the parameters.

Algorithm

Step 1: Estimate initial fit by approximating by its Fourier series representation and

estimating the parameters a,- by the method mentioned in the previous models.

Step 2: Estimate initial $DD
J5

]VW
tP

w and 0WD using the following formula:

t€N(DD)

Similarly for BWW,8DW and 9WD .
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Step 3: Estimate initial aDD,trww
itr

DW and aWD using the following formula:

C(DD) - 1

Similarly for P™ ,&>w a n d dWD ,

Step 4: Compute f(k) and F^ , where /(fc) is the vector of first partial derivatives and

F^k' is the matrix of second partial derivatives, computed at the kth iteration.

Step 5: Compute the vector 6^ which is the solution to the system of NP linear equations

where NP represents the number of parameters.

Step 6: Set /3(fc+1) = fi(k) - $(k) , where /3^ contains the parameter estimates at the kth

iteration.

Step 7: Test for convergence, for example, if the elements of f^ are sufficiently close to

zero. If the convergence criterion is met then stop, otherwise increase k by 1 and

return to step 4.

The cross-correlation matrix, S , has elements given by:

1 NY NT - NY NT NY NT

I W ij) V V eik)

Z 2 e

NY NT

i-1 t=l

NY NT

1 (NY NT

\i=l t=l

21 §

1

- — i

/NY NT

i=l t=l
i
I
\j=l t=

where e^t denotes the residual time series of variable j , j = 1,2,..., NV

and ej / denotes the residual time series of variable fc, k = 1,2,..., iVV .

(d) Model Selection

The order of the autoregressive process is selected in the same way as in the previous

models, as is the order of the Fourier series approximation.
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Model 4: Multivariate model for climate data

(a) Notation

Partition the year into NT(= 365) equal intervals, denoted by t = 1,2,... NT ,

NV is the number of variables.

NY is the number of years observed.

W represents the occurrence of rain.

D represents the non-occurrence of rain.

DD represents the sequence when day t — 1 was dry and day t was dry.

WW represents the sequence when day t — 1 was wet and day t was wet.

DW represents the sequence when day t — 1 was dry and day t was wet.

WD represents the sequence when day t — 1 was wet and day t was dry.

T represents the total number of observations, i.e. NT NY .

N(DD) is the set of time periods t such that period t was dry and period t — 1 was dry,

i = l , 2 , . . . , T .

N(WW) is the set of time periods t such that period t was wet and period t — 1 was wet.

N(DW) is the set of time periods t such that period t was wet and period t — 1 was dry.

N(WD) is the set of time periods t such that period t was dry and period t — 1 was wet.

Yitt is the precipitation amount on period t of year i, i = 1,2,... ,NY .

Sj)t is the generic name for the observation at time t of the ith year.

\i® is the generic name for the mean for a dry day on perid t .

nY is the generic name for the mean for a wet day on period t .

af is the generic name for the standard deviation for a dry day on period t .

&Y is the generic name for the standard deviation for a wet day on period t .

$ is the coefficient of the AR(1) process.

(b) Model and assumptions

Following the procedure suggested by Richardson (1981), the time series Sitt is reduced

to a time series of residual elements, Xitt » by removing the periodic means and standard
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deviations, i.e.

This standardization leads to a time series for each variable that is stationary in the mean

and standard deviation with mean zero and standard deviation of unity.

The model proposed is assumed to follow an AR(1) process, i.e.

Xi,t = 6 Xi,t-i + Citt

where eitt ~ NID{0,l) i = 1,2,...,JVT; t = 1,2,.. . ,NT .

The model that incorporates the different rain sequences is then given by:

ei(( = —-—^—- 9 ——£j—t=k if day t — 1 was dry and day t was dry.

eift = *'* * 9 *' ~ w—tjz^- if day t — 1 was wet and day t was wet.

Q Wo. nD
et-1 = —-—TJ-1- 9 ---~--ft—^i if day t — 1 was dry and day t was wet.

or

or

or

U,t = n - 9 777 if day t -€itt = —!—7p-*— ^ —1—7J7 if day t — 1 was wet and day £ was dry.

Here again the mean and standard deviation functions, fit and ut , are approximated by

their respective truncated Fourier representation, i.e.

if J dry

L
.w.

> if t wet

J

where fpi(t) is denned as before and L is the order of the Fourier series approximation,

(c) Estimation
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Since e^ ~ NID(Q,1) , the density function of e^t is given by

The joint likelihood function, conditioned on the four different sequences is given by:

f(eiit\WW)
t€N(DD)

n
where f[eitt\DD) represents the density function of e,(t given that the sequence DD has

been observed, and similarly for the others.

T • i

t£N(DW) t£N(WD)

One now makes the following transformation:

Si,t — fit n Sitt~i — fJ-t-

The Jacobian of the transformation is given by

l/<n 0
0

dSi>

0

0 -0/0364 l/<7365

NT

.=i t=i i

Taking into account the conditional sequences imposed on e,-tf , the Jacobian is then

given by

= n i n i-
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The joint probability density function is thus given by:
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-\-7g=) n zp n ^w
l£N(DD)

E

+ E

t£N{DW)

D

rD

W

r

.W \ 2

't-l

and the log-likelihood is given by:

T
2

1
2

_t€N(DD)

t€N(WW) x

^^^ \
teN(DW) V

t€N(WD) ̂

V °"

°T

D D )

D
t

<e

0 *?-

5- - *
at-\

E
N(WW)

uP y

1 >

t-l\

D -A 8

J

Maximum likelihood estimates can be obtained by minimising £(ip) and this is achieved

by setting its partial derivatives with respect to the parameters equal to zero.

The first partial derivatives with respect to the parameters are given by:
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The equations obtained when the partial derivatives are set to zero can be solved using

the Newton-Raphson iteration method. For this, the second partial derivatives are required.

These are given by:

deeo E *i,t-l ~~ H-t—\

Tt-1
E rt-l

rD -9
TD
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-Vi(t) 8Vi(t-l)
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rt~l
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The following algorithm is used to estimate the parameters.

Algorithm

Step 1: Estimate initial //t and at by aproximating by its Fourier series representation

and estimating the parameters a,- and & by the method mentioned in the pre-

vious models.

Step 2: Estimate initial 8 using the following formula:

where /if depends on the status of day £ and /if_i depends on the status of day

t - l .

Step 3: Compute /̂ fc^ and i^*) where /(fcJ is the vector of first partial derivatives and

F^ is the matrix of second partial derivatives, computed at the kth iteration.

Step 4: Compute the vector 6^ which is the solution to the system of NP linear equations

F(.k)s(k) =
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where NP is the number of parameters in the model.

Step 5: Set /?(fc+1) =/?(*) — $fc) , where fiW contains the parameter estimates computed

at the kth iteration.

Step 6 Test for convergence, for example, if the elements of /(*) are sufficiently close to

zero. If the convergence criterion is met then stop, otherwise increase k by 1 and

return to step 3.

The cross-correlation matrix, E , has elements given by

- NY NT NY NT NY NT

I J
i=i t=i

NY NT 7VT 2i h

i=l t=l

NY NT

i=l (=1

ATy NT

i=l t=l t=l (=1

where

cj ( denotes the residual time series of variable j ; j — 1,2, . . . , NV

and

e\J denotes the residual time series of variable fc; k ~ 1,2,... ,NV .

(d) Model Selection

The order of the autoregressive process is chosen in the same way as in the previous

model as is the order of the Fourier series approximation.
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Model 5: Multivariate model for climate data

(a) Notation

Partition the year into NT(= 365) equal intervals, denoted by t = 1,2,... NT .

NV is the number of variables.

NY is the number of years observed.

W represents the occurrence of rain.

D represents the non-occurrence of rain.

DD represents the sequence when day t — 1 was dry and day t was dry.

WW represents the sequence when day t — X was wet and day t was wet.

DW represents the sequence when day t — X was dry and day t was wet.

WD represents the sequence when day t — 1 was wet and day t was dry.

T represents the total number of observations, i.e. NT NY .

N(DD) is the set of time periods t such that period t was dry and period t — X was dry,

N(WW) is the set of time periods t such that period t was wet and period t — 1 was wet.

N(DW) is the set of time periods t such that period t was wet and period t— 1 was dry.

N(WD) is the set of time periods t such that period t was dry and period t — X was wet.

Yijt is the precipitation amount on period t of year i, i = 1,2,..., NY .

5i,( is the generic name for the observation at time t of the ith year.

fif is the generic name for the mean for a dry day on period t .

fi^ is the generic name for the mean for a wet day on period t .

af is the generic name for the standard deviation for a dry day on period t .

oY is the generic name for the standard deviation for a wet day on period t .

$DD is the coefficient of the AR(1) process, given sequence DD .

Q\VW -1S t k e coefficient of the AR(1) process given sequence WW .

6DW is the coefficient of the AR(1) process given sequence DW .

0WD is the coefficient of the AR(1) process given sequence WD .
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(b) Model and assumptions

Model 5 is formulated in the same manner as that of Model 4, except that here it is

assumed that the coefficient of the AR(1) process, 8 , varies according to the wet/dry status

of the present and previous day.

Therefore, the time series Siyt is once again reduced to a residual time series Xi,t by

removing the periodic mean and standard deviation, i.e.

Si,t - \xt
Xi.t = ~ •

Assume that this residual time series follows an AR(1) process, i.e.

Xi,t = 0Xitt-i + €i,t

where eitt ~ NID(Q,1) i = 1,2,.. .,NY; t = 1,2,.. .,NT .

The model incorporating the different wet/dry sequences is given by:

q D c, D

£it = — — — @DD *' ~ — * ~ ^ — l was dry ana day t was

or

ei>( = —-—r^-i 6WW *' ~ w—— if day t - 1 was wet and day t was wet.

or
Q ,,v? c, ,.D

e»,t = —!—u? P —•—n if ^ay * ~" 1 w a s " r y a n d day t was

or

_ °i,t Pi _ nWD J j , t -1 H-t-l '.
~ 1 w a s w e t a n d day f was dry.

°t CTt-i

The mean and standard deviation functions are approximated by their respective trun-

cated Fourier representation, i.e.

if t dry
3

if t wet
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where <pi(t) is defined as before and L is the order of the Fourier series approximation.

(c) Estimation

The density function of e,-̂  is given by

)

since eitt ~ NID(0,1) .

The joint likelihood function, conditioned on the four different sequences is given by:

rD cW QDD QWW aDW QWD.C, \

f(eiit\DD) JI f(eitt\WW)

f(eitt\DW)

t€N{DD)

E

Make the following transformation

The Jacobian of the transformation is

0 -

0

0 -

NY NT 1=n n i

1/^365

0
0
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Taking into account the conditional sequences imposed on att , the Jacobian is then

given by

= n i n w-
t£N(.WW)

The joint probability density function is thus given by:

n £ n £
IgN(WD)

e x p < - -

+ E

.D

Tt-1

+ E
Si,t~ .w

+ E
D

t£N{WD)

and the log-likelihood is given by:

= - ? 108(2*)-

' ( - 1

.D

rt-l

+ E
5 W

WW
W

E _ A

To obtain maximum likelihood estimates for the parameters, £(ij;) is minimized. To

minimize £(ip) , its first partial derivatives with respect to the parameters are set to zero.
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The first partial derivatives with respect to the parameters are given by

deDD

deww
teN{ww)

TD
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r t - l

= E 'Af~
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= E

W D

t-i
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E
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rrt-i

+ r

f
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t£N(DD) * t£N(DD) V t-\
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W D
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-1 ~Mt-l
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,,w < ? . . . _ ,,w

•3 t£N(WW) '
E Tt-1

W c W

wr

The Newton-Raphson method is used to solve the system of equation. For this the

second partial derivatives are required and these are given by

2

d0DDddDD
t&N(DD)

= uQQDDQQWW ~ QQDDQ0DW ~ QQDDQQWD

QQWW QQWW

" QQWWQQWD
 = d9wwdaf = °

dBwwdaf

I iv "I" \y
t-l
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The following algorithm is used to estimate the parameters

Algorithm

Step 1: Estimate initial fit and at by approximating by its Fourier series representa-

tion and estimating the parameters c*j and & by the method mentioned in the

previous models.

Step 2: Estimate initial $DD
iS

w'wtP
w and eWD using the following formula:

2 J ( 3 ' * ~ P

Similarly for Oww,0DW and 5WD .
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Step 3: Compute /(*) and F^ , where fW is the vector of first partial derivatives and

F^ is the matrix of second partial derivatives, computed at the kth iteration.

Step 4: Compute the vector $W which is the solution to the system of NP linear equations

where NP represents the number of parameters.

Step 5: Set /3(fc+1) = /?(*) — £(*) , where pW contains the parameter estimates at the kth

iteration.

Step 6: Test for convergence, for example, if the elements of f(k> are sufficiently close to

zero. If the convergence criterion is met then stop, otherwise increase k by 1 and

return to step 3.

The cross-correlation matrix, £ , has elements given by

NY NT - NY NT NY NT

t=l t=l i=l t=l

1

NY NT NY NT

i=:l t=l »=1 t~

. NY NT - /NY NT

\t=i(=i

where e\^ denotes the residual time series of variable j , j = 1,2,... , JVV .

and ê  t denotes the residual time series of variable fc, k = 1,2,..., NV .

(d) Model Selection

The order of the autoregressive process is selected in the same way as in the previous

models as is the order of the Fourier series approximation.
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MODEL IMPLEMENTATION

This chapter gives details of the implementation of the proposed time series models

to describe historical climate series. In particular, the model selection process is described

step by step, the parameter estimates are given and the results of tests to check the model

assumptions are discussed.

Six stations were chosen for study which broadly represent the various climate regions

of South Africa. Table 4.1 lists them together with the years for which simultaneous obser-

vations of all climate variables were recorded. The stations marked with an asterisk indicate

those stations for which the variable evaporation was not available.

Considerable difficulties were experienced in obtaining suitable data sets for model

implementation. This refers to problems in obtaining stations for which all the climate

variables of interest are recorded as well as to the quantity and the quality of the available

data. Thus, one is restricted by the stations one can fit the climate models to, and the

quantity and quality of the historical records determines the performance of the models. As

already mentioned, the models are sensitive to "unlcean" data records and relatively short

historical records lead to three problems. Firstly, the precision of the estimates decreases

as a large number of parameters are estimated using very few data values. Secondly, the

effective record length for the conditioned estimates is further reduced as the models separate

the sequences into wet and dry sequences. Thirdly, the fact that the record length of the

stations are quite small, combined with the fact that there are missing observations in the

records means that the historical data might not wholly be representative of the long term

climate for that particular location.

Since rainfall was considered to be the primary variable and all other variables are

conditioned on whether a given day was wet or dry, it was modelled independently of all

other variables.

Simple Markov chain to describe the occurrence of wet and dry sequences of

days.

The logit transformation of the probabilities 7r(t), t = 1,2, . . . , NT is given by

4-1



CHAPTER 4

Table 4.1 Climate Stations

Station

Elsenburg

Kakamas

Middelburg

Nelspruit*

Cedara*

Hoopstad*

Province

Cape

Cape

Cape

Transvaal

Natal

Orange Free State

Model Implementation

Years available

1979-1984

1975-1986

1977-1986

1981-1987

1980-1989

1981-1989

where \(t) is represented by a Fourier series approximation, i.e.

L

and <f>i(t) is defined as in Chapter 3.

The parameters 7; have to be estimated for the probability that a wet day is preceded

by a wet day (P(R\R)) and for the probability that a wet day is preceded by a dry day

(P(R\R)) . For each of the probabilities the order of the Fourier series approximation , L ,

has to be selected.

The selection of the appropriate L was based on Akaike's Information Criterion, where

where £(y;M(t)) is the log likelihood function of a particular model. The criterion is

computed for L = 1,3,5,... and the model which leads to the smallest value of the criterion

is selected.

Table 4.2 gives the optimal number of parameters for P(R\R) and P(R\R) . The

values of L for P(R\R) and P(R\R) ranged between 1 and 3 and between 1 and 5

respectively, with modes 3 and 5. A choice of 3 parameters for both models was decided

upon for the following reasons. Firstly, the method of model selection employed here is less

stringent than conventional tests of hypotheses, and therefore generally leads to a selection

of more parameters. Thus a choice of 3 parameters would be preferable to 5. Secondly, the

length of the historical record plays a role in determining a and it must be kept in mind
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that the results here have been obtained with a relatively small data set, thus making the

selection of fewer parameters inevitable. Zucchini and Adamson (1984a) chose 5 parameters

for both models, but their data sets (typically 40 years) were large enough to warrant that

number of parameters.

TABLE 4.2

P(R\R) and P(R\R)

Optimal number of parameters to estimate

Station Model

P(R\R) P{R\R)

Elsenburg

Kakamas

Middelburg

Nelspruit

Cedara

Hoopstad

The station Kakamas presented a problem in obtaining convergence when estimating

the parameters for P(R\R). This can be explained by the rare occurrence of rainfall, and

in particular that of consecutive days of rainfall in Kakamas. Moreover, the few years of

records available for estimation intensify this problem. That is, when preparing the array

NRR(t) required for parameter estimation, where NRR(t) represents the number of times

it was wet in period t — 1 and wet in period t , most of the entries are zero and therefore

there are very few values on which to compute parameter estimates leading to difficulties in

achieving convergence.

Zucchini and Adamson (1984b) have computed parameter estimates for Kakamas, and

as rainfall is modelled independently of the other climate variables, these estimates were

used.

It is important to note that the readings were recorded by multiplying each value by

ten, i.e. a record of 10.2 is given as 102. This convention was used throughout the study

and applied to all results given in this report with the exceptions indicated below. This does

not affect the generation of climate sequences which can be easily converted to the original
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units by dividing by ten. The only exceptions to this were the variables wind run, maximum

humidity and minimum humidity for the stations Nelspruit, Cedara and Hoopstad.

The parameter estimates for the probability that a wet day follows a wet day and that

a wet day follows a dry day are given in Table 4.3.

The distribution for rainfall on days when rain occurs.

The mean rainfall per rainy day in period /, //(£) , can be approximated by its truncated

Fourier series representation
L

/*(*) = $ > ^ . ' ( * ) , * = 1,2,. . . ,AT
i=i

where 4>i{i) is defined as in Chapter 3.

The parameters //; need to be estimated and the order of the Fourier series approx-

imation selected. A 3-term Fourier series approximation was chosen following arguments

similar to those in the previous section.

Table 4.4 shows the parameter estimates for mean rainfall and the estimate for the

coefficient of variation. It is sometimes easier to work with the Fourier series coefficients

in their polar form, therefore the amplitude and phase representation of the mean rainfall

is also given. From these parameter estimates, parameters of the corresponding Weibull

distribution can then be estimated by the method of moments (see Zucchini and Adamson

1984a)).

MODEL FOR CLIMATE SEQUENCES

Transforming the data set

Preliminary work carried out to asssess the feasibility of modelling climate on a daily

basis highlighted some weaknesses in the models. Firstly, although the models satisfactorily

preserved the mean and standard deviation, they failed to preserve the extreme values.

This problem arises because some climate variables He within permissible boundaries with

some variables having a high frequency of values near or on an upper or lower limit so

that it is expected that simulated sequences will occasionally have values that exceed these

boundaries. Secondly, some minimum temperature values were slightly higher than the

corresponding maximum temperature value. The same occurred with the humidity variable.

The problem that generated values fall outside their respective admissible range can of

course be easily overcome by simply setting the generated values to the appropriate boundary
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TABLE 4.3 Parameter estimates for P(R\R) and P(R\R)

Station Variable Parameters

7i 72

Polar Form

73 amplitudes phases

(0) (1) (2) (1) (2)

Elsenburg P(R\R) -0.143 -0.398 -0.148 -0.143 0.425

P(R\~R) -1.593 -0.487 -0.249 -1.593 0.547

203.19

210.00

Kakamas P(R\R)

P(R\'S)

-1.194 0.241 0.221 106.59 84.75

-3.367 0.810 0.321 51.69 92.34

Middelburg P(R\R) -0.281 0.175 0.032 -0.281 0.178

P(R\R) -2.054 0.558 0.195 -2.054 0.591

Nelspruit P(R\R) -0.204 0.391 -0.133 -0.204 0.413

P{R\R) -1.567 1.294 -0.037 -1.567 1.295

10.57

19.54

345.94

363.34

Cedara P(R\R) 0.293 0.918 -0.180 0.293 0.935

P(R\R) -0.888 1.488 -0.139 -0.888 1.494

353.76

359.61

Hoopstad P(R\R) -0.192 0.251 -0.017 -0.192 0.252

P(R\R) -1.927 1.201 0.190 -1.927 1.216

361.03

9.11

value whenever they fall outside the range. Such a procedure is easy to implement but it

does change the parameter functions of the generated process (for example the mean),

unless the percentage of such points is quite small in which case the resultant bias will

be small. Alternatively, one can transform the data. The transformation used ensures

that the generated climate sequences lie within the admissible regions and that maximum

temperature/humidity values will be greater than minimum temperature/humidity, while

the characteristics displayed by the climate series remain unchanged. No transformation

was performed on variables which the models described adequately.
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TABLE 4.4 Parameter estimates for the distribution of rainfall on days when

rain occurs

Station Variable Parameters Polar Form

£1 p2 M3 amplitudes phases

(0) (1) (2) (1) (2)

Elsenburg mean 64.73 -12.65 14.64 64.73 19.35 132.66

coeff.var 1.2216

Kakamas mean 62.56 20.86 2.60 30.99 128.25

coeff.var 1.0637

Middelburg mean 52.94 17.85 -1.01 52.94 17.88 361.72

coeff.var 1.3688

Nelspruit mean 64.63 20.35 6.34 64.63 21.31 17.54

coeff.var 1.5305

Cedara mean 53.98 5.01 -0.21 53.98 5.01 362.60

coeff.var 2.1594

Hoopstad mean 63.91 0.45 -4.94 63.91 4.96 279.01

coeff.var 1.4534

The general transformation used is of the form

a - FJVTF A

where a is the upper bound of the variable and b is the lower bound. VTF represents

the variable in its transformed state and VNTF represents the variable in its original form.

The models are then implemented on the transformed time series. The simulated

sequences are easily changed back to the original units by reversing the transformation,
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that is
a + b eSTF

&NTF ~ e T~

eSTF + 1

where SNTF represents the simulated series in the original form and STF represents the

simulated series in a transformed state.

The above transformation has the property that

a > SNTF > b.

By a suitable choice of a and 6 , one can prevent maximum temperature being less than

minimum temperature. Similarly for humidity. For example, specifying a = max temp^r^

when transforming minimum temperature (i.e. condition minimum temperature on maxi-

mum temperature), one obtains that

max temp > min temp > b.

Alternatively, one can condition maximum temperature on minimum temperature by spec-

ifying b = min temp ̂ TF when transforming maximum temperature, obtaining

a > max temp > min temp.

Unfortunately the choice of which variable should be conditioned is not obvious. An

option can only be verified by implementing the model and then examining the simulated

sequences to check whether the properties of the climate sequences are being preserved.

Usually one can get an indication of which variable to condition when one fits the model

to the untransformed time series. If for one variable it is noted that the properties are not

being retained as well as for its corresponding variable, then it would be advisable to first

try the transformation where the "worse behaving" variable is conditioned.

In the case of sunshine duration, the upper bound was allowed to vary seasonally with

time instead of being a constant. Define the upper limit by B(t) , where

where
smax + sunn.

a v e = — _ — t

amp = smax — smin and
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smax and smin are chosen so that B(t) > sunshine duration observed at time t ,

Care must be taken that one does not divide by zero, which can happen at times when

the lower limit is zero and a zero observation occurs. This problem can be overcome by

adding a small value (e.g. 0.01) to all observations.

Model 1: Multivariate model for climate data proposed by Richardson (1981).

Table 4.5 shows the transformations used for each station. Only the lower and upper

bounds are given in the table as the form of the transformation is given above.

The historical data for each of the climate variables was conditioned on the wet or dry

status of the day, thus obtaining a mean function and a standard deviation function for each

of the conditioned data sets. The mean and standard deviation were both approximated by

a truncated Fourier series representation. That is

L
_ \ "̂  r J. /-A * 1 O ATT1

&t / StV'tl V» * — i , Z, . . . , iV J
t = l

where <f>i(t) is defined as in Chapter 3 and where L does not have to be of the same order

for both of the mean and the standard deviation function.

For the purposes of model selection the truncation level L , which determines the family

of approximating models being fitted, was varied and the fit in each case was examined.

The decision on which order of approximation to use was based on Akaike's Information

Criterion (AIC). Tables 4.6 - 4.9 show the value of AIC and the choice of the order of

approximation is given in square brackets. The percentage decrease of the criterion is given

in parentheses whenever the value of AIC continued to decrease after five parameters had

already been fitted. Here the number of parameters selected is based on the model which

leads to a decrease in the criterion of more than 5 percent. This decision was taken for

reasons mentioned in the previous section on the undesirability of fitting a large number of

parameters to the models.

The values of L ranged between 1 and 5, with a mode of 3 for both the mean function

given a dry day and for the mean function given a wet day. Therefore, a 3-term Fourier series

approximation is estimated to be appropriate. Different L values for each variable for a

particular station were not chosen in order to simplify the implementation and interpretation

of the complete (multivariate time series) model.
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TABLE 4.5 Transformations for Model 1

Variable S t a t i o n

Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

Max Temp unchanged a=490 a=400 a=420 a=400 a=410

b=min tempb=min tempb=min tempb=min tempb=min temp

Min Temp a=max temp a=320 a=250 a=250

b=0 b=-50 b=-90 b=0

unchanged a=230

b=-100

Evapo square

root

a=300

b=0

square

root

N/A

N/A

N/A

N/A

N/A

N/A

Sun a=B(t) a=B(t) a=B(t) a=B(t) a=B(t) a=B(t)

smax=134 smax=136 smax=139 smax=130 smax=132 smax=135

smin=94 smin=100 smin=100 smin=110 smin=102 smin=110

b=0 b=0 b=0 b=0 b=0 b=0

Wind a=10000

b=0

a=1001

b=min hum

a=10000

b=0

a=1001

b=min hum

a=10000

b=0

a=1001

b=min hum

a=1000

b=0

a=101

b=0

a=1000

b=0

a=101

b=0

a=1000

b=0

a=101

b=rain hum

Min Hum a=1000 a=1000 a=1000

b=0 b=0 b=0

a=max hum a=max hum a=100

b=0 b=0 b=0
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TABLE 4.6
days

Variable

Max Temp

Selected

Min Temp

Selected

Evapo

Selected

Sun

Selected

Wind

Selected

Max Hum

Selected

Min Hum

Selected

Model selection criteria

L

1
3
5
7

1
3
5
7

1
3
5

1
3
5

1
3
5

1
3
5

1
3
5

Elsenburg

327261
78867
72626
72133(0.4%)

[5]

355
346
348

C
O

1098
391
390(0.3%)

[3]

403
399
400
[3]

340
337
338
[3]

376
375
377
[3]

345
341
342
[3]

Kakamas

345
331
333

[3]

407
333
333

[3]

414
332
334
[3]

343
345

[1]

339
332
334
[3]

383
356
358

.C
O

.

338
332
333
[3]

(AIC) for

S t a t
Middelburg

357
335
337

[3]

397
336
337

C
O

737
370
379
[3]

370
372

[1]

334
334

[1]

385
364
365
[3]

336
333
335
[3]

the mean

i o n
Nelspruit

341
343

[1]

465
344
340(1%)

[3]

528
479
473
[3],

331
332

[1]

347
343
344

C
O

.

361
341
342
[3]

function for

Cedara

339
341

[1]

350496
49924
34256
33719(2%)

[5]

494
475
476
[3]

330
329
330
[3]

389
371
373
[3]

370
346
348
[3]

non—rainy

Hoopstad

351
338
339

[3]

464
339
338(0.3%)

[3]

359
359

[1]

328
330

[1]

389
345
345
[3]

343
340
342
[3]
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TABLE 4.7

Variable

Max Temp

Selected

Min Temp

Selected

Evapo

Selected

Sun

Selected

Wind

Selected

Max Hum

Selected

Min Hum

Selected

Model selection criteria (AIC) for

L

1
3
5

1
3
5
7

1
3
5

1

3
5

1
3

1
3
5

1
3
5

Elsenburg

285827
107685
104150(3%)

[3]

340
342

[1]

1196
756
748(1%)

[3]

951
865
855(1%)
[3]

338
340

[1]

371
375

[1]

339
337
338
[3]

Kakamas

341
341

i-i

340
333
335

[3]

355
353
355
[3]

457
458

[1]

327
330

[1]

504
504

[1]

337
339

[1]

S t a t
Middelburg

372
347
349

[3]

348
332
333

[3]

1154
841

832(1%)
[3]

970
947

940(0.7%)
[3]

333
334

[1]

446
438
439
[3]

349
350

[1]

the mean

i o n
Nelspruit

357
351
354

[3]

349
330
332

[3]

1541
1354
1331(2%)
[3]

328
330

[1]

346
347

[1]

372
375

11]

Model Implementation

function for rain days

Cedar a

347
346
346

[3]

215468
42050
36230
35482(2%

[5]

1251
1177
1130(4%)
[3]

328
330

[1]

352
352

[1]

392
388
389

[3]

Hoopstad

354
340
343

[3]

348
330
332

)
[3]

661
657
654(0.5%)
[3]

337
337

11]

366
359
356(0.8%)
[3]

360
360

11]
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TABLE 4.8 Model selection criteria (AIC) for the standard deviation function
for non-rainy days

Variable L S t a t i o n
Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

Max Temp

Selected

Min Temp

Selected

Evapo

Selected

Sun

Selected

Wind

Selected

Max Hum

Selected

Min Hum

Selected

1
3
5

1
3
5

1
3

1
3
5

1
3

1
3
5

1
3

30600
29683
29003(2%)

[3]

327
329

[1]

339
340

[1]

367
365
367
[3]

327
329

[1]

348
342
344

[3]

327
329

[1]

327
329

[1]

327
329

[1]

327
329

[1]

327
329

[1]

327
329

[1]

333
334

[1]

327
329

[1]

327
329

[1]

327
329

[1]

CO
 
C
O

to
 t
o

CO
 
00

[1]

354
355

[1]

CO
 C
O

t
o
 
t
o

C
O
 
—
J

[1]

332
331
332

[3]

327
329

[1]

327
329

[1]

CO
 
C
O

CO
 
C
O

CO
 
t
O

[1]

504
489
484(1%)
[3]

t~
- 

O
S

C
M

 
eg

C
O

 
C

O

[1]

327
329

[1]

327
329

[1]

CO
 
C
O

to
 t
o

C
O
 
(—
>

[1]

20944
19404
18588(4%)

[3]

442
439
441
[3]

321
323

[1]

321
324

[1]

321
323

[1]

327
329

[1]

327
329

[1]

333
331
333
[3]

327
329

[1]

327
329

[1]

327
329

[1]
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TABLE 4.9 Model selection criteria (AIC) for the standard deviation function
for rain days

no of
Variable parameters S t a t i o n

Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

Max Temp

Selected

Min Temp

Selected

Evapo

Selected

Sun

Selected

Wind

Selected

Max Hum

Selected

Min Hum

Selected

1
3
5

1
3
5

TH 
C

O

1
3
5

1
3

1
3
5

1
3
5

51315
48654
47971(1%)

[3]

327
329

[1]

457
457

[1]

619
547
545(0.4%)
[3]

329
330

[1]

360
355
355
[3]

327
330

[1]

332
334

[1]

327
329

w
332
333

[1]

382
381
383
[3]

327
329

[1]

392
392

[1]

329
331

[1]

329
331

[1]

328
329

T-I

497
497

[1]

702
691

689(0.3%)
[3]

327
329

T-I

357
360

11]

329
332

[1]

329
331

T-I

327
329

[1]

744
686
683(0.4%)
[3]

327
329

T-I

328
330

[1]

342
342

[1]

327
329

[1]

15941
15330
15221(1%)

[3]

665
625
602(4%)
[3]

327
329

[1]

328
332

W
338
336
338
[3]

329
331

T-I

327
329

[1]

572
572

[1]

330
332

T-I

333
335

[1]

333
335

[1]

The values of L ranged between 1 and 3, with a mode of 1, for both the standard

deviation function given a dry day and for the standard deviation function given a wet day.
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Again a 3-term Fourier series approximation was chosen to simplify programming by having

a common approximation order.

Tables 4.10-4.15 show the parameter estimates for the mean function and for the stan-

dard deviation function, both conditioned on the wet or dry status of period t .

The resulting time series obtained by subtracting the fitted mean function and by

dividing through by the fitted standard deviation function should be a time series with a

mean of zero and a standard deviation of unity. Since the mean value functions and the

standard deviation functions which were fitted are based on truncated Fourier series, that

is, on approximating models, the means of the residual series would not be exactly zero and

the standard deviations would not be exactly one. However, deviations in this respect were

found to be quite small. (Table 4.16.)

TABLE 4.10 Parameter estimates for the mean and standard deviation function
for Nelspruit

Variable Day Mean Function Standard deviation function
Status Si a.2 ciz £i £2 £3

Dry 1.1406 0.0491 0.0021 0.5492 0.0722 -0.1045
Max Temp

Wet 0.7439 -0.3820 -0.2312 0.7346 -0.0129 -0.1027

Dry -0.0768 -1.1420 -0.2058 0.4849 -0.1264 0.0172
Min Temp

Wet -0.3966 -0.8404 -0.2213 0.3666 -0.0469 0.0026

Dry -0.8305 0.6966 -0.2708 1.5700 0.4211 -0.2742
Sun

Wet 2.2995 -1.2331 -1.1324 3.1566 -0.8673 -0.5615

Dry 1.9637 0.0005 0.1367 0.2404 0.0175 -0.0155
Wind

Wet 2.0005 -0.0579 0.1554 0.2789 -0.0069 -0.0338

Dry -1.4305 -0.0110 -0.2614 0.5754 -0.0945 -0.0809
Max Hum

Wet -2.1826 0.1480 -0.0467 0.7114 0.0075 -0.0685

Dry -0.2314 -0.4867 -0.0223 0.5471 -0.0377 -0.0490
Min Hum

Wet -0.9915 0.0100 0.1507 0.7902 -0.1771 -0.0605
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TABLE 4.11 Parameter estimates for the mean and s tandard deviation function
for Kakamas

Variable Day Mean Function Standard deviation function
Status Si a.i 5 3 £x £2 £3

Dry 0.1820 -0.4165 -0.0206 0.3912 0.0299 -0.0215
Max Temp

Wet 0.7169 -0.1589 -0.1176 0.5849 0.0534 -0.1207

Dry 0.0561 -0.8786 -0.2398 0.4488 0.0249 -0.0311
Min Temp

Wet -0.2287 -0.6914 -0.2603 0.3976 0.0583 -0.1232

Dry 0.9503 -0.9578 0.0770 0.4293 0.0004 -0.0106
Evapo

Wet 1.4806 -0.3786 -0.1060 0.7570 -0.0814 -0.1750

Dry -1.6980 -0.0062 0.0217 0.8455 0.0029 0.1077
Sun

Wet 0.5187 -0.0863 -0.1922 1.3270 -0.2649 0.1156

Dry 1.4858 -0.3014 0.0995 0.4098 -0.0406 -0.0231
Wind

Wet 1.2941 0.0066 0.0779 0.3349 -0.0073 -0.0103

Dry -0.0944 0.5496 -0.1002 1.3666 -0.2549 0.0597
Max Hum

Wet -0.7814 0.0296 -0.2719 1.4821 -0.2785 -0.1268

Dry 1.1816 0.2893 -0.0566 0.4990 0.0249 -0.0066
Min Hum

Wet 0.4772 -0.0064 -0.0173 0.5523 -0.0303 -0.0673
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TABLE 4.12 Parameter estimates for the mean and standard deviation function
for Middelburg

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Day
Status

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Mean Function
Si S2 S3

-0.1424

0.4120

0.2575

-0.1811

7.9960

6.1770

-2.0452

0.6383

1.4977

1.4042

-1.3432

-1.2860

1.1904

0.5364

-0.5116

-0.7261

-0.8132

-0.7344

1.9682

2.1295

0.0167

-0.5181

-0.0610

0.0481

-0.4132

-0.3606

0.1649

0.2806

-0.0217

-0.1572

-0.1849

-0.2009

-0.4032

0.0773

0.0293

-0.3849

0.1297

0.1328

-0.2987

-0.1579

-0.1501

0.0152

Standard deviation

0.5336

0.6608

0.5279

0.4172

1.3287

2.0379

1.2232

1.9803

0.4592

0.4821

1.2128

1.1107

0.5000

0.6164

0.0718

0.0509

-0.1576

-0.0803

-0.1210

-0.2645

0.0837

-0.4339

-0.0855

-0.1459

-0.2591

-0.1790

-0.0057

-0.0767

function
&

-0.0156

-0.0500

-0.0616

-0.0499

-0.1113

-0.2099

0.0880

-0.2604

-0.0228

-0.0122

-0.1682

-0.0987

-0.0314

-0.0799
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TABLE 4.13 Parameter estimates for the mean and standard deviation function
for Elsenburg

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Day
Status

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Dry

Wet

Mean Function
Si S2 as

238.22

193.53

0.3177

-0.4954

7.680

4.961

-1.6113

1.1820

1.6157

1.2347

-2.2258

-2.0879

0.5553

-0.1166

48.57

46.05

-0.2871

-0.0572

2.787

2.506

-0.2528

-1.0978

-0.2502

0.0298

0.1167

0.0697

0.2438

0.4444

19.04

21.63

-0.1851

-0.1013

0.0901

0.1371

-0.0514

0.2018

0.0099

0.1007

-0.1301

-0.0156

0.0887

0.0339

Standard deviation

38.38

25.71

0.5278

0.5552

1.0026

1.8950

0.9575

1.9234

0.3923

0.4737

0.8527

0.4737

0.4858

0.6925

3.179

5.296

-0.1475

-0.1558

-0.0536

0.0165

-0.2123

-0.9789

-0.0539

-0.1934

-0.1969

-0.1934

-0.0842

-0.3514

function
&

-0.0134

3.317

-0.0490

-0.0066

0.0270

-0.0899

0.0104

0.3166

-0.0276

-0.0040

0.1334

-0.0040

-0.0051

0.0798
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TABLE 4.14 Parameter estimates for the mean and standard deviation function

for Cedara

Variable Day Mean Function Standard deviation function

Status 5JI S2 S3 £1 £2 £3

Dry 0.0677 -0.1084 0.0099 0.5117 0.0419 -0.0775

Max Temp

Wet 0.8100 -0.1902 -0.1313 0.8119 0.0835 -0.1253

Dry 96.367 56.733 11.619 26.661 -3.558 -2.103

Min Temp

Wet 111.379 46.644 13.587 22.168 -0.926 -2.553

Dry -1.383 0.4607 -0.1772 1.3118 0.2792 -0.1978

Sun

Wet 2.0787 0.2088 -0.9158 3.3718 0.3074 -0.6914

Dry 1.7602 -0.0816 0.1776 0.2919 -0.0758 -0.0153

Wind

Wet 1.6711 -0.0878 0.1973 0.3219 -0.0127 -0.0353

Dry -2.0807 -0.3614 -0.2952 0.9552 -0.1621 -0.0217

Max Hum

Wet -3.0247 -0.2189 -0.1216 0.8009 0.1149 0.0001

Dry -0.0543 -0.5256 -0.0813 0.6235 -0.0317 -0.0688

Min Hum

Wet -1.1142 -0.2502 0.0721 1.0571 -0.0468 -0.1675
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TABLE 4.15 Parameter estimates for the mean and standard deviation function

for Hoopstad

Variable Day Mean Function Standard deviation function

Status Sj a2 S3 £1 £2 £3

Dry -0.3482 -0.4120 0.0216 0.4415 0.1293 -0.0081

Max Temp

Wet 0.2494 -0.5653 -0.0547 0.6324 0.0222 0.0372

Dry -1.4750 -1.1625 -0.2069 0.4701 -0.0122 -0.0174

Min Temp

Wet -0.6601 -0.8644 -0.1761 0.3764 -0.0442 -0.0151

Dry -1.7544 0.1099 0.1206 0.7901 0.2790 0.0360

Sun

Wet 0.6600 -0.4369 -0,0254 1.8220 -0.1887 0.1484

Dry 2.1065 -0.2612 0.2238 0.5323 -0.0128 -0.0153

Wind

Wet 1.8836 0.0616 0.3142 0.4281 0.1357 0.0514

Dry -0.4700 0.5763 -0.4229 0.7188 -0.1011 0.0364

Max Hum

Wet -0.7645 0.2807 -0.3057 0.7501 -0.0202 0.0191

Dry 0.9651 0.0142 -0.2402 0.5565 0.0808 -0.0154

Min Hum

Wet 0.0503 0.1797 -0.0793 0.7935 -0.0143 0.0135
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TABLE 4.16

Model Implementation

Mean and standard deviation of residual time series <
standardizing the data

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

M
SD

M
SD

M
SD

M
SD

M
SD

M
SD

M
SD

Elsenburg

-0.010
1.09

0.004
1.08

-0.003
1.12

-0.007
1.16

-0.015
1.09

0.012
1.19

-0.010
1.10

s
Kakamas

0.002
1.04

-0.004
1.03

-0.0004
1.05

0.006
1.06

-0.003
1.03

-0.002
1.05

-0.0003
1.05

t a t i o n
Middelburg

-0.007
1.05

0.002
1.07

0.006
1.05

-0.002
1.12

0.0002
1.05

0.002
1.06

0.004
1.06

Nelspruit

0.0007
1.08

-0.0005
1.10

0.011
1.22

0.192
1.12

0.004
1.07

0.003
1.10

Cedara

-0.02
1.08

-0.01
1.08

0.02
1.17

-0.007
1.11

-0.009
1.06

-0.01
1.08

Dbtained by

Hoopstad

0.006
1.06

-0.002
1.06

0.0009
1.13

0.013
1.15

-0.004
1.09

-0.006
1.07

Another assumption made by the model is that the residual time series follows an au-

toregressive process of order 1. If this is true then pk~ p* where pk is the autocorrelation

with lag k . This assumption (or more precisely, this approximation) was checked by com-

paring "pigj k = 1,2,3,4 with pf , and was found to be reasonable except for a few cases

(Table 4.17). It is possible to increase the order of the autoregressive process to these cases,

but this has be be done at cost of increasing the complexity and number of parameters in

the model, and therefore not advisable.

The results of the above checks would suggest that the residual series do seem to satisfy

the required assumptions of the model. It is therefore reasonable to approximate each of the

seven series by the sum of a seasonal component and a residual component, to approximate

the seasonal component by a 3-term Fourier series and finally to approximate the standard

deviation of the residual series by a 3-term Fourier approximation.
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Model 1, proposed by Richardson (1981) is given by:

Xi,t = ^ Xi,t-i + B *i,t

where Xi,t is the residual series at time period t of year i . Display 4.1 gives the esti-

mated A matrix for the various stations and Display 4.2 gives the estimated B matrix.

The order of the climate variables in these displays is as follows: maximum temperature,

minimum temperature, evaporation, sunshine duration, windrun, maximum humidity and

finally minimum humidity.

Model T: Multivariate model for climate data

Models 3, 4 and 5 were developed as an alternative to Model 1 in an attempt to deal

with a deficiency in Model 1, namely the assumption that the autocorrelation function of

each variable is assumed invariant with respect to wet/dry and dry/wet day boundaries.

Each model varies in complexity and emphasizes a slightly different aspect of the joint

distribution of the variables. Table 4.18 shows the fundamental assumptions of each model.

The models depicted here are complex, describing several distinguishing properties

of the climate series. No one model will be "best" in all respects or for all sites. In

general, simpler models can be expected to outperform the more complex ones when the

historical record at the site is small, whereas the opposite will be true when the record is

long. Statistically one can select the appropriate model for each variable using Akaike's

Information Criterion (AIC) where

AIC = -

where £(tf>;eitt) is the loglikelihood function of the model and L is the number of parame-

ters. The model producing the lowest AIC value is chosen as the model that best described

that particular climate variable. It must be noted that Models 3,4 and 5 are not hierarchical

and therefore a model with a larger number of parameters does not imply that the value of

its loglikelihood function will be smaller.
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Thus, one does not restrict the generation of the climate variables to any particular
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TABLE 4.18 Assumption of the different models

Model Assumptions

Model 1 - seasonal mean function

- seasonal standard deviation function

- constant autocorrelation coefficient across different rain - no rain sequences

- conditioned on wet and dry sequences only

Model 3 - seasonal mean function

- constant standard deviation function

- different autocorrelation coefficients across different rain - no rain sequences

- conditioned on wet/wet, dry/dry, wet/dry and dry/wet sequences

Model 4 - seasonal mean function

- seasonal standard deviation function

- constant autocorrelation coefficients across different rain - no rain sequences

- conditioned on wet/wet, dry/dry, wet/dry and dry/wet sequences

Model 5 - seasonal mean function

- seasonal standard deviation function

- different autocorrelation coefficients across different rain ~ no rain sequences

- conditioned on wet/wet, dry/dry, wet/dry and dry/wet sequences.

model, but each variable is generated according to the model that "best" describes it. The

multivariate model to generate simultaneous daily climate sequences will be referred to as

Model T, where, for each climate variable, Model T is constructed by selecting between

Models 3, 4 and 5 for the model that produces the lowest AIC.

The following algorithm is used to implement Model T.

Algorithm

Step 1: Implement Model 3 to obtain parameter estimates and AIC for each variable.

Step 2: Implement Model 4 to obtain parameter estimates and AIC for each variable.
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Step 3: Implement Model 5 to obtain parameter estimates and AIC for each variable.

Step 4: Construct Model T by choosing for each variable the model producing the lowest

AIC.

Step 5: Obtain the estimated cross-correlation matrix, £ , whose elements are given by:

NY NT NY NT NY NT

NY NT

t=l (=1

NY NT

where cj^ denotes the residual time series of variable j , j = 1,2,... ,NV and where

for each j the residual series is the series obtained after the model producing the lowest

AIC for variable j has been fitted and e\ / denotes the residual time series of variable

fc, k — 1,2,.. ,,NV , the residual series obtained in the same way as above.

Implementing Models 3, 4 and 5

The transformations applied to these models are the same as those in the previous

model except for the variables maximum temperature and minimum temperature of

the station Nelspruit. Here the bounds are given by

a = 420, and

6 = 0

for maximum temperature, and

a = max temp

6 = 0

for minimum temperature.

Models 3, 4 and 5 are implemented by following the respective algorithms given in

Chapter 3. The initial estimates for the mean function and for the seasonal standard

deviation function are the same as the estimates of Model 1 and therefore need not

be recomputed. Only when a different transformation to that applied in Model 1 is

used, is it necessary to compute initial estimates for the mean function and the seasonal

standard deviation function.
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The selection of the order of the Fourier series approximation for the mean function

and the standard deviation function was based on the initial estimates of these functions

and so a choice of a 3-term Fourier series was made for both functions.

The estimation of the parameters is accomplished by iteration. The procedure

described in the algorithms is that of Newton-Raphson. This method, although con-

verging within a few iterations, was found to be sensitive to the initial values given.

On occasions where convergence was not reached, a conjugate gradient method was

used for parameter estimation. The computer programs for this procedure are given in

Appendix D. The advantages of this method is that one gets convergence and only the

vector of first derivatives needs to be computed. The disadvantage is that it is time

consuming and takes a large number of iterations to converge.

In our implementation a particular parameter estimate was deemed to have con-

verged when its value changed by less than 0.01% in successive iterations. The estima-

tion procedure was deemed to have converged when all estimates had converged.

Akaike's Information Criterion for the selection of a model for each variable is

given in Table 4.19. The lowest AIC value is shown in bold and the corresponding

model is selected to generate climate sequences for that variable. This model selection

is performed for each of the stations.

Values with an asterisk indicate the model that was finally selected, although it

did not produce the lowest AIC. This choice was necessary in some instances because of

the relatively few occurrences of rainfall in some stations. More importantly, at some

sites consecutive rainy days seldom occur. Thus, in Models 3 and 5 the estimation of

the autocorrelation coefficient given that the sequence WW was observed, is based on

very few observations, and consequently, it is possible to obtain inadmissible estimates.

Similarly, when the sequence WD or DW was observed. In such cases, generally Model

4 was chosen as it gave acceptable estimates since here the autocorrelation function is

not conditioned and all observations are used in the estimation.

Parameter estimates for the mean function, the standard deviation function and

the coefficient of the autoregressive process of order 1 are given in Tables 4.20-4.25 for

each station.
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Table 4.19 Akaike'a Information Criterion for Models 3, 4 and 5

Variable Model S t a t i o n
Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Mod 3
Mod 4
Mod 5

Mod 3
Mod 4
Mod 5

Mod 3
Mod 4
Mod 5

Mod 3
Mod 4
Mod 5

Mod 3
Mod 4
Mod 5

Mod 3
Mod 4
Mod 5

Mod 3
Mod 4
Mod 5

21190
21174

21160

3579
3484

3467

7102
7124
7091

7458
7263
7241

2557
2477
2483

5799
5544
5542

3012
2952

2926

3393
3537
3502

2994
2992

2962

5018
5124
5080

10528
10669
10665

4528
4499
4501

13644
13799*
13587

3951*
3972

3929

5751
5796

5749

5474
5178

5162

12721
12710

12697

12716
12841
12822

4664
4536
4539

11890
11712
11717

5653
4876
5668

2151
2030
2006

4684
4502
4472

10742
10951
10953

493
607
565

4900
4879
4859

4961
4903
4904

5781
5745

5726

26594
26594

26562

12645
12786
12758

2105
2162

2057

8101
8090
8078

7047
7067
7054

2610
2988
2773

3191
3193

3182

8458
8511
8505

3973
4463
3760

6579
6614

6573

4266
4541
4312

The estimate of the cross-correlation matrix, S , is obtained by following Step 5 of the

algorithm given in this chapter. Problems arise when computing this formula when missing

observations occur in the residual series. A simple approach to estimate the cross-correlation

matrix in the presence of missing values, is to restrict the analysis to time periods t with

all variables observed. However, this method discards a considerable amount of data and

the estimate obtained is biased. A more efficient approach is to estimate the missing values

and to replace them by their estimate.

Makhuvha (1988) investigated several methods of estimating the missing values in rain-

fall records. She concluded that of the methods compared, the EM algorithm is the most
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TABLE 4.20 Parameter estimates of Model T for Elsenburg
O

to
to

Variable
Sta-
tus

Mean Standard Deviation Autocorrelation coefficient
£1 (DD) £2 (WW) | s (DW) (WD) (DD) (WW) (DW) (WD)

D 231.18 48.72 19.01 33.55 1.8024 0.2573
Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

D

W

D

W

D

W

D

W

D

W

W 204.50 53.68 22.74 29.03

D 0.3022 -0.2920 -0.1657 0.5212

W -0.4868 -0.0160 -0.0984 0.6016

7.6192 2.7414 0.0900 1.0359

5.0406 2.5638 -0.1071 2.1324

-1.6281 -0.2424 -0.0765 1.0764

0.9495 -1.1692 0.0193 2.2477

1.6106 -0.2549 0.0180 0.3955

1.2669 -0.0216 0.0709 0.5073

-2.2759 0.0996 -0.1112 0.8724

-2.0439 0.0681 0.0147 0.8779

0.5042 0.2483 0.0683 0.4446

-0.0733 0.4691 0.0451 0.5791

6.6864

0.1354

0.1326

0.0949

0.2682

0.2902

1.0441

0.0433

0.1575

0.2045

0.3449

0.0893

0.0833

3.1137

-0.0546

-0.0079

0.0635

-0.0206

0.0525

0.2785

-0.0349

-0.0129

0.1318

0.1664

0.0071

0.0936

0.5794 0.3459 0.3872 0.5942

0.2342 -0.0720 0.2671 0.0520

0.3227 -0.0491 0.1168 0.0920

0.0009 0.1173 0.2898 0.1036

0.2780

0.3436 0.2144 0.2482 0.2042

0.5027 0.1687 0.3148 0.3223



TABLE 4.21 Parameter estimates of Model T for Kakamas

CO

o

Variable
Sta-
tus

Mean Standard Deviation Autocorrelation coefficient
(DD) £2 (WW) |s (DW) (WD) (DD) (WW) (DW) (WD)

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

D

D

0.1627 -0.4202 -0.0276 0.3367

W 0.3463 -0.1978 -0.0721

0.0488 -0.8637 -0.2536 0.3342

W -0.0969 -0.8725 -0.2746 0.3321

D 0.9368 -0.9685 0.0712 0.4108

W 1.1645 -0.7191 0.0049

D -1.7212 0.0064 -0.0003 0.7934

W 0.5558 -0.0440 -0.1465

D 1.4873 -0.3020 0.1002 0.3989

W 1.3139 -0.0322 0.0648 0.3927

D -0.1501 0.4878 -0.1316 1.1771

W 0.6801 0.1684 -0.1280 1.6941

D 1.1912 0.2865 -0.0486 0.3697

W 0.9306 0.2392 -0.0246

1.0537 0.6734 0.6167 0.4781 0.4354 0.4171 0.4551

0.0154 -0.0237

0.0307 -0.0707

0.6947 0.3330 0.7680 0.4741

1.2381 0.7372 0.6606 0.2930 0.6665 0.5014 0.3466

1.4352 1.8488 1.6322 0.3372 0.0280 0.0585 -0.0044

0.2629

0.5277

0.5222 0.5177 0.6781 0.7747 0.7354 0.6003

0.0255

0.0213

0.2292

0.4360

1.0398

-0.0251

-0.0013

0.0032

0.0031

0.5222

o
>
H
pa
to

oa.



TABLE 4.22 Parameter estimates of Model T for Middelburg O

>

rf*.
Variable

Sta-
tus

Mean
0:3

Standard Deviation
(DD) & (WW) £3 (DW)

Autocorrelation coefficient
(WD) (DD) (WW) (DW) (WD)

Max Temp

Mm Temp

Evapo

Sun

Wind

Max Hum

W

D

W

D

W

D

W

D

Min Hum

D -0.1750 -0.5214 -0.0207 0.4972

W -0.0466 -0.5426 -0.0733 0.7664

D 0.2309 -0.7890 -0.2229 0.5073

-0.1527 -0.7246 -0.1868 0.4616

7.9724 1.9607 -0.3904 1.2470

6.9672 1.8639 -0.2865 2.2131

-2.0811 0.0179 0.0070 1.1915

0.0118 -0.3549 -0.2383

1.5048 -0.0641 0.1327 0.4486

1.3822 0.0314 0.1695 0.4822

-1.3835 -0.4246 -0.3093 1.2037

W -1.0464 -0.4250 -0.2633 1.2606

D 1.1584 0.1583 -0.1487 0.4467

W 0.7990 0.1551 -0.0416 0.6503

0.0700

-0.0019

-0.0271

-0.0946

-0.1471 -0.0584

-0.1031 -0.0569

-0.0886 -0.1185

-0.1846 -0.2240

0.0718

0.1150

0.2473

0.1815

0.0138

0.1175

-0.0270

-0.0313

-0.1653

-0.1403

-0.0290

-0.0614

0.3351 0.6246 0.2688 0.7525

0.3855 0.1991 0.4919 0.2023

0.3733 0.4681 0.2609 0.5932

3.0527 1.8217 1.7494 0.2798 0.2948 0.1615 0.1473

0.3153

0.2501

0.4710 I
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TABLE 4.23 Parameter estimates of Model T for Nelspruit
T3
H
H
to

CO

Variable
Sta-
tus

Mean Standard Deviation
S2 S3 £1 (DD) & (WW) & (DW)

Autocorrelation coefficient
(WD) (DD) (WW) (DW) (WD)

Max Temp

Min Temp

Sun

Wind

Max Hum

Min Hum

D -0.5530 -0.2991 -0.0618 0.3496

W -0.3810 -0.4587 -0.1973 0.4045

D 0.0386 -0.7716 -0.1403 0.5612

W -0.5269 -0.2497 -0.0071 0.7003

D -1.0839 0.5190 -0.1531 1.4358

W 1.4841 -0.9117 -1.0326

D 2.0032 -0.0014 0.1453 0.2386

W 2.0175 -0.0235 0.1640

D -1.4927 -0.0301 -0.2512 0.5749

W -2.0923 0.1254 -0.0859 0.7741

D -0.2500 -0.4921 -0.0472 0.5716

W -0.8259 -0.1266 0.1330 0.9221

0.0415

0.0255

0.1514

0.2251

3.9054

-0.0825

-0.0425

-0.0713

-0.0918

2.7535

0.3743 0.2590

0.0730

0.0250

0.0267

0.2392

-0.0896

-0.0894

-0.0580

-0.0932

0.5130 0.1863 0.3670 0.2989

0.3813 0.0797 0.1556 0.0717

3.2377 0.1700 0.2423 0.1597 0.1180

0.3336 0.0001 0.3037 0.1856 0.1613

0.3661 0.1056 0.1539 0.2178

0.1953 ft.
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TABLE 4.24 Parameter estimates of Model T for Cedara

Sta- Mean Standard Deviation Autocorrelation coefficient
Variable tus ax a2 a3 fi (DD) £2 (WW) & (DW) (WD) (DD) (WW) (DW) (WD)

D 0.0817 -0.1296 0.0067 0.5511 0.1035 -0.0839 0.2398 0.1117 0.0036 0.0444
Max Temp

W 0.7722 -0.1986 -0.0917 0.8740

0.1035

0.0132

-2.624

-2.705

-0.0839

-0.0792

-0.781

-1.667

D 97.70 51.43 14.11 23.82 -2.624 -0.781 0.6092 0.3651 0.5537 0.3714
Min Temp

W 110.28 46.56 14.04 21.60

D -1.5666 0.2819 -0.2128 1.2486 4.2278 2.8030 2.1725 0.1643 0.1914 -0.1618 -0.0123
Sun

W 1.4590 0.1536 -0.6015

D 1.7531 -0.0856 0.1766 0.3146 -0.0541 -0.0150 0.2607 0.0794 0.0000 0.1909
Wind

W 1.6761 -0.0900 0.1703 0.3782

-0.0541

-0.0339

-0.1101

0.0607

1.2461

-0.0150

-0.0351

-0.0460

-0.0111

0.9200

D -2.1008 -0.3668 -0.3021 1.0044 -0.1101 -0.0460 0.1672 0.1115 -0.0599 0.1598
Max Hum

W -3.0014 -0.2290 -0.0672 0.8444

D -0.0160 -0.4920 -0.0928 0.6204 1.2461 0.9200 0.7907 0.2142 0.2060 -0.0295 0.0743
Min Hum

W -0.8994 -0.2833 0.0296

o
ta-
rt
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TABLE 4.25 Paraxneter estimates of Model T for Hoopstad

OS

Variable
Sta-
tus

Mean
a2 33

Standard Deviation Autocorrelation coefficient
(DD) £2 (WW) tz (DW) (WD) (DD) (WW) (DW) (WD)

Max Temp

Min Temp

Sun

Wind

Max Hum

Min Hum

D -0.5078 -0.5004 0.0254 0.2893

W -0.3431 -0.5375 -0.0210

D -0.2257 -1.1626 -0.2329 0.3919

W -0.5434 -1.0062 -0.2076 0.3728

D -1.8242 0.0955 0.0975 0.6753

W 0.0924 -0.3002 -0.0487

D 2.0979 -0.2117 0.2139 0.4114

W 2.0284 -0.0710 0.2737 0.4468

D -0.5581 0.4988 -0.4000 0.6267

W -0.7064 0.2786 -0.2623 0.8009

D 1.1107 0.0944 -0.2305 0.3903

W 0.7927 0.1593 -0.1760

0.8638 0.4752 0.5262 0.5808 0.8066 0.7517 0.6951

-0.0033 -0.0244

-0.0538 0.0099

0.5982 0.4282 0.5456 0.3609

2.9114 1.6379 1.2875 0.2845 0.2908 0.0003 0.1339

0.0001 -0.0514

0.0452 -0.0037

-0.0181 -0.0186

-0.0600 -0.0189

0.4733 0.5789 0.0003 0.5387

0.5338 0.2678 0.2790 0.2456

1.0292 0.6553 0.6209 0.5566 0.8081 0.7663 0.6498
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CHAPTER 4 Model Implementation

efficient method that can be applied for the estimation of missing records, and in terms of

accuracy, it performs at least as well as the other methods. The EM algorithm is a very

general iterative method for maximum likelihood estimation in incomplete data sets. It

comprises of the following steps:

1. Missing values are replaced by estimated values.

2. Parameters are estimated.

3. Missing values are re-estimated assuming that the new parameter estimates are correct.

4. Parameters are re-estimated and so forth, iterating until convergence.

A detailed explanation and the theory of the EM algorithm is given in Appendix E.

The estimates of the cross-correlation matrix for each station are given in Display 4.3.

The matrices are symmetrical, therefore only the upper triangle is given. The order of the

climate variables in the display is as follows:

maximum temperature, minimum temperature, evaporation, sunshine duration, windrun,

maximum humidity and finally minimum humidity.

The results described in this chapter would suggest that the models are not inconsistent

with the historical record.

The selected models have the following number of parameters:

The model for rainfall occurrences: has 6 parameters.

The model for rainfall depth: has 4 parameters.

Model 1: has 161 parameters.

Model 3: has 126 parameters.

Model 4: has 119 parameters.

Model 5: has 140 parameters.

Of course the tests described in this chapter cover only some limited aspects of the fit.

The issue of model validation is considered more exhaustively in Chapter 6.
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Elsenburg
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1.000 0.294

1.000
Kakamas

-0.430
-0.507
-0.550

1.000

0.193
-0.234

0.102
1.000

0.235
0.281
-0.291
•0.066
1.000

0.000
0.012

•0.012
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0.614
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1.000 J
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-0.002
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1.000
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-0.488
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1.000

0.413
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-0.386

1.000

0.036
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•0.349
0.056
1.000

0.014
-0.015
-0.027

0.007
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1.000

0.002
0.013
0.002

-0.002
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1.000

-1.000 -0.650
1.000
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1.000 0.060
1.000
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-0.668
1.000
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1.000
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-0.594
0.059
0.231
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0.689 -0.236
0.130 -0.112
1.000 -0.164

1.000

•0.461
0.029

•0.305
-0.039
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-0.480'
-0.028
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0.212
1.000,

Hoopstad

-1.000 -0.343 0.351 -0.398
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1.000 -0.139
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-0.082
-0.043
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1.000
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-0.013

0.023
-0.007
-0.002

1.000 J

DISPLAY 4.3 Estimated cross-correlation matrices for each station
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CHAPTER 5

ALGORITHMS

This chapter describes the various procedures to be followed during model implemen-

tation and later during generation of climate sequences.

"Custom built" computer programs to carry out the preliminary analysis, to fit the

models, to validate the models and finally to generate climate sequences have been written

in ANSI 77 FORTRAN. The programs written conform to the full ANSI standard except

for programs 6 and 8 where the array CLIMA is dimensioned using the HUGE attribute,

which is an extension to the full ANSI standard. This was necessary when the climate

data sets consisted of more than 9 years of daily data. Standard Fortran programs without

this attribute should be no problem on a mainframe. Appendix D gives information where

a listing of these programs (referred to in the algorithms below) can be obtained. The

algorithms described here were all implemented on an IBM compatible PC micro-computer.

The following algorithms are discussed in this chapter:

- Algorithm for fitting the rainfall model.

- Algorithm for generating artificial rainfall sequences.

- Algorithm for fitting Model 1 to climate sequences.

- Algorithm for generating climate sequences using Model 1.

- Algorithm for fitting Model 3 to climate sequences.

- Algorithm for fitting Model 4 to climate sequences.

- Algorithm for fitting Model 5 to climate sequences.

- Algorithmn for implementing Model T.

- Algorithm for generating climate sequences using Model T.

Algorithm for implementing the rainfall model

The following information is required for the parameter estimation programs and must

be computed from the historical record:

NT the number of periods in the year (e.g. 365 for daily data).
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NY the number of years of data (including the missing values).

For each t= l ,2 , . . . , iVT.

NW(t) the number of times it was wet in period t — 1 and there was an observation in

period t.

NRR(t) the number of times it was wet in period t — 1 and wet in period t.

ND(t) the number of times it was dry in period t — 1 and there was an observation in

period t.

NRR(t) the number of times it was dry in period t - 1 and wet in period t.

R(i, t) the ith non-zero rainfall depth in period t, t = 1,2,..., NR(t) .

NR(t) the number of times it was wet in period t.

Algorithm for estimating the probabilities of wet and dry sequences

Step 1: Prepare data sets NW{t) and NRR(t) .

- Program 1

- if any of the NW(t) are equal to zero, then delete time period t from data

set.

Step 2: Estimate the parameters for the probability that a wet period follows a wet period.

- Program 2.

Step 3: Prepare data sets ND(t) and N~RR(t) .

- Program 1

- of any of the ND(t) are equal to zero, delete time period t from the data

set.

Step 4: Estimate the parameters for the probability that a wet day follows a dry period.

- Program 2.

Algorithm to estimate the mean rainfall in wet periods

Step 1: Prepare the data sets NR(t) and R(i,t) .

- Program 1.

Step 2: Estimate the parameters of the mean.
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Step3: Estimate the coefficient of variation.

- Program 3 (does Steps 2 and 3).

Algorithm for generating artificial rainfall sequences

Step 1: Set initial state of day to be dry.

Step 2: Generate uniform random number between 0 and 1, inclusive (i7(0,l)) .

Step 3: If (7(0,1) random number is less than the probability of a wet day following a

day with the status of the previous time period then

- the status of the present time period is wet.

Otherwise

- the status of the present time period is dry.

Step 4: If present state is wet than determine the rainfall depth.

Step 5: Repeat steps from Step 2 until enough rainfall sequences have geen generated.

- Program 4.

Algorithm for implementing Model 1 to climate sequences

The following information is required for the parameter estimation programs and must

be computed from the historical records:

NT the number of periods in the year.

NY the number of years of data.

NV the number of variables in the model.

For each t = 1,2,..., NT and for each variable

m(t) the mean of the climate variable at time t.

s(t) the standard deviation of the climate variable at time t .

For each variable do:

Step 1: Condition data set according to the wet or dry status of the day. That is, a record

is kept of the time periods that had rain and the time periods that had no rain.

- Program 5.

For each conditioned data set do Step 2 - Step 6:
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Step 2: Compute the daily mean vector, m(t) .

- Program 6.

Step 3: Estimate the parameters of the mean.

- Program 7.

Step 4: Compute the daily standard deviation vector, s(t) .

- Program 8.

Step 5: Estimate the parameters of the standard deviation.

- Program 7.

Step 6: Obtain the standardized residual series by subtracting the estimated daily mean

function and dividing by the estimated daily standard deviation function.

- Program 9.

Step 7: Once the residual time series has been calculated for each variable, estimate the

lag 0 and lag 1 cross-correlation coefficients.

- Program 10.

Step 8: Using estimates obtained in Step 7 compute the matrices A and B .

- Program 11.

Algorithm for generating artificial climate sequences using Model 1

Step 1: Generate rainfall sequence (algorithm given above)

For each variable do:

Step 2: Generate a normal random number from a distribution with a mean of zero and a

standard deviation of unity (N(0,1)) .

Step 3: Generate residual time series by:

Xi,t = A Xi,t-i + S €*,*.

- the initial condition of the residual time series is taken to be equal to zero, i.e.

Xi,o = 0 .

Step 4: Generate climate sequences by:

'itt at + Jlf if wet
'i,t <?t + )H i* dry.
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Step 5: Repeat all of the above steps until the desired amount of climate sequences have

been generated. So that the generating process has a chance of stabilizing itself,

the first year of data generated is ignored.

- Program 12.

Algorithm for implementing Model 3 to climate sequences

The following information is required for the parameter estimation programs and must

be computed from the historical records:

NT the number of periods in the year.

NY the number of years of data.

NV the number of variables in the model.

T the total number of observations.

N(DD) the set of time periods t such that period t was dry and period t — 1 was dry,

t = 1 2 T

N(WW) the set of time periods t such that period t was wet and period t — 1 was wet.

N(DW) the set of time periods £ such that period t was wet and period t — 1 was dry.

N(WD) the set of time periods t such that period t was dry and period t — 1 was wet.

C(DD) number of elements in the set N{DD) .

C(WW) number of elements in the set N(WW) .

C(DW) number of elements in the set N(DW) .

C{WD) number of elements in the set N(WD) .

For each variable do:

Step 1: Estimate initial parameters of the mean function by performing Step 1 through to

Step 3 of the algorithm for parameter estimation of Model 1.

Step 2: Prepare the data sets of possible sequences, i.e. N(DD), N(WW), N(DW) and

N(WD) . Compute C(DD),C(WW)tC(DW) and C(WD) .

- Program 13.

Step: 3: Estimate initial autocorrelation coefficients for each of the possible sequences.

- Program 14.
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Step 4: Estimate initial standard deviation function for each of the possible sequences.

- Program 15.

Step 5: Estimate parameters of the mean function, standard deviation function and the

autocorrelation coefficients, iterating until convergence is met by all parameters.

- Program 16 (or Program 17).

Step 6: Obtain residual time series by

Si,t -fit •£ Si,t-i — fit-i
ei,t = — V ^

a a

where /£*,/£*_!, 0 and a are chosen depending on which sequence the time periods

t and t — 1 satisfy.

Algorithm for implementing Model 4 to climate sequences

The information necessary for parameter estimation programs is the same as for

Model 3.

For each variable do:

Stepl: Estimate initial parameters of the mean function by performing Step 1 through to

Step 3 of the algorithm for parameter estimation of Model 1.

Step 2: Estimate initial parameters of the standard deviation function by performing Step

4 and Step 5 of the algorithm for implementing Model 1.

Step 3: Estimate initial autocorrelation coefficient.

- Program 18.

Step 4: Prepare the data sets of possible sequences, N(DD),N(WW),N(DW) and

N(WD) . Compute C(DD),C(WW),C(DW) and C{WD) .

- Program 13.

Step 5: Estimate parameters of the mean function, standard deviation function and the

autocorrelation coefficient, iterating until covergence is met by all parameters.

- Program 19 (or Program 20).
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Step 6: Obtain residual time series by:

where ftttfit-i,<rt and dt-\ are chosen depending on which sequence the time

periods t and t — 1 satisfy.

Algorithm for implementing Model 5 to climate sequences

The information necessary for parameter estimation programs is the same as for

Model 3.

For each variable do:

Step 1: Estimate initial parameters of the mean function and of the standard deviation

function by performing Step 1 through to Step 5 of the algorithm for implementing

Model 1.

Step 2: Estimate initial autocorrelation coefficients for each of the possible sequences by

performing Step 3 of the algorithm for implementing Model 3.

Step 3: Prepare the data sets of possible sequences, N(DD)iN(WW),N(DW) and

N(WD) . Compute C{DD),C{WW),C(DW) and C{WD) .

- Program 13.

Step 4: Estimate parameters of the mean function, standard deviation function and auto-

correlation coefficients, iterating until convergence is met by all parameters.

- Program 21 (or Program 22).

Step 5: Obtain residual time series by:

Ci,t = ^ 0 — ^

where fLt,fit-ii&u&t-i and 0 are chosen depending on which sequence the time

periods t and £ — 1 satisfy.

Algorithm for implementing Model T

Step 1: From each residual time series obtained after fitting Models 3, 4 and 5, select for

each variable the residual series from the model which produced the lowest Akaike's

Information Criterion.
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Step 2: Record, for each variable the time perioids t for which a missing observation

occurs.

- Program 23.

Step 3: Use the EM algorithm to estimate and replace missing values by this estimate.

- Program 24.

Step 4: Estimate the cross-correlation matrix, S .

- Program 25.

Algorithm for generating artificial climate sequences using Model T

Step 1: Generate rainfall sequence.

For each variable do:

Step 2: Generate JV(O,£) random number.

Step 3: Generate climate values according to the model chosen for that variable. For

example, if Model 3 is chosen, then

, £• Si,t-i — Mt-i
U,t + 9 —• ^

where /£t,£t_i,<r and 9 are chosen depending on the sequence t and t — 1

satisfy.

If Model 4 is chosen, then

where p,t,pt-i^t and CTJ-I are chosen depending on the sequence t and t

satisfy.

If Model 5 is chosen then

\ei,t + 9 —^z

where p*,|*i-i,fft»fft-i and 9 are chosen depending on the sequence t and i —1

satisfy.

Step 4: Repeat above steps until the desired amount of climate sequences have been

generated.

- Program 26.
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CHAPTER 6

GOODNESS OF FIT

Once a model has been identified and the parameters estimated, it remains to decide

whether the model is adequate. Model validation is applied with the object of assessing the

performance of the model and to uncover any possible lack of fit. In particular one wants

to assess whether the model proposed and parameters estimated preserve the properties of

the process being examined. This chapter summarizes the results of the checks carried out

on Model 1 and Model T described in Chapter 3.

Validation of rainfall model

The rainfall model has been shown to be satisfactory in the various regions of South

Africa (Zucchini and Adamson, 1984). They performed extensive checks on the properties

of the model such as:

(a) the annual mean and standard deviation and the distribution of annual totals and sum

of k running totals, & = 1,2, . . . ,5,

(b) the monthly means and standard deviations,

(c) the expected number of wet days at different times of the year,

(d) the distribution of runs of wet and dry days,

(e) the distribution of n-day extreme rainfall.

The Markov chain/Weibull model adopted was found to preserve these properties. A

number of these checks were repeated in this study. For a more complete model validation

procedure see Zucchini and Adamson (1984).

Historical data (daily observations) were obtained for the weather stations Elsenburg,

Kakamas, Middelburg, Nelspruit, Cedara and Hoopstad. More information on these records

was given in Chapter 4.

Fifty years of simulated daily data were compared with the historical data on an annual,

monthly and daily basis.

Table 6.1 gives both the historical and simulated annual mean number of wet days.

This property has been adequately preserved by the model.
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TABLE 6.1 Mean number of wet

Station

Elsenburg

Kakamas

Middelburg

Nelspruit

Cedar a

Ho op st ad

days per year

Historical

91

16

63

96

150

72

Goodness of Fit

Simulated

92

19

63

95

149

80

The mean number of wet days for each month has also been adequately preserved by

the model (Figure 6.1)

It is especially important that the occurrence of wet days by season be adequately

modelled as the generation of the other climate variables is conditioned on the occurrence of

wet or dry days. The above results indicate that the Markov chain/Weibull model preserves

the properties of the rainfall sequence at those locations.

The fits of the truncated Fourier series for the probability of having a wet day given a

preceding wet day, and for the probability of having a wet day given the preceding one was

dry, for each station, are shown in Figures 6.2 - 6.7. The fits are generally good.

The interpretation of these figures requires some explanation. These are not ordinary

regression equation fits with normally distributed residuals. The smooth line indicates the

fitted probability for a binomial random variable where the number of trials is also random.

The outcomes are discrete values representing the number of successes in a series of Bernoulli

trials. This is analogous to a situation in which a coin, which has a probability p of landing

heads, is tossed n times and the fraction of times the coin landed heads is recorded. The

smooth line would then represent the (smoothly varying probability) and the points on the

graph the proportion of heads. The visual impression that one gets from such a diagram

might suggest that the fit is poor (because one is used to interpreting regressions with

normally distributed residuals, that is continuous random residuals) when in fact the fit is

very good. The latter is the case in Figures 6.2 - 6.7.
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FIGURE 6.1 Historical and simulated mean number of wet days
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FIGURE 6.2 Empirical probabilities and estimates based on a 3 parameter

model for P{W\W) and P(W\D) for Elsenburg
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FIGURE 6.3 Empirical probabilities and estimates based on a 3 parameter

model for P(W\W) and P(W\D) for Kakamas
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FIGURE 6.4 Empirical probabilities and estimates based on a 3 parameter

model for P(W W) and P(W\D) for Middelburg
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FIGURE 6.5 Empirical probabilities and estimates based on a 3 parameter

model for P(W\W) and PW\D) for Nelspruit
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Goodness of Fit

FIGURE 6.6 Empirical probabilities and estimates based on a 3 parameter

model for P(W\W) and P(W\D) for Cedar a
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FIGURE 6.7 Empirical probabilities and estimates based on a 3 parameter

model for P{W\W) and P{W\D) for Hoopstad
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Validation of Climate Model

To consider the climate model as adequate in preserving the characteristics of the

climate, the multivariate properties of the weather variables must be investigated as well as

the univariate characteristics of each individual variable.

The following parameters and parameter functions must be preserved if one is to con-

sider the climate model as satisfactory:

(a) the annual mean and standard deviation for each climate variable for the unconditioned

data and the data conditioned on the wet or dry status of the day,

(b) the monthly means and standard deviations for each variable for the unconditioned

data and the data conditioned on the wet or dry status of the day,

(c) the extreme values of each climate variable, i.e. maximum and minimum daily values,

(d) the autocorrelation within each variable for the unconditioned data and the data con-

ditioned on the wet or dry status of the day,

(e) the cross-correlation over all climate variables.

The checks above test either the multivariate part of the climate model, e.g. the cross-

correlation over all- variables, or the individual characteristics of each variable, e.g. the

monthly means and standard deviations for each variable.

Again fifty years of simulated daily climate sequences were compared with the historical

data on an annual, monthly and daily basis.

The following abbreviations are used in tables and figures:

Max Temp — Maximum Temperature

Min Temp — Minimum Temperature

Evapo — Evaporation

Sun — Sunshine Duration

Wind — Wind run

Max Hum — Maximum Humidity

Min Hum — Minimum Humidity

His — Historical Data
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Mod 1 — Simulated data using Model 1

Mod T — Simulated data using Model T.

Validation of annual properties

Table 6.2 shows the comparison of historical and simulated annual means for each

variable and each station. This statistic has been adequately preserved by both models

when the variables are conditioned on a wet day and when they are conditioned on the dry

status of the day (Tables 6.3 - 6.4). There is however a slight underestimation of the annual

mean for wet sequences by Model T for the variables wind run, maximum and minimum

humidity at some of the stations. For Middelburg. *he annual mean of wind run is slightly

overestimated by Model T.
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TABLE 6.2

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Comparison of historical and simulated annual

S t a t i
Data Elsenburg Kakamas Middelburg

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Modi
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

22.7
22.7

, 22.4

10.5
10.7
10.5

5.7
5.7
5.6

8.3
8.2
8.3

194.7
193.0
192.5

92.5
92.8
92.8

41.4
41.2
41.9

28.9
28.9
29.2

13,1
13.1
13.2

8.9
8.9
9.1

9.8
9.8
9.8

194.9
196.0
195.0

62.2
62.9
63.2

25.6
24.9
24.9

23.7
23.5
24.4

6.8
6.7
6.8

6.4
6.3
6.5

9.2
9.1
9.3

195.8
195.4
195.4

80.3
80.4
80.9

26.7
26.6
26.4

o n
Nelspruit

26.4
26.3
26.1

13.3
13.3
13.4

7.3
6.7
7.2

121.1
125.6
122.6

81.8
82.0
82.2

47.9
48.4
48.0

Goodness of Fit

mean

Cedara

22.8
22.8
22.9

10.1
10.1
10.2

6.9
6.5
6.9

158.4
157.5
158.3

88.8
89.0
89.0

52.6
53.2
51.1

Hoops tad

25.9
26.1
27.9

7.9
8.1
8.4

9.2
9.0
9.4

123.8
123.1
119.8

74.0
74.0
73.8

32.9
32.9
28.1
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TABLE 6.3 Comparison of historical and simulated annual mean given a wet
day

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Data

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

1
T

1
T

1
T

1
T

1
T

1
T

1
T

Elsenburg

18.1
18.1
19.0

10.9
11.0
11.4

2.8
2.6
2.8

4.2
3.8
4.3

245.8
242.9
235.4

94.3
94.2
93.4

55.1
55.0
54.0

Kakamas

28.9
27.8
30.5

17.8
16.6
16.7

7.2
6.4
8.8

5.7
5.5
5.3

219.2
215.0
213.5

75.8
77.8
56.2

39.2
38.4
29.7

S t a t i
Middelburg

24.0
23.5
26.5

10.9
10.8
10.6

5.2
5.0
6.1

6.0
5.3
6.3

205.1
203.6
211.3

83.3
84.4
80.3

36.4
36.6
31.5

o n
Nelspruit

26.2
25.9
26.4

16.6
16.6
16.6

4.6
3.8
4.7

121.0
126.2
123.8

87.8
88.3
87.0

61.6
62.9
59.5

Cedara

22.3
22.3
22.5

13.0
12.9
12.8

4.4
3.7
4.3

171.1
169.9
170.3

95.0
95.2
94.9

68.6
69.5
65.8

Hoop st ad

26.8
27.1
30.2

13.6
13.7
13.2

6.0
5.4
6.5

142.8
138.7
129.7

81.7
80.8
76.1

47.3
47.3
34.2
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TABLE 6.4
day

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Comparison of

Data Elsenburg

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

24.1
24.2
23.5

10.4
10.5
10.2

6.7
6.7
6.6

9.7
9.7
9.6

117.7
176.3
178.1

91.9
92.3
92.6

36.8
36.6
37.9

historical and simulated annual

S t a t i
Kakamas Middelburg

28.9
28.9
29.2

12.9
12.9
13.0

9.0
9.1
9.1

10.0
10.0
10.0

193.7
195.0
194.1

61.6
62.1
63.5

25.0
24.2
24.6

23.6
23.5
23.9

5.0
5.8
6.0

6.6
6.6
6.6

9.9
9.9
9.9

193.9
193.7
192.2

79.6
79.5
81.1

24.7
24.5
25.3

o n
Nelspruit

26.5
26.5
26.0

12.2
12.1
,12.2

8.2
7.8
8.1

121.2
125.4
122.2

79.6
79.8
80.5

43.1
43.2
43.9

Goodness of Fit

mean given a dry

Cedara Hoopstad

23.3
23.2
23.3

8.1
8.1
8.4

8.7
8.5
8.6

149.4
148.7
149.9

84.5
84.7
84.9

41.3
41.6
40.9

25.6
25.8
27.2

6.3
6.6
7.1

10.0
10.0
10.1

118.6
118.8
117.1

72.1
72.2
73.2

29.1
29.0
26.5
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We note that there is a much smaller number of wet days in the year than there are

dry days at the stations in this study. In particular Kakamas where observations of rainfall

constitute only 4% of the data record. It would be therefore (statistically) surprising if all

the parameter functions associated with wet days fitted the historical record very closely.

The annual standard deviation has been well described by both models for the cases

when the variables are conditioned on the wet and dry status of the day as well as for the case

when they are not (Tables 6.5 - 6.7). Again it is seen that for some stations, the standard

deviation statistic for the simulated sequences of wind run and minimum humidity differ

slightly from that of the historical record. In these instances, Model T generally performs

better than Model 1.

TABLE 6.5 Comparison of historical and simulated annual standard deviation

Variable Data
S t a t i o n

Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

1
T

1
T

1
T

1
T

1
T

1
T

1
T

5.9
5.7
5.7

3.8
3.7
3.6

3.7
3.7
3.7

3.6
3.6
3.6

86.7
76.7
78.6

6.9
5.7
6.1

15.2
14.4
14.7

6.8
6.8
6.7

6.6
6.6
6.5

4.6
4.7
4.8

2.4
2.2
2.2

75.2
71.1
71.7

22.0
21.8
22.1

10.4
7.6

10.4

6..5
6.5
6.3

6.1
6.1
6.2

3.2
3.2
3.3

3.0
3.0
3.0

82.6
74.6
76.6

17.5
16.3
15.3

11.9
11.2
10.7

4.4
4.5
4.4

5.2
5.2
5.2

3.6
3.8
3.9

32.2
30.1
32.4

10.7
10.4
10.8

16.9
16.7
16.6

5.2
5.1
5.2

5.1
4.9
4.8

3.7
4.1
4.1

54.5
48.1
51.1

12.5
12.2
12.4

22.6
22.5
22.3

5.8
5.8
6.0

7.1
7.1
7.0

2.7
2.9
2.8

63.3
61.3
57.0

15.9
15.4
14.3

15.6
15.0
14.0
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TABLE 6.6 Comparison of historical and simulated annual standard deviation
given a wet day

Variable Data
S t a t i o n

Elsenburg Kakamas Middelburg Nelspruit Cedara Hoopstad

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

1
T

1
T

1
T

1
T

1
T

1
T

1
T

4.5
4.2
5.0

3.3
3.4
3.5

2.6
2.5
2.8

3.4
3.4
3.8

113.7
96.6

100.8

4.1
4.5
6.1

15.4
13.4
15.4

6.2
5.8
6.9

5.4
5.1
5.5

3.9
3.4
5.4

3.3
3.2
3.6

68.2
54.4
64.3

20.0
16.6
25.7

14.6
7.6

15.6

7.1
7.1
6.6

5.1
5.1
5.4

3.2
3.2
4.0

3.6
3.7
4.3

85.3
75.0
82.6

16.1
12.3
14.7

15.4
13.6
14.2

5.1
5.1
4.9

3.3
3.5
4.0

3.6
4.0
4.6

37.7
33.7
37.4

8.0
8.0
9.5

15.1
14.6
16.9

5.6
5.6
5.7

3.5
3.6
3.8

3.6
4.3
4.6

56.5
50.4
54.8

5.5
5.0
5.5

18.8
18.5
20.2

5.6
5.8
6.0

4.2
4.3
5.0

3.5
3.8
4.2

65.3
60.6
62.1

13.1
12.9
14.5

19.1
17.6
20.4

One of the difficulties that arose when modelling climate variables was that the variables

are bounded with values lying outside these boundaries being inadmissible, for example,

having negative sunshine. Also, some variables have a high frequency of values near or on

an upper or lower limit so that it is expected that simulated sequences will occasionally

have values that exceed these boundaries. Transformations were applied to the climate

variables to overcome this problem. To verify that the simulated sequences of climate

variables were adequately restrained within their boundaries and at the same time that

extreme values simulated closely resemble those of the historical record, the maximum and

minimum values simulated for each variable were compared with those observed in the
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TABLE 6.7 Comparison of historical and simulated annual standard deviation
given a dry day

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Data

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

His
Mod
Mod

1
T

1
T

1
T

1
T

1
T

1
T

1
T

Elsenburg

5.5
5.2
5.4

3.9
3.9
3.6

3.5
3.4
3.4

2.5
2.2
2.4

67.5
60.1
63.4

7.5
6.0
6.1

12.0
11.5
11.9

Kakamas

6.8
6.8
6.6

6.6
6.7
6.5

4.6
4.7
4.8

2.1
1.8
1.9

75.3
71.7
72.0

21.9
21.8
21.8

9.7
7.0
9.9

S t a t i
Middelburg

6.3
6.4
6.2

5.9
6.0
6.0

3.2
3.1
3.1

2.3
2.1
2.3

81.9
74.3
74.9

17.7
16.9
15.4

9.9
9.4
9.5

o n
Nelspruit

4.1
4.2
4.2

5.2
5.1
5.1

3.0
3.1
3.2

29.9
28.6
30.3

10.7
10.2
10.7

14.6
14.2
14.5

Cedar a

4.8
4.7
4.8

5.0
4.7
4.6

2.4
2.3
2.5

51.2
44.3
46.6

14.0
13.9
14.1

17.8
17.3
17.4

Hoopstad

5.8
5.8
5.9

6.9
6.9
6.9

1.8
1.5
1.5

61.6
60.9
55.2

15.9
15.5
14.2

11.9
11.4
11.2

historical record. Tables 6.8 and 6.9 show these comparisons.

As can be seen from the tables, the extreme values simulated compare favourably with

those observed in the historical record. Even for those variables that show a slight difference

in the extreme values, when a count was taken of those values of the simulated sequence that

lay either above the maximum or below the minimum values observed in the historical data,

the percentage of such values was found to be negligible, that is, the highest percentage

observed was 0.4%.

6-17



CHAPTER 6 Goodness of Fit

TABLE 6.8

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Comparison of historical and simulated minimum values

Data Elsenburg Kakamas

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

10.0
6.9
4.8

1.7
1.1
1.3

0.0
0.0
0.0

0.0
0.0
0.0

40.0
17.0
19.3

50.0
38.4
34.5

12.0
8.7
8.6

9.5
7.4
7.2

-2.5
-2.3
-3.0

0.5
0.5
0.1

0.0
0.1
0.0

35.1
34.0
32.8

12.0
11.3

1.9

1.0
7.1
0.6

S t a t i
Middelburg

5.0
2.6
1.1

-8.0
-8.2
-8.3

0.0
0.0
0.0

0.0
0.0
0.0

62.2
17.3
23.0

18.0
8.9

17.5

5.0
3.7
3.0

o n
Nelspruit

13.1
8.5
8.6

0.0
0.9
0.7

0.0
0.0
0.0

26.0
45.3
34.4

30.0
19.8
18.7

9.0
3.1
3.9

Cedara

7.8
4.5
3.7

-4.0
-10.4
-5.5

0.0
0.0
0.0

22.0
41.9
37.2

22.0
10.4
6.7

2.0
1.2
0.6

Hoopstad

5.6
5.4
3.9

-8.1
-7.8
-8.3

0.0
0.0
0.0

14.0
14.0
15.7

20.0
20.3
18.9

7.0
3.6
0.3
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TABLE 6.9

Variable

Max Temp

Min Temp

Evapo

Sun

Wind

Max Hum

Min Hum

Goodness of Fit

Comparison of historical and simulated maximum values

Data

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

His
Mod 1
ModT

Elsenburg

40.8
42.1
42.3

20.9
25.3
24.1

18.5
18.8
22.8

13.3
13.7
13.7

733.3
705.1
681.3

100.0
100.0
100.0

95.0
93.9
95.9

Kakamas

43.8
44.6
47.4

29.8
28.6
28.8

24.0
23.7
28.2

13.5
14.0
14.0

531.0
583.7
564.6

100.0
100.0
100.0

80.0
62.5
90.2

S t a t i
Middelburg

38.0
37.8
39.3

22.5
21.1
21.6

18.0
20.2
28.3

13.6
13.9
13.9

583.1
614.1
640.7

100.0
100.0
100.0

85.0
86.2
86.7

o n
Nelspruit

39.8
39.5
40.1

23.3
22.9
26.9

12.9
13.0
13.0

420.0
301.7
341.5

100.0
100.0
100.0

97.0
94.5
98.2

Cedara Hoopstad

37.3
38.0
38.2

21.1
23.1
22.9

13.0
13.2
13.2

453.0
468.3
449.7

100.0
100.0
100.0

100.0
99.7
99.3

39.0
39.5
40.6

21.4
21.1
21.1

13.4
13.4
13.5

396.0
584.3
592.3

100.0
100.0
100.0

97.0
93.5
99.3
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Validation of monthly properties

It is important that the monthly characteristics of each climate variable, mainly the

mean and standard deviation, be adequately described by the models. The monthly means

and standard deviations of the simulated sequences for each station were compared to those

of the respective historical record. Figures 6.8 - 6.14 show the monthly means of each

station for the various climate variables.

From the figures it can be seen that the monthly means have been successfully pre-

served by both models. Model T slightly overestimates the monthly means of maximum

temperature for the station Hoopstad, but the highest difference between the means of the

simulated sequence and that of the historical data still lies within 3°C of the observed

monthly mean. Model T fails to preserve the monthly means for the variable minimum

humidity of the station Hoopstad. Here the monthly means are underestimated. Model 1

fits the data reasonably well for this variable.

Figures 6.15 - 6.21 show the monthly standard deviations of each station for the various

climate variables. The monthly standard deviations have been preserved by both, models.

The variables wind run, maximum humidity and minimum humidity show the greatest differ-

ences between the standard deviations of the observed sequence and those of the generated

sequence. For these variables the models tend to slightly underestimate the monthly stan-

dard deviations. Looking at the original sequence of these three variables we see that they

do not follow an approximate sinusoidal shape, one of the assumptions made when fitting

the mean by a truncated Fourier series, so it seems that these observable differences may be

accountable for this.

The mean and standard deviation functions of each variable differ significantly depend-

ing on the wet or dry status of the day. It is therefore necessary that monthly means and

standard deviations should also be preserved by the models when the climate variables are

conditioned on wet and dry days. Figures 6.22 - 6.28 show the monthly means for each

station when the climate variables are conditioned on wet days. Figures 6.29 - 6.35 gives

the monthly means when the climate variables are conditioned on the dry days.
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FIGURE 6.8 Monthly means for maximum temperature
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FIGURE 6.9 Monthly means for minimum temperature
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FIGURE 6.10 Monthly means for evaporation
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FIGURE 6.11 Monthly means for sunshine duration
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FIGURE 6.12 Monthly means for wind run
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FIGURE 6.13 Monthly means for maximum humidity
Goodness of Fit

99

89

49

39

KAKAMAS
- HIS
•* MODI
•* MODT

1 3 3 4 5 6 7 8 9 19 11 12

MONTH

NELSPRUIT

1 2 3 4 S 6 7 8 9 10 11 12

MIDDELBURG

1 2 3 4 5 6 7 8 9 1 0 1 1 1 21 2 3 4 5 6 7 8 9 1 0 1 1 I S
39

99

89

U
CD
d
t-
§69
O
tr
UJ

49

ELSENBURG
- HIS
•* MODI
* MODT

_i ' i ' i i » i 1 u

1 2 3 4 5 6 7 8 9 10 11 12
MONTH

HOOPSTAD

99

89 h

49

39

- HIS
•* MODI
* MODT

6-26

1 2 3 4 5 6 7 8 9 IB 11 12

MONTH



CHAPTER 6

FIGURE 6.14 Monthly means for minimum humidity
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FIGURE 6.15 Monthly standard deviations for maximum temperature
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FIGURE 6.16 Monthly standard deviations for minimum temperature
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FIGURE 6.17 Monthly standard deviations for evaporation
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CHAPTER 6 Goodness of Fit
FIGURE 6.18 Monthly standard deviations for sunshine duration
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CHAPTER 6

FIGURE 6.19 Monthly standard deviations for wind run
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CHAPTER 6 Goodness of Fit

FIGURE 6.20 Monthly standard deviations for maximum humidity
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FIGURE 6.21 Monthly standard deviations for minimum humidity
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CHAPTER 6 Goodness of Fit
FIGURE 6.22 Monthly means for maximum temperature for wet days
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CHAPTER. 6 Goodness of Fit
FIGURE 6.23 Monthly means for minimum temperature for wet days
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FIGURE 6.24 Monthly means for evaporation for wet days
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FIGURE 6.25 Monthly means for sunshine duration for wet days
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FIGURE 6.26 Monthly means for wind run for wet days
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CHAPTER 6 Goodness of Fit

FIGURE 6.27 Monthly means for maximum humidity for wet days
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Goodness of Fit

FIGURE 6.28 Monthly means for minimum humidity for -wet days

KAKAMAS

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 16 11 12

MIDDELBURG

1 2 3 4 5 6 7 8 9 10 1 1 12 1 2 3 4 5 6 7 8 9 10 11 12
MONTH MONTH

ELSENBURG

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

HOOPSTAD

75

65

2B

IS

- HIS
+ MODI
* MODT

6-41

1 2 3 4 5 6 7 8 9 1 9 1 1 1 2

MONTH



CHAPTER 6 Goodness of Pit

FIGURE 6.29 Monthly means for maximum temperature for dry days
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FIGURE 6.30 Monthly means for minimum temperature for dry days
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FIGXJE 6.31 Monthly means for evaporation for dry days

KAKAMAS

Goodness of Fit

- HIS
+ MODI
* MODT

1 2 3 4 5 6 7 8 9 16 11 12

MIDDELBURG

1 2 3 4 5 6 7 8 9 1 9 1 1 1 2

ELSEMBURG

1 2 3 4 5 6 7 8 9 1@ 11 12

6-44



CHAPTER 6 Goodness of Fit

FIGURE 6.32 Monthly means for sunshine duration for dry days
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FIGURE 6.33 Monthly means for wind run for dry days
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FIGURE 6.34 Monthly means for maximum humidity for dry days
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CHAPTER 6 Goodness of Fit

FIGURE 6.35 Monthly means for minimum humidity for dry days
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CHAPTER 6 Goodness of Fit

These figures show that monthly means are adequately preserved by both models, in

particular, the models fit the monthly means very well on dry days. The same results are

observed for the station Hoopstad for the variables maximum temperature and minimum

humidity as when the sequences were treated as a whole. For the sequences of wet days,

differences are observed between monthly means of the simulated sequences and the monthly

means of the observed sequences, in particular for the variables wind run, maximum humid-

ity and minimum humidity. As already mentioned there are relatively few observations of

rainfall at these stations and therefore one does not expect the models to fit the historical

records on wet days very accurately. This is supported by comparing the results obtained for

the stations Kakamas and Cedara when the variables are conditioned on wet days. Kakamas

is the station for which fewer rainfall days are observed, and Cedara is the station at which

most rainfall days are observed, of the stations in this study. It is clear that both models

preserve the monthly means for Cedara but do not perform as well for Kakamas.

The plots also show that generally, Model 1 fits the data better than Model

T. This can be explained by observing that for Model 1 one is only separating the sequences

into dry and wet days, while for Model T one separates the sequences into four parts, that

is, into dry-dry, wet-wet, dry-wet and wet-dry sequences. Therefore the model parameters

for Model T are estimated using very few observations especially when dealing with a wet

sequence.

Figures 6.36 - 6.42 show the monthly standard deviations when the climate variables

are conditioned on wet days. Figures 6.43 - 6.49 show the monthly standard deviations

when the climate variables are conditioned on dry days. These plots show that both models

have preserved monthly standard deviations when the climate variables are conditioned on

dry days. Here again, very similar results are obtained to those when the sequences are

taken as a whole. Generally, the models preserve the monthly standard deviations when the

variables are conditioned on wet days. Some differences are observed between the simulated

sequences and the historical records. These differences can be explained again for the reasons

mentioned above. Where differences between simulated and historical sequences occur, it

can be noted that generally Model T tends to overestimate the standard deviations, while

Model 1 tends to underestimate them.
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CHAPTER 6 Goodness of Fit
FIGURE 6.36 Monthly standard deviations for maximum temperature for wet

days
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FIGURE 6.37 Monthly standard deviations for minimum temperature for wet

days
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FIGURE 6.38 Monthly standard deviations for evaporation for wet days
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FIGURE 6.39 Monthly standard deviations for sunshine duration for wet days
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CHAPTER 6 Goodness of Fit
FIGURE 6.40 Monthly standard deviations for wind run for wet days
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CHAPTER 6 Goodness of Fit

FIGURE 6.42 Monthly standard deviations for minimum humidity for wet days
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CHAPTER 6 Goodness of Fit
FIGURE 6.43 Monthly standard deviations for maximum temperature for

dry days
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CHAPTER 6 Goodness of Fit
FIGURE 6.44 Monthly standard deviations for minimum temperature for

dry days
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CHAPTER 6 Goodness of Fit

FIGURE 6.45 Monthly standard deviations for evaporation for dry days
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CHAPTER 6 Goodness of Fit
FIGURE 6.46 Monthly standard deviations for sunshine duration for dry days
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CHAPTER 6 Goodness of Fit
FIGURE 6.47 Monthly standard deviations for wind run for dry days
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CHAPTER. 6 Goodness of Fit

FIGURE 6.49 Monthly standard deviations for minimum humidity for dry days
* HIS

* MODT
KAKAMAS

- HIS
* MODI
* MODT

NELSPRUIT

3S

se

A

„*.-+- +

35 \ i r

i i i i i

1 2 3 4 5 6 7 8 9 10 11 I S

MONTH

MIDDELBURQ

1 2 3 4 5 6 7 8 9 18 11 12

MONTH

CEDARA
- HIS
+ MODI
* MODT

i i i i i i i i i i

1 2 3 4 5 6 7 8 9 10 11 12

MONTH

ELSENBURG

> 11 12

- HIS
•+ MODI
* MODT

1 2 3 4 5 6 7 8
MONTH

HOQPSTAD

9 10 11 12

- HIS
•+ MODI
* MODT

35

28

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

MONTH



CHAPTER, 6 Goodness of Fit

Autocorrelation property

One of the properties exhibited by the historical record is that of autocorrelation,

that is, within each climate variable there is a short-term persistence. For example, the

temperature observed on a given day is statistically related to the temperature observed on

the previous day.

To determine whether the models were successful in reproducing the autocorrelation

structure that is present in the historical data, the autocorrelation coefficients (of up to a

lag of four days) of each variable in the simulated sequence were compared to those of the

historical record (Figures 6.50 - 6.57). From these comparisons it can be concluded that

both models have described the autocorrelation property very well. Any differences observed

between the simulated and historical sequences are mostly within 0.1 of the historical record.

The variables that show these differences are generally sunshine, maximum humidity and

minimum humidity. It must be noted here that the models assume an autoregressive process

of order 1, that is, a lag of one day, and the bigger differences observed occur for lags of two

or more days. Models with a higher autoregressive order might describe the autocorrelation

structure of these variables, but this would mean increasing the complexity and the number

of parameters in the models.

The autocorrelation coefficients of the simulated sequences were compared with those

of the historical data, both for wet (Figures 6.57 - 6.63) and for dry sequences (Figures

6.64 - 6.70). The plots show that the autocorrelation structure in the simulated sequences

closely resembles that of the observed data. Again the differences that are observed between

the simulated and the historical sequences are mostly within 0.1 of the historical record.

Cross-correlation property

The cross-correlation coefficients for lag -1, 0 and 1 were used in the simulation tech-

nique. Therefore, it is necessary that the models should maintain this property. Figures

6.71 - 6.91 show the comparison of the historical and simulated cross-correlation coeffi-

cients for all climate variables. Generally, the models have successfully preserved the cross-

correlation coefficients, in particular the lag 0 cross-correlation. The only exceptions to

this are the cross-correlation coefficients of the simulated sequence of Model T, between the

variables maximum and minimum humidity and the other climate variables, in particular for

the stations Kakamas, Middelburg and Hoopstad. The cross-correlation of other variables
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FIGURE 6.50 Autocorrelation coefficients for maximum temperature
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FIGURE 6.51 Autocorrelation coefficients for minimum temperature
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FIGURE 6.52 Autocorrelation coefficients for evaporation
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FIGURE 6.53 Autocorrelation coefficients for sunshine duration
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FIGURE 6.54 Autocorrelation coefficients for wind run
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FIGURE 6.55 Autocorrelation coefficients for maximum humidity
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FIGURE 6.56 Autocorrelation coefficients for minimum humidity
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FIGURE 6.57 Autocorrelation coefficients for maximum temperature for
wet days
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FIGURE 6.58 Autocorrelation coefficients for minimum temperature for
wet days
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FIGURE 6.59 Autocorrelation coefficients for evaporation for wet day*
Goodness of Fit
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FIGURE 6.60 Autocorrelation coefficients for sunshine duration for wet days

KAKAMAS

1.1

NELSPRUIT
- HIS
•* MODI
* MODT

0.1 -

0.1

1.1

0.9

0.7 -

0.5 -

0.3 -

0. 1 -

-0.1

V
• \

V
\
\
v.
V
V
V
V.
\

- W
1

1 1

-

1 1

MIDDELBURQ
- HIS
•+ MODI
•* MODT

1.1

0.9 '

e.7 -

0.S-

0.3-

0.1 -

0.1

\

• \

V

VV

1

-

-

1 1

1.1

0.9 -.

2

DAYS

ELSENBURG

0.8-

0.6-

0.4 -

0.2-

1.1

0.9-

0.7 -

0.5-

0.3 -

0.1 -

-0. 1

6-75

2

DAYS

CEDARA

HOOPSTAD



CHAPTER 6 Goodness of Fit
FIGURE 6.61 Autocorrelation coefficients for wind run for wet days
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FIGURE 6.62 Autocorrelation coefficients for maximum humidity for wet days
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FIGURE 6.63 Autocorrelation coefficients for minimum humidity for wet days
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FIGURE 6.64 Autocorrelation coefficients for maximum temperature for
dry days
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FIGURE 6.65 Autocorrelation coefficients for minimum temperature for

dry days KAKAMAS
KHKHrlHa _• MODI ncusr-rruA i

« MODT

0.8 -

0 . 6 -

0.4 -

0 .2 -

0.8 -

0.6 -

0.4 -

0.2 -

\
• \

• \

-

1

\

i

' * • *

i

- - — - - - .

i

- HIS
MIDDELBURQ + M 0 D 1

•« MODT

S

DAYS

CEDARA

Q.8 -

0.6 -

0.4 -

0.2-

e. 8 - ^

0.6

0.4

0.2

-."•» _

2
DAYS

ELSENBURQ

3 4

- HIS
•+ MODI
•M MODT

2
DAYS

HOOPSTAD

3 4

- HIS
+ MODI
* MODT

0.8 -

0.6 -

9.4-

0.2-



CHAPTER 6 Goodness of Fit

FIGURE 6.66 Autocorrelation coefficients for evaporation for dry days
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FIGURE 6.67 Autocorrelation coefRcienta for sunshine duration for dry days
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FIGURE 6.68 Autocorrelation coefficients for wind run for dry days
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FIGURE 6.69 Autocorrelation coefficients for maximum humidity for dry days
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FIGURE 6.70 Autocorrelation coefficients for minimum humidity for dry days
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FIGURE 6.71 Cross-correlation coefficients for maximum temperature and

minimum temperature
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FIGURE 6.72 Cross-correlation coefficients for maximum temperature and

evaporation
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FIGURE 6.73 Cross-correlation coefficients for maximum temperature and
sunshine duration
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FIGURE 6.74 Cross-correlation coefficients for maximum temperature and
wind run
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FIGURE 6.75 Cross-correlation coefficients for maximum temperature and
maximum humidity
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fIGURE 6.76 Cross-correlation coefficients for maximum temperature and
minimum humidity
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FIGURE 6.77 Cross-correlation coefficients for minimum temperature and
evaporation
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FIGURE 6.78 Cross-correlation coefficients for minimum
3unshine duration
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FIGURE 6.79 Cross-correlation coefficients for minimum temperature and
wind run
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6.80 Cross-correlation coefficients for minimum temperature and

maximum humidity
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FIGURE 6.81 Cross-correlation coefficients for minimum temperature and
minimum humidity
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FIGURE 6.82 Cross-correlation coefficients for evaporation and sunshine

duration

KAKAMAS
-HIS
+ MODI
•* hODT

0.8}-

8.6h

0.4F

e.ah

0.8

0.6

0.4

0.2

MIOOELBURQ
- HIS
•*• MODI
* MODT

-4 -2 0

DAYS

ELSENBURQ

-4



«Jo 6 Goodness of Fit
6.83 Cross-correlation coefficients for evaporation and wind run
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FIGURE 6.84 Crosa-correlation coefficients for evaporation and maximum

humidity
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FIGURE 6.85 Cross-correlation coefficients for evaporation and°mfnfmum
humidity
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FIGURE 6.86 Cross-correlation coefficients for sunshine duration and wind
run
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FIGURE 6.87 Cross-correlation coefficients for sunshine duration and maxi-
mum humidity
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FIGURE 6.88 Cross-correlation coefficients for sunshine duration and minimum
humidity
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FIGURE 6.89 Cross-correlation coefficients for wind run and maximum
humidity
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FIGURE 6.90 Cross-correlation coefficients for wind run and minimum
humidity
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FIGURE 6.91 Cross-correlation coefficients for maximum humidity and
minimum humidity
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CHAPTER 6 Goodness of Fit

sometimes also differ from the historical cross-correlation coefficients for lags 1 and -1, but

generally this difference is quite small.

Summary

If one reflects on the complexity of the climate process and in particular on the large

number of properties which the models are required to preserve, it can be reasonably con-

cluded that the models perform remarkably well. All but a few of the relevant parameter

functions and cross-correlations are preserved faithfully by the models. One other factor

that one must keep in mind when evaluating the performance of the models is the quality

and quantity of the historical record. For the model parameters to truly reflect the proper-

ties of climate variables there must be enough data records to have a representative sample

of the climate variables. It is difficult to be specific about how long a record needs to be in

order to be representative. Very roughly, and based on our experience, we would recommend

the minimum of 20 years of record before one can feel confidence in the results.

There are a number of weaknesses displayed by the models. The most important are:

(i) Model T does not retain the property of the monthly means in the variable minimum

humidity for Hoopstad. It also does not preserve the monthly means on wet days for the

variables maximum humidity and minimum humidity for most stations, in particular

those that have relatively few rainfall observations.

(ii) Model 1 does not retain the property of monthly standard deviations in the variable

minimum humidity for Kakamas. It also does not preserve the monthly standard de-

viations on wet days for the variables maximum humidity and minimum humidity for

some stations.

(iii) Model T shows a weakness in maintaining the cross-correlation coefficients of maximum

humidity and minimum humidity and the other variables in particular for the stations

Kakamas, Middelburg and Hoopstad.

A choice of model at this point is not straightforward as the performance of the models

is neither perfect nor totally without merit, but each model shows strengths and weaknesses.

A criterion to base our preference on any particular model can be based on factors such as:

(a) Implementation costs, that is derivation of theory for parameter estimation, complexity

of model in terms of number of parameters needed and the computational simplicity

aspect of the model.
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(b) Preservation of climate variable properties by the model.

Model T is the more complex of the models in terms of computational difficulty. The

model parameters are estimated iteratively and therefore more time consuming. It is also

the most flexible of the models in that each variable is allowed to be modelled by a model

that "best" describes it. In Model 1 all climate variables have the same structure.

Generally Model 1 appears to perform as well and sometimes better than Model T

in describing some aspects of the climate variables. However, Model T cannot be simply

dismissed as it does perform better than Model 1 in some aspects and one must bear in

mind that in Model T the climate sequences are separated into four, while Model 1 only

separates them into two. Thus fewer observations are available for the estimation of some of

the parameters of Model T. An increase in the length of the historical record may therefore

result in an improved performance by Model T.
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CHAPTER 7

SUMMARY AND RECOMMENDATIONS

This chapter gives a brief summary of the study performed followed by the main research

findings and finally by recommendations.

Summary

Five stochastic models to describe daily climate sequences of South Africa were consid-

ered. The climate variables included in these models are rainfall, maximum and minimum

temperature, maximum and minimum humidity, evaporation (when records available), sun-

shine duration and wind run. Except for rainfall, which is an essential component of all

the models, this list of variables may be either reduced or augmented. Thus the mod-

elling procedure which has been developed is not restricted to this particular set of climate

variables.

The models are required to preserve important properties exhibited by the daily climate

sequences. These properties are seasonally, wet/dry day effect, autocorrelation, cross-

correlation and boundedness. Suitable transformations need to be applied to the climate

variables at the start of the modelling procedure to take care of the property of boundedness.

The technique employed was firstly to model rainfall using a first-order Markov chain

with seasonal parameters to describe the occurrence of wet and dry days, while the Weibul

distribution was used to describe the rainfall depth of wet days. The rainfall mean was

allowed to vary seasonally. This model provides synthetic sequences of wet and dry days.

Finally, the remaining climate variables were modelled according to the wet or dry status

of each day.

The first model considered was proposed by Richardson (1981), where a stationary

residual series is obtained by subtracting the seasonal mean and dividing by the standard

deviation of each climate variable, each of the functions conditioned on the wet and dry

status of the day. A weakly stationary process suggested by Matalas (1967) is used to

model the residual series. It is assumed that the residual series is normally distributed and

that the serial correlation of each variable can be described by a first-order autoregressive

process.

Three models, referred to as Model 3, 4 and 5 (Model 2 was developed as a prototype
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to the others) were developed to incorporate additional flexibility in the autocorrelation

structure of Model 1. That is, the autocorrelation structure is allowed to depend on the wet

and dry status of the day as well as that of the previous day.

The three new models which were developed form a compatible family of models of

varying degrees of complexity. This feature leads to a number of advantages. It allows one

to select relatively simple models for sites where historical records are short (as is presently

the case at practically all sites in South Africa) and to change the selection to a more complex

model when the records become sufficiently long. In addition it is possible to assemble the

final multivariate model for a site from components from any of the three model types.

Thus, for example, it is possible to apply Model 3 to wind run, Model 4 to minimum and

maximum temperature and Model 5 to the remaining variables.

The problem of deciding which model or model combination is most appropriate for a

particular site can be determined objectively. The Akaike Information Criterion was found

to be suitable for this purpose and has been incorporated in the software package which was

developed for this project.

Apart from the mathematical development of the new models, one of the most difficult

obstacles that had to be overcome in the course of the project was that of controlling the

range of extreme values generated by the models. In part this problem arises because some

of the climate variables must fall within fixed boundaries and, in addition, some of these

variables (for example maximum humidity) exhibit a high frequency of occurrence on or near

their boundaries. Suitable transformations had to be found to ensure that the generated

value would remain within their appropriate bounds. The results of our validation tests

indicate that this type of difficulty can be successfully overcome.

A second problem that had to be solved related to the presence of gaps in the historical

records. As well as the gaps that were present in the original record one has to add the gaps

which are created by filtering out observations that are clearly incorrect (for example, that

fall outside their permissible range). The number of missing values in the historical records

used in this report ranged between 1% and 13% of the data. The serial correlation and

cross-correlation structure of climate variables does not allow one to simply ignore missing

values. Special methods had to be developed to deal with this problem. We found that

a procedure based on the EM algorithm can be used to satisfactorily estimate the missing

values thereby filling the gaps in the historical records.
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The results of model validation for the rainfall model confirm the findings of Zucchini

and Adamson (1984), namely that the assumptions regarding the characteristics of daily

rainfall sequences, the rationale of model structure and the parameter estimation techniques

are particularly successful in providing a model that can adequately reproduce the properties

of daily rainfall sequences.

The requirement for an accurate simulation of the occurrence of wet and dry days is

very important in the present study as these simulated sequences are used to determine

the generation procedure to be adopted by the other climate variables. This component of

the rainfall model was found to be very successful in preserving the characteristics of the

occurrence of wet and dry days.

As already mentioned, the multivariate models for climate data were required to meet

certain specifications. Namely, they had to preserve properties such as seasonality, wet/dry

day effect, autocorrelation, cross-correlation as well as annual, monthly and daily properties,

in particular the mean and the standard deviation functions. Tests of the multivariate

models for climate data showed that the models were capable of representing almost all the

characteristics exhibited by the historical data.

Whenever the models showed differences between the simulated and historical se-

quences, it was noted that it usually was for the variables wind run, maximum humidity

and minimum humidity and mainly for the case where these sequences were conditioned on

wet days. Further investigation revealed that the stations where these differences occurred

were those for which relatively few rainfall records are observed.

When evaluating the performance of the climate models one must bear in mind the fact

that the length of the historical records determines in a way the performance of the models.

A relatively short historical record leads to three problems. Firstly, one is estimating a

large number of parameters with very few data values thus decreasing the precision of the

estimates. Secondly, because the models separate the sequences into wet and dry sequences,

the effective record length for the conditioned estimates is further reduced, in particular

for the wet sequence as rainfall events in some parts of South Africa are relatively rare.

Thus long records of climate observations are needed to compensate for the lack of rainfall

events. Thirdly, the fact that the record lengths of the stations in this study are quite

small, combined with the fact that there are missing observations in the records means that

the historical data might not wholly be representative of the long term climate for that
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particular location.

The climate variables investigated in this study have a very complex joint distribution.

Each variable exhibits a number of distinctive features and in addition the variables are

interdependent. Any model which is to usefully describe climate sequences must preserve

these properties. This study has shown that it is feasible to model climate on a daily basis

and that there are at least four models which can be used to do so. Either Model 1 or a

combination of Models 3, 4 and 5 can be used. A choice between Model 1 and Model T is

not clear. Both models show some weaknesses and some merits. Model 1 does appear to

perform better than Model T for those stations that have few rainfall observations, such as

Kakamas. It is also less time consuming in parameter estimation as it does not estimate them

iteratively. However, Model T (that is, a combination of Models 3, 4 and 5) does outperform

Model 1 in some instances and we would expect that this will become increasingly the case

as the historical records become longer.

The software which was developed in this project covers both the parameter estimation

and the generating of artificial sequences for all the models that have been described in this

report. The programs were coded in FORTRAN and make no use of licensed software. In

addition they can be implemented on micro computers thereby making the methodology

easily accessible to a wide range of users.

Recommendations

Quality of historical records

The main obstacle to the application of the techniques described in this report on a

large scale is the lack of suitable historical records. This refers to both the quantity and

the quality of available data. The records which were used for this report represent some of

the best available in South Africa. Nevertheless, for the purpose of modelling daily climate,

they are barely adequate. Although there is little that can be done to increase the length

of records except to wait for more data to be collected, it should be possible to improve

the quality of historical records. In particular it would be useful if some measure of the

reliability of the observations were also recorded on a regular basis. As we have repeatedly

pointed out in the body of the report, one of the problems which we encountered was that

of identifying incorrect observations. This task would be considerably simplified ifone had

some index of reliability associated with (ideally) each recording or set of recordings.
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Transfer of technology

For the methods developed in this project to realise their full potential it will be nec-

essary to calibrate the models at many more sites. As was pointed out in the report, no

special training is required to use the programs for generating climate sequences once the

parameters of the model have been estimated. However, some training is required to use the

program to prepare the data for estimation and to carry out the estimation for a new site.

We estimate that, with instruction, it would require two to three weeks for a competent

programmer to learn how to use the methodology.

We recommend that the Computing Centre for Water Research f CCWR) be approached

to acquire the expertise to implement the estimation techniques and with the help of users,

gradually build up a data base of estimates of the model parameters for as many sites as

possible in South Africa. The CCWR already offer a similar data product, namely the

parameter estimates of a daily rainfall model for 2550 sites in South Africa. These arose

from a previous Water Research Commission project (Zucchini and Adamson (1984)). The

CCWR also offer the artificial rainfall generating program which can be applied to any of

these sites. Thus the programs developed in the course of this project constitute a logical

extension of a service that the CCWR already offer.
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APPENDIX A

The choice of the Fourier approximation, L

The order of approximation of the Fourier representation of a function, \(t) , is always

taken to be an odd integer. This restriction is made partly for programming convenience

and partly for the following reason:

If we rewrite the Fourier representation of \(t, L) by its polar form, we get

\(t,L) =

a0
i=\

f Leven

where

arctan

and p is the integer part of ^ ^ . The o^ is called the amplitude and fa is called the

phase of the ith harmonic. ;

If L is even, then the highest harmonic does not have a phase parameter. Thus the

quality of the fit of the model depends on the time origin selected. If L is odd we obtain

the same degree of approximation for all time origins.
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APPENDIX B

Properties of the Fourier series approximation

We have used the Fourier representation of X(t) as the basis for obtaining approxima-

tions. Other representations are also feasible, e.g. polynomials or rational functions. There

are several reasons for selecting the Fourier representation rather than other possibilities.

Firstly, X(t) is known to be approximately sinusoidal in shape and consequently we can

expect that even for small values of L , the approximation X(t, L) as X(t) will be reason-

ably accurate. Secondly, X(t,L) is periodic, which is a property that X(t) is known to

have. Thirdly, the individual components in the representation are orthogonal, which is a

convenient mathematical property.
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APPENDIX C

The Cholesky decomposition

For A an (n x n) symmetric, positive definite matrix, there exists a unique lower

triangular matrix F with positive diagonal elements such that

A = FFT.

This is known as the Cholesky decomposition. An algorithm to reduce a matrix A to its

Cholesky decomposition is given below.

Notation

fij is the tjth element of the matrix F .

dij is the ijth. element of the matrix A .

Algorithm

Step 1: Set / n = y/au

Step 2: For j = 2,3, . . . , n

Set fix = Jff

Next j .

Step 3: For t = 2 , 3 , . . . ,n - 1

i-1

\ | 3 = 1

For j = i+ l , t + 2 , . . . , n .

fii =

Next j .

Next i.

Step 4:

Set /„„

C - l

n - 1

Ann —



APPENDIX D

A listing of the FORTRAN programs referred to in Chapter 5 are obtainable from the CCWR.

The address is:

Computing Centre for Water Research

c/o University of Natal

P 0 Box 375

Pietermaaritzburg

3200

Tel. (0331) 63320 ext. 177/178

Fax (0331) 61896

D-l



Step 5: End.

The elements of F above the main diagonal are defined to be zero. The above al-

gorithm does not set them to zero, so if necessary the following step should be inserted

immediately preceding "Next j " in Step 3:

Set fi:j = 0.
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APPENDIX E

The EM algorithm

In any data record collected over a long period of time, one would expect to encounter

gaps, where the number of gaps usually increases proportionally with the size of the data

set.

Factors which contribute to the occurrence of these gaps may be, for example, loss of

records, temporary absence of observers, breakdown of measuring devices or simply incorrect

recordings noted. Whatever the reason for their occurrence, gaps in climate variables are

problematic for the following reasons:

Firstly, the cross-correlation structure present in the multivariate time series will be

destroyed if there are missing values present. Secondly, the autocorrelation structure breaks

down when gaps occur and finally, the seasonal structure disappears if the data is not

complete.

An effective way of dealing with incomplete data sets is to "fill" these gaps with data.

A recent method known as the EM algorithm has been shown to work very satisfactorily

when estimating missing values in rainfall data (Makhuvha, 1988). In fact, out of the

several methods investigated, the EM algorithm was chosen as the most efficient method for

estimation of missing rainfall records, and it performs at least as well as the other methods

in terms of accuracy.

The theory and definition of the EM algorithm given here has been extracted from

Makhuvha 1988. The same terminology has been adhered to, with only slight changes to

suit it to the present problem.

Literature focuses attention on estimating model parameters in the presence of miss-

ing observations. However, we are interested in the missing values themselves. Thus the

convergence criteria is based on the estimated missing values rather than on the successive

parameter estimates.

General description of the EM algorithm

The EM algorithm is a method which iteratively computes maximum likelihood esti-

mates when some observations are missing. Let Z be a complete data set matrix of n

observations on k climate variables, where k > 2 and n > k + 2 . We assume that the
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data is generated by a model described by a density function f(Z\4>) indexed by unknown

parameter <j> . Given the model and parameter vector <j>, f(Z\(f>) is a function of Z , that

is, of the observations.

Definition: The likelihood function L((f>\Z) is any function of <j> which is proportional

to f(Z\4>) when given the data value Z .

We denote the log-likelihood function by

£{</>, Z) = lnL{<f>,Z).

Let Z = (Zohs,Zmis) where Zok8 denotes the observed values of Z and Zm-13 de-

notes the missing values of Z . Write

where -Zobs,i represents the set of climate variables having observation at i, i = 1,2,..., n .

Let f{Z\<j>) = f(Zobs,Zmia\4>) denote the density function of the joint distribution of

Zoha and Zmis . To obtain the marginal probability density of ZQ\>& , the missing data

Zmis is integrated out. That is,

f{Zoha\<!>) = j f{Zoba,Zmis\<f>)dZmis. (1)

The likelihood function of (j> based on Zob8 is defined to be any function of <j> Vx<>-

portional to f{Zob3\<f>) :

L{4>,Zohi)otf{Zohs\4>).

In situations where values are missing at random, L(<f>, Zoh3) is called the true likeli-

hood of 4> based on the observed data Zob3 . By making use of the complete data specifi-

cation f{Z\4>) , the EM algorithm is used to estimate the parameter. <f> which maximizes

/(-^obsl^) • In other words, we try to maximize the likelihood function

L(4>,Zobs) = I f{Zoba>Zmis\<f>)dZmi3 (2)

with respect of <$> .

Definition of the EM algorithm

The EM algorithm has a useful and simple interpretation when the complete data Z

has a distribution from the regular exponential family defined by
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(3)

where

<f> denotes a (1 X R) vector of parameters,

t(Z) denotes a (1 x R) vector of complete data sufficient statistics, and

a and 6 are functios of <f> and Z respectively.

The parameterization of <f> in (3) is unique up to an arbitrary non-singular (R x R)

linear transformation, as is the corresponding choice of t(Z) .

We restrict our attention to only one class of the exponential type of distribution,

namely, the Multivariate Normal distribution. We say that a distribution is Multivariate

Normal if its density function is given by:

/ / >7\ , , V*\ /O—\ — 'C/2|V1I — 5> ».-..-.-. f ( & . A T v — '•('7 nM f A\
j\Zj\LL,2-i) — \£,T\) I^-M e X p \£J — Ui 2-i \ZJ — /*J| \ * /

2

where
ZT = (Z Z

M = (Mi M2 • • •

S =

-0"fci rfc -

(5)

where <n3- is the covariance of the ith and jth component of Z .

Suppose we are dealing with more than one set of observations, that is, we have a

matrix of n sets of observations such that

(6)
Z21 Z22

17

.Zn\ Zn2 ••• Znk

The likelihood of the observations (6) is

(7)
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Using (7) we can find the sufficient statistics for the parameters.

exp - 2 2 " 1

exp - -

Therefore

t = i
(8)

(9)

where

^ is a vector of parameters, and

t{Z) is the sufficient statistics for <f> since it does not depend on any parameter.

Since the statistics t(Z) is sufficient for the parameter <j> , it therefore has all the

relevant information contained in Z for inference about the parameter.

The E step and the M step of EM.

Each iteration of the EM algorithm involves two steps which are called the expectation

step (E step) and the maximization step (M step). The steps given below may be applied if

equation (7) satisfies the conditions of it being a class of the exponential type of distribution.

Suppose that <j>^ denotes the current value of <j> after p cycles of the algorithm.

The next cycle involves the following two steps:

E step: At the (p + 1) cycle, the E step is the computation of the conditional expectation

of the complete data sufficient statistics given:
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i) the observed data Zobe = ( Z o b M , . . . , Zohs>n) and

ii) the estimated value of the parameter from the pth cycle.

That is, we compute

t™ = E[t(Z)\Zohm>4>™]. (10)

M step: At the (p+1) cycle, the M step is the maximization of the complete data likelihood

function in which the complete data sufficient statistics t(Z) has been replaced

by its conditional expectation obtained in the E step. We set the derivatives of

the complete data likelihood function to zero and determine <f>(p+1> , i.e. as the

solution of the equation

E{t{Z)\4>) = t^ (11)

which defines the maximum likelihood estimator of <j> under the assumption that

(7) is a class of the exponential family.

We now show how the E and M steps of the EM algorithm are obtained under the

assumption that the distribution is multivariate normal.

If, at the pth iteration, <j>^ denotes the current estimates of the parameters, then the

E step of the algorithm consists of calculating:

E

where

and

if Zij is observed

if Zij is missing

0 if Zij or Zn are observed

cov(Zij,Zit\Z0bs,i,<f>^) if Zij or Zu are missing

Missing values Z{j are therefore replaced by the conditional mean of

set of values -Zobs,» observed for that observation.

given the
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Similarly, the maximization step (M step) is found from equation (8). The new esti-

mates <f>(p+1> of the parameters are estimated as follows:

Estimation of missing values using the E M

The method described here estimates the missing data point, say yi , by using all the

records, i.e. estimated and real records. In this method all the observations are utilized

after the initial estimation stage.

Algorithm

Suppose we are considering a climate variables matrix Z of dimension nx(Jfe + l ) .

Partition the Z matrix into a vector of observations in the target variable, y , of dimension

(n x 1) and a matrix of observations in the control variables, X , of dimension (n x k) .

Note that any variable in the Z matrix can be regarded as the target variable, depending

on which variable's missing values we are currently estimating.

Suppose we wish to estimate the missing value yt:

Cycle 0

Step 1

Construct the vector y* from y and the matrix X* from the (n x k) matrix X , by

eliminating from both all the rows which contain one or more missing observations in either.

For example, because yi is one of the missing observations then the £th row in both y

and X is eliminated. Suppose that y* ends up with n* entries, then X* is an (n* x k)

matrix. The vector y* and matrix X* should now contain no missing observations. Check

that there is sufficient data to regress y* on X* . If there is not then some of the control

variables will have to be removed and one must begin again.

Step 2

Calculate the least squares estimates of the regression parameters using the target

variable vector y* and the matrix of control variables X* . That is find:
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y — {Ji A J

and

Po — y — -A

where
n*

4 = 1

and
n*

^ * 1 - .
3 =

* = i

and where the superscript (0) represents the initial estimation cycle.

Estimate the missing record yi using the regression model:

• = 1

where xtj, (j = 1,2,...,ft) are the observed values from the control variables matrix

X .

Step 3

After all the missing values in matrix Z have been estimated, create a new "data"

matrix, say Z^ containing estimates obtained in place of missing values.

Cycle b

Step 1

Suppose that the new data matrix created in the previous cycle is Z(b~^ , then parti-

tion Z^"1) into a matrix of control variables X^b~^ and a vector of the target variable

Step 2

Calculate the least squares estimates by using the new target variable vector y^*"1'

and the matrix of control variables X^b~^ , where superscript (b — 1) represents the

previous cycle. That is find:

and
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where

n ._

and

~ <r( ' 1 — 1 2 k

Re-estimate the missing record yt '•

k
(b) -£(b) . •*

I}'* — Prn\ T

Let
(6) (6-1)

Vt

where b represents the current iteration; 6—1 represents the previous cycle.

Step 3

If all the missing values in the current variable have been estimated, then check for

convergence by using the following criterion:

ft n—nj*

Crit = } y

where «.*• is the number of observed values in the current variable.

Step 4

, If Crit < F,F a small number close to zero, then yi is considered the required

estimate of the missing value and the re-estimation if discontinued, otherwise repeat Steps

1, 2 and 3.
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APPENDIX D

PROGRAMS

In this appendix, we give a listing of the FORTRAN programs which were
developed to implement the methodology discussed in this report. The
programs listed here Are set for 7 climate variables, excluding rainfall,
and for 12 years of historical records,

PROGRAM 1

C PROGRAM TO COMPUTE VECTORS REQUIRED FOR PARAMETER
C ESTIMATION OF RAINFALL MODEL.

C NWW(T) = THE NUMBER OF TIMES IT WAS WET IN PERIOD T-l AND
C| WET IN PERIOD T.

C NDWCT) = THE NUMBER OF TIMES IT WAS DRY IN PERIOD T-l AND
C WET IN PERIOD T.

C R(I,T) = THE Ith NON-ZERO RAINFALL DEPTH IN PERIOD T,
C 1 - 1 , 2 N R ( T ) ; T ~ 1 , 2 , ,NT.

C NR(T) = THE NUMBER OF TIMES IT WAS WET (NON-ZERO RAIN) IN
C PERIOD T.

C NW(T) = THE NUMBER OF TIMES IT WAS WET IN PERIOD T-l AND THERE
C WAS AN OBSERVATION IN PERIOD T (i.e. THERE WAS NOT A
C GAF JN PERIOD T).

C ND(T) = THE NUMBER OF TIMES IT WAS DRY (ZERO RAIN) IN PERIOD
C T-l AND THERE WAS AN OBSERVATION IN PERIOD T.

C FOR EACH T = 1,2,...,NT (WHERE NT = THE NUMBER OF PERIODS IN
C THE YEAR):
C THE ABOVE ARRAYS ARE REQUIRED BY THE ESTIMATION ALGORITHMS
C AS FOLLOWS:-
C i) NW( ) AND NWW< ) ARE REQUIRED TO ESTIMATE THE
C PARAMETER FOR THE PROBABILITY THAT A WET PERIOD
C FOLLOWS A WET PERIOD.
C ii) ND( ) AND NDW( ) ARE REQUIRED TO ESTIMATE THE
C PARAMETERS FOR THE PROBABILITY THAT A WET PERIOD
C FOLLOWS A DRY PERIOD.
C iii) NR( ) AND R( , ) ARE REQUIRED TO FIT THE PARAMETERS
C OF THE MEAN RAINFALL RAIN IN A WET PERIOD AND THE
C COEFFICIENT OF VARIATION,

OUTRLC THE OUTRUT OF THIS PROGRAM IS GIVEN IN TWO PARTS. NAMELY, THE
C FIRST PART:
C T (T=l,2, NT), NW, NWW, ND, NDW, N, NR
C THE SECOND PART:
C R(I,T) (1=1,2, ,NR(T); T=l,2, ,NT).
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c
c

c
c
c
c
c
c
c
c
c
c
c

MAIN PROGRAM

NT = THE NUMBER OF PERIODS IN THE YEAR (e.g. 365 FOR
DAILY DATA)

NY = THE NUMBER OF YEARS OF DATA (INCLUDING THE MISSING
VALUES)

NRT = THE MAXIMUM VALUE GIVEN FOR TH^ DIMENSION OF THE
ARRAY R(I,T)

RAIN = THE ARRAY THAT CONTAINS THE DATA
IND = AN INDICATOR OF THE STATUS OF THE PREVIOUS PERIOD

-1 => PREVIOUS OBSERVATION MISSING
0 => PREVIOUS PERIOD WAS DRY
1 => PREVIOUS PERIOD WAS WET

INTEGER
PARAMETER
PARAMETER
PARAMETER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL

NT,NY,NRT,IND,T
(NT=365)
(NY=12)
(NRT=5O)
N(NT)
NR(NT)
NW(NT)
NWW(NT)
ND(NT)
NDW(NT)
R(NRT,NT)

15 FORMAT (7 (14))
25 FORMAT (8 (F9.2))

0PEN(UNIT=12,FILE='\WATER\DATA\CLIMA.DAT',STATUS='OLD')
OPEN(UN IT=1O,FILE='\WATER\DATA\COUNTS.DAT' ,STATUS='UNKNOWN' )
OPEN(UNIT=2O,FILE='\WATER\DATA\RAIN.DAT',STATUS='UNKNOWN')

THE REQUIRED VECTORS ARE COMPUTED

20
10

DO 10, I = 1, NT
N(I) = 0
NR(I) = 0
NW(I) * 0
NWW(I) = 0
ND(I) = 0
NDW(I) = 0
DO 20, J = 1, NRT

R(J, I) = 0
CONTINUE

CONTINUE
IND = -1
DO 30, J = 1, NY

DO 40, I = 1, NT
READ (12,*) RAIN
IF (RAIN ,EQ. O) THEN
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N(I) = N(I) + 1
IF (IND .EQ. O) THEN

ND(I) = ND(I) + 1
ELSEIF <IND .EQ. 1) THEN

NW(I) = NW(I) + 1
IND = 0

ELSEIF (IND .EQ. -1) THEN
IND = 0

ENDIF
ELSEIF (RAIN .ST. 0) THEN

NR<I) = NR(I) + 1
R(NR(I),1) = RAIN
IF (IND .EQ. 0) THEN

NDW(I) = NDW(I) + 1
IND = 1

ELSEIF (IND .EQ. 1) THEN
NWW(I) = NWW(I) + 1

ELSEIF (IND .EQ. -1) THEN
IND = 1

ENDIF
ELSEIF (RAIN .LT. 0) THEN

IND « -1
ENDIF

40 CONTINUE
30 CONTINUE

DO 50, I = 1, NT
N(I) = N(I) + NR(I)
ND(I) = ND(I) + NDW(I)
NW(I) = NW(I) + NWW(I)

50 CONTINUE

THE VECTORS COMPUTED ARE WRITTEN OUT

DO 60, I = 1, NT
WRITE (10,15) I, NW(I), NWW(I), ND(I), NDW(I), N(I), NR(I)

60 CONTINUE
DO 70, T = 1, NT

WRITE (20,25) (R(I,T), I = 1, NR(T))
70 CONTINUE

STOP
END
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PROGRAM 2

C PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR RAINFALL
C MODEL - PROBABILITIES OF WET & DRY SEQUENCES

C THIS PROGRAM USES THE GENERIC NOTATION MM(T) & M(T)
C TO REPRESENT THE RELEVANT ARRAYS AS FOLLOWS:
C i) WHEN WE ARE ESTIMATING THE PROBABILITY THAT A
C WET PERIOD FOLLOWS A WET PERIOD, THEN
C MM(T) - NW(T)
C M(T) = NWW(T)
C ii) WHEN WE ARE ESTIMATING THE PROBABILITY THAT A
C WET PERIOD FOLLOWS A DRY PERIOD, THEN
C MM(T) = ND(T)
C M(T) = NDW(T)
C iii) WHEN WE ARE ESTIMATING THE PROBABILITY THAT PERIOD
C T IS WET, THEN
C MM(T) = N(T)
C M(T) = NR(T)
C
C NP = NUMBER OF PARAMETERS TO BE FITTED
C THETA(NP) = VECTOR OF PARAMETERS ESTIMATED
C AM(O:K) = CORRESPONDING AMPLITUDES, K ~ (NP-1J/2
C PH(K) = CORRESPONDING PHASES
C P(NT) = CURRENT ESTIMATES OF PROBABILITIES
C L(NT) = CURRENT ESTIMATES OF LOGITS
C DER(NT) = VECTOR OF 1ST PARTIAL DERIVATIVES
C DER2(NT,NT) = MATRIX OF 2ND PARTIAL DERIVATIVES
C PHI(NP,NT) = MATRIX OF FOURIER TERMS
C DELTA = CONVERGENCE CRITERION

INTEGER NP,K,NT,ITER,T,MAX ITER,NPMAX,KMAX
PARAMETER (NPMAX=13)
PARAMETER (KMAX=(NPMAX-1)/2)
PARAMETER < NT=365)
REAL MM(NT)
REAL M(NT)
REAL PI, LOGIT
PARAMETER (PI=3.141593)
REAL AM(O:KMAX)
REAL PH(KMAX)
REAL P(NT)
REAL L(NT)
REAL PER(NPMAX)
REAL DER2(NPMAX,NPMAX)
REAL THETA(NPMAX)
REAL PHI(NT,NPMAX)
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c
c
c

c
c

c
c

5
C 5
C 5'

15
25
35
45
55
65
75
85

10

FORMAT (4X,2F4.0) PROB (W/W)
FORMAT (12X.FF4.0) PROB (W/D)
FORMAT (20X,2F4.0) PROB (W)

FORMAT (4X,2F4.0)
FORMAT (12X,2F4.0)
FORMAT (20X,2F4.0)
FORMAT (' EPS, MAXITER - ')
FORMAT (' DID NOT CONVERSE' )
FORMAT (/, ' .', 13, ' ITERATION',/)
FORMAT (/, ' AMPLITUDE: ')
FORMAT (/, ' PHASE: ')
FORMAT (9F8.3)
FORMAT (' OPTIMAL PARAMETERS TO BE FITTED
FORMAT (' INITIAL ESTIMATES: ', F10.4)

14)

OPEN (UNIT=4,FILE='C0N')
OPEN (UNIT=9,FILE-'LPT1')
OPEN (UNIT=10,FILE='\WATER\DATA\COUNTS.DAT',STATUS='OLD')

INPUT DATA

PRINT 15
READ (4,*) EPS, MAXITER

DO 10, T = 1, NT
READ (10,5) MM(T), M(T)

CONTINUE

CALL TRIG (PHI,NPMAX,NT)

DIFFERENT AMOUNT OF PARAMETERS FITTED AT A TIME.
PROGRAM STOPS ONCE OPTIMAL NO. OF PARAMETERS ARE FITTED

CRITO = 10 ** 10
DO 300, NP = 1, NPMAX, 2

WRITE (9,*) 'NO. OF PARAMETERS FITTED = ', NP

COMPUTE INITIAL ESTIMATES OF THE PROBABILITIES
AND LOGITS

DO 20, T = 1, NT
IF (MM(T) .GT. 0) THEN

p(T) = M(T) / MM(T)
ELSE

P(T) = -1
SOTO 20

END IF
IF (M(T) .EQ. 0) THEN

L(T) = -5
ELSEIF (M(T) .EQ. MM(T)) THEN

L(T) = 5
ELSE IF ( (M(T) .GT. 0.00001) .AND. (M(T) .NE. MM(T))) THEN
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20

L(T)
ENDIF

CONTINUE

= LOG <P(T) / (l-P(T)))

D O 3 0 , 1 = 1

40

30

NP
TO = 0
Tl = 0
DO 40, T = 1, NT

IF (MM(T) .GT
TO = TO +
Tl = Tl +

ENDIF
CONTINUE
THETA (I) = TO / Tl
WRITE (9,85) THETA (

CONTINUE

0.00001) THEN
L(T) * PHI (T, I )
PHI (T,I) ** 2

I)

ITERATIVE ESTIMATION OF PARAMETERS

IC = 0
DO 200, ITER = 1, MAXITER

WRITE (9,35) ITER

COMPUTE 1ST AND 2ND DERIVATIVES

60
50

DO 50, I = 1, NP
DER (I) = O
DO 60, J = 1, NP

DER2(I,J) = 0
CONTINUE

CONTINUE
DELTA = 0
DO = 1. NT

80

PROB
(1+TO)
<P(T) - PROB)

100
90
70

120

70, T
LOG IT = THETA(l)
DO 80, I = 2, NP

LOGIT = LOGIT + THETA(I) * PHI(T,I)
CONTINUE
TO = EXP (LOGIT)
PROB = TO / (1+TO)
Tl = M(T) - MM(T) *
T2 = MM(T) * PROB /
DELTA = DELTA + ABS
P(T) = PROB
DO 90, I = 1, NP

DER(I) = D£R(I)
DO 100, J = 1, I

DER2(I,J) = DER2(I,J)-T2*PHI(T,I)*PHI(T,J)
CONTINUE

CONTINUE
CONTINUE
DO 110, I = 1, NP

DO 120, J = 1+1, NP

+ Tl * PHI(T,I)

DER2(I,J)
CONTINUE

= DER2(J,I)
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110 CONTINUE

CALL LI NEAR (NPMAX,NP,DER,DER2,THETA)

C TESTING FOR CONVERGENCE

IF (DELTA .GT. EPS) THEN
IC = O

ELSE
IC = 1

ENDIF
IF (IC) 200, 200, 400

200 CONTINUE
WRITE (9,25)

C TRANSFORMING PARAMETERS TO THEIR AMPLITUDE AND PHASE
C REPRESENTATION

400 K = (NP-1) / 2
CALL AMPHA (AM,PH,THETA,NPMAX,KMAX,K,PI,NT)

MODEL SELECTION

LLK = 0
DO 210, T = 1, NT

IF (MM(T) .GT- 0.000001) THEN
LLK = LLK+M(T)*LOG(P(T))+(MM(T)-M(T))*LOG(1-P(T))

ENDIF
210 CONTINUE

CRIT = -LLK + NP
IF (CRIT .LT. CRITO) THEN

LO = NP
CRITO = CRIT

ELSE
WRITE (9,75) LO
STOP

ENDIF
300 CONTINUE

STOP
END
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PROGRAM 3

C PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR THE
C DISTRIBUTION OF RAINFALL DEPTHS.
i—> _ , . — _ _ _ _ _ - _ . - _ _ - _ _ _ _

C THE FOLLOWING NOTATION IS USED:
C NP = NUMBER OF PARAMETERS IN THE MEAN FUNCTION
C R(,) = MATRIX OF RAINFALL DEPTHS OBSERVED
C DER() = VECTOR OF 1ST PARTIAL DERIVATIVES
C DER2U = MATRIX OF 2ND PARTIAL DERIVATIVES
C Q() = VECTOR OF AVERAGE OBSERVED RAINFALL IN EACH PERIOD
C THETAC) = VECTOR OF PARAMETER ESTIMATES
C AM() = CORRESPONDING AMPLITUDES
C PH() = CORRESPONDING PHASES
C F() = CURRENT ESTIMATE OF THE MEAN
C SOU = OBSERVED DAILY STANDARD DEVIATIONS
C SF() = FITTED DAILY STANDARD DEVIATIONS
C DELTA == CONVERGENCE CRITERION

INTEGER NP,NT,T,ITER,K,MAXITER
PARAMETER (NP=3)
PARAMETER (NT=365)
PARAMETER (K=(NP-1)/2)
INTEGER NR(NT)
REAL R(5O,NT)
REAL PI,DENOM,NUM
PARAMETER (P1=3.141593)
REAL CQEFF,DELTA
REAL DER(NP),SOLN(NP)
REAL DER2(NP,NP)
REAL PHI(NT,NP)
REAL Q < NT),F(NT),SO(NT) ,SF(NT)
REAL THETACNP)
REAL AM(O:K)
REAL PH(K)

5 FORMAT (6(4X), 14)
15 FORMAT (14(15))
25 FORMAT (' EPS, MAXITER = ')
35 FORMAT (' DID NOT CONVERGE')
45 FORMAT ( /, ' ' , 13, ' ITERATION' ,/)
55 FORMAT (/, ' AMPLITUDE: ')
65 FORMAT (/, ' PHASE: ')
75 FORMAT (9F8.3)
85 FORMAT (' OPTIMAL PARAMETERS TO BE FITTED: ', 14)
95 FORMAT (' INITIAL ESTIMATES: ', F10.4)
105 FORMAT (' COEFFICIENT OF VARIATION: ', F10.4)

OPEN (UNIT=4,FILE-'C0N')
OPEN £UNIT=9,FILE='LPT1')
OPEN <UNIT=iO,FILE-'\WATER\DATA\RAIN.DAT',STATUS-'OLD')
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OPEN <UNIT=20,FILE='\WATER\DATA\COUNTS.DAT',STATUS='OLD')

C INPUT DATA

PRINT 25
READ (4,*) EPS, MAXITER

DO 10, T = 1, NT
READ (20,5) NR(T)

10 CONTINUE
DO 20, T = 1, NT

READ (10,*) (R(I,T), I = 1, NR(T))
20 CONTINUE

CALL TRIG (PHI,NP,NT)

C COMPUTE INITIAL ESTIMATES

DO 30, T = 1, NT
IF (NR(T) .GT. 0) THEN

TERMO = 0
DO 40, I = 1, NR(T)

TERMO = TERMO + R(I,T)
40 CONTINUE

Q(T) = TERMO / NR(T)
END IF

30 CONTINUE
DO 50, I = 1, NP

TERMO = 0
TERM1 = O
DO 60, T = 1, NT

IF (NR(T) .NE. 0) THEN
TERMO = TERMO + Q(T) * PHI(T,I)
TERM1 = TERM1 + PHI(T,I) ** 2

END IF
60 CONTINUE

THETA (I) = TERMO / TERM1
WRITE (9,95) THETA (I)

50 CONTINUE

C ITERATIVE PARAMETER ESTIMATION

IC = 0
DO 100, ITER = 1, MAXITER

WRITE (9,45) ITER

COMPUTE 1ST & 2ND PARTIAL DERIVATIVES

DO 70, I = 1, NP
DER(I) = 0
DO 80, J = 1, I

DER2(I,J) = 0
80 CONTINUE
70 CONTINUE
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DO 90, T = 1, NT
TERMO = THETA(l)
DO ISO, I = 2 , NP

TERMO = TERMO + THETA(I) * PHI(T,I)
1B0 CONTINUE

F(T) = TERMO
90 CONTINUE

DO 110, T = 1, NT
IF (NR(T) .GT. O) THEN

DO 120, I = 1, NP
DER(I) = DER(I) - NR(T) # (Q(T) - F(T)) * PHI(T,I)
DO 130, J = 1, I

DER2(I,J) = DER2(I,J)+NR(T)*PHI(T,I)*PHI(T,J)
130 CONTINUE
120 CONTINUE

ENDIF
110 CONTINUE

DO 140, I = 1 , NP
DO 150, J = 1+1, NP

DER2(I,J) = DER2(J,I)
150 CONTINUE
140 CONTINUE

CALL LINEAR (NP,NP,DER,DER2,THETA)

: CONVERGENCE TEST

DELTA = 0
DO 170, I - 1, NP

DELTA = DELTA + ABS (DER(I))
170 CONTINUE

IF (DELTA .GT. EPS) THEN
IC = 0

ELSE
IC = 1

ENDIF
IF (IC) 100,100,2

100 CONTINUE
WRITE (9,35)

2 DO 200, T = 1, NT
TERMO = THETA(l)
DO 220, I = 2 , NP

TERMO = TERMO + THETA(I) * PHI(T,I)
220 CONTINUE

C COMPUTE FITTED VALUES

F(T) = TERMO
200 CONTINUE

C OUTPUT OBSERVED AND FITTED DAILY MEANS

DO 300, T ~ 1, NT
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PRINT *, T, Q(T), F(T)
300 CONTINUE

C COMPUTE THE COEFFICIENT OF VARIATION

DENOM = 0
NUM = 0
DO 510, T = 1, NT

DO 520, I = 1, NR(T)
NUM = NUM + (R(I,T) - F(T)) ** 2

520 CONTINUE
DENOM = DENOM + NR(T ) * (F(T) ** 2)

510 CONTINUE
COEFF = SQRT (NUM / DENOM)
WRITE (9,105) COEFF

C COMPUTE THE AMPLITUDE AND PHASE REPRESENTATION

CALL AMPHA (AM,PH,THETA,NP,K,K,PI,NT)

C COMPUTE THE FITTED AND OBSERVED STANDARD DEVIATIONS

STOP
END
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PROGRAM 4

P* _, . ,___ _ ____ _

C PROGRAM TO GENERATE RAINFALL SEQUENCES
C — — — —— —

INTEGER NT,NY,NP,PSTATE,STATE

C PSTATE = PRESENT STATE OF DAY
C STATE = PREVIOUS STATE OF DAY

C
C
C

c

PARAMETER (NT=365)
PARAMETER (NY=51)
PARAMETER (NP=3)

NT = £ OBSERVATIONS PER YEAR
NV = £ VARIABLES
NY = £ YEARS TO BE GENERATED
NP = £ PARAMETERS IN SEASONAL MODEL

15
25

INTEGER
REAL
REAL
REAL
REAL
REAL

COMMON

SEED
RAIN
GAM (2,NP)
PHI (NP,O:NT)
AMP (O:NP)
PHASE (NP)

IDUM1,IDUM2

FORMAT (F9.2)
FORMAT (' GIVE 2 -VE Nos. TO INITIALIZE RANDOM GENERATOR',/)

OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=12,FILE='\WATER\DATA\EST.DAT',STATUS='OLD')
OPEN (UNIT=1O,FILE='\WATER\DATA\SIMU.DAT',STATUS='UNKNOWN')
OPEN CUNIT=22JFILE='C0N')

COMPUTE THE FOURIER SERIES TERMS

60

CALL COSSIN (PHI,NP,NT)
DO 60, I = 1, NP

PHI (1,0) = PHI (I,NT
CONTINUE

PI=3.14159

READING PARAMETER ESTIMATES

NP)
NP)

READ (12, *) (GAM (1,J), J - 1,
READ (12, *) (GAM (2,J), J = 1,
READ (12, *) (AMP (I), I = 0, 1)
READ (12, *) (PHASE (I), I = 1, 1)
READ (12, *) CV

D-12



C INPUT SEED TO START RANDOM NUMBER SENERATOR. MUST BE
C NEGATIVE NUMBER.

PRINT 25
READ (22, *) SEED (1), SEED(2)

IDUM1 = SEED (1)
IDUM2 = SEED (2)

C COMPUTE PARAMETERS NEEDED FOR COMPUTATION OF RAINFALL
C DEPTH

CALL CALBET (BETA,CV)
ALPH = 1 + 1 / BETA
GAMM = GAMMA (ALPH)
BI = 1 /BETA
W = 0.01721421

C SET INITIAL STATE OF DAY TO BE DRY
C SET INITIAL CLIMATE VALUE TO ZERO

C STATE = 1 ==> DRY

C STATE = 2 ==> WET

STATE = 1

DO 30, I = 1, NY
DO 40, J = 1, NT

C GENERATE RAINFALL VALUE
r-

C COMPUTE PROBABILITY THAT A WET DAY FOLLOWS A WET DAY, OR

C THE PROBABILITY THAT A WET DAY FOLLOWS A DRY DAY.

CALL PIEST (NP,GAM,STATE,J,PHI,PI,NT)

C GENERATE A UNIFORM RANDOM NUMBER BETWEEN 0 AND 1.

UNIFOR = URAN (IDUM)
IF (UNIFOR .LT. PI) THEN

PSTATE - 2
ELSE

PSTATE = 1
END IF

C GENERATE RAINFALL DEPTH

CALL DEPTH3 (IDUM2,NP,RAIN,J,AMP,PHASE,GAMM,BI,W)

OUTPUT GENERATED SEQUENCES
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IF (I .NE. 1) THEN
WRITE (10,15) RAIN

ENDIF

UPDATE THE STATE OF THE PREVIOUS 3AY

40
30

IF (PSTATE
STATE =

ENDIF

CONTINUE
CONTINUE

STOP
END

.NE. STATE) THEN
PSTATE
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PROGRAM 5

C • PROGRAM TO CONDITION DATA SET ACCORDING TO TH WET &
C DRY STATUS OF THE DAY

INTEGER NY,NT
PARAMETER (NY=12)
PARAMETER (NT=365)
INTEGER SEQ(2,NY,NT)
INTEGER C0UNT(2,NY)
REAL OBSN

15 FORMAT (14(15))
25 FORMAT (15)

DO 20, J = 1, 2
DO 40, I = 1, NY

COUNT (J, I) = 0
40 CONTINUE
20 CONTINUE

OPEN (UNIT=8,FILE='\WATER\DATA\CLIMA.DAT',STATUS='OLD')

DO 10, J = 1, NY
DO 50, I = 1, NT

READ (8, *) QBSN
IF (OBSN .EQ. 0) THEN

COUNT (1, J) ~ COUNT (1, J) + 1
SEQ (1, J, COUNT (1, J)) = I

ELSEIF (OBSN .GT. O) THEN
COUNT (2, J) = COUNT (2, J) + 1
SEQ (2, J, COUNT (2, J)) = I

END IF
50 CONTINUE
10 CONTINUE

OPEN (UNIT=10,FILE='\WATER\DATA\SEQ2.DAT',STATUS='UNKNOWN')

DO 60, I = 1, NY
DO 30, J = 1 , 2

WRITE (10, 25) COUNT (J, I)
WRITE (10, 15) (SEQ (J, I, K), K = 1, COUNT (J, I))

30 CONTINUE
60 CONTINUE

STOP
END
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PROGRAM 6

r* • _ — - . _ _ _ _ _ _ — — — — —

C PROGRAM TO COMPUTE MEAN VECTOR
r-* _ — . —

INTEGER NV,NY,NT,NPARM
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NPARM=11)
INTEGER SEQ (2,NY,NT)
INTEGER COUNT (2,NY)
INTEGER DENOM (NT)
REAL MU (2,NT)
REAL PHI (NT,NPARM)
REAL THETA,OMEGA,PI
PARAMETER (PI = 3.14159265)
DIMENSION CLIMACHUGE] (NY,NT)

5 FORMAT (11F6.2)
15 FORMAT (14 (15))
25 FORMAT (15)
35 FORMAT (18X,F9.2)
45 FORMAT (27X,F9.2)
55 FORMAT (36X,F9.2)
65 FORMAT (45X,F10.2)
75 FORMAT (55X,F10.2)
85 FORMAT (65X,F9.2)
95 FORMAT (9X,F9.2)

OPEN (UNIT=30,FILE='\WATER\DATA\MEAND.DAT ' ,STATUS='UNKNOWN' )
OPEN (UNIT=20,FILE='\WATER\DATA\PHID.DAT',STATUS='UNKNOWN')
OPEN (UNIT=32,FILE='\WATER\DATA\MEANW.DAT',STATUS='UNKNOWN')
OPEN (UNIT=22,FILE='\WATER\DATA\PHIW.DAT',STATUS='UNKNOWN')
OPEN (UNIT=24,FILE='\WATER\DATA\SEQ2.DAT',STATUS='OLD')
OPEN (UNIT=18,FILE='\WATER\DATA\CLIMA.DAT',STATUS='OLD')

C ...... INPUT SEQ OF DRY & WET DAYS

60
50

DO 50, I = 1, NY
DO 60, J - 1, 2

READ (24, 25) COUNT (J, I)
READ (24, 15) (SEQ (J, I, K), K = 1, COUNT (J, I))

CONTINUE
CONTINUE

DO 30, K = 1, NV
DO 10, 1 = 1 , NY

DO 20, J = 1, NT

INPUT ONE VARIABLE AT A TIME
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IF (K .EQ. 1) THEN
READ (IB,95) CLIMA (I, J)

ELSEIF (K .EQ. 2) THEN
READ (18,35) CLIMA (I, J)

ELSEIF (K .EQ. 3) THEN
READ (IB,45) CLIMA (I, J)

ELSEIF (K .EQ. 4) THEN
READ (18,55) CLIMA (I, J)

ELSEIF (K .EQ. 5) THEN
READ (18,65) CLIMA (I, J)

ELSEIF (K .EQ. 6) THEN
READ (18,75) CLIMA (I, J)

ELSEIF (K .EQ. 7) THEN
READ (18,85) CLIMA (I, J)

END IF

20
10

CONTINUE
CONTINUE

COMPUTE MEAN VECTOR FOR WET & DRY DAYS

320

DO 310, M = 1, 2
DO 320, J = 1, NT

DENOM (J) = 0
MU (M,J) = -999.0

CONTINUE
DO 330, I - 1, NY

DO 370, J = 1, COUNT (M,I)
L = SEQ (M, I, J)

370
330

380
310

IF (CLIMA (I,
IF (MU (M,

MU (M,L
END IF
MU (M,L) =
DENOM (L)

END IF
CONTINUE

CONTINUE
DO 380, J

IF (MU
MU

END IF
CONTINUE

CONTINUE

= 1, NT
(M,J) .NE

(M,J) = MU

L) .NE.
L) .LE.
) = 0.0

MU (M,
= DENOM

. -999)
(M,J)

-999) THEN
-900) THEN

L) + CLIMA
(L) + 1

THEN
/ DENOM (J)

510

DO 130, M = 1, 2

OMEGA = 2 * PI /NT
KK = (NPARM - 1) / 2
DO 510, T = 1, NT

PHI (T,l) = 1
CONTINUE
DO 520, J = 1,

Jl = 2 * J
KK
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J2 = Jl + 1
THETA = OMEGA * J
A = 2 * COS (THETA)
PHI (1,J1) = 1
PHI (2,J1) s= A / 2
PHI (1,J2) = 0
PHI (2,J2) = SIN (THETA)
DO 530, T = 3, NT

530
520

PHI (T,J1)
PHI (T,J2)

CONTINUE
CONTINUE

= A
= A

PHI
PHI (T-1.J2) -

PHI
PHI

(T-2,J1)
(T-2,J2)

SHRINK MEAN & FOURIER VECTOR BY OMITTING MISSING OBSNS

NC = 0
DO 120, I

(MU <M,
(M,

12
IF

NT

140

120

RM
PHI (I,L)

.NE. -999) THEN
MU (M,I-NC) = MU (M,I)
DO 140, L = 1, NPARM

PHI (I-NC,L) = PHI
CONTINUE

ELSE
NC = NC + 1

ENDIF
CONTINUE

80

40

130

30

OUTPUT OF

IF (M .EQ.
PRINT *,
DO 80, I

WRITE
WRITE

CONTINUE
ELSE

PRINT *,
DO 40, I

WRITE
WRITE

CONTINUE
ENDIF

CONTINUE
REWIND 18

CONTINUE

STOP
END

MEAN _. .& FOURIER

1) THEN
'NO.
= 1,
(30,
(20,

'NO.
= 1,
(32,
(22,

OBNS ON
NT - NC
*) MU (M
5) (PHI

OBNS ON
NT - NC
*) MU (M
5) (PHI

VECTORS

DRY DAYS

<I,U, L

WET DAYS

U,U, L

FOR

•
• »

= 1 ,

* '
• »

= 1 ,

DRY & WET DAYS

NT - NC

NPARM)

NT - NC

NPARM)
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PROGRAM 7

p __ _

C PROGRAM TO ESTIMATE PARAMETERS FOR THE MEAN AND
C . STANDARD DEVIATION FUNCTIONS
C — > NB THIS PROGRAM IS DESIGNED TO ESTIMATE

PARAMETERS FOR A DRY SEQUENCE. IT CAN ALSO
BE USED FOR WET SEQUENCES BY READING THE
APPROPRIATE INPUT DATA FILES

(-• ,

15
25
35

INTEGER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

NT,NV,NPARM,PI
(NT=365)
(NV=7)
(NPARM=11)
(PI=3.141593)
LLK
MU (NT,1)
MEAN (NT)
PHI (NT,NPARM)
TRSP (NPARM,NT)
SOLN (NPARM,NPARM)
RESULT (NPARM,NT)
BETA (NPARM,1)

20

FORMAT (/,/)
FORMAT (F10.3)
FORMAT (A13,14,Ail)

OPEN <UNIT=9,FILE='LPTi')
OPEN (UNIT=6,FILE='C0N')
OPEN (UNIT=12,FILE='\WATER\DATA\MEAND.DAT',STATUS='OLD')
OPEN (UNIT=14,FILE-'\WATER\DATA\PHID.DAT',STATUS"'OLD')

WRITE (9,#) 'INITIAL ESTIMATES FOR MEAN (DRY) FUNCTION'
WRITE (9,15)

WRITE (6,*) ' MAXIMUM NUMBER OF PARAMETERS TO BE FITTED'
READ (6,*) NPT

DO 30, K = 1, NV
CRITO = 10**10
DO 20, I = 1, NT

READ (12,*) MU (1,1)
READ (14,*) (PHI (I,L), L =1, NPT)

CONTINUE

DO 100, NP = 1, NPT, 2
CALL TRNSP (PHI,NP,NT,TRSP,NPARM,NT)
CALL XNP (TRSP,PHI,SOLN,NP,NT,NT,NP,NPARM,NT,NT,NPARM)
CALL INVNP (NP,SOLN,NPARM)
CALL XNP (SQLN,TRSP,RESULT,NP,NP,NP,NT,NPARM,NPARM,

NPARM,NT)
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CALL XNP (RESULT,MU,BETA,NP,NT,NT,1,NPARM,NT,NT,1)

OUTPUT OF PARAMETER ESTIMATES

WRITE (9,*) 'BETA ESTIMATES FOR VARIABLE: ', K
DO 10, I = 1, NP

WRITE (9,*) BETA (1,1)
10 CONTINUE

DO 50, I = 1, NT
MEAN (I) = 0.0
DO 60, L = 1, NP

MEAN (I) = MEAN (I) + BETA(L,1) * PHI(I,L)
60 CONTINUE
50 CONTINUE

LLK = O
DO 40, I = 1, NT

LLK = LLK + (MU(I,1) - MEAN (I))**2
40 CONTINUE

LLK = -LLK/2 - (NT/2) * LOG (2*PI)
CRIT = -LLK + NP
WRITE (9,*) ' AKAIKE"S INFO CRITERION FOR VARIABLE ',K
WRITE (9,*) CRIT
WRITE (9,35) ' WHEN FITTING' ,NP, ' PARAMETERS'
WRITE (9,15)
IF (CRIT .LT. CRITO) THEN

LL = NP
CRITO = CRIT

ELSE
GOTO 200

END IF
100 CONTINUE
200 WRITE (9,*) ' NUMBER OF PARAMETERS CHOSEN: ', LL
30 CONTINUE

STOP
END
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PROGRAM 8

PROGRAM TO COMPUTE THE STANDARD DEVIATION VECTOR

5
15
25
35
45
55
65
75
85
95

INTEGER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
DIMENSION
REAL

NV,NY,NT,NPARM,NP
<NV=7)
(NY=12)
(NT=365)
(NPARM=3)
(NP=11)
SEQ (2,NY,NT)
COUNT (2,NY)
MU (2,NT)
SIGMA (2,NT)
PHI (NT,NP)
ALPHA (NV,2,NPARM)
CLIMACHUGE] (NY,NT)
DENOM (NT)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(11F6.2)
(14(15))
(15)
(18X,F9.2)
(27X,F9.2)
(36X,F9.2)
(45X,F10.2)
(55X,F10.2)
(65X,F9.2)
(9X,F9.2)

OPEN (UNIT=40,F
OPEN (UNIT=20,F
OPEN (UNIT=42,F
OPEN (UNIT=22,F
OPEN (UNIT=24,F
OPEN (UNIT=18,F
OPEN <UNIT=1O,F

ILE='\WATER\DATA\SIGMAD.DAT',STATUS='UNKNOWN')
ILE='\WATER\DATA\PHD.DAT',STATUS='UNKNOWN')
ILE='\WATER\DATA\SIGMAW.DAT',STATUS='UNKNOWN')
ILE='\WATER\DATA\PHW.DAT',STATUS='UNKNOWN')
ILE='\WATER\DATA\SEQ2.DAT',STATVS='OLD')
ILE='\WATER\DATA\CLIMA.DAT',STA1US='OLD')
ILE='\WATER\DATA\EST-M.DAT',STATUS='OLD')

INPUT OF PARAMETER ESTIMATED FOR MEAN FUNCTION

DO

40
170

170, K = 1, NV
DO 40, M= 1, 2

READ (10,*)
CONTINUE

CONTINUE

(ALPHA (K,M,I), I = 1, NPARM)

INPUT SEQ OF DRY & WET DAYS

DO 50, I = 1, NY
DO 60, J = 1, 2

READ (24,25) COUNT (J,I)
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READ (24,15) (SEQ (J,I,K), K = 1, COUNT (J,I))
60 CONTINUE
50 CONTINUE

DO 30, K = 1, NV
DO 10, I = 1 , NY

DO 20, J = 1, NT

INPUT ONE VARIABLE AT A TIME

IF (K .EG. 1) THEN
READ (18,95) CLIMA (I, J)

ELSEIF (K .EQ. 2) THEN
READ (18,35) CLIMA (I, J)

ELSEIF (K .EQ. 3) THEN
READ (18,45) CLIMA (I, J)

ELSEIF (K .EQ. 4) THEN
READ (18,55) CLIMA (I, J)

ELSEIF (K .EQ. 5) THEN
READ (18,65) CLIMA (I, J)

ELSEIF (K .EQ. 6) THEN
READ (18,75) CLIMA (I, J)

ELSEIF (K .EQ. 7) THEN
READ (18,85) CLIMA (I, J)

END IF

20 CONTINUE
10 CONTINUE

CALL TRIG (PHI,NP,NT)

BENERATE MEAN VECTOR

CALL GMEAN (MU.PHI,NT,NPARM,ALPHA,K,NV)

, . . . COMPUTE STD DEV VECTOR FOR WET & DRY DAYS

DO 330, M - 1, 2
DO 310, I = 1, NT

DENOM (I) = 0
SIGMA (M,I) = -999.0

310 CONTINUE
DO 320, J = 1, NY

DO 370, 1 = 1 , COUNT (M,J)
L = SEQ (M,J,I)
IF (CLIMA (J,L) .NE. -999) THEN

IF (SIGMA (M,L) .EQ. -999) THEN
SIGMA (M,L) = 0.0

ENDIF
SIGMA(M,L) = SIGMA(M,L)+(CLIMA(J,L)-MU(M,L))**2
DENOM (L) = DENOM (L) + 1

ENDIF
370 CONTINUE
320 CONTINUE

DO 380, I = 1, NT
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380
330

C
C

140

120

IF (SIGMA (M,I) .NE. -999) THEN
SIGMA (M,I) = SQRT(SIGMA (M,I) /

END IF
CONTINUE

CONTINUE

DENOM (I))

SHRINK STD DEV VECTOR & FOURIER VECTOR BY OMITTING MISSING
OBSERVATIONS

DO 130, M = 1, 2
NC = O
DO 120, I = 1, NT

IF (SIGMA (M,I) .NE. -999) THEN
SIGMA (M,I-NC) = SIGMA (M,I)
DO 140, L = 1, NP

PHI (I-NC,L) = PHI (I,L)
CONTINUE

ELSE
NC = NC + 1

ENDIF
CONTINUE

OUTPUT OF STDE DEV & FOURIER VECTORS FOR WET & DRY DAYS

70

BO

130

30

IF (M .EQ.
PRINT *,
DO 70, I

WRITE
WRITE

CONTINUE
ELSE

PRINT *,
DO 80, I

WRITE
WRITE

CONTINUE
ENDIF
CALL TRIG (

CONTINUE
REWIND 18

CONTINUE

STOP
END

1) THEN
'NO.
= 1,
(40,
(20,

•NO.

= 1,
(42,
(22,

OBNS ON
NT
*)
5)

- NC
SIGMA
(PHI

OBNS ON
NT
*)
5)

- NC
SIGMA
(PHI

PHI,NP,NT)

DRY

(M,

WET

(Mi

DAYS:

I)

DAYS:

I)

', NT - NC

1, NP)

', NT - NC

1, NP)
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PROGRAM 9

C PROGRAM TO STANDARDIZE RESIDUAL TIME SERIES
C

INTEGER NV,NY,NT,NPARM
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER < NPARM=3)
REAL CLIMA (O:NV)
REAL ML) (2,NV,NT)
REAL SIGMA (2,NV,NT)
REAL PHI (NT,NPARM)
REAL PSI (NV,2,NPARM)
REAL ALPHA (NV,2,NPARM)

5 FORMAT (3F 10.6)
35 FORMAT (5F9.2,2F10.2,F9.2)

OPEN (UNIT=12,FILE='\WATER\DATA\CLIMAR.DAT',STATUS='UNKNOWN')
OPEN (UNIT = 18,FILE='\WATER\DATA\CLIMA.DAT' ,STATUS='OLD * )
OPEN (UNIT=10,FILE='\WATER\DATA\EST-M.DAT',STATUS='OLD')
OPEN (UNIT=40,FILE='\WATER\DATA\EST-S.DAT',STATUS='OLD')

C INPUT OF PARAMETER ESTIMATES FOR MEAN AND STANDARD
C DEVIATION FUNCTION

DO 10, K = 1, NV
DO 20, Ms 1, 2

READ (10,*) (ALPHA (K,M,I), I = 1, NPARM)
20 CONTINUE
10 CONTINUE

DO 60, K = 1, NV
DO 70, M= 1, 2

READ (40,*) (PSI (K,M,I), I = 1, NPARM)
70 CONTINUE
60 CONTINUE

CALL TRIG (PHI,NPARM,NT)

C GENERATE MEAN AND STANDARD DEVIATION VECTORS

CALL GAVSTD (MU,PHI,NT,NPARM,ALPHA,NV,PSI,SIGMA)

DO 30, I = 1, NY
DO 40, J = 1, NT

READ (18,35) (CLIMA (K), K = 0, NV)
IF (CLIMA(O) -EQ. O) THEN

M = 1
ELSE
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50

M - 2
ENDIF
DO 50 , K = 1, NV

IF (CLIMA (K) .NE. -999) THEN
CLI MA ( K ) = (CLI MA ( K ) -ML) ( M , K , J ) ) / SIGMA ( M , K , J )

ENDIF
CONTINUE

OUTPUT OF STANDARDIZED TIME SERIES

40
30

WRITE (12,35) (CLIMA (K), K - 0, NV)
CONTINUE

CONTINUE

STOP
END

PROGRAM 10

n ___ —___—________——._
C PROGRAM TO COMPUTE CROSS-CORRELATION COEFFICIENTS
C FOR LAGO AND LAG1.

25
35
45

INTEGER
PARAMETER
PARAMETER
PARAMETER
INTEGER
REAL
REAL
REAL
REAL
REAL

NY, NT, NV
(NY=12)
(NT=365)
(NV-7)
DENOM(O:1)
CLIMA(NV,NY*NT)
CROSS(0:1)
AVEG(NV),DEV(NV)
CLA60(NV,NV)
CLAG1(NV,NV)

FORMAT (9F8.4)
FORMAT (9X,4F9.2,2F10.2,F9.2)
FORMAT (7F9.3)

OPEN (UNIT=9,FILE-'LPT1')
OPEN (UNIT=10,FILE='\WATER\DATA\CLIMAR.DAT',STATUS-'OLD')
OPEN (UNIT=20,FILE='\WATER\DATA\LAGO.DAT',STATUS-'UNKNOWN')
OPEN (UNIT=30,FILE='\WATER\DATA\LAG1.DAT',STATUS-'UNKNOWN')
OPEN (UNIT=4,FILE='C0N')
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NTIME = NY * NT
DO 10, 1 = 1 , NTIME

READ (10,35) (CLIMA (K,I), K = 1, NV)
10 CONTINUE

CALL AVSTD3 (CLIMA,AVEG,DEV,NY,NT,NV)

DO 20, K = 1, NV
DO 30, KK = 1, NV

DO 40, I = 0 , 1
CROSS (I) = 0.0
DENOM (I) = 0.0

40 CONTINUE

DO 50, I = O, 1
DO 60, J = 1, NTIME-I

IF ((CLIMA(K,J).GT.-900).AND.(CLIMA(KK,J+I)
& .BT.-900)) THEN

CROSS(I)=CROSS(I)+(<CLIMA(K,J)-AVEG(K))*
& (CLIMA(KK,J+I)-AVEG(KK)))

DENOM(I) = DENOM(I) + 1
END IF

60 CONTINUE
IF (DENOM(I).GT.O) THEN

CROSS(I)=(CROSS(I)/DENOM(I))/(DEV(K)*DEV(KK))
END IF

50 CONTINUE

CLAGO(K,KK) = CROSS(O)
CLAG1(K,KK) = CROSS(l)

30 CONTINUE
20 CONTINUE

DO 90, K = 1, NV
WRITE (20,45) (CLAGO(K,KK), KK = 1, NV)
WRITE (30,45) (CLA61(K,KK), KK = 1, NV)

90 CONTINUE

STOP
END
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PROGRAM 11

PROGRAM TO COMPUTE THE MATRICES A & B FOR MODEL1

15

10

20

30

INTEGER
PARAMETER
REAL
REAL
REAL
REAL
REAL
REAL
REAL

FORMAT (7F9.3)

NV
(NV=7)
CLAGO(NV,NV)
CLAG1(NV,NV)
A(NV,NV)
B(NV,NV)
INV(NV,NV)
TRSP(NV,NV)
TERM(NV,NV)

40

OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=20,FILE='\WATER\DATA\LAGO.DAT',STATUS='OLD')
OPEN (UNIT=3O,FILE='\WATER\DATA\LAG1.DAT',STATUS='OLD')
OPEN (UNIT=40,FILE='\WATER\DATA\A.DAT',STATUS='UNKNOWN')
OPEN (UNIT=50,FILE='\WATER\DATA\B.DAT',STATUS='UNKNOWN')

DO 10, K = 1, NV
READ (20,15) (CLAGO (K,KK), KK = 1, NV)

CONTINUE
DO 20, K = 1, NV

READ (30,15) (CLAG1 (K,KK), KK = 1, NV)
CONTINUE

CALL INVT (CLAGO,INV,NV)
CALL MULT (CLAG1,INV,A,NV,NV,NV,NV)

DO 30, K = 1, NV
WRITE (40,15) (A(K,KK), KK = 1, NV)

CONTINUE

CALL TRANSP (CLAG1,NV,NV,TRSP)
CALL MULT (A,TRSP,TERM,NV,NV,NV,NV)
CALL SUBTR (CLAGO,TERM,NV)
CALL CHOLKY (B,TERM,NV)

DO 40, K = 1, NV
WRITE (50,15) (B(K,KK), KK = 1, NV)

CONTINUE

STOP
END
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PROGRAM 12

/-S ^ ^ _ ^ _ _ _ ^ _ _ ^ _ _ _ _ ^^_ _ _ ^ ^ ^ _ _ ^ ^ _ ^ ^^ _ ^ ^,, _ _ _ _ ^ ^ ^ ^ v — _pi _ _ _ ^ ^

C PROGRAM TO GENERATE CLIMATE SEQUENCES ACCORDING TO
C MODEL 1.
f^ _m uu u-m .Mi - • - » r n i _•!•-»• — - ^ •

C INTEGER VARIABLES

INTEGER NT,NV,NY,NP,PSTATE,STATE

C PSTATE = PRESENT STATE OF DAY
C STATE = PREVIOUS STATE OF DAY

C PARAMETER STATEMENTS

C
C
C
C

PARAMETER (NT=365)
PARAMETER (NY=51)
PARAMETER (NV=7)
PARAMETER (NP=3)

NT = £ OBSERVATIONS PER YEAR
NV = £ VARIABLES
NY = £ YEARS TO BE GENERATED
NP = £ PARAMETERS IN SEASONAL MODEL

INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
COMMON

SEED (9)
RAIN
GAM (2,NP)
PHI (NP,O:NT)
RAND (NV,1)
SIGMA (2,NV,O:NT)
MU (2,NV,0:NT)
OBSN (NV,1)
RES (NV,1)
TEMP (NV)
AMP (O:NP)
PHASE (NP)
A {N\;,N\J)
B (NV,NV)
C (NT)
IDUM1,IDUM2,IDUM3,IDUM4,IDUM5,IDUM6,IDUM7

15 FORMAT (5F9.2, 2F10.2, F9.2)
25 FORMAT (' GIVE 9 -VE Nos. TO INITIALIZE RANDOM GENERATOR',/)

OPEN (UNIT=9,FILE='LPT1' )
OPEN (UNIT=1O,FILE='\WATER\DATA\SIMU.DAT',STATUS='UNKNOWN')
OPEN (UNIT=22,FILE='CON')

COMPUTE THE FOURIER SERIES TERMS
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CALL CQSSIN (PHI,NP,NT)
DO 60, 1 = 1 , NP

PHI (1,0) = PHI (I,NT)
60 CONTINUE

PI=3.14159
SMAX=135
SMIN=110
AVE=(SMAX+SMIN)/2
AMPS=SMAX-SMIN
DO 330, I = 1, NT

C(I) = AVE+£AMPS/2)*C0S((2*PI/NT)*(I+11))
330 CONTINUE

C READING PARAMETER ESTIMATES

CALL DATA1 (GAM,MU,SIGMA,NP,NV,AMP,PHASE,CV,PHI,A,B,NT)

C INPUT SEEDS TO START RANDOM NUMBER GENERATOR. MUST BE
C NEGATIVE NUMBER.

PRINT 25
DO 50, II = 1, 9

READ (22, *) SEED (II)
50 CONTINUE

IDUM1 = SEED (1)
IDUM2 = SEED (2)
IDUM3 = SEED (3)
IDUM4 = SEED (4)
IDUM5 = SEED (5)
IDUM6 = SEED (6)
IDUM7 = SEED (7)
IDUM8 = SEED (8)
IDUM9 = SEED (9)

C COMPUTE PARAMETERS NEEDED FOR COMPUTATION OF RAINFALL
C DEPTH

CALL CALBET (BETA,CV)
ALPH = 1 + 1 / BETA
GAMM = GAMMA (ALPH)
BI = 1 /BETA
W = 0.01721421

C SET INITIAL STATE OF DAY TO BE DRY
C SET INITIAL CLIMATE VALUE TO IT'S MEAN AT TIME ZERO

C STATE = 1 ==> DRY
C STATE = 2 = = > WET

STATE = 1
DO 10, I = 1, NV

OBSN (1,1) = 0.0
10 CONTINUE
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DO 30, I = 1, NY
DO 40, J = 1, NT

C GENERATE RAINFALL VALUE
f _ _ _ , , _ • _ _ _ _ _ _ _ - _ . _ _ _ - n-

C COMPUTE PROBABILITY THAT A WET DAY FOLLOWS A WET DAY, OR

C THE PROBABILITY THAT A WET DAY FOLLOWS A DRY DAY.

CALL PIEST (NP,GAM,STATE,J,PHI,PI,NT)

C GENERATE A UNIFORM RANDOM NUMBER BETWEEN 0 AND i.
UNIFOR = URAN8 (IDUM8)
IF (UNIFOR .LT. PI) THEN

PSTATE = 2
ELSE

PSTATE = 1
ENDIF

C GENERATE A NORMAL RANDOM NUMBER

CALL GRAND2 (RAND,NV)

C GENERATE CLIMATE SEQUENCES
/-> __._-,_-,__,__._-,__,__,.__— ____,

CALL M0DEL1 (RAND,NV,SIGMA,MU,J,OBSN,PSTATE,NT,A,B,RES)

C DETERMINE WHETHER IT RAINED AND SET RAIN VALUE

C RAIN = 0 ==> DID NOT RAIN
C RAIN = 1 ==> RAINED

IF (PSTATE .EQ. 1) THEN
RAIN = 0

ELSE
RAIN - 1

ENDIF

C GENERATE RAINFALL DEPTH IF IT RAINED
r-i _ - _ . _ . , _ _ _ _ , _ _ _ . _ - _ _ _ , _ _ , — ~ — —

IF (RAIN .EQ. 1) THEN
CALL DEPTH3 (IDUM9,NP,RAIN,J,AMP,PHASE,GAMM,BI,W)

ENDIF

C TRANSFORM VARIABLES TO THE ORIGINAL UNITS

TEMP(2)=(230-100*EXP(RES(2,i)))/(EXP(RES(2,1))+l)
TEMP(l)=(410+TEMP(2)*EXP(RES(l,l)))/(EXP(RES(I,1))+i)
TEMP(3)=(C(J)-0.01-(0.01*EXP(RES(3,D)))/(EXP(RES<3,1))+l
TEMP(4)=(10000/(EXP(RES(4,l))+l))-0.01
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TEMP(5)=101/(EXP(RES(5,1))+l)
TEMP(6)=TEMP(5)/(EXP(RES(6,1))+l)

. OUTPUT GENERATED SEQUENCES

IF (I.NE.l) THEN
WRITE (10,15) RAIN, (TEMP <K), K = 1, NV)

ENDIF

. UPDATE THE STATE OF THE PREVIOUS DAY

IF (PSTATE .NE. STATE) THEN
STATE = PSTATE

ENDIF

40
30

CONTINUE
CONTINUE

STOP
END

PROGRAM 13

C PROGRAM TO PREPARE DATA SETS OF POSSIBLE WET/DRY
C SEQUENCES
C ____——_ ____-__ — ______ _________ _____

INTEGER NY,NT,PREV,RAIN
PARAMETER (NY=12)
PARAMETER (NT=365)
INTEGER SEQ (4,NY,NT)
INTEGER COUNT (4,NY)
REAL CLIMA

5 FORMAT (F9.2)
15 FORMAT (14(15))
25 FORMAT (15)

PREV = 0
DO 20, J = 1, 4

DO 40, I = 1, NY
COUNT(J,I) = 0

40 CONTINUE
20 CONTINUE

OPEN (UNIT-8,FILE-'\WATER\DATA\CLIMA.DAT',STATUS-'OLD')
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50
10

30
60

GT

EQ

THEN

0) THEN

-999) THEN

2) .AND. (PREV .NE. 2)) THEN

DO 10, J = 1, NY
DO 50, I = 1, NT

READ (8,5) CLIMA
IF (CLIMA .EQ. 0)

RAIN = 0
ELSEIF (CLIMA

RAIN = 1
ELSEIF (CLIMA

RAIN = 2
ENDIF
IF ((RAIN .NE.

IF (RAIN .EQ. PREV) THEN
IF (RAIN .EQ. 0) THEN

COUNT(1,J) = CQUNT(1,J) + 1
SEQC1,J,COUNT(1,J)) = I

ELSE
COUNT(2,J) = COUNT(2,J) + 1
SEQ (2,J,C0UNT(2,J)) = I

ENDIF
ELSE

IF (RAIN .EQ. 0) THEN
COUNT(4,J) = COUNT(4,J) + 1
SEQ(4,J,C0UNT(4,J)) = I

ELSE
COUNT(3,J) = COUNT(3,J) + 1
SEQ (3,J,C0UNT(3,J)) = I

ENDIF
ENDIF

ENDIF
PREV = RAIN

CONTINUE
CONTINUE

OPEN (UNIT=10,FILE='\WATER\DATA\SEQ.DAT',STATUS='UNKNOWN')

DO 60, I = 1 NY, I = 1,
DO 30, J = 1,

WRITE (10,
WRITE (10,

CONTINUE
CONTINUE

4
25)
15)

COUNTfJ,I)
<SEQ(J,I,K) K = 1, COUNT(J,I))

STOP
END
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PROGRAM 14

f _ - m L r _ | _ r • u . -r,, ~ U _ •T ' -U-1 — _™ • — 1 - JLJ .i_l 1-1 — . . _ •!_•• _ • _ _ J - ' - ' 1 - — , . - _

C PROGRAM TO COMPUTE THE AUTOCORRELATION COEFFICIENT
C CONDITIONED ON WET/DRY STATUS OF THE DAY

5
25
35
45
55
65
75
85
95
105

150
140

INTEGER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL

NY,NV,NT,NPARM,P,PP,NRAU
(NRAU=4)
(NY=12)
(NV=7)
(NT=365)
(NPARM=3)
COUNT (NRAU,NY).
SEQ (NRAU,NY,NT)
SUM (NRAU)
CLIMA (NY,NT)
MU (2,NT)
PHI (NT,NPARM)
ALPHA (NV,2,NPARM)
RAU (NRAU)

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(9X,F9.2)
(1SX,F9.2)
(27X,F9.2)
(36X,F9.2)
(45X,F10.2)
(55X,F10.2)
(65X,F9.2)
(15)
(1415)

OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=18,FILE='\WATER\DATA\CLIMA.DAT',STATUS='OLD')
OPEN (UNIT=10,FILE='\WATER\DATA\EST-M.DAT',STATUS='OLD')
OPEN <UNIT=12,FILE='\WATER\DATA\SEQ.DAT',STATUS='OLD')

INPUT SEQUENCE OF DRY/WET DAYS

DO 140, J = 1, NY
DO 150, I = 1, 4

READ (12,95) COUNT (I,J)
READ (12,105) (SEQ (I,J,K), K = 1, COUNT (I,J))

CONTINUE
CONTINUE

INPUT OF PARAMETER ESTIMATES FOR THE MEAN FUNCTION

90

DO 170, K = 1, NV
DO 90, M= 1, 2

READ (10,*) (ALPHA (K,M,I), I = 1, NPARM)
CONTINUE
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170 CONTINUE

CALL TRIG (PHI,NPARM,NT)
DO 220, JJ = 1, NRAU

DO 230, I = 1, NY
SUM (JJ) = SUM (JJ) + COUNT (JJ,I)

230 CONTINUE
220 CONTINUE

DO 30, K = 1, NV
DO 10, I = 1, NY

DO 20, J = 1, NT

INPUT ONE VARIABLE AT A TIME

IF (K .EQ. 1) THEN
READ (18,25) CLIMA (I,J)

ELSEIF (K .EQ. 2) THEN
READ (18,35) CLIMA (I,J)

ELSEIF (K .EQ. 3) THEN
READ (18,45) CLIMA (I,J)

ELSEIF (K .EQ. 4) THEN
READ (18,55) CLIMA (I,J)

ELSEIF (K .EQ. 5) THEN
READ (18,65) CLIMA (I,J)

ELSEIF <K .EQ. 6) THEN
READ (18,75) CLIMA (I,J)

ELSEIF (K .EQ. 7) THEN
READ (18,85) CLIMA (I,J)

ENDIF
20 CONTINUE
10 CONTINUE

. . . GENERATE MEAN VECTOR

CALL BMEAN <MU,PHI,NT,NPARM,ALPHA,K,NV)

... COMPUTE AUTOCORRELATION

WRITE (9,*) 'INITIAL ESTIMATES FOR RAU OF VARIABLE: ', K

DO 120, JJ = 1, 4

NUM = 0
DENOM = O
CNT = 0
CNT2 = 0

IF (JJ.EQ. 1) THEN
M = 1
L = 1

ELSEIF (JJ .EQ. 2) THEN
M = 2
L = 2
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ELSEIF (JJ .Ed. 3) THEN
M = 2
L = 1

ELSEIF (JJ .EQ. 4) THEN
M = 1
L = 2

ENDIF
DO 110, I = 1, NY

DO 130, J = 1, COUNT (JJ,I)
P = SEQ (JJ , I ,J)
N = 0
IF ((P .EQ. 1) .AND. (I .EQ. 1)) THEN

GOTO 130
ENDIF
IF ((P .EQ. 1) .AND. (I .GT. 1)) THEN

N ~ 1
PP = 365

ELSE
PP =- SEQ ( JJ, I , J ) - 1
N = O

ENDIF
IF ((CLIMA<I,P).NE.-999).AND.(CLIMA(I-N,PP).NE.

& -999)) THEN
NUM = NUM+(CLIMA<I,P)-MU(M,P))*(CLIMA(I-N,PP)

& MU(L,PP))
ELSE

CNT = CNT + 1
ENDIF
IF (CLIMA(I-N,PP).NE.-999) THEN

DENOM = DENOM+(CLIMA(I-N,PP)-MU(L,PP))**2
ELSE

CNT2 = CNT2 + 1
ENDIF

130 CONTINUE
110 CONTINUE

200 NUM = NUM/(SUM(JJ)-1-CNT)
DENOM = DENOM/(SUM(JJ)-CNT2)
RAU (JJ) = NUM / DENOM
WRITE (9,*) RAU (JJ)

120 CONTINUE
WRITE (9,5)
REWIND 18

30 CONTINUE

STOP
END
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PROGRAM 15

r^ J_-_J. U . M _ M _ „. .__•- M M - - — ^. — — — — ^ — — — — — — .»

C PROGRAM TO ESTIMATE INITIAL STANDARD DEVIATION FUNCTION
C — MEAN VECTOR GENERATED

5
15
25
35
45
55
65
75
85
95
105

INTEGER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(/)
(F9.
<9X,
(18X
(27X
(36X
(45X
(55X
(65X
(15)
(141

2)
F9.2
,F9.
,F9.
,F9.
,F10
,F10
,F9.

5)

NY,NV,NT,NPARM,P,PP,NRAU
(NRAU=4)
(NY=12)
(NV=7)
(NT=365)
(NPARM=3)
COUNT (NRAU,NY)
SEQ (NRAU,NY,NT)
SUM (NRAU)
SIGMA (NRAU)
CLIMA (NY,NT)
MU (2,NT)
PHI (NT,NPARM)
ALPHA (NV,2,NPARM)
RAU (NRAU,NV)

)
2)
2)
2)
.2)
.2)
2)

150
140

OPEN (UNIT=9,FILE='LPTi')
OPEN (UNIT=1B,FILE='\WATER\DATA\CLIMA.DAT',STATUS='OLD')
OPEN <UNIT=10,FILE='\WATER\DATA\EST-M.DAT',STATUS='OLD')
OPEN (UNIT=14,FILE='\WATER\DATA\RAU-M.DAT',STATUS='OLD')
OPEN (UNIT=12,FILE='\WATER\DATA\SEQ.DAT',STATUS='OLD')

INPUT SEQUENCE OF DRY/WET DAYS

DO 140, J = 1, NY
DO 150, I = 1, 4

READ (12,95) COUNT (I,J)
READ (12,105) (SEQ (I,J,K), K = 1, COUNT (I,J))

CONTINUE
CONTINUE

INPUT OF PARAMETER ESTIMATES FOR THE MEAN FUNCTION

DO 170, K = 1, NV
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DO 90, M= 1, 2
READ (10,*) (ALPHA <K,M,I), I = 1, NPARM)

90 CONTINUE
170 CONTINUE

INPUT OF PARAMETER ESTIMATES FOR RAU

DO 470, K = 1, NV
READ (14,*) (RAU <I,K), I = 1, NRAU)

470 CONTINUE

CALL TRIG (PHI,NPARM,NT)
DO 220, JJ = 1, 4

DO 230, I = 1, NY
SUM (JJ) = SUM (JJ) + COUNT (JJ,I)

230 CONTINUE
220 CONTINUE

DO 30, K = 1, NV
DO 10, I = 1, NY

DO 20, J = 1, NT

INPUT ONE VARIABLE AT A TIME

IF (K .EQ. 1) THEN
READ (18,25) CLIMA (I, J)

ELSEIF (K .EQ. 2) THEN
READ (18,35) CLIMA (I, J)

ELSEIF (K .EQ. 3) THEN
READ (18,45) CLIMA (I, J)

ELSEIF (K .EQ. 4) THEN
READ (18,55) CLIMA (I, J)

ELSEIF (K .EQ. 5) THEN
READ (18,65) CLIMA (I, J)

ELSEIF (K .EQ. 6) THEN
READ (18,75) CLIMA (I, J)

ELSEIF (K .EQ. 7) THEN
READ (18,85) CLIMA (I, J)

END IF
20 CONTINUE
10 CONTINUE

... GENERATE MEAN VECTOR

CALL GMEAN (MU,PHI,NT,NPARM,ALPHA,K,NV)

... COMPUTE STANDARD DEVIATIONS

WRITE (9,*) 'INITIAL ESTIMATES FOR SIGMA OF VARIABLE: ', K
DO 120, JJ = 1, 4

IF (J-J.EQ. 1) THEN
M = 1
L = 1

ELSEIF (JJ .EQ. 2) THEN
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130
110

200

120

30

M = 2
L = 2

ELSEIF (JJ .EQ. 3) THEN
M = 2
L = 1

ELSEIF (JJ .EQ. 4) THEN
M = i
L = 2

ENDIF
NUM = 0
CNT = 0
DO 110, I = 1, NY

DO 130, J = 1, COUNT (JJ,I)
P = SEQ (JJ,I,J)
N = 0
IF (<P .EQ. 1) .AND. (I .EQ. 1)) THEN

CNT = CNT + 1
GOTO 130

ENDIF
IF U P .EQ. 1) .AND. (I .GT. 1)) THEN

N = 1
PP = 365

ELSE
PP = SEQ (JJ,I,J)-1
N = 0

ENDIF
IF ((CLIMA(I,P) -NE.-999) .AND. ( CLI MA ( I -N , PP ) . NE.

-999)) THEN
NUM = NUM+(CLIMA(I,P)-MU(M,P)-RAU(JJ,K)*(CLIMA

(I-N,PP)-MU(L,PP)))**2
ELSE

CNT = CNT + 1
ENDIF

CONTINUE
CONTINUE

SIGMA (JJ) = SQRT(NUM/(SUM(JJ)-1-CNT))
WRITE (9,*) SIGMA (JJ)

CONTINUE
WRITE (9,5)
REWIND 18

CONTINUE

STOP
END
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PROGRAM 16

PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 3

INTEGER NV,NY,NT,NP,NPARM,NRAU,CONVG,T
PARAMETER. (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=14)
PARAMETER (NPAR:'1=3)
PARAMETER (NRAU=4)
INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL RESID (NV,NY,NT)
REAL MU (2,0:NT)
REAL LNLIKE,AKAIKE,PI
PARAMETER <PI=3.141593)
REAL CLIMA (NY,0:NT)
REAL ALPHA <2,NV,NPARM)
REAL SIGMA (NRAU,NV)
REAL DER (NP)
REAL DER2 (NP,NP)
REAL PHI (NPARM,O:NT)
REAL RAU (NRAU,NV)
REAL THETA (NP)
REAL A (NP,O:NP)

MEAN FOR DRY DAYS:', 3F10.4)
MEAN FOR WET DAYS:', 3F10.4)
STANDARD DEVIATIONS:', 4F1O.4)
AUTOCORRELATION:', 4F10.4)

IS

5 FORMAT (/)
15 FORMAT (' ESTIMATES OF
25 FORMAT (' ESTIMATES OF
35 FORMAT (' ESTIMATES OF
55 FORMAT (' ESTIMATES OF
65 FORMAT (7F10.4)
75 FORMAT (' AKAIKE"S CRITERION FOR VARIABLE
85 FORMAT (9X,F9.2)
95 FORMAT (1BX,F9.2)

105 FORMAT (27X,F9.2)
115 FORMAT (36X,F9.2)
125 FORMAT (45X,F10.2)
135 FORMAT (55X,F10,2)
145 FORMAT (65X,F9.2)
155 FORMAT (15)
165 FORMAT (1415)

OPEN (UNIT = 1B,FILE='\WATER\DATA\CLIMA.DAT' ,STATUS^'OLD' )
OPEN CUNIT=12,FILE='\WATER\DATA\SEQ.DAT',STATUS='OLD')
OPEN (UNIT=14,FILE='\WATER\DATA\RESI.DAT',STATUS^'UNKNOWN')
OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=6,FILE='C0N')

CALL COSSIN (PHI,NPARM,NT)
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10

DO 10, I = 1
PHI (1,0)

CONTINUE

, NPARM
= PHI (I,NT)

INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL INTAL3 (EPS,MAX ITER,ALPHA,SISMA,RAU,NPARM,NV,NRAU)
DO 20, K = i, NV

CONVG = 1
DO 130, 1 = 1 ,

DO 140, J =
IF CK.EQ

READ
ELSE IF

NY
1,
1)

NT
THEN

(18,85)
(K.EQ.2)

READ (18,95)
ELSEIF (K.EG.3)

18,105

CLIMA
THEN
CLIMA
THEN
CLIMA
THEN
CLIMA

140

130

READ
ELSEIF

READ
ELSEIF

READ
ELSEIF

READ
ELSEIF

READ
END IF

CONTINUE
IF (I.EQ.l) THEN

CLIMA (1,0) = CLIMA
ELSEIF (I.NE.l) THEN

CLIMA(I,O) = CLIMA(I-
ENDIF

CONTINUE

(K.EQ.4)
(18,115)
(K.EQ.5) THEN
(18,125) CLIMA
(K.EQ.6) THEN
(18,135) CLIMA
(K.EQ.7) THEN
(18,145) CLIMA

(I, J)

(I, J)

(I

(I, J)

(I, J)

(I

(I, J)

(I.I) - 0.5

160
150

REWIND 18
IF (K .EQ. 1)

DO 150, KK
DO 160,

READ
READ

CONTINUE
CONTINUE

ENDIF

THEN
- 1, NY
I = 1, 4
(12,155)
(12,165)

COUNT (I,KK)
(SEQ (I,KK,J), J = 1, COUNT ( I,KK) )

ITERATIVE ESTIMATION OF PARAMETERS

CALL NEWT3 (ALPHA,SIGMA,RAU,NPARM,MAXITER,NT,NY,CLIMA,SEQ,
COUNT,DER,DER2,PHI,EPS,NP,NV,K,A,THETA,NRAU,CONVG)

OUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,5)
WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
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50
40
30

WRITE (9,35) (SIGMA (J,K), J = 1, NRAU)
WRITE (9,55) (RAU (J,K), J = 1, NRAU)
WRITE (9,5)

COMPUTE RESIDUAL MATRIX

IF (CONVG.EQ.l) THEN
DO 30, M = 1, 2

DO 40, I = 0 , NT
MU (M,I) = 0.0
DO 50, L = 1, NPARM

MU(M,I) - MU(M,I)+ALPHA(M,K,L)*PHI(L,I)
CONTINUE

CONTINUE
CONTINUE

70
60

DO 60, I = 1, NY
DO 70, J = 1, NT

RESID (K,I,J)
CONTINUE

CONTINUE
LNLIKE = 0
TERM = 0

= -999.00

&

100
90
80

DO 80, J = 1,
IF (J .EQ.

M = 1
L = 1

4
1) THEN

ELSEIF (J .EQ. 2) THEN
M = 2
L = 2

ELSEIF (J
M = 2
L = 1

ELSEIF (J
M = 1
L = 2

END IF
DO 90, I = 1,

EQ. 3) THEN

EQ. 4) THEN

NY
DO 100, KK = 1, COUNT (J,I)

T.= SEQ (J,I,KK)
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-l)

•NE.-999)) THEN
RESID(K,I,T)=(CLIMA(I,T)-MU(M,T))/SIGMA(J,K

-RAUCJ,K)*((CLIMACI,T-l)-MU(L,T-l))/
SIGMA(J,K))

LNLIKE = LNLIKE + (RESIDtK,I,T))**2
ENDIF
TERM = TERM + LOG(SIGMA(J,K))

CONTINUE
CONTINUE

CONTINUE

LNLIKE = -((NY*NT)/2)*L0G(2*PI)-TERM-LNLIKE/2
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AKAIKE = -2*LNLIKE+2*NP

WRITE (9,75) K, AKAIKE
ENDIF

20 CONTINUE

DO 110, I = 1, NY
DO 120, T = 1, NT

WRITE (14,65) (RESID (K,I,T), K = 1, NV)
120 CONTINUE
110 CONTINUE

STOP
END
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PROGRAM 17

f ____— _ — — — —

C PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 3
C USING CONJUGATE GRADIENT METHODS IN MULTIDIMENSIONS
C^ __ — _ — — — ^ -^ -*» — — ^ — — — — —— —•- — — — — — — ^ ^ ^ ^ ^

INTEGER NV,NY,NT,NP,NPARM,NRAU,T
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=14)
PARAMETER (NPARM=3)
PARAMETER (NRAU=4)
REAL THETA (NP)
REAL LNLIKE,AKAIKE,PI
PARAMETER (PI=3.141593)
REAL MU (2,0:NT)
REAL RES ID (NV,NY,NT)

COMMON K,I COUNT(NRAU,NY) ,ISEQ(NRAU,NY,NT),CLIMA(NY,0:NT) ,
ALPHA(2,NV,NPARM),SIGMA(NRAU,NV),PHI(NPARM,0:NT),

& RAU(NRAU,NV),ISCALE(3,NV)

5 FORMAT (/)
15 FORMAT (' ESTIMATES OF MEAN FOR DRY DAYS:', 3F10.4)
25 FORMAT (' ESTIMATES OF MEAN FOR WET DAYS:', 3F10.4)
35 FORMAT (' ESTIMATES OF STANDARD DEVIATIONS:', 4F10.4)
55 FORMAT (' ESTIMATES OF AUTOCORRELATION:', 4F10.4)
65 FORMAT (' PARAMETER ESTIMATES FOR VARIABLE: ', 14)
75 FORMAT (' CONVERGE ACHIEVED IN ', 14, ' ITERATIONS')
115 FORMAT (3X, F5.0)
125 FORMAT (9X,F9.2)
135 FORMAT (1SX,F9.2)
145 FORMAT (27X,F9.2)
155 FORMAT (36X,F9.2)
165 FORMAT (45X,F10.2)
175 FORMAT (55X,F10.2)
185 FORMAT (65X,F9.2)
195 FORMAT (15)
205 FORMAT (1415)
215 FORMAT (7F10.4)
315 FORMAT (' AKAIKE"S CRITERION FOR VARIABLE:', 14, ' IS:', F30.4)

&

OPEN (UNIT=14,FILE='\WATER\DATA\RESIT.DAT',STATUS='UNKNOWN')
OPEN (UNIT=18,FILE=J\WATER\DATA\CLIMA.DAT',STATUS='OLD')
OPEN <UNIT=12,FILE='\WATER\DATA\SEQ.DAT',STATUS='OLD')
OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=6,FILE='C0N')
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CALL CQSSIN (PHI,NPARM,NT)
DO 10, I = 1, NPARM

PHI (1,0) = PHI (I,NT)
10 CONTINUE

C INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL INT3 (ALPHA,SIGMA,RAU,NPARM,NV,NRAU,ISCALE)

PRINT *, 'WHICH VARIABLE TO BE ESTIMATED?'
RtAD (6,*) K

DO 20, I = 1, NY
DO 30, J = 1, NT

IF (K .EQ. 1) THEN
READ (18,125) CLIMA (I, J)

ELSEIF (K .EQ. 2) THEN
READ (18,135) CLIMA (I, J)

ELSEIF (K .EQ. 3) THEN
READ (18,145) CLIMA (I, J)

ELSEIF (K .EQ. 4) THEN
READ (18,155) CLIMA (I, J)

ELSEIF (K .EQ. 5) THEN
READ (18,165) CLIMA (I, J)

ELSEIF (K .EQ. 6) THEN
READ (18,175) CLIMA (I, J)

ELSEIF (K .EQ. 7) THEN
READ (18,185) CLIMA (I, J)

ENDIF
30 CONTINUE

CLIMA (1,0) = CLIMA (1,1) - 0.5
20 CONTINUE

DO 40, KK = 1, NY
DO 50, I = 1, 4

READ (12,195) ICOUNT (I,KK)
READ (12,205) (ISEQ (I,KK,J), J = 1, ICOUNT (I,KK))

50 CONTINUE
40 CONTINUE

C ITERATIVE ESTIMATION OF "PARAMETERS

WRITE (9,65) K

C TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
C VECTOR

DO 60, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)*ISCALE(3,Y •
THETA (J+3) = ALPHA (2,K,J)* I SCALE(3,K)

60 CONTINUE
DO 70, J = 1, NRAU

THETA (J+6) = SIGMA (J,K)* I SCALE(2,K)
THETA (J+10) = RAU (J,K)*ISCALE(1,K)
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70 CONTINUE
CALL POLRIB <THETA,NP,TOL,ITER,FMIN)

UPDATE PARAMETER ESTIMATES

DO 80 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA <2,K,J) - THETA (J+3)/ISCALE(3,K)

80 CONTINUE

DO 90, J = 1, NRAU
SIGMA (J,K) = THETA (J+6)/ISCALE(2,K)
RAU (J,K) = THETA (J+10)/ISCALE(1,K)

90 CONTINUE

WRITE (9,75) ITER

OUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,5)
WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
WRITE (9,35) (SIGMA (J,K), J = 1, NRAU)
WRITE (9,55) (RAU (J,K), J = 1, NRAU)
WRITE (9,5)

COMPUTE RESIDUAL MATRIX

DO 100, M = 1, 2
DO 120, I = 0, NT

MU (M,I) = 0.0
DO 130, L = 1, NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) * PHI (L,I
130 CONTINUE
120 CONTINUE
100 CONTINUE

DO 180, I = 1, NY
DO 190, J - 1, NT

RESID (K,I,J) = -999.00
190 CONTINUE
ISO CONTINUE

LNLIKE = 0
TERM = 0

DO 140, J = 1, 4
IF (J .EQ. 1) THEN

M = 1
L = 1

ELSEIF (J .EQ. 2) THEN
M = 2
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L = 2
ELSEIF (J .EG. 3) THEN

M = 2
L = 1

ELSEIF (J .EQ. 4) THEN
M = 1
L = 2

ENDIF
DO 150, I = 1, NY

DO 160, KK = 1, ICOUNT (J,I)
T = ISEQ (J,I,KK)
IF ( (CLIMA(I,T) .NE.-999) .AND. (CLIMAfl ,T-1) .NE.-999) )

& THEN
RESID(K,I,T)=(CLIMA(I,T)-MU(M,T))/SISMA(J,K)-RAU(J,K

& *((CLIMA(I,T-1)-MU(L,T-1))/SIGMA(J,K))
LNLIKE = LNLIKE + (RESID(K,I , T ) ) **2

ENDIF
TERM = TERM + LOG(SIGMA(J,K))

160 CONTINUE
150 CONTINUE
140 CONTINUE

LNLIKE = -((NY*NT)/2)*L0G(2*PI)-TERM-LNLIKE/2
AKAIKE = -2*LNLIKE+2*NP

WRITE (9,315) K, AKAIKE

DO 200, 1 = 1 , NY
DO 170, T = 1, NT

WRITE £14,215) (RESID (K,I,T), K = 1, NV)
170 CONTINUE
200 CONTINUE

STOP
END
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PROGRAM 18

p _____ __ —— ___ __ _—_____--__

C PROGRAM TO COMPUTE THE AUTOCORRELATION COEFFICIENT
C — FOR UNCONDITIONED DATA SET
r* — -—-__ _ _ _ _ _ — _ — — —._

5
15
25
35
45
55
65
75
85

INTEGER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
REAL
REAL
REAL
REAL
REAL

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(/)
(F9.
(9X,
(18X
(27X
(36X
(45X
(55X
(65X

2)
F9.2
,F9.
,F9.
,F9.
,F1O
,F1O
,F9.

NY,NV,NT,NPARM
(NY=12)
(NV-7)
(NT=365)
<NPARM=3)
RAIN <NY*NT)
CLIMA <NY*NT)
MU (2,NT)
PHI (NT,NPARM)
ALPHA (NV,2,NPARM)

)
2)
2)
2)
.2)
.2)
2)

OPEN (UNIT=9,FILE='LPT1' )
OPEN (UNIT-IB,FILE-'\WATER\DATA\CLIMA.DAT',STATUS-'OLD')
OPEN (UNIT=1O,FILE='\WATER\DATA\EST-M.DAT',STATUS^'OLD')

INPUT OF RAINFALL DATA

40

DO 40, J = 1, NY*NT
READ (18, 15) RAIN(J)

CONTINUE
REWIND 18

INPUT OF PARAMETER ESTIMATES FOR THE MEAN FUNCTION

DO 170, K - 1, NV
DO 90, M= 1, 2

READ (10,*) (ALPHA (K,M,I), I
90 CONTINUE
170 CONTINUE

CALL TRIG (PHI,NPARM,NT)
DO 30, K = 1, NV

DO 10, I = 1, NY*NT

INPUT ONE VARIABLE AT A TIME

= 1, NPARM)
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IF (K .EQ. 1) THEN
READ (18,25) CLIMA (I)

ELSEIF (K .EQ. 2) THEN
READ (18,35) CLIMA (I)

ELSEIF (K .EQ. 3) THEN
READ (18,45) CLIMA (I)

10

c

ELSEIF
READ

ELSEIF
READ

ELSEIF
READ

ELSEIF
READ

ENDIF
CONTINUE

(K .EQ.
(18,55)
(K .EQ.
(18,65)
(K .EQ.
(18,75)
<K .EQ.
(18,85)

GENERATE MEAN

4) THEN
CLIMA
5) THEN
CLIMA
6) THEN
CLIMA
7) THEN
CLIMA

VECTOR

(

(

(

(

I)

I)

I)

I )

CALL GMEAN (MU,PHI,NT,NPARM,ALPHA,K,NV)

COMPUTE AUTOCORRELATION

CNT = 0
NUM = 0
DENOM = 0
COUNT = 0
C0UNT2 = O
DO 20, J = 2, NY*NT

IF (RAIN(J).EQ.O) THEN
M = 1

ELSE
M = 2

ENDIF
IF (J.6T.NT*(CNT+1)) THEN

CNT = CNT + 1
ENDIF
I = J-NT*CNT
IF (I .EQ. 1) THEN

II = 365
ELSE

II = 1-1
ENDIF
IF (RAIN (J-l).EQ.O) THEN

L = 1
ELSE

L = 2
ENDIF
IF ((CLIMA(J).NE.-999).AND.(CLIMA(J-l).NE.-999)) THEN

NUM = NUM+(CLIMA(J)-MU(M,I))*(CLIMA<J-l)-MU(L,I I))
ELSE

COUNT = COUNT + 1
ENDIF
IF (CLIMA(J-l).NE.-999) THEN
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DENOM = DENOM+(CLIMA(J-1)-MU(L,II))**2
ELSE

COUNT2 = C0UNT2 + 1
ENDIF

20 CONTINUE

IF (RAIN (NY*NT).EQ.O) THEN
L = 1

ELSE
L *= 2

ENDIF

IF (CLIMA(NY*NT).NE.-999) THEN
DENOM = DENOM-t-(CLIMA(NY*NT)-MU(L,NT) )**2

ELSE
C0UNT2 = C0UNT2 + 1

ENDIF

NUM = NUM/(NY*NT-1-COUNT)
DENOM = DENOM/(NY*NT-C0UNT2)
RAU = NUM / DENOM
WRITE (9,*) 'INITIAL ESTIMATE FOR RAU OF VARIABLE:
WRITE (9,*) RAU
WRITE (9,5)
REWIND 18

30 CONTINUE

STOP
END
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PROGRAM 19

f _ _ _ _ _ _ _ ___ _ __~ ___

C PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 4
r~> —r T i-••__•_ • _ • • _MJ — _• - JJ j_m _ • nm » - -

5
15
25
35
45
55
65
75
85
95

105
115
125
135
145

INTEGER NV,NY,NT,NP,NPARM,NRAU,CONVG,T
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=13)
PARAMETER (NPARM-3)
PARAMETER (NRAU=1)
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

FORMAT I
FORMAT
FORMAT 1
FORMAT
FORMAT 1
FORMAT
FORMAT 1
FORMAT ,
FORMAT (
FORMAT '
FORMAT (
FORMAT i
FORMAT (
FORMAT i
FORMAT (

COUNT (4,NY)
SEQ (4,NY,NT)
CLIMA (NY,O:NT)
ALPHA (2,NV,NPARM)
PSI (2,NV,NPARM)
DER (NP)
DER2 (NP,NP)
PHI (NPARM,O:NT)
RAU (NRAU,NV)
THETA {NP)
A (NP,O:NP)

:/)
(' ESTIMATES OF MEAN FOR DRY DAYS:
;* ESTIMATES OF MEAN FOR WET DAYS:
(' ESTIMATES OF VAR FOR DRY DAYS:'
;• ESTIMATES OF VAR FOR WET DAYS:'
(' ESTIMATE OF AUTOCORRELATION:',
;9X,F9.2)
(1BX,F9.2)
|27X,F9.2)
C36X,F9.2)
;45X,F10.2)
(55X,F10.2)
!65X,F9.2)
(15)
:i4I5)

', 3F10.4)
1, 3F10.4)
, 3F10.4)
, 3F10.4)
F10.4)

10

OPEN (UNIT=18,FILE-'\WATER\DATA\CLIMA.DAT',STATUS-'OLD')
OPEN (UNIT=12,FILE='\WATER\DATA\SEQ.DAT',STATUS-'OLD')
OPEN (UNIT=9,FILE-'LPT1')
OPEN (UN IT=6,FILE='CON' )

CALL COSSIN (PHI,NPARM,NT)
DO 10, I = 1, NPARM

PHI (1,0) = PHI CI,NT)
CONTINUE

INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES
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CALL INITIAL (EPS,MAXITER,ALPHA,PSI,RAU,NPARM,NV,NRAU)

DO 20, K = i, NV
CONVG = 1
DO 30, I = 1, NY

DO 40, J = 1, NT
IF (K.EQ.l) THEN

READ (18,65) CLIMA (I, J)
ELSEIF (K.EQ.2) THEN

READ (18,75) CLIMA (I, J)
ELSEIF (K.EQ.3) THEN

READ (18,85) CLIMA (I, J)
ELSEIF (K.EQ.4) THEN

READ (18,95) CLIMA (I, J)
ELSEIF (K.EQ.5) THEN

READ (18,105) CLIMA (I, J)
ELSEIF (K.EQ.6) THEN

READ (18,115) CLIMA (I, J)
ELSEIF (K.EQ.7) THEN

READ (18,125) CLIMA (I, J)
END IF

40 CONTINUE
IF (I.EQ.l) THEN

CLIMA (1,0) = CLIMA (1,1) - 0.5
ELSEIF (I.NE.l) THEN

CLIMA(I,O) = CLIMA(I-1,NT)
END IF

30 CONTINUE

REWIND 18
IF (K .EQ. 1) THEN

DO 50, KK = 1, NY
DO 60, I = 1, 4

READ (12,135) COUNT (I,KK)
READ (12,145) (SEQ (I,KK,J), 0 = 1, COUNT (I,KK) )

60 CONTINUE
50 CONTINUE

END IF

ITERATIVE ESTIMATION OF PARAMETERS

CALL NEWT4 (ALPHA,PSI,RAU,NPARM,MAX ITER,NT,NY,CLIMA,SEQ,
& COUNT,DER,DER2,PHI,EPS,NP,NV,K,A,THETA,NRAU,CONVG)

OUTPUT OF FINAL PARAMETER ESTIMATES

(ALPHA (1,K,L), L = 1, NPARM)
(ALPHA (2,K,L), L = 1, NPARM)
(PSI (1,K,L), L = 1, NPARM)
(PSI (2,K,L), L = 1, NPARM)
(RAU (J,K), J = 1, NRAU)
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WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

(9,5)
(9,15)
(9,25)
(9,35)
(9,45)
(9,55)
(9,5)



COMPUTE RESIDUAL MATRIX

IF ((CONVG.EQ.l).DR.(K.EQ.7)) THEN
CALL M4RES (RAU,ALPHA,PSI,PHI,COUNT,SEQ,CLIMA,NT,NY,

& NPARM,NV,K,NRAU,NP,CONVG)
ENDIF

20 CONTINUE

STOP
END

PROGRAM 20

r̂  ______ _______ — _.-_. __-_ _ _ _ -_.__-____

C PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 4
C USING CONJUGATE GRADIENT METHODS IN MULT I DIMENSIONS
C — _ — — — _ — _ _ _ — — _ — _ _ _ _ — — — -__-w_ _ _ _ _ _ — _ _ —

INTEGER NV,NY,NT,NP,NPARM,NRAU,T
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=13)
PARAMETER (NPARM=3)
PARAMETER (NRAU=1)
REAL THETA (NP)
REAL AKAIKE,LNLIKE,PI
PARAMETER (P1=3.141593)
REAL MU (2,0:NT)
REAL SIGMA (2,0:NT)
REAL RESID (NV,NY,NT)

COMMON K,ICOUNT(4,NY),ISEQ(4,NY,NT),CLIMA(NY,0:NT),
& ALPHA(2,NV,NPARM),PSI(2,NV,NPARM),PHI(NPARM,0:NT),
& RAU(NRAU,NV),ISCALE(3,NV)
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5
15
25
35
45
55
65
75

115
205
305
405
505
605
705
805
905
105
125
135

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(
(
(
(
(
(
(
(
(
C
(
(
(
(
(
(
(
(
(
(

/ )
' ESTIMATES
' ESTIMATES
1 ESTIMATES
' ESTIMATES
' ESTIMATE
' PARAMETER
' CONVERGE
3X, F5.0)
9X,F9.2)
18X,F9.2)
27X,F9.2)
36X,F9.2)
45X,F10.2)
55X,F10.2)
65X,F9.2)
15)
1415)
7F10.4)
' AKAIKEMS

OF MEAN FOR DRY DAYS:'
OF MEAN FOR WET DAYS:'
OF VAR FOR DRY DAYS:',
OF VAR FOR WET DAYS:',

, 3F10.4)
, 3F10.4)
3F10.4)
3F10.4)

OF AUTOCORRELATION:', F10.4)
ESTIMATES FOR VARIABLE: ' , 14)
ACHIEVED IN ', 14, ' ITERATIONS-

CRITERION FOR VARIABLE: ', 14, ' IS: F30.4)

OPEN (UNIT=18,FILE='\WATER\DATA\CLIMA.DAT',STATUS='OLD')
OPEN (UNIT=12,FILE='\WATER\DATA\SEQ.DAT',STATUS='OLD')
OPEN <UNIT=9,FILE='LPT1')
OPEN (UNIT=6,FILE='C0N')
OPEN (UNIT=14,FILE='\WATER\DATA\RESIT.DAT',STATUS='UNKNOWN')

TOL = 0.0000000001
CALL COSSIN (PHI,NPARM,NT)
DO 30, 1 = 1 , NPARM

PHI (1,0) = PHI (I,NT)
30 CONTINUE

INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL INT4 (ALPHA,PSI,RAU,NPARM,NV,NRAU,ISCALE)

PRINT *, 'WHICH VARIABLE TO BE ESTIMATED?'
READ (6,*) K

DO 10, I = 1, NY
DO 220, J = 1, NT

IF (K .EQ. 1) THEN
READ (18,205) CLIMA (I, J)

ELSEIF (K .EQ. 2) THEN
READ (18,305) CLIMA (I, J)

ELSEIF (K .EQ. 3) THEN
READ (18,405) CLIMA (I, J)

ELSEIF (K .EQ. 4) THEN
READ (18,505) CLIMA (I, J)

ELSEIF (K .EQ. 5) THEN
READ (18,605) CLIMA (I, J)

ELSEIF (K .EQ. 6) THEN
READ (18,705) CLIMA (I, 0)

ELSEIF (K .EQ. 7) THEN
READ (18,805) CLIMA (I, J)

END IF
220 CONTINUE

CLIMA (1,0) = CLIMA (1,1) - 0.5
10 CONTINUE
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330
440

REWIND 18
DO 440, KK = 1, NY

DO 330, I = 1 , 4
READ (12,905)
READ (12,105)

CONTINUE
CONTINUE

ICOUNT (I,KK)
(ISEQ (I,KK,J), J = 1, ICOUNT (I,KK))

ITERATIVE ESTIMATION OF PARAMETERS

WRITE (9,65) K

C TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
C VECTOR

DO 20, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)* I SCALE(3,K)
THETA (J+3) = ALPHA (2,K,J)*ISCALE(3,K)
THETA (J+6) = PS I (1,K,J)*ISCALE(2,K)
THETA (J+9) = PSI (2,K,J)*I5CALE(2,K)

20 CONTINUE
DO 70, a = 1, NRAU

THETA (J+12) = RAU (J,K)*ISCALE(1,K)
70 CONTINUE

CALL POLRIB (THETA,NP,TOL,ITER,FMIN)

C UPDATE PARAMETER ESTIMATES

DO 40 J = 1, NPARM
ALPHA (i,K,J) = THETA (J)/ISCALE(3,K)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)
PSI (1,K,J) = THETA (J+6)/ISCALE(2,K)
PSI (2,K,J) = THETA (J+9)/ISCALE(2,K)

40 CONTINUE

DO 80, J = 1, NRAU
RAU (J,K) = THETA (J+12)/ISCALE(1,K)

SO CONTINUE

WRITE (9,75) ITER

C OUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,5)
WRITE (9,15)
WRITE (9,25)
WRITE (9,35)
WRITE (9,45)
WRITE (9,55)
WRITE (9,5)

(ALPHA (1,K,L), L
(ALPHA (2,K,L), L
(PSI (1,K,L), L «
(PSI (2,K,L), L =
( RAU (J,K) , J = 1,

= 1, NPARM)
= 1 , NPARM)
1, NPARM)
1, NPARM)
NRAU)
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COMPUTE RESIDUAL MATRIX

DO 50, M = 1, 2
DO 60, I = 0, NT

ML) (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 90, L = 1 , NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) # PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) * PHI (L,I)

90 CONTINUE
60 CONTINUE
50 CONTINUE

DO 100, I = 1, NY
DO 110, J = 1, NT

RESID (K,I,J) = -999.00
110 CONTINUE
100 CONTINUE

LNLIKE = 0
TERM = 0

DO 120. J = 1, 4
IF (J .EQ. 1) THEN

M = 1
L = 1

ELSEIF (J .EQ. 2) THEN
M = 2
L = 2

ELSEIF (J .EQ. 3) THEN
M = 2
L = 1

ELSEIF (J .EQ. 4) THEN
M = 1
L = 2

END IF
DO 130, I = 1 , NY

DO 140, KK - 1, ICOUNT <J,I)
T = ISEQ (J,I,KK)
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-l).NE.-999))

& THEN
RESID(K,I,T) = (CLIMA(I,T)-MU(M,T))/SIGMAtM,T)-RAU(1,K>

& *( (CLIMA(I,T-1)-MU(L,T-1))/SIGMA(L,T-l) )
LNLIKE = LNLIKE + (RESID(K,I,T))**2
END IF
TERM = TERM + LOG(SIGMA(M,T))

140 CONTINUE
130 CONTINUE
120 CONTINUE

LNLIKE = -((NY*NT)/2)*L0G(2*PI)-TERM-LNLIKE/2
AKAIKE = -2*LNLIKE+2*NP

WRITE (9,135) K, AKAIKE

DO 150, I = 1, NY
DO 160, T = 1, NT

WRITE (14,125) (RESID (K,I,T), K = 1, NV)
160 CONTINUE
150 CONTINUE

STOP
END
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PROGRAM 21

r-* _ _ — _ _ _ _ —- _ _ _ _ _ _ _ _ _ _ _ _ _ _

C PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 5

C PROGRAM EST-M5

5
15
25
35
45
55
75
85
95
105
115
125
135
145
155

INTEGER NV,NY,NT,NP,NPARM,NRAU,CONVG,T
PARAMETER (NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=16)
PARAMETER (NPARM=3)
PARAMETER (NRAU=4)
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

FORMAT
FORMAT :
FORMAT (
FORMAT i
FORMAT (
FORMAT i
FORMAT <
FORMAT i
FORMAT (
FORMAT i
FORMAT (
FORMAT i
FORMAT (
FORMAT I
FORMAT (

COUNT (4,NY)
SEQ (4,NY,NT)
CLIMA (NY,O:NT)
ALPHA (2,NV,NPARM)
PSI (2,NV,NPARM)
DER (NP)
DER2 (NP,NP)
PHI (NPARM,O:NT)
RAU (NRAU,NV)
THETA (NP)
A (NP,O:NP)

(/)
(' ESTIMATES OF MEAN FOR DRY DAYS:
!' ESTIMATES OF MEAN FOR WET DAYS:
(' ESTIMATES OF VAR FOR DRY DAYS:'
;' ESTIMATES OF VAR FOR WET DAYS:'
(' ESTIMATE OF AUTOCORRELATION:',
!9X,F9.2)
(18X,F9.2)
27X,F9.2)
;36X,F9,2)
45X,F10.2)
(55X,F10.2)
65X,F9.2)
(15)
1415)

', 3F10.4)
', 3F10.4)
, 3F10.4)
, 3F10.4)
4F10.4)

OPEN (UNIT-18,FILE='\WATER\DATA\CLIMA.DAT' ,STATUS='OLD' )
OPEN (UNIT-12,FILE-'\WATER\DATA\SEQ.DAT',STATUS-'OLD')
OPEN (UNIT=9,FILE-'LPT1')

CALL COSSIN (PHI,NPARM,NT)
DO 10, I ~ 1, NPARM

PHI (1,0) = PHI (I,NT)
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10 CONTINUE

INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL INITIAL (EPS,MAX ITER,ALPHA,PSI,RAU,NPARM,NV,NRAU)
DO 20, K = 1, NV

CONVG = 1
DO 30, I = 1, NY

DO 40, J = 1, NT
IF (K.EQ.l) THEN

READ (IB,75) CLIMA (I, J)
ELSEIF (K.EQ.2) THEN

READ (18,85) CLIMA (I, J)
ELSEIF (K.EQ.3) THEN

READ (18,95) CLIMA (I, J)
ELSEIF (K.EQ.4) THEN

READ (18,105) CLIMA (I, J)
ELSEIF (K.EQ.5) THEN

READ (18,115) CLIMA (I, J)
ELSEIF (K.EQ.6) THEN

READ (18,125) CLIMA (I, J)
ELSEIF (K.EQ.7) THEN

READ (18,135) CLIMA (I, J)
END IF

40 CONTINUE
IF (I.ED.l) THEN

CLIMA (1,0) = CLIMA (1,1) - 0,5
ELSEIF (I.NE.l) THEN

CLIMA(I,O) = CLIMA(I-1,NT)
END IF

30 CONTINUE

REWIND 18
IF (K .EQ. 1) THEN

DO 50, KK = 1, NY
DO 60, I = 1, 4

READ (12,145) COUNT (I,KK)
READ (12,155) (SEQ (I,KK,J), J = 1, COUNT (I,KK))

60 CONTINUE
50 CONTINUE

END IF

ITERATIVE ESTIMATION OF PARAMETERS

CALL NEWT5 (ALPHA,PSI,RAU,NPARM,MAXITER,NT,NY,CLIMA,SEQ,
& COUNT,DER,DER2,PHI,EPS,NP,NV,K,A,THETA,NRAU,CONVG)

OUTPUT OF FINAL PARAMETER ESTIMATES

WRITE (9,5)
WRITE (9,15) (ALPHA (1,K,L), L = 1, NPARM)
WRITE (9,25) (ALPHA (2,K,L), L = 1, NPARM)
WRITE (9,35) (PSI (1,K,L), L = 1, NPARM)
WRITE (9,45) (PSI (2,K,L), L = 1, NPARM)
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WRITE (9,55) (RAU (J,K), J = 1, NRAU)
WRITE (9,5)

COMPUTE RESIDUAL MATRIX

IF ((GONVG.EQ.l).OR.(K.EQ.7)) THEN
CALL M5RES (RAU,ALPHA,PSI,PHI,COUNT,SEQ,CLIMA,NT,NY,

& NPARM,NV,K,NRAU,NP,CONVG)
ENDIF

20 CONTINUE

STOP
END
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PROGRAM 22

i~» _______ ____>—. __ _ _ ___. .__ _ _._ _ _—.

C PROGRAM TO COMPUTE PARAMETER ESTIMATES FOR MODEL 5
C USINB CONJUGATE GRADIENT METHODS IN MULTIDIMENSIONS
(-> _ _ _,. _ __,•_. — — — ,

INTEGER NV,NY,NT,NP,NPARM,NRAU,T
PARAMETER <NV=7)
PARAMETER (NY=12)
PARAMETER (NT=365)
PARAMETER (NP=16)
PARAMETER (NPARM=3)
PARAMETER (NRAU=4)
REAL THETA (NP)
REAL LNLIKE,AKAIKE,PI
PARAMETER (PI=3.141573)
REAL MU (2,0:NT)
REAL SIGMA (2,0:NT)
REAL RESID (NV,NY,NT)

COMMON K,I COUNT(4,NY),ISEQ(4,NY,NT) ,CLIMA(NY,0:NT) ,
ALPHA(2,NV,NPARM),PSI(2,NV,NPARM),PHI<NPARM,0:NT),
RAU(NRAU,NV),I SCALE(3,NV)

5
15
25
35
45
55
65
75

105
205
305
405
505
605
705
B05
905
115
315
415

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

(' ESTIMATES
(' ESTIMATES
(' ESTIMATES
(' ESTIMATES
(' ESTIMATES
(' PARAMETER
(' CONVERGE
(3X, F5.0)
(9X,F9.2)
(18X.F9.2)
(27X,F9.2)
(36X,F9,2)
(45X,F10.2)
(55X,F10.2)
C65X,F9.2)
(15)
(1415)
(7F10.4)
(' AKAIKE"S

OF MEAN FOR DRY DAYS:
OF MEAN FOR WET DAYS:
OF VAR FOR DRY DAYS:'
OF VAR FOR WET DAYS:'
OF AUTOCORRELATION:'

', 3F10.4)
', 3F10.4)
, 3F10.4)
, 3F10.4)
4F10.4)

ESTIMATES FOR
ACHIEVED IN ' ,

VARIABLE: ', 14)
14, ' ITERATIONS

CRITERION FOR VARIABLE: 14 IS F10.4)

OPEN (UNIT=14,FILE='\WATER\DATA\RESIT.DAT',STATUS='UNKNOWN')
OPEN (UNIT=18,FILE='\WATER\DATA\CLIMA.DAT',STATUS*'OLD')
OPEN (UNIT=12,FILE='\WATER\DATA\SEQ.DAT',STATUS='OLD')
OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=6,FILE='C0N')
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TOL = O.0OOOOOOOO1

CALL COSSIN (PHI,NPARM,NT)
DO 10, I = 1, NPARM

PHI (1,0) = PHI (I,NT)
10 CONTINUE

C INPUT OF TIME SERIES AND INITIAL PARAMETER ESTIMATES

CALL INT4 (ALPHA,PSI,RAU,NPARM,NV,NRAU,ISCALE)

PRINT *, 'WHICH VARIABLE TO BE ESTIMATED?'
READ (6,*) K

DO 20, 1 = 1 , NY
DO 30, J = 1, NT

IF (K .EQ. 1) THEN
READ (18,205) CLIMA (I, J)

ELSEIF (K .EQ. 2) THEN
READ (18,305) CLIMA (I, J)

ELSEIF (K .EQ. 3) THEN
READ (18,405) CLIMA (I, J)

ELSEIF (K .EQ. 4) THEN
READ (18,505) CLIMA (I, J)

ELSEIF (K .EQ. 5) THEN
READ (18,605) CLIMA (I, J)

ELSEIF (K .EQ. 6) THEN
READ (18,705) CLIMA (I, J)

ELSEIF (K .EQ. 7) THEN
READ (18,805) CLIMA (I, J)

END IF
30 CONTINUE

CLIMA (1,0) = CLIMA (1,1) - 0.5
20 CONTINUE

REWIND IB
DO 40, KK = 1, NY

DO 50, I = 1, NRAU
READ (12,905) ICOUNT (I,KK)
READ (12,115) (ISEQ (I,KK,J), J = 1, ICOUNT (I,KK))

50 CONTINUE
40 CONTINUE

C ITERATIVE ESTIMATION OF PARAMETERS

WRITE (9,65) K

C TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
C VECTOR

DO 60, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)*ISCALE(3,K)
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70

80

90

130
120
100

THETA (J+3)
THETA (J+6)
THETA (J+9)

CONTINUE

DO

= ALPHA (2,K,J)*ISCALE(3,K)
= PS I (1,K,J)*ISCALE(2,K)
= PSI (2,K,J)*ISCALE(2,K)

70, J = 1, NRAU
THETA (J+12) = RAU

CONTINUE
(J,K)#ISCALE(i,K)

CALL POLRIB (THETA,NP,TOL,ITER,FMIN)

UPDATE PARAMETER ESTIMATES

DO 80 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)

<1,K,J) = THETA (J+6)/ISCALE(2,K)
(2,K,J) = THETA <J+9)/ISCALE(2,K)

PSI
PSI

CONTINUE

DO 90, J = 1, NRAU
RAU (J,K) = THETA (J+12)/ISCALE(1,K)

CONTINUE

WRITE (9,75) ITER

OUTPUT OF FINAL PARAMETER ESTIMATES

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

(9,5)
(9,15)
(9,25)
(9,35)
(9,45)
(9,55)
(9,5)

COMPUTE

(ALPHA (1,K,L),
(ALPHA (2,K,L),
(PSI (1,K,L), L
(PSI (2,K,L), L
(RAU (J,K), J

L = 1, NPARM)
L = 1, NPARM)
= 1, NPARM)
= 1, NPARM)

= 1, NRAU)

RESIDUAL MATRIX

DO 100, M = 1, 2
DO 120, I = 0 , NT

MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 130, L = 1, NPARM

MU (M,I) = MU (M,I)
SIGMA (M,I) = SIGMA

CONTINUE
CONTINUE

CONTINUE

DO 140, I = 1, NY

+ ALPHA (M,K,L) * PHI
PSI (M,K,L) * PHI (L,I
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DO 150, J = 1, NT
RESID (K,I,J) = -999.00

150 CONTINUE
140 CONTINUE

LNLIKE = 0
TERM = 0

DO 160, J = 1, 4
IF (J .EQ. 1) THEN

M =
L =

ELSEIF
M =
L =

ELSEIF
M =
L =

ELSEIF
M =
L =

END IF

1
1
(J
2
2
(J
2
1
(J
1
2

EQ. 2) THEN

EQ. 3) THEN

EQ, 4) THEN

DO 170, I = 1, NY
DO 180, KK = 1, ICOUNT (J,I)

T = ISEQ (J, I,KK)
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-i).NE.-999))

& THEN
RESID(K,I,T) = (CLIMA(I,T)-MU(M,T))/SIGMA<M,T)-

& RAU(J,K)#((CLIMA(I,T-1)-MU(L,T-1))/
& SIGMA(L,T-1))

= LNLIKE + (RESID(K,I,T))**2

TERM + LDG(SIGMA(M,T))

LNLIKE
END IF
TERM =

180 CONTINUE
170 CONTINUE
160 CONTINUE

LNLIKE = -((NY*NT)/2)*L0G(2*PI)-TERM-LNLIKE/2
AKAIKE = -2*LNLIKE+2*NP
WRITE (9,415) K, AKAIKE

200
190

DO 190, I = 1, NY
DO 200, T = 1, NT

WRITE (14,315)
CONTINUE

CONTINUE

(RESID (K,I,T), K = 1, NV)

STOP
END
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PROGRAM 23

r~ _ _ _ ____________»______.__•-_- — _ _ . • _ — _ _ _ _ _ _ ._._ —._.

C PROGRAM TO RECORD TIME PERIODS FOR WHICH A MISSING
C OBSERVATION OCCURS

15
25

INTEGER
PARAMETER
PARAMETER
PARAMETER
INTEGER
INTEGER
REAL

FORMAT (14(15))
FORMAT (15)

NV,TIME,BOUND
(NV=7)
(TIME=4380)
(BOUND=5OO)
SEQMISS (NV,BOUND)
COUNT (NV)
CLIMA (NV)

20

OPEN (UNIT-10-FILE-'\WATER\DATA\RESIDU.DAT',STATUS"'OLD')
OPEN (UNIT=8,FILE-'\WATER\DATA\SEQM.DAT',STATUS-'UNKNOWN')
DO 20, K = 1, NV

COUNT (K) = 0
CONTINUE
DO 10, J = 1, TIME

READ (10, *) (CLIMA (K), K = 1, NV)
DO 30, K = 1, NV

,LT. -900) THEN
COUNT (K) + 1

(K)) = J

30
10

60

IF (CLIMA (K)
COUNT (K) =
SEQMISS (K,

ENDIF
CONTINUE

CONTINUE
= 1, NV
(8, 25)
(8, 15)

COUNT

DO 60, K
WRITE
WRITE

CONTINUE

COUNT (K)
(SEQMISS (K, I) , I = 1, COUNT (K))

STOP
END
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PROGRAM 24

f* ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ jn_ _ - _. „ ^ . .

C A PROGRAM TO PATCH THE MISSING OBSERVATIONS IN A
C GIVEN DATA SET USING THE EM-ALGORITHM
j-\ _ ^ ±l_ M i-r . -r- - » . -MI- — — -. _ "- • • — -ur —

c
C In this program there are missing observations in almost all the
c the variables.
C
C The variables are read as one big matrix which consists of a
C column of the dependent variable - which should always be the
C first column, and the of the columns being the matrix of the
C independent variables.
C
C Each row of data represents an observation and where a "-999" is
C encountered, that would be representing a missing observation.
C
C The data is stored in a matrix called the Z-matrix, and that is
C subdivided into :
C Y-matrix = A matrix of the dependent variable
C X-matrix = A matrix of the independent variables
C
C The maximum dimensions of the matrices arei
C Dependent variable : 1
C Independent variables : 25
C Observations : 100
C
C Note that only one Y-variable can be patched at a time, and
C therefore we can only have one Y-variable at a time. If
C there are missing observations in more than one variable, then
C it is therefore necessary to swop the variable s columns so
C that the variable which needs to be patched is always in the
C first column of the matrix.
C
C Note again that most of the routines which are in this program
C were copied from the programs written by Dr Ross Sparks.

VARIABLES DECLARATION

INTEGER NOBS, NSTAT, IV, DV
PARAMETER(N0BS=4380)
PARAMETER(NSTAT=7)
PARAMETER(IV=12)
PARAMETER(DV=1)
PARAMETER(NI=500)

C NOBS = Number of all the records
C NSTAT = Number of all the stations i.e. target & control
C IV = Number of control stations
C DV = Number of target stations

REAL Z(NOBS,NSTAT)
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REAL TMAT (NOBS,NSTAT)
REAL ZCEN(NOBS,NSTAT), PATCH(NOBS)
REAL MEANZ(NSTAT,DV), MEANZZ(DV,NSTAT)
REAL ZTZ(NSTAT,NSTAT)
REAL TEMPI(NSTAT), TEMPO, TEMP2
REAL MEAN1(NSTAT), MEAN2(NSTAT)
REAL BHAT(NSTAT,DV), BETA(7,NI), CONV(DV,DV)
INTEGER COUNT (NSTAT)
INTEGER SEQMISS (NSTAT,500)
INTEGER ROW, COL, ROUND, NROW
INTEGER NROUND

1 FORMAT(9F8.0)
2 F0RMAT(20F6.0)

OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=10,FILE=' \WATER\DATA\RESIDU.DAT' , STATUS= ' OLD ' )
OPEN (UNIT=20,FILE='\WATER\DATA\SEQM.DAT',STATUS='OLD')

C This DO-LOOP reads a matrix of all the rainfall

C stations and all the observations in a MATRIX Z.

DO 10 ROW = 1, NOBS

READ(10,*) (Z(ROW,COL), COL = 1, NSTAT)

10 CONTINUE

C This DO-LOOP reads a vector of the amount of missing
C values for each variable in MATRIX COUNT.and a matrix of
C the specific times when missing values occur for each of
C the variables in a MATRIX SEQMISS.

DO 20, K - 1, NSTAT
READ (20,*) COUNT (K)
READ (20,*) (SEQMISS (K,I), I = 1, COUNT (K))

20 CONTINUE

C FIND THE MEANS OF THE DIFFERENT COLS, I.E. FIND THE MEAN
C OF ALL THE OBSERVATIONS IN COL 1, C0L2, ETC.

DO 110 COL = 1, NSTAT
MEANZ(COL,1) = 0.0
MEANl(COL) =0.0
DO 100 ROW = 1, NOBS

IF (Z(ROW,COL) .NE. -999) THEN
MEANl(COL) = MEANl(COL) + Z(ROW,COL)

ENDIF
100 CONTINUE

MEANZ(COL,1) = MEANl(COL) / (NOBS - COUNT (COL))
110 CONTINUE

C SUBSTITUTE THE MISSING OBSERVATIONS BY THE
CALCULATED MEANS
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DO 130 COL = 1, NSTAT
DO 120 K = 1, COUNT (COL)

ROW = SEQMISS (COL,K)
Z(ROW,COL) = MEANZ(COL,1)

120 CONTINUE
130 CONTINUE

NROUND =

12121 CALL CNTRAL(ZCEN,NOBS,NSTAT,Z,NOBS,NSTAT,NOBS,NSTAT)
CALL TMULT(ZCEN,NOBS,NSTAT,ZTZ,NSTAT,NSTAT,NSTAT,NOBS,NSTAT)
CALL INV(ZTZ,NSTAT,NSTAT)

DO 167 COL = 1, NSTAT
MEAN2(C0L) =0.0
DO 163 K = 1, COUNT (COL)

ROW = SEQMISS (COL,K)
MEAN2(C0L) = MEAN2(C0L) + Z(ROW,COL)

163 CONTINUE
MEANZZ(1,COL) = (MEANl(COL) + MEAN2(COL)) / NOBS

167 CONTINUE

ROUND = 1

13131 DO 810 ROW = 1, NSTAT
TEMPl(ROW) = (-1.0) * ZTZ(ROW,ROUND) / ZTZ(ROUND,ROUND)

810 CONTINUE

TEMP2 =0.0
DO 830 ROW = 1, NSTAT

IF (ROW .NE. ROUND) THEN
TEMP2 = TEMP2 + MEANZZ(1,ROW) * TEMPI(ROW)

ENDIF
830 CONTINUE

TEMPO = MEANZZ(1,ROUND) - TEMP2

TEMPI(ROUND) = TEMPO

DO 450 ROW = 1, NSTAT
BETA(ROW,NROUND) = TEMPI(ROW)

450 CONTINUE

IF (NROUND .GT. 1) THEN

DO 460 ROW = 1, NSTAT
BHAT(ROW,1) = BETA(ROW,NROUND) - BETA(ROW,NROUND-1)

460 CONTINUE

CALL TMULT(BHAT,NSTAT,DV,CONV,DV,DV,DV,NSTAT,DV)
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END IF

: PATCH THE MISSING OBSERVATIONS

DO 210 ROW - 1, NOBS
PATCH (ROW) - Z (ROW,ROUND)

210 CONTINUE
DO 200 K = 1, COUNT (ROUND)

ROW = SEQMISS (ROUND,K)
PATCH(ROW) = 0.0
DO 192 COL = 1, NSTAT

IF (COL .EQ. ROUND) THEN
BO TO 192

END IF
PATCH(ROW) = PATCH(ROW) + Z(ROW,COL) * TEMPI(COL)

192 CONTINUE
PATCH(ROW) = TEMPI(ROUND) + PATCH(ROW)

200 CONTINUE

DO 220, ROW = 1, NOBS
TMAT (ROW,ROUND) = PATCH (ROW)

220 CONTINUE

IF (NROUND .GT. 1) THEN

IF (CONV(1,1) .LT. 0.0000001) THEN

WRITE (9,*) 'VALUES PATCHED AFTER ', NROUND, ' ALTERATIONS
CALL PPMAT (BETA,NSTAT,NROUND,NSTAT, NROUND)
CALL PMAT (TMAT,NOBS,NSTAT,NOBS,NSTAT)
CALL PPMAT (TEMPI,NSTAT,DV,NSTAT,DV)
60 TO 998

END IF
ENDIF

ROUND = ROUND + 1

IF (ROUND .GT. NSTAT) THEN
NROUND = NROUND + 1
CALL COPY (TMAT,NOBS,NSTAT,Z,NOBS,NSTAT,NOBS,NSTAT)
IF (NROUND .GT. NI) THEN

WRITE (9,#) 'NO CONVERGENCE AFTER ', NI, ' ITERATIONS.'
GOTO 998

ENDIF
GO TO 12121

ENDIF

GO TO 13131

998 STOP
END
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PROGRAM 25

— ____ ______________ __ __ _ __ _ «
C PROGRAM TO ESTIMATE THE CORRELATION MATRIX AND
C THE VECTOR OF VARIANCES.

INTEGER
PARAMETER
PARAMETER
REAL
REAL
REAL
REAL

NT,NY,NV
(NT-43B0)
(NV=7)
TERM (5)
CORR (NV,NV)
RES (NV, NT)
VARI (NV)

5
15
25

20

40

120

80

70
60

FORMAT (7 F10.4)
FORMAT (/, ' THE CORRELATION MATRIX: ')
FORMAT (' THE VARIANCE OF EACH VARIABLE: ')

OPEN <UNIT=10,FILE='\WATER\DATA\RESI.DAT',STATUS-'OLD')
OPEN (UNIT=12,FILE--\WATER\DATA\CORR.DAT',STATUS-'UNKNO
OPEN (UNIT-9,FILE='LPT1')

UNKNOWN')

DO 20, I = 1, NT
READ (10, *) (RES

CONTINUE
DO 40, I = 1, NV

CORR (I, I) = 1
CONTINUE
DO 60, K = 1,

DO 70, J =
DO 120,

TERM
CONTINUE

(K, I), K - 1, NV)

NV
K + l ,
II =
(II)

DO 80, 1 = 1
TERM (1) ;
TERM (2) =
TERM (3) :
TERM (4) =
TERM (5) '

CONTINUE
TERM (1 )
TERM (4)
VARI (K)
TERM (5)
TERM (2)
TERM (1)
TERM (4)
CORR (K,

CONTINUE
CONTINUE
TERM (2) = 0
TERM (4) = 0

NV
1, 5
= 0

NT
; TERM
• TERM
• TERM
: TERM
= TERM

(1)
(2)
(3)
(4)
(5)

RES
RES
RES
RES
RES

I )
I)
I)
I)
I)

* RES (J, I )

**
**

2
2

TERM (1) / NT
SQRT ((TERM (4)
TERM (4) ** 2
SQRT ((TERM (5)
TERM (2) * TERM
TERM (1) - TERM
TERM (4) * TERM

/NT) - (TERM (2) / NT) ** 2)

/ NT)
(3) /
(2)
(5)

- (TERM
NT ** 2

(3) / NT) ** 2)

J) = TERM (1) / TERM (4)
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DO 10, 1 = 1 , NT
TERM (2) = TERM (2) + RES (NV, I)
TERM (4) = TERM (4) + RES (NV , I) ** 2

10 CONTINUE
VARI (NV) = (TERM (4) / NT) - (TERM (2) / NT ) * * 2
WRITE (9, 25)
WRITE (9, 5) (VARI (K), K = 1, NV)
WRITE (9, 15)
DO 110, K = 1, NV

WRITE (9, 5) (CORR (K, J ) , J = K , NV)
WRITE (12, 5) (CORR (K, J), J = K, NV)

110 CONTINUE

STOP
END
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PROGRAM 26

p _____ ____ __-— ——— —— — __.__

C PROGRAM TO GENERATE CLIMATE SEQUENCES USING MODEL T
i™» _ _ _ _ _ _ • — _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ — —

INTEGER NT,NV,NV3,NV4,NV5,NY,NP,PSTATE,STATE,A,NRAU

C PSTATE = PRESENT STATE OF DAY
C STATE = PREVIOUS STATE OF DAY

PARAMETER (NT=365)
PARAMETER (NY=51)
PARAMETER (NV=7)
PARAMETER {NV3=4)
PARAMETER (NV4=i)
PARAMETER (NV5=2)
PARAMETER (NP=3)
PARAMETER (NRAU=4)

C NT = £ OBSERVATIONS PER YEAR
C NV = £ VARIABLES
C NY = £ YEARS TO BE GENERATED
C NP = £ PARAMETERS IN SEASONAL MODEL

INTEGER SEED (9)
REAL RAIN
REAL GAM (2,NP)
REAL PHI (NP,O:NT)
REAL RAU3 (NRAU,NV3)
REAL RAU4 (NV4)
REAL RAU5 (NRAU,NV5)
REAL DECOMP (NV,NV)
REAL RAND (1,NV)
REAL SIGMA3 (NRAU,NV3)
REAL SIGMA4 (2,NV4,O:NT)
REAL SIGMA5 <2,NV5,0:NT)
REAL MU (2,NV,0:NT)
REAL OBSN (NV),TEMP(NV)
REAL AMP (O:NP)
REAL PHASE (NP)
REAL CORR (NV,NV)
REAL C (NT)

COMMON IDUM1,IDUM2,IDUM3,IDUM4,IDUM5,IDUM6,IDUM7

15 FORMAT (4F9.2, 2F10.2, F9.2)
25 FORMAT (' GIVE 9 -VE Nos. TO INITIALIZE RANDOM GENERATOR',/)

OPEN (UNIT=9,FILE='LPT1')
OPEN (UNIT=10,FILE='\WATER\DATA\SIMU.DAT',STATUS='UNKNOWN')
OPEN <UNIT=22,FILE='C0N')
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C COMPUTE THE FOURIER SERIES TERMS

CALL COSSIN (PHI,NP,NT)
DO 60, 1 = 1 , NP

PHI (1,0) = PHI (I,NT)
60 CONTINUE

PI=3.14159
SMAX=135
SMIN=110
AVE=(SMAX+SMIN)/2
AMPS=SMAX-SMIN

DO 330, I = 1, NT
C(I) = AVE+CAMPS/2)*COS((2*PI/NT)*(I+11))

330 CONTINUE

C READING PARAMETER ESTIMATES

CALL DATA (GAM,RAU3,RAU4,RAU5,MU,SIGMA3,SIGMA4,SIGMA5,NP,NV,AMP,
& PHASE,CV,PHI,CORR,NT,NRAU,NV3,NV4,NV5)

C COMPUTE THE CHOLESKY DECOMPOSITION OF THE CORRELARTION

C ' MATRIX. INPUT MATRIX HERE AS WELL.

CALL CHOLESKY (DECQMP,CORR,NV)

C TRANSPOSE COVARIANCE MATRIX

CALL GTRANP (DECOMP,NV)

C INPUT SEEDS TO START RANDOM NUMBER GENERATOR. MUST BE
C NEGATIVE NUMBER.

PRINT 25
DO 50, II = 1, 9

READ (22, *) SEED (II)
50 CONTINUE

IDUM1 = SEED (1)
IDUM2 = SEED (2)
IDUM3 = SEED (3)
IDUM4 = SEED (4)
IDUM5 = SEED (5)
IDUM6 = SEED (6)
IDUM7 = SEED (7)
IDUMS = SEED (S)
IDUM9 = SEED (9)

C COMPUTE PARAMETERS NEEDED FOR COMPUTATION OF RAINFALL
C DEPTH

CALL CALBET (BETA,CV)
ALPH = 1 + 1 / BETA
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GAMM = GAMMA (ALPH)
BI = 1 /BETA
W = 0.01721421

C SET INITIAL STATE OF DAY TO BE DRY
C SET INITIAL CLIMATE VALUE TO ZERO

C STATE = 1 ==> DRY
C STATE = 2 ==> WET

STATE = 1
DO 10, 1 = 1 , NV

OBSN (I) = MU (STATE,1,0)
10 CONTINUE

DO 30, I = 1, NY
DO 40, J - 1, NT

C GENERATE RAINFALL VALUE
—

C COMPUTE PROBABILITY THAT A WET DAY FOLLOWS A WET DAY, OR

C THE PROBABILITY THAT A WET DAY FOLLOWS A DRY DAY.

CALL PIEST (NP,GAM,STATE,J,PHI,PI,NT)

C GENERATE A UNIFORM RANDOM NUMBER BETWEEN 0 AND 1.
UNIFOR = URAN8 (IDUMB)
IF (UNIFOR .LT. PI) THEN

PSTATE = 2
ELSE

PSTATE = 1
ENDIF

C GENERATE A NORMAL RANDOM NUMBER

CALL GAUSS (DECOMP,RAND)

C GENERATE CLIMATE SEQUENCES
—

DO BO, K = 1, NV
IF ((K.EQ.l).OR.(K.EQ.4).OR.(K.EQ.6)) THEN

CALL M0D3 (RAND,STATE,NV3,NV,SI6MA3,MU,RAU3,K,
J,OBSN,PSTATE,NT,NRAU)

ELSEIF ((K.EQ.2).OR.(K.EG.5)) THEN
CALL M0D5 (RAND,STATE,NV5,NV,SIGMA5,MU,RAU5,K,

& J,OBSN,PSTATE,NT,NRAU)
ELSEIF ((K.EQ.3)) THEN

CALL M0D4 (RAND,STATE,NV4,NV,SIGMA4,MU,RAU4,K,
& J,OBSN,PSTATE,NT)

ENDIF
80 CONTINUE

D-72



C DETERMINE WHETHER IT RAINED AND SET RAIN VALUE

C RAIN = 0 ==> DID NOT RAIN
C RAIN = 1 ==> RAINED

IF (PSTATE .EQ. 1J-THEN
RAIN = 0

ELSE
RAIN = 1

ENDIF

C GENERATE RAINFALL DEPTH IF IT RAINED
p

IF (RAIN .EQ. 1) THEN
CALL DEPTH3 (IDUM9,NP,RAIN,J,AMP,PHASE,GAMM,BI,W)

ENDIF

C TRANSFORM VARIABLES TO THE ORIGINAL FORM

TEMP(2)=(230-100*EXP(0BSN(2)))/(EXP(OBSN(2))+l)
TEMPU) = (410+TEMP(2)*EXP(0BSN(l) ) )/( EXP ( OBSN ( 1 ) )+1 )
TEMP(3)=(C(J)-0.01-(0.01*EXP(0BSN(3))))/(EXP(OBSN(3)
TEMP(4)=(10000/(EXP(OBSN(4))+l))-0.01
TEMP(6)=100/(EXP(0BSN(6))+l)
TEMP(5)=(101+TEMP(6)*EXP(0BSN(5)))/(EXP(OBSN(5))+l)

OUTPUT GENERATED SEQUENCES

IF (I .NE. 1) THEN
WRITE (10,15) RAIN, (TEMP (K), K = 1, NV)

ENDIF

UPDATE THE STATE OF THE PREVIOUS DAY

40
30

IF (PSTATE
STATE =

ENDIF

CONTINUE
CONTINUE

STOP
END

.NE. STATE) THEN
PSTATE
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SUBROUTINES

r"
1
 —_T • •_-• — - _ - - » - • ~

C THIS SUBROUTINE ITERATIVELY ESTIMATES THE MODEL
C PARAMETERS BY THE NEWTON-RAPHSON METHOD FOR M3.

SUBROUTINE NEWT3 (ALPHA,S16MA,RAU,NPARM,MAX ITER,NT,NY,CLI MA,SEQ,
r"1 ^ — ^ —i -•• •-» *~ - ^ ^ ^ ^ ^ ^ — — • — — — ^ — — * •***

& COUNT,DER,DER2,PHI,EPS,NP,NV,K,A,THETA,NRAU,LONVG)
I""* — • - n ri. _i -m»j - — - -rrr !•-• i_ •_•_ — • • L_.r f -•- — • «-i • " m r »

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL A (NP,O:NP)
REAL SIGMA (NRAU,NV)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,0:NT)
REAL DER (NP)
REAL DER2 (NP,NP)
REAL CLIMA (NY,O:NT)
REAL THETA (NP)
REAL RAU (NRAU5NV)

15 FORMAT (' THE SUCCESSIVE THETA VALUES FOR VARIABLE: ', 14)
25 FORMAT (' DID NOT CONVERGE')
35 FORMAT (/, ' .... ', 13, ' ITERATION', /)

OPEN (UNIT=?,FILE='LPT1')

IC = 0
WRITE (9,15) K

C TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
C VECTOR

DO 20, J = 1, NPARM
THETA (J) = ALPHA (i,K,J)
THETA (J+3) = ALPHA (2,K,J)

20 CONTINUE
DO 70, J = 1, NRAU

THETA (J+6) = SIGMA (J,K)
THETA (J+10) = RAU (J,K)

70 CONTINUE

C ITERATIVE PARAMETER ESTIMATION

DO 10, ITER = 1, MAXITER

C VECTOR OF 1ST DERIVATIVES AND MATRIX OF 2ND DERIVATIVES
C IS COMPUTED

CALL M3DERV (NPARM,NY,NT,ALPHA,SIGMA,RAU,CLI MA,SEQ,COUNT,
& DER,DER2,PHI,NP,NV,K,NRAU)
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50
40

DO 40, KK = 1,
DO 50, J =

DER2 (J,
CONTINUE

CONTINUE
PRINT 35, ITER

NP
KK,
KK)

NEW PARAMETER

NP
= DER2 (KK,J)

ESTIMATES ARE

CALL NEWPARM (NP,DER,DER2,THETA,EPS,IC,A)

,... UPDATE PARAMETER ESTIMATES

DO 30 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)
ALPHA (2,K,J) = THETA (J+3)

30 CONTINUE

DO 80, J = 1, NRAU
SIGMA (J,K) = THETA (J+6)
RAU (J,K) = THETA (J+10)

80

C

10

60

CONTINUE

TEST FOR CON

IF (IC) 10,10,60
CONTINUE
WRITE (9,25)
CONVG = 0

RETURN
END

SUBROUTINE CALBET (BETA,CV)

REAL NUM, DENOM

C2 = CV ** 2
C3 = CV ** 3
NUM = 339.5410 + 148,4445*CV + 192.7492#C2 + 22.4401*C3
DENOM = 1 + 257.1162*CV + 287.8362*C2 + 157.2230*C3
BETA = NUM / DENOM

RETURN
END
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C — — — — — — — ——____ — _ ——_——— — — — — —
C THIS SUBROUTINE SOLVES A SYSTEM OF EQUATIONS AND
C AND EXTRACTS NEW PARAMETER ESTIMATES
C — — • — • — — — — — ~ — — — — • — — — — — — — — — — — — — — — — — —.— _ _ — —

SUBROUTINE NEWPARM (NP,DER,DER2,THETA,EPS,IC,A)

REAL A (NP,O:NP)
REAL DER (NP)
REAL DER2 <NP,NP)
REAL THETA (NP)

15 FORMAT (' MATRIX IS SINGULAR')
25 FORMAT (' NEW PARAMETER ESTIMATES: ', F10.4)

OPEN (UNIT=9,FILE='LPT1')

C THIS SETS UP THE A MATRIX WHICH IS USED IN SOLVING THE SYSTEM
C OF EQUATIONS

DO 10, I = i, NP
A (1,0) = DER (I)
DO 20, J = 1, NP

A (I,J) = DER2 (I,J)
20 CONTINUE
10 CONTINUE

C THIS SOLVES THE SYSTEM OF EQUATIONS
C THE DIFFERENCE BETWEEN THE VALUE OF THETA (Q) IN THIS
C ITERATION AND IN THE PREVIOUS ITERATION ARE STORED IN A (Q,0)

DO 30, II = 1, NP
12 = II
Tl = 0
DO 40, 13 = II, NP

IF (ABS (A (13,11)) .ST. (ABS (Ti))) THEN
12 = 13
Tl = A (13,II)

END IF
40 CONTINUE

IF (Tl .EQ. 0) THEN
WRITE (9,15)
STOP

ENDIF
IF (12 .NE. II) THEN

DO 50, 10 = O, NP
TEMP = A (II,10)
A (II,10) = A (12,10)
A (12,10) = TEMP

50 CONTINUE
ENDIF
T2 = 1 / (A (11,11))
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60

80

70
30

NQ = NP
DO 60, 14 = 0,

A (II,14) =
CONTINUE
DO 70, 13 = 1,

IF (II .NE.

NQ
A (11,14) * T2

NP
13) THEN

T2 = A (13,II)
A (13,0) = A (I3,0)-A(II,0)* T2
DO 80, 10 = II, NP

A(I3,I0) = A(I3,I0) - A(I1,IO) *
CONTINUE

END IF
CONTINUE

CONTINUE

T2

CONVERGENCE TEST

CRIT = 0
DO 205, I = 1, NP

CRIT = CRIT + ABS(A(I,O))
205 CONTINUE

IF (CRIT .GT. EPS) THEN
IC = 0

ELSE
IC = 1

END IF

THIS EXTRACTS THE NEW PARAMETER VALUES

90

DO 90, I
THETA
WRITE
PRINT

CONTINUE

- 1, NP
(I) = THETA (I)
(9,25) THETA (I)
25, THETA (I)

- A (1,0)

RETURN
END
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C THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
C AND THE MATRIX OF SECOND DERIVATIVES FOR M0DEL3.

SUBROUTINE M3DERV (NPARM,NY,NT,ALPHA,SIGMA,RAU,CLI MA,SEQ,COUNT,
r̂  _ _ _ — _—.___ , _.__ __> — .

& DER,DER2,PHI,NP,NV,K,NRAU)
—• __, ___._._-_____

INTEGER COUNT (4,NY)
• INTEGER SEQ (4,NY,NT)
REAL CLIMA (NY,O:NT)
REAL MU (2,0:365)
REAL SIGMA <NRAU,NV)
REAL DER (NP)
REAL DER2 (NP,NP)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,0:NT)
REAL RAU (NRAU,NV)

DO 10, M = 1, 2
DO 30, I = 0 , NT

MU (M,I) - 0.0
DO 40, L = 1, NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) * PHI (L,I)
40 CONTINUE
30 CONTINUE
10 CONTINUE

DO BO, I = 1, NP
DER (I) = 0.0
DO 90, J - 1, NP

DER2 ( I,J) = 0.0
90 CONTINUE
80 CONTINUE

CALL M3DER1(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER,
& NV,K,NRAU)

CALL M3DER2(NY,NT,NP,NPARM,COUNT,SEQ,SIGMA,RAU,PHI,DER2,NV,K,
& NRAU)

CALL M3DER3(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER2,
& NV,K,NRAU)

CALL M3DER4(NY,NT,NP,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,DER2,NV,K,NRAU)

RETURN
END
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c
c
c
c

THIS SUBROUTINE
FOR MODEL 3.

COMPUTES THE VECTOR OF FIRST DERIVATIVES

SUBROUTINE M3DER1 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,

& RAU,PHI,DER,NV,K,NRAU)

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL

COUNT (NRAU,NY)
SEQ (NRAU,NY,NT)
T,P
CLIMA (NY,O:NT)
MIDDLE
DER (NP)
MU (2,0:NT)
SIGMA (NRAU,NV)
PHI (NPARM,O:NT)
RAU (NRAU,NV)

DO 850, LL = 1, NPARM
DO 870, M = 1, 2

IF (M .EQ. 1) THEN
N = 2
NN = 1
J

C
C

330

= 3
KK - 4

ELSEIF (M
N = 1
NN =• 2

J =
KK = 3

END IF

EQ. 2) THEN

THE VARIABLE
FUNCTION

DERI COMPUTES THE DERIVATIVE FOR THE MEAN

DERI = 0
DO 10, IY = 1, NY

DO 330, T = 1, COUNT (M,IY)
P = SEQ (M,IY,T)
IF {(CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)

.NE.-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,K)-RAU(M,K)*

( (CLIMA(IY,P-1)-MU<M,P-1) )/SIGMA(M,K) ) )
DERI = DERi+MIDDLE*(-PHI(LL,P)/SIGMA(M,K)+RAU(M,K)*

PHI(LL,P-1)/SIGMA(M,K))
ENDIF

CONTINUE

DO 350, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
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IF ((CLIMA(IY,P).NE.-999).AND.<CLIMA(IY,P-l)
& .NE.-999)) THEN

MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(J,K)-RAU(J,K)*
& ((CLIMA<IY,P-l)-MU(NN,P-i))/SIGMA(J,K)))

DERI = DER1+MIDDLE*(RAUCJ,K)*PHI(LL,P-l)/SIGMA
& (J,K))

ENDIF
350 CONTINUE

DO 360, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
IF C(CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)

& .NE.-999)) THEN
MIDDLE=((CLIMA(IY,P)-MU(NN,P))/SIGMA(KK,K)-RAU(KK,K)

& *((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(KK,K)))
DERI = DER1+MIDDLE*(-PHI(LL,P)/SIGMA(KK,K))
ENDIF

360 CONTINUE
10 CONTINUE

IF (M .EQ. 1) THEN
DER (LL) = -DERI

. ELSE IF (M .EQ. 2) THEN
DERCLL+3) = -DERI

ENDIF

870 CONTINUE
850 CONTINUE

C THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
C COEFFICIENT IS COMPUTED AS WELL AS THE DERIVATIVE
C W.R.T. THE STANDARD DEVIATIONS

DO 20, IY = 1, NY
DO 700, T = 1, COUNT (1,IY)

P = SEQ (1,IY,T)
IF ((CLIMACIY,P).NE.-999).AND.(CLIMA(IY,P-l)

& .NE.-999)) THEN
PARTI = (CLIMACIY,P)-MU(1,P))/SIGMA(l,K)
PART2 = (CLIMA(IY,P-l)-MU(1,P-l))/SIGMA(l,K)
MIDDLE = PART1-RAU(1,K)*PART2
DER(ll) = DER(11)+MIDDLE*PART2
PARTI = r((CLIMA(IY,P)-MU(1,P))/SIGMA(1,K)**2)
PART2 = ((CLIMA(IY,P-l)-MU(1,P-l))/SIGMA(1,K)**2)
DER(7)=DER(7)-MIDDLE*(PART1+RAU(1,K)*PART2)-1/SIGMA(1,K)

ENDIF
700 CONTINUE

DO 701, T = 1, COUNT (2,IY)
P = SEQ (2,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)

& .NE.-999)) THEN
PARTI = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,K)
PART2 = (CLIMA(IY,P-1)-MU(2,P-l))/SIGMA(2,K)
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MIDDLE = PART1-RAU(2,K)*PART2
DERC12) = DER(12)+MIDDLE*PART2
PARTI = -((CLIMA(IY,P)-MU(2,P))/SIGMA(2,K)**2)
PART2 = ((CLIMAtIY,P-1)-MU(2,P-l>)/SIGMA(2,K)**2)
DER(8)=DER(8)-MIDDLE*(PARTI+RAU(2,K)*PART2)-1/SIGMA(2,K)

END IF
701 CONTINUE

DO 702, T = 1, COUNT (3,IY)
P = SEQ (3,IY,T)
IF ((CLIMAtIY,P).NE.-999).AND.(CLIMA(IY,P-1)

«< .NE.-999)) THEN
PARTI = (CLIMAtIY,P)-MU(2,P))/SIGMA(3,K)
PART2 = (CLIMACIY,P-i)-MU(1,P-l))/SIGMA(3,K)
MIDDLE = PART1-RAU(3,K)*PART2
DER(13) = DER(13)+MIDDLE*PART2
PARTI = -((CLIMA(IY,P)-MU(2,P))/SIGMA(3,K)**2)
PART2 = ((CLIMA(IY,P-l)-MU(1,P-l))/SIGMA<3,K)**2)
DER(9)=DER(9)-MIDDLE*(PARTi+RAU(3,K)*PART2)-1/SIGMA(3,K)

END IF
702 CONTINUE

DO 703, T = 1, COUNT (4,IY)
P = SEQ (4,IY,T)
IF ((CLIMAtIY,P).NE.-999).AND.tCLIMA(IY,P-l)

& .NE.-999)) THEN
PARTI = (CLIMAt IY,P)-MU(1,P) )/SIGMA( 4 , K.)
PART2 = (CLIMAtIY,P-1)-MU(2,P-l))/SIGMA(4,K)
MIDDLE = PART1-RAU(4,K)*PART2
DER(14) = DER(14)+MIDDLE*PART2
PARTI = -((CLIMA(IY,P)-MUtl,P))/SIGMAt4,K)**2)
PART2 = ( (CLIMAt IY , P-l)-MU( 2 , P-l ) ) /SIGMA ( 4 , K ) **2 )*
DER(10)=DER(10)-MIDDLE*(PARTl+RAU(4,K)*PART2)-l/SIGMA(4,K)
ENDIF

703 CONTINUE
20 CONTINUE

RETURN
END

C SUBROUTINE TO SUBTRACT TWO MATRICES

SUBROUTINE SUBTR (CLAGO,TERM,NV)

REAL CLAGO (NV,NV)
REAL TERM (NV,NV)

DO 10, I = 1, NV
DO 20, J = 1, NV

TERM (I,J) = CLAGO (I,J) - TERM (I,J)
20 CONTINUE
10 CONTINUE

RETURN
END
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C THIS SUBROUTINE COMPUTES THE FOLLOWING 2ND DERIVATIVES
C ALPHAjD-ALPHAiD, ALPHAjD-ALPHAiW, ALPHAiW-ALPHAjW FOR
C MODEL 3.
C ~" ———. __ __— _— -—

SUBROUTINE M3DER2 (NY,NT,NP,NPARM,COUNT,SEQ,SIGMA,RAU,PHI,

c

c
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL

DER2,NV,K,NRAU)

COUNT (NRAU,NY)
SEQ (NRAU,NY,NT)
T,P
MIDDLE
DER2 (NP,NP)
SIGMA (NRAU,NV)
PHI (NPARM,0:NT)
RAU (NRAU.NV)

OPEN (UNIT=9,FILE='LPT1' )

DO 10, LL = 1, NPARM
DO 20, LLL = 1, NPARM

DO 30, M = 1, 2
IF (M .EQ. 1JTHEN
N = 2
NN = 1
J = 3
KK = 4

ELSEIF (M .EQ. 2) THEN
N = 1
NN = 2
J = 4
KK = 3

ENDIF

C THE VARIABLE DER COMPUTES THE 2ND DERIVATIVES FOR
C ALPHAD-ALPHAD AND ALPHAW-ALPHAW WHILE DER3 COMPUTES
C ALPHAD-ALPHAW

DER ~ 0
DER3 = 0
DO 40, IY = 1, NY

DO 50, T = 1, COUNT (M,IY)
P = SEQ (M,IY,T)
PART = (-PHI(LL,P)/SIGMA(M,K))+RAU(M,K)#PHI(LL,P-1)

& /SIGMA(M,K)
PART2 = (-PHI(LLL,P)/SIGMA(M,K))+RAU(M,K)*PHI

& (LLL,P-1)/SIGMA(M,K)
DER = DER+PART*PART2

50 CONTINUE
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DO 60, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
PART = <RAU(J,K)*PHI(LL,P-1)/SIGMA(J,K))
PART2 = (RAU(J,K)*PHI(LLL,P-1)/SIGMA(J,K))
DER = DER+PART*PART2

60 CONTINUE

DO 70, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
PART = (-PHI(LL,P)/SIGMA(KK,K))
PART2 = (-PHI(LLL,P)/SIGMA(KK,K))
DER = DER+PART*PART2

70 CONTINUE
40 CONTINUE

IF (M .EQ. 1) THEN
DER2 (LL,LLL) = -DER

ELSE IF (M .EQ. 2) THEN
DER2 (LL+3,LLL+3) ~ -DER

ENDIF

30 CONTINUE
DO SO, IY = 1, NY

DO 90, T = i, COUNT (3,IY)
P = SEQ (3,IY,T)
PART = (RAU(3,K)*PHI(LL.P-1)/SIGMA(3,K))
DER3 = DER3+PART*(-PHI(LLL,P)/SIGMA(3,K))

90 CONTINUE

DO 100, T = 1, COUNT (4,IY)
P = SEQ (4,IY,T)
PART = (-PHI(LL,P)/SIGMA(4,K))
DER3 = DER3+PART*CRAU(4,K)*PHI(LLL,P-l)/SIGMA(4,K))

= -DER3

100
80

20
10

CONTINUE
CONTINUE

DER2 (LL,LLL+3)
CONTINUE

CONTINUE

RETURN
END

SUBROUTINE TMULT(MAT2,M2,N2,PR0D,M3,N3,11,KK,JJ

REAL MAT2(M2,N2), PROD(M3,N3)

DO 7000 I = 1,11,1
DO 7010 J = 1,JJ,1

PROD(I,J) = 0.0
DO 7020 K = 1,KK,1

PROD(I,J) = PROD(I,J) + MAT2(K,1) * MAT2(K,J)
7020 CONTINUE
7010 CONTINUE
7000 CONTINUE

RETURN
END
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c
c
c
c

THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
RAU-ALPHAjD, ALPHAjW-SISMA FOR M0DEL3.

SUBROUTINE M3DER3 (NY,NT,NP,NPARM,COUNT,SEQ,CLI MA,MU,SIGMA,RAU,

c

c
&

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL

PHI,DER2,NV,K,NRAU)

COUNT (4,NY)
SEQ (4,NY,NT)
T,P
CLIMA (NY,O:NT)
MIDDLE
DER2 (NP,NP)
MU (2,0:NT)
SIGMA (NRAU,NV)
PHI (NPARM,O:NT)
RAU (NRAP,NV)

OPEN (UNIT=9,FILE='LPT1')

DO 850, LL = 1, NPARM
DO 870, M = 1, 2

IF (M .EQ. 1) THEN
N = 2
NN = 1
J = 3
KK = 4

ELSEIF (M .EQ. 2) THEN
N = 1
NN = 2
J = 4
KK - 3

END IF

C
C
C

THE VARIABLE DERI COMPUTES THE 2ND DERIVATIVES FOR RAU-
ALPHA, WHILE DER4 COMPUTES THE 2ND DERIVATIVES FOR ALPHA-
SI GMA

&

DERI = 0
DER4 = 0
DO 10, IY = 1, NY

DO 530, T = 1, COUNT (M,IY)
P = SEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-i)

.NE.-999)) THEN
PARTI = (CLIMA(IY,P)-MU(M,P))/SIGMA(M,K)
PART2 = (CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,K)
MIDDLE = PART1-RAU(M,K)*PART2
DERI = DERl+MIDDLE*(-PHI(LL,P-1)/SIGMA(M,K))+

(-PHI(LL,P)/SIGMA(M,K)+RAU(M,K)*PHI(LL,P-1)
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& /SIGMA(M,K))*PART2
PARTI = (<CLIMA(IY,P)-MU(M,P))/SIGMA(M,K)**2)
PART2 =* ( (CLIMA(IY,P-1)-MLJ(M,P-1) )/SIGMA(M,K)**2)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-1)
DER4 = DER4+MIDDLE*(PART5/(SIGMA(M,K)**2)-RAU

& (M,K)*PART6/(SIGMA(M,K)* *2) ) + <-PARTI
& +RAU(M,K)*PART2)*(-PART5/SIGMA
& (M,K)+RAU(M,K)*PART6/SIGMA(M,K))

ENDIF
530 CONTINUE
10 CONTINUE

IF (M .EQ. 1) THEN
DER2(LL,11) ~ DERI
DER2(LL,7) = -DER4

ELSEIF (M .EQ. 2) THEN
DER2(LL+3,12) = DERI
DER2(LL+3,B) = -DER4

ENDIF

DERI ~ 0
DER4 = 0
DO 20, IY = 1, NY

DO 550, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)

& .NE.-999)) THEN
PARTI = (CLIMA(IY,P)-MU(N,P))/SIGMA(J,K)
PART2 = (CLIMACIY,P-l)-MU(NN,P-l))/SIGMA(J,K)
MIDDLE = PART1-RAU(J,K)*PART2
DERI = DER1+MIDDLE#(-PHI(LL,P-l)/SIGMA(J,K))+

& (RAU(J,K)*PHI(LL,P-1)/SIGMA(J,K))*PART2
PARTI = ((CLIMA(IY,P)-MU(N,P))/SIGMA(J,K)**2)
PART2 = ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(J,K)**2)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-l)
DER4=DER4+MIDDLE*(-RAU(J,K)*PART6/(SIGMA(J,K)* #2))

& +(-PARTl+RAU(J,K)*PART2)*RAU(J,K)*PART6
& /SIGMA(J,K)

ENDIF
550 CONTINUE
20 CONTINUE

IF (M .EQ. 1) THEN
DER2(LL,13) = DERI
DER2(LL,9) = -DER4

ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,14) = DERI
DER2(LL+3,10) = -DER4

ENDIF

DERI = 0
DER4 = 0
DO 30, IY = 1, NY

DO 560, T = 1, COUNT (KK,IY)
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P = SEQ (KK,IY,T)
IF (CLIMA(IY,P~1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(KK,K)
DERI = DERl+(-PHI(LL,P)/SIGMA(KK,K))*PART2

ENDIF
IF ((CLIMA(IY,P)-NE.-999).AND.<CLIMA(IY,P-1)

& .NE.-999)) THEN
PARTI = (CLIMA< IY,P)-MU(NN,P) )/SIGMA C KK , K )
MIDDLE = PARTi-RAU(KK,K)*PART2
PARTI = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(KK,K)#*2)
PART2 - ((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(KK,K)**2)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-1)
DER4=DER4+MIDDLE*(PART5/(SIGMA(KK,K)**2))+

& (-PARTl-»-RAU(KK,K)*PART2)*C-PART5/SIGMA(KK,K) )

560
30

870
850

ENDIF
CONTINUE

CONTINUE
IF (M .EQ. 1)

DER2(LL,14
DER2(LL,10

ELSE IF (M .EQ
DER2(LL+3,
DER2(LL+3,

ENDIF
CONTINUE

CONTINUE

RETURN
END

THEN
) = DERI
) = -DER4
. 2) THEN
13) = DERI
9) = -DER4

SUBROUTINE COPY(MAT1,Ml,N1,MAT2,M2,N2,DIM1,DIM2)

INTEGER DIM1,DIM2
REAL MAT1(M1,N1), MAT2(M2,N2)

DO 10020 I = 1,M2,1
DO 10030 J = 1,N2,1

MAT2(I,J) = 0.0
10030 CONTINUE
10020 CONTINUE

DO 10000 I = 1,DIM1,1
DO 10010 J = 1,DIM2,1

MAT2(I,J) = MAT1(I,J)
10010 CONTINUE
10000 CONTINUE

RETURN
END
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C THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR
C RAU-SIGMA, RAU-RAU, SIGMA-SIGMA FOR M0DEL3
r™» ^ _ _ ^ _ _ _ _ _ _ _ . _ . _ : _ _ _ _ _ _ _ _ __-_< _ _ _ _ _ _»•_- — — — M*.—- — — - -t — .

SUBROUTINE M3DER4 (NY,NT,NP,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,DER2,

c

c
&

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL

NV,K,NRAU)

COUNT (NRAU,NY)
SEQ (NRAU,NY,NT)
T,P
CLIMA (NY,O:NT)
MIDDLE
DER2 (NP,NP)
MU (2,0:NT)
SIGMA (NRAU,NV)
RAU (NRAU.NV)

OPEN (UNIT=9,FILE='LPT1')

C THE 2ND DERIVATIVE FOR RAU-RAU, SIGMA-SIGMA AND
C RAU-SIGMA ARE COMPUTED

DO 20, IY = 1, NY
DO 330, T = 1, COUNT (1,IY)

P = SEQ (1,IY,T)
IF (CLIMACIY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(l,K)
DER2 (11,11) = DER2 (11,11)-(PART2**2)
ENDIF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1)

& .NE.-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(1,P))/SIGMA(1,K)-RAU(1,K)*

& ((CLIMA(IY,P-1)-MU£1,P-1))/SIGMA(l,K)))
PART3 = ((CLIMA(IY,P)-MU(1,P))/SIGMA(1,K)**2)
PART4 = ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,K)**2)
DER2(7,7) = DER2(7,7)+MIDDLE*(2*PART3/SIGMA(l,K)-2*

& RAU(1,K)*PART4/SIGMA(1,K))+((-PART3+PART4
& *RAU(1,K))**2)-!/(SIGMA(1,K)#*2)

DER2(11,7) = DER2(ll,7)+MIDDLE*(-PART4)+(-PART3+RAU(l,K)
& *PART4)*PART2

ENDIF
330 CONTINUE

DO 340, T = 1, COUNT (2,IY)
P = SEQ (2,IY,T)
IF (CLIMACIY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-l)-MU(2,P-1))/SIGMA(2,K)
DER2 (12,12) = DER2(12,12)-(PART2**2)

ENDIF
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IF ((CLIMAfIY,P)-NE.-999).AND.(CLIMA(IY,P-1)
& .NE.-999)) THEN

MIDDLE = ((CLIMA*IY,P)-MU(2,P))/SIGMA(2,K)-RAU(2,K)*
& ((CLIMA<IY,P-1)-MU(2,P-1))/SIGMA(2,K)))

PART3 = ((CLIMAtIY,P)-MU(2,P))/SIGMA(2,K)**2)
PART4 = ((CLIMA(IY,P-l)-MU(2,P-l))/SIGMA{2,K)**2)
DER2(8,8)=DER2(8,8)+MIDDLE *(2*PART3/SIGMA(2,K)-2*

& RAU(2,K)*PART4/SIGMA(2,K))+((-PART3+PART4
& *RAU(2,K))**2)-l/(SIGMA(2,K)**2)

DER2(12,8)=DER2(12,8)+MIDDLE*(-PART4)+(-PART3+RAU(2,K)
& *PART4)#PART2

END IF
340 CONTINUE

DO 350, T = 1, COUNT (3,IY)
P = SEQ (3,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)
DER2 (13,13) = DER2 (13,13)-(PART2**2)

END IF
IF ((CLIMACIY,P).NE.-999).AND.(CLIMA(IY,P-l)

& .NE.-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(2,P))/SIGMA*3,K)-RAU(3,K)*

& ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)))
PART3 = ((CLIMA(IY,P)-MU(2,P))/SIGMA(3,K)**2)
PART4 = ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)**2)
DER2(9,9)=DER2(9,9)+MIDDLE*(2*PART3/SIGMA(3,K)-2*

& RAU(3,K)*PART4/SIGMA(3,K))+((-PART3+PART4
& *RAU(3,K))**2)-l/(SIGMA(3,K)**2)

DER2(13,9)=DER2(13,9)+MIDDLE*(-PART4)+(-PART3+RAU(3,K)
& *PART4)*PART2

ENDIF
350 CONTINUE

DO 360, T = 1, COUNT (4,IY)
P = SEQ (4,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-l)-MU(2,P-l))/SIBMA(4,K)
DER2 (14,14) = DER2 (14,14)- £PART2**2)

ENDIF
IF ((CLIMAtIY,P).NE.-999).AND.(CLIMA(IY,P-l)

& .NE.-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(1,P))/SIGMA(4,K)-RAU(4,K)*

& ((CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(4,K)))
PART3 = ((CLIMA(IY,P)-MU(1,P))/SIGMA(4,K)**2)
PART4 = ((CLIMA(IY,P-l)-MU(2,P-l))/SIGMA(4,K)**2)
DER2(10,10)=DER2(10,10)+MIDDLE*(2*PART3/SIGMA(4,K)-2*

& RAU(4,K)*PART4/SIGMA(4,K))+((-PART3+PART4
& #RAU(4,K))**2)-l/(SIGMA(4,K)**2)

DER2(14,10)=DER2(14,10)+MIDDLE*(-PART4)+(-PART3+RAU(4,K)
& *PART4)*PART2

ENDIF
360 CONTINUE
20 CONTINUE

DER2(7,7) = -DER2(7,7)
DER2(8,8) = -DER2(8,8)
DER2(9,9) = -DER2(9,9)
DER2£10,10) = -DER2(10,10)

RETURN
END
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C THIS SUBROUTINE ITERATIVELY ESTIMATES THE MODEL
C PARAMETERS BY THE NEWTON-RAPHSON METHOD (M4).

SUBROUTINE NEWT4 (ALPHA, PS I ,RAU,NPARM,MAX ITER,NT,NY,CLIMA,SED,
C ~~* — —— ______ —— — . ___ — — __ __ _

& COUNT,DER,DER2,PHI,EPS,NP,NV,K,A,THETA,NRAU,CONVG)
p -_.____ .

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL A (NP,O:NP)
REAL PS I (2,NV,NPARM)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,O:NT)
REAL DER (NP)
REAL DER2 (NP,NP)
REAL CLIMA (NY,O:NT)
REAL THETA (NP)
REAL RAU (NRAU,NV)

15 FORMAT (' THE SUCCESSIVE THETA VALUES FOR VARIABLE: ', 14)
25 FORMAT (' DID NOT CONVERGE')
35 FORMAT ( /, ' .... ', 13, ' ITERATION', /)

OPEN (UNIT=9,FILE='LPT1')

IC = O
WRITE (9,15) K

C TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
C VECTOR

DO 20, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)
THETA (J+3) - ALPHA (2,K,J)
THETA (J+6) = PSI (1,K,J)
THETA (J+9) = PSI (2,K,J)

20 CONTINUE
DO 70, J = 1, NRAU

THETA (J+12) = RAU (J,K)
70 CONTINUE

C ...... ITERATIVE PARAMETER ESTIMATION

DO 10, ITER = 1, MAXITER

C VECTOR OF 1ST DERIVATIVES AND MATRIX OF 2ND DERIVATIVES
C IS COMPUTED

CALL M4DERV (NPARM,NY,NT,ALPHA,PSI,RAU,CLIMA,SEQ,COUNT,
& DER,DER2,PHI,NP,NV,K,NRAU)
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DO 40, KK = 1, NP
DO 50, J = KK, NP

DER2 (J,KK) = DER2 (KK,J)
50 CONTINUE
40 CONTINUE

PRINT 35, ITER

... NEW PARAMETER ESTIMATES ARE COMPUTED

CALL NEWPARM (NP,DER,DER2,THETA,EPS,IC,A)

. . . UPDATE PARAMETER ESTIMATES

DO 30 J = 1, NPARM
ALPHA (i»K,J) = THETA (J)
ALPHA C2,K,J) = THETA (J+3
PSI (1,K,J) = THETA (J+6)
PSI (2,K,J) = THETA (J+9)

30 CONTINUE

DO 80, J = 1, NRAU
RAU (J,K) = THETA (J+12)

80

C

10

60

CONTINUE

TEST FOR CON

IF (IC) 10,10,60
CONTINUE
WRITE (9,25)
CONVG = 0

RETURN
END

SUBROUTINE PMAT(MAT,M,N,DIMl,DIM2)

REAL MAT(M,N)
INTEGER DIM1,DIM2

OPEN (UNIT=12,FILE='\WATER\DATA\RESI.DAT',STATUS^'UNKNOWN')

CC *** THIS ROUTINE PRINTS OUT A MATRIX OF SIZE M BY N
CC *** EACH ELEMENT IS PRINT IN A FIELD OF . CHARACTERS WITH
CC *** TWO DECIMAL PLACES (I.E. NNN NNN.NN)

DO 50 I = 1,DIM1,1
WRITE (12,510) (MAT(I,J), J = 1,DIM2)

510 FORMAT(' ',7(F10.4))
50 CONTINUE

RETURN
END
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l-> _ _ _ _ _ _ , _ . _ __ _ _ _ _ _ _ _ _ _ _ — _

C THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
C AND THE MATRIX OF SECOND DERIVATIVES FOR MODEL4.
C ~~ ""-—•——— —— _ _ _ _ _ _ _ _ _

SUBROUTINE M4DERV (NPARM,NY,NT,ALPHA,PSI,RAU,CLIMA,SEQ,COUNT,
— — — — — — « — — • — — — — — — - - - - — _ • • _ _ —» —«. -n. * _ * * • — _ — — — — — —w — — —v * — . — — —P- — — — — — — — — — — — — — — — — - — - — — — — — — — — — — — • * — — — — — — ^ ^ ^ — — — — — — — — — • —*> * - • • — ^ — — • — — —

& DER,DER2,PHI,NP,NV,K,NRAU)

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL CLIMA (NY,O:NT)
REAL MU (2,0:365)
REAL SIGMA (2,0:365)
REAL DER (NP)
REAL DER2 (NP,NP)
REAL PSI (2,NV,NPARM)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,0:NT)
REAL RAU (NRAU,NV)

DO 10, M = 1, 2
DO 30, I = 0 , NT

MU (M,I) = 0.0
SIGMA (M,I) = 0.0
DO 40, L = i, NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) * PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) * PHI (L,I)

40 CONTINUE
30 CONTINUE
10 CONTINUE

DO BO, I - 1, NP
DER (I) = 0.0
DO 90, J = 1, NP

DER2 (I,J) = 0.0
90 CONTINUE
BO CONTINUE

CALL M4DER1(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER,
& NV,K,NRAU)

CALL M4DER2(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER2,
& NV,K,NRAU)

CALL M4DER3(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER2,
& NV,K,NRAU)

CALL M4DER4(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER2,
& NV,K,NRAU)

RETURN
END
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c
c
c
c

THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL4.

SUBROUTINE M4DER1 (NY,NT,NP,NPARM,COUNT,SEQ,CLI MA,MU,SIGMA,

& RAU,PHI,DER,NV,K,NRAU)

C
C
c

INTEGER
INTEGER
INTEGER '
REAL
REAL
REAL
REAL
REAL
REAL
REAL

DO 85C
DO

>, LL =
870, M
IF (M .

N =
NN =
J =
KK =

ELSEIF
N =
NN =
J =
KK =

ENDIF

1
=

COUNT
SEQ (
T,P
CLIMA

(4,NY)
4,NY,NT)

(NY,O:NT)
MIDDLE
DER (
MU (2
SIGMA
PHI (i
RAU (

NP)
,0:365)
(2,0:365)

NPARM,O:NT)
NRAU,NV)

, NPARM
1, 2

EQ. 1)
2

3

(
1

4

1

4
M .EQ

2

3

, THE VARIABLE

THEN

. 2) THEN

DERI COMPL S THE DERIVATIVE FOR THE MEAN
FUNCTION, WHILE DER2 AND DER3 COMPUTE THE DERIVATIVE FOR
THE VARIANCE FUNCTION

DER2 = 0
DERI = O
DER3 = 0
DO 10, IY = 1, NY

DO 330, T = 1, COUNT (M,IY)
P = SEQ CM,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)-RAU(1,K)*

((CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,P-l)))
DERI = DER1+MIDDLE*(-PHI(LL,P)/SI6MA(M,P)+RAU(1,K)»

PHI(LL,P-1)/SIGMA(M,P-1))
PARTI = (-((CLIMACIY,P)-MU(M,P))/SIGMA(M,P)**2)*

PHI(LL,P))
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PART2 = (<CLIMA(IY,P-l)-MU(M,P-i))/SIGMA(M,P-l)**2)
& *PHI(LL,P-i)

DER3 = DER3+MIDDLE*(PART1+RAU(1,K)*PART2)
END IF
DER2 = DER2+PHI(LL,P)/SIGMA(M,P)

330 CONTINUE

DO 350, T - 1, COUNT (J,IY)
P = SEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)-RAU(1,K)*

& ( <CLIMA(IY,P-1)-MLJ(NN,P-1) ) /SIGMA ( NN , P-l ) ) )
DERI = DER1+MIDDLE*(RAU(1,K)*PHI(LL,P-l)/SIGMA

& (NN,P-1))
PART2 = ((CLIMACIY,P-1)~MU(NN,P-l))/SIGMA(NN,P-1)

& **2)*PHI(LL,P-1)
DER3 = DER3+MIDDLE*(RAU(1,K)*PART2)

END IF
350 CONTINUE

DO 360, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999)) THEN
MIDDLE =((CLIMACIY,P)-MU(NN,P))/SIGMA(NN,P)-RAU(1,K)

& *((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(N,P-l)))
DERI = DER1+MIDDLE*(-PHI(LL,P)/SIGMA(NN,P))
PARTI = (-( (CLIMA(IY,P)-liU(NN,P) ) /SIGMA ( NN ,P) *#2 )*

& PHI(LL,P))
DER3 = DER3+MIDDLE*PART1
ENDIF
DER2 = DER2+PHI(LL,P)/SIGMA£NN,P)

360 CONTINUE
10 CONTINUE

IF (M .EQ. 1) THEN
DER (LL) = -DERI
DER (LL+6) = (-DER3-DER2)

ELSEIF (M .EQ. 2) THEN
DER(LL+3) = -DERI
DER(LL+9) = (-DER3-DER2)

ENDIF

TO THE AUTOCORRELATION

DER (UP) = 0
DO 20, IY = 1, NY

DO 700, T = 1, COUNT (1,IY)
P ~ SEQ (1,IY,T)
IF ((CLIMA(IY,P).NE.-999)-AND.(CLIMA(IY,P-l).NE.-999))
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870
850

CONTINUE
CONTINUE
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& THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SIBMA(l,P)
PART2 = (CLIMA(IY,P-1)-MU<1,P-l))/SIGMA(1,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PART2

ENDIF
700 CONTINUE

DO 701, T = 1, COUNT (2,IY)
P = SEQ (2,IY,T)
IF ((CLIMAfIY,P).NE.-999).AND.(CLIMA(IY,P-i).NE.-999))

& THEN
PARTI = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-l))/SIGMAC2.P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PART2

ENDIF
701 CONTINUE

DO 702, T = 1, COUNT (3,IY)
P = SEQ (3,IY,T)
IF ((CLIMAtIY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999))

& THEN
PARTI = <CLIMA<IY,P)-MU(2,P)>/SIGMA(2,P)
PART2 = (CLIMAtIY,P-1)-MU(1,P-1))/SIGMA(l,P-l)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PART2

ENDIF
702 CONTINUE

DO 703, T = 1, COUNT (4,IY)
P = SEQ (4, IY,T)
IF ((CLIMAtIY,P).NE.-999).AND.(CLIMACIY,P-l).NE.-999))

& THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SISMA(l,P)
PART2 = (CLIMAfIY,P-1)-MU(2,P-l))/SIGMA(2,P-l)
DER(NP) = DER(NP)-MPART1-RAU(1,K)*PART2)*PART2

ENDIF
703 CONTINUE
20 CONTINUE

RETURN
END

p —«___

C SUBROUTINE TO COMPUTE THE TRANSPOSE OF A MATRIX
r~ -__--__

SUBROUTINE TRNSP (PHI,NP,NTT,TRSP,NPARM,NT)

REAL PHI (NT,NPARM)
REAL TRSP (NPARM,NT)

DO 10, I = 1, NP
DO 20, J = 1, NTT

TRSP (I,J) = PHI (J,I)
20 CONTINUE
10 CONTINUE

RETURN
END
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C THIS SUBROUTINE COMPUTES THE FOLLOWING 2ND DERIVATIVES
C ALPHAjD-ALPHAiD, PSIjD-PSIiD, ALPHAjD-PSIiD, ALPHAjW-
C ALPHAiW, PSIjW-PSIiW, ALPHAjW-PSIiW FOR MODEL 4
C —______—___ ____ __ ____ _____

SUBROUTINE M4DER2 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,
—

& RAU,PHI,DER2,NV,K,NRAU)
—

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL

DO 850, LL _
DO 870, LLL
DO 880,

IF (M
N =
NN
J =
KK

M
•

2
=
3
—

ELSEIF
N =
NN
J =
KK

END IF

THE

1
=
4
=

1

COUNT (4,NY)
SEQ (4,NY,NT)
T,P
CLIMA (NY,O:NT)
MIDDLE
DER2 (NP,NP)
MU (2,0:365)
SIGMA (2,0:365)
PHI (NPARM,O:NT)
RAU (NRAU,NV)

, NPARM
= 1, NPARM
= 1, 2
EQ. DTHEN

1

4
(

2

3

M .EQ. 2) THEN

VARIABLE DER COMPUlc
C ALPHA-ALPHA, DER3 THE DERIVATIVES PSI-PSI AND DER4 THE
C DERIVATIVES ALPHA-PSI

DER = 0
DER3 = 0
DER4 = 0
DO 10, IY = 1, NY
DO 330, T = 1, COUNT (M,IY)

P = SEQ (M,IY,T)
PART = (-PHI£LL,P)/SIGMA(NN,P))+RAU(1,K)*PHI(LL,P-1)

& /SIGMA(NN,P-1)
PART2 = (-PHI(LLL,P)/SIGMA(NN,P))+RAU<1,K)*PHI(LLL,

& P-1)/SIGMA(NN,P-1)
DER - DER+PART*PART2
IF ((CLIMA(IY,P)-NE.-999).AND.(CLIMA(IY,P-1).NE.
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&
&
&
&

&
&
&

330

-999)) THEN
MIDDLE = ((CLIMA(IY ,P)-MU(NN,P))/SISMA(NN,P)-RAU(1,K)*

((CLIMA(IY,P~1)-MU(NN,P-1))/SIGMA(NN,P-l)))
PARTI = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)**2)
PART2 = ( <CLIMA( IY , P-l )-ML) (NN , P-l ) )/SIGMA ( NN,P-l ) **2 )
PART3 = PHI(LLL,P)
PART4 = PHI(LLL,P-1)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-1)
DER3 = DER3+MIDDLE*(2*PART1/SIGMA(NN,P)*PART3*PART5

-2*RAU(1,K)*PART2/SIGMA(NN,P-1)*PART4*PART6)+
(-PARTI*PART3+PART2*RAU(1,K)*PART4)*(-PARTI*
PART5+PART2*PART6*RAU(1,K))-PART3*PART5/
(SIGMA<NN,P)**2)

DER4 = DER4+MIDDLE*(PART3*PART5/(SIGMA(NN,P)**2)-
RAU(1,K)*PART4*PART6/(SIGMA(NN,P-1)**2)) + (-
PARTI*PART3+RAU(1,K)*PART2*PART4)*(-PART5/
SIGMA<NN,P)+RAU(1,K)*PART6/SIGMA(NN,P-l))

ENDIF
CONTINUE

&
&

&

350

DD 350, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
PART = (RAU(1,K)*PHI(LL,P-l)/SIGMA(NN,P-l))
PART2 = (RAU(1,K)*PHI(LLL,P-l)/SIGMA(NN,P-l))
DER = DER+PART*PART2
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l),NE.

-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)-RAU(1,K)*

((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)))
PART2 = ((CLIMA(IY,P-l)-MU(NN,P-1))/SIGMA(NN,P-l)**2)
PART3 = PHI(LLL,P)
PART4 = PHI(LLL,P-l)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-1)
DER3 = DER3+MIDDLE*(-2*RAU(1,K)*PART2/SIGMA(NN,P-1)*

PART4*PART6)+(RAU(1,K)*PART2*PART4)*(RAU(1,K)*
PART2*PART6)

DER4 = DER4+MIDDLE*(-RAU(1,K)*PART4#PART6/(SIGMA(NN
,P-1)**2))+RAU(l,K)*PART2*PART4*RAU(l,K)*PART6/
SIGMA(NN,P-1)

ENDIF
CONTINUE

DO 360, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
PART = (-PHI(LL,P)/SIGMA(NN,P))
PART2 = (-PHI(LLL,P)/SIGMA(NN,P))
DER = DER+PART*PART2
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

-999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)-RAU(1,K)*

((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(N,P-l)))
PARTI = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P) ** 2)
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&

&

360
10

PART3 = PHI(LLL,P)
PART4 = PHI(LLL,P-1)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-1)
DER3 = DER3+MIDDLE*(2*PART1/SIGMA(NN,P))*PART3*PART5

+(-PARTI*PART3)*(-PARTI*PART5)-PART3*PART5/
(SIGMA(NN,P)**2)
DER4+MIDDLE#PART3*PART5/(SIGMA(NN,P)**2)+
C-PART1*PART3*(-PART5/SIGMA(NN,P)))

DER4 =

ENDIF
CONTINUE

CONTINUE

880
870
850

IF (M ,
DER2
DER2
DER2

ELSE IF
DER2
DER2
DER2

ENDIF
CONTINUE

CONTINUE
CONTINUE

EQ. 1) THEN
(LL,LLL) = -DER
(LL+6,LLL+6) = -DER3
(LL,LLL+6) = -DER4
(M .EQ. 2) THEN
(LL+3,LLL+3) = -DER
(LL+9,LLL+9) = -DER3
(LL+3,LLL+9) = -DER4

RETURN
END

C
C
c
c
c
c
c
c

THIS FUNCTION COMPUTES THE GAMMA FUNCTION OF X GIVEN
BY:
THE DEFINITE INTEGRAL BETWEEN O & INFINITY OF THE
FUNCTION:

Y ** (X-l) * EXP(-Y)
w.r.t. Y.

FUNCTION GAMMA (ALPH)

A = ALPH
G = 1
IF (A .GE. 10) THEN

GOTO 2
ELSE

G = G * A
A = A + 1
GOTO 4

ENDIF
T = (1 + (0.0833333
GAMMA = EXPC-1 * A

RETURN
END

0.00347222 - 0.002681327 / A) / A) /
(A - 0.5) * LOGEA) + 0.918939)*T*A/G

A
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c
c
c
c
c

THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FDR:
RAU-ALPHAjD, RAU-PSIjD, RAU-RAU, RAU-ALPHAjW AND
RAU-PSIjW FOR MODEL 4

SUBROUTINE M4DER3 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,

& PHI,DER2,NV,K,NRAU)

C
c
c

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL

DO 85C
DO

>, LL
870,
IF (M

N
NN
J
KK

ELSE I
N
NN
J
KK

END IF

. THE

COUNT
SEQ (
T,P
CLIMA

(4,NY)
4,NY,NT)

(NY,O:NT)
MIDDLE
DER2
MU (2
SIGMA
PHI (1
RAU (

< NP,NP)
,0:365)
(2,0:365)

MPARM,O:NT)
NRAU,NV)

= 1, NPARM
M = 1, 2
.ED. 1)

= 2
= 1
= 3
— 4
F (M .EQ
= 1
= 2

= 4
= 3

VARIABLE

THEN

. 2) THEN

DERI COMPL

&

&

ALPHA, WHILE DER3 COMPUTES THE 2ND DERIVATIVES FOR RAU-
PSI

DERI = 0
DER3 = 0
DO 10, IY = 1, NY

DO 530, T = 1, COUNT (M,IY)
P = SEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

-999)) THEN
PARTI = (CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)
PART2 = (CLIMA(IY,P-l)-MU(M,P-l))/SIGMA(M,P-l)
MIDDLE = PART1-RAU(1,K)#PART2
DERI = DER1+MIDDLE*(-PHI(LL,P-1)/SIGMA(M,P-1))+

(-PHI(LL,P)/SIGMA(M,P)+RAU(1,K)*PHI(LL,P-1)
/SIGMA(M,P-l))*PART2
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DER3 = DER3+MIDDLE*(PART2/SIGMA(M,P-1))*(-PHI
& (LL,P-1))+((PART1/SI6MA(M,P))*(-PHI(LL,P))+RAU
& (1,K)*(PART2/SIGMA(M,P-1))*PHI(LL.P-1))*PART2

END IF
530 CONTINUE

DO 550, T - 1, COUNT (J,IY)
P = SEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
PARTI = (CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)
PART2 = (CLIMA(IY,P-1)-MU(NN,P-1) )/SIGMA(NN,P-l)
MIDDLE = PART1-RAU(1,K)*PART2
DERI = DER1+MIDDLE*(-PHI(LL,P-1)/SIGMA(NN,P-1))+

8* (RAU(1,K)*PHI(LL,P-1)/SIGMA(NN,P-1))*PART2
DER3 = DER3+MIDDLE*(-PHI(LL,P-1)/SIGMA(NN,P-1))*

& PART2+<RAU(i,K)*PHI ( LL , P-l ) /SIGMA ( NN , P-l ) ) #
& PART2**2

END IF
550 CONTINUE

DO 560, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
IF (CLIMAtIY,P-1)-NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(N,P-l))/SIGMA(N,P-l)
DERI = DERl+(-PHI(LL,P)/SIGMA*NN,P))*PART2
ENDIF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
PART3 = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P))
MIDDLE = (PART3-RAU(1,K)*PART2)
DER3 = DER3+C-PHI(LL,P)/SIGMA(NN,P))*PART3*PART2
ENDIF

560 CONTINUE
10 CONTINUE

IF CM .EQ. 1) THEN
DER2(LL,NP) = DERI
DER2(LL+6,NP) = DER3

ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,NP) = DERI
DER2 (LL+9,NP) =DER3

ENDIF
870 CONTINUE
850 CONTINUE

THE 2ND DERIVATIVE RAU-RAU IS COMPUTED

DER2 (NP,NP) = O
DO 20, IY = 1, NY

DO 330, T = 1, COUNT (1,IY)
P = SEQ (1,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(l,P-i))/SIGMA(1,P-l
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DER2(NP,NP) = DER2(NP,NP)+PART2**2
END IF

330 CONTINUE

DO 340, T = 1, COUNT (2,IY)
P = SEQ (2,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-l>
DER2(NP,NP) = DER2(NP,NP)+PART2**2

END IF
340 CONTINUE

DO 350, T = 1, COUNT (3,IY)
P = SEQ (3,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(1,P-i))/SIGMA(l,P-1)
DER2(NP,NP) = DER2(NP,NP)+PART2**2

END IF
350 CONTINUE

DO 360, T = 1, COUNT (4,IY)
P = SEQ (4,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-l)
DER2(NP,NP) = DER2(NP,NP)+PART2**2

END IF
360 CONTINUE
20 CONTINUE

DER2 (NP,NP) = -DER2 (NP,NP)

RETURN
END

C THIS SUBROUTINE COMPUTES PI=PROBABILITY THAT A WET DAY
C FOLLOWS A WET DAY OR THE PROBABILITY THAT A WET DAY
C FOLLOWS A DRY DAY.

SUBROUTINE PIEST (NP,GAM.STATE,K,PHI,PI,NT)

INTEGER
REAL
REAL
REAL
REAL

STATE
LAMBDA
GAM (2,NP)
PHI (NP,O:NT)
PI

LAMBDA = O
DO 10, I ~ 1, NP

LAMBDA = LAMBDA + GAM (STATE,I) * PHI (I,K)
10 CONTINUE

PI = EXP (LAMBDA) / (1 + EXP (LAMBDA))

RETURN
END
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C —— _——_______—___ _ _. ___ — — — —
C THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR
C ALPHAjD-ALPHAiW, ALPHAjD-PSIiW, PSIjD-PSIiW AND
C ALPHAjW-PSIiD FOR MODEL 4.
— _ „ _ _ _ _ _ _ . _ - - • _ _ . _ - • _ . _ _ — — — - _ . _ . —

SUBROUTINE M4DER4 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,

c

c
&

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL

PHI,DER2,NV,K,NRAU)

COUNT (4,NY)
SEQ (4,NY,NT)
T,P
CLIMA (NY,O:NT)
DER2 (NP,NP)
MU (2,0:365)
SIGMA (2,0:365)
PHI (NPARM,O:NT)
RAU (NRAU.NV)

DO 850, _L = 1, NPARM
DO 870, LLL = 1, NPARM

C THE VARIABLE DER COMPUTES THE 2ND DERIVATIVE ALPHAD-
C ALPHAW, DER3 THE DERIVATIVE ALPHAD-PSIW, DER4 THE
C DERIVATIVE PSID-PSIW AND DER5 THE DERIVATIVE ALPHAW-
C PS ID

DER = 0
DER3 = 0
DER4 - 0
DER5 - 0
DO 10, IY = 1, NY

DO 350, T - 1, COUNT (3,IY)
P = SEQ (3,IY,T)
PART = (RAU(1,K)*PHI(LL,P-1)/SIGMAU,P-1) )
DER = DER+PART*(-PHI(LLL,P)/SIGMA(2,P))
IF (CLIMA( IY,.P) .NE.-999) THEN
DER3 = DER3+PART*(-PHI(LLL,P)/SIGMA(2,P))*((CLIMA

& (IY,P)-MU(2,P))/SIGMA(2,P))
ENDIF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
PART2 = ((CLIMA(IY,P-l)-MU(l,P-i))/SIGMA(1,P-l)**2)

& *PHI(LL,P-1)
PARTI = (-(CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)**2)*

& PHI(LLL,P)
DER4 = DER4+(PART1*RAU(1,K)*PART2)
ENDIF
IF (CLIMA(IY,P-1).NE.-999) THEN
PART = (-PHI(LL,P)/SIGMA(2,P))
DER5 = DER5+PART*RAU(1,K)*PHI(LLL,P-1)/SIGMA(1,P-1)*
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& <CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(1,P-1)
ENDIF

350 CONTINUE

DO 360, T = 1, COUNT (4,IY)
P = SEQ (4,IY,T)
PART = (-PHI(LL,P)/SIGMA(1,P))
DER = DER+PART*(RAU(1,K)*PHI(LLL,P-1)/SIGMA(2,P-l))
IF (CLIMA(IY,P-1).NE.-999) THEN
DER3 = DER3+PART*(RAU(1,K)*PHI (LLL , P-l )/SIGMA ( 2 , P-l )

& )*(CLIMA(IY,P-i)-MU(2,P-l))/SIGMA(2,P-l)
ENDIF
IF ( (CLIMA(IY,P) .NE.-999) .AND. (CLIMA(IY,P-1 ) .NE.

& -999)) THEN
PARTI = (-( (CLIMA(IY,P)-MU(1,P) )/SIGMA(1,P)**2 )*

& PHI(LL,P))
PART2 = ((CLIMA(IY,P-1)-MU(2,P-l))/SIGMA(2,P-l)**2)*

& PHI(LLL,P-l)
DER4 = DER4+RAU(i,K)*PART2*PARTl
ENDIF
IF (CLIMA(IY,P).NE.-999) THEN
PART = (RAU(1,K)*PHI(LL,P-l)/SIGMA(2,P-l))
DER5 = DER5+PART#(-PHI(LLL,P)/SIGMA(1,P))*(CLIMA

& (IY,P)-MU(1,P))/SIGMA(l,P)
ENDIF

360 CONTINUE
10 CONTINUE

DER2 (LL,LLL+3) = -DER
DER2 (LL,LLL+9) = -DER3
DER2 (LL+6,LLL+9) = -DER4
DER2 (LL+3,LLL+6) = -DER5

870 CONTINUE
850 CONTINUE

RETURN
END

SUBROUTINE PPMAT(MAT,M,N,DIM1,DIM2)

cc
cc
cc

*
*
*

**
**
**

REAL MAT(M,N)
INTEGER DIM1,DIM2

OPEN <LJNIT=9,FILE='LPT1' )

THIS ROUTINE PRINTS OUT A MATRIX OF SIZE M BY N
EACH ELEMENT IS PRINT IN A FIELD OF . CHARACTERS WITH
TWO DECIMAL PLACES (I.E. NNN NNN.NN)

WRITE (9,5020)
DO 5000 I = 1,DIM1,1

WRITE (9,5010) (MAT(I,J), J = 1,DIM2)
5010 FORMATC" ',7(F15.6))
5000 CONTINUE

WRITE (9,5020)
5020 FORMAT(/)

RETURN
END
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V~* __, __. __» __ — — — — __» w _-_.__, . . . mu —n - - - nr »--!-••• i~ -•.-•-

C THIS SUBROUTINE ITERATIVELY ESTIMATES THE MODEL
C PARAMETERS BY THE NEWTON-RAPHSON METHOD FOR M5.
C* _•_ _, _ _ ^ . . - _u. ,•- _LU|-1 •uni-.-n - -u. v_ _

SUBROUTINE NEWT5 (ALPHA,PS I,RAU,NPARM,MAX ITER,NT,NY,CLI MA,SEQ,
(-• __ _ _ _ _ _ _ _ _ _ _ _ _ ™ _

& COUNT,DER,DER2,PHI,EPS,NP,NV,K,A,THETA,NRAU,C0NV6)
i—> _ _ _ _ _ _ _

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
REAL A (NP,O:NP)
REAL PSI (2,NV,NPARM)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,O:NT)
REAL DER (NP)
REAL DER2 (NP,NP)
REAL CLIMA (NY,O:NT)
REAL THETA (NP)
REAL RAU (NRAU,NV)

15 FORMAT (' THE SUCCESSIVE THETA VALUES FOR VARIABLE: ', 14)
25 FORMAT (' .... DID NOT CONVERGE')
35 FORMAT (/, ' ', 13, ' ITERATION', /)

OPEN (UNIT=9,FILE='LPT1')

IC - 0
WRITE (9,15) K

C TRANSFORMING THE SEPARATE PARAMETER ARRAYS INTO ONE
C VECTOR

DO 20, J = 1, NPARM
THETA (J) = ALPHA (1,K,J)
THETA (J+3) " ALPHA (2,K,J)
THETA (J+6) = PSI (1,K,J)
THETA (J+9) = PSI (2,K,J)

20 CONTINUE
DO 70, J = 1, NRAU

THETA (J+12) - RAU (J,K)
70 CONTINUE

C ITERATIVE PARAMETER ESTIMATION

DO 10, ITER = 1, MAXITER

C VECTOR OF 1ST DERIVATIVES AND MATRIX OF 2ND DERIVATIVES
C IS COMPUTED

CALL M5DERV (NPARM,NY,NT,ALPHA,PSI,RAU,CLIMA,SEQ,COUNT,
& DER,DER2,PHI,NP,NV,K,NRAU)
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DO 40, KK = 1, NP
DO 50, J = KK, NP

DER2 (J,KK) = DER2 (KK,J)
50 CONTINUE
40 CONTINUE

PRINT 35, ITER

... NEW PARAMETER ESTIMATES ARE COMPUTED

CALL NEWPARM (NP,DER,DER2,THETA,EPS,IC,A)

... UPDATE PARAMETER ESTIMATES

DO 30 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)
ALPHA (2,K,J) = THETA (J+3)
PSI (1,K,J) = THETA (J+6)
PSI (2,K,J) = THETA (J+9)

30 CONTINUE

DO BO, J = 1, NRAU
RAU (J,K) = THETA (J+12)

80

C

10

60

CONTINUE

TEST FOR CON

IF (IC) 10,10,60
CONTINUE
WRITE (9,25)
CONVG = 0

RETURN
END

C ""•-• — — — —

C FUNCTION OF ONE VARIALBE
i— _ . _ _ _ .

FUNCTION DIM1 (X)

INTEGER NPMAX
PARAMETER (NPMAX=20)

COMMON /ONE/ NPP,THET(NPMAX),DERI(NPMAX)
DIMENSION XT(NPMAX)

OPEN ( U N I T = 9 , F I L E = ' L P T 1 ' )

DO 10 , J=1,NPP
X T < J )=THET(J)+X *DERI (J )

10 CONTINUE
D I C 1 1 = F U N C ( X T )

RETURN
END
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C THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
C AND THE MATRIX OF SECOND DERIVATIVES FOR MODEL5.

SUBROUTINE M5DERV (NPARM,NY,NT,ALPHA,PS I,RAU,CLI MA,SEQ,COUNT,
r* __._ -_.__-_,._.__.____._._____ ___ — __ — — —.

& DER,DER2,PHI,NP,NV,K,NRAU)

COUNT (4,NY
SEQ (4.NY.N1

INTEGER COUNT (4,NY)
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

COUNT (4,NY)
SEQ (4,NY,NT)
CLIMA (NY,O:NT)
MU (2,0:365)
SIGMA (2,0:365)
DER (NP)
DER2 (NP,NP)
PS I (2,NV,NPARM)
ALPHA (2,NV,NPARM)
PHI (NPARM,O:NT)
RAU (NRAU-NV)

DO 10, M = 1, 2
DO 30, I = 0, NT

MU (M,I) - 0.0
SIGMA (M,I) = 0.0
DO 40, L = 1, NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) * PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) * PHI (L,I)

40 CONTINUE
30 CONTINUE
10 CONTINUE

DO 80, I = 1, NP
DER (I) = 0.0
DO 90, J = 1, NP

DER2 ( I ,J) = 0.0
90 CONTINUE
80 CONTINUE

CALL M5DER1(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU-PHI,DER,
& NV,K,NRAU)

CALL M5DER2<NY,NT,NP,NPARM,COUNT,SEG,CLIMA,MU,SIGMA,RAU,PHI,DER2,
& NV,K,NRAU)

CALL M5DER3(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER2,
& NV,K,NRAU)

CALL M5DER4(NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,PHI,DER2,
& NV,K,NRAU)

RETURN
END

D-105



c
c
c
c

THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL 5.

SUBROUTINE M5DER1 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIBMA,

& RAU,PHI,DER,NV,K,NRAU)

C
c
c

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL

DO B5O, LL =
DO 870, M

IF (M .
N =
NN =
J =
KK =

ELSEIF
N =
NN =
J =
KK =

ENDIF

i
=

COUNT
SEQ (
T,P
CLIMA

(NRAU,NY)
NRAU,NY,NT)

(NY,O:NT)
MIDDLE
DER (
MU (2
SIGMA
PHI ('
RAU (

NP)
,0:365)
{2,0:365)

NPARM,0:NT)
NRAU,NV)

, NPARM
1, 2

EQ. 1)
2

3

(
1

4

1

4
M .EQ

2

3

, THE VARIABLE

THEN

. 2) THEN

DERI COMPL 3 THE DERIVATIVE FOR THE MEAN
FUNCTION, WHILE DER2 AND DER3 COMPUTE THE DERIVATIVE FOR
THE VARIANCE FUNCTION

DER2 = 0
DERI = 0
DER3 = 0
DO 10, IY = 1, NY

DO 330, T = 1, COUNT (M,IY)
P = SEQ (M,IY,T)
IF ( (CLIMA(IY,P).NE.-999).AND. (CLI MA(IY,P-l) .NE.

-999)) THEN
MIDDLE = UCLIMAC IY , P )-MU ( M , P ) )/S I GMA ( M , P )-RAU ( M , K ) *

((CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,P-l)))
DERI = DER1+MIDDLE*(-PHI<LL,P)/SIGMA*M,P)+RAU(M,K)*

PHI(LL,P-1)/SIGMA(M,P-1))
PARTI = (-((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)**2)*

PHI(LL.P))
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330

350

&

&

&

360
10

PART2 = <(CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,P-l)**2)
*PHI(LL,P-1)

DER3 = DER3+MIDDLE*(PART1+RAU(M,K)*PART2)
END IF
DER2 = DER2+PHI(LL,P)/SIGMA(M,P)

CONTINUE

DO 350, T = 1, COUNT (J,IY)
P = SEQ <J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

-999)) THEN
MIDDLE = ((CLIMAtIY,P)-MU(N,P))/SIGMA(N,P)-RAU(J,K)#

((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)))
DERI = DER1+MIDDLE*(RAU(JSK)*PHI<LL,P-1)/SIGMA

<NN,P-1))
PART2 = (<CLIMA(IY,P-i)-MU(NN,P-l))/SIGMA(NN,P-l)

**2)*PHI(LL,P-1)
DER3 = DER3+MIDDLE#(RAU(J,K)*PART2)
ENDIF

CONTINUE

DO 360, T = 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

-999)) THEN
MIDDLE=((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)-RAU(KK,K)

*((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(N,P-1)))
DERI = DER1+MIDDLE*(-PHI(LL,P)/SI6MA(NN,P))
PARTI = (-((CLIMA<IY,P)-MU{NN,P))/SIGMA(NN,P)**2)*

PHI(LL,P))
DER3 = DER3+MIDDLE*PART1
ENDIF
DER2 = DER2+PHI(LL,P)/SI3MA(NN,P)

CONTINUE
CONTINUE

IF (M .EQ. 1) THEN
DER (LL) = -DERI
DER (LL+6) = (-DER3-DER2)

ELSEIF (M .EQ. 2) THEN
DER(LL+3) = -DERI
DER(LL+9) = (-DER3-DER2)

ENDIF

870 CONTINUE
850 CONTINUE

C
C

THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
COEFFICIENT IS COMPUTED

DO 20, IY = 1, NY
DO 700, T = 1, COUNT U,IY)

P - SEQ (1,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.
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& -999)) THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SIGMA(l,P)
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(l,P-l)
DER(13) = DER(13)+(PARTi-RAU(l,K)*PART2)*PART2

ENDIF
700 CONTINUE

DO 701, T = 1, COUNT (2,IY)
P = BEQ (2,IY,T)
IF <(CLIMA(IY,P)-NE.-999).AND.(CLIMA(IY,P-1).NE

& -999)) THEN
PARTI = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)
PART2 = (CLIMA(IY,P-l)-MU(2,P-l))/SIGMA(2,P-l)
DER(14) - DER(14)+(PART1-RAU(2,K)*PART2)*PART2

ENDIF
701 CONTINUE

DO 702, T = 1, COUNT (3,IY)
P = SEQ (3,IY,T)
IF ((CLIMACIY,P).NE.-999).AND.(CLIMA(IY.P-1).NE

& -999)) THEN
PARTI = (CLIMAtIY,P)-MU(2,P))/SIGMA(2,P)
PART2 = (CLIMA(IY,P-l)-MU(l,P-i))/SIGMAf1,P-1)
DER(15) - DER(15)+(PART1-RAU(3,K)*PART2)*PART2

ENDIF
702 CONTINUE

DO 703, T = 1, COUNT (4,IY)
P •= SEQ (4,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMAtIY,P-1).NE

& -999)) THEN
PARTI = (CLIMAtIY,P)-MU(1,P))/SIGMA(l,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-l)
DER(NP) = DER(NP)+(PART1-RAU(4,K)*PART2)*PART2

ENDIF
703 CONTINUE
20 CONTINUE

RETURN
END

C SUBROUTINE TO COMPUTE THE TRANSPOSE OF A MATRIX
C

SUBROUTINE TRANSP (PHI,NPARM,NT,TRSP)

REAL PHI (NT,NPARM)
REAL TRSP (NPARM,NT)

DO 10, I = 1, NPARM
DO 20, J = 1, NT

TRSP ( I ,J) = PHI (J,I)
20 CONTINUE
10 CONTINUE

RETURN
END
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C ___________—______________ __________ __ —_____—_—__
C THIS SUBROUTINE COMPUTES THE FOLLOWING 2ND DERIVATIVES
C ALPHAjD-ALPHAiD, PSIjD-PSIiD, ALPHAjD-PSIiD, ALPHAjW-
C ALPHAiW, PSIjW-PSIiW, ALPHAjW-PSIiW FOR MODEL 5.
r-* _ _ _ _ _ »

SUBROUTINE M5DER2 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,

& RAU.PHI,DER2,NV,K,NRAU)

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
INTEGER T,P
REAL CLIMA (NY,O:NT)
REAL MIDDLE
REAL DER2 (NP,NP)
REAL MU (2,0:365)
REAL SIGMA (2,0:365)
REAL PHI (NPARM,0.NT)
REAL RAU (NRAU.NV)

DO 850, LL = 1, NPARM
DO 870, LLL = 1, NPARM
DO 880, M = 1, 2

IF (M .EQ. DTHEN
N = 2
NN - 1
J = 3
KK - 4

ELSE IF CM .EQ. 2) THEN
N - 1
NN = 2
J = 4
KK = 3

ENDIF

C THE VARIABLE DER COMPUTES THE 2ND DERIVATIVES FOR
C ALPHA-ALPHA, DER3 THE DERIVATIVES PS I-PS I AND DER4 THE
C DERIVATIVES ALPHA-PSI

DER = 0
DER3 = 0
DER4 - 0
DO 10, IY = 1, NY
DO 330, T = 1, COUNT (M,IY)

P = SEQ (M,IY,T)
PART = (-PHI(LL,P)/SIGMA(NN,P))+RAU(M,K)*PHI(LL,P-1)

& /SIGMA(NN,P-1)
PART2 = (-PHI(LLL,P)/SIGMA(NN,P))+RAU(M,K)*PHI

& (LLL,P-1)/SIGMA(NN,P-1)
DER = DER+PART*PART2
IF ((CLIMA(IY,P).NE.-99?).AND.(CLIMA(IY,P-1).NE.-999))
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THEN
MIDDLE =

&
&
&
&

&
&
&

330

&
&

&
&

PARTI =
PART2 =
PART3 =
PART4 =
PART5 =
PART6 =
DER3

DER4 =

END IF
CONTINUE

•• ((CLIMAt IY,P)-MU(NN,P) ) /SIGMA ( NN, P ) -RAU ( M, K )*
((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)))
( (CLIMA(IY,P)-MU(NN,P) )/SIGMA(NN,P)* *2)
((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)**2)
PHI(LLL,P)
PHI(LLL,P-i)
PHI(LL,P)
PHI(LL,P-1)
DER3+MIDDLE*(2*PART1/SIGMA(NN,P)*PART3*PART5
-2*RAU(M,K)*PART2/SIGMA(NN,P-1)*PART4*PART6)+
(-PARTI*PART3+PART2*RAU(M,K)*PART4)*(-PARTI*
PART5+PART2*PART6*RAU ( M , K ) ) -PART3*PART5/
(SIGMA(NN,P)*#2)
DER4+MIDDLE*(PART3*PART5/(SIGMA(NN,P)* *2)-RAU
(M,K)*PART4*PART6/(SIGMA(NN,P-l)**2))+(-PARTI
*PART3+RAU(M,K)*PART2*PART4)*(-PART5/SIGMA
(NN,P)+RAU(M,K)*PART6/SIGMA(NN,P-l))

350

DO 350, T = 1, COUNT (J,IY)
P = SEQ (J,IY,T)
PART = (RAU(J,K)*PHI(LL,P-l)/SIGMA(NN,P-l))
PART2 = (RAU(J,K)*PHI(LLL,P-1)/SIGMA(NN,P-l))
DER = DER+PART*PART2
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMAtIY,P-l).NE.-999))

THEN
MIDDLE = ((CLIMAtIY,P)-MU(N,P))/SIGMA(N,P)-RAU(J,K)*

<<CLIMAtIY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)))
PART2 = ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)**2)
PART3 = PHI(LLL,P)
PART4 = PHI(LLL,P-1)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-1)
DER3 = DER3+MIDDLE*(-2*RAU(J,K)*PART2/SIGMA(NN,P-l)*

PART4*PART6)+(RAU(J,K)*PART2*PART4)*(RAU(J,K)
*PART2*PART6)

DER4 = DER4+MIDDLE*(-RAU(J,K)*PART4*PART6/(SIGMA
(NN,P-1)**2))+RAU(J,K)*PART2*PART4*RAU(J,K)*
PART6/SIGMA(NN,P-l)

ENDIF
CONTINUE

DO 360, T - 1, COUNT (KK,IY)
P = SEQ (KK,IY,T)
PART ~ (-PHI(LL,P)/SIGMA(NN,P))
PART2 = (-PHI(LLL,P)/SIGMA(NN,P))
DER = DER+PART*PART2
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMAtIY,P-l).NE.-999))

THEN
MIDDLE = ((CLIMAtIY,P)-MU(NN,P))/SIGMA(NN,P)-RAU(KK,K)

#((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(N,P-l)))
PARTI = ((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P) ** 2)
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360
10

PART3 = PHI(LLL.P)
PART4 = PHI(LLL,P-1)
PART5 = PHI(LL,P)
PART6 = PHI(LL,P-1)
DER3 = DER3+MIDDLE*(2*PART1/SIGMA(NN,P)) *PART3*PART5

+(_pARTl*PART3)*(-PARTI*PART5)-PART3*PART5/
(SISMA(NN,P)**2)

DER4 = DER4+MIDDLE*PART3*PART5/(SIGMA(NN,P)**2)+
(-PARTi*PART3*(-PART5/SIGMA(NN,P)))

END IF
CONTINUE

CONTINUE

IF (M .EQ. 1) THEN
DER2 (I_L,LLL) = -DER
DER2 <LL+6,LLL+6) = -DER3
DER2 (LL,LLL+6) = -DER4

ELSE IF (M .EQ. 2) THEN
DER2 <LL+3,LLL+3) = -DER
DER2 (LL+9,LLL+9) = -DER3
DER2 (LL+3,LLL+9) = -DER4

END IF

S80 CONTINUE
870 CONTINUE
850 CONTINUE

RETURN
END

SUBROUTINE CNTRAL(MAT,M,N,MATOR,Ml,N1,DIM!,DIM2)

REAL MAT(M,N), MATOR*Ml,Nl)
INTEGER DIM1, DIM2
REAL AVE(25)

DO 6000 J = 1,DIM2,1
AVE(J) =0.0
DO 6010 I = 1,DI ,1

AVE(J) = AVE(J) + MATOR(I,J)
6010 CONTINUE

AVE(J) = AVE(J) / FLOAT(DIMl)
6000 CONTINUE

CC ***AVE(J) NOW CONTAINS THE AVERAGE OF THE ELEMENTS IN EACH
CC ***COLUMN OF THE MATRIX ***

DO 6020 I = 1,DIM1,1
DO 6030 J = 1,DIM2,1

MAT(I,J) =MATOR(I,J)
6030 CONTINUE
6020 CONTINUE

RETURN
END

- AVE(J )
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c
c
c
c
c

THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
RAU-ALPHAjD, RAU-PSIjD, RAU-RAU, RAU-ALPHAjW AND
RAU-PSIjW FOR M0DEL5

SUBROUTINE M5DER3 (NY,NT,NP,NPARM,COUNT,SEQ,CLIMA,MU,SIGMA,RAU,

c
c

INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL

PHI,DER2,NV,K,NRAU)

COUNT (4,NY)
SEQ (4,NY,NT)
T,P
CLIMA (NY,O:NT)
MIDDLE
DER2 (NP,NP)
MU (2,0:365)
SIGMA (2,0:365)
PHI (NPARM,O:NT)
RAU (NRAU.NV)

DO 850, LL = 1, NPARM
DO 870, M = 1, 2

IF (M .EQ,
N = 2
NN = 1
J = 3
KK = 4

ELSEIF (M
N = 1
NN = 2
J = 4
KK = 3

ENDIF

1) THEN

EQ. 2) THEN

C
C
C

THE VARIABLE DERI COMPUTES THE 2ND DERIVATIVES FOR RAU-
ALPHA, WHILE DER3 COMPUTES THE 2ND DERIVATIVES FOR RAU-
PSI

&
&

DERI = O
DER3 = 0
DO 10, IY = 1, NY

DO 530, T = 1, COUNT (M,IY)
P = SEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.<CLIMA(IY,P-l).NE.

-999)) THEN
PARTI = (CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)
PART2 = (CLIMA(IY,P-1)-MU(M,P-1))/SI6MA(M,P-l)
MIDDLE = PART1-RAU(M,K)*PART2
DERI = DERi+MIDDLE*(-PHI(LL,P-l)/SIGMA(M,P-l))+

C-PHI(LL,P)/SIGMA(M,P)+RAU(M,K)*PHI(LL,P-1)
/SIGMA(M,P-l))*PART2
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530
10

DER3 = DER3+MIDDLE*(PART2/SIGMA(M,P-i))*(-PHI
(LL,P-1) ) + ( (PARTI/SIGMA(M,P) )*(-PHI (LL,P) ) +RALJ
(M,K)*(PART2/SIGMA(M,P-1))*PHI(LL.P-1))*PART2

END IF
CONTINUE

CONTINUE
IF (M .EQ. i) THEN

DER2CLL,13) = DERI
DER2(LL+6,13) = DER3

ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,14) = DERI
DER2 (LL+9,14) =DER3

END IF

&

&

&
&

550
20

DERI = 0
DER3 = 0

DO 20, IY = 1, NY
DO 550, T = 1, COUNT (J,IY)

P = SEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

-999)) THEN
PARTI = (CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)
PART2 = (CLIMA(IY,P-l)-MU(NN,P-l))/SIGMA(NN,P-1)
MIDDLE = PART1-RAU(J,K)*PART2
DERI = DER1+MIDDLE*(-PHI(LL,P-1)/SIGMA(NN,P-1))+

(RAU(J,K)*PHI(LL,P-1)/SIGMA(NN,P-1))*PART2
DER3 = DER3+MIDDLE*(-PHICLL,P-1)/SIGMA(NN,P-1))*

PART2+(RAU(J,K)*PHULL.P-l)/SIGMA(NN,P-1))*
PART2**2

ENDIF
CONTINUE

CONTINUE
IF (M .EQ. 1) THEN

DER2(LL,15) = DERI
DER2(LL+6,15) = DER3

ELSEIF (M .EQ. 2) THEN
DER2 (LL+3,16) = DERI
DER2 (LL+9,16) =DER3

ENDIF

DERI = O
DER3 = O

DO 30, IY = 1, NY
DO 560, T = 1, COUNT (KK,IY)

P = SEQ (KK,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-1)-MU(N,P-1) )/SIGMA(N,P-l)
DERI = DERl+(-PHI(LL,P)/SIGMA(NN,P))*PART2

ENDIF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE
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& -999)) THEN
PART3 = ((CLIMACIY,P)-MU(NN,P))/SIGMA(NN,P))
DER3 = DER3+(-PHI(LL,P)/SIGMA(NN,P)) *PART3*PART2
END IF

560
30

870
850

CONTINUE
CONTINUE
IF (M .EQ. 1)

DER2(LL,16
DER2CLL+6,

ELSEIF CM .EQ
DER2 (LL+3
DER2 (LL+9

END IF
CONTINUE

CONTINUE

THEN

16)
. 2)
,15)
,15)

DERI
= DER3
THEN
= DERI
=DER3

THE 2ND DERIVATIVE RAU-

DO 40, IY = 1, NY
DO 330, T = 1, COUNT (1,IY)

P = SEQ (1,IY,T)
IF (CLIMACIY,P-1).NE.-999) THEN
PART2 = (CLIMA( IY,P-1)-MU(1,P-1) )/SIGMAd,P-l)
DER2 (13,13) = DER2 (13,13)-(PART2**2)

ENDIF
330 CONTINUE

DO 340, T = 1, COUNT (2,IY)
P = SEQ C2,IY,T)
IF (CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMACIY,P-l)-MU(2,P-1))/SIGMA(2,P-l)
DER2 (14,14) = DER2(14,14)-(PART2**2)

ENDIF
340 CONTINUE

DO 350, T = 1, COUNT (3,IY)
P = SEQ (3,IY,T)
IF (CLIMACIY,P-l).NE.-999) THEN
PART2 = (CLIMACIY,P-1)-MU(1,P-1))/SIGMAC1,P-l)
DER2 (15,15) = DER2 (15,15)-(PART2**2)

ENDIF
350 CONTINUE

DO 360, T - 1, COUNT (4,IY)
P = SEQ (4,IY,T)
IF <CLIMA(IY,P-1).NE.-999) THEN
PART2 = (CLIMA(IY,P-l)-MU(2,P-l))/SIGMA(2,P-l)
DER2 (NP,NP) = DER2 (NP,NP)-(PART2**2)

ENDIF '
360 CONTINUE
40 CONTINUE

RETURN
END
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" • _ _ _ _ _ _ _ _ _ _ _ _ _

C THIS SUBROUTINE COMPUTES THE 2ND DERIVATIVES FOR:
C ALPHAjD-ALPHAiW, ALPHAjD-PSIiW, PSIjD-PSIiW AND
C ALPHAjW-PSIiD FOR MODEL 5

SUBROUTINE M5DER4 (NY,NT,NP,NPARM,COUNT,SEQ,CLI MA,MU,SIGMA,RAU,

c

c
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL

PHI,DER2,NV,K,NRAU)

COUNT (4,NY)
SEQ (4,NY,NT)
T,P
CLIMA (NY,O:NT)
DER2 (NP,NP)
MU (2,0:365)
SIGMA (2,0:365)
PHI (NPARM,0:NT)
RAU (NRAU.NV)

DO 850, LL = 1, NPARM
DO 870, LLL = 1, NPARM

C THE VARIABLE DER COMPUTES THE 2ND DERIVATIVE ALPHAD-
C ALPHAW, DER3 THE DERIVATIVE ALPHAD-PSIW, DER4 THE
C DERIVATIVE PSID-PSIW AND DER5 THE DERIVATIVE ALPHAW-
C PS ID

DER = 0
DER3 = O
DER4 = O
DER5 = 0
DO 10, IY - 1, NY

DO 350, T = 1, COUNT (3,IY)
P - SEQ (3,IY,T)
PART - (RAU(3,K)*PHI£LL,P-1)/SIGMA(1,P-1))
DER = DER+PART*(-PHI(LLL,P)/SIGMA(2,P))
IF (CLIMA(IY,P).NE.-999) THEN
DER3 = DER3+PART*(-PHI(LLL,P)/SIGMA(2,P))*((CLIMA

& (IY,P)-MU(2,P))/SIGMA(2,P))
ENDIF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999? > THEN
PART2 = ((CLIMA(IY,P-l)-MU(1,P-l))/SIGMA(l,P-1)**2)

& *PHI(LL,P-1)
PARTI = (-(CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)**2)*

& PHKLLL.P)
DER4 = DER4+(PART1*RAU(3,K)*PART2)
ENDIF
IF (CLIMA(IY-P-1).NE.-999) THEN
PART = ("PHI(LL,P)/SIGMA(2,P))
DER5 = DER5+PART*RAU(3,K)*PHI(LLL,P-l)/SIGMA(1,P-l)*

D-115



& (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(i,P-l)
END IF

350 CONTINUE

DO 360, T = 1, COUNT (4,IY)
P - SEQ (4,IY,T)
PART = (-PHI(LL,P)/SIGMA(1,P>)
DER = DER+PART*(RAU(4,K)*PHI<LLL,P-1)/SIGMA(2,P-1))
IF <CLIMA(IY,P-1)-NE.-999) THEN
DER3 = DER3+PART*(RAU(4,K)*PHI(LLL,P-l)/SIGMA(2,P-1

& ))*(CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-l)
END IF
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
PARTI = (-((CLIMA(IY,P)-MU(1,P))/SIGMA(1,P)**2)*

& PHKLL.P))
PART2 = ((CLIMA(IY,P-l)-MU(2,P-1))/SIGMA(2,P-l)**2)*

& PHI(LLL,P-1)
DER4 = DER4+RAU(4,K)*PART2*PART1
ENDIF
IF <CLIMA(IY,P).NE.-999) THEN
PART = (RAU(4,K)*PHI(LL,P-l)/SIGMA(2,P-l))
DER5 = DER5+PART*(-PHI(LLL,P)/SIGMA(1,P))*(CLIMA

& (IY,P)-MU(1,P))/SIGMA(l,P)
ENDIF

360 CONTINUE
10 CONTINUE

DER2 (LL,LLL+3) = -DER
DER2 <LL,LLL+9) = -DER3
DER2 (LL+6,LLL+9) - -DER4
DER2 <LL+3,LLL+6) = -DER5

870
850

CONTINUE
CONTINUE

RETURN
END

r̂  _-_ _ _ _ _ _ — _ _ — ___~-_—.__

C THIS SUBROUTINE GENERATES RAINFALL DEPTH ON DAYS
C WHEN RAIN OCCURS

SUBROUTINE DEPTH3 (IDUM9,NP,RAIN,K,AMP,PHASE,GAMM,BI,W)

REAL AMP (O:NP)
REAL PHASE {NP)
REAL RAIN

AM = (AMP(O)+AMP(1)*COS(W*((K-l)-PHASE(1)))+AMP(2)*COS(2*W*
& ((K-1)-PHASE<2)))) / GAMM

UNIFOR = URAN9 (IDUM9)
RAIN - AM * (-1 * LOG(UNIFOR)) ** BI

RETURN
END
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c
c
c

THIS SUBROUTINE READS IN THE PARAMETER ESTIMATES OF THE
RAINFALL MODEL AND OF THE CLIMATE MODEL.

SUBROUTINE DATA (GAM,RAU3,RAU4,RAU5,MU,SIGMA3,SIGMA4,SIGMA5,NP,

& NV,AMP,PHASE,CV,PHI,CORR,NT,NRAU,NV3,NV4,NV5)

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

GAM (2,NP)
PSI4 (2,1,3)
PSI5 (2,4,3)
ALPHA (2,7,3)
SIGMA3 (NRAU,NV3)
SIGMA4 (2,NV4,0:NT)
SIGMA5 (2,NV5,0:NT)
MU (2,NV,0:NT)
PHI (NP,O:NT)
RAU3 (NRAU,NV3)
RAU4 (NV4)
RAU5 (NRAU,NV5)
AMP (O:NP)
PHASE (NP)
CORR (NV,NV)

5 FORMAT (7F1O.3)

OPEN (UNIT=12,FILE='\WATER\DATA\EST.DAT',STATUS='OLD')

READ (12, #) (GAM (1,J), J = 1, NP)
READ (12, *) (GAM (2,J), J = 1, NP)
DO 30, K = 1, NV

DO 10, M = 1, 2
READ (12, *) (ALPHA (M,K,J), J = 1, NP)

10 CONTINUE
IF ((K.EQ.4),QR.(K.EQ.6)) THEN

IF (K.EQ.4) THEN
KK = 1

ELSEIF (K.EQ.6) THEN
KK = 2

END IF
READ (12,*) (SIGMA3 (L,KK), L = 1, NRAU)
READ (12,*) (RAU3 (L,KK), L = 1, NRAU)

ELSEIF (K .EQ. 5) THEN
KK = 1
DO 20, M * 1, 2

READ (12, #) (PSI4 (M,KK,J), J = 1, NP)
20 CONTINUE

READ (12,*) RAU4 (KK)
E L S E I F ( ( K . E Q . l ) . O R . ( K . E Q . 2 ) . O R . ( K . E Q . 3 ) . O R . ( K . E Q . 7 ) ) T H E N

I F ( K . E Q . l ) T H E N
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KK = 1
ELSEIF (K.EQ.2) THEN

KK = 2
ELSEIF (K.EQ.3) THEN

KK = 3
ELSEIF (K.EQ.7) THEN

KK = 4
ENDIF
DO 120, M = 1, 2

READ (12, *) (PSI5 (M,KK,J), J = 1, NP)
120 CONTINUE

READ (12, *) (RAU5 (I,KK), I = 1, NRAU)
ENDIF

30 CONTINUE
READ (12, *) (AMP (I), I = 0, 1)
READ (12, *) (PHASE (I), I = 1, 1)
READ (12, *) CV

INPUT CORRELATION MATRIX

DO BO, 1 = 1 , NV
READ (12, *) (CORR (I,J), J = I, NV)

80 CONTINUE

COMPUTE THE MEAN AND STD.DEV. FUNCTION

DO 40, M = 1, 2
DO 50, I = 0, NT

SIGMA4 (M,l,I) = 0.0
SIGMA5 (M,l,I) = 0.0
SIGMA5 (M,2,I) = 0.0
SIGMA5 (M,3,I) = 0.0
SIGMA5 (M,4,I) - 0.0
DO 70, K = 1, NV

MU (M,K,I) = 0.0
DO 60, L = 1, NP

MU(M,K,I) = MU(M,K,I) + ALPHA(M,K,L) # PHI(L,I)
IF ((K.EQ.l).OR.(K.EQ.2).OR.<K.EQ.3).OR.(K.EQ.7))

& THEN
IF (K.EQ.l) THEN

KK = 1
ELSEIF (K.EQ.2) THEN

KK = 2
ELSEIF (K.EQ.3) THEN

KK = 3
ELSEIF (K.EQ.7) THEN

KK = 4
ENDIF
SIGMA5(M,KK,I) = SIGMA5(M,KK,I)+PSI5(M,KK,L) *

& PHI(L,I)
ELSEIF (K.EQ.5) THEN

KK = 1
SIGMA4(M,KK,I) - SIGMA4(M,KK,I) + PSI4(M,KK,L) *

& PHI(L,I)
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60
70
50
40

ENDIF
CONTINUE

CONTINUE
CONTINUE

CONTINUE

RETURN
END

p __ __ ________

C THIS SUBROUTINE COMPUTES THE CHOLESKY DECOMPOSITION
C OF A MATRIX

SUBROUTINE CHOLKY (DECQMP,CQRR,NV)

REAL CORR (NV,NV)
REAL DECOMP (NV,NV)

: COMPUTE CHOLESKY DECOMPOSITION

DO 40, I = 1, NV
DO 50, J = 1, NV

DECOMP (I ,J) = 0
50 CONTINUE
40 CONTINUE

DECOMP (1,1) = SORT (CORR (1,1))
DO 60, J = 2, NV

DECOMP (J,l) = CORR (1,J) / DECOMP (1,1)
60 CONTINUE

DO 70, I = 2, NV-1
TERM = 0
DO 80, J = 1, 1-1

TERM = TERM + DECOMP (I,J) ** 2
80 CONTINUE

DECOMP (1,1) = SQRT (CORR (1,1) - TERM)
DO 90, J = 1+1, NV

TERM = 0
DO 100, K = 1, 1-1

TERM ~ TERM + DECOMP (I,K) * DECOMP (J,K)
100 CONTINUE

DECOMP (J,I) = (CORR (I,J) - TERM) / DECOMP (1,1)
90 CONTINUE
70 CONTINUE

TERM = 0
DO 110, J = 1, NV-1

TERM = TERM + DECOMP (NV,J) ** 2
110 CONTINUE

DECOMP (NV,NV) = SQRT (CORR (NV,NV) - TERM)

RETURN
END
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l~> _ _ _ . — — _ _ — _ _ _ _ _ — —

C THIS SUBROUTINE READS IN THE PARAMETER ESTIMATES OF THE
C RAINFALL MODEL AND OF THE CLIMATE MODEL 1.
C ~* -™ *~ — — •"* -. — _ — _ — _ — —

SUBROUTINE DATA1 (GAM, MU,SIGMA,NP,NV,AMP,PHASE,CV,PHI,A,B,NT)
I— , ,

REAL GAM (2,NP)
REAL PSI (2,7,3)
REAL ALPHA (2,7,3)
REAL SIGMA (2,NV,0:NT)
REAL MU (2,NV,0:NT)
REAL PHI <NP,O:NT)
REAL AMP (O:NP)
REAL PHASE (NP)
REAL A (NV,NV)
REAL B (NV,NV)

5 FORMAT (7F10.3)

OPEN (UNIT=12,FILE='\WATER\DATA\ESTi.DAT',STATUS-'OLD')

DO 10, M = 1, 2
READ (12, •) (GAM (M,J), J = 1, NP)

10 CONTINUE
DO 20, K = 1, NV

DO 30, M = 1, 2
READ (12, *) (ALPHA (M,K,J), J = 1, NP)
READ (12, *) (PSI (M,K,J), J = 1, NP)

30 CONTINUE
20 CONTINUE

READ (12, *) (AMP (I), I = 0, 1)
READ (12, *> (PHASE (I), I = 1, 1)
READ (12, *) CV

C INPUT A & B MATRICES

DO 80, I = 1 , NV
READ (12, #) (A (I,J), J = 1, NV)

80 CONTINUE
DO 180, I - 1, NV

READ (12, *) (B (I,J), J = 1, NV)
ISO CONTINUE

C COMPUTE THE MEAN AND STD.DEV. FUNCTION

DO 40, M = 1, 2
DO 50, I = O, NT

DO 70, K - 1, NV
MU (M,K,I) = 0.0
SIGMA (M,K,I) = 0.0
DO 60, L - 1, NP
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&

MU <M,K,I) = MU (M,K,I) + ALPHA
SIGMA (M,K,I) = SIGMA (M,K,I) +

PHI (L,I)
60 CONTINUE
70 CONTINUE
50 CONTINUE
40 CONTINUE

RETURN
END

(M,K,L) * PHI
PSI (M,K,L) *

C
C
c
c
c
c
c

A ROUTINE TO GENERATE PSEUDO RANDOM NUMBERS FROM A
GAUSSIAN DISTRIBUTION WITH A MEAN OF ZERO AND A
STANDARD DEVIATION OF UNITY AS SPECIFIED BY THE USER.
THIS ROUTINE REFERENCES UNIF TO GENERATE THE UNIFORMLY
DISTRIBUTED RANDOM NUMBERS.

SUBROUTINE GRAND2 (NRAND,NV)

REAL

COMMON

NRAND (1,NV)

IDUM1,IDUM2,IDUM3,IDUM4,IDUM5,IDUM6,IDUM7

Rl = URANi (IDUM1)
R2 = URANI (IDUM1)
T = SQRT(-2*LOG(R1))
NRAND(1,1) = T * SIN
Rl = URAN2 (IDUM2)
R2 = URAN2 (IDUM2)
T = SQRT(-2*LOG(R1))
NRAND(1,2) = T * SIN
Rl = URAN3 (IDUM3)
R2 = URAN3 (IDUM3)
T = SQRT(-2*LOG(R1))
NRAND(1,3) = T * SIN
Rl = URAN4 (IDUM4)
R2 = URAN4 (IDUM4)
T = SQRT(-2*LOG(R1))
NRAND(1,4) = T * SIN
Rl = URAN5 (IDUM5)
R2 = URAN5 (IDUM5)
T = SQRT(-2*LOG(R1))
NRAND(1,5) = T * SIN
Rl = URAN6 (IDUM6)
R2 = URAN6 (IDUM6)
T = SQRT(-2*LOG(R1))
NRAND(1,6) = T * SIN
Rl = URAN7 (IDUM7)
R2 = URAN7 (IDUM7)
T = SQRT(-2*LOG(R1))
NRAND(1,7) = T * SIN

RETURN
END

(6.283185*R2)

(6.283185*R2)

(6.283185*R2)

(6.283185*R2)

(6.283185*R2)

(6.2831B5*R2)

(6.283185*R2)
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C THIS SUBROUTINE SOLVES A SYSTEM OF EQUATIONS
C — . — — • — — — — — — . • _ _ _ _ _ _ _ - _ — _ _ _ _ _ _ _ _ — _ _ _ — _ — — _

SUBROUTINE LINEAR (NPMAX,NP,DER,DER2,THETA)
(—• , . , _ , i U 1 _ L . M — • M _ . _ — -r- - - • • - - — x -

REAL A (13,0:13)
REAL DER (NPMAX)
REAL DER2 (NPMAX,NPMAX)
REAL THETA (NPMAX)

15 FORMAT (' MATRIX IS SINGULAR')

25 FORMAT (' NEW PARAMETER ESTIMATES: ',F10.4)

OPEN (UNIT=9,FILE='LPT1')

C THIS SETS UP THE A MATRIX WHICH IS USED IN SOLVING
C THE SYSTEM OF EQUATIONS

DO 10, I = 1, NP
A (1,0) = DER (I)
DO 20, J = 1, NP

A ( I ,J) = DER2 (I,J)
20 CONTINUE
10 CONTINUE

C THIS SOLVES THE SYSTEM OF EQUATIONS
C THE DIFFERENCE BETWEEN THE VALUE OF THETA(Q) IN THIS
C ITERATION AND THE PREVIOUS ITERATION IS STORED IN A(Q,O)

DO 30, II = 1, NP
12 = II
Tl = O
DO 40, 13 = II, NP

IF (ABS (A (13,11)) .GT. (ABS (Tl))) THEN
12 = :'3
Tl = A (13,11)

ENDIF
40 CONTINUE

IF (Tl .EQ. 0) THEN
PRINT 15
STOP

ENDIF
IF (12 .NE. II) THEN

DO 50, 10 = 0, NP
TEMP = A ( 11,10)
A (II,10) = A (12,10)
A (12,10) = TEMP

50 CONTINUE
ENDIF
T2 = 1 / (A (11,11))
NQ = NP
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DO 60, 14 = 0, NQ
A (11,14) = A (11,14) * T2

60 CONTINUE
DO 70, 13 = 1, NP

IF (II .NE. 13) THEN
T2 = A ( 13, ID
A (13,0) = A (I3,0)-A(II,0)* T2
DO 80, 10 = II, NP

A(I3,I0) = A(I3,I0) - A(I1,IO) * T2
80 CONTINUE

ENDIF
70 CONTINUE
30 CONTINUE

THIS EXTRACTS THE NEW PARAMETER VALUES

DO 90, I = 1, NP
THETA(I) = THETA(I) - A(I,O)
WRITE (9,25) THETA(I)

90 CONTINUE

RETURN
END

c

C THIS SUBROUTINE COMPUTES TOTAL MEANS AND STD DEVS
C TQ BE USED IN THE COMPUTATION OF CROSS-CORRELATIONS

SUBROUTINE AVSTD3 (CLIMA,AVEG,DEV,NY,NT,NV)
.—— .————— ——• —• — — ___

INTEGER DENOM (7)
REAL CLIMA (NV,NY*NT)
REAL AVEG (NV)
REAL OEV (NV)

DO 10, K = 1, NV
AVEG (K) = 0.0
DEV (K) = 0.0
DENOM (K) = 0

10 CONTINUE

DO 30, K = 1, NV
DO 20, 1 = 1 , NY*NT

IF (CLIMA (K,I) .GT. -900) THEN
AVEG (K) - AVEG (K) + CLIMA (K,I)
DEV (K) = DEV (K) + (CLIMA (K,I) ** 2)
DENOM (K) = DENOM (K) + 1

ENDIF
20 CONTINUE

DEV (K) =SQRT( (DEV(K)-((AVEG(K)**2)/DENOM(K)))/DENOM(K))
AVEG (K) = AVEG(K)/DENOM(K)
PRINT #, AVEG (K)
PRINT *, DEV (K)

30 CONTINUE

RETURN
END
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C THIS SUBROUTINE COMPUTES THE CHOLESKY DECOMPOSITION
C OF A MATRIX
{— _- ._ _ _ i - • I., __• rr i» _ _ _ . . „ •—• -i „ ^ ^ —

SUBROUTINE CHOLESKY (DECOMP,CORR,NV)
c

REAL CORR (NV,NV)

REAL DECOMP (NV,NV)

5 FORMAT (7F10.3)

C FILL IN SYMMETRICAL PART OF MATRIX
DO 20, I = 1, NV-1

DO 30, J = 1+1, NV
CORR (J , I ) = CORR (I,J)

30 CONTINUE
20 CONTINUE

C COMPUTE CHOLESKY DECOMPOSITION

DO 40, I = 1, NV
DO 50, J = 1, NV

DECOMP ( I,J) = 0
50 CONTINUE
40 CONTINUE

DECOMP (1,1) = SORT (CORR (1,1))
DO 60, J = 2, NV

DECOMP (J,l) = CORR (i,J) / DECOMP (1,1)
60 CONTINUE

DO 70, I = 2, NV-1
TERM = 0
DO 80, J = 1, 1-1

TERM = TERM + DECOMP (I,J) ** 2
80 CONTINUE

DECOMP (1,1) = SORT (CORR (1,1) - TERM)
DO 90, J = 1+1, NV

TERM = 0
DO 100, K = 1, 1-1

TERM = TERM + DECOMP (I,K) * DECOMP (J,K)
100 CONTINUE

DECOMP (J,I) = (CORR (I,J) - TERM) / DECOMP (1,1)
90 CONTINUE
70 CONTINUE

TERM = O
DO 110, J = 1, NV-1

TERM = TERM + DECOMP (NV,J) ** 2
110 CONTINUE

DECOMP (NV,NV) = SORT (CORR (NV,NV) - TERM)

RETURN
END
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c
c
c

THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
TO THE SPECIFICATIONS OF MODEL5

SUBROUTINE MOD5 (RAND,STATE,NV5,NV,SIGMA5,MU,RAU5,K,J,OBSN,

c

c

INTEGER
REAL
REAL
REAL
REAL
REAL

PSTATE,NT,NRAU)

PSTATE, STATE
RAU5 (NRAU,NV5)
RAND U,NV)
OBSN (NV)
SIGMA5 (2,NV5,0:NT)
MU <2,NV,0:NT)

FORMAT (7F10.3)

IF ((STATE .ED. i) .AND. (PSTATE .EQ. 1)) THEN
JJ = 1

ELSEIF ((STATE .EQ. 2) .AND. (PSTATE .EQ. 2)) THEN
JJ = 2

ELSEIF ((STATE .EQ. 1) .AND. (PSTATE .EQ. 2)) THEN
JJ = 3

ELSEIF ((STATE .EQ. 2) .AND. (PSTATE .EQ. 1)) THEN
JJ = 4

ENDIF

IF (J-l .EQ. 0) THEN
L = NT

ELSE
L = J-l

ENDIF

IF (K.EQ.2) THEN
KK - 1

ENDIF

OBSN (K) = SIGMA5(PSTATE,KK,J)*(RAND(i,K)+RAU5(JJ,KK)*(0BSN(K)
MU(STATE,K,L))/SIGMA5(STATE,KK,L))+MU(PSTATE,K,J)

RETURN
END
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c

THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
TO THE SPECIFICATIONS OF MODEL3

C

c
&

&

SUBROUTINE MOD3 (RAND,STATE,NV3,NV,SIGMA3,MU,RAU3,K,J,OBSN,

PSTATE,NT,NRAU)

INTEGER
REAL
REAL
REAL
REAL
REAL

FORMAT (7F10.3)

PSTATE, STATE
RAU3 (NRAU,NV3)
RAND (1,NV)
OBSN (NV)
SIGMA3 (NRAU,NV3)
MU (2,NV,0:NT)

IF {(STATE .EQ. 1) .AND. (PSTATE .EQ. 1)) THEN
JJ = 1

ELSEIF ((STATE .EQ. 2) .AND. (PSTATE .EQ. 2)) THEN
JJ = 2

ELSEIF ((STATE .EQ. 1) .AND. (PSTATE .EQ. 2)) THEN
JJ = 3

ELSEIF ((STATE .EQ. 2) .AND. (PSTATE .EQ. 1)) THEN
JJ = 4

ENDIF

IF (J-l .EQ. 0) THEN
L = NT

ELSE
L = J-l

ENDIF

IF (K.EQ.l) THEN
KK = 1

ELSEIF (K.EQ.3) THEN
KK = 2

ELSEIF (K.EQ.4) THEN
KK = 3

ELSEIF (K.EQ.7) THEN
KK = 4

ENDIF

OBSN (K) = SIGMA3(JJ,KK)*<RAND(l,K)+RAU3(JJ,KK)*<0BSN(K)-
MU(STATE,K,L)) / SIGMA3(JJ,KK))+MU(PSTATE,K,J)

RETURN
END
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C THIS SUBROUTINE COMPUTES THE AMPLITUDE & PHASE
C REPRESENTATION
r* ___ ,

SUBROUTINE AMPHA (AM,PH,THETA,NPMAX, KMAX,K,PI,NT)

REAL AM(O:KMAX)
REAL PH(KMAX)
REAL THETA(NPMAX)

45 FORMAT (/, ' AMPLITUDE: ')
55 FORMAT (/, ' PHASE: ')
65 FORMAT (9F8.3)

OPEN (UNIT=9,FILE='LPT1')

AM(O) = THETA(l)
DO 140, I = 1, K

TA = THETA (2*1)
TB = THETA(2*I+1)
AM(I) = SQRT(TA**2 + TB**2)
IF (TA .LT. 0) THEN

PH(I) = ATAN(TB / TA) + PI
ELSEIF (TA .EQ. 0) THEN

IF (TB .GE. 0) THEN
PH(I) = 0.5 * PI

ELSE
PH(I) = 1.5 *PI

ENDIF
ELSEIF (TA .GT. 0) THEN

IF (TB .GE. 0) THEN
PH(I) = ATAN (TB/TA)

ELSE
PH(I) = ATAN(TB/TA) + 2 * PI

ENDIF
ENDIF
PH(I) = PH(I) * NT / (2*PI*I)

140 CONTINUE

WRITE (9,45)
WRITE (9,65) (AM(I),I=O,K)
WRITE (9,55)
WRITE (9,65) (PH(I),1=1,K)

RETURN
END
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C _ — — — —
C THIS SUBROUTINE COMPUTES THE MATRIX OF SIN AND COS TERMS FOR
C THE FOURIER TRANSFORMATION. THIS DIFFERS FROM THE SUBROUTINE
C COSSIN IN THAT HERE THE MATRIX PHI HAS DIMENSION GIVEN BY:
C > PHI (NT,NPARM)

SUBROUTINE TRIS (PHI,NPARM,NT)

REAL PI
PARAMETER (PI = 3.14159265)
REAL PHI (NT,NPARM)
REAL THETA
REAL OMEGA
INTEGER T

OMEGA = 2 * PI / NT
K = (NPARM - 1) / 2
DO 10, T = 1, NT

PHI (T,l) = 1
10 CONTINUE

DO 20, J = 1, K
Jl = 2 # J
J2 = Jl + 1
THETA = OMEGA * J
A = 2 * COS (THETA)
PHI (1,J1) = 1
PHI (2,J1) = A / 2
PHI (1, J2) = 0
PHI <2,J2) = SIN (THETA)
DO 30, T = 3, NT

PHI (T,J1) = A * PHI (T-1,J1) - PHI <T~2,J1)
PHI (T,J2) = A * PHI (T-1,J2) - PHI (T-2,J2)

30 CONTINUE
20 CONTINUE

RETURN
END

C SUBROUTINE TO COMPUTE THE TRANSPOSE OF A MATRIX. THE
C RESULT IS WRITTEN INTO THE SAME MATRIX.
~

SUBROUTINE GTRANP (DECOMP,NV)
~

REAL DECOMP (NV,NV)

DO 10, I = 1, NV
DO 20, J = 1+1, NV

TEMPI = DECOMP (I,J)
TEMP2 = DECOMP (J,I)
DECOMP ( I ,J) - TEMP2
DECOMP (J,I ) = TEMPI

20 CONTINUE
10 CONTINUE

RETURN
END
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SUBROUTINE TO BRACKET THE MINIMUM

SUBROUTINE BRACK (A,B,C,FA,FB,FC,DI Ml)

PARAMETER
PARAMETER
PARAMETER

(GLD=1.618034)
(GLIM=100.)
(T=i.E-20)

OPEN (UNIT=?,FILE='LPT1')

FA=DIM1(A)
FB=DIM1(B)
WRITE (9,*) '
IF (FB.GT.FA)

DUM=A
A=B
B-DUM
DUM=FB
FB=FA
FA=DUM

ENDIF
C=B+GLD*(B-A)
FC=DIM1(C)
WRITE (9,*) '
IF (FB.GE.FC)

FA FB
THEN

FA, FB

FC

THEN

F C ,
THEN

R=(B-A)*(FB-FC)
Q=(B-C)*(FB-FA)
U=B-<(B-C)*Q-(B-A)*R)/(2.*SIGN(MAX(ABS(Q-R
ULIM=B+GLIM*(C-B)
IF ((B-U)*(U-C).GT.O.)

FU=DIM1(U)
IF (FU.LT.FC) THEN

A=B
FA=FB
B=U
FB=FU
GOTO 1

ELSEIF (FU.GT.FB) THEN

Q-R

FC=FU
GOTO 1

ENDIF
U=C+GLD*(C-B)
FU=DIM1(U)

ELSEIF ((C-U)*(U-ULIM).GT.O.
FU=DIM1(U)
IF (FU.LT.FC) THEN

B=C
C=U
U=C+GLD*(C-B)

THEN
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FB=FC
FC=FU
FU=DIM1(U)

ENDIF
ELSEIF ((U-ULIM)*(ULIM-C).GE.O.) THEN

U=ULIM
FU=DIM1(U)

ELSE
U=C+GLD*(C-B)
FU=DIM1(U)

ENDIF

B=C
C=U
FA=FB
FB = FC
FC=FU
GOTO 1

ENDIF

RETURN
END

C SUBROUTINE TO MULTIPLY TWO MATRICES
C ~* ~ • •— ~~ " • " • — ~

SUBROUTINE MULT (FIRST,SECOND,THIRD,ROWX,COLX,ROWA,COLA)

INTEGER
REAL
REAL
REAL

ROWX,COLX,ROWA,COLA,TEST
FIRST (ROWX,COLX)
SECOND (ROWA,COLA)
THIRD (ROWX,COLA)

TEST=1
DO 40, KK = 1, ROWA

DO 50, JJ = 1, COLA
IF (SECOND (KK,JJ) .EG. -999.0) THEN

TEST=O
ENDIF

50 CONTINUE
40 CONTINUE

IF (TEST.EQ.l) THEN
IF (COLX .NE. ROWA) THEN

PRINT *, 'MATRICES ARE NOT COMPATIBLE'
ELSE

DO 10, I = 1, ROWX
DO 20, J = 1, COLA

THIRD (I ,J) = 0
DO 30, K = 1, COLX

THIRD(I,J) = THIRD<I,J)+FIRST(I,K)*SECOND(K,J)
30 CONTINUE
20 CONTINUE
10 CONTINUE

ENDIF
ENDIF

RETURN
END
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FUNCTION

FUNCTION BMIN (

INTEGER
PARAMETER
PARAMETER
PARAMETER
REAL

A=MIN(AA,C)
B=MAX(AA,C)
V-BB
W=V

E=O.
FX=DIM1(X)
FV=FX
FW=FX

TO FIND LOCAL MINIMUM

AA,BB,C,DIM1,EPS,XMIN)

MAXITER
£MAXITER=1OO)
(CG=.3819660)
<T=1.0E-10)
HALF

DO 10, 1=1,MAXITER
HALF=0.5*(A+B)
TOL=EPS*ABS(X)+T
T2=2.*TOL
IF (ABS(X-HALF).LE.(T2-.5*(B-A))) THEN

GOTO 3
ENDIF
IF (ABS(E).GT.TOL) THEN

R=<X-W)*(FX-FV)
Q=(X-V)*(FX-FW)
P=(X-V)*Q-<X-W)*R
Q=2.*(Q-R)
IF (Q.GT.O.) THEN

P=-P
ELSE

Q=-Q
ENDIF
TEMP=E

IF ((ABS(P),GE.ABS(,5*Q*TEMP)).OR.(P.LE.Q*(A-X)).OR
(P.GE-Q*(B-X))) THEN
GOTO 1

ENDIF
D=P/Q
U=X+D
IF ((U-A.LT.T2).OR.(B-U.LT.T2)) THEN

D=SIGN(TOL,HALF-X)
ENDIF
GOTO 2

ENDIF
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IF (X.GE.HALF) THEN
E=A-X

ELSE
E=B-X

ENDIF
D=CG*E
IF (ABS(D) .6E.T0L) THEN

ELSE
1>X+SIGN(TOL,D)

ENDIF
FU=DII*U(U)
IF (FU.LE.FX) THEN

IF (U.LT.X) THEN
B=X

ELSE
A=X

ENDIF
V=W
FV=FW
W=X
FW=FX
X=U
FX=FU

ELSE
IF (U.LT.X) THEN

A=U
ELSE

B=U
ENDIF
IF ((FU.LE.FW).OR.(W.EQ.X)) THEN

V=W

FW=FU
ELSEIF ((FU.LE.FV).OR.(V.EQ.X).OR.(V.EQ.W)) THEN

V=U
FV=FU

ENDIF
ENDIF

10 CONTINUE

PRINT *, 'DID NOT CONVERGE '
XMIN=X
Bf1IN=FX

RETURN
END
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C THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
C FOR MODEL 3 FOR USAGE IN NUMERICAL RECIPES.

SUBROUTINE DFUNC (THETA,DER)
• __ ________

INTE6ER T,P,NV,NY,NT,NP,NPARM,NRAU
PARAMETER (NV=6,NY=7,NT=365,NP=14,NPARM=3,NRAU=4)

COMMON K,ICOUNT(NRAU,NY),ISEQ(NRAU,NY,NT),CLIMA(NY,0:NT),
& ALPHA*2,NV,NPARM),SIGMA(NRAU,NV) ,PHI(NPARM,O:NT),
& RAU(NRAU,NV),ISCALE(3,NV)

DIMENSION THETA (NP), DER (NP)

REAL MU (2,0:NT)
REAL MIDDLE

UPDATE PARAMETER ESTIMATES

DO 160 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/I SCALE(3,K)
ALPHA (2,K,J) = THETA (J+3)/I SCALE(3,K)

160 CONTINUE

DO 170, J = 1, NRAU
SIGMA (J,K) = THETA (J+6)/ISCALE(2,K)
RAU (J,K) = THETA (J+iO)/ISCALE(1,K)

170 CONTINUE

DO 10, M = 1, 2
DO 20, I = 0, NT

MU (M,I) = 0.0
DO 30, L = 1, NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) * PHI (L,I)
30 CONTINUE
20 CONTINUE
10 CONTINUE

DO 40, I = 1, NP
DER (I) = 0.0

40 CONTINUE

DO 50, LL = 1, NPARM
DQ 60, M = 1 , 2

IF (M .EQ. 1) THEN
N = 2
NN = 1
J = 3
KK = 4

ELSEIF (M .EQ. 2) THEN
N = 1
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NN = 2
J ~ 4
KK - 3

END IF

C THE VARIABLE DERI COMPUTES THE DERIVATIVE FOR THE MEAN
C FUNCTION

DERI = O
DO 70, IY = 1, NY

DD BO, 7 = 1 , ICOUNT (M,IY)
P = ISEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999

& )) THEN
MIDDLE = ((CLIMA(IY,P)-MU<M,P)>/SIGMA(M,K)-RAU(M,K)*

& ((CLIMA<IY,P-1)-MU(M,P-1))/SIGMA(M,K)))
DERI = DER1+MIDDLE*(-PHI(LL,P)/SIGMA(M,K)+RAU(M,K)*

& PHI(LL,P-1)/SIGMA(M,K))
ENDIF

80 CONTINUE

DO 90, T = 1, ICOUNT (J,IY)
P = ISEQ (J, IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.-999

& ) ) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SI6MA(J,K)-RAU(J,K)*

& ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(J,K)))
DERi = DER1+MIDDLE*(RAU(J,K)*PHI(LL,P-l)/SIGMA

& CJ,K))
ENDIF

90 CONTINUE

DO 100, T = 1, ICOUNT (KK,IY)
P = ISEQ (KK,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.-999

& )) THEN

MIDDLE=<(CLIMA(IY,P)-MU(NN,P))/SIGMA(KK,K)-RAU(KK,K)
& *( (CLIMA(IY,P-1)-MU(N,P-1) )/SIGMA(KK,K) ) )

DERI = DER1+MIDDLE*(-PHI(LL,P)/SIGMA(KK,K))
ENDIF

100 CONTINUE
70 CONTINUE

IF (M .EQ. 1) THEN
DER (LL) = -DERI

ELSE IF (M .EQ. 2) THEN
DER(LL+3) = -DERI

ENDIF

60 CONTINUE
50 CONTINUE

C THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
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C COEFFICIENT IS COMPUTED AS WELL AS THE DERIVATIVE
C W.R.T. THE STANDARD DEVIATIONS

DO 110, IY = 1, NY
DO 120, T = 1, ICOUNT (1,IY)

P = ISEQ (1,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999

& )) THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SIGMA(l,K)
PART2 = (CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(l,K)
MIDDLE = PART1-RAU(1,K)*PART2
DER(ll) = DER(11)+MIDDLE*PART2
PARTI = -((CLIMA(IY,P)-MU(1,P))/SIGMA(1,K)**2)
PART2 = ((CLIMA(IY,P-i)-MU(l,P-l))/SIGMA(1,K)**2)
DER(7) = DER(7)-MIDDLE*(PARTI+RAUU , K )*PART2)-1/SIGMA(1,K)
ENDIF

120 CONTINUE

DO 130, T = 1, ICOUNT (2,IY)
P = ISEQ (2,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999

& )) THEN
PARTI = (CLIMA(IY,P)~MU(2,P))/SIGMA(2,K)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,K)
MIDDLE = PART1-RAU(2,K)#PART2
DERU2) = DER(12)+MIDDLE*PART2
PARTI = -((CLIMA(IY,P)-MU(2,P))/SIGMA(2,K)**2)
PART2 = ((CLIMA(IY,P-1)-MU(2,P-l))/SIGMA(2,K)**2)
DER(8) = DER(8)-MIDDLE*(PART1+RAU(2,K)*PART2)-1/SIGMA(2,K)
ENDIF

130 CONTINUE

DO 140, T = 1, ICOUNT (3,IY)
P = ISEQ (3,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.-999

& )) THEN
PARTI = (CLIMA(IY,P)-MU(2,P))/SIGMA(3,K)
PART2 = (CLIMA(IY,P-i)-MU(1,P-1))/SIGMA(3,K)
MIDDLE = PART1-RAU(3,K)*PART2
DER(13) = DER(13)+MIDDLE*PART2
PARTI = -((CLIMA(IY,P)-MU(2,P))/SIGMA(3,K)**2)
PART2 = ((CLIMA(IY,P-1)-MU(1,P-1))/SIGMA(3,K)**2)
DER(9) = DER(9)-MIDDLE#(PARTi+RAU(3,K)*PART2)-l/SIGMA(3,K)
ENDIF

140 CONTINUE

DO 150, T = 1, ICOUNT (4,IY)
P = ISEQ (4,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.-999

& )) THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SIGMA(4,K)
PART2 = (CLIMA(IY,P-1)-MU(2.P-1))/SIGMA(4,K)
MIDDLE = PART1-RAU(4,K)*PART2
DER{14) = DER(14)+MIDDLE*PART2
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PARTI - -((CLIMA(IY,P)-MU(i,P))/SIGMA(4,K)**2)
PART2 = (<CLIMA(IY,P-l)-MU(2,P-l))/SIGMA(4,K)**2) .
DER(i0)=DER(10)-MIDDLE*(PARTl+RAU(4,K)#PART2)-l/SIGMA<4,K)
END IF

150 CONTINUE
110 CONTINUE

DO 200, I = 1, NP
DER<I) = -DER(I)

200 CONTINUE

RETURN
END

SUBROUTINE TO MINIMIZE ALONG A LINE

SUBROUTINE MINL (THETA,DER,NP,FMIN)

INTEGER NPMAX
PARAMETER (NPMAX=20)
PARAMETER (EPS=1.E-4)

EXTERNAL DIM1
DIMENSION THETA(NP),DER(NP)
COMMON /ONE/ NPP,THET(NPMAX),DERI(NPMAX)

OPEN (UNIT=9,FILE='LPT1' )

NPP=NP
DO 10, J=1,NP

THETCJ)=THETA(J)
DERI(J)=DER(J)

10 CONTINUE

A=0.
B = l.
C = 2.

CALL BRACK (A,B,C,FA,FB,FC,DIM1)
FMIN=BMIN (A,B,C,DIM1,EPS,XMIN)
DO 20, J=1,NP

DER(J)=XMIN*DER(J)
THETA(J)=THETA(J)+DER(J)

20 CONTINUE

RETURN
END
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THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL 4 FOR USABE IN NUMERICAL RECIPES.

SUBROUTINE DFUNC (THETA,DER)

INTEGER T,P,NV,NY,NT,NP,NPARM,NRAU
PARAMETER • (NV=6,NY=7,NT=365,NP=13,NPARM=3,NRAU=1)

COMMON K,ICOUNT(4,NY),ISEQ(4,NY,NT),CLIMA(NY,0:NT),
ALPHA(2,NV,NPARM),PSI(2,NV,NPARM),PHI(NPARM,0:NT),
RAU(NRAU,NV),ISCALE(3,NV)

DIMENSION THETA (NP), DER (NP)

REAL MU (2,0:NT)
REAL SIGMA (2,0:NT)
REAL MIDDLE

UPDATE PARAMETER ESTIMATES

160

DO 160 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/ISCALE(3,K)
ALPHA <2,K,J) = THETA (J+3)/ISCALE(3,K)
PSI <1,K,J) = THETA (J+6)/ISCALE(2,K)
PSI (2,K,J) = THETA (J+9)/ISCALE(2,K)

CONTINUE

70

30
20
10

DO 170, J =
RAU (J,K)

CONTINUE

DO 10, M = 1
DO 20, I

MU (M,
SIGMA
DO 30,

MU

1,
=

=
I)
(M
L
(M

SIGMA
CONTINUE

CONTINUE
CONTINUE

NRAU
THETA

2
0, NT
= 0.0
,1) =
— 1 ,
,1) =
(M,I)

(J+12)/ISCALE(1

0.0
NPARM
MU (M,I) + ALPHA
= SIGMA (M,I) +

(M,K,L) * PHI
PSI (M,K,L) * PHI (L,I)

40

DO 40, I = 1, NP
DER (I) = 0.0

CONTINUE

DO 850, LL = 1, NPARM
DO 870, M = 1, 2

IF (M .EQ. 1) THEN
N = 2
NN = 1
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J = 3
KK = 4

ELSEIF (M .EQ. 2) THEN
N = 1
NN = 2
J = 4
KK = 3

ENDIF

C THE VARIABLE DERI COMPUTES THE DERIVATIVE FOR THE MEAN
C FUNCTION, WHILE DER2 AND DER3 COMPUTE THE DERIVATIVE FOR
C THE VARIANCE FUNCTION

DER2 = 0
DERI = 0
DER3 = O ^
DO 310, IY = 1, NY

DO 330, T = 1, ICOUNT (M,IY)
P - ISEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)-RAU(1,K)#

& ((CLIMA(IY,P-1)-MU(M,P-1))/SIBMA(M,P-l)))
DERI - DER1+MIDDLE*(-PHI(LL,P)/SIGMA(M,P)+RAU(1,K)*

& PHI(LL,P~i)/SIGMA(M,P-l))
PARTI = (-((CLIMA(IY,P)-MU(M,P))/SIGMA<M,P)**2)*

& PHI(LL,P))
PART2 = ((CLIMA<IY,P-i)-MU(M,P-l))/SIGMA*M,P-1)**2)

& *PHI(LL,P-1)
DER3 = DER3+MIDDLE*(PART1+RAU(1,K)*PART2)

END IF
DER2 = DER2+PHI(LL,P)/SIGMA(M,P)

330 CONTINUE

DO 350, T = i, ICOUNT <J,IY)
P = ISEQ (J,IY,T)
IF (<CLIMA<IY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
MIDDLE = ((CLIMACIY,P)-MU(N,P))/SIGMA<N,P)-RAU(1,K)*

& ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)))
DERI = DER1+MIDDLE*(RAU(1,K)*PHI(LL,P-1)/SIGMA

& (NN,P-l))
PART2 = ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)

& **2)*PHI(LL,P-1)
DER3 = DER3+MIDDLE#(RAU(1,K)*PART2)

END IF
350 CONTINUE

DO 360, T = 1, ICOUNT (KK,IY)
P = ISEQ (KK,IY,T)
IF ((CLIMACIY,P).NE.-999).AND.(CLIMA(IY,P-l).NE.

& -999)) THEN
MIDDLE =((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)-RAU(1,K)

& *((CLIMA(IY,P-1)-MU(N,P-1))/SIGMA(N,P-1)))
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360
310

DERI = DER1+MIDDLE#(-PHI(LL,P)/SIGMA(NN,P))
PARTI = (-((CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)**2)*

PHI(LL,P))
DER3 = DER3+MIDDLE*PART1
END IF
DER2 = DER2+PHI(LL,P)/SIGMA(NN,P)

CONTINUE
CONTINUE

870
B50

IF (M .EQ. 1) THEN
DER (LL) = -DERI
DER1 (LL+6) = (-DER3-DER2)

ELSEIF (M .EQ. 2) THEN
DER(LL+3) = -DERI
DER(LL+9) = (-DER3-DER2)

ENDIF
CONTINUE

CONTINUE

C
C

THE DERIVATIVE WITH RESPECT TO THE AUTOCORRELATION
COEFFICIENT IS COMPUTED

DER (NP) = 0
DO 420, IY = 1, NY

DO 700, T = 1, ICOUNT (1,IY)
P = ISEQ (1,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA<IY,P-1).NE.-999))

& THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SIGMA(i,P)
PART2 = (CLIMA(IY,P-1J-MUC1,P-1))/SIGMA(1,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PART2

ENDIF
700 CONTINUE

DO 701, T = 1, ICOUNT (2,IY)
P = ISEQ (2,IY,T)
IF ((CLIMA*IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999))

& THEN
PARTI = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)
PART2 - (CLIMA(IY,P-1)-MU(2,P-l))/SIGMAC2,P-l)
DER(NP) = DER(NP)+(PART1-RAU(1,K)#PART2)*PART2

ENDIF
701 CONTINUE

DO 702, T = 1, ICOUNT (3,IY)
P = ISEQ (3,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999))

& THEN
PARTI = (CLIMAtIY,P)-MU(2,P))/SIGMA(2,P)
PART2 = (CLIMA(IY,P-1)-MU(1,P-l))/SIGMA(1,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PART2

ENDIF
702 CONTINUE
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703
420

DO 703, T = 1, ICOUNT (4,IY)
P - ISEQ (4,IY,T)
IF ((CLIMA(IY,P).NE.-999)-AND.(CLIMAtIY,P-1).NE.-999))

THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SIGMA(l,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SI6MA(2,P-1)
DER(NP) = DER(NP)+(PART1-RAU(1,K)*PART2)*PART2

END IF
CONTINUE

CONTINUE

200

DO 200, I
DER(I )

CONTINUE

RETURN
END

1, NP
-DER(I )

c
c
c
c

THIS SUBROUTINE COMPUTES THE MATRIX OF SIN AND COS TERMS FOR
THE FOURIER TRANSFORMATION

SUBROUTINE COSSIN (PHI,NPARM,NT)

REAL
PARAMETER
REAL
REAL
REAL
INTEGER

PI
(PI = 3.14159265)
PHI (NPARM,O:NT)
THETA
OMEGA
T

10

OMEGA = 2 * PI / NT
K = (NPARM - 1) / 2
DO 10, T = 1, NT

PHI (1,T) = 1
CONTINUE
DO 20, J = 1, K

Jl = 2 * J
J2 = Jl + 1
THETA = OMEGA * J
A =
PHI
PHI
PHI
PHI
DO

2 * COS
(Jl,l) :

(Jl,2) =
(J2,i) :
(J2,2) ••

30, T =

30
20

3,
PHI (Ji,T) =
PHI (J2,T) =

CONTINUE
CONTINUE

(THETA)
1
A / 2
0
SIN (THETA)
NT

A * PHI
A * PHI

(J1,T-1)
(J2,T-1)

PHI
PHI

(Jl,T-2)
(J2,T-2)

RETURN
END
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...... THIS SUBROUTINE COMPUTES THE VECTOR OF FIRST DERIVATIVES
FOR MODEL 5 FOR USAGE IN NUMERICAL RECIPES.

SUBROUTINE DFUNC (THETA,DER)

INTEGER T,P,NV,NY,NT,NP,NPARM,NRAU
PARAMETER (NV=6,NY=7,NT=365,NP=16,NPARM=3,NRAU=4)

COMMON K,ICOUNT(4,NY) ,ISED(4,NY,NT) ,CLI MA(NY,0:NT) ,
ALPHAC2,NV,NPARM),PSI(2,NV,NPARM),PHI(NPARM,0:NT),
RAU(NRAU,NV),I SCALE(3,NV)

DIMENSION THETA (NP), DER (NP)

REAL MU (2,0:NT)
REAL SI6MA (2,0:NT)
REAL MIDDLE

UPDATE PARAMETER ESTIMATES

160

DO 160 J = 1, NPARM
ALPHA (1,K,J) = THETA (J)/I SCALE(3,K)
ALPHA <2,K,J) = THETA (J+3)/ISCALE(3,K)
PSI (1,K,J) = THETA (J+6)/ISCALE(2,K)
PSI (2,K,J) = THETA (J+9)/ISCALE(2,K)

CONTINUE

170

DO 170, J = 1, NRAU
RAU (J,K) = THETA (J + 12)/I SCALE(1,K)

CONTINUE

30
20
'10

DO 10, M = 1, 2
DO 20, I - 0, NT

MU (M,I) = 0.0
SIBMA (M,I) = 0.0
DO 30, L = 1, NPARM

MU (M,I) = MU (M,I)
SIGMA (M,I) = SIGMA

CONTINUE
CONTINUE

CONTINUE

ALPHA (M,K,L) * PHI (L,I)
1,1 ) + PSI (M,K,L) * PHI (L,I )

40

DO 40, I = 1, NP
DER (I) = 0.0

CONTINUE

DO 850, LL = 1, NPARM
DO 870, M = 1, 2

IF (M ,EQ. 1) THEN
N = 2
NN = 1
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J = 3
KK = 4

ELSEIF (M .EQ. 2) THEN
N = 1
NN = 2
J = 4
KK = 3

ENDIF

C THE VARIABLE DERI COMPUTES THE DERIVATIVE FOR THE MEAN
C FUNCTION, WHILE DER2 AND DER3 COMPUTE THE DERIVATIVE FOR
C THE VARIANCE FUNCTION

DER2
DERI
DER3
DO 50

DO

= 0
= 0
= 0
» IV
330

= 1, NY
T = 1, ICOUNT (M,IY)

P = ISEQ (M,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.<CLIMA(IY.P-1).NE.

& -999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)-RAU(M,K)*

& (<CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,P-l)))
DERI = DER1+MIDDLE*(-PHI(LL,P)/SIGMA(M,P)+RAU(M,K)*

& PHI(LL,P-1)/SIGMA(M,P-1))
PARTI = (-((CLIMA(IY,P)-MU(M,P))/SIGMA(M,P)**2)*

& PHI(LL,P))
PART2 = C(CLIMA(IY,P-1)-MU(M,P-1))/SIGMA(M,P-l)**2)

& *PHI(LL,P-1)
DER3 = DER3+MIDDLE*(PART1+RAU(M,K)*PART2)
ENDIF
DER2 - DER2+PHI(LL,P)/SIGMA(M,P)

330 CONTINUE

DO 350, T = 1, ICOUNT (J,IY)
P = ISEQ (J,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999)) THEN
MIDDLE = ((CLIMA(IY,P)-MU(N,P))/SIGMA(N,P)-RAU(J,K)*

& ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)))
DERI = DER1+MIDDLE*(RAU(J,K)*PHI(LL,P-l)/SIGMA

& (NN,P-1))
PART2 = ((CLIMA(IY,P-1)-MU(NN,P-1))/SIGMA(NN,P-l)

& **2)*PHI(LL,P-1)
DER3 = DER3+MIDDLE*(RAU(J,K)*PART2)
ENDIF

350 CONTINUE

DO 360, T = 1, ICOUNT (KK,IY)
P = ISEQ <KK,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-i)-NE.

& -999)) THEN
MIDDLE=( (CLIMA( IY ,P) -MU(NN,P) ) /S IGMA(NN,P) -RAU(KK,K)

& * ( ( C L I M A ( I Y , P - 1 ) - M U ( N , P - 1 ) ) / S I G M A ( N , P - l ) ) )
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DERI = DER1+MIDDLE*(-PHI(LL,P)/SIGMA(NN,P))
PARTI = (-<(CLIMA(IY,P)-MU(NN,P))/SIGMA(NN,P)**2)*

& PHI(LL,P))
DER3 = DER3+MIDDLE*PART1
ENDIF
DER2 = DER2+PHI(LL,P)/SIGMA(NN,P)

360 CONTINUE
50 CONTINUE

IF (M .EQ. 1) THEN
DER (LL) = -DERI
DER (LL+6) = (-DER3-DER2)

ELSEIF (M .EQ. 2) THEN
DER(LL+3) = -DERI
DER(LL+9) = (-DER3-DER2)

ENDIF

c
c

870
850

CONTINUE
CONTINUE

THE DERIVATIVE
COEFFICIENT IS

WITH RESPECT
COMPUTED

TO THE AUTOCORRELATION

DO 60, IY = 1, NY
DO 700, T = 1, ICOUNT <1,IY)

P = ISEQ (1,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.-999))

& THEN
PARTI = (CLIMA(IY,P)-MU(1,P))/SIGMA(l,P)
PART2 = (CLIMA( IY,P-l)-MU(1,P-l) )/SIGMAt 1 ,P-1 )-
DER(13) = DER(13)+(PART1-RAU(1,K)*PART2)*PART2

ENDIF
700 CONTINUE

DO 701, T = 1, ICOUNT (2,IY)
P = ISEQ (2,IY,T)
IF ((CLIMACIY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999)) THEN
PARTI = <CLIflA( IY,P)-MU(2,P) )/SIGMA(2,P)
PART2 ~ (CLIMA(IY,P-l)-MU(2,P-l))/SIGMA(2,P-l)
DER(14) = DER(14)+(PART1-RAU(2,K)*PART2)*PART2

ENDIF
701 CONTINUE

DO 702, T = 1, ICOUNT (3,IY)
P = ISEQ (3,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999)) THEN
PARTI = (CLIMA(IY,P)-MU(2,P))/SIGMA(2,P)
PART2 = (CLIMA(IY,P-l)-MU(1,P-l))/SIGMA(1,P-l)
DER(15) = DER(15)+(PART1-RAU(3,K)*PART2)*PART2

ENDIF
702 CONTINUE
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DO 703, T = 1, ICOUNT (4,IY)
P = ISEQ (4,IY,T)
IF ((CLIMA(IY,P).NE.-999).AND.(CLIMA(IY,P-1).NE.

& -999)) THEN
PARTI = (CLIMAtIY,P)-MU(1,P))/SIGMA(l,P)
PART2 = (CLIMA(IY,P-1)-MU(2,P-1))/SIGMA(2,P-l)
DER(NP) = DER(NP)+(PART1-RAU(4,K)*PART2)*PART2

ENDIF
703 CONTINUE
60 CONTINUE

DO 200, I = 1, NP
DER(I ) - -DER(I)

200 CONTINUE

RETURN
END

r* —

C SUBROUTINE TO COMPUTE THE INVERSE OF A MATRIX WHEN
C NOT PUTTING THE SOLUTION INTO THE OLD MATRIX
—-

SUBROUTINE INVT (CLAGO,INV,NV)

60
50

20

40

30
10

REAL
REAL
REAL

DO 50, K
DO 60

— ]_

, KK
INV (K

CONTINUE
CONTINUE

DO 10, I
DIAG
INV (
DO 20

— 1
- 1

I.I)
, J

INV ( I
CONTI
DO 30

IF

NUE
• K
(I

INV (NV,NV)
CLAGO (NV,NV)
RESULT (7,7)

, NV
= 1, NV
,KK) = CLAGO(K,KK)

, NV
/ INV (1,1)
= 1
= 1, NV
,J) = INV ( I , J ) *

= 1, NV
.NE. K) THEN

DIAG = INV (K,I)
INV
DO

(K,I) = 0
40, J - 1, NV
INV (K, J ) = INV ( t<

CONTINUE
ENDIF

CONTINUE
CONTINUE

RETURN
END

DIAG

iJ) - INV ( I , J ) * DIAG
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C SUBROUTINE TO COMPUTE LOG LIKELIHOOD FUNCTION FOR
C MODEL 3.
C ~"~———— —————.—_______—___-——-__--__ ____- — — _—_ ___

FUNCTION FUNC (THETA)

INTEGER T,NV,NY,NT,NP,NPARM,NRAU
PARAMETER (NV=6,NY=7,NT=365,NP=14,NPARM=3,NRAU=4)

COMMON K,I COUNT(NRAU,NY) ,ISEQ(NRAU,NY,NT),CLIMA(NY,O:NT) ,
& ALPHA(2,NV,NPARM),SIBMA(NRAU,NV),
& PHI(NPARM,0:NT),RAU(NRAU,NV),ISCALE(3,NV)

REAL MU (2,0:NT)
REAL LNLIKE,PI

PARAMETER (PI=3.141593)

DIMENSION THETA(NP)

: UPDATE PARAMETER ESTIMATES
DO 160 J = 1, NPARM

ALPHA (1,K,J) = THETA (J)/I SCALE(3,K)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)

160 CONTINUE

DO 170, J = 1, NRAU
SIGMA <J,K) = THETA (J+6)/ISCALE(2,K)
RAU (J,K) = THETA (J+10)/ISCALE(1,K)

170 CONTINUE

DO 10, M = 1, 2
DO 20, I = 0, NT

MU (M,I) = 0.0
DO 30, L == 1, NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) * PHI (L,I)
30 CONTINUE
20 CONTINUE
10 CONTINUE

LNLIKE = 0
TERM = 0

DO 40, J = 1, 4
IF (J .EQ. 1) THEN

M = 1
L - 1

ELSEIF (J .EQ. 2) THEN
M = 2
L = 2

ELSEIF (J .EQ. 3) THEN
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M =
L =

ELSEIF
M =
L =

ENDIF
DO 50,

2
1
( J
1
2

I
DO 60 .

EQ. 4) THEN

= 1, NY
KK = 1, ICOUNT (J,I)

T = ISEQ {J, I,KK)
IF ( (CLI MA(I,T) .NE.-999) .AND. {CLI MA(I,T-l) .NE.-999) )

& THEN
RESID = (CLIMA(I,T)-MU(M,T))/SIGMA(J,K)-RAU£J,K)

& *( (CLIMA( I,T-l)-MU(LfT-l) )/SIGMA(J,K))
LNLIKE = UNLIKE + (RESID)**2
TERM = TERM + LOG(SIGMA(J,K))

ENDIF
60 CONTINUE
50 CONTINUE
40 CONTINUE

FUNC = -(-((NY#NT)/2)*L0G<2*PI)-TERM-LNLIKE/2)

RETURN
END

D-146



c
c
c
c

&

SUBROUTINE TO COMPUTE LOG LIKELIHOOD FUNCTION FOR
MODEL 4.

FUNCTION FUNC (THETA)

INTEGER T,NV,NY,NT,NP,NPARM,NRAU
PARAMETER (NV=6,NY=7,NT=365,NP=13,NPARM=3,NRAU=1)

COMMON K,ICOUNT(4,NY),ISEQ(4,NY,NT),CLI MA(NY,0:NT) ,
ALPHA(2,NV,NPARM) ,PS I(2,NV,NPARM) ,
PHI(NPARM,O:NT),RAU(NRAU,NV),ISCALE(3,NV)

REAL
REAL
REAL
PARAMETER

MU (2,0:NT)
SIGMA (2,0:NT)
LNLIKE,PI
(PI=3.141593)

160

170

DIMENSION THETA(NP)

UPDATE PARAMETER ESTIMATES

DO 160 J = 1, NPARM
ALPHA <1,K,J) = THETA (J)/ISCALE(3,k)
ALPHA (2,K,J) = THETA (J+3)/ISCALE(3,K)
PSI (1,K,J) = THETA (J+6)/ISCALE(2,K)
PSI (2,K,J) = THETA (J+9)/ISCALE(2,K)

CONTINUE

DO 170, J = i, NRAU
RAU (J,K)

CONTINUE
= THETA (J+12)/ISCALE(1,K)

DO 10, M = 1, 2
DO 20, I = 0, NT

MU (M,I) = 0.0
SIGMA (M,I) = 0 0
DO 30, L = 1, NPARM

MU (M,I) = MU (M,I)
SIGMA (M,I) = SIGMA

+ ALPHA (M,K,L) * PHI (L,I)
(M,I) + PSI(M,K,L) * PHI (L,I)

30
20
10

CONTINUE
CONTINUE

CONTINUE

LNLIKE = 0
TERM = 0

DO 40, J = 1,
IF (J .EQ.

M = 1
L = 1

4
1) THEN
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ELSEIF (J .EQ. 2) THEN
2
2

1
(J
1
2

EQ. 3) THEN

EQ. 4) THEN

= 1,
KK =

NY
1, ICOUNT (J,I)

M =
L =

ELSEIF (J
M = 2
L =

ELSEIF
M =
L =

ENDIF
DO 50, I

DO 60,
T = ISEQ (J, I ,KK)
IF ( (CLIMA(I,T) .NE.-999) .AND.(CLI MA(I,T-l).NE.-999) )

& THEN
RESID = (CLIMA(I,T)-MU(M,T))/SIGMA(M,T)-RAU(1,K)

& *((CLIMA(I,T-i)-MU(L,T-l))/SIGMA(L,T-l))
LNLIKE = LNLIKE + <RESID)**2
TERM = TERM + LOG(SIGMA(M,T))

ENDIF
60 CONTINUE
50 CONTINUE
40 CONTINUE

FUNC = -(-((NY*NT)/2)*L0G(2*PI)-TERM-LNLIKE/2)

RETURN
END

c
c
c

THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES

SUBROUTINE INT3 (ALPHA,SIGMA,RAU,NPARM,NV,NRAU,ISCALE)

INTEGER
REAL
REAL
REAL

ISCALE (3,NV)
ALPHA (2,NV,NPARM)
SIGMA (NRAU,NV)
RAU (NRAU,NV>

15 FORMAT (' ALPHA PARAMETERS = ')
25 FORMAT (' SIGMA PARAMETERS = ')
35 FORMAT (' RAU PARAMETER = ')

OPEN (UNIT=4,FILE='C0N')
OPEN (UNIT=4,FILE='\WATER\DATA\INIT.DAT',STATUS='OLD')

DO 20, K = 1, NV
READ (4,*) ISCALE (1,K),ISCALE(2,K), ISCALE(3,K)
DO 10, M = 1, 2

READ (4,*) (ALPHA (M,K,I), I = 1, NPARM)
10 CONTINUE

READ (4,*) (SIGMA <L,K), L = 1, NRAU)
READ (4,*) (RAU (L,K), L = 1, NRAU)

20 CONTINUE

RETURN
END
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c
c
c

&

SUBROUTINE TO COMPUTE LOG LIKELIHOOD FUNCTION FOR
MODEL 5.

FUNCTION FUNC (THETA)

INTEGER T,NV,NY,NT,NP,NPARM,NRAU
PARAMETER (NV=6,NY=7,NT=365,NP=16,NPARM=3,NRAU=4)

COMMON K,I COUNT(4,NY) ,ISEQ(4,NY,NT) ,CLI MA(NY,0:NT) ,
ALPHA(2,NV,NPARM),PSI(2,NV,NPARM),
PHI(NPARM,0:NT),RAU(NRAU,NV),ISCALE(3,NV)

REAL MU (2,0:NT)
REAL SIGMA (2,0:NT)
REAL LNLIKE,PI
PARAMETER (PI=3.141593)

DIMENSION THETA(NP)

UPDATE PARAMETER ESTIMATES

160

DO 160 J = 1, NPARM
ALPHA (1,K,J) = THETA
ALPHA (2,K,J)
PSI (i,K,J) =
PSI (2,K,J) =

CONTINUE

(J)/ISCALE(3,K)
= THETA (J+3)/ISCALE(3,K)
THETA <J+6)/ISCALE(2,K)
THETA (J+9)/ISCALE(2,K)

170

DO 170, J =
RAU (J,K)

CONTINUE

1 , NRAU
= THETA (J+12)/ISCALE(1,K)

DO 10
DO

M = 1, 2
20, I = 0,
MU CM, I) =
SIGMA (M,I
DO 30, L =

MU (M, I

NT
0.0
) = 0.0
1 , NPARM
) = MU (M,I)

SIGMA
30 CONTINUE
20 CONTINUE
10 CONTINUE

(M,I) = SIGMA
+ ALPHA (M,K,L) * PHI (L,I)
(M, I ) + PSI(M,K,L) * PHI (L,I

LNLIKE = 0
TERM = 0

DO 40, J = 1,
IF (J .EQ,

M = 1
L = 1

1) THEN
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ELSEIF
M =
L =

ELSEIF
1-1 s
L =

ELSEIF
M =
L =

ENDIF
DO 50,

(J
2
2
(J
2
1
(J
1
2

I
DO 60,

T =

EQ

EQ

EQ

THEN

THEN

THEN

KK =
ISEQ

NY
1. I COUNT
(J,I,KK)

IF (<CLIMAtI,T).NE.-999).AND.(CLIMA(I,T-l).NE.-999))
& THEN

RESID = (CLIMAtI,T)-MU(M,T))/SIGMA(M,T)-RAU(J,K)
& *((CLIMA(I,T-1)-MU(L,T-1))/SIGMA(L,T-l))

LNLIKE - LNLIKE + <RESID)**2
TERM = TERM + LOG(SIGMA(M,T))

END IF
60 CONTINUE
50 CONTINUE
40 CONTINUE

FUNC = -(-((NY*NT)/2)*L0G(2*PI)-TERM-LNLIKE/2)

RETURN
END

C
C
C

SUBROUTINE TO MULTIPLY TWO MATRICES

SUBROUTINE XNP (FIRST,SECOND,THIRD,ROWX,COLX,ROWA,COLA,RX,

CX,RA,CA)

INTEGER
REAL
REAL
REAL

ROWX,COLX,ROWA,COLA,RX,CX,RA,CA
FIRST (RX,CX)
SECOND (RA,CA)
THIRD (RX,CA)

30
20
10

IF (COLX .NE. ROWA) THEN
PRINT *, 'MATRICES ARE NOT COMPATIBLE'

ELSE
DO 10, 1 = 1 , ROWX

DO 20, J = 1, COLA
THIRD (I,J) = 0
DO 30, K = 1, COLX

IF (SECOND (K,J) .NE. -999.0) THEN
THIRD(I,J) = THIRD(I,J)+FIRST(I,K)*SECOND(K,J)

ENDIF
CONTINUE

CONTINUE
CONTINUE

ENDIF

RETURN
END
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SUBROUTINE INV(MATT,NN,MM)
p

REAL MATT(NN,NN), INVER(25,25)
REAL MATR1(25,25)

1 1 = 0
20 1 1 = 1 1 + 1

MATR1(II,II) = 1.0 / MATT(II,II)

DO 40 J = 1, MM
DO 30 I = 1, MM

IF (J .EQ. II .AND. I . £Q. II) THEN
INVER(I,J) = (-1.0) * MATR1(II,II)

ELSEIF (J .EQ. II .AND. I .NE. II) THEN
INVER(I,J) = MATT(I,J) * MATR1(I I,I I)

ELSEIF (I .EQ. II .AND. J .NE. II) THEN
INVER(I,J) = MATT(I,J) * MATR1(I I,I I )

ELSE
INVER(I,J) = MATT(I,J) - ((MATT(I,II) *

& MATT(II,J)) * MATRKII,II))
END IF

30 CONTINUE
CC PRINT*, (INVER(I,J), I = 1, MM)
40 CONTINUE

CALL COPY(INVER,25,25,MATT,NN,NN,MM,MM)

IF (II ,LT. MM) GO TO 20

RETURN
END

C SUBROUTINE TO GENERATE A VECTOR ACCORDING TO THE MODEL
C S(t) = ALPHA(i)*PHI<i,t)

SUBROUTINE GMEAN (MU,PHI,NT,NPARM,ALPHA,K,NV)

REAL MU (2,NT)
REAL PHI (NT,NPARM)
REAL ALPHA (NV,2,NPARM)

DO 10, M = 1, 2
DO 20, J = 1, NT
• MU (M,J) = 0.0
DO 30, 1 = 1 , NPARM

MU (M,J) = MU (M,J) + ALPHA <K,M,I) * PHI (J,I)
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END
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C THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
C TO THE SPECIFICATIONS OF M0DEL4

SUBROUTINE MQD4 (RAND,STATE,NV4,NV,SIGMA4,MU,RAU4,K,J,DBSN,

c

c
&

INTEGER
REAL
REAL
REAL
REAL
REAL

PSTATE,NT)

PSTATE, STATE
RAU4 (NV4)
RAND (1,NV)
OBSN (NV)
SIGMA4 (2,NV4,0:NT)
MU (2,NV,0:NT)

FORMAT (7F10.3)

IF (J-l .EQ. 0) THEN
L = NT

ELSE
L = J-l

ENDIF

IF (K.EQ.5) THEN
KK = 1

ELSEIF (K.EQ.6) THEN
KK = 2

ENDIF

OBSN (K) = SIGMA4(PSTATE,KK,J)*(RAND(l,K)+RAU4(KK)*(0BSN(K)-
& MU(STATE,K,L))/SIGMA4(STATE,KK,L))+MU(PSTATE,K,J)

RETURN
END
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C THIS SUBROUTINE GENERATES CLIMATE SEQUENCES ACCORDING
C TO THE SPECIFICATIONS OF M0DEL3
r* _ _, _ ___ — _,__ __ _ __ _

SUBROUTINE MODEL1 (RAND,NV,SIGMA,MU,J,OBSM,PSTATE,NT,A,B,RES)

INTEGER PSTATE
REAL RAND (NV,1)
REAL SQLN (7,1)
REAL RES (NV,1)
REAL OBSN (NV,1)
REAL SIGMA (2,NV,0:NT)
REAL MU (2,NV,0:NT)
REAL A (NV,NV)
REAL B (NV,NV)

5 FORMAT (7F10.3)

CALL MULT (B,RAND,SOLN,NV,NV,NV,1)
CALL MULT (a,OBSN,RES,NV,NV,NV,1)

DO 10, K = 1, NV
OBSN (K,l) = RES (K,l) + SOLN (K,l)

10 CONTINUE

DO 20, K = 1, NV
RES (K,l ) = OBSN (K,1)*SIGMA(PSTATE,K,J)+MU(PSTATE,K,J)

20 CONTINUE

RETURN
END

SUBROUTINE TO COMPUTE THE INVERSE OF A MATRIX

SUBROUTINE INVNP (NP,SOLN,NPARM)

REAL SOLN (NPARM,NPARM)

DO 10, I = 1, NP
DIAG = 1 / SOLN (1,1)
SOLN (1,1) = 1
DO 20, J ~ 1, NP

SOLN (I,J) = SOLN (I,J) * DIAG
20 CONTINUE

DO 30, K = 1, NP
IF (I .NE. K) THEN

DIAG = SOLN (K,I)
SOLN (K,I) = 0
DO 40, J = 1, NP

SOLN (K,J) - SOLN (K,J) - SOLN (I,J) * DIAG
40 CONTINUE

END IF
30 CONTINUE
10 CONTINUE

RETURN
END
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C THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES,
C THE CONVERGENCE CRITERION AND THE MAXIMUM NUMBER OF
C ITERATIONS TO BE PERFORMED
I— — , — . _ _ — . — — _. — —

SUBROUTINE INITIAL (EPS,MAX ITER,ALPHA,PSI,RAU,NPARM,NV,NRAU)
/ • * _ _ _ — _ _ - _ - _ — _ _ ~ - —

REAL ALPHA C 2,NV,NPARM)
REAL PSI (2,NV,NPARM)
REAL RAU (NRAU,NV)

5 FORMAT (' EPS, MAXITER = ')
15 FORMAT (' ALPHA PARAMETERS = ')
25 FORMAT (' PSI PARAMETERS = ')
35 FORMAT (' RAU PARAMETER = ')

C OPEN (UNIT=4,FILE='C0N')
OPEN (UNIT=4-FILE='\WATER\DATA\INIT.DAT',STATUS-'OLD')

READ (4,* ) EPS, MHXITER
DO 20, K = 1, NV

DO 10, M = 1, 2
READ (4,*) (ALPHA (M,K,I), I = 1, NPARM)
READ (4,*) (PSI (M,K,I), I'= 1, NPARM)

10 CONTINUE
READ (4,*) (RAU (L,K), L = 1, NRAU)

20 CONTINUE

RETURN
END
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C THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES,
C THE CONVERGENCE CRITERION AND THE MAXIMUM NUMBER OF
C ITERATIONS TO BE PERFORMED

SUBROUTINE INT4 (ALPHA,PSI,RAU,NPARM,NV,NRAU,ISCALE)

INTEGER ISCALE (3,NV)
REAL ALPHA (2,NV,NPARM)
REAL PSI (2,NV,NPARM)
REAL RAU (NRAU-NV)

15 FORMAT (' ALPHA PARAMETERS = ')
25 FORMAT (' PSI PARAMETERS = ')
35 FORMAT (' RAU PARAMETER = ')

OPEN (UNIT=4,FILE='C0N')
OPEN (UNIT=4,FILE='\WATER\DATA\INIT.DAT',STATUS-'OLD')

DO 20, K = 1, NV
READ (4,*) ISCALE (1,K), ISCALE (2,K), ISCALE(3,K)
DO 10, M = 1, 2

READ (4,*) (ALPHA (M,K,I), I = 1, NPARM)
READ (4,*) (PSI (M,K,I), I = 1, NPARM)

10 CONTINUE
READ (4,*) (RAU (L,K), L = 1, NRAU)

20 CONTINUE

RETURN
END
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c
c
c
c
c

THIS SUBROUTINE GENERATES RANDOM NORMAL NUMBERS WITH
MEAN ZERO AND STD. DEV. OF 1 AND THEN IS TRANSFORMED
INTO A RANDOM NUMBER WITH STD. DEV. OF SIGMA.

SUBROUTINE GAUSS (DECOMP,RAND)

INTEGER
PARAMETER
INTEGER
REAL
REAL
REAL

NV
(NV=7)
ROWX,ROWA,COLX,COLA
DECOMP (NV,NV)
NRAND (1,NV)
RAND (1,NV)

FORMAT (7F10.3)

GENERATE RANDOM NORMAL (0,1) NUMBER

CALL GRAND2 (NRAND,NV)

GENERATE RANDOM NORMAL (0,S) NUMBER

ROWX = 1
ROWA = NV
COLX = NV
COLA = NV
CALL MULT (NRAND,DECOMP,RAND,ROWX,COLX,ROWA,COLA)

RETURN
END
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c
c
c
c

30
40
20
10

SUBROUTINE TO GENERATE A VECTOR ACCORDING TO THE MODEL
S(t) = ALPHA(i)*PHI(i,t) &
S(t) = PSI<i)*PHI(i,t)

SUBROUTINE GAVSTD (MU,PHI,NT,NPARM,ALPHA,NV,PSI,SIGMA)

REAL MU (2,NV,NT)
REAL SIGMA (2,NV,NT)
REAL PHI (NT,NPARM)
REAL ALPHA (NV,2,NPARM)
REAL PSI (NV,2,NPARM)

DO 10, M = 1, 2
DO 20, J = 1, NT

DO 40, K = 1, NV
MU(M,K,J)=0.0
SIGMA (M,K,J) = 0.0
DO 30, I = 1, NPARM

MU (M,K,J) = MU(M,K,J)+ALPHA(K,M,I)*PHI(J,I)
SIGMA(M,K,J) = SIGMA(M,K,J)+PSI(K,M,I)*PHI(J,I)

CONTINUE
CONTINUE

CONTINUE
CONTINUE

RETURN
END
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C SUBROUTINE TO COMPUTE RESIDUAL SERIES FOR MODEL 4
r» ____ _, — _ ___________________________________ _____

SUBROUTINE M4RES (RAU,ALPHA,PSI,PHI,COUNT,SEQ,CLIMA,
— • _ _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _

& NT,NY,NPARM,NV,K,NRAU,NP,CONVG)
C ———_—_ _—._._—. ________

INTEGER COUNT (4,NY)
INTEGER SEQ (4,NY,NT)
INTEGER T,CONVG
REAL AKAIKE,LNLIKE,PI
PARAMETER (PI=3.141593)
REAL CLIMA (NY,O:NT)
REAL MU (2,0:365)
REAL SIGMA (2,0:365)
REAL RESID (7,12,365)
REAL PS I (2,NV,NPARM)
REAL ALPHA (2,NV,NPARM)
REAL PHI (NPARM,0:NT)
REAL RAU (NRAU,NV)

5 FORMAT (7F10.4)
15 FORMAT (' AKAIKE"S CRITERION FOR VARIABLE:', 14, ' IS:', F30.4

OPEN (UNIT=14,FILE-'\WATER\DATA\RESI4.DAT',STATUS='UNKNOWN')
OPEN (UNIT=9,FILE='LPT1')

IF (CONVG.EQ.O) THEN
GOTO 250

END IF

DO 10, M = 1, 2
DO 20, I = 0, NT

MU (M,I) = 0,0
SIGMA (M,I) = 0.0
DO 30, L = 1, NPARM

MU (M,I) = MU (M,I) + ALPHA (M,K,L) * PHI (L,I)
SIGMA (M,I) = SIGMA (M,I) + PSI (M,K,L) * PHI (L,I)

30 CONTINUE
20 CONTINUE
10 CONTINUE

DO 80, I = 1, NY
DO 90, J = 1, NT

RESID (K,I,J) = -999.00
90 CONTINUE
80 CONTINUE

LNLIKE = O
TERM = 0

DO 40, J = 1, 4
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IF (J .EQ. 1) THEN
M = 1
L = 1

ELSEIF (J .EQ. 2) THEN
M = 2
L = 2

ELSEIF (J .EQ. 3) THEN
M = 2
L = 1

ELSEIF (J .EQ. 4) THEN
M = 1
L = 2

ENDIF
DO 50, I = 1, NY

DO 60, KK = 1, COUNT (J,I)
T = SEQ (J,I,KK)
IF ( <CLIMA(I,T) .NE.-999) .AND. (CLIMA(I,T-l) .NE.-999))

& THEN
RESID(K,I,T) = <CLIMA<I,T)-MU(M,T))/SIGMA(M,T)-RAU(l,K)

& *(<CLIMA<I,T-1)-MU(L,T-1))/SIGMA(L,T-l))
LNLIKE = LNLIKE + (RESID(K,I,T))**2
ENDIF
TERM = TERM + LOG(SIGMA(M,T))

60 CONTINUE
50 CONTINUE
40 CONTINUE

LNLIKE - -((NY*NT)/2)*L0G(2*PI)-TERM-LNLIKE/2
AKAIKE = -2*LNLIKE+2*NP

WRITE (9,i5) K, AKAIKE

250 IF (K .EQ. 7) THEN
DO 100, I = 1, NY

DO 70, T = 1, NT
WRITE (14,5) (RESID (K,I,T), K = 1, NV)

70 CONTINUE
100 CONTINUE

ENDIF

RETURN
END
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C SUBROUTINE TO COMPUTE RESIDUAL SERIES FOR MODEL 5

SUBROUTINE M5RES (RAU,ALPHA,PSI,PHI,COUNT,SEQ,CLIMA,
—. _. — — —

& NT,NY,NPARM,NV,K,NRAU,NP,CONVG)

5
15

INTEGER
INTEGER
INTEGER
REAL
PARAMETER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

COUNT (4,NY)
SEQ (4,NY,NT)
T,CONVG
LNLIKE,AKAIKE,PI
(PI=3•141593)
CLIMA (NY,0:NT)
MU (2,0:365)
SIGMA (2,0:365)
RESID (7,12,365)
PSI (2,NV,NPARM)
ALPHA (2,NV,NPARM)
PHI (NPARM,O:NT)
RAU (NRAU,NV)

FORMAT (7F10.4)
FORMAT (' AKAIKE"S CRITERION FOR VARIABLE:', 14, IS:', F10.4)

OPEN (UNIT=14,FILE='A:RESIDU.DAT',STATUS='UNKNOWN')
OPEN (UNIT=14,FILE='\WATER\DATA\RESI5.DAT',STATU5='UNKNOWN')
OPEN <UNIT=9,FILE='LPT1')

IF (CONVG.EO.O) THEN
GOTO 250

ENDIF

DO 10, M = 1, 2
DO 20, I = 0, NT

30
20
10

90
80

MU (M,I)
SIGMA (M
DO 30, L

MU (M
SIGMA

CONTINUE
CONTINUE

CONTINUE

DO 80, I = 1,
DO 90, J =

RESID (K
CONTINUE

CO.NT INUE
LNLIKE = 0
TERM = 0

= 0.
, I ) =
- 1 ,
, I ) =
(M,I

NY
1, NT

0
0.0
NPARM
MU (M,I) + ALPHA (M,K,L) * PHI (L,I)
) = SIGMA (M,I) + PSI (M,K,L) * PHI (L,I)

= -999.00
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DO 40, J = 1, 4
IF (J .EQ. 1) THEN

M = 1
L = 1

ELSEIF (J .EQ. 2) THEN
M = 2
L = 2

ELSEIF (J .EQ. 3) THEN
M = 2
L = 1

ELSEIF (J .EQ. 4) THEN
M = 1
L = 2

ENDIF

DO 50, I = 1, NY
DO 60, KK = 1, COUNT (J,I)

T = SEQ (J,I,KK)
IF ((CLIMA(I,T).NE.-999).AND.(CLIMA(I,T-l).NE.-999))

& THEN
RESID(K,I,T) = (CLIMA(I,T)-MU(M,T))/SIGMA(M,T)-

& RAU(J,K)*((CLIMA(I,T-l)-MU(L,T-l))/
& SIGMA(L,T-1))

LNLIKE = LNLIKE + (RESID(K,I,T))**2 •
ENDIF
TERM = TERM + LOG(SIGMA(M,T))

60 CONTINUE
50 CONTINUE
40 CONTINUE

LNLIKE = -((NY*NT)/2)*L0G<2*PI)-TERM-LNLIKE/2
AKAIKE = -2*LNLIKE+2*NP
WRITE (9,15) K, AKAIKE

250 IF (K .EQ. 7) THEN
DO 100, I = 1, NY

DO 70, T = 1, NT
WRITE (14,5) (RESID (K,I,T), K = 1, NV)

70 CONTINUE
100 CONTINUE

ENDIF

RETURN
END
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c
c
c

c

SUBROUTINE TO MINIMIZE A

SUBROUTINE

INTEGER
PARAMETER
PARAMETER
PARAMETER
REAL

POLRIB (THETA,NP,TOL

NPMAX,MAXITER
(NPMAX=20)
(MAXITER=200)
<EPS=1.E-1O)
NUM

FUNCTION

,ITER,FMIN)

DIMENSION THETA(NP),GRAD(NPMAX),DIR(NPMAX),DER(NPMAX)

OPEN (UNIT=9,FILE='LPTi')

FTHETA=FUNC(THETA)
WRITE (9,*) 'FTHETA', FTHETA
CALL DFUNC(THETA,DER)
DO 10, J=1,NP

GRAD(J)=-DER(J)
DIR(J)=GRAD(J)
DER(J)=DIR(J)

10 CONTINUE

DO 20, I=1,MAXITER
ITER=I
CALL MINL (THETA,DER,NP,FMIN)
WRITE (9,*) 'FMIN', FMIN
IF (2.*ABS(FMIN-FTHETA).LE.TOL* (ABS(FMIN)+ABS(FTHETA)+EPS))

& RETURN
FTHETA=FUNC(THETA)
CALL DFUNCCTHETA,DER)
DENOM=O.
NUM=O.
DO 40, J=1,NP

DENOM=DENOM+GRAD( J ) * *2
NUM=NUM+(DER(J)+GRAD(J))*DER(J)

40 CONTINUE
IF (DENOM.EQ.O.) RETURN
GAMMA=NUM/DENOM
DO 50, J=1,NP

GRAD(J)=-DER(J)
DIR(J)=GRAD(J)+GAMMA*DIRH(J)
DER(J)=DIR(J)

50 CONTINUE
20 CONTINUE

PRINT *, 'DID NOT CONVERGE'

RETURN
END
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FUNCTION TO GENERATE A UNIFORM NUMBER

FUNCTION URAN1 (SEED)

DIMENSION R(97)
PARAMETER (Ml=259200,IAl=714i,ICl=54773,RM1=3.85B0247E-6)
PARAMETER (M2=134456,IA2=8l21,IC2=28411,RM2=7.4373773E-6)
PARAMETER (M3=243000, IA3=4561, IC3 = 51349)

DATA INIT /O/

IF C SEED.LT.0.OR.INIT.EQ.0)
INIT=1
IX1=MOD<IC1-IDUM,M1)
IX1=MOD(IA1*IX1
IX2=M0D(1X1,M2)

THEN

IX3=M0D(IX1.M3)
DO 10 J = 1,97

IXi=MOD(IA1#IX1+IC1,M1)
IX2=MOD(IA2*IX2+IC2,M2)
R(J)=(FLOAT(IX1)+FLOAT(IX2)#RM2)*RM1

10 CONTINUE
SEED=1

ENDIF
IX1=MOD(IA1*IX1+IC1,M1)
IX2=M0D(IA2*IX2+IC2,M2)
IX3=M0D(IA3*IX3+IC3,M3)
J=1+(97*IX3)/M3
IF (J.GT.97.0R.J.LT.l) PAUSE
URAN1=R(J)
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1

RETURN
END
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c

C THIS SUBROUTINE READS IN INITIAL PARAMETER ESTIMATES,
C THE CONVERGENCE CRITERION AND THE MAXIMUM NUMBER OF
C ITERATIONS TO BE PERFORMED
C — — -—_-,. — — __— ___

SUBROUTINE INTAL3 (EPS,MAX ITER,ALPHA,SIGMA,RAU,NPARM,NV,NRAU

REAL ALPHA (2,NV,NPARM)
REAL SIGMA (NRAU,NV)
REAL RAU (NRAU,NV)

5 FORMAT (' EPS, MAXITER = ')
15 FORMAT ( ' ALPHA PARAMETERS = ' )
25 FORMAT ( ' SIGMA PARAMETERS = ' )
35 FORMAT ( ' RAU PARAMETER = ' )

OPEN (UNIT=4,FILE='CON')
OPEN (UNIT=4,FILE='\WATER\DATA\INIT.DAT',STATUS='OLD')

READ (4,*) EPS, MAXITER
DO 20, K = 1, NV

DO 10, M = 1, 2
READ (4,*) (ALPHA (M,K,I), I = 1, NPARM)

10 CONTINUE
READ (4,*) (SIGMA (L,K), L = 1, NRAU)
READ (4,*) (RAU (L,K), L = 1, NRAU)

20 CONTINUE

RETURN
END
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