

AN ASSESSMENT OF THE TOXICITY OF CYANOBACTERIA IN THE KRUGER NATIONAL PARK

Report to the
WATER RESEARCH COMMISSION

by

**Mxolisi Goodwill Masango¹, Ramadumetja Grace Matshoga¹, Gezina Catharina Helena
Ferreira¹, and Morten Sandvick²**

¹Onderstepoort Veterinary Institute (OVI), Agricultural Research Council (ARC)

²National Veterinary Institute, Norway

**WRC Report No. 1850/1/11
ISBN 978-1-4312-0223-2**

February 2012

Obtainable from

Water Research Commission
Private Bag X03
Gezina, 0031

orders@wrc.org.za or download from www.wrc.org.za

The raw data used in the compilation of this report appears on the enclosed CD.

DISCLAIMER

This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

EXECUTIVE SUMMARY

BACKGROUND

It is possible that significant numbers of wild animals succumb to cyanobacterial poisoning every year as no formal data on mortality are recorded. The major problem in diagnosis of cyanobacterial poisoning in wild animals is that carcasses of these animals are usually found decomposed or partially consumed by scavengers and therefore the cause of death can seldom be established.

The lack of continuous assessment of the surface waters for cyanobacteria and their toxins in the Kruger National Park (KNP) is a major challenge. Assessment of the surface water for cyanotoxins occurs only when there are deaths of wild animals in the Park, and sometimes the levels of the cyanobacterial toxins of the nearby rivers/dams to which the animals were exposed, may have changed completely by the time of sampling, thus not reflecting the toxin levels that may have caused mortality.

Unaccountable mortalities were observed by the section ranger in the vicinity of Mpanamana and Nhlanganzwane dams in the south-eastern corner of the KNP during the autumn and early winter of 2005. At both of these dams a heavy algal bloom was visible, and water samples showed the presence of *Microcystis*. Carcasses that were found around these dams included ruminants, hind-gut digesters and predators. Several zebra (*Equus burchelli*) deaths along the Shiloweni Dam in the KNP were also reported (Bengis et al., 2006). It has been postulated that the high concentration of hippopotamus (*Hippopotamus amphibius*) influence the formation of the algal blooms in the dams because the hippo dung and urine lead to high levels of nitrates and phosphates in the water. The algal scum usually floats around the edges of the water and animals that wade into the water beyond the scum line, such as elephants (*Loxodonta africana*) and buffalo (*Syncerus caffer*), are less affected by the algal scum. However, animals that drink on the edges of the dams such as rhino (*Ceratotherium simum*), wildebeest (*Connochaetes gnou*) and zebra (*Equus burchelli*) are the more frequent victims.

Death of wild animals due to cyanobacteria has a negative impact on the growing economy of South Africa, as ecotourism relies on wildlife as the main tourist attraction. Early detection of cyanobacteria and their toxins in water may facilitate appropriate actions by the KNP authorities that mitigate the possible impacts of cyanotoxins on animals.

The KNP has implemented a monitoring programme to reduce the risk of further animal deaths caused by blue-green algal blooms in the man-made dams in the Park. The ARC-OVI, Toxicology Section was approached by Veterinarians at the Park to start a surveillance study for cyanobacteria and their toxins, following the deaths of wild animals, close to algal blooms in specified dams. It is hoped that the results obtained from this study will contribute to the understanding of the current status on cyanobacteria and their toxins, and also the main factors involved in promoting eutrophication at the KNP dams.

OBJECTIVES

The main aim of this project was to generate information (database) on the extent to which cyanobacteria (bluegreen algae) and their toxins affect wildlife in the South African game reserve (Kruger National Park). This was done by: (i) Identifying cyanobacteria present in dams in the Kruger National Park, and (ii) Assessing wildlife exposure and death due to cyanotoxins in the Kruger National Park by examining carcasses.

RESULTS AND CONCLUSIONS

Water samples were collected from 13 KNP dams, namely, Sunset Dam, Shiloweni Dam, Piet Grobler Dam, Mazithi Dam, Nyamundwa Dam, Shitlhave Dam, Mestel Dam, Kumana Dam, Transport Dam, Mpondo Dam, N'watindlopfu Dam, Mpanamana Dam and Nsemene Dam, between 2009-2011 (June 2009, September 2009, February 2010, July 2010, October 2010 and February 2011). The following physicochemical parameters were determined for each dam throughout the study period: algal biomass, water temperature and pH, dissolved oxygen, chlorophyll-a, total phosphorus, total nitrogen, turbidity, total dissolved solids and microcystin toxin levels. The strip test, ELISA and HPLC methods were used in the determination of microcystin toxin levels.

The phytoplankton of all 13 KNP dams consisted of a total of 42 taxa in June, 37 taxa in September 2009, 43 taxa in February 2010, 36 taxa in July 2010 and February 2011, and 34 taxa in October 2010 all belonging to Cyanophyceae, Bacillariophyceae, Chlorophyceae, Cryptophyceae, Dinophyceae, Euglenophyceae and Chrysophyceae divisions. The highest cyanobacteria cell numbers were observed at Nsemene Dam (about 4.4×10^7 cells/ml) in June 2009. Microcystin-producing algae were detected in some of the 13 KNP dams throughout the study period. *Microcystis aeruginosa* was the most dominant cyanophyceae, especially during the incidents of bloom formation. Algal blooms were experienced mostly at the Sunset, Shiloweni and Nsemene dams during the study period.

The water temperature recorded for all the 13 KNP dams ranged between 15.5 and 36.1°C with the lowest temperature determined at Nyamundwa and Kumana dams in June 2009 and July 2010, respectively, and the highest temperature determined at N'watindlopfu Dam in October 2010. The water pH recorded for all the 13 KNP dams ranged between 6.5 and 9.0 with the lowest pH determined at Mestel Dam in October 2010 and the highest pH determined at Transport Dam in September 2009. Although the temperature and pH levels recorded at the KNP dams were favourable for promoting the growth of cyanobacteria, no linear correlation was observed between the cyanobacteria biomass and the two parameters.

The dissolved oxygen values recorded for all the 13 KNP dams ranged between 0.1 and 13.6 mg/l with the lowest dissolved oxygen measured at Shiloweni Dam in February 2010 and the highest dissolved oxygen measured at Nyamundwa Dam in September 2009. The chlorophyll-a values recorded for all the 13 KNP dams were between 1.0 and 44710 µg/l with the highest chlorophyll-a values determined at Sunset Dam in September 2009. Chlorophyll-a, which is a biomass-related variable, was positively correlated to the cyanobacteria cell numbers.

The total phosphorus and nitrogen levels reported in this study are among the highest levels recorded in South Africa. The total phosphorus levels recorded for all the 13 KNP dams ranged between 0.2 and 155 mg/l with the highest phosphorus levels determined at Sunset Dam in February 2010. The total nitrogen levels recorded for all the 13 KNP dams ranged between 0.92 and 1870 mg/l with the highest nitrogen levels determined at Sunset Dam in February 2010. A positive correlation was observed between the cyanobacteria biomass and the nutrients (total phosphorus and nitrogen). This shows that nutrient supply is the main driving factor in promoting the growth of cyanobacteria at the KNP dams. It is postulated that nutrient supply is influenced by the urine and faecal material excreted by the high population of Hippopotami living in most of the KNP dams.

Results of the qualitative determination of microcystins using the ABRAXIS strip test showed that 60% of the 13 specific KNP dams sampled in June 2009 were positive for microcystins, whereas 55% in September 2009; 85% in February 2010; 62% in July 2010 and 82% in October 2010 were also positive for microcystins. All the 13 KNP dams sampled in February 2011 were negative for microcystins. The microcystin toxin levels recorded for all the 13 KNP dams using the ELISA ranged between 0.10 ng/ml and 33645.29 ng/ml with the highest microcystin levels determined at Sunset Dam in September 2009. The highest microcystin toxin levels were detected (ELISA) at the KNP dams in the following decreasing

order over the sampling period: September 2009 > June 2009 > July 2010 > February 2010 > October 2010 > February 2011. The strip test results were comparable to the ELISA results with only 3.1% overall disagreement observed between the two immunoassays.

The presence of the seven microcystin toxins variants, -RR, -YR, -LR, -LA, -LY, -LW and -LF, was found to vary between the different 13 KNP dams and the sampling periods when HPLC was used. The microcystin toxin levels recorded for all the 13 KNP dams using the HPLC ranged between 0.02 and 1954.03 ng/ml with the highest microcystin levels determined at Shiloweni Dam in June 2009. The highest microcystin toxin variants were detected (HPLC) at the KNP dams in the following decreasing order over the sampling period: June 2009 > February 2010 > September 2009 > February 2011 > July 2010 > October 2010. The highest microcystin toxin variants were recorded at Shiloweni Dam, in June 2009, in the following decreasing order: -YR > -LR > -LA > -LF > -LY > -RR.

A significant positive linear correlation was found between the cyanobacteria biomass and the total microcystin for all the 13 KNP dams during this study when using the ELISA and HPLC methods. The HPLC method was found to be more sensitive than the immunoassays when quantifying microcystin toxins. However, the HPLC method was limited in its quantification only to the seven microcystin variants, whereas the immunoassays detected all the microcystin variants and nodularin toxins.

Dissolved oxygen, which is one of the major physical water quality variables, was negatively correlated to the cyanobacteria biomass. There was no correlation between the total dissolved solids and the cyanobacteria biomass. It seems that the size of the KNP dams did not influence the cyanobacteria cell numbers and microcystin levels because no correlation was found between the size of the KNP dams and the two parameters.

During this study, a number of carcasses were found within the vicinity of Shiloweni Dam in June 2010 and they included 11 zebras (*Equus burchelli*), 2 rhinos (*Ceratotherium simum*) and 1 wildebeest (*Connochaetes taurinus*). The water samples collected from Shiloweni Dam in June 2010 had high algal concentrations of 4.61×10^5 cells/ml, which were dominated by *Microcystis aeruginosa*, and high microcystin levels (ELISA, 4.06×10^5 ng/ml). Post mortem and histopathology performed on the intact zebra carcasses revealed signs (hepatic haemorrhaging and necrosis) that are consistent with *Microcystis* bloom intoxication.

RECOMMENDATIONS FOR FUTURE RESEARCH

The following actions are recommended:

- Continuous monitoring of the KNP dams to ensure that proper preventive actions are taken to prevent poisoning of the wild animals.
- The use of dipstick immunoassays (e.g. ABRAKIS Strip Test kit or Agdia ImmunoStrip kit) in monitoring the toxin levels in the KNP dams, because the dipsticks provide almost instant results and the users require no previous training.
- Control of eutrophication at the KNP should focus on maintaining the nutrients at low levels and also controlling the Hippopotamus population.
- Future studies to focus on :
 - Using molecular techniques to further characterise the cyanobacteria at the KNP dams.
 - The role of Hippopotami in maintaining high levels of nutrients at the KNP dams and also the possible intervention strategies that could be used.
 - The extension of assessment of the toxicity of cyanobacteria to include the northern part of the KNP, because the current study focused only on the southern part of the KNP.

CAPACITY BUILDING

This project has formed the basis of an MTech degree (RG Matshoga) and skills development in the HPLC technique (RG Matshoga and MG Masango).

ACKNOWLEDGEMENTS

The authors would like to thank the Reference Group of the WRC Project K5/1850 for the assistance and the constructive discussions during the duration of the project:

- Mrs A Moolman (Water Research Commission – former Research Manager)
- Dr K Murray (Water Research Commission – Research Manager)
- Mr C Moseki (Water Research Commission)
- Prof AM Botha-Oberholster (University of Stellenbosch)
- Prof S Barnard (University of the North West)
- Ms A Swanepoel (Rand Water)
- Dr C van Ginkel (CRIPSIS Environment)
- Dr A Venter (University of the North West)
- Mr E Mogakabe (Department of Water Affairs and Forestry)
- Dr B Harding (DH Environmental Consulting)
- Dr T Downing (Nelson Mandela Metropolitan University)

The authors are also thankful to:

- Dr R Williams (ARC-OVI) and Mr I Smit (SANParks) for the GIS information and Google earth pictures
- Ms N Thiebaut (ARC-Biometry Unit) for the statistical analysis
- Dr D Govender (SANParks) project coordinator at the KNP
- SANParks for granting permission for the study to continue and for availing resources (Accommodation & Game Guards) at the KNP
- South African Weather Services (SAWS) for providing meteorological data

TABLE OF CONTENTS

EXECUTIVE SUMMARY	III
ACKNOWLEDGEMENTS	VIII
TABLE OF CONTENTS	IX
LIST OF FIGURES	XI
LIST OF TABLES	XIII
LIST OF ABBREVIATIONS	XIV
1 BACKGROUND	1
1.1 General introduction	1
1.2 Target audience	1
1.3 Literature review	2
1.3.1 Introduction	2
1.3.2 Factors affecting bloom formation	4
1.3.2.1 Temperature	4
1.3.2.2 Salinity and pH	5
1.3.2.3 Nutrients	5
1.3.2.4 Light and buoyancy	5
1.3.3 Toxin production	6
1.3.4 Mechanism of action of microcystins	7
1.3.5 Exposure of animals to cyanotoxins	7
1.3.6 Methods for cyanotoxin detection	8
1.3.6.1 Biological/biochemical methods for cyanotoxin screening	8
1.3.6.2 Physicochemical methods for cyanotoxin detection	9
2 MATERIALS AND METHODS	10
2.1 Study site	10
2.2 Field sampling	10
2.3 Phytoplankton analysis	14
2.4 Chemical and physical parameters	15
2.4.1 Chlorophyll-a	15
2.4.2 Total phosphorus and total nitrogen	15
2.4.3 Turbidity	16
2.4.4 Total dissolved solids	16
2.5 Quantification of cyanotoxins	16
2.5.1 Microcystin strip test	16
2.5.2 ELISA	18
2.5.3 HPLC	18
2.6 Statistical analysis	20
3 RESULTS AND DISCUSSION	21
3.1 Phytoplankton analysis	21
3.2 Chemical and physical parameters	26
3.2.1 Temperature	26
3.2.2 pH	27
3.2.3 Dissolved oxygen	28

3.2.4	Chlorophyll-a	28
3.2.5	Total phosphorus	31
3.2.6	Total nitrogen	31
3.2.7	Turbidity	32
3.2.8	Total dissolved solids.....	34
3.3	Quantification of microcystins.....	34
3.4	Wild animal deaths in June 2010 in the KNP	48
4	CONCLUSIONS	50
5	RECOMMENDATIONS	52
6	LIST OF REFERENCES	53
	APPENDIX 1: DETAILED ALGAL PROFILES (TAXA)	61
	APPENDIX 2: CORRELATION STATISTICS	77

LIST OF FIGURES

Figure 1. Chemical structure of microcystin-LR (MC-LR). D-Ala = D-Alanine; L-Leu = L-Leucine (L-amino acid); MeAsp = D- <i>erythro</i> - β -methylaspartic acid; L-Arg = L-Arginine (L-amino acid); Adda = 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid; D-Glu = D-glutamic acid; Mdha = N-methyl-dehydroalanine (Mankiewicz et al., 2003).....	3
Figure 2. Map showing dams (•) that were sampled during the current study.....	11
Figure 3. Aerial photos of the 13 KNP dams as shown by Google Earth – a) Sunset, b) Shiloweni, c) Piet Grobler, d) Mazithi, e) Nyamundwa, f) Shitlhove, g) Mestel, h) Kumana, i) Transport, j) Mpondo, k) N'watindlopfu, l) Mpanamana and m) Nsemane..	14
Figure 4. Illustration on how to interpret the Abraxis microcystin strip test results.....	17
Figure 5. Concentration (cells/ml) of the potential toxin-producing algae (e.g. <i>Microcystis</i> , <i>Anabaena</i> , <i>Oscillatoria</i> and <i>Anabaenopsis</i>) from the different KNP dams sampled in June 2009.....	21
Figure 6. Concentration (cells/ml) of the potential toxin-producing algae (e.g. <i>Microcystis</i> , <i>Anabaena</i> , <i>Oscillatoria</i> and <i>Anabaenopsis</i>) from the different KNP dams sampled in September 2009.....	22
Figure 7. Concentration (cells/ml) of the potential toxin-producing algae (e.g. <i>Microcystis</i> , <i>Anabaena</i> , <i>Oscillatoria</i> and <i>Anabaenopsis</i>) from the different KNP dams sampled in February 2010.....	23
Figure 8. Concentration (cells/ml) of the potential toxin-producing algae (e.g. <i>Microcystis</i> , <i>Anabaena</i> , <i>Oscillatoria</i> and <i>Anabaenopsis</i>) from the different KNP dams sampled in July 2010.....	24
Figure 9. Concentration (cells/ml) of the potential toxin-producing algae (e.g. <i>Microcystis</i> , <i>Anabaena</i> , <i>Oscillatoria</i> and <i>Anabaenopsis</i>) from the different KNP dams sampled in October 2010.....	25
Figure 10. Concentration (cells/ml) of the potential toxin-producing algae (e.g. <i>Microcystis</i> , <i>Anabaena</i> , <i>Oscillatoria</i> and <i>Anabaenopsis</i>) from the different KNP dams sampled in February 2011.....	26
Figure 11. Minimum and maximum air temperature and mean rainfall recorded monthly from April 2009 to February 2011 at the Kruger National Park (South African Weather Services).....	29
Figure 12. Linear calibration graphs by HPLC: a) microcystin-RR, b) microcystin-LW, c) microcystin-LA, d) microcystin-LY, e) microcystin-YR, f) microcystin-LF and g) microcystin-LR.....	40

Figure 13. HPLC separation of a solution of standards containing the seven microcystin variants: microcystin-RR, microcystin-LW, microcystin-LA, microcystin-YR, microcystin-LF, microcystin-LR and microcystin-LY.....	41
Figure 14. Chromatogram of microcystins present in the water sample from Nyamundwa Dam (June 2008) in the Kruger National Park.....	41
Figure 15. Photos showing the carcass of a zebra (<i>Equus burchelli</i>) found within the vicinity of Shiloweni Dam in June 2010 (Photos taken by the KNP personnel).....	49

LIST OF TABLES

Table 1. Principal groups of cyanobacterial toxins and the cyanobacterial genera that produce them, their target and activity (Chorus & Bartram, 1999; Bláha et al., 2009).....	3
Table 2. Location and size of the KNP dams.....	14
Table 3. Interpretation of the Abraxis microcystin strip test results.....	17
Table 4. The TSQ Quantum instrument method.....	19
Table 5. Water temperature, pH and dissolved oxygen (DO) of the KNP dams.....	30
Table 6. Chlorophyll-a (Chl), total phosphorus (TP) and total nitrogen (TN) levels of the KNP dams.....	33
Table 7. Turbidity and total dissolved solids (TDS) levels of the KNP dams.	38
Table 8. Analysis of microcystin in the KNP dams using the ABRAxis strip test and ELISA.	39
Table 9. Analysis of microcystin in the KNP dams using the HPLC (June 2009).	42
Table 10. Analysis of microcystin in the KNP dams using the HPLC (September 2009).....	43
Table 11. Analysis of microcystin in the KNP dams using the HPLC (February 2010).....	44
Table 12. Analysis of microcystin in the KNP dams using the HPLC (July 2010).....	45
Table 13. Analysis of microcystin in the KNP dams using the HPLC (October 2010).	46
Table 14. Analysis of microcystin in the KNP dams using the HPLC (February 2011).....	47
Table 15. Algal concentration and physicochemical measurements of water samples from Shiloweni Dam and the wild animal deaths recorded in June 2010.	48

LIST OF ABBREVIATIONS

ARC	Agricultural Research Council
Chl	Chlorophyll-a
DO	Dissolved Oxygen
DoAF	Department of Agriculture and Fisheries
DWAF	Department of Water Affairs and Forestry
ELISA	Enzyme-Linked ImmunoSorbent Assay
HPLC	High Performance Liquid Chromatography
KNP	Kruger National Park
MC-LR	Microcystin-LR
OVI	Onderstepoort Veterinary Institute
PP1	Protein Phosphatase 1
PP2A	Protein Phosphatase 2A
SANParks	South African National Parks
TDS	Total Dissolved Solids
Temp	Temperature
TN	Total Nitrogen
TP	Total Phosphorus
Turb	Turbidity
UV	Ultraviolet

1 BACKGROUND

1.1 General introduction

This project is the first extensive study in the Kruger National Park to investigate the identity and abundance of cyanobacteria and their toxins, factors driving the growth of cyanobacteria, and the role of cyanotoxins in the wild animal mortality incidents. This study covered both the winter and summer seasons from June 2009 to February 2011 and included 13 specific man-made dams in the southern part of the KNP. The use of microcystin strip test kits (Abraxis product) as the primary screening tool for microcystins and nodularins in the field was also evaluated and the results were compared with those of the other more technically advanced analytical detection methods (ELISA and HPLC).

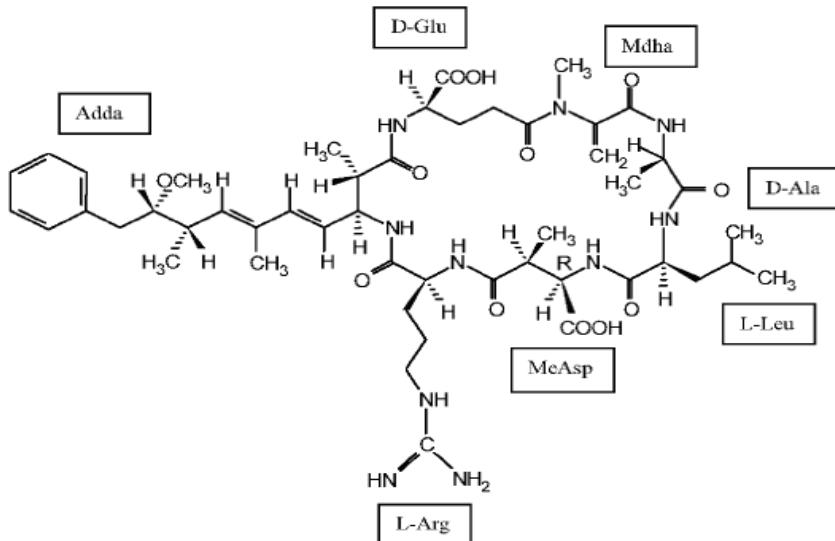
The limitations of this project relate to the sampling strategy and sampling frequency. For the sampling strategy, only surface grab samples were collected from the edges of the specific dams. This was influenced by the location and design of the dams, which made it difficult to access the dams, as well as the presence of dangerous animals (crocodiles, hippos, etc.) inside and around the dams which posed significant risks during sample collection. In respect of sampling frequency, only six field samplings (June 2009, September 2009, February 2010, July 2010, October 2010 and February 2011) were undertaken and more field samplings would have provided a much greater perspective on the data presented in this report. The field samplings were influenced by the costs and other logistics such as the availability of game guards and accommodation at the KNP.

1.2 Target audience

It is hoped that this report will, in some way, contribute to and broaden our understanding on the current status of cyanobacteria and eutrophication and its role in the wild animal deaths in the KNP. This report is targeted at the following readers:

- South African National Parks (SANParks)
- Department of Water Affairs and Forestry (DWAF)
- Department of Agriculture and Fisheries (DoAF)
- Researchers
- Educators and trainers

1.3 Literature review


The review of literature presented in this report is not exhaustive but briefly highlights the most common cyanobacteria and their toxins; the eutrophication process and the factors driving it; how animals are exposed to cyanotoxins; and the methods commonly used in the detection and quantification of cyanotoxins.

For more detailed background information, readers are encouraged to consult the relevant references provided in the reference list of this report.

1.3.1 Introduction

The occurrence of toxic cyanobacterial blooms in eutrophic lakes, reservoirs and recreational waters has become a worldwide problem. Some of the cyanobacterial genera such as *Microcystis*, *Anabaena*, *Nostoc*, *Oscillatoria* and *Aphanizomenon* can produce a wide range of potent toxins, including a family of hepatotoxins called microcystins that comprise the most frequently encountered cyanotoxins in fresh water (**Table 1**) (Carmichael, 1992; Chorus & Bartram, 1999; Song et al., 2007).

Microcystins are cyclic heptapeptides (they contain seven peptide-linked amino acids) that share the common structure cyclo-(D-Ala¹-X²-MeAsp³-Z⁴-Adda⁵-D-Glu⁶-Mdha⁷), where X and Z are variable L-amino acids, D-Ala is D-Alanine, MeAsp is D-*erythro*-β-methylaspartic acid, Adda is 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid, D-Glu is D-Glutamic acid and Mdha is *N*-methyl-dehydroalanine (**Figure 1**). The toxins are named according to the two L-amino acids at positions X and Z (e.g. microcystin-LR refers to leucine and arginine in the variables positions of this peptide). Currently there are over 80 structural variants of microcystin that have been characterised from field samples and isolated strains, and the structural variation has been reported most frequently in positions 2, 4 and 7 of the microcystin molecule (Dawson, 1998; Falconer & Humpage, 2005; Okello et al., 2010).

Figure 1. Chemical structure of microcystin-LR (MC-LR). D-Ala = D-Alanine; L-Leu = L-Leucine (L-amino acid); MeAsp = D-erythro-β-methylaspartic acid; L-Arg = L-Arginine (L-amino acid); Adda = 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid; D-Glu = D-glutamic acid; Mdha = N-methyl-dehydroalanine (Mankiewicz et al., 2003).

Table 1. Principal groups of cyanobacterial toxins and the cyanobacterial genera that produce them, their target and activity (Chorus & Bartram, 1999; Bláha et al., 2009).

Toxin	Cyanobacterial genera	Primary target organ in mammals	Activity
Hepatotoxins:			
Microcystins	<i>Microcystis, Anabaena, Planktothrix (Oscillatoria), Nostoc, Hapalosiphon, Anabaenopsis</i>	Liver	Protein phosphatase inhibition, tumour promoters
Nodularins	<i>Nodularia</i>	Liver	Protein phosphatase inhibition, tumour promoters, carcinogenic
Cylindrospermopsins	<i>Cylindrospermopsis, Umezakia, Aphanizomenon, Raphidiopsis</i>	Liver, kidneys, spleen, lungs	Protein synthesis inhibitor, genotoxic
Neurotoxins:			
Anatoxin-a	<i>Anabaena, Oscillatoria, Aphanizomenon, Cylindrospermum</i>	Nerve synapse	Postsynaptic, depolarizing neuromuscular blockers

Anatoxin-a(S)	<i>Anabaena</i>	Nerve synapse	Acetylcholinesterase inhibitor
Saxitoxins	<i>Anabaena, Aphanizomenon, Lyngbya, Cylindrospermopsis</i>	Nerve axons	Sodium channel blockers
Dermatotoxins:			
Lyngbyatoxin-a	<i>Lyngbya, Schizotrix, Oscillatoria</i>	Skin, gastrointestinal tract	Inflammatory agent, protein kinase C activator
Aplysiatoxin	<i>Lyngbya, Schizotrix, Oscillatoria</i>	Skin	Inflammatory agent, protein kinase C activator
Endotoxins:			
Lipopolysaccharides	All cyanobacteria	Potential irritants, affects any exposed tissue	Inflammatory agent, gastrointestinal irritants

1.3.2 Factors affecting bloom formation

The effect that environmental factors have on the growth of cyanobacteria has been demonstrated in batch and continuous cultures (Sivonen, 1996). The existence of a direct correlation between the environmental factors and growth of cyanobacteria has also been observed in field studies (Robarts & Zohary, 1984; Wicks & Thiel, 1990). The environmental factors include temperature, pH, nutrients (nitrogen and phosphorus), light and buoyancy. Each of these factors alone may only partly determine bloom formation and it has been demonstrated that certain combinations of these factors may strongly favour the formation of a bloom (Oberholster et al., 2004).

1.3.2.1 Temperature

Cellular processes of many phytoplankton are dependent on temperature with their rates accelerating exponentially when the temperature increases. For optimal growth, cyanobacteria prefer warmer conditions with temperatures ranging from 20°C to 30°C. The growth rate of *Microcystis* has been shown to be severely limited at temperatures below 15°C and optimum at temperatures above 25°C. *Oscillatoria* tolerates the widest range of temperature (Robarts & Zohary, 1987). A survey on the effects of temperature on algal growth rate demonstrated that as the temperature increased, the algal group with the highest growth rate changed from diatoms to green algae to blue-green algae (cyanobacteria) (Konopka & Brock, 1978). As a result, cyanobacteria are able to out-compete the other

species when subjected to high summer temperature conditions. This also explains why in temperate water bodies during summer most cyanobacteria form blooms (Msagati et al., 2006).

1.3.2.2 Salinity and pH

Salinity influences the physiology of cyanobacteria and has the potential to disturb ion balance or induce nutrient deficiencies. The pH levels are related to nutrient dissolution which can cause a change in the species composition and biomass of the phytoplankton. Wangwibulkit et al. (2008) showed under laboratory conditions that the optimal salinity levels for growth of *Oscillatoria* sp. ranged from 0-20 ppt and from 0-6 ppt for *Microcystis* sp. Decreased growth rates were observed at high salinity levels for both species. Cyanobacteria favour a pH range that is between 6 and 9 for their optimal growth (Wicks & Thiel, 1990). Wangwibulkit et al. (2008) showed that water pH levels from 7.5 to 9.0 were suitable for *Oscillatoria* and *Microcystis* growth, while pH levels above or below this range caused a significant decrease in growth of these cyanobacteria (pH at these levels affects the morphology of the cyanobacteria).

1.3.2.3 Nutrients

Nutrients such as phosphorus and nitrogen are essential for the growth of cyanobacteria. Phosphorous exists in a wide variety of forms in natural waters both in dissolved and particulate phases, and in inorganic and organic forms, including biomass (Jarvie et al., 2002). Ammonium (NH_4^+), nitrite (NO_2^-) and nitrate (NO_3^-) are the most common ionic forms of dissolved inorganic nitrogen found in aquatic ecosystems (Carmargo & Alonso, 2006). Cyanobacteria have been shown to have higher affinity for nitrogen or phosphorus than other photosynthetic organisms (Metting & Pyne, 1986; Kaebernick et al., 2001), meaning that they can survive better than other phytoplanktonic organisms under limiting conditions of phosphorus or nitrogen (Msagati et al., 2006). Downing et al. (2005) have demonstrated that phosphorus is the growth limiting nutrient for *Microcystis aeruginosa* at high N:P ratios. *Microcystis* blooms were found to be associated with higher N:P ratios in the Huron River (Lehman, 2007).

1.3.2.4 Light and buoyancy

Cyanobacteria contain chlorophyll-a and other pigments, such as phycobiliproteins, phycocyanin and phycoerythrin, which are used for harvesting light and conducting photosynthesis. These pigments are able to harvest light in the spectrum (green, yellow and

orange) that is hardly used by other phytoplankton. The phycobiliproteins with chlorophyll-a enable cyanobacteria to harvest light energy efficiently and to live in an environment with only green light. Cyanobacteria have a low maintenance constant, meaning that they require little energy to maintain cell function and structure; as a result they can maintain a relatively higher growth rate than other phytoplankton when light intensities are low (Chorus & Bartram, 1999).

Movement of cyanobacteria within the water column is due to the presence of specialised gas-filled vesicles which give them a lower density than that of water, thus making them buoyant (Walsby et al., 2006). Cyanobacteria which are able to form surface blooms seem to have a higher tolerance for high light intensities. High light intensities increase the cellular iron intake, since Fe^{3+} is converted to Fe^{2+} by light before it is transported into algal cells, which may be responsible for the higher growth rate of cyanobacteria (Sunda et al., 1991; Msagati et al., 2006).

1.3.3 Toxin production

Cyanobacteria may produce several toxins simultaneously and a single cyanobacterial strain is capable of producing more than one type of microcystin. Although many cyanobacterial strains produce several microcystins simultaneously, usually only one or two microcystins are dominant in any single strain (Sivonen, 1996). All *Oscillatoria*, *Nodularia* and some *Microcystis* seem to produce one major microcystin toxin. *Microcystis*, *Anabaena* and *Oscillatoria* produce the same microcystins (Sivonen et al., 1989; Sivonen et al., 1992). Simultaneous neurotoxin and hepatotoxin production has been observed in *Anabaena flos-aquae* strain NRC 525-17 which produces anatoxin-a(s) and several microcystins (Harada et al., 1991). In natural samples, which usually contain many strains or more than one toxin-producing species, different combinations of microcystins can be found (Chorus & Bartram, 1999).

The climate condition of a region determines the timing and duration of the bloom season of cyanobacteria. Mass occurrences of cyanobacteria are most prominent during the late summer and early autumn and may last two to four months in temperate zones. The bloom season may start early and persist longer in regions with more subtropical climates (Kotak et al., 1995; Vezie et al., 1998). The toxigenic and non-toxigenic strains of cyanobacteria have been found to exist together when grown in the laboratory (Bolch et al., 1997).

1.3.4 Mechanism of action of microcystins

Microcystins (and nodularins) are water soluble and most of them are unable to directly penetrate the lipid membranes of animals, plants and bacterial cells. Therefore, in order to elicit their toxicity, uptake into the cells occurs through the carrier-mediated transport system known as the bile acid transporters. As a result, toxicity of microcystins is restricted to organs expressing the bile acid transporter on their cell membranes, such as the liver (Falconer et al., 1981; Eriksson et al., 1990; Honkanen et al., 1990).

Uptake of microcystins into the liver cells is followed by the inhibition of serine/threonine protein phosphatases type 1 and 2A (PP1 and PP2A) enzymes. The consequent protein phosphatase imbalance results in the cytoskeleton disruption of the cells, which then leads to the massive intrahepatic haemorrhage of the cells. This is characterised by the large increase in liver weight due to pooling of blood in the damaged liver cells (Honkanen et al., 1990; Carmichael, 1992).

1.3.5 Exposure of animals to cyanotoxins

Exposure of animals to cyanobacterial toxins occurs mainly through ingestion of contaminated waters. Cases of animal deaths due to cyanotoxin poisoning have been reported worldwide, including South Africa (Steyn, 1945; Bell & Codd, 1994; Kellerman et al., 2005; Oberholster et al., 2009; Masango et al., 2010). Ruminants, especially cattle, are more often affected probably because they do not hesitate to drink water that is covered with a thick cyanobacterial scum. Besides the consumption of cyanobacteria from water, it has been shown that an additional source of intoxication for terrestrial animals is cyanotoxins that have bioaccumulated in the food chain (Negri & Jones, 1995; Prepas et al., 1997).

Most cases of animal poisoning worldwide have been caused by the genera *Microcystis*, *Anabaena*, *Aphanizomenon*, *Nodularia*, *Nostoc* and *Oscillatoria*. Although these genera occur in South Africa, poisoning of animals is mainly due to *Microcystis aeruginosa* (Steyn, 1945; Soll & Williams, 1985; Harding et al., 1995; Van Halderen et al., 1995; Oberholster et al., 2009; Masango et al., 2010). In most cases of animal mortality, post mortem examinations reveal evidence of cyanobacterial ingestion as well as characteristic liver pathology. The other main cause of animal deaths due to cyanotoxins is from acute neurotoxicity leading to respiratory failure with no post mortem indications of organ injury (Gunn et al., 1992).

1.3.6 Methods for cyanotoxin detection

Two methods are generally used in the detection of cyanobacterial toxins, namely biological/biochemical screening assays and physicochemical methods. These methods differ in terms of principles of detection, information they provide and complexity of the set-up. Selection of technique depends on the availability of facilities and expertise as well as the type of information required. However, specificity and sensitivity of these techniques are important criteria that should be used to select the most reliable method (Chorus & Bartram, 1999; Msagati et al., 2006).

1.3.6.1 Biological/biochemical methods for cyanotoxin screening

Biological/biochemical screening methods commonly used for cyanotoxins include the mouse bioassay, in vitro (primary and continuous cell lines) assays, enzyme linked immunosorbent assay (ELISA), protein phosphatase inhibition (PPI) assay and dipsticks.

ELISAs are sensitive methods commonly used for detecting microcystins. Several kits are commercially available and easy to use. As with other biological assays, the ELISA reports the total microcystin content of a sample. The ELISA allows a simple assessment of risk and also eliminates the use of a wide range of analytical standards since individual microcystins are not identified. The ELISA has a detection limit lower than 1 µg/l, a guideline set by the World Health Organisation (WHO) for drinking water, and can be performed without sample pre-concentration. Problems in the ELISA assay arise from the high structural variation of microcystins since the cross-reactivity of antibodies with different microcystin variants may be variable and does not always correlate with toxicity. Also the configuration of the 96-well plate makes it more suited to screening multiple samples at one time (An & Carmichael, 1994; Nagata et al., 1995; Rapala et al., 2002; Mountfort et al., 2005; Lawton et al., 2010).

Lateral flow dipsticks have been successfully used for a wide range of applications including the detection of drugs of abuse, pregnancy and many environmental contaminants. Dipsticks provide almost instant results and users require no previous training. The dipstick format of the ImmunoStrip® has been used successfully in the detection of microcystins (Lawton et al., 2010). This technique has been shown to be easy to perform in the field and provides a simple monitoring tool giving 'real-time' detection of microcystin toxins.

1.3.6.2 Physicochemical methods for cyanotoxin detection

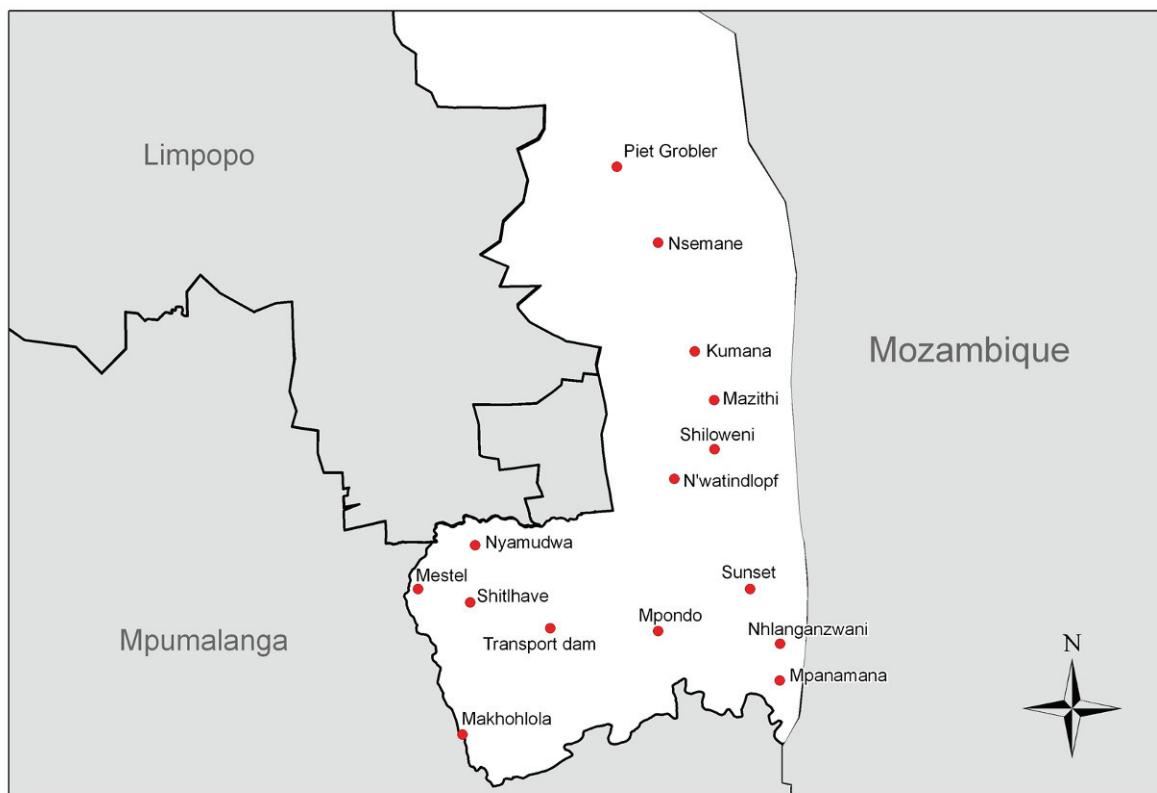
These are analytical methods which use the physicochemical properties of cyanotoxins such as the presence of UV chromophores within their structures, molecular weights, and their reactivities due to specific functional groups present in their structures. Among the methods used are high performance liquid chromatography (HPLC), liquid chromatography/mass spectrometry (LC/MS), capillary electrophoresis (CE) and nuclear magnetic resonance (NMR) (Merilioto, 1997). HPLC and LC/MS are the most commonly used analytical methods for the detection of microcystins (Gathercole & Thiel, 1987; Lawton et al., 1994; Bateman et al., 1995; Merilioto et al., 1998).

Typical HPLC analysis uses a reverse-phase C18 column with separation achieved over a gradient of water and acetonitrile, both containing trifluoroacetic acid. A photodiode array (PDA) detector is used to collect the spectral data between 200-300 nm (Lawton et al., 1994; Moollan et al., 1996; Spoof et al., 2001). When further confirmation and identification of microcystins is required, the LC/MS is very useful as it enables the simultaneous separation and identification of microcystins in a mixture (Kondo et al., 1992; Poon et al., 1993; Mountfort et al., 2005). These analytical methods have the disadvantage of being expensive and only a small range of standards is available for the large known congeners. The methods also require highly skilled personnel and pre-concentration of the water samples (Mountfort et al., 2005).

HPLC, retrofitted with UV detection or mass spectrometry, is a powerful tool for identification of microcystins, capable of providing both qualitative and quantitative data. In mass spectrometry (MS), molecules of biological samples are converted to desolvated ions, which are resolved by mass analysers on the basis of mass and charge (Merilioto, 1997; Msagati et al., 2006; Sangolkar et al., 2006). Given the molecular weights of toxin variants, HPLC/MS offers the advantage of monitoring for only those specific masses of interest as well as identification by retention times. HPLC coupled with different MS methods (e.g. fast atom bombardment, FAB; electrospray ionisation, ESI-MS and atmospheric pressure ionisation, API-MS) has resulted in accurate determination of microcystins (Kondo et al., 1992; Msagati et al., 2006; Sangolkar et al., 2006). Mass spectra of microcystin variants show different fragmentation patterns ($[M+H]^+$, $[M+2H]^+$ ions) depending on the amino acid residues present. Toxins and related peptides, in absence of standards, can be tentatively identified by comparing mass spectrum provided by HPLC/MS with those described in the literature (Sivonen & Jones, 1999; Sangolkar et al., 2006).

2 MATERIALS AND METHODS

2.1 Study site


The Kruger National Park was established in 1926 and is one of the largest conservation areas (19,485 km²) in Africa. One of the challenges that emerged many years after the establishment of the Park was the scarce and unreliable supply of water needed to sustain the wild animals. This depended mostly on seasonal rainfall. To address this challenge, more than 300 boreholes were drilled and 50 earth dams were constructed to ensure all year round reliable supplies of surface water in the Park (Eckhardt et al., 2000; Oberholster et al., 2009). The first official case of *Microcystis* poisoning was recorded in 2005 in the KNP where several carcasses were found near one of the artificial water points (Nhlanguzwane Dam, **Figure 2**), which at the time had a visible cyanobacterial bloom (Bengis et al., 2006). Since then cases of *Microcystis* poisoning of wild animals have been reported around the constructed water impoundments (Nhlanguzwani, Makhohlola, Mapanamana and Sunset dams) in the south-eastern part of the Park (Oberholster et al., 2009; Masango et al., 2010).

In this study, the sampling schedule included 13 dams situated in the southern part of the KNP (**Figure 2**), namely 1) Sunset Dam, 2) Shiloweni Dam, 3) Piet Grobler Dam, 4) Mazithi Dam, 5) Nyamundwa Dam, 6) Shitlhave Dam, 7) Mestel Dam, 8) Kumana Dam, 9) Transport Dam, 10) Mpundo Dam, 11) N'watindlopfu Dam, 12) Mapanamana Dam and 13) Nsemene Dam. Aerial photos, by Google Earth, showing the 13 KNP dams are given in **Figure 3**. The size of the dams ranged between 0.14 and 24 ha, with N'watindlopfu Dam having the smallest surface area and Piet Grobler Dam having the largest surface area (**Table 2**).


2.2 Field sampling

Water samples were collected in June 2009, September 2009, February 2010, July 2010, October 2010 and February 2011 to cover as much as possible both the winter and summer seasons. Sampling of surface water near the shoreline targets toxins that are at the point of contact with terrestrial animals. Sarnelle et al. (2010) proposed that microcystin concentrations are generally higher at the surface than in depth-integrated samples from the mixed layer because cyanobacteria can regulate their buoyancy and form scums at the surface during calm weather. Surface grab samples were collected from at least three different locations at the edges of the specific dams. Sampling was focused on cyanobacterial scums in cases where they were visible. Clean 1 l plastic containers were used. Water samples were transported from the field in a dark cool box to the laboratory where they were immediately transferred to a freezer and kept frozen until analysed (toxin and chemical analysis). Additional water samples were collected from Shiloweni Dam in

June 2010 following the death of wild animals (11 zebras – *Equus burchelli*, 2 rhinos – *Ceratotherium simum* and 1 wildebeest – *Connochaetes taurinus*) within the vicinity of this dam. Liver samples were also obtained from the zebra carcasses and stored at -80°C.

Figure 2. Map showing dams (•) that were sampled during the current study.

Figure 3. Aerial photos of the 13 KNP dams as shown by Google Earth – a) Sunset, b) Shiloweni, c) Piet Grobler, d) Mazithi, e) Nyamundwa, f) Shithhave, g) Mestel, h) Kumana, i) Transport, j) Mpondo, k) N'watindlopfu, l) Mpanamana and m) Nsemane.

Table 2. Location and size of the KNP dams.

KNP Dam	South (°)	East (°)	Area (ha)
Sunset	-25.1170	31.9114	16.01
Shiloweni	-24.8240	31.8363	8.31
Piet Grobler	-24.2328	31.6319	24.00
Mazithi	-24.7213	31.8359	2.35
Nyamundwa	-25.0250	31.3346	4.53
Shitlhave	-25.1449	31.3248	1.07
Mestel	-25.1164	31.2149	2.93
Kumana	-24.6196	31.7954	0.53
Transport	-25.1990	31.4920	2.46
Mpondo	-25.2045	31.7183	20.24
N'watindlopfu	-24.8861	31.7519	0.14
Mpanamana	-25.3079	31.9729	2.40
Nsemane	-24.3921	31.7182	1.70

2.3 Phytoplankton analysis

Phytoplankton samples were preserved with Lugol's solution and the Lugol's concentration was dependent on the density of cyanobacteria scum. Identification and enumeration of

phytoplankton was done at the Centre for Environmental Management, University of Free State. The dominant algal species were identified with an inverted Zeiss Light Microscope after being fixed and placed in a sedimentation chamber for at least 24 h. The number of specific algal species was determined in a known volume of water, counting the individuals (cells, filament and colonies) occurring in 20 blocks of known dimensions. The result was multiplied by a constant to obtain the total counts. Algal species were determined as a percentage of the total community. Cyanobacteria genera were identified using universally accepted taxonomic keys based on cell structure and dimension, colony morphology and mucilage characteristics.

2.4 Chemical and physical parameters

Water temperature, pH and dissolved oxygen were measured *in situ* using the Hach HQ40d digital multiparameter. After collection of the water samples, the multiparameter probes were immediately placed in the water and readings were recorded. The air temperature and rainfall information at the KNP was kindly provided by the South African Weather Services (**Figure 11**).

2.4.1 Chlorophyll-a

Chlorophyll-a was measured by shaking the water samples vigorously and filtering a 5 mL aliquot through a glass microfiber filter. The filters were then extracted with 5 mL methanol followed by fluorometric detection (630 nm excitation and 660 nm emission) of the extracted chlorophyll-a according to the method described by Welschmeyer (1994).

2.4.2 Total phosphorus and total nitrogen

Total phosphorus and total nitrogen were determined following the method of Maher et al. (2002). The stock Kjeldahl digestion reagent was composed of sulphuric acid (2.4 M), potassium sulphate (0.39 M) and copper sulphate (0.023 M). Samples were digested at 160°C for 90 min and then 360°C for 120 min following addition of 10 mL digestion reagent to 25 mL sample in a digestion tube. Samples were then analysed following cooling and addition of water. Phosphorus was measured at 880 nm. Nitrogen was determined following cadmium column reduction by reaction with sulphanilamide coupled to N-1-naphthylethylene dihydrogen chloride. Measurements were recorded at 520 nm.

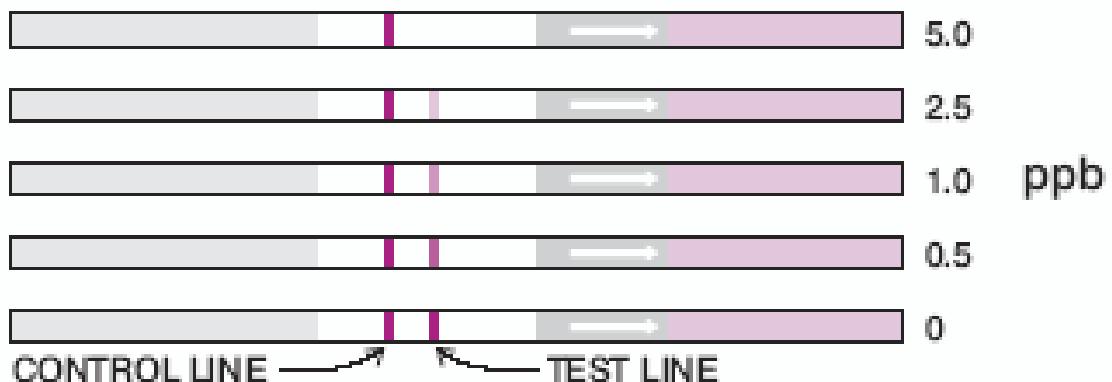
2.4.3 Turbidity

Turbidity was determined following the Nephelometric method which involves the use of a Hach 2100 AN turbidimeter. Water samples were agitated gently and then poured into sample cells. Turbidity was read directly from the instrument display. The primary standards (0.1-4000 NTU) constituted 5 mL hydrazine sulphate in deionised water and 5 mL hexamethylenetetramine in deionised water (EPA, 1994).

2.4.4 Total dissolved solids

Gravimetric determination of the total dissolved solids (TDS) was done following the method of Atekwana et al. (2004). A 100 mL of a well-mixed sample was filtered through a 0.45 µm glass fibre filter and washed with three successive aliquots of 10 mL deionised water. Complete drainage was allowed between washings and the suction continued for about 3 min after filtration was complete. The filtrate was transferred into a pre-weighed 200 mL beaker and evaporated to dryness in an oven for 24 h at 105°C. The residue was then dried at 180°C for exactly 2 h, cooled in a desiccator and immediately weighed. The TDS for each sample was determined as the mass of solid normalised to the volume of water filtered.

2.5 Quantification of cyanotoxins


Commercial microcystin strip test kit (Abraxis product), ELISA kit (Abraxis product) and HPLC were used to quantify the microcystin toxins present in the KNP water samples.

2.5.1 Microcystin strip test

Quantification of microcystin in the KNP water samples was performed *in situ* following the manufacturer's instructions (Abraxis microcystin strip test). The Abraxis microcystin strip test is a rapid immunochromatographic test used in the qualitative screening of microcystins and nodularins in water. The test device consists of a vial with specific antibodies for microcystins and nodularins labelled with a gold colloid and a membrane strip to which a conjugate of the toxin is attached. A control line, produced by a different antibody/antigen reaction, is also present on the membrane strip. The control line is not influenced by the presence or absence of microcystins in the water samples, and therefore, it should be present in all valid reactions. In the absence of toxin in the water sample, the colloidal gold labelled antibody complex moves with the water sample by capillary action to contact the immobilised microcystin conjugate. An antibody-antigen reaction occurs forming a visible line in the test area. The formation of two visible lines of similar intensity indicates a negative test result, meaning the test did not detect the toxin at or above the cut-off point established for

the toxin. If microcystin is present in the water sample, it competes with the immobilised toxin conjugate in the test area for the antibody binding sites on the colloidal gold labelled complex. If a sufficient amount of the toxin is present, it will fill all the available binding sites, thus preventing attachment of the labelled antibody to the toxin conjugate, therefore preventing the development of a coloured line. If a coloured line is not visible in the test line region, or if the test line is lighter than the negative control line, microcystin is present at the levels of concern ($> 1 \mu\text{g/l}$).

Briefly, 200 μl of water sample was dispensed into a conical test vial and shaken gently for 30 sec. The sample was incubated for 20 min and a colour change (purple) was observed. A test strip was inserted into the conical vial containing the sample/antibody mixture and the test was allowed to run for 10 min. The test strip was removed from the conical vial and placed on a flat surface; the test was allowed to develop further for 5 min. Results were read visually following the interpretation of the results in **Figure 4** and **Table 3** (Abaraxis microcystin strip test technical bulletin).

Figure 4. Illustration on how to interpret the Abraxis microcystin strip test results.

Table 3. Interpretation of the Abraxis microcystin strip test results.

Control line	Test line	Interpretation
No control line present	No test line present	Invalid result
Control line present	No test line present	$> 5 \mu\text{g/l}$
Control line present	Moderate intensity test line present	Between 0 & 5 $\mu\text{g/l}$

2.5.2 ELISA

The ELISA (Abraxis product) test was done in the laboratory according to the manufacturer's instructions. The ELISA is an indirect-competitive method used for the quantitative analysis of microcystins and nodularins in water. The sensitivity of the method was 0.1 ng/ml and the method was applied to the water samples without filtration or extraction. After addition of the standard solutions and thawed water samples (50 µl) into the wells of the microtitre plate, an antibody solution (50 µl) was added to the wells. The microtitre plate was incubated for 90 min at room temperature. At the end of the incubation period, wells of the plate were washed three times using the washing buffer solution (250 µl). An enzyme conjugate solution (100 µl) was added to each well; the microtitre plate was incubated for 30 min at room temperature. After another washing step, a substrate solution (100 µl) was added to individual wells followed by incubation for 20-30 min at room temperature. At the end of the incubation period, a stop solution (50 µl) was added and absorbance was measured at 450 nm using a microplate ELISA spectrophotometer (Bio-Tek µQuant product). Each test was carried out in duplicate. A standard curve was constructed using microcystin-LR at concentrations of 0, 0.15, 0.4, 1, 2 and 5 ng/ml (GraphPad Prism Software), and concentrations of the water samples were determined from this standard curve. Water samples showing concentrations lower than 100 ng/l are considered to be negative (ABRAXIS Microcystin Kit Technical Bulletin). Water samples with concentrations higher than 5 µg/l were diluted to obtain values that fall within the standard curve.

2.5.3 HPLC

The SPE HyperSep C18 columns (100 mg/ml, 40-60 µm particle size, 60Å pores size) were used. The columns were conditioned with 1 ml of methanol and 1 ml of water. Sample volume (8-12 ml) was noted and sample mixed on a Whirley mixer. The samples were then centrifuged at 3000 rpm for 5-7 min. The supernatant was loaded onto the column and vacuum regulated at 1 drop/sec in a vacuum manifold. The sample was eluted from the column by 2 ml of methanol. The samples were diluted 1:1 with methanol/water before analysis by LC-MS.

Separation and quantification of the microcystin variants were performed with a Liquid chromatography system consisting of a 100x2.0 mm Luna 3µ C18 100Å column (Phenomenex, Torrance, CA, USA). An Accela pump equipped with autosampler (Thermo Scientific, San Jose, CA, USA) was used for providing a mobile phase flow of 300 µL min⁻¹, and for the injection of 10 µl sample aliquots, respectively. Separation was achieved using

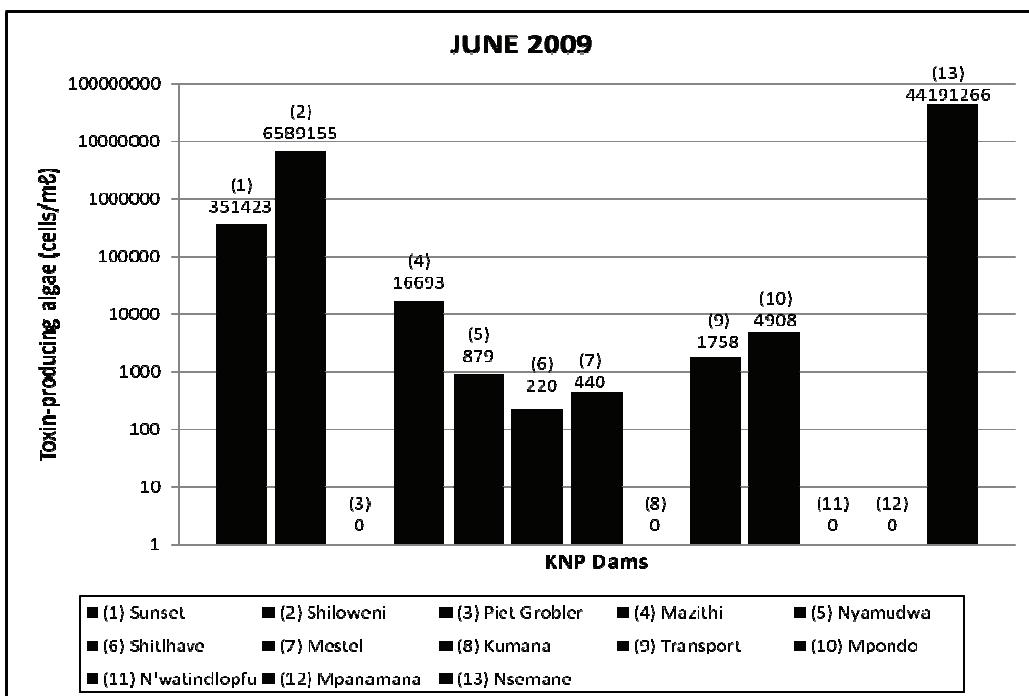
a linear gradient starting with acetonitrile-water (20:80, both containing 0.1% formic acid) rising to 55% acetonitrile over 12 min, and then to 100% acetonitrile over 3 min. Isocratic elution with 100% acetonitrile was maintained for 5 min before the mobile phase composition was returned to the starting conditions and the column re-equilibrated for 5 min. The HPLC was coupled to a TSQ quantum access tandem quadrupole mass spectrometer (Thermo Scientific) operating with an electrospray interface (ESI) in the positive mode. The mass analyser was operated in the multiple reaction monitoring mode (MRM). The parameters for the ESI as well as optimum collision energies were set using automatic and semi-automatic tuning procedures while aqueous tuning solutions of microcystin-RR, -LR and -LA standards (35-701 ng/ml) was continuously infused into the mobile phase at starting condition for the gradient. The parameters for the ESI interface were adjusted as follows: a spray voltage of 4.5 kV, a capillary temperature of 180°C, a skimmer offset of 10 and a sheath gas and auxiliary gas flow of 40 and 20 arbitrary units, respectively. The argon pressure in Q2 was set to 1.3 mTorr, and divert valve was set to waste during the first 2 min of the run. The other TSQ MS method settings are given in **Table 4**.

Table 4. The TSQ Quantum instrument method.

Compound	$[M+H]^+$	Parent $[M+2H]^{++}$	$[M+Na]^+$	Centre	Collision energy
Microcystin-RR		519.7		135.0	62
Microcystin-YR	1045.5			135.0	60
Microcystin-LR	995.5			135.0	63
Microcystin-LA	910.5		932.5		0
Microcystin-LY	1002.0		1024.0		0
Microcystin-LW	1025.2		1047.2		0
Microcystin-LF	986.2		1008.2		0

Microcystins were quantified using external four-point calibration curves in the concentration range 0.01-710 ng/ml. The limit of detection (LOD) and the limit of quantification (LOQ) were defined as the minimum concentration resulting in two diagnostic MRM traces with signal-to-noise ratios (S/N) equal to 3 and 10, respectively. The limits of detection (ng/ml) for each microcystin were: -RR = 0.01, -YR = 0.02, -LR = 0.02, -LA = 0.32, -LY = 0.32, -LW =

0.53 and -LA = 0.53. The HPLC analysis was done by the National Veterinary Institute (Department of Feed and Food Safety, Section for Toxicology) in Norway.


2.6 Statistical analysis

Pearson's correlation (r) was used to determine the linear correlation between cyanobacterial numbers, water temperature, water pH, dissolved oxygen, chlorophyll-a, total phosphorus, total nitrogen, turbidity, total dissolved solids, strip test, microcystin toxin (ELISA and HPLC), the individual microcystin variants (-RR, -YR, -LR, -LA, -LY, -LW and -LF) and the size of the KNP dams. Correlation was considered significant when $p \leq 0.0001$.

3 RESULTS AND DISCUSSION

3.1 Phytoplankton analysis

The phytoplankton of all 13 KNP dams consisted of a total of 42 taxa in June, 37 taxa in September 2009, 43 taxa in February 2010, 36 taxa in July 2010 and February 2011, and 34 taxa in October 2010 all belonging to Cyanophyceae, Bacillariophyceae, Chlorophyceae, Cryptophyceae, Dinophyceae, Euglenophyceae and Chrysophyceae divisions. The recorded taxa and their concentrations for water samples collected from the 13 KNP dams are shown in **Appendix 1**.

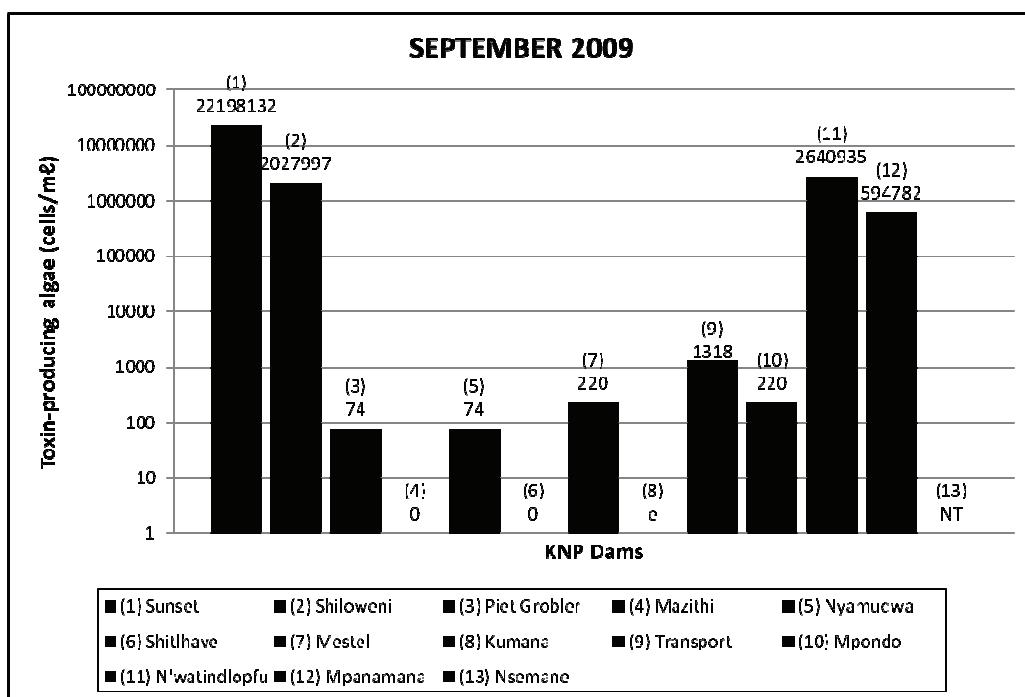
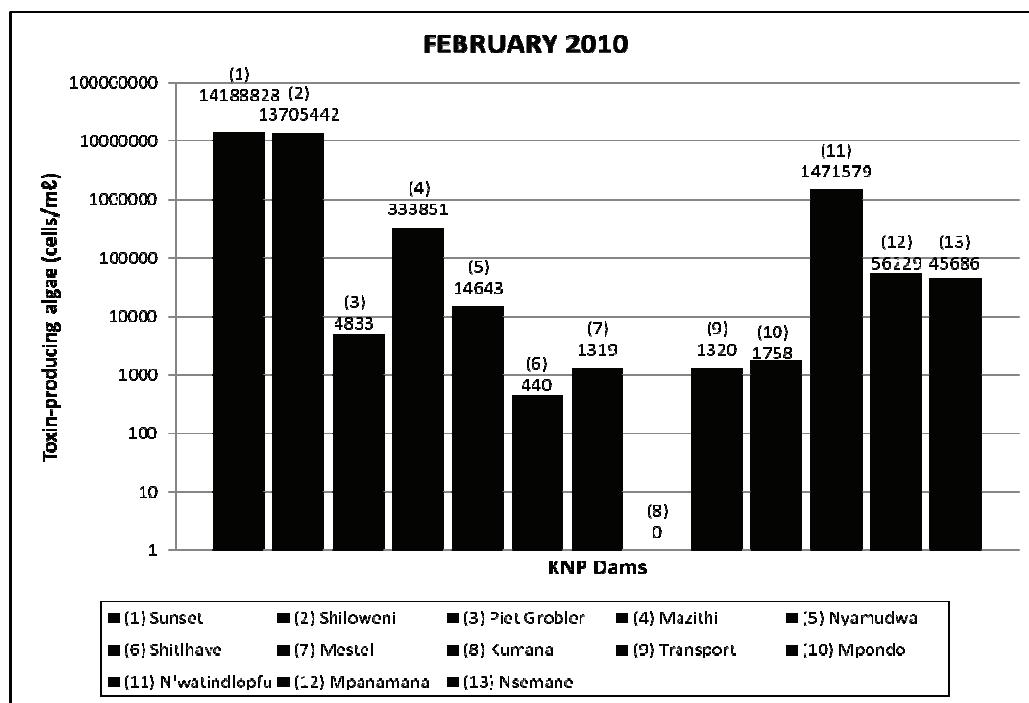
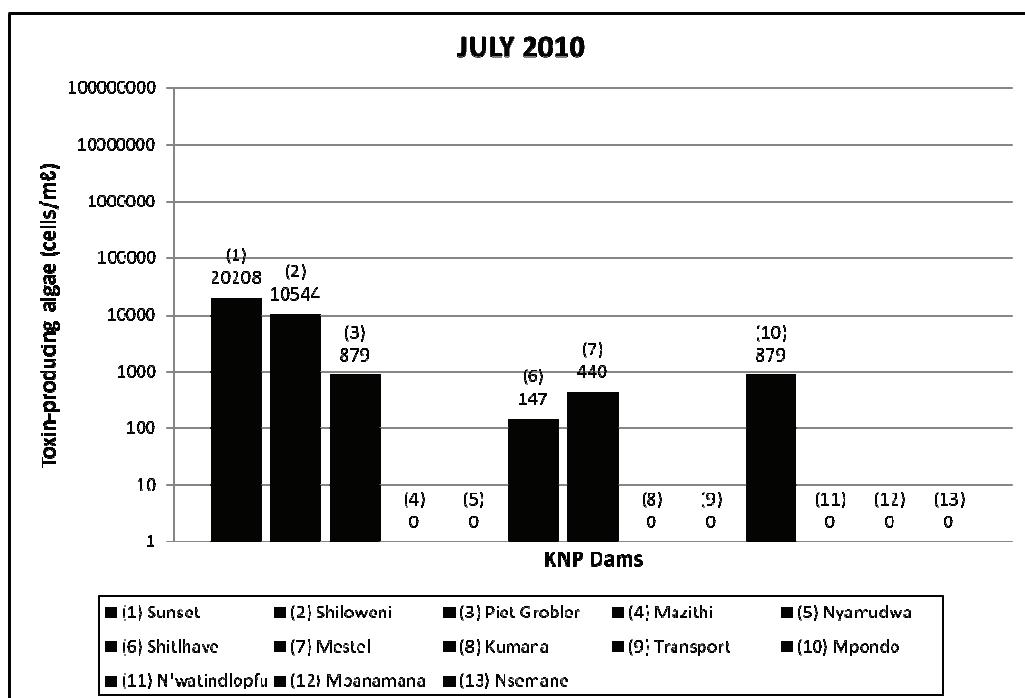


Figure 5. Concentration (cells/ml) of the potential toxin-producing algae (e.g. *Microcystis*, *Anabaena*, *Oscillatoria* and *Anabaenopsis*) from the different KNP dams sampled in June 2009.

In June 2009, Nsemene (441.91×10^5 cells/ml), Shiloweni (65.89×10^5 cells/ml) and Sunset (3.51×10^5 cells/ml) dams had very high concentrations of the known toxin-producing algae (e.g. *Microcystis*, *Anabaena*, *Oscillatoria* and *Anabaenopsis* – belonging to the Cyanophyceae division) (**Figure 5**). During this period, Nsemene Dam was dominated by 99.97% *Microcystis aeruginosa*; Shiloweni Dam was dominated by 97.7% *Microcystis aeruginosa* and Sunset Dam was dominated by 81.6% *Microcystis aeruginosa* and *Anabaena* sp. Algal blooms were visible in the three dams during this period. Mazithi, Nyamundwa, Shitlhave, Mestel, Transport and Mpondo dams contained the known toxin-producing algae and their concentrations ranged between 220 and 16693 cells/ml with Mazithi Dam having the highest algal concentration (visible as blue-green streaks during


sampling) and Shitlhave having the lowest algal concentration. Piet Grobler, Kumana, N'watindlopfu and Mapanamana dams did not contain the known toxin-producing algae in June 2009.

In September 2009, Sunset (221.98×10^5 cells/ml), N'watindlopfu (26.41×10^5 cells/ml), Shiloweni (20.28×10^5 cells/ml) and Mapanamana (5.95×10^5 cells/ml) dams had very high concentrations of the known toxin-producing algae (Figure 6). During this period, Sunset Dam was dominated by 99.87% *Microcystis aeruginosa*, *Anabaena* sp. and *Oscillatoria* sp.; N'watindlopfu Dam was dominated by 99.27% *Microcystis aeruginosa* and *Anabaena* sp.; Shiloweni Dam was dominated by 96.85% *Microcystis aeruginosa*, *Anabaena* sp. and *Oscillatoria* sp. and Mapanamana Dam was dominated by 99.40% *Microcystis aeruginosa* and *Anabaena* sp. Algal blooms were visible in the four dams during this period. Piet Grobler, Nyamundwa, Mestel, Transport and Mpondo dams contained the known toxin-producing algae and their concentrations ranged between 74 and 1318 cells/ml with Transport Dam having the highest algal concentration and the lowest algal concentrations were observed in Piet Grobler and Nyamundwa dams. Mazithi Dam did not contain any of the known toxin-producing algae, however, a slight green discolouration was observed in the water during sampling. Kumana Dam was dry and empty in June 2009 and Nsemene Dam was not sampled during this period.


Figure 6. Concentration (cells/ml) of the potential toxin-producing algae (e.g. *Microcystis*, *Anabaena*, *Oscillatoria* and *Anabaenopsis*) from the different KNP dams sampled in September 2009.

In February 2010, Sunset (141.89×10^5 cells/ml), Shiloweni (137.05×10^5 cells/ml), N'watindlopfu (14.72×10^5 cells/ml), Mazithi (3.3×10^5 cells/ml), Mpanamana (0.56×10^5 cells/ml) and Nsemene (0.46×10^5 cells/ml) dams had very high concentrations of the known toxin-producing algae (Figure 7). During this period, Sunset Dam was dominated by 99.70% *Microcystis aeruginosa*, *Anabaena* sp. and *Oscillatoria* sp.; Shiloweni Dam was dominated by 99.40% *Microcystis aeruginosa*; N'watindlopfu Dam was dominated by 95.71% *Microcystis aeruginosa* and *Anabaena* sp.; Mazithi Dam was dominated by 89.10% *Microcystis aeruginosa* and *Oscillatoria* sp.; Mpanamana Dam was dominated by 72.70% *Microcystis aeruginosa* and Nsemene Dam was dominated by 81.20% *Microcystis aeruginosa*. Algal blooms were visible only in Sunset and Shiloweni dams during this period. The water appeared muddy (brown in colour) in N'watindlopfu and Nsemene dams, whereas the water was clear in Mazithi and Mpanamana dams. Piet Grobler, Nyamundwa, Shitlhave, Mestel, Transport and Mpondo dams contained the known toxin-producing algae and their concentrations ranged between 440 and 14643 cells/ml with Nyamundwa Dam (water appeared muddy) having the highest algal concentration and Shitlhave Dam having the lowest algal concentration. Kumana Dam did not contain any of the known toxin-producing algae.

Figure 7. Concentration (cells/ml) of the potential toxin-producing algae (e.g. *Microcystis*, *Anabaena*, *Oscillatoria* and *Anabaenopsis*) from the different KNP dams sampled in February 2010.

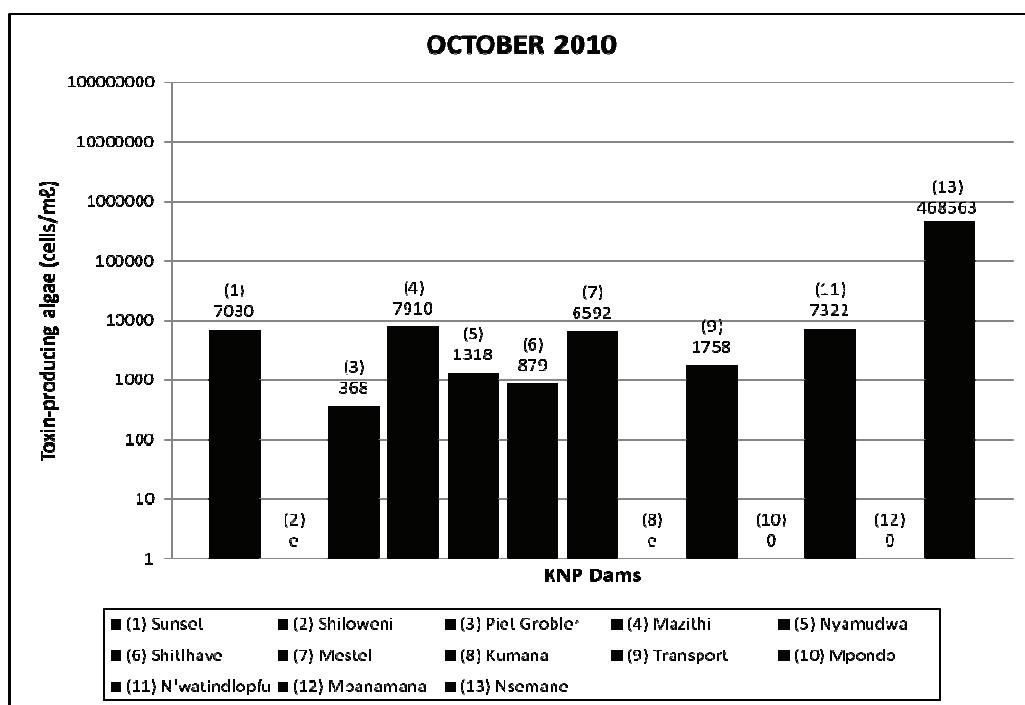

In July 2010, Sunset (0.20×10^5 cells/ml) and Shiloweni (0.11×10^5 cells/ml) dams had very high concentrations of the known toxin-producing algae (Figure 8). During this period, Sunset Dam constituted 32.90% *Microcystis aeruginosa*, *Anabaena* sp. and *Oscillatoria* sp. and Shiloweni Dam constituted 30.77% *Microcystis aeruginosa* and *Oscillatoria* sp. Algal blooms were visible in the two dams during this period. Piet Grobler, Shitlhave, Mestel and Mpondo dams contained the known toxin-producing algae and their concentrations ranged between 147 and 879 cells/ml with Piet Grobler (water appeared muddy) and Mpondo dams having the highest algal concentration and Shitlhave Dam having the lowest algal concentration. Mazithi, Nyamundwa, Kumana, Transport, N'watindlopfu, Mpanamana and Nsemene dams did not contain any of the known toxin-producing algae and the water appeared muddy in Mazithi, Kumana, N'watindlopfu and Mpanamana dams.

Figure 8. Concentration (cells/ml) of the potential toxin-producing algae (e.g. *Microcystis*, *Anabaena*, *Oscillatoria* and *Anabaenopsis*) from the different KNP dams sampled in July 2010.

In October 2010, Nsemene (4.69×10^5 cells/ml), Mazithi (0.079×10^5 cells/ml), N'watindlopfu (0.073×10^5 cells/ml), Sunset (0.070×10^5 cells/ml) and Mestel (0.066×10^5 cells/ml) dams had very high concentrations of the known toxin-producing algae (Figure 8). During this period, Nsemene Dam was dominated by 98.46% *Anabaena* sp.; Mazithi Dam constituted 23.69% *Microcystis aeruginosa*, *Anabaena* sp. and *Oscillatoria* sp.; N'watindlopfu Dam constituted 11.11% *Anabaena* sp.; Sunset Dam constituted 4.98% *Anabaena* sp. and *Oscillatoria* sp. and Mestel Dam constituted 28.57% *Microcystis aeruginosa*, *Anabaena* sp. and *Oscillatoria*

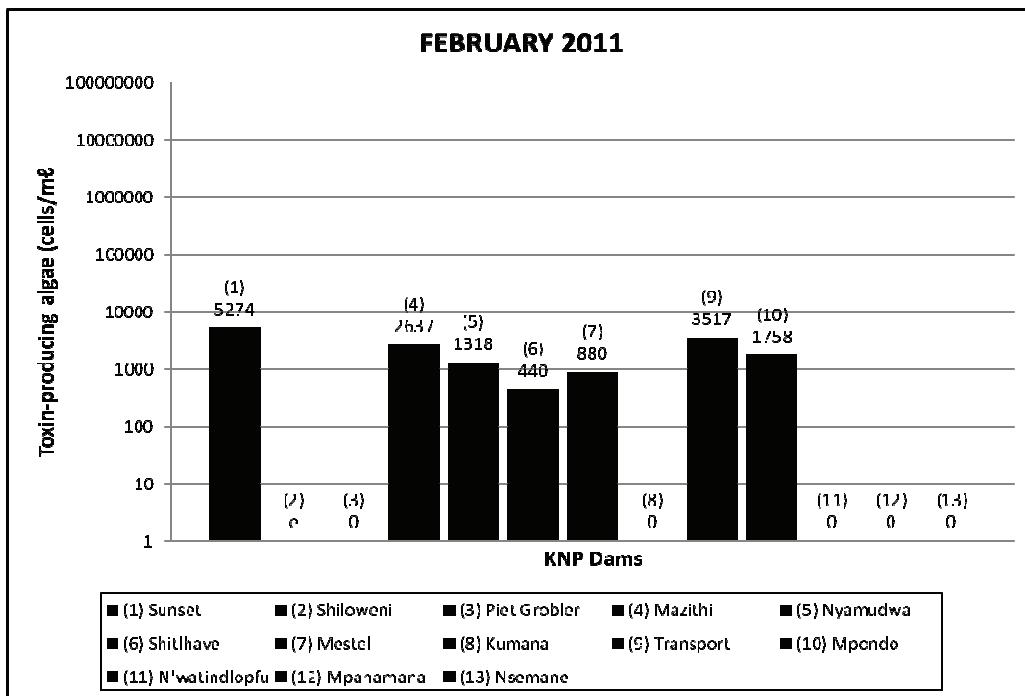

sp. Algal bloom was visible in Nsemene Dam during this period. Piet Grobler (water appeared slightly muddy), Nyamundwa, Shitlhave and Transport (water appeared slightly muddy) dams contained the known toxin-producing algae and their concentrations ranged between 368 and 1758 cells/ml with Transport Dam having the highest algal concentration and Piet Grobler Dam having the lowest algal concentration. Mpondo and Mpanamana dams did not contain any of the known toxin-producing algae and the water appeared muddy in the two dams. Shiloweni and Kumana dams were dry and empty. Shiloweni Dam was emptied by the KNP authorities following the June 2010 wild animal deaths.

Figure 9. Concentration (cells/ml) of the potential toxin-producing algae (e.g. *Microcystis*, *Anabaena*, *Oscillatoria* and *Anabaenopsis*) from the different KNP dams sampled in October 2010.

In February 2011, Sunset (0.053×10^5 cells/ml), Transport (0.035×10^5 cells/ml) and Mazithi (0.026×10^5 cells/ml) dams had high concentrations of the known toxin-producing algae (Figure 10). Sunset Dam constituted 11.49% *Microcystis aeruginosa*, *Anabaena* sp., *Oscillatoria* sp. and *Rhaphidiopsis* sp.; Transport Dam constituted 32.14% *Microcystis aeruginosa*, *Anabaena* sp., *Oscillatoria* sp. and *Rhaphidiopsis* sp. and Mazithi Dam was dominated by 45.00% *Microcystis aeruginosa*, *Anabaena* sp., *Oscillatoria* sp. and *Rhaphidiopsis* sp. Nyamundwa, Shitlhave, Mestel and Mpondo dams contained the known toxin-producing algae and their concentrations ranged between 440 and 1758 cells/ml with Mpondo Dam having the highest algal concentration and Shitlhave Dam having the lowest algal concentration. Algal blooms were not visible in these dams during this period. Piet

Grobler, Kumana, N'watindlopfu, Mpanamana and Nsemene dams did not contain any of the known toxin-producing algae. The water was clear only in Mestel and Shitlhave dams. Shiloweni Dam was dry and empty.

Figure 10. Concentration (cells/ml) of the potential toxin-producing algae (e.g. *Microcystis*, *Anabaena*, *Oscillatoria* and *Anabaenopsis*) from the different KNP dams sampled in February 2011.

3.2 Chemical and physical parameters

3.2.1 Temperature

The water temperature recorded during sampling of the 13 KNP dams is given in **Table 5**. The water temperature varied between 15.5-20.5°C in June 2009, 20.1-31.2°C in September 2009, 24.2-34.9°C in February 2010, 15.5-25.3°C in July 2010, 22.6-36.1°C in October 2010 and 23.9-32.0°C in February 2011. The lowest temperature was determined at Nyamundwa and Kumana dams in June 2009 and July 2010, respectively, whereas the highest temperature was determined at N'watindlopfu Dam in October 2010. In general, cyanobacteria prefer warmer conditions for optimal growth (temperatures between 20°C and 30°C) and temperatures below 15°C are limiting to the growth of *Microcystis*. Even though the surface water temperatures observed in this study at the different 13 KNP dams are high, they are comparable with observations made by Wicks and Thiel (1990) at the Hartbeespoort Dam where they observed maximum water temperatures of 27°C in summer and minimum water temperatures of 13°C in winter. Oberholster and co-workers (2009)

recorded surface water temperatures varying between 20-22°C at the Nhlanganzwane and Makholola dams in the KNP in July 2007. The rainfall data showed that the winter seasons in 2009 and 2010 were generally dry and characterised by monthly mean rainfall of less than 5 mm (**Figure 11**).

There was no linear correlation ($r=0.0098$) found between the cyanobacteria concentrations and temperatures for all the 13 KNP dams during this study (**Appendix 2**). The correlation results are consistent with those of Te and Gin (2011) who did not observe a significant correlation between *Microcystis* and temperature at the Kranji Reservoir in Singapore. However, other investigators have observed a positive correlation between the cyanobacteria biomass and temperature (Robarts & Zohary, 1987; Wicks & Thiel, 1990; Li et al., 2010; Liu et al., 2011). Although the temperatures recorded at the KNP dams in the current study were favourable in promoting the growth of cyanobacteria, no correlation was observed between the cyanobacteria cell numbers and temperature. This could be due to the small temperature variation relative to the wide variability in the other parameters.

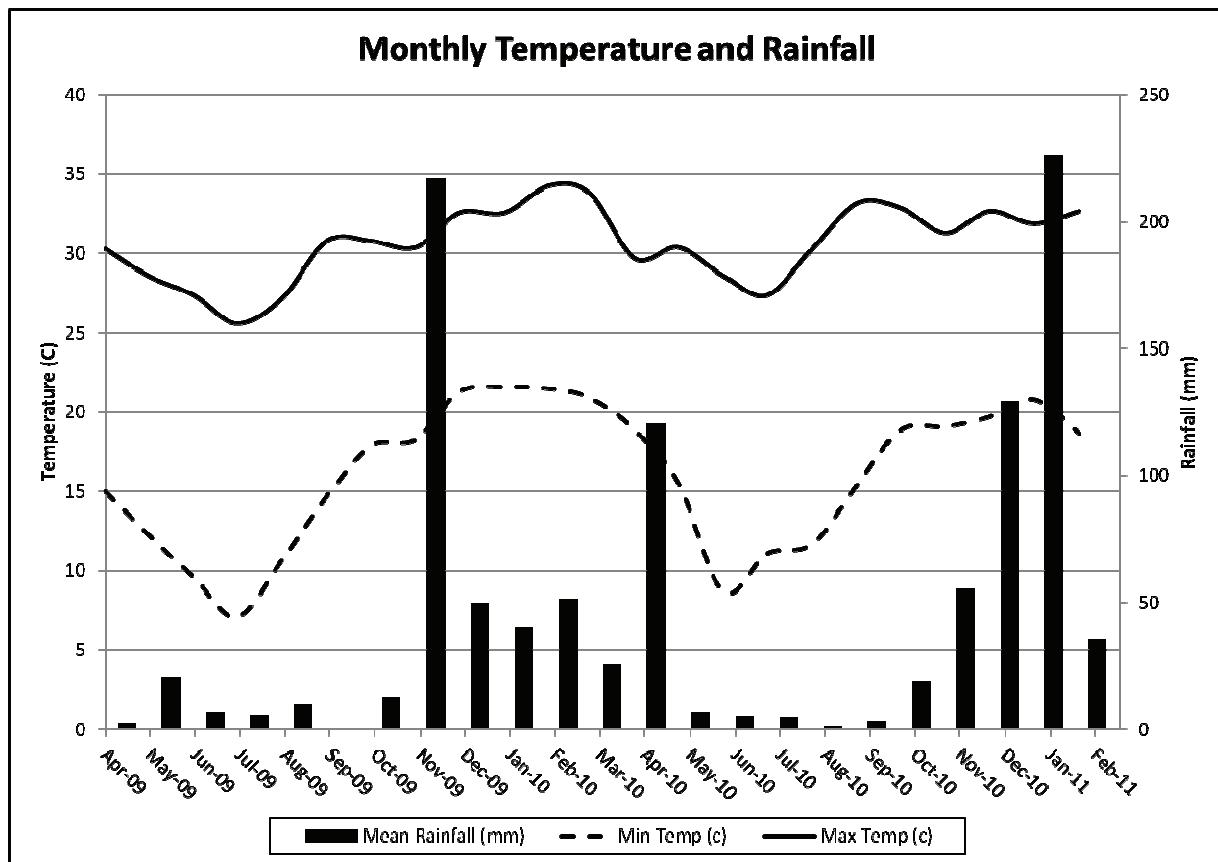
3.2.2 pH

The water pH recorded during sampling of the 13 KNP dams is given in **Table 5**. The water pH ranged between 6.9-7.8 in June 2009, 7.2-9.0 in September 2009, 6.8-7.7 in February 2010, 7.2-8.2 in July 2010, 6.5-8.5 in October 2010 and 7.7-8.3 in February 2011. The lowest water pH was determined at Mestel Dam in October 2010 and the highest water pH was determined at Transport Dam in September 2009. Wangwibulkit and co-workers (2008) found that water pH influenced the growth of cyanobacteria especially when the pH was higher than 9.0 or lower than 6.0. At these levels, pH could inhibit photosynthesis and adversely affect the morphology of the cyanobacteria. The pH levels of this study are comparable with those reported by Wicks and Thiel (1990) who recorded pH levels in the range of 7.7-9.4 at the Hartbeespoort Dam. Other investigators have also recorded similar pH values (Li et al., 2010; Te & Gin, 2011).

There was no linear correlation ($r=-0.02483$) found between the cyanobacteria concentrations and pH for all the 13 KNP dams during this study (**Appendix 2**). Other investigators have reported a positive correlation between *Microcystis* and pH (Wicks & Thiel, 1990; Liu et al., 2011). Although the pH recorded at the KNP dams in the current study was favourable in promoting the growth of cyanobacteria, no correlation was observed between the cyanobacteria cell numbers and pH. This could be due to the small pH variation relative to the wide variability in the other parameters.

3.2.3 Dissolved oxygen

The dissolved oxygen values recorded during sampling of the 13 KNP dams are given in **Table 5**. The dissolved oxygen values ranged between 3.5-9.8 mg/l in June 2009, 0.3-13.6 mg/l in September 2009, 0.1-8.7 mg/l in February 2010, 3.4-10.1 mg/l in July 2010, 4.1-11.5 mg/l in October 2010 and 2.5-9.3 mg/l in February 2011. The lowest dissolved oxygen was determined at Shiloweni Dam in February 2010 and the highest dissolved oxygen was determined at Nyamundwa Dam in September 2009. Heavy or dense blooms use large amounts of dissolved oxygen at night and on very cloudy/overcast, windless days causing oxygen depletion and fish kill. The dissolved oxygen levels recorded in this study are comparable with the levels reported by Oberholster and co-workers (2009) who recorded dissolved oxygen levels of 2.13 mg/l at the Nhlanguzwane Dam in the KNP. Dissolved oxygen levels ranging between 3.0-9.0 mg/l were recorded by Li et al. (2010) at the Yanghe Reservoir, North China.


There was a negative linear correlation ($r=-0.40912$) found between the cyanobacteria concentrations and the dissolved oxygen for all the 13 KNP dams during this study (**Appendix 2**). A positive correlation between cyanobacteria biomass and dissolved oxygen has been previously reported by other investigators (Liu et al., 2011; Te and Gin, 2011).

3.2.4 Chlorophyll-a

The chlorophyll-a values determined for the 13 KNP dams are given in **Table 6**. The chlorophyll-a values varied between 1.0-13986 µg/l in June 2009, 1.0-44710 µg/l in September 2009, 1.0-18629 µg/l in February 2010, 1.0-906 µg/l in July 2010, 18-4012 µg/l in October 2010 and 1.0-214 µg/l in February 2011. The highest chlorophyll-a was determined at Sunset Dam in September 2009. Chlorophyll-a is one of the major phytoplankton biomass-related variables. The chlorophyll-a levels reported in this study are among the highest levels recorded in South Africa. Oberholster et al. (2009) recorded chlorophyll-a levels of 580 µg/l and 3.8 µg/l at the Nhlanguzwane and Makhohlolwa dams in the KNP in July 2007. The highest chlorophyll-a levels recorded by Te and Gin (2011) and Lehman et al. (2009) were 1584 µg/l and 41.6 µg/l, respectively.

A significant positive linear correlation ($r=0.53935$; $p<0.0001$) was found between the cyanobacteria biomass and the chlorophyll-a levels for all the 13 KNP dams during this study (**Appendix 2**). The results of this study are comparable with the results of Te and Gin (2011)

who also observed a positive correlation between the cyanobacteria biomass and chlorophyll-a.

Figure 11. Minimum and maximum air temperature and mean rainfall recorded monthly from April 2009 to February 2011 at the Kruger National Park (South African Weather Services).

Table 5. Water temperature, pH and dissolved oxygen (DO) of the KNP dams.

KNP Dam	June 2009				September 2009				February 2010				July 2010				October 2010				February 2011			
	Temp. (°C)	pH	DO (mg/l)	Temp. (°C)	pH	DO (mg/l)	Temp. (°C)	pH	DO (mg/l)	Temp. (°C)	pH	DO (mg/l)	Temp. (°C)	pH	DO (mg/l)	Temp. (°C)	pH	DO (mg/l)	Temp. (°C)	pH	DO (mg/l)			
Sunset	20.5	7.8	9.6	20.1	7.2	0.3	27.7	6.8	0.2	21.7	7.3	6.5	25.4	7.1	7.1	29.0	8.0	9.3	e	e	e			
Shiloweni	16.8	6.9	6.4	20.5	7.8	6.8	24.2	6.8	0.1	16.1	7.2	3.6	e	e	e	29.2	8.2	7.3						
Piet Grobler	18.9	7.3	7.0	27.6	8.4	8.7	33.7	7.7	8.7	20.8	7.7	6.2	25.6	7.4	8.2	25.8	8.2	4.9						
Mazithi	16.9	7.5	8.8	21.0	8.6	7.1	26.0	7.5	6.2	17.2	8.2	6.7	23.2	7.5	4.5	25.8	8.2	4.9						
Nyamundwa	15.5	7.1	3.5	24.9	8.7	13.6	34.9	7.7	6.8	16.9	8.2	9.0	24.4	7.4	6.4	25.5	7.7	3.7						
Shitihave	17.1	7.3	9.8	24.9	8.1	7.9	28.1	7.4	6.2	18.1	8.0	8.4	25.3	7.5	7.3	26.2	7.8	6.4						
Mestel	16.5	7.0	5.8	23.8	7.3	6.1	30.0	7.3	5.6	16.6	7.4	7.4	24.1	6.5	7.5	25.4	7.7	5.0						
Kumana	16.0	7.5	8.3	e	e	e	26.0	7.3	6.2	15.5	7.7	5.4	e	e	e	23.9	8.3	6.6						
Transport	18.3	7.7	9.6	27.2	9.0	9.0	27.4	7.3	5.4	19.3	8.1	8.8	26.4	6.8	5.4	28.6	7.9	6.3						
Mpondo	20.3	7.5	9.4	24.6	8.3	8.6	32.6	7.4	7.6	20.4	8.2	8.6	22.6	7.5	4.5	32.0	8.0	7.6						
N'watindlofu	17.3	7.2	6.8	31.2	8.8	10.3	32.0	7.3	6.2	22.1	8.0	10.1	36.1	8.4	7.0	31.8	8.1	7.9						
Mpanamana	19.6	7.7	5.1	25.5	8.4	8.5	33.3	7.5	5.7	25.1	7.8	3.4	26.4	8.5	11.5	29.0	7.8	2.5						
Nsemene	NT	NT	NT	NT	NT	NT	32.9	7.1	3.8	25.3	7.7	5.6	27.7	8.5	4.1	28.2	7.8	5.9						

e = empty dam, NT = not tested

3.2.5 Total phosphorus

The total phosphorus determined for the 13 KNP dams is given in **Table 6**. The phosphorus values ranged between 0.33-19.0 mg/l in June 2009, 0.25-29.0 mg/l in September 2009, 0.28-155 mg/l in February 2010, 0.30-2.90 mg/l in July 2010, 0.20-5.70 mg/l in October 2010 and 0.30-0.80 mg/l in February 2011. The highest phosphorus was determined at Sunset Dam in February 2010. Total phosphorus was below the detection limit at Mpondo Dam (June 2009 and February 2010), Piet Grobler Dam (September 2009, October 2010 and February 2011), Shitlhave Dam (February 2010, July 2010 and February 2011), Mestel Dam (February 2010, July 2010 and February 2011), Nyamundwa Dam (July 2010 and February 2011), Transport Dam (October 2010 and February 2011) and Mazithi Dam (February 2011). Phosphorus is delivered to the water-body systems from a range of sources, varying in its bioavailability from source to source. The phosphorus load from point sources, which are dominated by sewage treatment works, is typically highly bioavailable and is delivered along with considerable loads of readily degradable organic material. Much higher proportions of soluble phosphorus occur when livestock excreta or soluble inorganic fertilisers are washed off the land soon after application.

The total phosphorus levels reported in this study are among the highest levels recorded in South Africa. The highest total phosphorus level recorded at the Nhlanguzwane and Hartbeespoort dams was 1.21 mg/l and 0.5 mg/l, respectively (Wicks & Thiel, 1990; Oberholster et al., 2009). In the Yanghe Reservoir, total phosphorus levels varied between 0.04-0.08 mg/l (Li et al., 2010), whereas in the Kranji Reservoir total phosphorus varied between 0.03-0.21 mg/l (Te & Gin, 2011). A significant positive linear correlation ($r=0.42574$; $p=0.0001$) was found between the cyanobacteria biomass and the total phosphorus levels for all the 13 KNP dams during this study (**Appendix 2**). The results of this study are comparable with the results of Te and Gin (2011) who also observed a positive correlation between the cyanobacteria biomass and total phosphorus.

3.2.6 Total nitrogen

The total nitrogen determined for the 13 KNP dams is given in **Table 6**. The nitrogen values ranged between 1.50-328 mg/l in June 2009, 1.20-738 mg/l in September 2009, 0.92-1870 mg/l in February 2010, 1.30-26.0 mg/l in July 2010, 1.70-28.0 mg/l in October 2010 and 1.40-5.60 mg/l in February 2011. The highest nitrogen was determined at Sunset Dam in February 2010. Total nitrogen was below the detection limit at Nyamundwa Dam in February 2011. Reduced organic and inorganic nitrogen forms, such as urea and ammonium, are the

favoured nitrogen source for phytoplankton (Msagati et al., 2006). The total nitrogen levels reported in this study are high when compared to those reported by other investigators. Total nitrogen levels reported at the Nhlanganzwane and Makholola dams in the KNP are 13.6 mg/l and 0.66 mg/l, respectively (Oberholster et al., 2009). In the Yanghe Reservoir, total phosphorus levels varied between 3.0-7.0 mg/l (Li et al., 2010), whereas in the Kranji Reservoir total phosphorus varied between 0.61-4.36 mg/l (Te & Gin, 2011).

A significant positive linear correlation ($r=0.48788$; $p<0.0001$) was found between the cyanobacteria biomass and the total nitrogen levels for all the 13 KNP dams during this study (**Appendix 2**). The results of this study are comparable with the results of Te and Gin (2011) who also observed a positive correlation between the cyanobacteria biomass and total nitrogen. In their study, Wicks and Thiel (1990) could not find a strong correlation between the nutrients and total toxin concentration of *M. aeruginosa*. The high levels of nutrients, especially the total nitrogen, have been linked to the urine and faecal matter released into the water by the high population of Hippopotami inhabiting some of the KNP dams. In their study, Oberholster et al. (2009) stated that the release of nitrogen from the decaying dung and urine of the hippopotami at Nhlanganzwane Dam, possibly supplied the cyanobacteria with a slow but steady supply of NH_4^+ -N which is sufficient for maximum growth and bloom formation.

3.2.7 Turbidity

The turbidity values determined for the 13 KNP dams are given in **Table 7**. The values ranged between 6.10-948 NTU in June 2009, 3.80-833 NTU in September 2009, 1.0-725 NTU in February 2010, 2.20-441 NTU in July 2010, 6.50-144 NTU in October 2010 and 2.10-34.0 NTU in February 2011. The lowest turbidity was determined at Shitlhave and Mpondo dams in February 2010, whereas the highest turbidity was determined at Nsemene Dam in June 2009. Turbidity levels reported by Te and Gin (2011) were ranging between 5.76-224.5 NTU. A significant positive linear correlation ($r=0.79156$; $p<0.0001$) was found between the cyanobacteria biomass and the turbidity levels for all the 13 KNP dams during this study (**Appendix 2**). The results of this study are comparable with the results of Te and Gin (2011) who also observed a positive correlation between the cyanobacteria biomass, expressed as *Microcystis* 16S rRNA, and turbidity.

Table 6. Chlorophyll-*a* (Chl), total phosphorus (TP) and total nitrogen (TN) levels of the KNP dams.

KNP Dam	June 2009			September 2009			February 2010			July 2010			October 2010			February 2011		
	Chl ($\mu\text{g/l}$)	TP (mg/l)	TN (mg/l)	Chl ($\mu\text{g/l}$)	TP (mg/l)	TN (mg/l)	Chl ($\mu\text{g/l}$)	TP (mg/l)	TN (mg/l)	Chl ($\mu\text{g/l}$)	TP (mg/l)	TN (mg/l)	Chl ($\mu\text{g/l}$)	TP (mg/l)	TN (mg/l)	Chl ($\mu\text{g/l}$)	TP (mg/l)	TN (mg/l)
Sunset	986.0	3.20	32	44710	29.0	738	1863	155	1870	218.0	0.70	6.0	202.0	0.8	7.2	214	0.6	5.6
Shiloweni	13986	19.0	328	3124	5.40	69	18629	57.0	157	906.0	2.90	26	e	e	e	e	e	e
Piet Grobler	21.00	0.57	1.6	1.00	< DL	1.5	14.00	0.28	1.8	1.00	0.30	1.8	18.00	< DL	2.4	16	< DL	1.8
Mazithi	183.0	0.75	4.8	72.00	1.20	3.2	75.00	0.44	3.3	29.00	0.40	2.3	212.0	0.8	6.7	19	< DL	2.4
Nyamundwa	8.00	0.77	3.5	16.00	1.00	1.5	41.00	0.44	4.6	17.00	< DL	2.0	34.00	0.5	2.4	4.0	< DL	< DL
Shithihave	14.00	0.53	1.7	1.00	0.89	1.2	6.00	< DL	0.92	9.00	< DL	1.4	21.00	< DL	1.7	14	< DL	1.4
Mestel	1.00	0.36	1.5	20.00	1.00	1.4	34.00	< DL	1.6	1.00	< DL	1.3	41.00	< DL	1.7	22	< DL	1.6
Kumana	57.00	1.90	7.0	e	e	e	18.00	1.20	4.6	40.00	1.10	7.4	e	e	e	34	0.6	2.2
Transport	78.00	0.36	2.7	25.00	0.25	3.7	27.00	1.20	1.4	121.0	0.50	3.2	202.0	< DL	2.8	42	< DL	2.3
Mpondo	53.00	< DL	2.1	5.00	1.00	1.6	16.00	< DL	1.2	15.00	0.30	1.9	36.00	0.2	1.9	36	0.3	2.2
N'watindlopfu	2.00	0.33	2.2	969.0	1.80	22	34.00	0.61	6.6	62.00	0.30	12	599.0	1.5	12	24	0.4	2.4
Mpanamana	17.00	0.55	4.4	608.0	2.40	20	1.00	0.33	2.5	10.00	0.70	7.1	26.00	0.8	12	1.0	0.5	2.8
Nsemene	3669	8.40	101	NT	NT	NT	7.00	1.40	6.6	19.00	0.40	2.5	4012	5.7	28	19	0.8	2.7

e = empty dam; NT = not tested; < DL = less than the detection limit (0.20 mg/l)

3.2.8 Total dissolved solids

The total dissolved solids (TDS) determined for the 13 KNP dams are given in **Table 7**. The values ranged between 131-1421 mg/l in June 2009, 129-849 mg/l in September 2009, 106-1400 mg/l in February 2010, 160-527 mg/l in July 2010, 162-940 mg/l in October 2010 and 107-339 mg/l in February 2011. The lowest TDS was determined at Nsemene Dam in February 2010, whereas the highest TDS was determined at Shiloweni Dam in June 2009. Suspended solids in the water column contribute to the underwater climate that favours growth of *Microcystis*. The TDS results observed in this study are comparable to those observed by Te and Gin (2011) at the Kranji Reservoir, where they reported TDS levels ranging between 60.0-180 mg/l. There was no linear correlation ($r=0.1594$) found between the cyanobacteria biomass and the TDS for all the 13 KNP dams during this study (**Appendix 2**).

3.3 Quantification of microcystins

Since no *Nodularia* spp. were detected in any of the 13 KNP dams, the strip test and ELISA immunoassays, measured only the microcystin concentration. Lateral flow dipsticks have been successfully used for a wide range of applications including the detection of drugs of abuse, pregnancy and many environmental contaminants (Lawton et al., 2010). Results of the qualitative determination of microcystins using the ABRAXIS strip test kit are given in **Table 8**. The results showed that 60% of the 13 KNP dams sampled in June 2009 were positive for microcystins, whereas 55% in September 2009; 85% in February 2010; 62% in July 2010 and 82% in October 2010 were also positive for microcystins. All the 13 KNP dams sampled in February 2011 were negative for microcystins. The dipstick format of the ImmunoStrip® has been used successfully in the detection of microcystins (Lawton et al., 2010). There was no linear correlation ($r=0.236$) found between the cyanobacteria biomass and the strip test results for all the 13 KNP dams during this study (**Appendix 2**).

ELISAs using either polyclonal or monoclonal antibodies for microcystins have been most widely utilised because they are highly specific, sensitive and quick methods to detect microcystins and nodularins (An & Carmichael, 1994; Nagata et al., 1995; Rapala et al., 2002; Lawton et al., 2010). The microcystin concentrations determined for the 13 KNP dams using the ELISA are given in **Table 8**. The concentrations ranged between 0.15-4728.23 ng/ml in June 2009, 0.32-33645.29 ng/ml in September 2009, 0.10-3275.53 ng/ml in February 2010, 0.12-3475.74 ng/ml in July 2010, 0.11-2.87 ng/ml in October 2010 and 0.13-0.28 ng/ml in February 2011. The highest microcystin concentration was determined at Sunset Dam in September 2009. The highest microcystin toxin levels were observed at the

KNP dams in the following decreasing order over the sampling period, when using the ELISA: September 2009 > June 2009 > July 2010 > February 2010 > October 2010 > February 2011. The microcystin levels reported in this study are among the highest levels reported in South Africa. The highest microcystin levels that have been previously reported were at Sunset Dam, 125000 ng/ml, in June 2007 (Masango et al., 2010). Oberholster et al. (2009) recorded microcystin levels of 23.7 ng/ml at Nhlanguzwane Dam in July 2007. A significant positive linear correlation ($r=0.53247$; $p<0.0001$) was found between the cyanobacteria biomass and the total microcystin (ELISA results) for all the 13 KNP dams during this study (**Appendix 2**). The results of this study are comparable with the results of Te and Gin (2011) who observed a positive correlation between the cyanobacteria biomass, expressed as *Microcystis* 16S rRNA, and the microcystin levels. In their study, Li et al. (2010) also found a positive correlation between microcystin toxins and the cyanobacterial cell numbers.

Microcystins are a large group of toxic peptides characterised by differing hydrophobicity that can be readily chromatographed by reversed-phase HPLC. Seven microcystin toxin standards designated -RR, -YR, -LR, -LA, -LY, -LW and -LF were used. The two-letter suffix in the cyclic heptapeptides denote: R=arginine, Y=tyrosine, L=leucine, A=alanine, W=tryptophan and F=phenylalanine. A linear calibration for all the seven microcystins was achieved and the examples of the typical calibration curves and the corresponding correlation coefficients for the microcystin variants are shown in **Figure 11**. Separation of the seven microcystins by the HPLC procedure is shown in **Figure 12**. A chromatogram indicating the different microcystins present in one of the field water samples collected from Nyamundwa Dam at the KNP is shown in **Figure 13**. The different microcystin variants and their concentrations determined for the 13 KNP dams using the HPLC are given in **Tables 9 to 14**.

The presence of the seven microcystin toxins varied between the different 13 KNP dams and the sampling periods. The total microcystin concentrations for all the 13 KNP dams determined in June 2009 are given in **Table 9**, and they ranged between 0.03-1954.03 ng/ml. Shiloweni Dam had the highest total microcystin concentration in June 2009 with microcystin-YR, 873.41 ng/ml, as the major variant. Shitlhave Dam had the lowest total microcystin concentration in June 2009 with microcystin-YR, 0.03 ng/ml, as the major variant. None of the seven microcystin toxins were detected in the water samples from Piet Grobler, Nyamundwa, Mestel, Kumana and N'watindlopfu dams in June 2010. The total microcystin concentrations for all the 13 KNP dams determined in September 2009 are given in **Table 10**, and they ranged between 0.04-169.61 ng/ml. Sunset Dam had the highest total

microcystin concentration with microcystin-LR, 78.73 ng/ml, as the major variant in September 2009. During the same period, Piet Grobler Dam had the lowest total microcystin concentrations with microcystin-LR, 0.04 ng/ml, as the major variant. The seven microcystin toxins were not detected in the water samples from Nyamundwa, Shitlhave and Transport dams in September 2010. The total microcystin concentrations for all the 13 KNP dams determined in February 2010 are given in **Table 11**, and they ranged between 0.03-937.20 ng/ml. The highest total microcystin concentration was observed at Shiloweni Dam in February 2010, with microcystin-RR, 346.60 ng/ml, as the main variant. The seven microcystin variants were not detected in Piet Grobler, Shitlhave, Transport, Mpondo, N'watindlopfu and Nsemane dams in February 2010. The total microcystin concentrations for all the 13 KNP dams determined in July 2010 are given in **Table 12**, and they ranged between 0.02-0.66 ng/ml. None of the seven microcystin toxins were detected in the water samples from Piet Grobler, Mazithi, Shithave, Mestel, Kumana, Transport, Mpondo, Mpanamana and Nsemane dams in July 2010. Sunset Dam had the highest total microcystin levels during the same period, with microcystin-LY, 0.63 ng/ml, as the main variant. The total microcystin concentrations for all the 13 KNP dams determined in October 2010 are given in **Table 13**, and they ranged between 0.06-1.0 ng/ml. Microcystin toxins were only detected in Shitlhave, Transport and Mpanamana dams in October 2010. Transport Dam had the highest total microcystin concentration in October 2010 with microcystin-LF, 1.0 ng/ml, as the major variant. Shiloweni and Kumana dams were dry and empty during this period. The total microcystin concentrations for all the 13 KNP dams determined in February 2011 are given in **Table 14**, and they ranged between 0.03-1.21 ng/ml. Transport Dam had the highest total microcystin levels with microcystin-LY, 1.07 ng/ml, as the major variant during the same period.

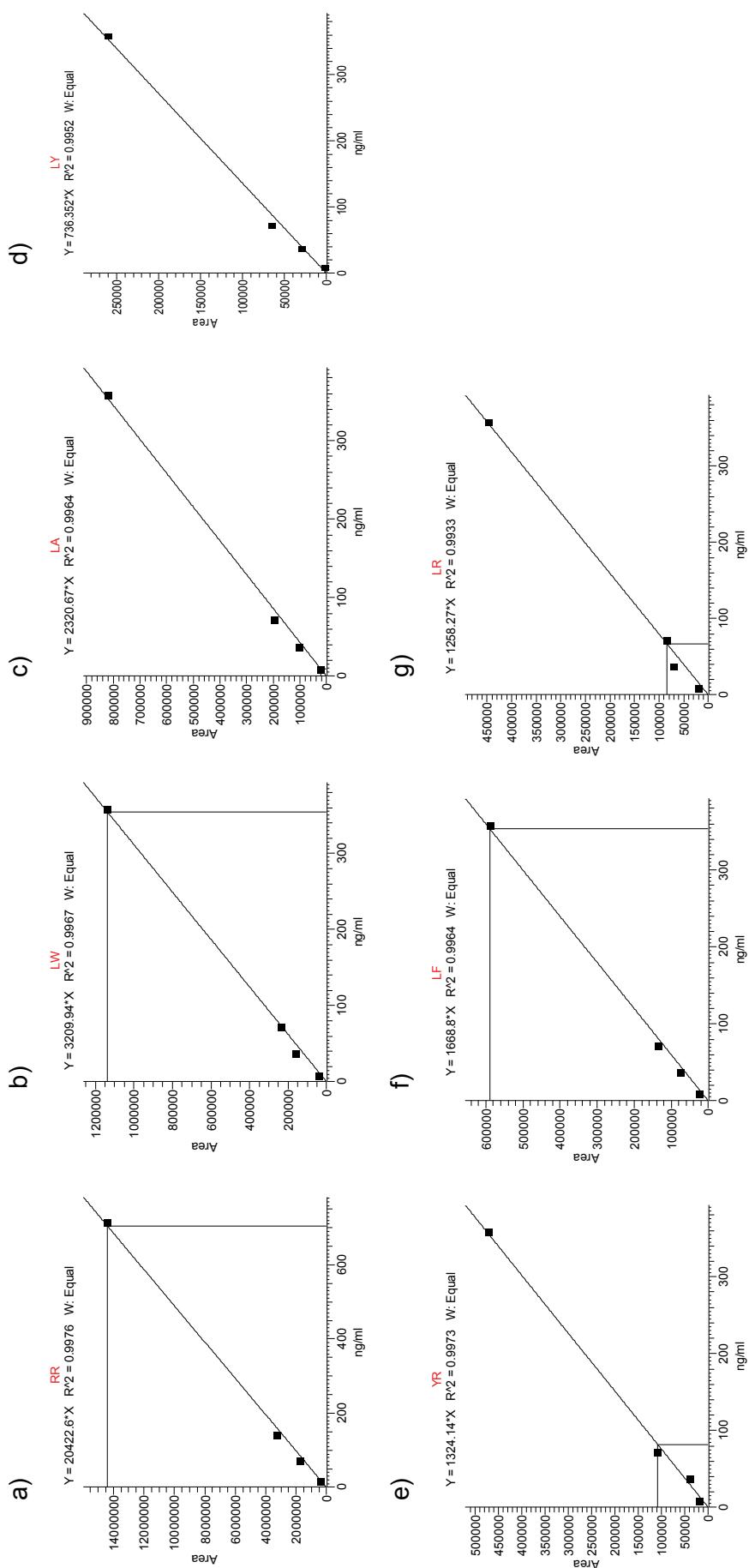
The HPLC results show a substantial variability in the individual toxin content at the different KNP dams in different seasons. This variability has been reported previously in South Africa at the Hartbeespoort Dam and also worldwide, as the common characteristic of cyanobacteria and their blooms (Wicks & Thiel, 1990). In the current study, the highest microcystin toxin variants were observed at the KNP dams in the following decreasing order over the sampling period: June 2009 > February 2010 > September 2009 > February 2011 > July 2010 > October 2010. The highest microcystin toxin variants were observed at Shiloweni Dam, in June 2009, in the following decreasing order: -LR > -YR > -RR > -LA > -LY > -LF > -LW.

As with the ELISA test, the microcystin levels detected in this study using the HPLC were high when compared to the results of other investigators. In their study, Li et al. (2010) found

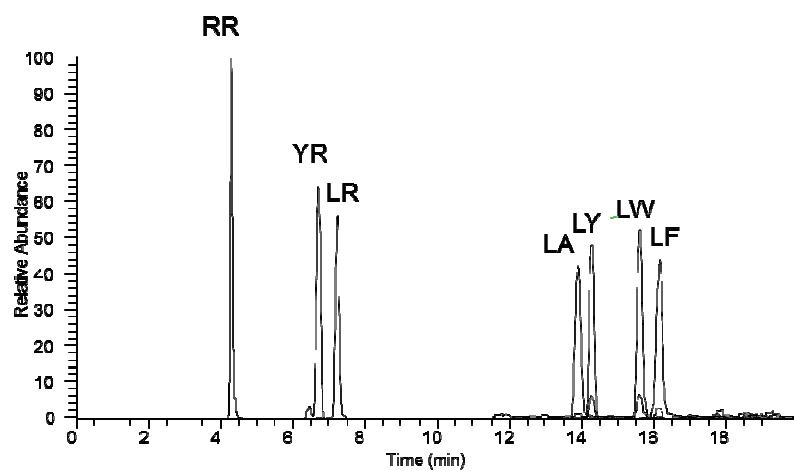
the three microcystin toxin variant, -RR, -YR and -LR, at the Yanghe Reservoir and their total concentrations were: -RR, 71.7 ng/ml; -YR, 3.80 ng/ml and -LR, 25.1 ng/ml. At the Hartbeespoort Dam, six microcystin toxin variants were detected and they are -LR, -YR, -LA, -YA, -FR and -LAb (Wicks & Thiel, 1990). Okello et al. (2010) found the highest total microcystin levels at Lake Saka ranging between 0.50-10.2 ng/ml. A significant positive linear correlation ($r=0.50437$; $p<0.0001$) was found between the cyanobacteria biomass and the total microcystin (HPLC results) for all the 13 KNP dams during this study (**Appendix 2**). In addition to the correlation of the total microcystin, the microcystin toxin variants -LR ($r=0.72107$; $p<0.0001$), -LY ($r=0.87671$; $p<0.0001$) and -LW ($r=0.86142$; $p<0.0001$) had a significant positive linear correlation with the cyanobacteria biomass. The results of this study are comparable with the results of Okello et al. (2010) who observed a positive correlation between the *Microcystis* cell numbers and the total microcystin concentration. In their study, Li et al. (2010) also found a positive correlation between microcystin toxins and the cyanobacterial cell numbers.

The cyanobacteria cell numbers and microcystin levels were not influenced by the size of the KNP dams since there was no correlation found between the sizes of the KNP dams and the cyanobacteria biomass and microcystin toxins (**Appendix 2**).

Table 7. Turbidity and total dissolved solids (TDS) levels of the KNP dams.


KNP Dam	June 2009		September 2009		February 2010		July 2010		October 2010		February 2011	
	Turb. (NTU)	TDS (mg/l)	Turb. (NTU)	TDS (mg/l)	Turb. (NTU)	TDS (mg/l)	Turb. (NTU)	TDS (mg/l)	Turb. (NTU)	TDS (mg/l)	Turb. (NTU)	TDS (mg/l)
Sunset	178	358	833	260	725	1400	16.0	216	25.0	280	19.0	274
Shiloweni	818	1421	425	330	661	142	441	486	e	e	e	e
Plet Grobler	60.0	295	15.0	233	2.90	719	24.0	218	7.30	202	7.00	151
Mazithi	42.0	244	25.0	308	5.70	259	21.0	289	79.0	432	34.0	256
Nyamundwa	7.20	304	3.80	324	1.60	300	7.60	311	11.0	358	5.80	127
Shitlhave	20.0	131	4.70	129	1.00	120	7.50	160	11.0	170	2.40	123
Mestel	6.10	149	7.20	159	2.10	127	2.20	164	6.50	176	2.10	130
Kumana	514	273	e	E	3.50	185	124	336	e	e	15.0	339
Transport	47.0	184	27.0	190	1.70	201	31.0	222	7.50	162	5.10	107
Mpondo	15.0	149	4.80	185	1.40	180	47.0	322	19.0	238	15.0	160
N'watindlopfu	78.0	351	353	739	4.70	238	37.0	388	81.0	822	8.70	113
Mpanamana	146	526	161	849	2.20	347	4.60	527	31.0	940	13.0	229
Nsemene	948	410	NT	NT	1.50	106	59.0	244	144	739	9.10	112

e = empty dam; NT = not tested


Table 8. Analysis of microcystin in the KNP dams using the ABRAXIS strip test and ELISA.

KNP Dam	June 2009		September 2009		February 2010		July 2010		October 2010		February 2011	
	Strip Test	ELISA (ng/ml)	Strip Test	ELISA (ng/ml)	Strip Test	ELISA (ng/ml)	Strip Test	ELISA (ng/ml)	Strip Test	ELISA (ng/ml)	Strip Test	ELISA (ng/ml)
Sunset	+ve	4.49E+02	+ve	3.36E+04	+ve	1.00E+03	+ve	3.48E+03	+ve	2.15E+00	-ve	2.80E-01
Shiloweni	+ve	1.48E+03	+ve	1.21E+02	+ve	3.28E+03	+ve	2.38E+03	e	e	e	e
Piet Grobler	-ve	<DL	-ve	<DL	-ve	<DL	-ve	<DL	-ve	<DL	-ve	<DL
Mazithi	+ve	1.04E+00	-ve	3.20E-01	+ve	2.83E+00	+ve	3.00E-01	+ve	<DL	-ve	1.30E-01
Nyamundwa	NT	<DL	-ve	<DL	+ve	1.11E+00	+ve	4.10E-01	+ve	<DL	-ve	<DL
Shithi have	+ve	<DL	-ve	<DL	+ve	<DL	-ve	1.34E+00	+ve	2.87E+00	-ve	<DL
Mestel	NT	<DL	-ve	<DL	-ve	<DL	-ve	<DL	+ve	<DL	-ve	<DL
Kumana	-ve	<DL	e	e	+ve	2.72E+00	-ve	<DL	e	e	-ve	<DL
Transport	-ve	3.40E+00	+ve	2.73E+00	+ve	1.70E-01	+ve	1.20E-01	+ve	2.54E+00	-ve	1.40E-01
Mpondoro	+ve	8.30E-01	+ve	2.23E+00	+ve	<DL	+ve	<DL	-ve	<DL	-ve	<DL
N'watindlofu	-ve	1.50E-01	+ve	<DL	+ve	4.67E+00	+ve	3.87E+00	+ve	1.00E+00	-ve	<DL
Mpanamana	+ve	6.40E-01	+ve	<DL	+ve	1.20E-01	+ve	1.40E-01	+ve	1.10E-01	-ve	<DL
Nsemene	NT	4.73E+03	NT	NT	+ve	1.00E-01	-ve	2.40E-01	+ve	8.70E-01	-ve	<DL

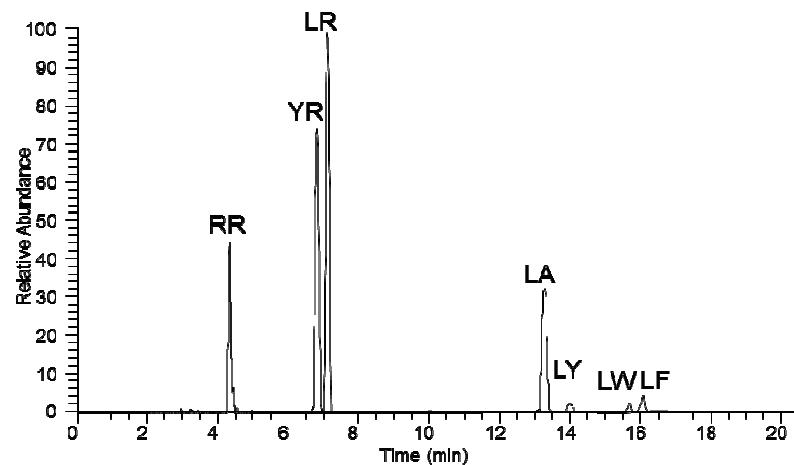

e = empty dam; NT = not tested; +ve = positive; -ve = negative; < DL = less than detection limit (0.10 ng/ml)

Figure 12. Linear calibration graphs by HPLC: a) microcystin-RR, b) microcystin-LW, c) microcystin-LA, d) microcystin-LY, e) microcystin-YR, f) microcystin-LF and g) microcystin-LR.

Figure 13. HPLC separation of a solution of standards containing the seven microcystin variants: microcystin-RR, microcystin-LW, microcystin-LA, microcystin-YR, microcystin-LF, microcystin-LR and microcystin-LY.

Figure 14. Chromatogram of microcystins present in the water sample from Nyamundwa Dam (June 2008) in the Kruger National Park.

Table 9. Analysis of microcystin in the KNP dams using the HPLC (June 2009).

KNP Dam	Microcystin (ng/ml)						Total
	-RR	-YR	-LR	-LA	-LY	-LW	
Sunset	0.11	3.33	2.19	0.80	<DL	<DL	6.43
Shiloweni	13.74	873.41	742.37	277.71	19.19	<DL	1954.03
Piet Grobler	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mazithi	0.01	0.07	0.15	<DL	<DL	<DL	0.23
Nyamundwa	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Shithi have	<DL	0.03	<DL	<DL	<DL	<DL	0.03
Mestel	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Kumana	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Transport	<DL	0.21	0.93	<DL	<DL	<DL	1.14
Mpondoro	<DL	<DL	0.30	<DL	<DL	<DL	0.30
N'watindlofu	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mpanamana	<DL	<DL	0.05	<DL	<DL	<DL	0.05
Nsemene	6.41	<DL	633.81	<DL	40.78	33.77	714.77

<DL = less than detection limit; Detection limits (ng/ml) are: -RR = 0.01, -YR = 0.02, -LR = 0.02, -LA = 0.32, -LY = 0.32, -LW = 0.53 and -LF = 0.53

Table 10. Analysis of microcystin in the KNP dams using the HPLC (September 2009).

KNP Dam	Microcystin (ng/ml)						Total
	-RR	-YR	-LR	-LA	-LY	-LW	
Sunset	<DL	52.84	78.73	26.83	6.85	2.62	1.74
Shiloweni	1.37	1.24	2.34	1.49	0.60	<DL	<DL
Plet Grobler	<DL	<DL	0.04	<DL	<DL	<DL	7.04
Mazithi	<DL	0.01	<DL	<DL	0.82	<DL	<DL
Nyamundwa	<DL	<DL	<DL	<DL	<DL	<DL	0.83
Sithihave	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mestel	0.01	0.68	0.52	0.36	<DL	<DL	1.57
Kumana	e	e	e	e	e	e	e
Transport	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mpondo	<DL	0.10	0.83	<DL	<DL	<DL	0.70
N'watindlopfu	<DL	0.19	3.74	0.50	<DL	<DL	1.63
Mpanamana	0.03	0.05	0.18	<DL	<DL	<DL	4.43
Nsemene	NT	NT	NT	NT	NT	NT	0.26
						NT	NT

e = empty dam; NT = not tested; ND = not detected; <DL = less than detection limit; Detection limits (ng/ml) are: -RR = 0.01, -YR = 0.02, -LR = 0.02, -LA = 0.32, -LY = 0.32, -LW = 0.53 and -LF = 0.53

Table 11. Analysis of microcystin in the KNP dams using the HPLC (February 2010).

KNP Dam	Microcystin (ng/ml)						Total
	-RR	-YR	-LR	-LA	-LY	-LW	
Sunset	1.84	118.46	144.53	44.55	<DL	1.46	<DL
Shiloweni	346.60	169.59	338.31	73.37	9.33	<DL	<DL
Plet Grobler	<DL	<DL	<DL	<DL	<DL	<DL	937.20
Mazithi	0.28	0.06	0.02	<DL	<DL	<DL	0.36
Nyamundwa	<DL	0.05	<DL	<DL	<DL	<DL	0.05
Sithihave	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mestel	<DL	0.03	<DL	<DL	<DL	<DL	0.03
Kumana	<DL	<DL	0.03	<DL	<DL	<DL	0.03
Transport	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mpondo	<DL	<DL	<DL	<DL	<DL	<DL	<DL
N'watindlopfu	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mpanamana	<DL	<DL	0.04	<DL	<DL	<DL	0.04
Nsemene	<DL	<DL	<DL	<DL	<DL	<DL	<DL

<DL = less than detection limit; Detection limits (ng/ml) are: -RR = 0.01, -YR = 0.02, -LR = 0.02, -LA = 0.32, -LY = 0.32, -LW = 0.53 and -LF = 0.53

Table 12. Analysis of microcystin in the KNP dams using the HPLC (July 2010).

KNP Dam	Microcystin (ng/m ³)						Total
	-RR	-YR	-LR	-LA	-LY	-LW	
Sunset	<DL	<DL	0.03	<DL	0.63	<DL	<DL
Shiloweni	<DL	0.02	<DL	<DL	<DL	<DL	0.02
Plet Grobler	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mazithi	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Nyamundwa	<DL	<DL	0.03	<DL	<DL	<DL	0.03
Sithihave	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mestel	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Kumana	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Transport	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mpondo	<DL	<DL	<DL	<DL	<DL	<DL	<DL
N'watindlopfu	<DL	<DL	0.07	<DL	<DL	<DL	0.07
Mpanamana	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Nsemene	<DL	<DL	<DL	<DL	<DL	<DL	<DL

<DL = less than detection limit; Detection limits (ng/m³) are: -RR = 0.01, -YR = 0.02, -LR = 0.02, -LY = 0.32, -LW = 0.53 and -LF = 0.53

Table 13. Analysis of microcystin in the KNP dams using the HPLC (October 2010).

KNP Dam	Microcystin (ng/ml)						Total
	-RR	-YR	-LR	-LA	-LY	-LW	
Sunset	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Shiloweni	e	e	e	e	e	e	e
Plet Grobler	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mazithi	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Nyamundwa	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Shithhave	<DL	0.03	0.03	<DL	<DL	<DL	0.06
Mestel	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Kumana	e	e	e	e	e	e	e
Transport	<DL	0.05	0.30	<DL	<DL	<DL	1.0
Mpondo	<DL	<DL	<DL	<DL	<DL	<DL	<DL
N'watindlopfu	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mpanamana	<DL	<DL	<DL	<DL	0.44	<DL	0.44
Nsemene	<DL	<DL	<DL	<DL	<DL	<DL	<DL

e = empty dam; ND = not detected; <DL = less than detection limit; Detection limits (ng/ml) are: -RR = 0.01, -YR = 0.02, -LR = 0.02, -LA = 0.32, -LY = 0.32, -LW = 0.53 and -LF = 0.53

Table 14. Analysis of microcystin in the KNP dams using the HPLC (February 2011).

KNP Dam	Microcystin (ng/ml)						Total
	-RR	-YR	-LR	-LA	-LY	-LW	
Sunset	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Shiloweni	e	e	e	e	e	e	e
Plet Grobler	<DL	<DL	0.03	<DL	<DL	<DL	0.03
Mazithi	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Nyamundwa	<DL	<DL	0.03	<DL	<DL	<DL	0.03
Shithhave	<DL	0.02	0.02	<DL	<DL	<DL	0.04
Mestel	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Kumana	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Transport	<DL	<DL	0.14	<DL	1.07	<DL	<DL
Mpondo	<DL	<DL	<DL	<DL	<DL	<DL	<DL
N'watindlopfu	<DL	<DL	<DL	<DL	<DL	<DL	<DL
Mpanamana	<DL	0.03	<DL	<DL	<DL	<DL	0.03
Nsemene	<DL	<DL	0.06	<DL	0.80	<DL	0.86

e = empty dam; ND = not detected; <DL = less than detection limit; Detection limits (ng/ml) are: -RR = 0.01, -YR = 0.02, -LR = 0.02, -LA = 0.32, -LY = 0.32, -LW = 0.53 and -LF = 0.53

3.4 Wild animal deaths in June 2010 in the KNP

The water samples collected from Shiloweni Dam in June 2010 had high algal concentrations of 4.61×10^5 cells/ml which were dominated by *Microcystis aeruginosa*. Euglenophyceae (e.g. *Trachelomonas*) was also present but in low numbers (7.32×10^3 cells/ml). The physicochemical conditions measured at the Shiloweni Dam in June 2010 were chlorophyll-a, total nitrogen, total phosphorus, total dissolved solids, turbidity and microcystin concentration using the ELISA. The data measured in Shiloweni Dam in June 2010 are given in **Table 15**. A number of carcasses were found within the vicinity of Shiloweni Dam in June 2010 and they included 11 zebras (*Equus burchelli*), 2 rhinos (*Ceratotherium simum*) and 1 wildebeest (*Connochaetes taurinus*). Post mortem and histopathology performed on the intact zebra carcasses revealed symptoms (hepatic haemorrhaging and necrosis) that are consistent with *Microcystis* bloom intoxication.

Table 15. Algal concentration and physicochemical measurements of water samples from Shiloweni Dam and the wild animal deaths recorded in June 2010.

Variables:	Shiloweni Dam (June 2010)
Algal concentration	4.61×10^5 cells/ml
<i>Microcystis aeruginosa</i>	Present
Chlorophyll-a	$6341 \mu\text{g/l}$
Total Nitrogen	187 mg/l
Total Phosphorus	21 mg/l
Total Dissolved Solids	851 mg/l
Turbidity	461 NTU
Microcystin concentration (water):	
ELISA	$4.06 \times 10^5 \text{ ng/ml}$
Wild animal deaths	11 zebras (<i>Equus burchelli</i>), 2 rhinos (<i>Ceratotherium simum</i>), 1 wildebeest (<i>Connochaetes taurinus</i>)

Figure 15. Photos showing the carcass of a zebra (*Equus burchelli*) found within the vicinity of Shiloweni Dam in June 2010 (Photos taken by the KNP personnel).

4 CONCLUSIONS

Microcystin-producing algae were detected in some of the 13 KNP dams throughout the study period. *Microcystis aeruginosa* was the most dominant cyanophyceae, especially during the incidents of bloom formation. Algal blooms were experienced mostly at the Sunset, Shiloweni and Nsemene dams. Although the temperature and pH levels recorded at the KNP dams were favourable in promoting the growth of cyanobacteria, no correlation was observed between the cyanobacteria biomass and the two parameters.

The results of this study have shown that nutrient supply (total phosphorus and total nitrogen) is the main driving factor in promoting the growth of cyanobacteria at the KNP dams. It has been postulated that the nutrient supply is influenced by the urine and faecal material excreted by the high population of Hippopotami living in most of the KNP dams.

The use of the strip test, which can rapidly detect microcystins and nodularins in the field with minimal equipment or processing, has been successfully demonstrated in this study. The strip test results were comparable to the ELISA results with only 3.1% overall disagreement observed between the two immunoassays. The highest microcystin toxin levels (ELISA results) were observed at the KNP dams in the following decreasing order over the sampling period: September 2009 > June 2009 > July 2010 > February 2010 > October 2010 > February 2011. The presence of the seven microcystin toxins, -RR, -YR, -LR, -LA, -LY, -LW and -LF, varied between the different 13 KNP dams and the sampling periods. The highest microcystin toxin variants were observed at Shiloweni Dam, in June 2009, in the following decreasing order: -YR > -LR > -LA > -LF > -LY > -RR. A significant positive linear correlation was found between the cyanobacteria biomass and the total microcystin for all the 13 KNP dams during this study when using the ELISA and HPLC methods. The HPLC method was found to be more sensitive than the immunoassays when quantifying microcystin toxins. The water samples which were shown to be negative by the immunoassays were found to contain microcystin toxins, however in small quantities. The HPLC was limited in its quantification only to the seven microcystin variants thus resulting in the underestimation of the microcystin concentration, whereas the immunoassays detected all the microcystin variants and nodularin toxins.

The algal biomass and microcystin toxin levels at the KNP dams were variable throughout the sampling period; as a result the dominance of these parameters could not be ascertained based on the seasons. However, rainfalls appear to have had an influence/effect on the algal biomass and microcystin toxin levels. In general, the winter seasons of 2009

and 2010 were dry when compared to the summer months. Water samples collected in September 2009 were characterized by the highest algal biomass and microcystin toxin levels and there were no rains during the same month. Water samples collected in February 2011 were characterized by the lowest algal biomass and microcystin toxin levels and rains were observed days before sampling and during sampling in February 2011. It is highly possible that rainfalls have a dilution effect on the algal biomass and toxin levels.

The biomass-related variables, chlorophyll-a and turbidity, were positively correlated to the cyanobacteria cell numbers. Dissolved oxygen, which is one of the major physical water quality variables, was also negatively correlated to the cyanobacteria biomass. There was no correlation between the total dissolved solids and the cyanobacteria biomass. It seems that the size of the KNP dams did not influence the cyanobacteria cell numbers and microcystin levels.

The microcystin levels measured at the Shiloweni Dam were high during the incident of wildlife deaths which were observed around this dam. Post mortem and histopathology performed on the intact zebra carcasses revealed symptoms that are consistent with *Microcystis* bloom intoxication.

5 RECOMMENDATIONS

The following actions are recommended:

- Continuous monitoring of the KNP dams to ensure that proper preventive actions are taken to prevent poisoning of the wildlife.
- The use of dipstick immunoassays (e.g. ABRAKIS Strip Test kit or Agdia ImmunoStrip kit) in monitoring the toxin levels in the KNP dams, because the dipsticks provide almost instant results and the users require no previous training.
- Control of eutrophication at the KNP should focus on maintaining the nutrients at low levels and also controlling the Hippopotamus population.
- Future studies to focus on :
 - Using molecular techniques to further characterise the cyanobacteria at the KNP dams.
 - The role of Hippopotami in maintaining high levels of nutrients at the KNP dams and also the possible intervention strategies that could be used.
 - The extension of assessment of the toxicity of cyanobacteria to include the northern part of the KNP, because the current study focused only on the southern part of the KNP.

6 LIST OF REFERENCES

AN J and CARMICHAEL WW (1994) Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. *Toxicon* 32: 1495-1507.

ATEKWANA EA, ATEKWANA EA, ROWE RS, WERKEMA DD and LEGALL FD (2004) The relationship of total dissolved solids measurement to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. *Journal of Applied Geophysics* 56: 281-294.

BATEMAN KP, THIBAULT P, DOUGLAS DJ and WHITE RL (1995) Mass-spectral analyses of microcystins from toxic cyanobacteria using online chromatographic and electrophoretic separations. *Journal of Chromatography A* 712: 253-268.

BELL SG and CODD GA (1994) Cyanobacterial toxins and human health. *Review of Medical Microbiology* 5: 256-264.

BENGIS R, GOVENDER D and KEET D (2006) *Report on multispecies cyanobacterial (algal) bioin intoxication in the Kruger National Park*. In proceedings: Update on diseases of Southern African Wildlife, Onderstepoort, Republic of South Africa, B.L., Penzhorn (ed.). SAVA Wildlife Group, Onderstepoort, South Africa, pp. 74-75.

BLÁHA L, BABICA P and MARŠÁLEK B (2009) Toxins produced in cyanobacterial water blooms – toxicity and risks. *Interdisciplinary Toxicology* 2(2): 36-41.

BOLCH CJS, BLACKBURN SI, JONES GJ, ORR PT and GREWE PM (1997) Plasmid content and distribution in the toxic cyanobacterial genus *Microcystis* Kutzing ex Lemmermann (Cyanobacteria: Chroococcales). *Phycologia* 36: 6-11.

CAMARGO JA and ALONSO A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. *Environmental International* 32: 831-849.

CARMICHAEL WW, AZEVEDO SMFO, AN JS, MOLICA RJR, JOCHIMSEN EM, LAU S, RINEHART KL, SHAW GR and EAGLESHAM GK (2001) Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. *Environmental Health Perspectives* 109(7): 663-668.

CARMICHAEL WW (1992) Cyanobacteria secondary metabolites – the cyanotoxins. *Journal of Applied Bacteriology* 72: 445-459.

CHORUS I and BARTRAM J (1999) *Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management*. 1st ed. London: E & FN Spon.

DAWSON RM (1998) The toxicology of microcystins. *Toxicon* 36(7): 953-962.

DOWNING TG, SEMBER CS, GEHRINGER MM and LEUKES W (2005) Medium N:P ratios and specific growth rate co-modulate microcystin and protein content in *Microcystis aeruginosa* PCC7806 and *M. aeruginosa* UV027. *Microbial Ecology* 49: 1-6.

ECKHARDT HC, VAN WILGEN BW and BIGGS HC (2000) Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. *African Journal of Ecology* 38: 108-115.

EPA (1994) Guidance Manual: Turbidity Provisions.

http://water.epa.gov//awsregs/rulesregs/sdwa/mdbp/upload/2001_01_12_mdbp_turbidity_ap_p_c.pdf.

ERIKSSON JE, GRONBERG L, NYGARD S, SLOTTE JP and MERILUOTO JAO (1990) Hepatocellular uptake of ³H-dihydromicrocystin-LR, a cyclic peptide toxin. *Biochimica et Biophysica Acta* 1025: 60-66.

FALCONER IR, JACKSON ARB, LANGLEY J and RUNNEGAR MT (1981) Liver pathology in mice poisoning by the blue-green alga *Microcystis aeruginosa*. *Australian Journal of Biological Sciences* 34: 179-187.

FALCONER IR and HUMPAGE AR (2005) Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. *International Journal of Environmental Research and Public Health* 2: 43-50.

GATHERCOLE PS and THIEL PG (1987) Liquid chromatography detection of the cyanoginosins, toxins produced by the cyanobacterium *Microcystis aeruginosa*. *Journal of Chromatography* 408: 435-440.

GUNN G, RAFFERTY A, RAFFERTY G, COCKBURN N, EDWARDS C, BEATTY K and CODD G (1992) Fatal canine neurotoxicosis attributed to blue-green (cyanobacteria). *The Veterinary Record* 4: 301-302.

HARADA KI, OGAWA K, KIMURA Y, MURATA H, SUZUKI M, THORN PM, EVANS WR and CARMICHAEL WW (1991) Microcystins from *Anabaena flos-aquae* NRC 525-17. *Chemical Research in Toxicology* 4: 535-540.

HARDING WR, ROWE N, WESSELS JC, BEATTIE KA and CODD GA (1995) Death of a dog attributed to the cyanobacterial (blue-green algal) hepatotoxin nodularin in South Africa. *Journal of the South African Veterinary Association* 66(4): 256-259.

HONKANEN RE, ZWILLERS J, MOORE RE, DAILY SL, KHATRA BS, DUKELOW M and BOYNTON AL (1990) Characterisation of microcystin-LR, a potent inhibitor of type1 and type 2A protein phosphatases. *The Journal of Biological Chemistry* 265: 19401-19404.

JARVIE HP, WITHERS PJA and NEAL C (2002) Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity. *Hydrology and Earth System Sciences* 6(1): 113-132.

KAEBERNICK M, ROHLACK T, CHRISTOFFERSEN K and NEILAN BA (2001) A spontaneous mutant of microcystin biosynthesis: genetic characterisation and effect on Daphnia. *Environmental Microbiology* 3: 669-679.

KELLERMAN TS, COETZER JAW, NAUDÉ TW and BOTHA CJ (2005) *Plant poisoning and mycotoxicoses of livestock in Southern Africa*. 2nd ed. Cape Town; Oxford: Oxford University Press.

KONDO F, IKAI Y, OKA H, ISHIKAWA N, WATANABE MF, WATANABE M, HARADA KI and SUZUKI M (1992) Separation and identification of microcystins in cyanobacterial frit-fast atom bombardment liquid chromatography/mass spectrometry. *Toxicon* 30(3): 227-237.

KONOPKA A and BROCK TD (1978) Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota. *Applied and Environmental Microbiology* 36(4): 572-576.

KOTAK BG, LAM AKY, PREPAS EE, KENEFICK SL and HRUDEY SE (1995) Variability of the hepatotoxin microcystin-LR in hyperutrophic drinking water lakes. *Journal of Phycology* 31: 248-263.

LAWTON LA, EDWARDS C and CODD GA (1994) Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. *Analyst* 119: 1525-1530.

LAWTON LA, CHAMBERS H, EDWARDS C, NWAOPARA AA and HEALY M (2010) Rapid detection of microcystins in cells and water. *Toxicon* 55: 973-978.

LEHMAN EM (2007) Seasonal occurrence and toxicity of *Microcystis* in impoundments of the Huron River, Michigan, USA. *Water Research* 41: 795-802.

LEMAN EM, McDONALD KE and LEHMAN JT (2009) Whole lake selective withdrawal experiment to control harmful cyanobacteria in an urban impoundment. *Water Research* 43: 1187-1198.

LI Z, YU J, YANG M, ZHANG J, BURCH MD and HAN W (2010) Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. *Harmful Algae* 9: 481-488.

LIU X, LU X and CHEN Y (2011) The effects of temperature and nutrient ratios on *Microcystis* blooms in Lake Taihu: An 11-year investigation. *Harmful Algae* 10: 337-343.

MAHER W, KROKOWA F, WRUCK D, LOUIE H, NGUYEN T and HUANG WY (2002) Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: comparison with Kjeldahl digestion. *Analytica Chimica Acta* 463: 283-293.

MANKIEWICZ J, TARCZYŃSKA M, WALTER Z and ZALEWSKI M (2003) Natural toxins from cyanobacteria. *Acta Biologica Cracoviensis* 45(2): 9-20.

MASANGO MG, MYBURGH JG, LABUSCHAGNE L, GOVENDER D, BENGIS RG and NAICKER D (2010) Assessment of *Microcystis* bloom toxicity associated with wildlife

mortality in the Kruger National Park, South Africa. *Journal of Wildlife Diseases* 46(1): 95-102.

MERILUOTO JAO (1997) Chromatography of microcystins. *Analytica Chimica Acta* 352: 277-298.

MERILUOTO JAO, KINCAID B, SMYTH MR and WASBERG M (1998) Electrochemical detection of microcystins, cyanobacterial peptide hepatotoxins, following high-performance liquid chromatography. *Journal of Chromatography A* 810: 226-230.

METTING B and PYNE JW (1986) Biologically-active compounds from microalgae. *Enzyme and Microbial Technology* 8: 386-394.

MOOLLAN RW, RAE B and VERBEEK A (1996) Some comments on the determination of microcystin toxins in waters by high-performance liquid chromatography. *Analyst* 121: 233-238.

MOUNTFORT DO, HOLLAND P and SPROSEN J (2005) Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS. *Toxicon* 45: 199-206.

MSAGATI TAM, SIAME BA and SHUSHU DD (2006) Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. *Aquatic Toxicology* 78: 382-297.

NAGATA S, SOUTOME H, TSUTSUMI T, HASEGAWA A, SEKIJIMA M, SUGAMATA M, HARADA KI, SUGANUMA M and UENO Y (1995) Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity. *Natural Toxins* 3: 78-86.

NEGRI AP and JONES GJ (1995) Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacterium *Anabaena circinalis* by the freshwater mussel *Alathyria condola*. *Toxicon* 33(5): 667-678.

OBERHOLSTER PJ, BOTHA AM and GROBBERLAAR JU (2004) *Microcystis aeruginosa*: source of toxic microcystins in drinking water. *African Journal of Biotechnology* 3(3): 159-168.

OBERHOLSTER PJ, MYBURGH JG, GOVENDER D, BENGIS R and BOTHA AM (2009) Identification of toxigenic *Microcystis* strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. *Ecotoxicology and Environmental Safety* 72(4); 1177-1182.

OKELLO W, OSTERMAIER V, PORTMANN C, GADEMANN K and KURMAYER R (2010) Spatial isolation favours the divergence in microcystin net production by *Microcystis* in Ugandan freshwater lakes. *Water Research* 44: 2803-2814.

POON GK, GRIGGS LJ, EDWARDS C, BEATTIE KA and CODD GA (1993) Liquid chromatography-electrospray ionization of cyanobacterial toxins. *Journal of Chromatography* 628: 215-233.

PREPAS EE, KOTAK BG, CAMPBELL LM, EVANS JC, HRUDEY SE and HOLMES CFB (1997) Accumulation and elimination of cyanobacterial hepatotoxins by the freshwater clam *Anodonta grndis simpsonia*. *Canadian Journal of Fisheries and Aquatic Sciences* 54: 41-46.

RAPALA J, ERKOMAA K, KUKKONEN J, SIVONEN K and LAHTI K (2002) Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay: comparison of methods. *Analytica Chimica Acta* 466: 213-231.

ROBARTS RD and ZOHARY T (1984) *Microcystis aeruginosa* and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa). *Journal of Ecology* 73: 1001-1017.

ROBARTS RD and ZOHARY T (1987) Temperature effects on photosynthetic capacity, respiration, and growth-rates of bloom-forming cyanobacteria. *New Zealand Journal of Marine and Freshwater Research* 21: 391-399.

SANGOLKAR LN, MASKE SS and CHAKRABARTI T (2006) Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria. *Water Research* 40:3485-3496.

SARNELLE O, MORRISON J, KAUL R, HORST G, WANDELL H and BEDNARZ R (2010) Citizen monitoring: Testing hypotheses about the interactive influences of eutrophication and mussel invasion on a cyanobacterial toxin in lakes. *Water Research* 44: 141-150.

SIVONEN K, KONONEN K, CARMICHAEL WW, DAHLEM AM, RINEHART KL, KIVIRANTA J and NIEMALÄ SI (1989) Occurrence of the hepatotoxic cyanobacterium *Nodularia spumigena* in Baltic Sea and structure of the toxin. *Applied and Environmental Microbiology* 55: 1990-1995.

SIVONEN K, NAMIKOSHI M, EVANS WR, CARMICHAEL WW, SUN F, ROUHIAINEN L, LUUKKAINEN R and RINEHART KL (1992) Isolation and characterisation of a variety of microcystins from seven strains of the cyanobacterial genus *Anabaena*. *Applied and Environmental Microbiology* 58: 2495-2500.

SIVONEN K (1996) Cyanobacterial toxins and toxin production. *Phycologia* 35(6): 12-24.

SIVONEN K and JONES G (1999) Cyanobacterial toxins. In: Chorus I & Bartram J (Eds.), *Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management*. E & FN Spon, London, pp. 41-111.

SOLL MD and WILLIAMS MC (1985) Mortality of a white rhinoceros (*Ceratotherium simum*) suspected to be associated with the blue-green alga *Microcystis aeruginosa*. *Journal of the South African Veterinary Association* 56(1): 49-51.

SONG L, CHEN W, PENG L, WAN N, GAN N and ZHANG X (2007) Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and risks associated with microcystins in Meiliang Bay, Lake Taihu. *Water Research* 41: 2853-2864.

SPOOF L, KARLSSON K and MERILUOTO J (2001) High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C-18 and amide C-16 sorbents. *Journal of Chromatography A* 909: 225-236.

STEYN DG (1945) Poisoning of animals and human being by algae. *South African Journal of Science* 41: 243-244.

SUNDA WG, SWIFT DG and HUNTSMAN SA (1991) Low iron requirement for growth in oceanic phytoplankton. *Nature* 351: 55-57.

TE SH and GIN KY-H (2011) The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. *Harmful Algae* 10: 319-329.

VAN HALDEREN A, HARDING WR, WESSELS JC, SCHNEIDER DL, HEINE EWP, VAN DER MERWE J and FOURIE JM (1995) Cyanobacterial (blue-green algae) poisoning of livestock in the Western Cape Province of South Africa. *Journal of the South African Veterinary Association* 66(4): 260-264.

VEZIE C, BRIENT L, SIVONEN K, BERTU G, LEFEUVRE JC and SALKINOJA-SALONEN M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Grand-Lieu lake (France). *Microbial Ecology* 35: 126-135.

WALSBY AE, SCHANZ F and SCHMID M (2006) The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by *Planktothrix rebescens* in Lake Zürich. *New Physiologist* 169: 109-122.

WANGWIBULKIT S, LIMSUWAN C and CHUCHIRD N (2008) Effects of salinity and pH on the growth of blue-green algae, *Oscillatoria* sp. and *Microcystis* sp. isolated from pacific white shrimp (*Litopenaeus vannamei*) ponds. *Kasetsart University Fisheries Research Bulletin* 32(1): 1-9.

WELSCHMEYER NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. *Limnology and Oceanography* 39(8): 1985-1992.

WICKS RJ and THIEL PG (1990) Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium *Microcystis aeruginosa* in a hypertrophic African reservoir. *Environmental Science and Technology* 24: 1413-1418.

YUAN M, CARMICHAEL WW and HILBORN ED (2006) Microcystin analysis in human sera and liver from human fatalities in Caruaru, Brazil 1996. *Toxicon* 48: 627-640.

APPENDIX 1: DETAILED ALGAL PROFILES (TAXA)

June 2009 (cells/ml)

SPECIES (F = Filament)	Sundest	Shiloweni	Plet Grobler	Mazithi	Nyamundwa	Shithave	Mestel	Transport	Mpondo	N'watinlopfu	Mpamama	Kumana	Nsedama	June 2009 (cells/ml)		
														Shitlwe	Shitlwe	
1. CYANOPHYCEAE	351 423	6 589 155	0	16 693	879	440	587	1 758	10 399	0	0	0	0	44 220 552		
<i>Anabaena</i> sp. (F)	81 36%	97.70%	0%	67 85%	6.70%	5.40%	6.70%	34.80%	90.39%	0%	0%	0%	0%	99.97%		
<i>Anabaenopsis</i> sp.	153 747			6 150				659	74							
<i>Merismopodium</i> sp. (col)								220	147							
<i>Microcystis aeruginosa</i> (single cells)	183 033	6 589 155		7 907	879			293	1099							
<i>Oscillatoria</i> sp. (F)	14 643			2 636				220	147							
2. BACILLARIOPHYCEAE	21 966	21 964	440	4 394	7 470	2 637	440	1 100	369	0	3 515	14 643	0	0	0	0%
<i>Cocconeis</i> sp.	5.07%	0.33%	13.30%	17.86%	56.70%	32.40%	5%	21.80%	3.21%	0%	16.70%	40%				
<i>Cymbella</i> sp.								440	220							
<i>Gyrosigma</i> sp.																
<i>Melosira</i> sp. (F)	7 322				2 197			147	220							
<i>Cyclotella</i> sp. (10-20 µm)											220	147				
<i>Navicula</i> sp. (pennate)					879			440			220					
<i>Nitzschia</i> sp. (pennate)	7 322	21 964	220	2 636	4 393	1 977		293	440	74				3 515	14 643	
<i>Pennate diatoms (other)</i>																
<i>Stauroneis</i> sp.	7 322			220	879			440								
<i>Synedra</i> sp.																
3. CHLOROPHYCEAE	43 931	65 892	660	2 637	3 078	2 419	2 347	650	370	879	14 060	0	0	0	0	0%
<i>Ankistrodesmus</i> sp. (needle, 30 µm)	10.17%	0.97%	20%	10.72%	23.30%	29.70%	26.70%	12.90%	3.22%	13.30%	66.70%	0%	0%	0%		
<i>Chlamydomonas</i> sp. (15-20 µm)	7 322			220				440	440	733						

SPECIES (F = Filament)		Susset		Shiloweni		Plet Grobler		Mazithi		Nyamundwa		Shithave		MesTEL		Transport		Mpondo		N'watindlopfu		Mpandomana		Kumana		Nsename	
<i>Ceratium sp.</i>																											
<i>Peridinium sp.</i>																											
6. EUGLENOPHYCEAE		7 322		0		2 200		0		440		1 319		2 345		1 099		220		2 637		0		14 644		14 643	
<i>Euglena sp.</i>		1.70%		0%		66.70%		0%		3.30%		16.20%		26.70%		21.70%		1.91%		40%		0%		40%		0.03%	
<i>Lepocinclis sp. (pear shaped)</i>																											
<i>Phacus sp.</i>		7 322																									
<i>Trachelomonas sp.</i>						2 200		440		440		1 904		879		220		220		2 197		7 322					
7. CHRYSOPHYEAE		0		0		0		0		0		0		220		733		220		0		0		0		0	
<i>Mallomonas sp. (Chrysophyta)</i>																											
<i>Dinobryon sp.</i>																											
<i>Synura sp. (single cells)</i>																											
Total		431 964		6 750 939		3 300		24 603		13 185		8 134		8 796		5 057		11 505		6 591		21 090		36 609		44 235 195	

September 2009 (cells/ml)

SPECIES (F = Filament)	Sunset	Shiloweni	Piet Grobler	Mazithi	Nyamundwa	Shithave	Mestel	Transport	Mpondo	N'watindlopfu	Mpamama
1. CYANOPHYCEAE	22 198 132	2 027 997	74	0	148	0	294	1 318	220	2 640 935	594 782
<i>Anabaena</i> sp. (F)	99.87%	96.85%	7.20%	0%	5%	0%	4%	9%	16.70%	99.27%	99.40%
<i>Merismopodium</i> sp. (col)	14 643	58 571	74					1 318	220	1 758	13 179
<i>Microcystis aeruginosa</i> (single cells)	21 597 786	1 947 462						220			
<i>Oscillatoria</i> sp. (F)	585 703	21 964						74			
2. BACILLARIOPHYCEAE	0	14 643	148	2 929	222	2 491	1 760	3 078	660	3 516	1 758
<i>Cocconeis</i> sp.	0%	0.70%	14.40%	12%	8%	56.60%	23%	21%	50%	0.13%	0.30%
<i>Cymbella</i> sp.			74	2 929	74				220		
<i>Gyrosigma</i> sp.							147	74			
<i>Melosira</i> sp. (F)								74			
<i>Cyclotella</i> sp. (10-20 µm)									440	220	1 758
<i>Navicula</i> sp. (pennate)											879
<i>Nitzschia</i> sp. (pennate)		14 643						74	440	220	
<i>Pennate diatoms (other)</i>			74								
<i>Stauroneis</i> sp.								147	74		
<i>Synedra</i> sp.											
3. CHLOROPHYCEAE	0	43 932	221	21 089	2 275	1 173	4 618	1 318	0	1 758	879
<i>Ankistrodesmus</i> sp. (needle, 30 µm)	0%	2.10%	21.40%	87%	77%	26.70%	61%	9%	0%	0.07%	0.14%
<i>Chlamydomonas</i> sp. (15-20 µm)		7 322	74			74					1 758
<i>Chlorella</i> sp. (3-6 µm)								293	293		
<i>Chlorococcum</i> sp. (12-18 µm)								586	440	367	1 318
<i>Cladophora</i> sp.											
<i>Cladophora</i> sp.									74	220	879

SPECIES (F = Filament)		Suneset		Shiloweni		Pjet Grobler		Mazithi		Nyamundwa		Shithave		Mesel		Mpondo		N'watindlopfu		Mpansama		
<i>Coelastrum microporum</i> (col.)																						
<i>Cosmarium</i> sp.																						
<i>Crucigenia</i> sp. (4x4 col.)	7 322							220		220		74										
<i>Elakatothrix</i> sp.												220	879									
<i>Eudorina</i> sp. (col.)																						
<i>Micratinium</i> sp. (col. Round, spikes)	7 322																					
<i>Monoraphidium arcuatum</i> (big sickle)																						
<i>M. contortum</i> (s-sickle)																						
<i>Oocystis</i> sp. (col.)								440				74										
<i>M. circinale</i> (short fat sickle)																						
<i>O. solitaria</i> (single cell)									1 172													
<i>Pandorina</i> sp. (col.)																						
<i>Pediastrum</i> sp. (col.)	7 322							74				293	440		2 929							
<i>Scenedesmus</i> sp. (col.)																						
<i>Sphaerastrum</i> sp.												74				74						
<i>Schoeheria</i> sp. (needle with foot)																						
<i>Sphaerocystis</i> sp. (col.)																						
<i>Spirogyra</i> sp. (F)																						
<i>Tetrastrum</i> sp. (4cells with spikes)	7 322																					
<i>Tetraedron</i> sp. (4-angular)																						
4. CRYPTOPHYCEAE	0	7 322	220	0		74		0	74		0	74		2 197		220		5 272	0	0%	0%	
<i>Cryptomonas</i> sp.	0%	0.35%	21.30%	0%		2.50%		0%	1%		0%	15%		16.70%		0.20%						
5. DINOPHYCEAE	0	0	0	0		0		0	0		0	0		3 515		0	0	0	0	0	0%	
<i>Ceratium</i> sp.	0%	0%	0%	0%		0%		0%	0%		0%	24%		3 515								
<i>Peridinium</i> sp.																						
6. EUGLENOPHYCEAE	29 285	0	368	293	221	734	808	3 076	220	3 786	879											

SPECIES (F = Filament)	Sunset			Shiloweni			Piet Grobler			Mazithi			Nyamundwa			Shithave			Mestel			Transport			Mpondo			N'watindlopfu			Mpambama		
	0.13%	0%	35.70%	1%	7.50%	7.50%	16.70%	16.70%	11%	21%	16.70%	16.70%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%				
<i>Euglena</i> sp.	14 643	74					147	74	879																								
<i>Lepocinclis</i> sp. (pear shaped)	14 643	74					147	74																									
<i>Phacus</i> sp.							74	147	74																								
<i>Trachelomonas</i> sp.		220	293	147	293	147	293	586	2 197	220	3 786	879																					
7. CHRYSOPOHYSEAE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
<i>Mallomonas</i> sp. (Chrysophyta)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%			
<i>Dinobryon</i> sp.																																	
<i>Synura</i> sp. (single cells)																																	
Total	22 227 418	2 093 894	1 031	24 311	2 940	4 398	7 554	14 502	1 320	2 660 267	598 298																						

*Kumana Dam and Nsemann Dam were dry and empty

February 2010 (cells/ml)

SPECIES (F = Filament)	Sunsent		Schiloweni		Plet Grobler		Nyamundwa		Shithave		Kumana		Mpondo		N'watiindlopfu		Mpamama		Nsemeane			
	Shitshi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	Mazithi	
1. CYANOPHYCEAE	14 188 828	13 705 442	5 053	340 880	14 643	440	1 319	0	1 320	1 758	1 471 579	56 229	45 686									
<i>Anabaena</i> sp. (F)	99.70%	99.40%	51.10%	89.10%	8.30%	2.90%	10.70%	0%	9.40%	1.30%	95.71%	72.70%	81.20%									
<i>Anabaenopsis</i> sp.	43 928		220					879		440			21 964									
<i>Merismopodium</i> sp. (col)			220					220		440												
<i>Microcystis aeruginosa</i> (single cells)	14 100 972	13 705 442	4 393	323 308																		
<i>Oscillatoria</i> sp. (F)	43 928		220	10 543	14 643	220																
2. BACILLARIOPHYCEAE	43 958	43 928	440	3 515	117 143	6 372	2 638	7 322	4 835	1 027	0	0	0	0	0	0	0	0	0	0	0	
<i>Cocconeis</i> sp.	0.30%	0.30%	4.40%	0.91%	66.70%	42.00%	21.40%	25.00%	34.40%	0.80%	0.80%	0	0	0	0	0	0	0	0	0	0	
<i>Achnanthes</i> sp.								14 643	220													
<i>Gomphonema</i> sp.								14 643														
<i>Melosira</i> sp. (F)									220													
<i>Cyclotella</i> sp. (10-20 μ m)										440												
<i>Navicula</i> sp. (pennate)										440												
<i>Nitzschia</i> sp. (pennate)	43 958	43 928		3 515	58 571	5 052	1 318	7 322	3 075	440												
<i>Pinularia</i> sp.																						
<i>Pennate diatoms (other)</i>																						
<i>Stauroneis</i> sp.																						
<i>Synedra</i> sp.																						
3. CHLOROPHYCEAE	0	0	3 079	38 663	5 274	3 515	14 644	4 837	124 905	21 964	14 060	7 030										
<i>Ankistrodesmus</i> sp. (needle, 30 μ m)	0%	0%	31.10%	10.09%	25.00%	34.80%	28.60%	50.00%	34.40%	95.50%	95.50%	1.43%	18.10%	12.50%								
<i>Chlamydomonas</i> sp. (15-20 μ m)																						
<i>Chlorella</i> sp. (3-6 μ m)																						
<i>Actinastrium hantzschii</i> (star-col)																						

SPECIES (F = Filament)		Nyamundwa		Shithiave		Kumana		Mpondo		N'watiindlopfu		Mpambama		Nsemeane	
<i>Closterium</i> sp.	220	3 515	220			440				3 515	3 515				
<i>Coelastrium microporum</i> (col)		3 515													
<i>Carteria formicaria</i> (4 flagellums)	220	3 515				440		293							
<i>Crucigenia</i> sp. (4x4 col.)		3 515	14 643	220											
<i>Elatotrichix</i> sp.		3 515													
<i>Microspora</i>								147							
<i>Micratinium</i> sp. (col Round, spikes)						440									
<i>Monoraphidium arcuatum</i> (big sickle)	220														
<i>M. contortum</i> (s-sickle)	440														
<i>Oocystis</i> sp. (single cell)		7 029													
<i>M. circinale</i> (short fat sickle)	220														
<i>Pediastrum</i> sp. (col.)				220				440	147		3 515				
<i>Scenedesmus</i> sp. (col.)	220	3 515	14 643		659	1 318	7 322	440	147						
<i>Staurastrum</i> sp.						440									3 515
<i>Schroederia</i> sp. (needle with foot)															
<i>Tetraedron</i> sp.(4-angular)		3 515		220											
4. CRYPTOPHYCEAE	0	0	659	0	0	1 318	0	0	879	733	0	3 515	3 515		
<i>Cryptomonas</i> sp.			659			879				733					
5. DINOPHYCEAE	0	0	0	0	0	659	0	0	0	440	0	0	0	0	
<i>Peridinium</i> sp.						659				440					
6. EUGLENOPHYCEAE	0	43 928	659	0	0	1 099	4 395	7 322	2 198	1 906	43 928	3 515	0		
<i>Euglena</i> sp.		0.30%	6.70%	0%	0%	7.20%	35.70%	25.00%	15.60%	1.50%	2.86%	4.60%	0%		
<i>Lepocinclis</i> sp. (pear shaped)							440		440		440		147		
<i>Phacus</i> sp.						220						147			
<i>Trachelomonas</i> sp.		43 928	659			879	3 515	7 322	1 758	1 172	43 928	3 515			

SPECIES (F = Filament)		Suneset	Shiloweni	Mazithi	Nyamundwa	Shithihave	Mesete	Kumana	Transport	Mpondo	N'watindopfu	Mpanama	Nsemane	
7. CHRYSOPHYSEAE		0	0	0	0	0	440	0	0	0	0	0	0	
<i>Dinobryon sp.</i>		0%	0%	0%	0%	0%	3.60%	0%	0%	0%	0%	0%	0%	
Total		14 232 786	13 793 298	9 890	383 058	175 715	15 162	12 307	29 288	14 069	130 769	1 537 471	77 319	56 231

July 2010 (cells/ml)

SPECIES (F = Filament)	Sunset	Schiloweni	Plet Grobler	Mazithi	Nyamundwa	Shithiwe	Kumana	Mpondo	N'watindlopfu	Mpansama	Nsemande
1. CYANOPHYCEAE											
<i>Anabaena</i> sp. (F)	21 966	17 573	1 758	15 824	0	147	440	0	0	879	1 758
<i>Anabaenopsis</i> sp.	32.90%	30.77%	18.18%	44.24%	0%	4.36%	4.65%	0%	0%	12.50%	6.69%
<i>Merismopoda</i> sp. (col)	1 758	7 029	879	15 824		147				879	
<i>Microcystis aeruginosa</i> (single cells)	5 272	3 515					440				
<i>Oscillatoria</i> sp. (F)	14 057	7 029									
2. BACILLARIOPHYCEAE											
<i>Cocconeis</i> sp.	6 152	7 909	879	294	2 785	733	660	14 643	1 758	879	0
<i>Cocconeis</i> sp.	9.21%	13.85%	9.09%	0.82%	23.75%	21.73%	6.98%	14.29%	7.15%	12.50%	0%
<i>Cymbella</i> sp.	1 758				147		220				
<i>Melosira</i> sp. (F)		3 515	879		293		220			879	
<i>Cyclotella</i> sp. (10-20 µm)		3 515	879			147					
<i>Navicula</i> sp. (pennate)					440						
<i>Nitzschia</i> sp. (pennate)		879	3 515	147	1 611	440				879	
<i>Pennate diatoms</i> (other)				147	293	220	14 643	879			
<i>Diatoma</i> sp.					147						
3. CHLOROPHYCEAE											
<i>Actinastrum hantzschii</i> (star-col)	21 968	28 118	2 637	2 079	1 320	880	3 078	14 643	3 516	2 637	1 758
<i>Ankistrodesmus</i> sp. (needle, 30 µm)	32.90%	49.23%	27.28%	5.82%	11.26%	26.09%	32.56%	14.29%	14.29%	37.50%	6.69%
<i>Chlamydomonas</i> sp. (15-20 µm)	879			147	147	293					
<i>Chlorella</i> sp. (3-6 µm)		4 393	3 515			147	1 538		879	879	
<i>Chlorococcum</i> sp. (12-18 µm)	879						220				
<i>Closterium</i> sp.	879	3 515	879	1 758			440				
<i>Crucigenia</i> sp. (4x4 col.)	6 150	10 543	879		293		879			220	

SPECIES (F = Filament)		Shiloweni	Plet Grobler	Mazithi	Nyamundwa	Kumana	Transport	Mpondo	N'watinlopfu	Mpanamana	Nsemanane
<i>Micratinium</i> sp. (col. Round, spikes)		3 515			147	220	14 643	879			
<i>Monoraphidium arcuatum</i> (big sickle)				174	147						1 758
<i>Oocystis</i> sp. (col.)		879				733	440		879		1 758
<i>Scenedesmus</i> sp. (col.)		2 636						879			
<i>Staurastrum</i> sp.		879									
<i>Schroederia</i> sp. (needle with foot)		879									
<i>Tetrastrum</i> sp. (spikes)		3 515									
<i>Tetraedron</i> sp. (4-angular)		3 515									
4. CRYPTOPHYCEAE		879	0	1 758	8 493	2 490	0	1 758	14 643	2 636	1 758
<i>Cryptomonas</i> sp.		879	1.31%	0%	18.18%	23.74%	21.24%	0%	18.60%	14.29%	10.71%
5. DINOPHYCEAE		879	0	1 758	8 493	2 490	147	1 758	14 643	2 636	1 758
<i>Ceratium</i> sp.		879	1.31%	0%	18.18%	23.74%	21.24%	4.36%	18.60%	14.29%	39.28%
<i>Peridinium</i> sp.		879		1 758	8 493	2 490		1 758	14 643	8 786	
6. EUGLENOPHYCEAE		14 937	3 515	879	586	2 492	1 466	1 759	43 929	6 151	879
<i>Euglena</i> sp.		2 636	3 515		1.64%	21.26%	43.46%	18.61%	42.84%	25.00%	12.50%
<i>Lepocinclis</i> sp. (pear shaped)		879				147	147				
<i>Phacus</i> sp.		879				1 758	440		879		
<i>Trachelomonas</i> sp.		10 543		879	586	147	879	440	14 643	4 393	879
7. CHRYSOPHYSEAE		0	0	0	0	147	0	0	879	0	0
<i>Mallomonas</i> sp. (Chrysophyta)			0%	0%	0%	1.25%	0%	0%	0%	0%	0%
Total		66 781	57 115	9 669	35 769	11 724	3 373	9 453	102 501	24 605	7 032
										26 262	10 548
											12 302

October 2010 (cells/ml)

SPECIES (F = Filament)	Sunset	Piet Grobler	Mazithi	Nyamundwa	Shithave	Mesel	Transport	Mpondo	N'watinlopfu	Mpamama	Nsama	
1. CYANOPHYCEAE												
<i>Anabaena</i> sp. (F)	7 030	661	7 910	1 977	879	7 032	1 758	0	7 322	0	468 563	
	4.98%	12.17%	23.69%	11.38%	5.00%	28.57%	5.01%	0%	11.11%	0%	98.46%	
<i>Anabaenopsis</i> sp.	1 758	220	3 515	879	879	440	1 758	440	7 322	7 322	468 563	
<i>Merismopodia</i> sp. (col)												
<i>Microcystis aeruginosa</i> (single cells)												
<i>Oscillatoria</i> sp. (F)	5 272	74	1 758	1 318	440	5 272	440	440	5 273	7 322	14 644	
	10 544	1 320	7 029	2 637	2 637	5 713	3 516	50.00%	10.03%	50.00%	11.11%	
	7.46%	24.31%	21.05%	15.19%	15.00%	23.21%					25.00%	
2. BACILLARIOPHYCEAE												
<i>Cocconeis</i> sp.												
<i>Cymbella</i> sp.												
<i>Melosira</i> sp. (F)												
<i>Cyclotella</i> sp. (10-20 μ m)												
<i>Nitzschia</i> sp. (pennate)	8 786	74	6 150	1 977	879	220	879	4 833	4 833	3 515	7 322	
Pennate diatoms (other)	1 758		879	220	879							
	107 786	1 837	13 182	4 835	8 790	8 790	9 055	3 516	43 929	36 609	0	
	76.35%	33.82%	39.47%	27.86%	50.00%	35.71%	25.82%	33.34%	66.67%	62.50%	0 %	
3. CHLOROPHYCEAE												
<i>Actinastrum hantzschii</i> (star-col)												
<i>Ankistrodesmus</i> sp. (needle, 30 μ m)	3 515	74	879	659	440	879	879	879	879	879	879	
<i>Chlamydomonas</i> sp. (15-20 μ m)	57 985	879	2 636	879	879	7 297	879	879	879	879	879	

SPECIES (F = Filament)	Sunset	Plet Grobler	Mazithi	Nyamundwa	Shithave	Meseli	Transport	Mpondo	N'watinidlopfu	Mpandama	Nsemeane
<i>Chlorella</i> sp. (3-6 µm)	22 843	293	1 758	879	1 758	1 318					14 643
<i>Chlorococcum</i> sp. (12-18 µm)	5 272			879	879	440					
<i>Cosmarium</i> sp.				879							
<i>Closterium</i> sp.	1 758		220								
<i>Crucigenia</i> sp. (4x4 col.)	1 758		659		440						7 322
<i>Micratinium</i> sp. (col. Round, spikes)	3 515	74		220	1 758	1 318					
<i>Monoraphidium</i> sp.	1 758	74	4 393								
<i>Pediastrum simplex</i> (col.)			220	879							
<i>Sphaerocystis</i> sp. (col.)		74			879	2 197					7 322
<i>Scenedesmus</i> sp. (col.)	5 866	147	879	1 099	879	440					
<i>Staurastrum</i> sp.	1 758										7 322
<i>Schroederia</i> sp. (needle with foot)											
<i>Tetrastrum</i> sp. (4cells with spikes)			74		879						
<i>Tetraedron</i> sp. (4-angular)	1 758	74	879			1 318	1 758	1 758			
4. CRYPTOPHYCEAE	1 758	1 392	1 758	7 468	0	440	10 192	1 758	0	7 322	0
	1.25%	25.63%	5.26%	43.03%	0%	1.79%	29.07%	16.66%	0%	12.50%	0%
<i>Cryptomonas</i> sp.	1 758	1 392	1 758	7 468		440	10 192	1 758			7 322
5. DINOPHYCEAE	0	147	0	0	3 515	440	0	0	0%	0	0%
	0%	2.71%	0%	0%	20.00%	1.79%	0%	0%	0%	0	0%
<i>Peridinium</i> sp.		147			3 515	440					
6. EUGLENOPHYCEAE	14 059	74	3 515	440	1 758	1 319	10 545	0	7 322	0	7 322
	9.96%	1.36%	10.53%	2.54%	10.00%	5.36%	30.07%	0%	11.11%	0%	1.54%
<i>Euglena</i> sp.	5 272		2 636	220	879						
<i>Lepocinclis</i> sp. (pear shaped)									1 758		
<i>Phacus</i> sp.	1 758			220		440	1 758				
<i>Trachelomonas</i> sp.	7 029	74	879		879	879	7 029				7 322
7. CHRYSOPHYCEAE	0	0	0	0	0	879	0	0	0	0	0

SPECIES (F = Filament)		Sunsent		Mazithi		Nyamundwa		Mesotel		Shithave		Transport		Mpondo		N'watindlopfu		Mpandomana		Nsename		
		0%	0%	0%	0%	0%	0%	3.57%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
<i>Dinobryon</i> sp.								879														
Total		141 177	5 431	33 394	17 357	17 579	24 613	35 066	10 547	65 895	58 575	475 885										

February 2011 (cells/ml)

SPECIES (F = Filament)		Sunsent		Mazithi		Nyamundwa		Mesotel		Shithave		Kumana		Transport		Mpondo		N'watindlopfu		Mpandomana		Nsename	
1. CYANOPHYCEAE	29 875	0	23 723	3 735	440	880	0	3 957	1 758	0	0	0	0	0	0	0	0	0	0	0	0	0	
	11.49%	0%	45.00%	28.32%	5.56%	7.28%	0%	32.14%	33.33%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
<i>Anabaena</i> sp. (F)	1 758		879	659		220			1 758														
<i>Anabaenopsis</i> sp.				879	659		220			440													
<i>Merismopedia</i> sp. (col)	3 515		2 636	2 417						440													
<i>Microcystis aeruginosa</i> (single cells)		1 758																					

SPECIES (F = Filament)		Suneset		Pjet Grobler		Mazithi		Nyamundwa		Shithave		Kumana		Transport		Mpondo		Mpandilopfu		Mpamaana		Nsemaane				
<i>Oscillatoria</i> sp. (F)	1 758	879	18 450					440		879	440			879	1 758											
<i>Raphidiopsis</i> sp. (sicle-spiral)	21 086																									
2. BACILLARIOPHYCEAE	14 061	0	879	220	440	440	9 09%	3.64%	5.56%	879	880	1758	0	3 515	0	100.00%	0%	33.33%	7.15%	33.33%	7.15%	0%	0%	0%	0%	
<i>Cocconeis</i> sp.	1 758																									
<i>Cymbella</i> sp.	3 515																									
<i>Navicula</i> sp. (pennate)	5 272																									
<i>Melosira</i> sp. (F)																										
<i>Cyclotella</i> sp. (10-20 µm)	1 758																									
<i>Nitzschia</i> sp. (pennate)	1 758																									
<i>Pennate diatoms (other)</i>		879																								
3. CHLOROPHYCEAE	80 004	1758	15 818	1980	3 518	7 470	879	4 836	879	4 836	879	16.67%	39.28%	16.67%	33.33%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
<i>Ankistrodesmus</i> sp. (needle, 30 µm)	30 78%	3.39%	30.00%	15.02%	44.45%	61.81%	9.09%																			
<i>Chodatella</i> sp.	879	1 758	220																							
<i>Chlamydomonas</i> sp. (15-20 µm)	3 515			879																						
<i>Chlorella</i> sp. (3-6 µm)	3 515																									
<i>Chlorococcus</i> sp. (12-18 µm)																										
<i>Cosmarium</i> sp.																										
<i>Closterium</i> sp.																										
<i>Crucigeria</i> sp. (4x4 col.)	3 515		3 515	220																						
<i>Golenkinia</i> sp. (round with spikes)																										
<i>Cladophora</i> sp. (F)																										
<i>Monoraphidium</i> sp.	13 230		3 515	220																						
<i>Pediastrum</i> sp. (col.)	1 758																									
<i>Oocystis</i> sp. (col.)																										
<i>Scenedesmus</i> sp. (col.)	47 442	879	3 515	220																						
<i>Planktosphaeria</i> sp. (col.)																										

SPECIES (F = Filament)		Nyamundwa		Mazithi		Shithiave		Kumana		Transport		Mpondo		N'watindlopfu		Mpamama		Nsemame	
Schroederia sp. (needle with foot)																			
Tetrastrum sp. (4cells with spikes)	7 029			220															
Tetraedron sp. (4-angular)				440	440			220											
4. CRYPTOPHYCEAE	35 143	47 442	9 665	5 931	1 318	2 856	5 272	440	0	2 636	0	10 543							
	13.52%	91.52%	18.33%	44.98%	16.66%	23.63%	54.54%	3.57%	0%	25.00%	0%	60.00%							
Cryptomonas sp.	35 143	47 442	9 665	5 931	1 318	2 856	5 272	440											10 543
5. DINOPHYCEAE	0	0	0	659	440	220	0	879	0	0	0	0	0	0	0	0	0	0	
	0%	0%	0%	5.00%	5.56%	1.82%	0%	7.14%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Peridinium sp.				659	440	220													
6. EUGLENOPHYCEAE	100 859	2 637	2 636	660	1 758	220	2 637	1320	879	4 394	0	7 029							
	38.80%	5.09%	5.00%	5.01%	22.21%	1.82%	27.28%	10.72%	16.67%	41.67%	0%	40.00%							
<i>Euglena</i> sp.		879		220	440				879	440									
<i>Lepocinclis</i> sp. (pear shaped)																			879
<i>Phacus</i> sp.		3 515	879																
<i>Trachelomonas</i> sp.	97 344	879	2 636	440	1 318	220	1 758	440	879	3 515									7 029
7. CHRYSOPHYSEAE	0	0	0	0%	0%	0%	0%	0%	0%	0%	0%	0%							
<i>Dinobryon</i> sp.																			
Total	259 942	51 837	52 721	13 185	7 914	12 086	9 667	12 312	5 274	10 546	3 515	17 572							

APPENDIX 2: CORRELATION STATISTICS

	Cells	Cells	AreaD	Temp	pH	DO	CHL	TP	TN	TURB	TDS
Cells	correlation	1	0.0403	0.0098	-0.0248	-0.4091	0.5394	0.4257	0.4879	0.7916	0.1594
	probability		0.7314	0.9337	0.8337	0.0003	<.0001	0.0001	<.0001	<.0001	0.1719
number		75	75	74	74	74	75	75	75	75	75
AreaD	correlation	0.0403	1.0000	0.0684	0.0346	0.0677	0.1422	0.1627	0.1647	0.0652	0.0121
	probability	0.7314		0.5628	0.7699	0.5664	0.2236	0.1631	0.1580	0.5786	0.9181
number		75	76	74	74	74	75	75	75	75	75
Temp	correlation	0.0098	0.0684	1.0000	0.7357	0.3683	-0.0484	0.0625	0.0447	-0.0739	0.2325
	probability	0.9337	0.5628		<.0001	0.0012	0.6820	0.5970	0.7055	0.5314	0.0463
number		74	74	74	74	74	74	74	74	74	74
pH	correlation	-0.0248	0.0346	0.7357	1.0000	0.6353	-0.0114	-0.0324	-0.0418	0.0334	0.3264
	probability	0.8337	0.7699	<.0001		<.0001	0.9234	0.7839	0.7236	0.7773	0.0045
number		74	74	74	74	74	74	74	74	74	74
DO	correlation	-0.4091	0.0677	0.3683	0.6353	1.0000	-0.3302	-0.3652	-0.4189	-0.2768	0.1953
	probability	0.0003	0.5664	0.0012	<.0001		0.0041	0.0014	0.0002	0.0170	0.0955
number		74	74	74	74	74	74	74	74	74	74
CHL	correlation	0.5394	0.1422	-0.0484	-0.0114	-0.3302	1.0000	0.3150	0.5192	0.6477	0.1513
	probability	<.0001	0.2236	0.6820	0.9234	0.0041		0.0059	<.0001	<.0001	0.1950
number		75	75	74	74	74	75	75	75	75	75
TP	correlation	0.4257	0.1627	0.0625	-0.0324	-0.3652	0.3150	1.0000	0.9342	0.5699	0.2486
	probability	0.0001	0.1631	0.5970	0.7839	0.0014	0.0059		<.0001	<.0001	0.0315
number		75	75	74	74	74	75	75	75	75	75

		Cells	AreaD	Temp	pH	DO	CHL	TP	TN	TURB	TDS
TN	correlation	0.4879	0.1647	0.0447	-0.0418	-0.4189	0.5192	0.9342	1.0000	0.6363	0.1858
	probability	<.0001	0.1580	0.7055	0.7236	0.0002	<.0001	<.0001	<.0001	<.0001	0.1105
	number	75	75	74	74	74	75	75	75	75	75
TURB	correlation	0.7916	0.0652	-0.0739	0.0334	-0.2768	0.6477	0.5699	0.6363	1.0000	0.4438
	probability	<.0001	0.5786	0.5314	0.7773	0.0170	<.0001	<.0001	<.0001	<.0001	<.0001
	number	75	75	74	74	74	75	75	75	75	75
TDS	correlation	0.1594	0.0121	0.2325	0.3264	0.1953	0.1513	0.2486	0.1858	0.4438	1.0000
	probability	0.1719	0.9181	0.0463	0.0045	0.0955	0.1950	0.0315	0.1105	<.0001	<.0001
	number	75	75	74	74	74	75	75	75	75	75
STRIP	correlation	0.2364	-0.0512	0.2066	0.2159	0.0962	0.1989	0.1854	0.2053	0.2723	0.3728
	probability	0.0456	0.6695	0.0817	0.0686	0.4216	0.0940	0.1189	0.0837	0.0207	0.0013
	number	72	72	72	72	72	72	72	72	72	72
ELISA	correlation	0.05325	0.1570	-0.0494	-0.0094	-0.2875	0.9064	0.2072	0.3427	0.5091	-0.0069
	probability	<.0001	0.1785	0.6757	0.9364	0.0130	<.0001	0.0744	0.0026	<.0001	0.9532
	number	75	75	74	74	74	75	75	75	75	75
MC_RR	correlation	0.2678	0.0341	0.0201	-0.0340	-0.2729	0.3633	0.3736	0.6451	0.3491	-0.0426
	probability	0.0202	0.7716	0.8648	0.7737	0.0187	0.0014	0.0010	<.0001	0.0021	0.7166
	number	75	75	74	74	74	75	75	75	75	75
MC_YR	correlation	0.1973	0.0593	-0.0817	-0.0348	-0.0952	0.3719	0.2792	0.3284	0.5107	0.5508
	probability	0.0897	0.6135	0.4889	0.7687	0.4197	0.0010	0.0153	0.0040	<.0001	<.0001
	number	75	75	74	74	74	75	75	75	75	75
MC_LR	correlation	0.7211	0.0137	-0.0680	-0.0409	-0.1721	0.4004	0.3265	0.4045	0.7491	0.4354
	probability	<.0001	0.9070	0.5649	0.7296	0.1426	0.0004	0.0042	0.0003	<.0001	<.0001

		Cells	AreaD	Temp	pH	DO	CHL	TP	TN	TURB	TDS
	number	75	75	74	74	74	75	75	75	75	75
MC_LA	correlation	0.2291	0.0685	-0.0784	-0.0368	-0.1252	0.4194	0.3225	0.3891	0.5443	0.5399
	probability	0.0480	0.5592	0.5068	0.7559	0.2879	0.0002	0.0048	0.0006	<.0001	<.0001
	number	75	75	74	74	74	75	75	75	75	75
MC LY	correlation	0.8767	-0.0301	-0.0820	-0.0252	-0.1776	0.3508	0.1450	0.2155	0.6948	0.2590
	probability	<.0001	0.7974	0.4873	0.8313	0.1302	0.0020	0.2147	0.0634	<.0001	0.0248
	number	75	75	74	74	74	75	75	75	75	75
MC_LW	correlation	0.8614	-0.0531	0.0107	0.0092	-0.3278	0.1153	0.0747	0.0638	0.5062	0.0607
	probability	<.0001	0.6509	0.9282	0.9378	0.0044	0.3247	0.5243	0.5865	<.0001	0.6048
	number	75	75	74	74	74	75	75	75	75	75
MC_LF	correlation	0.1174	0.0403	-0.0973	-0.0156	-0.0044	0.3077	0.0939	0.1154	0.4203	0.5566
	probability	0.3157	0.7312	0.4094	0.8948	0.9701	0.0072	0.4227	0.3244	0.0002	<.0001
	number	75	75	74	74	74	75	75	75	75	75
TOT_MC	correlation	0.5044	0.0411	-0.0976	-0.0824	-0.1924	0.4474	0.3595	0.4655	0.6878	0.4918
	probability	<.0001	0.7302	0.4146	0.4913	0.1054	<.0001	0.0018	<.0001	<.0001	<.0001
	number	73	73	72	72	72	73	73	73	73	73

		STRIP	ELISA	MC_RR	MC_YR	MC_LR	MC_LA	MC_LY	MC_LW	MC_LF	TOT_MC
MC_RR	correlation	0.1197	0.0797	1.0000	0.2179	0.3526	0.2810	0.2121	0.0029	0.0199	0.4371
	probability	0.3164	0.4966		0.0604	0.0019	0.0146	0.0677	0.9802	0.8653	0.0001
	number	72	75	75	75	75	75	75	75	75	73
MC_YR	correlation	0.1488	0.05909	0.21785	1	0.76644	0.99705	0.42889	-0.01172	0.9706	0.91912
	probability	0.2122	0.6146	0.0604		<.0001	0.0001	0.0001	0.9205	<.0001	<.0001
	number	72	75	75	75	75	75	75	75	75	73
MC_LR	correlation	0.1739	0.1653	0.3526	0.7664	1.0000	0.7772	0.8942	0.6052	0.7031	0.9407
	probability	0.1441	0.1565	0.0019	<.0001		<.0001	<.0001	<.0001	<.0001	<.0001
	number	72	75	75	75	75	75	75	75	75	73
MC_LA	correlation	0.1602	0.0971	0.2810	0.9971	0.7772	1.0000	0.4367	-0.0099	0.9523	0.9328
	probability	0.1789	0.4070	0.0146	<.0001	<.0001		<.0001	0.9326	<.0001	<.0001
	number	72	75	75	75	75	75	75	75	75	73
MC_LY	correlation	0.1677	0.2616	0.2121	0.4289	0.8942	0.4367	1.0000	0.8822	0.4016	0.6980
	probability	0.1591	0.0234	0.0677	0.0001	<.0001	<.0001		<.0001	0.0004	<.0001
	number	72	75	75	75	75	75	75	75	75	73
MC_LW	correlation	0.1216	0.1958	0.0029	-0.0117	0.6052	-0.0099	0.8822	1.0000	-0.0167	0.2999
	probability	0.3089	0.0923	0.9802	0.9205	<.0001	0.9326	<.0001		0.8868	0.0100
	number	72	75	75	75	75	75	75	75	75	73
MC_LF	correlation	0.1187	0.0428	0.0199	0.9706	0.7031	0.9523	0.4016	-0.0167	1.0000	0.8428
	probability	0.3208	0.7156	0.8653	<.0001	<.0001	<.0001	0.0004	0.8868		<.0001
	number	72	75	75	75	75	75	75	75	75	73
TOT_MC	correlation	0.1678	0.1302	0.4371	0.9191	0.9407	0.9328	0.6980	0.2999	0.8428	1.0000
	probability	0.1649	0.2722	0.0001	<.0001	<.0001	<.0001	0.0100	<.0001	0.0100	<.0001
	number	70	73	73	73	73	73	73	73	73	73