
Runoff Management Modelling

T J Coleman and D Stephenson

WRC Report No. 183/8/93

RUNOFF MANAGEMENT MODELLING

by

T.J. COLEMAN AND D. STEPHENSON

Water Systems Research Group

University of the Witwatersrand

Johannesburg, 2000, South Africa

Water Systems Research Group

Report No. 8

1992

Report to the Water Research Commission on the Project

"Effects on Urbanization on Catchment Water Balance"

Head of Department

and Project Leader Professor D. Stephenson

WRC REPORT NO. 183/8/93

ISBN 1 868̂ *5 036 8

ISBN SET NO. 1 868A5 0*»0 6

WATER RESEARCH COMMISSION

EFFECTS OF URBANIZATION ON CATCHMENT WATER BALANCE

LIST OF REPORTS

Report
No. Title

Analysis of effects of urbanization
on runoff

Description of catchments and methodology

Geohydrology of Catchments

A hydrometeorological data management
package
Wits Data Management System WITDMS

By

D. Stephenson

J.J.Lambourne
T. Coleman

W.A.J. Paling
D. Stephenson

J.J. Lambourne

5

6

7

8

10

11

The effect of storm patterns on runoff

Runoff Modelling

Streamflow modelling

Runoff management modelling

Catchment water balance

N. Patrick

A. Holden

P.Kolovopoulos

T. Coleman
D. Stephenson

J.J. Lambourne
F. Sutherland

Urban Runoff Quality & Modelling Methods T. Coleman

Compendium of papers published on the
research

12 Executive Summary D. Stephenson

ABSIRACT

Urban stonnwater drainage designers and planners are having to deal

with the dramatic effect that urbanization has on the hydrological

regime. To cope economically with the increases in runoff volumes and

peaks due to urbanization, more sophisticated approaches are required

for the design and planning of starmwater drainage systems. This has

led to the need for better tools to enable stonnwater drainage system

designers to evaluate such drainage options as dual drainage, use of

flood plains, and detention/retention storage facilities. WITSKM

(Witwatersrand Stonnwater Kinematic Model) was developed specifically

for the analysis of these stonnwater drainage options. The model is

therefore a single event model and does not include an evaporation

component.

WITSKM has been developed using the BASIC canputer programming

language far IEM compatible micro-computers. To reduce the tedious

process of data input and editing, an editor -has been included in the

program. In developing WITSKM the modular approach was adopted so that

the necessary flexibility in modelling urban drainage systems can be

achieved. Modules are included that can model flow over impermeable

and permeable surfaces, aquifers, pipes, trapezoidal channels,

compound channels and detention/retention storage facilities. A system

of module numbers is used to determine the connectivity and the

modules to which overflows should be routed in the simulation of dual

drainage systems. With the inclusion of aquifer modules, the processes

of subsurface flow and interflow can be modelled. The Green-Ampt

infiltration model has been used as the parameters for this model can

be physically measured.

In WITSKM the kinematic routing approach has been adopted far the

routing of flows over permeable and impermeable surfaces as well as

through pipes and channels. Two numerical methods of solving the

kinematic equations were tested. These were an esqplicit backward

difference scheme as used in an earlier version of WITSKM, and the

Muskingum-Cunge routing method. The Muskingum-Cunge method proved to

be more stable and give more consistent answers when varying the

computation time step than the explicit backward difference scheme and

was therefore used in WTTSKM. The employment of this technique

required a revision of the connectivity algorithm. The shortcomings in

the original version in modelling combinations of spillway and outlets

for the detention/retention storage module were also overcome.

The model was calibrated on three catchments viz Newark Street,

Sunninghill Park, and Zululand. The results were compared using

various goodness-of-fit criteria to those obtained by using WTTWAT.

The Zululand catchment was used to test the subsurface and interflow

capabilities of the model by comparing runs using the Hortonian

concept of overland flow with those having subsurface flow and

interflow. The model was further used to compare possible stormwater

drainage options far a hypothetical township layout on the Waterval

catchment to the north of Johannesburg. This catchment has been

monitored by the Water Systems Research Group of the University of the

Witwatersrand and recorded rainfall events were used as input to

WTTSKM. In this way the effectiveness of the different drainage

options in limiting runoff volumes and peaks from the proposed

township could be m i t r e d to the measured runoff.

In this report WITSKM has been shown to compare favourably with the

WITWAT model. However the versatility achieved in WITSKM by using the

modular approach of catchment discretization, allows far the

redirection of flows and overflows to easily simulate the different

stormwater drainage options far an urban area. This together with the

inclusion of the Muskingum-Cunge routing technique, and the interflow

capabilities makes WITSKM a mare versatile model than the WITWAT model

as far as the analysis of stormwater drainage options are concerned.

TABLE OF CONTENTS
Page

1.1 General 1

1.2 Available Simulation Models1 2

1.3 Description of WTTSKM 3

1.4 Scope of Report . 3

2 KINEMATIC THEORY 5

2.1 Introduction 5

2.2 Equations of Flow 5

2.3 Kinematic Equations 8

2.4 Numerical Solution of Kinematic Equations 9

2.4.1 Introduction 9

2.4.2 Stability and Accuracy Criteria for Numerical Schemes 10

2.4.3 Numerical Solutions of the Kinematic Equations 12

3 ROUTING PROCEDURES USED IN WTTSKM 19

3.1 Introduction 19

3.2 Formula for the Calculation of the Celerity 19

3.3 Overland Flow 20

3.4 Trapezoidal Channel Routing 23

3.5 Pipe Routing 26

3.6 Aquifer Routing 29

3.7 storage Routing 31

3.8 (jonpound Channel Routing 34

4 GENERAL DESCRIPTION OF PROGRAM 36

4.1 General Background 36

4.2 Model Description 36

4.3 Connectivity 37

5 INFILTRATION AND INTERFLOW 40

5.1 Introduction 40

5.2 The Green-Ampt Model 41

5.3 Subsurface Flow and Interflow 44

6 CALIBRATION AND VERIFICATION OF VJITSKM 47

6.1 Introduction 47

6.2 Newark Street 48

6.3 Sunninghill Park 49

6.4 Zululand Catchment W1M17 61

7 APPLICATION OF WITSKM TO THE WATERVAL CATCHMENT 69

7.1 Introduction 69

7.2 Description of Proposed Township 69

7.3 Storms used in Analysis 71

7.4 Drainage System Options 73

7.4.1 Introduction 73

7.4.2 Drainage Systems 74

7.5 Results of Simulations 77

8 CONCLUSIONS AND RECOMMENDATIONS 85

REFERENCES 87

APPENDICES

Appendix A Observed Storm Events

Appendix B Goodness of F i t Criteria

Appendix C User Manual

Appendix D Program Listings

LIST OF FIGURES

Figure Page

2.1 Continuity of flow 6

2.2 Momentum balance 7

2.3 Effect of grid spacing on stability and accuracy 11

for an explicit finite difference scheme

2.4 Computational cell on finite difference grid 12

3.1 Change of hydrograph shape with level of discretization 22

3.2 Trapezoidal channel cross section 23

3.3 Trapezoidal channel routing 25

3.4 Pipe cross section 26

3.5 Pipe routing 28

3.6 Definition sketch aquifer routing 29

3.7 Definition sketch of storage facility 32

3.8 Typical compound channel cross section 35

4.1 Program flow chart 38

5.1 Definition sketch for Green-Ampt infiltration model 43

5.2 Definition sketch of interflow process 48

6.1 Discretization of Newark Street 46

6.2 Comparison of observed and simulated hydrographs 51

(Newark Street storm no 15)

6.3 Comparison of observed and simulated hydrographs 52

(Newark Street storm no 23)

6.4 Discretization of Sunninghill Park Catchment 55

6.5 Comparison of observed and simulated hydrographs 58

(Sunninghill Park storm 7-01-87)

6.6 Comparison of observed and simulated hydrographs 59

(Sunninghill Park Storm 9-01-87)

6.7 Discretization of Zululand catchment 62

(WITWAT Green and Stephenson, 1986)

6.8 Discretization of Zululand catchment 62

(revised discretization for subsurface flow)

6.9 Comparison of hydrographs Zululand catchment 66

(Storm 7-02-1977)

6.10 Comparison of hydrographs for Zululand catchment 67

(Storm 9-11-1977)

7.1 Discretization of proposed Waterval town 70

7.2 Output hydrographs for drainage systems 79

(event 1 26-09-1987)

7.3 Output hydrographs for drainage systems 80

(event 2 3-02-1987)

7.4 Output hydrographs for drainage systems 81

(event 3 21-03-1987)

LIST OF TART .re:

Table page

3.1 Peak flows (m3/s) for overland flow plane 21

3.2 Peak flows (m3/s) for trapezoidal channel 24

3.3 Peak flows (m3/s) for pipes 27

6.1 Newark street module data 50

6.2 Goodness-of-fit statistics for Newark Street 53

6.3 Sunninghill Park module data 56

6.4 Goodness-of-fit statistics Sunninghill Park 60

6.5 Discretization Zululand catchment-WTTWAT 63

6.6 Revised discretization of Zululand catchment 64

6.7 Infiltration parameters used for Zululand catchment 65

7.1 Module numbers for the different land uses 71

7.2 Infiltration and roughness parameters 72

7.3 Rainfall and runoff information for recorded stram events 72

7.4 Results of siirtulations 78

7.5 Maximum flow depths (m) on roads and flood plains 83

- 1 -

CHAPTER 1 INIRODUCTICW

1.1 General

Hydrologists, stormwater drainage system designers, and water resource

planners in South Africa are having to deal with higher levels of

urbanization as well as greater population densities than previously.

The impact of the urbanizing process on the hydrological regime is

dramatic and in order to cope with these changes more sophisticated

computational techniques have to be used to determine viable

stormwater management policies and for the design of drainage systems.

The policy of constructing a stormwater reticulation network to remove

the higher recurrence interval runoff events from a catchment as

quickly as possible results in costly systems. To implement this

approach very often the natural drainage channels have to be enlarged

and lined to cope with the increased runoff due to urbanization. This

type of functional engineering structure is finding less favour with a

more environmentally conscious public. The drainage engineer therefore

not only has to look for more aesthetically attractive and

environmentally acceptable solutions but more cost effective solutions

as well.

The requirement of more sophisticated stormwater management and design

approaches has led to the need for better tools to enable the optimum

planning and design of stormwater systems to be undertaken in new

developments or for the upgrade of existing stormwater drainage

systems. The techniques being adopted are those of computer simulation

models, which are capable of accounting for most of the physical

processes involved in the rainfall-runoff process. This results in a

greater level of sophistication and refinement in describing the urban

runoff process and has found acceptance amongst the majority of

designers and planners.

- 2 -

1.2 Available Simulation Models

There are a number of computer based hydrological simulation models

available for use and some of the models applicable to urban drainage

applications are briefly discussed here.

SWMM (Storm Water Management Model (Huber et al,1982)) is

probably one of the best known stormwater hydrological simulation

models. Ihe model's structure consists of a number of blocks for

carrying out different tasks. SWMM has the capability of

modelling runoff quantity and quality as well as simulating

treatment facilities and receiving water quality. Ihe kinematic

flow routing procedure is used for most applications. However

where backwater effects are important the full dynamic equations

can be used. One of the shortcomings of this model was that it

needed to run on a main frame computer and requires extensive

input data. A micro-computer version of SWMM has however been

developed (James and Robinson, 1985).

ILLUDAS (Illinois Urban Drainage Area Simulator (Terstriep and

Stall, 1974)) has been tested and adapted for South African

conditions by Watson (1981). Both ILDUDAS and HIZBAS-SA,

developed by Watson, use the time-area or isochronal approach for

the routing of flows and have been found useful in the design of

pipe networks.

KINE 2 (Constantinides, 1982) employs the 2 dimensional kinematic

equations for flow routing and has been found to yield extremely

reliable results for the catchments studied. Ihis model can be

used for the prediction of runoff hydrographs as well as for

assessing the effects of man-made changes on runoff. This model

has been developed for use on a mainframe computer and is data

intensive. It was not developed for modelling urban areas, and is

primarily for surface runoff off 2-dimensional sloping

catchments.

- 3 -

WITWAT (Green and Stephenson, 1984) employs the kinematic method

of flow routing with the option of using time-shift routing in

conduits. A simplified routine was included in the model for the

evaluation of detention storage facilities. The advantage of this

model over SWMM and KENE 2 is that it was written specifically

for a ndox)-computer thus alleviating many of the problems

associated with mainframe data processing. The fact that WITWAT

was developed on a micro-computer has made the computer

simulation of urban drainage systems more readily available to

hydrologists and stormwater drainage design engineers. The model

was improved by Kolovopoulos (1986) to include a dual drainage

capability and to account for compound channels. However the dual

drainage system was inflexible in that surcharge from pipes had

to flow into a channel immediately above the pipe. This does not

allow for surcharges onto overland flow areas or into soakaways.

Both of which are accepted stormwater management policies.

1.3 Description of WTTSKM

WTTSKM (Witwatersrand Stormwater Kinematic Model (Stephenson, 1989))

was developed to overcome the shortcomings of the WITV2AT model in

analysing the effects of stormwater management policies. This model

uses the kinematic method of flow routing including the routing of

flow through conduits. The method of using modules to represent the

components that go to make up a stormwater drainage system was adopted

in WITSKM because of the resultant flexibility and versatility of the

model. Modules are included that can model impermeable and permeable

surfaces, aquifers, pipes, trapezoidal channels, and

detention/retention storage dams.

1.4 Scope of Report

In applying the model to the Sunninghill catchment in Sandton

(Stephenson, 1989) shortcomings were discovered in the model. The

WITSKM model used an explicit backward difference finite difference

scheme for solving the kinematic routing equations which can become

_ 4 -

unstable especially when applied to conduit routing. This results in

an impractically snail computation time step having to be used to

ensure stability which results in longer computation times and the use

of excessive amounts of computer memory to store rainfall input data

and output data. This limited the duration of the storms that could be

simulated as well as the number of modules that could be used to model

a catchment. During its application, shortcomings in the module used

to simulate detention/retention storage were highlighted as the model

did not cater for combinations of spillway and outlets.

The aims of this study are twofold; first to improve the existing

program by including a more robust solution algorithm to the kinematic

routing equations viz the Muskingum-Cunge method (Holden and

Stephenson, 1988). Due to this methodology a new connectivity and

calculation order routine had to be introduced. The

detention/retention storage module was also improved to include flow

through culverts a feature which can be used for flood attenuation.

The primary aim of this study is the application of the model. For

this purpose the recorded data for Newark Street, Zululand catchment

WUM17 as well as the Waterval and Sunninghill Park catchments were

used. The Sunninghill Park and Waterval catchments are monitored by

the Water Systems Research Group of the University of the

Witwatersrand. The Newark Street and Sunninghill Park catchments were

used to compare the results of WITSKM with those obtained using

WITWAT. The Zululand catchment was used to test the interflow and

subsurface flow capabilities of the program. The Waterval catchment is

undeveloped at present. A town was set out on the catchment and using

recorded storm events, the effectiveness of the possible stonnwater

management options for the town could be examined and compared to the

recorded runoff.

- 5 -

CHAPTER 2 KINEMATIC 'THEORY

2.1 Introduction

The kinematic theory was introduced by Lighthill and Whitham (1955)

and later used by Henderson and Wooding (1964) to study the runoff

hydrograph resulting from excess rain. This theory has since been

incorporated in models such as SWMM and WITWAT to model overland flow.

Kinematic theory has advantages over time-area methods in that its

basis is founded in hydraulic theory and the non-linearity of the

surface flow process can be taken into account. The solution of the

kinematic wave equation is much simpler than that of the general flow

equations. This results in simpler numerical schemes which enable fast

computer programs to be developed on micro-computers. WTTSKM employs

the kinematic routing theory not only for overland flow routing but

for the routing of flows through conduits and aquifers.

2.2 Equations of Flow

The St Venant equations describing one dimensional flow in open

channels are used as a basis for the development of the kinematic

routing technique used in WITSKM. The equations are the continuity

equation and the dynamic equation and their derivation is based on the

following assumptions.

(a) The fluid is homogeneous and incompressible.

(b) Flow is one dimensional

(c) Flow must be gradually varied. This implies that there must

be no rapid changes in flow cross sectional area.

(d) Pressure distribution across any section is hydrostatic.

(e) The friction and turbulence can be accounted for using

steady state resistance laws.

- 6 -

(f) Velocity is uniform over the cross section

(g) Bed slope of channel (6) is small so that J^sin B-tan B.

The continuity equation is derived by balancing mass around an element

of fluid. By equating the difference between inflow rate and outflow

rate to the rate of change in storage for the element shown in Fig 2.1

results in the following:

Qdt + qLdxdt - (Q + ~ dx)dt = — dxdt
(2.1)

where Q is the flowrate

is the lateral inflow per unit length along the x-axis.

A is the cross-sectional area.

t is time

Figure 2.1 Continuity of flow (Green et al,1984)

Rearranging equation 2.1 yields

8Q 3A

to + It = qL

(2.2)

- 7 -

The dynamic equation is derived using Newton's second law of motion

which states that the net force acting on an element of fluid flowing

through 'a control volume is equal to the rate of change of momentum

with time. Consider the control volume shown in Fig 2.2.

v,A,Q,Fn

Figure 2.2 Momentum balance (Constantinides, 1982)

The resultant force in the direction of flow is given by:

WASQdx - WASfdx - ~ (WyA)dx = wyA ' (2.3)

where Fn= wyA is a hydrostatic force perpendicular to the

element

Fs= wASfdx is the friction force due to boundary

resistance

w is the unit weight of fluid

is bed slope

and

is friction gradient

is the depth of the centroid of the cross-sectional

area.

- 8 -

The rate of change of momentum with time is given by

d (MV) = ̂ (K V) + L (H V) |
dt a o - a ox a at

where ^ is the mass of the fluid element

v is the velocity of flow

g is acceleration due to gravity

By expanding and re-arranging equation 2.4 the following results:

d ,.. , W , , , 3A . 3v 3A> . 3v 3v>
- (Mav) = - dx (v(v - + A - + -) + A - + Av -) (2.5)

Using the continuity equation 2.2 together with equations 2.3 and 2.5,

the dynamic equation 2.6 can be derived.

s = s - -̂ v— i is hH
t o 3x " g Sx " g 3t " Ag (2*6)

2.3 Kinematic Equations

The kinematic equations are obtained by assuming that the friction

slope Sf is equal to the bed slope SQ i.e the pressure and

inertial terms in the dynamic equation are small compared to the bed

slope. The flow is therefore considered to be steady uniform flow and

there exists a single valued relationship between the flow Q and the

depth of flow y such that Q=Q(y) and y=y(Q). The term&A/&t in the

continuity equation can thus be rewritten in the following form:

_3A dA 3Q (2.7)
3t dQ 3t

The continuity equation can then be written as follows:

30 dA 3Q (2.8)
3x dQ 3t HL

dQ =

dQ
dt

30
3t

8Q
3t

dt +

3Q

3Q
3x

dx
dt

dx

- 9 -

This equation is known as the kinematic wave equation and to gain an

understanding of its behaviour, the variation of Q(x,t) along a line

in the (x,t) plane can be expressed as:

(2.9)

(2.10)

Comparing 2.8 and 2.10 shows that dQ/dt = q^(dQ/dA) along lines in

the (x,t) plane described by

dx _ dQ (2.11)
dt ~ dA

These lines are known as characteristics and the derivative dQ/dA as

the speed of propagation or celerity c of a kinematic wave in the

(x,t) plane. Unlike the St Venant equations, the kinematic wave

equation only has forward characteristics i.e information can only be

carried downstream. This means that by using the kinematic equations

WITSKM cannot model backwater effects.

For the routing of flows through conduits the lateral inflow term q-̂

in the continuity equation is dropped and the equation becomes

12 + ̂ (2
8x dQ at " °

which means that along a characteristic dQ/dt=0. This implies that

there can be no hydraulic dispersion or diffusion i.e there is no

lateral spreading of a hydrograph or any subsidence or attenuation of

the peaks.

2.4 Numerical Solution of Kinematic Equations

2.4.1 Introduction

The kinematic equation is a non-linear partial differential equation

and although for simple cases(such as a constant rainfall on an

- 10 -

overland flow plane of simple geometry), analytical solutions can be

achieved, for modelling purposes numerical schemes have to be

employed. Most numerical methods of solution can be classified into:

(a) Explicit finite difference schemes

(b) Implicit finite difference schemes

(c) Finite element methods

The application of finite element methods results in complex computer

programs which are expensive to run and the accuracy and stability

criteria can become tedious to apply. This approach will not be

considered for use in WTTSKM and will not be considered further.

For the explicit finite difference scheme the flow properties at a

particular time are expressed as a function of the flow properties of

the previous time step which results in an explicit solution of all

the flow properties. In an implicit finite difference scheme however

all the flow properties are solved for simultaneously by means of

solving a matrix. Ihe advantage of an implicit scheme is that

irrespective of the grid spacing in the (x,t) plane the method is

considered to remain stable. However the simultaneous solution of the

flow properties by means of the matrix is time consuming and requires

complex programming. Ihe implicit scheme at large grid spacings loses

accuracy. While an explicit scheme may be unstable if the grid spacing

has not been chosen correctly, the method, if used correctly, is

economic and accurate.

2.4.2 Stability and Accuracy Criteria for Numerical Schemes

In solving a set of non-linear partial differential equations such as

the kinematic equations, the stability and accuracy of the solution

have been found to depend on the choice of values for the length

increment (x) and the time increment (t). Furthermore a critical ratio

- 11 -

AX _ , Ax ,
At ~ ^ At ;
AX
At At ;CR

(2.13)

has been found to exist for determining whether the solution will be

stable or not. Constantinides (1982) produced a diagram (fig 2.3)

showing the effect of the time and length increments on the accuracy

and stability of explicit solutions to the kinematic equations. Fig.

2.3 highlights the following:

The solution is stable as long as^x /At >=

A x/A t should be as close to (A X/A t) cr for accuracy

considerations.

Ax
solution is
unstable

(Ax/At) r

solut ion
stable

For
for

is

Accuracy of solution decreases
"" due to numerical diffusion

fixed (A x / A t) , accuracy increases
smaller Ax and A t

Ax/At

Figure 2.3 Effect of grid spacing on stability and accuracy for an

explicit finite difference scheme (Constantinides, 1982)

- 12 -

The ratio (Ax/At)cr is the speed of propagation of a wave disturbance

and can be represented by dx/dt and therefore for stability the

following criterion, known as the Courant Criterion after Courant et

al (1928), must hold

Ax > dx
At ~ dt

(2.14)

In adopting a numerical solution, the solution domain has to be

discretized. This representation of the partial derivatives by a

finite difference scheme introduces variable amounts of numerical

diffusion with the solution resembling a diffusion wave rather than a

kinematic wave. This is shown in fig. 2.3. As the ratio Ax/At

increases larger amounts of numerical diffusion are introduced into

the solution. As was shown in section 2.2, the kinematic equations do

not allow for any attenuation of a flood wave which is somewhat

unrealistic and therefore a certain amount of numerical diffusion in

the kinematic wave solution would be an advantage. The aim would

however be to control the amount of numerical diffusion in a way that

it matches the diffusion of the physical problem.

2.4.3 Numerical Solutions to the Kinematic Equations

Most numerical finite difference solutions are expressed in terms of

same or all of four discrete adjacent values of the flow Q and wave

celerity c in space and time (Fig 2.4).

A - PAx _

At

-Lt-At.

x-Ax

4

Ax

Figure 2.4. Computational cell on finite difference grid

- 13 -

Preissmann (1961) presented a general expression for the finite

difference formulation of the kinematic equation (equation 2.15) for

the ccimputational cell shown in Fig 2.4. Q^, Q2, Q3, and Q4

are the discharges at the nodes of the computational cell and c is an

average wave celerity for the cell. The 6, § are weighting parameters

used to provide flexibility in the finite difference formulation. *=1

implies an explicit scheme while $=0 results in an implicit scheme.

The value 6=0 results in a backward difference and 6=1 in a forward

difference scheme.

*> (Q
3 " Q 1) + (1

Ax

+ 1 £

C

- 4)

! (Q 2

(Q 4 ~

-v
Q 2)

+ (1 - 8)

At

(Q 4 ~
" qT,

In general 4 controls the stability of the numerical scheme while 6

controls the accuracy or numerical diffusion of the scheme.

For use in WITSKM three schemes are examined viz

1 Explicit Backward Difference Scheme (E.B.D.S)

2 Implicit Muskingum-Cunge Scheme (I.M.C)

3 Explicit Muskingum-Cunge Scheme (E.M.C)

Explicit Backward Difference Scheme

This scheme was used in the original version of WITSKM and stability

problems were experienced in the routing of flow through short, steep,

smooth conduits. The problems were generally experienced in the pipe

routing module of the program. This scheme is considered as a basis

for comparison with the I.M.C and E.M.C schemes to determine if these

schemes are worthwhile for inclusion in WITSKM

Considering equation 2.15 and putting 4=1 and 6=0, the following

equation results:

^"•V'T'vv-'x (2.16)
Ax CAt

- 14 -

Remembering that (Q4-Q3)/(odt) = (A4-A3)/dt, equation 2.16 can

be expressed in the following form.

(°3 - V * < V l V " «L (2.17)
Ax At

The difference (A4-A3) is estimated using b3(y4-y3) where

bj is the top width of the flow whether the flow is in a pipe,

channel, overland or in an aquifer module. Substituting the above into

equation 2.17 the following expression results:

(0. - 0.) At q At
y = y — _£ 1 + u

Ihus the flow conditions at points 1 and 3 and the depth and top width

of the flow at point 3 are used to solve for the depth at point 4.

Q4 can then be calculated from the flow depth y4 using the Manning

equation.

=
(2.19)

In overland flow the width w is large compared to the flow depth y and

the hydraulic radius R can be estimate by the flow depth y. The

Manning equation then reduces to:

Muskingum-Cunge Routing

Cunge (1969) explained why the Muskingum flood wave computation

method, although assuming a linear stage/discharge relationship still

attenuates a flood wave travelling along a stream. Cunge was able to

derive the formula for the Muskingum coefficients from the general

finite difference formulation 2.15 using a value of *=0.5. The

attenuation achieved by the Muskingum method is due to the numerical

diffusion introduced by approximating the partial differential

equation by a finite difference scheme. Cunge estimated this error

- 15 -

using a Taylor expansion of the terms of the continuity equation and

showed that the Muskingum formulation is in fact a second order

approximation of the diffusion equation:

where c is the wave speed

B is a diffusion coefficient

when the weighting coefficient 6 is found from:

where b is top width of the flow

A number of researchers have used this "matched diffusivity" approach

of artificially modelling attenuation by choosing B for each

computational step such that the numerical and physical diffusion are

matched. Ponce and Yevjevich (1978) allowed B to vary in time and

space as the flow varies in modelling flow off an overland flow plane.

Ponce (1986) compared the Musldngum-Cunge approach for routing of

overland flows to the more traditional kinematic routing methods. He

found that for the overland flow system analysed, the method had

better convergence properties than the traditional explicit methods

and the simulations were essentially independent of grid size. Holden

and Stephenson (1988) applied the approach of Cunge with a variable B

for overland flow routing. This approach was compared to finite

difference schemes having fixed values of B and as in the case of

Ponce, the peak was found to be independent of grid spacing. In both

Ponce's and Holden and Stephenson's work the grid spacings used in the

numerical experiments were fine. In the case of Ponce, the overland

flow length was 36.6 m while in Holden and Stephenson's work, the

tests were carried out on a plane 100m long with a grid spacing of

20m. Holden (1989) applied this method of routing to trapezoidal

channels and found that putting $=O improved the numerical stability

of the scheme.

- 16 -

Hydrographs were routed down a trapezoidal channel having different

slopes, roughnesses and lengths. The resultant peaks of the output

hydrographs were compared with those obtained using the full solution

to the St Venant equations. The peaks compared favourably, with the

error ranging from 0,1% to 7,3%.

The Muskingum-Cunge routing scheme is formulated by putting *=0 in

equation 2.15 and solving for Q4 while allowing B to vary according

to equation 2.23 which will allow for the matching of numerical

diffusion to the physical diffusion.

6 - \ (1* ££-E^r>°i »i' (2;23)

o

The following equation 2.24 results:

Q = C.Q. + CLQ + C Q + C Q. (2.24)

where the routing coefficients are given by:

Cl = At + K (1 - B) <2'24a>

At - KB
L2 = At + K (1 - 6) (2.24b)

c
 K (1 ~ B) (2.24c)
3 ~ At + K (1 - 6)

r At'~
C4 = At + K (1 - 6) (2.24d)

In the above equations K = dx/<o and Q^ is the total lateral inflow

equal to qjdx where dx is the overland flow length and < o is the

average celerity for a computational cell. In order to calculate the

coefficients given in equations 2.24a to 2.24d values of K and 6 are

needed. To do this average values of c, b, and Q for the computational

cells are required. Two methods of estimating these parameters are

used. One is using the average of the values of the parameters at the

- 17 -

four points of the computational cell given by the equations below:

<c> = (Cl + c2 + c3 + c4)/4 (2.25)

<Q> = (Qx + Q2 + Q3 + Q4)/4 (2.26)

< b> = (bx + b2 + b3 + t>4)/4 (2.27)

As the conditions at point 4 are not known, an iterative solution is

required to calculate the values of <Q>, , and < o . This approach

will be called the implicit Muskingum-Cunge scheme. Another approach

to estimating < o , , and <Q> is that used by Holden and Stephenson

(1988) where a weighted average is used with the weighting in favour

of point 3 to compensate for the missing values at point 4. This

approach results in an explicit scheme requiring no iteration and will

be called ejqolicit Muskingum-Cunge routing. The equations for the

average values of < o , , and <Q> are given below

<c > = (cx + c2 + 2c3)/4 (2.28)

<Q> = (Qx + Q2 + 2Q3)/4 (229)

< b> = (b1 + b2 + 2b3)/4 (2.30)

The work of the researchers above suggests that the Muskingum-Cunge

routing approach employing the matched diffusivity method should be

considered for inclusion in WITSKM. However the method has only been

tested at a relatively fine level of discretization with overland flow

lengths in the region of 20 m. This level of discretization is too

fine to use in a model such as WITSKM as too many modules would result

for the computer memory. This would mean having to read and write data

to and from disc to save computer memory. To model urban catchments,

lengths of the order of 100-500m for both overland and conduit modules

- 18 -

are required to be used. A series of tests have therefore been

undertaken and are described in Chapter 3 comparing the

Muskingum-Cunge routing method with the explicit backward difference

scheme.

- 19 -

CHAPTER 3 ROOTING PROCEDURES USED IN WTTSKM

3.1 Introduction

In this chapter results of the two formulations of the

Muskingum-Cunge routing procedure (viz the implicit Muskingum-Cunge

(I.M.C) and the explicit Muskingum-Cunge (E.M.C) schemes) are compared

to the explicit backward difference scheme (E.B.D.S) at levels of

discretization that one would expect in modelling an urban catchment.

The comparisons are done for overland flow, trapezoidal channels, and

pipes. In addition the routing procedures adopted in WITSKM for

reservoir and aquifer routing are described.

The criteria that were used in the comparisons of the behaviour of the

schemes are the peak flow and the shape of the output hydrograph. In

the case of trapezoidal channels, the results were compared to the

solution of the full dynamic equation. For pipes the experimental data

of Sevuk as presented by Sternberg (1989) were used to compare the

accuracy of the schemes.

3.2 Formula for the Calculation of the Celerity

The celerity dQ/dA can be expressed as follows:

I - <!> <&> «'•«
The Manning equation is given by:

Q = 5 AR-1
 (3.2)

n

where m=5/3 and n is the Manning roughness coefficient. Using equation

3.1 and differentiating 3.2 with respect to flow depth y gives:

- 20 -

3.3 • Overland Flow

For overland flow the area A = wy and as the flow depths are small as

compared to the width w of the flow, the wetted perimeter can be

approximated by w. The hydraulic radius R is therefore equal to the

flow depth y and the top width of the flow b is equal to w.

Substituting into equation 3.3 the celerity is given by:

,-, o m-1 (3 A\

C = my \J-H)

In the case of the E.B.D.S the top width bj in equation 2.17 is

equal to w and for the M-C routing methods the celerity is given by

3.4 and the top width b required for the calculation of 6 is equal to

w

The schemes were applied to an impermeable plane 250m long and 100m

wide with an excess rainfall of 50 mm/h. The plane was not discretized

into sub-planes i.e dx was taken as 250m and the schemes were run for

two cases:

(a) a smooth plane with slope 0,085 and roughness 0,018

(b) a rough plane with slope 0,008 and roughness 0,25.

The time step dt was varied for each scheme from 1 to 10 mins. The

peak was noted for each run and the results are presented below in

Table 3.1. The change of shape of the output hydrograph was also

examined.

From Table 3.1 for case a the results are essentially the same for the

schemes. The E.B.D.S scheme went unstable for a time interval of 10

mins while the Muskingum-Cunge schemes remained stable. The reason why

the E.B.D.S went unstable for the steeper smoother plane (case a) is

that the Courant condition given by equation 3.4 for the celerity is

higher due to the ratio VSQ/n being greater than for the flatter,

rougher plane. The I.M.C scheme produced a peak that essentially

- 21 -

Table 3.1 Peak flows (m3/s) for Overland Flow Plane

Plane slqpe=0,085 n=0,018

dt(mins)

E.B.D.S
E.M.C
I.M.C

1

0,347
0,346
0,346

2,5

0,347
0,345
0,346

5

0,348
0,343
0,346

7,5

0,350
0,342
0,347

10

unstable
0,340
0,347

Plane slope=0,008 n=0,25

dt(mins)

E.B.D.S
E.M.C
I.M.C

1

0,291
0,291
0,290

2.5

0,292
0,288
0,292

5

0,295
0,282
0,291

7.5

0,298
0,277
0,291

10

0,307
0,271
0,291

remained constant with change in time step, while the E.M.C scheme's

peak dropped with increasing time interval dt. These trends are more

evident for the flat plane with a larger decrease in peak with dt for

the E.M.C scheme. In the case of the I.M.C scheme, the peak was once

again essentially constant. In addition for the I.M.C scheme, the

shape of the hydrograph remained the same regardless of time step as

long as the time interval was small enough to ensure sufficient time

steps to describe the hydrograph and input rainfall. A further point

which was highlighted' by these numerical experiments, is the

sensitivity of the peak and hydrograph shape to the grid spacing dx

used when the ratio VSQ/n is small (i.e case b). This is shown in

Fig 3.1 where the I.M.C scheme is used for the flat plane for a fixed

value of dx/dt of 50 m/min for values of dx ranging from 25m to 250m.

Referring to Fig 3.1 there is little difference between the

hydrographs produced using values of dx of 25 and 50m however the

accuracy of the solution deteriorates for values of dx of 125 and

250m. The same trend was produced by the E.B.D.S when applied to the

flat plane. Thus for overland routing, the advantage that the I.M.C

scheme has in terms of stability over the E.B.D.S and the fact that

the peak remains constant with changing time step for a particular

grid spacing dx, makes it the best choice of the schemes considered.

- 22 -

FLOW
CUMEC

Tim* (mint)

Figure 3.1. Change of hydrograph shape with level of discretisation

- 23 -

3.4 Trapezoidal Channel Routing

Consider the trapezoidal channel cross section shown in Fig 3.2. The

flow width b, area A, and wetted perimeter P of such a channel are

given by:

b = W + y (SSI + SS2) (3*5)

A = Wy + y*_ (SSI + SS2) (3.6)

2

P = W + y ((SSI* + l)/z + (SS22 + 1) Vz) (3.7)

TOP WIDTH • b t

Figure 3.2. Trapezoidal channel cross section

For the E.B.D.S in calculating the flow depth y4, the surface width

fc>3 in equation 2.18 is estimated using y3 in equation 3.5. The

resulting flow depth y4 can be used in equations 3.6 to 3.7 to give

the area and wetted perimeter which is used in the Manning equation to

calculate the flow Q4. The derivatives of equations 3.6 and 3.7 can

be used in equation 3.4 to derive the equation for the celerity for a

trapezoidal channel given in equation 3.8 below.

. _ /So R m - 1
 rm - 2 (m - 1) R ,(SS1

2 + l)/z + (SS22 + l)/z ^3.8)

- 24 -

Equation 3.8 and 3.5 are used to calculate the values of and < o

needed for the calculation of & for the M-C routing techniques.

To compare the schemes two channels are used viz:

1 A 250m long channel with bottom width 1,2m and side slopes

(horiz/vert) of (1,5/1) with a roughness of 0,03 and a slope

of 0,001.

2 A 500m long channel with bottom width 1,2m and side slopes

(horiz/vert) of (1,5/1) with a roughness of 0,15 and a slope

of 0,001.

A hydrograph was input to the channels and routed through using the

schemes described above. The computer program OSYKES

(Kolovopoulos,1989), a complete solution of the St Venant equations,

was used to route the hydrograph down the two channels so the results

could be compared to the full dynamic solution. The results are given

below in Table 3.2.

Table 3.2 : Peak Flows (m3/s) for Trapezoidal Channels

dt(mins)

E.B.D.S
I.M.C
E.M.C
Dynamic

dt(mins)

E.B.D.S
I.M.C
E.M.C
Dynamic

250m LONG CHANNEL

1 2 4 5

21,5 21,6 unstable
21,4 21,4 21,3 21,2
21,4 21,4 21,3 21,2
21,4 21,4 21,4 21,4

500m LONG CHANNEL

1 2 3 5

14,8 15,1 15,3 16,1
15,0 14,9 14,7 14,4
15,0 14,8 14,6 14,3
15,7 15,7 15,7 15,7

- 25 -

22

INPUT

.M.C ROUTING

60
"IME (Minsl

Figure 3.3. Trapezoidal Qiannel Routing

- 26 -

Table 3.2 shows that the E.B.D.S for the shorter steeper channel goes

unstable relatively easily and short time steps are required to ensure

that the Courant criteria for stability is adhered to. On the other

hand the Muskingum-Cunge formulation remained stable although not as

accurate as the E.B.D.S for the channels considered. There is little

to choose between the results produced by the I.M.C and the E.M.C

schemes. A plot of the input and output hydrographs and the hydrograph

produced using the E.M.C scheme for the flat plane are presented in

fig. 3.3. As the E.M.C scheme is a faster algorithm than that of the

I.M.C scheme and because of the stability of the M.C formulation, the

E.M.C scheme will be adopted in WITSKM.

3.5 Pipe Routing

In order to apply the kinematic equations to the routing of flow

through pipes, the area, wetted perimeter, and top width are expressed

in terms of the angle a as shown in Fig 3.4.

Figure 3.4 Pipe cross section

- 27 -

The relationships are given below in equations 3.9 to 3.13.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

a = 2 ARCTAN . (dy - y2)/z

(d/2 - y) '

y = | [1 - cos (§)]

A = — [- - sin (-) cos (-)]

P _ £ d
2

b = 2(dy - y2)

To apply the E.B.D.S, the angle a is calculated using equation 3.9 and

the flow depth y4. The angle a can then be used to calculate the

area A, wetted perimeter P, and the hydraulic radius R for use in the

Manning eqaution to calculate Q4. For M-C routing the celerity c is

required. To do this the relationship dQ/dA = (dQ/da) (da/dA) is used

together with the equations 3.9 to 3.13 in differentiating the Manning

equation with respect to a to give:

n (3.14)

(m - •d^tanUJ
2

To canpare the schemes a 1,83m diameter pipeline 1100m long having a

slope of 0,0007 and a Manning n of 0,01 was used together with the

input and output hydrographs as used by Sevuk in his ejcperiments. The

results are presented in Table 3.3

Table 3.3 : Peak Flows(cumec) for Pipes

dt(mins)

E.B.D.S
I.M.C
E.M.C
Sevuk

1100m ICNG PIPE

1 2 3 4

1,48 1,49 1,51 1,54
1,50 1,50 1,50 1,50
1,50 1,50 1,50 1,50
1,55 1,55 1,55 1,55

- 28 -

1.7

INFLOW —
HYDROGRAPH

SEVUK OUTFLOW

MODEL OUTFLOW

TIME IMJ.ns) 60

Figure 3.5. Pipe Routing

- 29 -

The pipe tested by Sevuk had a relatively small slope and was long so

stability problems were not experienced when using the E.B.D.S.

However when the pipe length was subdivided into sub lengths problems

were experienced with stability at the larger time intervals. The

peaks produced by the schemes are of similar magnitude with the I.M.C

and the E.M.C giving the same results. In fig 3.5 plots of the input

hydrograph and the output hydrographs for the different schemes are

shown plotted. The E.M.C scheme will be used in WITSKM.

3.6 Aquifer Routing

Consider fig 3.6 showing flow through a block of soil of length L,

width w, and of depth d having a water table of depth y. The soil is

considered to be homogeneous and isotropic with a saturated hydraulic

conductivity Kg^, saturated moisture content (porosity) tsat, and

an initial moisture content t^.

UOUT

Figure 3.6. Definition sketch aquifer routing

- 30 -

The moisture contents are expressed as a volume ratio, q] ^ and

cjlout are lateral inflows due to seepage into and out of the water

table respectively. This could be representative of a perched aquifer

situation. The continuity equation for the routing of the flow in the

saturated zone is given by:

80 /t ^ - t., 3A qLIN - qLOUT (3 iw
T̂ - + (sat 1) — = H H [J.J.O)
oX o t

This can be expressed in the same finite difference form as given in

equation 2.15. The E.B.D.S as used in the original WITSKM was carried

over to the new version. The cross sectional area of the flow is given

by w.y and the top width b of the flow is w. Substituting into 2.18,

the flow depth y4 is given by:

y = y. - (Q, - Q,)At (qLIN - qLOUT)r4
Ax W(t . - t.) W(t . - t.)

sat I . sat l
(3.16)

The Darcy equation which describes saturated flow through homogeneous

porous media is given by:

v = -k dh (3.17)
dx

where v is the velocity of flow, h is the hydraulic head, and dh is

the change in head in the direction of flow dx. The slope dh/dx is

taken as the slope of the soil surface S Q and the flow rate Q is

therefore given by:

Q = wyKsatSo (3-18)

The depth y4 calculated using 3.16 is used in equation 3.18 to give

the flow rate Q.

- 31 -

3.7 Storage Routing

The approach adopted for the routing of flows through a reservoir is

similar to that proposed by Puls (Wilson, 1974). Equation 2.1 can be

re-^written by putting (dA/£t)dx = ^S/^t where S is the volume or

storage in the element which gives:

3x dx 3t
= q

Ignoring seepage from or rain onto the reservoir i.e q^rO, the

finite difference form of equation 3.19 is

- Q±) + (1 - •) (Q4 - Q2)

Ex
+ e(s4 - s1) + (i - B)(s4 - s3) = o

Ax At

Putting #=.5 and 6=0 the method of Puls for level pool reservoir

routing can be arrived at. In WTTSKM a simpler method is adopted where

$=0 and B=0 is used in equation 3.20 and the following equation is

obtained

Q2At + S3 = . S4 + Q4At (3.21)

The values of the terms on the right hand side of equation 3.21 are

known and the methodology of the storage-indication method of Puls can

be applied. The relationship between the storage and the discharge

from the dam can be used to solve for S4 and Q4 such that equation

3.21 is satisfied.

The relationship between the storage S and the discharge Q in equation

3.21 is the water depth y at the reservoir. Storage can be expressed

as a function of the depth using the following expression:

S = ayb (3.22)

For the discharge the type of outlet configuration used in the design

of the reservoir will determine the relationship between the discharge

- 32 -

Q and the depth y. Consider the storage reservoir shown in fig. 3.7

which has a bottom outlet and a spillway.

Figure 3.7 Definition sketch of storage facility

The reservoir can be divided into 4 zones viz:

1 y < outlet level

For this zone £=0. The inflow to the reservoir will go into

storage until the outlet level is reached.

2 outlet level < y < 1.5d + outlet level

The flow through an outlet can be considered to be open

channel if the outlet is flowing partly full. The

characteristics of the flow are complicated because the flow

is controlled by many variables such as inlet geometry,

slope, size, roughness, approach, and tailwater conditions.

The outlet will only be submerged if the depth of the

headwater is above a critical value as long as the

- 33 -

downstream end of the outlet is not submerged. The critical

value varies between 1.2d and 1.5d where d is the depth or

diameter of the outlet. Chow (1959) suggests the upper limit

of 1.5d as computations have shown that where submergence is

uncertain greater accuracy is obtained by assuming the

entrance not to be submerged. In WTTSKM therefore the range

of depths for unsubmerged flow through the outlet is taken

as the outlet level to 1.5d above the outlet level. For

unsubmerged flow, the flow Q through the outlet will be that

of a weir and can be described by an equation of the form:

exp
Q = C (y - outlet level) (3.23)

outlet level + 1.5d < y < spillway level

In this zone the outlet will be submerged and the flow can

be considered to be orifice flow. This can also be decribed

by an equation of the form 3.24

Q = C2(y - outlet level - |) * (3.24)

y > spillway level

The discharge in this zone is over the spillway and through

the outlet. The equation describing the discharge is a

combination of the orifice equation given by 3.24 and an

equation describing the flow over a spillway which is given

by:

0 = C2(y - outlet level - |)

exp (3.25)
+ C3(y - spill level)

In equation 3.22 the terms S4 and Q4 can be written in terms of

reservoir depth y using equations 3.23 to 3.25 depending on the zone.

The Newton-Raphson technique is then used to solve for the depth y

from which the discharge and storage can be calculated.

- 34 -

3.8 Compound Channel Routing'

The separate channel method has been adopted for the routing of flows

down compound channels. In applying this method, the compound channel

is divided into segments based on channel geometry and roughnesses.

The assumptions made in applying this method are :

1. that the water surface is horizontal.

2. that the friction slope Sf can be estimated by the bed

slope SQ and can be considered to be constant for each

channel segment.

3. that the channel has a typical cross section that is a

single main channel and flanking flood plain/s (Figure 3.8).

4. that the flow in the compound channel is one dimensional.

The Muskingum-Cunge method was applied to the routing of hydrographs

down compound channels. There is no simple relationship, as in

trapezoidal channels, relating flow depth y to the flow area A, the

wetted perimeter P, and the top width of the flow b. The difficulty

therefore in applying this routing technique is to calculate values of

the celerity c and the top width b for different flew rates for use in

calculating the parameter 6 given by equation 2.23. To overcome this

problem a table of flow Q, A, and b is computed for different flow

depths in the compound channel. For any channel flow, the table is

used to calculate the celerity by estimating the slope using the Q

versus A data in the table. Similarly an estimate of b can be obtained

by interpolation from the table for any particular flow value. To set

up the table, ten flow depths were found to give an adequate

representation of the variation of Q, A, and b with depth for most

channel segments. For each of the depths, the flow, area, and top

width were determined for each of the individual channel segments.

These were then summated to give the total flow, cross-sectional area,

and top width for the compound channel for inclusion in the table.

- 35 -

(9; 2)

Figure 3.8 Typical ccopound channel cross-section

The hydrographs and channel used in the comparison of the routing

procedures for trapezoidal channels have been used to compare the

compound channel routing procedure to the solution obtained using the

solution to the full dynamic equation. The results of the runs proved

to be the same as those achieved by the trapezoidal routing algorithm

as presented in table 3.2 and figure 3.3.

- 36 -

CHAPTER 4 GENERAL DESCRIPTION OF THE PROGRAM

4.1 General Background

The nodular approach was adopted in WTTSKM because of the flexibility

that can be achieved in modelling a catchment and for the analysis of

stonnwater management strategies the different hydrological units can

easily be linked together to model the required stonnwater policy. The

modules that are available are overland flow planes (permeable or

impermeable), aquifers, pipes, trapezoidal channels, and storage

basins. The routing methods used in WTTSKM for the different modules

are described in Chapter 3. With the inclusion of aquifer modules in

WITSKM the process of interflow and subsurface flow, which can be the

dominant runoff process, particularly in a rural type catchment, can

be modelled. This increases the area of application of the program not

only to urban catchments but to rural catchments as well. The routing

of subsurface flow also allows for the modelling of the recession

limbs of hydrographs. However, even though groundwater can be

modelled, WITSKM remains essentially a single event model as there is

no evaporation component and the aquifer module in its present form

caters only for the routing of subsurface flow once the aquifers are

saturated i.e the changes in moisture content during infiltration and

drainage are not modelled. An attempt has also been made to make the

model as physically based as possible. For this reason the Green and

Ampt infiltration model has been used in the program as this is based

on physically measurable parameters as opposed to the Horton type

approach which is empirical. The infiltration and interflow aspects of

the program are given in more detail in Chapter 5.

4.2 Model Description

The program has been written in the BASIC programming language for use

on IBM compatible itdcxo-ccmputers. A structured approach has been

adopted in developing the program i.e the program being developed in a

number of sub-programs which are linked together. The original version

- 37 -

of WTTSKM used a system of menus to drive the program to make the

arduous task of data input, editing, and output as easy as possible

for the user. This editor was adapted to interface with the revised

computational sub-program. The editor is used for the:

- Entering of new data

- Editing of existing data

- Creating of duplicate data files

- Starting of the running of the computational sub-program

- Output of results to screen or printer

- Saving of data files

To apply the model, the catchment is subdivided into overland flow

modules by considering the land-use type and topography. The overland

flow planes can either be linked by conduits or connected together to

form a cascade of planes. A flowchart detailing the main processes of

the model is given in Fig. 4.1

4.3 Connectivity

Each module used to model a catchment is assigned a module number

chosen by the user. In addition for each module, the module number of

the downstream module and in the case of conduits, the module to which

overflows should be routed must also be provided. In the case of

overland flow planes and aquifers, the module number to which

infiltration water must be routed is also required. In many cases

information on the depths and permeabilities of the layers making up

the soil profile will not be known and in this case a dummy aquifer of

infinite depth is created by the program so that the information

required for the infiltration routines can be entered. The module

numbers used for the dummy aquifers are from 900 upwards. To make the

program easy to use, a connectivity routine has been written so that

the modules can be entered in any order. The routine sets up a

connectivity matrix and determines the order in which the modules

should be calculated so that the modules are computed from the most

- 38 -

EDITOR - INPUT DATA

- EDIT DATA

- OUTPUT DATA

AND RESULTS

r

INITIALIZE VARIABLES

T
DETERMINE CONNECTIVITY AND

NODULE ORDER OF CALCULATION

'ES

INC

OVERLAND
FLOW t AQUIFER

4
DETERMINE

FLOW INTO MOOULE

DETERMINE MODULE TYPE

CHANNELS 1

4
DETERMINE

FLOW INTO MODULE

f PIPES

4
DETERMINE

FLOW INTO MODULE

STORAGE

r
OETERMINE

FLOW INTO MODULE

CALCULATE
INTER FLOW

EVALUATE
OVER FLOW

EVALUATE
OVER FLOW

CALCULATE
Sprrv • "in At

CALCULATE
iNFILTRATlON ROUTE

ROUTE

ROUTE DE7ERMINE
mON IN 8ESERVE

EVALUAiE
ao u t •STORAGE

PUi
S p r , » : STORAGE

Figure 4.1 Program flew chart

- 39 -

upstream module down to the catchment outlet.

The calculation procedure proceeds through all the modules for each

time step. Using the connectivity matrix, the total inflow to a module

from all upstream and surcharging modules is calculated. If the module

is a conduit or an aquifer, the inflow is checked against the flow

capacity of the module. If the capacity is exceeded, the excess flow

value is stored in a matrix for later addition to the inflow to the

module on to which the module overflows.

- 40 -

CHAPTER 5 INFILTRATICN AND INTERFL£W

5.1 Introduction

In the 1930's Horton put forward his classical model on so called

hillslqpe hydrology. Horton hypothesised that the soil surface acts as

a sieve which has the ability to separate rainfall into two basic

components. The one component, for rainfall intensities exceeding the

infiltration capacity of the soil, goes via overland flow to the

stream channels, while the other goes through groundwater flow to the

stream channels or is returned to the air by evaporation. Horton

recognized, that with prolonged rain, the infiltration capacity of a

soil would decrease asymptotically with time and the following

equation using a negative exponential decay function was proposed.

f = fc • (f o - f c) e -
k t (5.1)

where f Rate of instantaneous infiltration (mm/h)

fc The limiting, steady minimum infiltration rate (mm/h)

f0 The initial maximum infiltration rate at the start of

. the storm

k decay constant or shape factor for a given soil

t Time from beginning of storm

Simply stated, Horton's infiltration theory of runoff predicts that a

basin having a uniform initial infiltration capacity will, if the

rainfall intensity is greater than the lower limiting infiltration

capacity, produce overland flow more or less simultaneously over all

the basin after an initial abstraction for depression storage. The

surface runoff or overland flow was considered to be' the sole

contributor to the storm-runoff hydrograph peak.

Kirkby (1978) reports on observations by Tischendorf (1969), Rawitz et

al (1970) that Hortonian overland flow was not observed on a catchment

having a good vegetative cover. Similar observations have been made by

- 41 -

Mulder (1984) on the experimental catchments in Zululand in Natal. In

these catchments the processes of interflow, and subsurface flow play

an important role. Thus to model this type of catchment correctly and

to be able to model soakaways as a stonnwater management strategy,

aquifer modules were included in WTTSKM. These modules can be stacked

under an overland flow module to form a cascade of aquifers to

represent the different soil layers. The method used to model

infiltration is that of Green and Ampt (1911). This model of the

infiltration process is preferred to that of Horton as the parameters

are physically based and can be measured in the laboratory.

5.2 The Green-Ampt Model

The Green-Ampt infiltration model is a simple, physically based,

infiltration equation which can be derived by the direct application

of Darcy's law under the following assumptions:

1. A distinct piston wetting front exists.

2. The hysteresis effects in the soil properties are

negligible.

3. Suction at the wetting front (n) remains essentially

constant regardless of of time and depth.

4. Below the wetting front the soil moisture content remains

unchanged from its original value m^.

5. The soil is uniformly wet above the wetting front and of

constant hydraulic conductivity

Darcy's law can be expressed as

V = - K ^ (5.2)

where v is the velocity of flow in the z direction

h is the piezcmetric head

z is the1 vertical dimension

- 42 -

Referring to fig 5.1," the piezometric head h is given by

h - -T-:: (5.3)

Because of the assumption of the piston wetting front equation 5.2

using 5.3 can be written as

v = k z - <•
sat — T ~ (5.4)

Fran continuity, assuming the fluid to be incompressible, the

infiltration rate f must equal the average velocity of the wetting

front. From fig 5.1, the volume of water entering the soil, F , is

given by:

F = (nsat " V " (5.5)

in which n ^ ^ is the saturated moisture content of the soil taken to

be - equal to the porosity, and m^ is the initial moisture content of

the soil. Substituting 5.5 into equation 5.4 and realizing that

f=dF/dt, the following equation results:

d^ Y (i-»-(m — m) Q)
— = "sat sat i (5.6)

Ihis is essentially the Green-Ampt equation which can be integrated to

yield where » = n(msa£-mj_)

F - - ln(l + -) = X t (5.7)
• sat v '

Li and Rogers (1976) found an explicit formulation for the incremental

infiltration volume F, during an incremental time interval t, given

by

AF = - (2 F . — K . A t) + [(2 F - K ^ A t) 2 + 8K . A t (» - F) j / 2

t s a t s a t s a t (5 . 8)

where F t is the volume at time t.

- 43 -

USE CON7EN-

Sc .

Piston Wetting front

Figure 5.1. Definition sketch for Green-Ainpt infiltration model

- 44 -

The average infiltration rate f for the time interval t is then given

by:

f = £1 (5.9)
At

Equations 5.7 and 5.8 are used to determine the the rainfall excess to

be routed off the overland flow plane.

5.3 Subsurface flow and Interflow

The most usual soil profile that causes subsurface flow is that of a

reduction in permeability and porosity with depth which results in a

perched aquifer being formed just below the ground surface. This can

be represented using a cascade of two aquifer modules underlying an

overland flow module. This is shown in fig 5.2. There could be

cascades of modules upstream and downstream of the cascade shown in

fig 5.2 depending on the catchment topography and geology. The module

numbers are used to specify the modules downstream of each module in

the cascade and the modules to which the infiltration water from the

modules must be routed. Because the modules can be entered in any

order, a routine has been included in the program to group the

overland flow modules and their associated aquifers into cascades.

The methodology is based on the following:

1. Subsurface flow does not occur in an aquifer until

saturation occurs i.e the wetting front reaches the bottom

of the aquifer, unless a water table level is specified for

that aquifer.

2. The rainfall intensity exceeds the hydraulic conductivity of

the soil so that the soil can be saturated and a wetting

front formed as assumed in the Green-Ampt formulation.

- 45 -

The approach adopted is to calculate the inflow to each module in a

cascade starting with the lowest module in the cascade. If the inflow

exceeds the capacity of the aquifer module, the excess is added to the

inflow of the module above. The potential infiltration frcm each of

the modules is calculated using the Green-Ampt infiltration model

based on the status of the wetting front in the underlying aquifer

module. The potential infiltration is checked against the available

water for infiltration, to determine the actual infiltration rate or

the lateral flow out of the module. In the case of the overland flow

module the lateral flow into the module is the rainfall intensity and

for aquifers the infiltration rate from the module above. Once the

lateral flows and the upstream inflow into the modules have been

determined, the routing procedures described in chapter 3 are applied.

In the case of an aquifer with no upstream inflow or initial water

table level the routing procedures are only applied once the aquifer

is saturated.

The interflow can occur in two ways:

1. When the inflow to an aquifer module exceeds the capacity of

the aquifer the surplus is added to the module above. In

this way flow can be returned to the surface as overland

flow.

2. If after routing the upstream inflow and lateral flows

through an aquifer module, the outflow from the module

exceeds the capacity of the module the excess is added to

the outflow of the module above.

- 46 -

3,n
OvfMinc

Aouif«r 1

IF CG,n >Q C J D

AQUlPtR '
ADD EXCESS

: TO «Q, n

j Overland ,

OVERLAND FLOW MODULE

AQUIFER I

F l oo ' > l ' t a D
EXCESS ADDED.
"3 3our .•
OVERLAND/

• -ou t

AQUIFER 2

<? -out ^ c o p
EXCESS ADDED
TO Qo u t
AQUIFER :

Figure 5.2 Definition Sketch of Interflow Process

- 47 -

CHAPTER 6 CAIJERAIION AND VERIFICATION OF WTTSKM

6.1 Introduction

For the calibration and verification of WITSKM, three catchments

having different land-uses, ranging in size frcm 0,257 ha to 75 ha

were used. The catchments were Newark Street, Sunninghill Park, and

Zululand WIMI7. For each catchment, recorded storm events having

different durations and intensities were used together with the

recorded runoff for calibration and verification. The events used are

given in Appendix A. In the case of Newark Street and Sunninghill Park

comparisons were made with runs done using WITWAT. The same catchment

discretisation was used and for comparison purposes a number of

goodness-of-fit criteria described in Appendix B were used. The

following rules were adhered to in determining the model parameters

during calibration:

(a) WITSKM is a deterministic model and the parameters used

have physical significance. The parameter values chosen were

therefore kept within a range representative of field

conditions

(b) The value of a parameter should not be varied at will

without reference to its relationship to other model

parameters

(c) The only parameter that was varied from one event to the

other on any watershed was the initial moisture content to

allow for initial soil moisture conditions.

A direct comparison of WITWAT and WITSKM is not possible far

catchments having permeable areas as WITSKM's infiltration routine

(Green-Ampt) differs from that of WITWAT which uses Horton's equation.

WITSKM has the capability of simulating subsurface or interflow and

where applicable this capability is employed and compared to the

results without this component.

- 48 -

6.2 Newark Street

Newark Street is an urban area consisting of a section of street

(Newark Street) shown in Fig 6.1. This area was gauged as part of the

Storm Drainage Research Project at John Hopkins University. The entire

area is 0.257 ha and is considered to be 100% impervious. The

catchment was discretized into four subcatchments being sections of

the street. The pipes were modelled exactly as they exist and the

gutters or kerbs were modelled as channels. The discretization,

parameters and topographical data used for the simulation are given in

Table 6.1. The parameters were those used in Green and Stephenson

(1986).

102

101

Figure 6.1. Discretization of Newark Street

- 49 -

Two storms were routed through the catchment. Storm number 15 was a

short 8 min storm while storm number 23 was a more varied 34 minute

long storm. The time step vised for the simulation was 1 minute, the

same time interval as used by Green and Stephenson (1986) for WTTWAT.

Plots of the observed and simulated hydrographs for storm numbers 15

and 23 are given in Figs 6.2 and 6.3 respectively and the statistics

of goodness-of-fit are given below in Table 6.2. As far as the

comparison of the goodness-of-fit statistics are concerned, those such

as the sums of the squared and absolute residuals are dependent on the

number of points used in the calculation. Green and Stephenson (1986)

record the numbers of points used in the calculation of the statistics

and the same number was used in calculating the statistics for WTTSKM.

However the start and finish points on the output hydrograph were not

provided in the report and in the case of WTTSKM, the points were

chosen to cover the main part of the hydrograph. WITSKM compares

favourably with the observed hydrograph and performed as well as

WITW&T for both storms.

6.3 Sunninqhill Park

The Sunninghill catchment is situated to the north of Johannesburg in

the muncipality of Sandton. The catchment area measures 75 ha and the

catchment has been developed with houses, flats, as well as towrihouse

and office complexes. There is a well defined watercourse running

through the central park area of the catchment. This park area is well

covered with grass and scattered trees. The area is served by a tarred

road network and a stormwater reticulation system has been installed.

A drawing of the catchment showing the township layout and the

discretization of the catchment for modelling purposes is given in fig

6.4. The topographical and hydraulic information used for the modules

is given in Table 6.3.

- 50 -

Table 6.1: Newark street module data

Module
number

101
102
103
104

Module
number

3
4
7
8

Module
number

1
2
5
6

D/s mod
number

1
2
5
6

D/s mod
number

4
8
8
0

D/s mod
number

3
4
7
8

Overland Flow Modules

Length
(m)

85,3
85,3
98,6
98,6

Pipe

Ov/flow
mod no

103
104
0
0

Width
(m)

7,0
7,0
7,0
7,0

Modules

Slope
(m/m)

0,030
0,032
0,030
0,030

Slope Roughness
(m/m) (n)

0,03 0,018
0,03 0,018
0,03 0,018
0,03 0,018

Length
(m)

15
94
15
100

Diameter
(m)

0,45
0,45
0,45
0,45

Trapezoidal channel modules

Ov/flow
mod no

101
102
103
104

Slope
(m/m)

0,017
0,017
0,017
0,017

Length
(m)

40,0
40,0
46,0
46,0

Roughness
(n)

0,013
0,013
0,013
0,013

Dimensions Roughness
widthxheight (n)

(m)

0,30x0,15 0,015
0,30x0,15 0,015
0,30x0,15 0,015
0,30x0,15 0,015

- 51 -

CA. .V
*
/

<r O

Figure 6.2. Ccsiparison of observed and simulated
hydrographs(Newark Street storm no 15)

- 52 -

o

o c

co
o o

o

q
d

q
d

Figure 6.3. Cctrparison of observed and simulated

hydrographs(Newark Street storm no 23)

- 53 -

Table 6.2: Goodness-of-fit Statistics for Newark Street

Storm number 15

Parameter

Peak flowrate (m3/s)
Ratio of peaks (sim/obs)
% error in simulated peak

Mean Flowrate (m3/s)
Ratio of means
% error in simulated mean

Volume of Flow (m3)
Ratio of volumes
% error in simulated volume

fiirni nf sqnarpri re^iduals (TTI 3/R) 2

Sum of absolute residuals (rr/s)
Coefficient of efficiency
Proportional error of estimate
Sum of absolute areas of divergence

Storm number 23

Parameter

Peak flowrate (m3/s)
Ratio of peaks (sim/obs)
% error in simulated peak

Mean Flowrate (m3/s)
Ratio of means
% error in simulated mean

Volume of Flow (m3)
Ratio of volumes
% error in simulated volume

Sum of squared residuals (m3/s)2

Sum of absolute residuals (nr/s)
Coefficient of efficiency
Proportional error of estimate
Sum of absolute areas of divergence

WTTSKM

0,071
1,04
4,4

0,034
0,96
-2,86

22,80
0,96
-3,80

0,0004
0,055
0,93
0,26
2,60

WITSKM

0,071
1,03
2,9

0,036
1,06
5,88

76,18
1,05
5,22

0,0008
0,140
0,92
0,24
7,90

WITWAT

0,073
1,08
7,8

0,035
1,00
0,00

24,00
1,01
1,27

0,001
0,08
0,72
0,40
3,00

WITWAT

0,080
1,16
15,9

0,036
1,06
5,88

76,00
1,05
4,97

0,002
0,20
0,86
0,35
8,00

Observed

0,068

0,035

23,70

Observed

0,069

0,034

72,40

- 54 -

In a previous study on the effect of the level of discretization on

the ability of WITWAT to model the runoff from the Sunninghill Park

catchment, two storm events recorded on 7 and 9 January 1987 were

used. The storm on the 7 January had a duration of 30 minutes, a

maximum intensity of 113 mra/h, and a total depth of rainfall of

26,2mm. The previous significant rainfall event was 14 days before on

the 23 December 1986. The storm of the 9 January 1987 had a duration

of 60 mins, a maximum intensity of 100 mm/h, and a total rainfall

depth of 34,2mm. The last rainfall event was that of the 7 January.

The initial moisture conditions for the catchment could therefore be

expected to be drier for the event of the 7 January.

These storm events together with the discretization and topographical

data used for WITWAT (Fig 6.4 and table 6.3) were input into WITSKM.

The Green-Ampt parameters were used to calibrate the model for the

event of the 7 January 1987 and only the initial moisture content of

the soil was varied in the calibration for the event of 9 January

1987. In choosing the Green-Ampt parameters, the guidelines provided

by Rawls et al (1983) were used. These guidelines provide estimates of

the Green-Ampt parameters based on the soil texture classification

procedure of the Soil Conservation Service of the United States

Department of Agriculture. The parameters provided by Rawls et al

could however only be used for the modules without any inpervious

areas due to urbanization. For the modules effected by urbanization

the saturated hydraulic conductivity was reduced according to the

extent of the impervious cover.

Comparisons of the hydrographs produced using WITSKM and WITWAT with

the observed hydrograph are presented in Figures 6.5 and 6.6. The

statistics of goodness-of-fit are given in Table 6.4. From the plots

and the statistics of goodness-of-fit the two models behave similarly.

For the calibration for the storm of the 9 January, the initial

moisture content was the only parameter varied and the same moisture

content of 0,2 gave the best calibration.

- 55 -

Figure 6.4 Discretization of Sunninghill Park Catchment

- 56 -

Table 6.3: Sunninghill Park module data

Module
number

301
302
303
304
305
306
307
308
309
310
311

Module
number

1
8
9
10
12
13
11

Module
number

2
3
4
5
6
7

D/s rood
number

1
2
10
3
4
4
8
6
5
12
6

D/s mod
number

2
9
4
11
13
7

309

D/s mod
number

3
4
5
6
7
0

Overland Flow Modules

Length
(m)

81,0
152,0
120,0
38,0
105,0
92,0
160,0
74,0
76,0
88,0
81,0

Pipe

Ov/flow
mod no

305
308
308
309
311
0
0

Width
(xn)

592,0
777,0
399,0
391,0
750,0
509,0
420,0
938,0
694,0
472,0
821,0

Modules

Slope
(m/m)

0,030
0,055
0,055
0,052
0,030
0,050
0,052

Slope
(m/m)

0,028
0,048
0,038
0,068
0,061
0,067
0,039
0,069
0,069
0,042
0,056

Length
(m)

170,
130,
70,
190,
350,
10,
100,

Roughness

i

0
0
0
0
0
0
0

(n)

0,156
0,216
0,140
0,020
0,216
0,147
0,121
0,172
0,249
0,163
0,183

Diameter
(m)

0,60
0,90
0,90
0,525
0,675
0,675
0,600

Trapezoidal channel modules

Ov/flow
mod no

305
309
309
311
0
0

Slope
(m/m)

0,067
0,055
0,056
0,030
0,054
0,054

Length
(m)

120,0
235,0
320,0
70,0
70,0
10,0

Dimensions

Roughness

0,
0,
0,
0,
0,
0,
0,

(n)

014
014
014
014
014
014
014

Roughness
widthxheight

(m)

4,80X2,
6,00X2,
6,00X3,
6,00x3
3,00x4
3,00X5

00
50
00
50
,50
,00

(n)

0,014
0,040
0,040
0,040
0,014
0,014

- 57 -

Table 6.3 (Continued)'

Module
number

301
302
303
304
305
306
307
308
309
310
311

Green-Ampt infiltration parameters

Hydraulic
conductivity

(mm/h)

3,5
7,0
3,0
0,0
4,0
3,0
3,0
4,0
7,0
3,0
4,0

Suction
Head
(m)

0,10
0,10
0,10
0,00
0,10
0,10
0,10
0,10
0,10
0,10
0,10

Porosity

0,40
0,40
0,40
0,00
0,40
0,40
0,40
0,40
0,40
0,40
0,40

Initial moisture
content
(vol/vol)

0,20
0,20
0,20
0,00
0,20
0,20
0,20
0,20
0,20
0,20
0,20

- 58 -

— o

•— •/. ' E _

T.

Figure 6.5 Ccstparison of Observed and Simulated Hydrographs
(Sunninghill Park Storm 7-01-87)

- 59 -

c/:

0)

li

O

GO

O
CO

Figure 6.6 Caiparison of Observed and Simulated Hydrographs
(Sunninghill Park Storm 9-01-87)

- 60 -

Table 6.4: Goodness-of-fit Statistics Sunninghill Park

Storm 7 January

Parameter

Peak flowrate (m3/s)
Ratio of peaks (sim/obs)
% error in simulated peak

Mean Flowrate (m3/s)
Ratio of means
% error in simulated mean

Volume of Flow (m3)
Ratio of volumes
% error in simulated volume

Sum of squared residuals (m3/s)
Sum of absolute residuals (m /s)
Coefficient of efficiency
Proportional error of estimate
Sum of absolute areas of divergence

Storm 9 January

Parameter

Peak flowrate (m3/s)
Ratio of peaks (sim/obs)
% error in simulated peak

Mean Flowrate (m3/s)
Ratio of means
% error in simulated mean

1987

WITSKM

4,820
0,98
-2,0

1,706
0,80
-20,0

6381,5
0,81
-19,5

8,420
10,77
0,86
0,53
1545

1987

WITSKM

5,828
1,02
1,9

1,914
0,91
-9,38

Volume of Flow (m3) 9161,28
Ratio of volumes 0,92
% error in simulated volume -7,83

Sum of squared residuals (m3/s)2

Sum of absolute residuals (itr/s)
Coefficient of efficiency
Proportional error of estimate
Sum of absolute areas of divergence

6,463
7,57
0,84
0,51
1991

WITVJAT

5,100
1,04
4,0

1,880
0,88
-12,0

7012,7
0,88
-12,0

8,160
8,56
0,86
0,50
1196

WITOAT

5,900
1,03
3,1

1,916
0,91
-9,28

9150,00
0,92
-7,94

5,892
7,22
0,85
0,45
1799

Observed

4,920

2,134

7927,0

Observed

5,720

2,112

9939,25

- 61 -

6.4 Zululand Catchment W1MT7

This Catchment has an area of 66,9 ha and is situated some 130 km

north of Durban. Information on the catchments was obtained from Hope

and Mulder (1979) and on the soil depths and types as well as

infiltration parameters from Mulder (1984). Mulder (1984), after

studying the rainfall-runoff characteristics of a number of nested

catchments in the Zululand area, concluded that the runoff process in

the area was essentially that of subsurface flow. With the details

provided on the soils of the area, this catchment was used to evaluate

the interflow and subsurface flow procedures of WTTSKM. This catchment

has been modelled by Green and Stephenson (1986) using WITVJAT and

difficulty was ejqperienced in modelling the recession limb of the

hydrographs. Different final infiltration rates fc in the Horton

infiltration equation also had to be used when modelling events having

different initial moisture contents.

In applying WITSKM to the catchment, the overland approach of Horton

and a system employing aquifers was used to model the subsurface flow.

The infiltration parameters varied quite dramatically from one soil

group to another and even within a particular soil group. However

asuumptions were made and values that were considered to be

representative were selected. The area is largely open veld with marsh

areas along the main river courses of the catchment. Two catchment

discretizations shown in figs 6.7 and 6.8 were used to model the

catchment. The layout shown in fig 6.7 was that used by Green and

Stephenson (1986) when using WITWAT to model the catchments. The

discretization shown in fig 6.8 is an adjustment of that shown in fig

6.7 to make allowance for the marsh areas along the rivers. The

infiltration tests on the alluvium in these areas show the final

infiltration rate to be of the order of 650 mm/h and in the rest of

the catchment a value of 20 mm/h was considered to be representative.

For the subsurface flow case, a cascade of a single aquifer and an

overland flow module was used to model the soil profile. The depths of

the aquifer was taken as 2,0m in the marsh areas and 0,5m in the rest

of the catchment. The module data is presented in Tables 6.5 and 6.6

for the two cases.

- 62 -

Contour mt»rv»l - 10a

Figure 6.7. Discretization Zululand catdhroent-WTIVlAT

Figure 6.8. Discretization Zululand catchment-subsurface flow

- 63 -

Table 6.5 : Discretization Zululand Catchment - WITWAT

Module
number

101
102
103
104
105
106
107
108
109
110

Module
number

1
2
3
4
5
6

D/s mod
number

1
1
2
2
3
3
4
4
4
5

D/s mod
number

6
6
5
5
6
0

Overland Flow Modules

Length
(m)

227,0
280,0
550,0
250,0
400,0
410,0
200,0
300,0
150,0
75,0

Width
(HO

387,0
314,0
203,0
352,0
170,0
180,0
185,0
180,0
313,0
186,0

Trapezoidal

Ov/flow
rood no

0
0
0
0
0
0

Slope
(m/m)

0,025
0,040
0,050
0,040
0,041
0,035

Slope
(m/m)

0,132
0,128
0,064
0,100
0,075
0,098
0,200
0,200
0,171
0,100

Roughness
(n)

0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240

channel modules

length
(m)

350,0
300,0
250,0
100,0
75,0
100,0

Dimensions
widthxheight

(m)

2,00x2,00
1,50x2,50
2,00X3,00
2,00x3,50
2,00X4,50
2,00x5,00

Roughness

(n)

0,055
0,055
0,055
0,055
0,055
0,055

- 64 -

Table 6.6 : Revised Discretization of Zululand Catchment

Module
number

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Module
number

1
2
3
4
5
6

D/s mod
number

111
114
115
112
116
113
4
4
4
6
1
2
3
1
2
3

D/s mod
number

6
6
5
5
6
0

Overland Flow Modules

Length
(m)

167,0
210,0
420,0
200,0
300,0
310,0
200,0
300,0
150,0
75,0
60,0
50,0
100,0
70,0
130,0
100,0

Width
(m)

387,0
314,0
203,0
352,0
170,0
180,0
185,0
180,0
313,0
186,0
387,0
352,0
180,0
314,0
203,0
170,0

Trapezoidal

Ov/flow
mod no

0
0
0
0
0
0

Slope
(m/m)

0,025
0,040
0,050
0,040
0,041
0,035

Slope
(m/m)

0,132
0,128
0,064
0,100
0,075
0,098
0,200
0,200
0,171
0,100
0,132
0,100
0,098
0,128
0,064
0,075

Roughness
(n)

0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240
0,240

channel modules

Length
(m)

350,0
300,0
250,0
100,0
75,0
100,0

Dimensions Roughness
widthxheight (n)

(m)

2,00x2,00
1,50x2,50
2,00x3,00
2,00X3,50
2,00x4,50
2,00x5,00

0,055
0,055
0,055
0,055
0,055
0,055

Two storms were used viz a storm on the 7 February 1977 and the 9

November 1977. The storm of the 9 November occurred on a dry catchment

while that of the 7 February 1977 occurred on a saturated catchment.

The duration of the storm of the 7 February 1977 was 9 hours with a

peak intensity of 53,3 mm/h while the storm of the 9 November 1977 had

a duration of 1,5 hours and a peak intensity of 101,9 mm/h.

- 65 -

When employing' the Horton approach of overland flow, WITSKM gave

similar results, for both discretizations, to those achieved by Green

and Stephenson (1986) using WITWAT. The infiltration parameters for

the Green-Ampt model are given in Table 6.7 for the Horton and

subsurface approaches. In the subsurface flow case the only parameters

varied during calibration were the initial moisture content and the

water table depth of the aquifer in the marsh areas along the river

banks.

The hydrographs for the two events are compared graphically in figures

6.9 and 6.10 for both approaches shown in fig. 6.7 and 6.8. For the

Table 6.7 : Infiltration Parameters used for Zululand Catchment

Event

7-02-77
9-11-77

Event

7-02-77
9-11-77

Event

7-02-77
9-11-77

Perm
(mm/h)

2
13

Horton Approach

Suction
(m)

0,01
0,13

Subsurface

module numbers

Perm
(mm/h)

20
20

Suction
(m)

0,08
0,08

module numbers

Perm
(mm/h)

650
650

Suction
(m)

0,05
0,05

Porosity

0,4
0,4

Flow

101 to 109

Porosity

0,40
0,40

110 to 116

Porosity

0,45
0,45

Initial moisture
content

0,395
0,080

Initial Moisture
Content

0,395
0,100

Initial Moisture
Content

0,44
0,38

Depth
W.T(m)

0
0

Depth
W.T(m)

1,90
1,45

event of the 9 November 1977, the hydrograph for the subsurface flow

case modelled the recession limb of the hydrograph better than for

the Horton approach. The results for the event of the 7 February 1977

were however similar for both the subsurface and Horton approaches

Zululand Catchment
Storm 7-02-1977

Flow(cumec)
5 i —

I I M I tor i A p p r O

i>111J:siJr \;u (: f

(Jbser ved

if11<; (rnins)

as

I

(, (l (

0\

f
1I
R

Zululand Catchment
Storm 9-11-1977

Flow (curnec)

2

1.5

0.5

(J

•"••• Hot tun A p p r o a c h

I• " oubsur tact! F- low

f••••• O b r . t u v o d

_T:.;*-:-a.---« ...» •- _JL m~— m — m — — * • — « _ _ » . -

K)0

imo (rnins)

- 68 -

•with the subsurface flow comparing with the observed hydrograph more

closely for the low flows at the beginning and end of the events.

However what is important is that the physical infiltration parameters

for the soil were kept the same for both events for the subsurface

flow case. Better calibrations could possibly be achieved if more

detail on the distribution of the soil depths and infiltration

parameters over the catchment was available. The catchment could then

be more accurately discretized. A more appropriate model to model the

subsurface or variable source area approach would be one that uses a

fine grid or pixel system of discretization so that the large

variation in the soil parameters over a catchment can be taken into

account.

- 69 -

CHAPTER 7 APPLICATION OF WTTSKM TO THE WATERVAL CATCHMENT

7.1 Introduction

To ascertain the effectiveness of the different stonnwater management

options such as dual drainage, use of flood plains, and detention

storage ponds, a hypothetical town was laid out on the Waterval

catchment north of Johannesburg. This catchment and the neighbouring

Sunninghill catchment in Sandton have been monitored by the Water

Systems Research Group of the University of the Wiwatersrand. Both

catchments have a catchment area of 75 ha. The Waterval catchment is

at present undeveloped and three rainfall-runoff events have been

abstracted from the catchment data for use in analysing the management

options for the proposed town. By doing this the runoff generated by

WITSKM for the different options tried can be compared to the measured

runoff for the catchment in its natural state.

7.2 Description of Proposed Township

The proposed township was laid out along the lines of the Sunninghill

development. The town therefore consists of houses, flats, and

townhouse developments with a tarred road network. The infiltration

and roughness parameters for the various land use types that were

obtained when calibrating WITSKM for the Sunninghill catchment can be

used on the Waterval town. The layout of the town and the details of

the discretization, pipe and road networks are shown in Fig 7.1 and in

Table 7.1. The level of the discretization used to model the catchment

is coarse with the exact positions of the erven and access roads into

the various land use areas not being detailed.

In order to accommodate the possible drainage options a park area that

can be used as a flood plain has been included in the township layout.

This area runs down the centre of the town and discharges into the

natural outlet of the catchment. A natural or lined channel can be

included in the park area for the simulation of the dual drainage

- 70 -

an* uii
WUSU
TSMI WUSU
FLITS
ovouie Knu a
cowuit noua ic

Figure 7.1 Discaretization of Proposed Waterval Town

- 71 -

Table 7.1 : Module Numbers for the Different Land Uses

Land-Use

Town Houses

Flats

Houses

Open Areas

Roads

Pipes

Channels

Range of Module Numbers

108-109

112-113

101-107
110-111
114-120

121-130

131-151

1-20

21-25

option. The pipe network can also drain into this area at various

points along its length. No development has been planned at the outlet

of the catchment to make provision for the inclusion of a detention

storage pond and sport fields. The sport fields will act as temporary

storage and soak-a-way for excess water. The infiltration and

roughness parameters used in the model for the various land uses and

conduit modules are summarised in Table 7.2

7.3 Storms in Analysis

For the analysis of the different stormwater management options and

for the comparison of the WITSKM output to the recorded output for the

catchment in its natural state, three storm events were abstracted

from the catchment data. The first event occurred on the 26 September

1987, the second on the 3 February 1987 and the third on the 21 March

1987. Rainfall events 1 and 2 have a triangular shape while event 3

could be considered uniform. All three of the events were recorded at

all 5 of the raingauges that monitor the catchment. Thiessen polygons

were used to produce an average rainfall record for the catchment for

- 72 -

Table 7.2: Infiltration and Roughness Parameters

Land-Use

Houses
T/Houses
Flats
Open Areas
Roads
Pipes
Channel
Lined
Channel
unlined

Roughness
(n)

0,14
0,11
0,10
0,20
0,016
0,014
0,020

0,050

Perm
(mra/h)

3,5
3,0
2,0
7,0
0,0
-
—

—

Suction
(m)

0,1
0,1
0,1
0,1
0,0
-
—

—

Porosity

0,40
0,40
0,40
0,40
0,00
-
—

—

Initial Moist
Content

0,25
0,25
0,25
0,25
0,00
-
—

—

input to WTTSKM. Using the equations describing the I-D-F curves

(Green and Stephenson, 1984) for the inland region, the recurrence

intervals for the rainfall events were estimated and these together

with other pertinent data is presented in Table 7.3. The actual

rainfall and runoff data are presented in Appendix A.

Table 7.3 : Rainfall and Runoff Information for Recorded Storm Events

Event

1
2
3

Event

1
2
3

Peak Intensity
(mm/h)

67
142
21,4

Peak Runoff
(m3/s)

1,80
0,23
0,00

Rainfall

Duration
(mins)

50
60
120

Runoff

Volume Time to Peak Rec Int
(mJ) (mins)

16962
36306
15962

Duration Volume
(mins) (m3)

110
90

3723
615
0,0

25 2
20 30

1/4

Time to Peak
(mins)

15
30

- 73 -

Examining the figures shown in Table 7.3, there is an apparent anomaly

in that the 30 year recurrence interval event (event 2) produced a

lower volume as well as runoff peak when compared to the 2 year

event (event 1). The records in the data base were examined to

determine the antecedent moisture conditions which could explain the

apparent anomaly. For event 1, the total rainfall in the preceding 4

months was 70mm with no rainfall falling in May, June, or July. The

situation was very different for event 2 with some 260 mm falling in

the previous 3 months. The catchment before the event 2 can therefore

be considered to be in a wet condition while the other event occurs

after a dry winter season, thus the antecedent moisture conditions do

not explain this anomaly. There are two further possible explanations

which are:-

1 Measuring error due to faulty instruments for one or both of

the events.

2 Gradings of the soil in the Waterval catchment showed that

in the lower and middle regions of the catchment the clay

content is of the order of 6-10%. This can cause a crust to

form on the soil surface after a dry period. This would

reduce the infiltration characteristics of the soil and

could result in higher runoff volumes and peaks.

Regardless of which of the explanations is correct, the storm events

will be used as recorded for comparison of the effectiveness of the

different drainage options for the proposed town.

7.4 Drainage System Options

7.4.1 Introduction

There are a number of different possible layouts of town that could be

considered for the Waterval catchment both from the town planning and

stormwater drainage point of view. For the purposes being considered

here, very little attention has been given to the town planning

- 74 -

aspects except to fnake provision for the stormwater drainage options

being considered. In order to compare the runoff produced by WTTSKM

with the recorded hydrograph, the stormwater has all been channelled

to the natural outlet of the catchment. Better systems may exist where

the stormwater can be channelled out of the catchment at different

points but these options will not be pursued here. The drainage

systems chosen start with a completely linked system and then proceed

through flood plain and dual drainage systems to the storage options.

7.4.2 Drainage Systems

System 1 : Fully linked drainage system

This option represents the worst in storm drainage design from the

cost and runoff point of view. The pipe drainage network is designed

to take all the flows from the roads and developed areas. The pipes

are then linked directly to a lined channel running down the centre of

the flood plain which discharges at the outlet of the catchment. The

channel has also been designed so as not to surcharge onto the

surrounding flood plains. The linking and roughness of the conduit

network will cause the catchment to respond quickly to rainfall and

the catchment will be susceptible to the shorter duration higher

intensity storms. This type of drainage system will result in large

pipe networks and expensive lined channels. As most of the runoff is

confined to the pipe and channel network, the residents will not be

frequently inconvenienced by flooded roads and park areas. However the

question arises as to what size storm the drainage system should be

designed for.

System 2 : Flood plain system

For this system the pipe and channel networks of system 1 were

maintained, however the pipes were disconnected from the channel

network and allowed to discharge onto the flood plains. In this way

infiltration is encouraged and the runoff is spread over a larger and

- 75 -

rougher surface which results in smaller flow depths and hence greater

retardation and temporary storage of runoff. To model the flood plain

cum channel system, the park area (see.fig 7.1) is subdivided into

overland flow modules and channels. The runoff into a channel is from

the upstream channel and from the overland flow modules immediately

upstream. Referring to the township layout shown in Fig 7.1, the flow

into channel 23 for example is from channel 22 and overland flow

modules 127 and 128.

System 3 : Dual drainage system

A dual drainage system consists of a minor drainage system and a major

drainage system. The minor system consists of the pipe and channel

network, which is designed to cope with the lower recurrence interval

events. The major drainage system, in this case the roads and flood

plain, is designed to cater for the rarer higher recurrence interval

events. In this way the size of the pipe and channel system can be

reduced thereby lowering the costs of the drainage system. The

question arises in designing these systems as to which event the minor

system should be sized to cope with so as not to inconvenience the

users to frequently. Event 1 is estimated to be a 2 year event and was

used to size the minor drainage system. The pipe network was, as in

the case of system 2, disconnected from the channel network. Unlined

rougher channels were used and were sized so as not to surcharge for

this event. For event 2 the pipes were made to surcharge onto the

roads and the channels onto the adjacent overland flow modules.

System 4 : No pipe network system

A further system considered was to remove the pipe reticulation

network entirely and use only the roads to remove the stormwater to

the catchment outlet. The water was kept on the roads until road

sections 148 and 149 from where the water was routed into channel 24.

This -system will be a low cost system but more inconvenient for the

user.

- 76 -

System 5 : Temporary storage system

The drainage system of system 3 was altered so that the water

surcharging from channel 24 could be stored temporarily on an open

area such as a sports field. For this purpose overland flow modules

123 and 124 were given a flat slope of 0,001 with a roughness of 0,2

to act as temporary storage for the surcharged water. Being

constructed at the bottom of the catchment, this option holds little

advantage for the residents of the town. This option will however

reduce the flood peaks that could be expected downstream which would

be beneficial for the downstream communities.

System 6 : Detention storage system

As in system 5 the dual drainage option of system 3 was adapted to

route the flows into a detention storage pond at the bottom of the

catchment. The type of detention facility used had a 0,5m wide and

0,5m high culvert outlet and a spillway. The site at the bottom of the

catchment could support a 7 m high dam wall giving a storage capacity

of 62000 m3. The storage depth relationship was estimated from a 1

in 2000 orthophoto of the catchment. The coefficients for the culvert

outlet were calculated for the unsubmerged condition assuming inlet

control and critical flow at the entrance. The equation governing such

flow conditions is:-

0 = §C v w / f g h» (7.1)

where Q is the flow rate in m3/s

w is the culvert width in m

h is the depth of water at culvert entrance in m

ĉ j is a discharge coefficient

For a coefficient c^ of 0,9 equation 7.1 becomes

Q = 0,77h3/4 (7.2)

- 77 -

For submerged flow "through the culvert, the equation 7.3 describing

flow through an orifice is used.

0 = CsA yign (7.3)
s

where cs coefficient of contraction

A is the area of the orifice opening in m2

h is the depth of the water above the centre line of the

opening in in

The coefficient of discharge cs was taken as 0,6 which results in:-

0 = 0,66hJ' (7.4)

for submerged culverts.

A spillway of width 20m was used at level 7m to handle the high flows.

A spillway coefficient of 2,0 was used and the following equation

results:

0 = 40h^ {7m5)

where h is the height above the spillway in m

7.5 Results of Simulations

A summary of the results of the simulations are presented in Table 7.4

and shown plotted in figs 7.2, 7.3 and 7.4.

- 78 -

Table 7.4 : Results of Simulations

Event 1

System Peak
(m3/s)

Time to peak Volume
(mins) (m3)

1
2 & 3
4
6

obs

3,9
3,3
3,5
0,9
1,80

40
45
40
65
30

5294
4634
5133
4634
3723

Event 2

System Peak
(m3/s)

Time to peak
(mins)

Volume
(m3)

1
2
3
4
5
6

obs

11,9
11,2
10,4
11,0
7,8
1,3
0,23

30
35
40
35
45
70
45

22037
21594
21538
21892
21083
21538
615

Event 3

System Peak
(m3/s)

Time to peak Volume
(mins) (m3)

1
2 & 3
4

obs

0,85
0,72
0,78

85
95
95

1258
469
998

8

i
ft

Flow (cumec)

3

Event 1
26 September 1987

0

- 1 -

" * • -

--E3-

Obser ved

System 1

System 2 & 3

System 4

System 6
i

Vfl

1

; -•- y^- - _ ^ . K '

^. v̂,
f.o 80

1 imo(mins)
1'"H.) 120

(0

w Flow(cumec)
14 i

n1

Event 2
3 February 1987

12

10

8

6

2

0
ifno (ininrO

Syr,tern 3

Synlem 4

•System 5

U-.'O

CO
o

f)

- 81 -

oo
CO a>

JO
o

>
111

eg

o

' L J L

I

CD
O

CD
O b

CsJ

d
o

o

Figure 7.4 : Output Hydrographs for Drainage Systems

- 82 -

The largest peak and runoff volume was produced by drainage system 1,

the all linked system. This is understandable due to the closed nature

of the system. With the low roughness values of the pipes and channels

the catchment will respond to short duration high intensity storms as

is indicated by the comparatively low value of time to peak of 30

irons. The flood plain system did not reduce the flood peak and the

volume substantially for the storm events. As the storm event of the

26-9-87 was used to size the pipe and channel system so as not to

surcharge for this event, the flood plain and dual drainage option

gave the same results. The dual drainage system caused a greater drop

in peak than the flood plain option for event 2 when compared to

system 1. This is due to the surcharge being routed onto the adjacent

rougher flood plains. The greater width causing shallower depths of

flow which together with the greater roughness results in lower runoff

velocities. The volumes of runoff for drainage systems 3 and 2 are

essentially the same. The no pipe system viz system 4 has a higher

peak than system 3 and a shorter time to peak due to the smoothness of

the road surface. The volume of runoff is also higher due to most of

the runoff being confined to the impermeable roads. The remaining two

systems use a means of temporary storage to hold back the flood waters

for later release. System 5 using a flat and rough overland flow plane

to retard the flow and temporarily store the water while the detention

dam used a culvert outlet to choke the flow. For the storm event of

the 3-02-87 the depth in the detention dam was 4,2m for the peak flow

of 1,3 m3/s. These two options were the most effective in reducing

the flood peak.

Two aspects of the simulation results can be discussed. The one is the

ability of the drainage system to limit the runoff peaks from the

proposed town to a level that is acceptable to the downstream

communities and drainage systems, be they the natural or installed

stormwater drainage network. The other aspect is the design of the

system for the convenience of the immediate community which it serves.

- 83 -

Fran the point of "view of the downstream cxammunities, the only

effective method of limiting the flood was the detention storage pond

system viz system 6. System 5 being the next best in reducing the

flood peak. None of the other systems were able to reduce the runoff

peaks significantly while none of the systems reduced the volume of

runoff to the level of the recorded hydrograph for either of the

events.

In considering the second aspect, both the costs of the system and the

ability of the system to remove the runoff with an acceptable level of

inconvenience to the residents of the town must be considered. The

main factor of concern is the depths of flow that will occur on the

roads and on the flood plain. The maximum depths are summarised in

Table 7.5

Table 7.5 : Maximum Flow Depths(m) on Roads and Flood Plains

System

Roads
Flood Plain

System

Roads
Flood Plain

System

Roads
Flood Plain

1

0,014
0,026

1

0,009
0,008

1

0,002
0,002

Event 2

2 3

0,014 0,073
0,095 0,222

Event 1

2 3

0,009 0,009
0,043 0,043

Event 3

2 & 3 4

0,002 0,022
0,024 0,036

4

0,114
0,147

4

0,059
0,079

5

0,073
0,246

5

0,009
0,080

6

0,073
0,026

6

0,009
0,008

Drainage system 1 for both events causes the lowest depths on the

roads and flood plain. However this scheme has the largest pipes with

- 84 -

the diameters ranging from 0,55m to 1,0m and channels (base width x

height) fran-1,0m x 1,0m at the top of the catchment to 2,0m x 1,0m at

the bottom of the catchment based on the event of the 3-2-87. Thus

this scheme although having the lowest depths will be the most costly.

The pipe and channel network of system 3 were sized so as not to

surcharge for the event of the 26-9-87. Thus the depths of flow for

systems 2 and 3 for the event of the 26-9-87 are the same. The pipes

for system 3 ranged in size from 0,35m to 0,65m and the channels (base

widthxheight) from 1,0m x 0,3m to 2,0m x 0,6m. The drainage system is

therefore cheaper for this option although the depth of flow on the

roads due to surcharging pipes is greater at 0,073 m. The cheapest

system will be the no pipe system of system 4 however this causes

depths of 0,114m on road section 148 at the bottom of the catchment.

The large depth on the flood plain of 0,222m for system 3 and 0,114m

for system 4 occur on module 123 onto which pipe 10 discharges and

channel 24 surcharges. The storage of water on a nearby field, as is

done in system 5, is probably the most cost effective system in terms

of the reduction of the runoff peak. The detention dam although

effective in reducing the flood peak will prove to be the most

expensive option and plays no role in improving the drainage system

for the residents of the town.

- 85 -

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations can be made as a result

of this study:-

1. This version of WITSKM is an improvement of the original

version with an improved routing algorithm which solves the

instability problems experienced in the original version.

The detention storage inodule has also been improved with the

inclusion of the ability to model outlets. The program,

during calibration, compared favourably with WITWAT, which

has been used extensively in practice. However WITSKM is

more powerful for planning and comparing stormwater

management options for an urban catchment due to its greater

flexibility in rerouting overflows from conduits and the

inclusion of a storage module. WITSKM however still has

shortcomings in that the design mode of WITWAT has not been

included so the conduit network or minor system cannot be

sized automatically for a particular storm event. This

feature would be very useful in designing dual drainage

systems. The ability to generate a particular recurrence

interval rainfall event having a specified distribution has

also not been included in this version of WITSKM. These

capabilities should be added to produce a more complete

planning and design tool for urban drainage systems.

2. The use of the aquifer module to model subsurface flow

should be tested on more catchments where sufficient data on

the soil profiles and types is available.

3. The future of WITSKM should be in its application to flood

events and flood control for large catchments of the order

of 100-1000 km2. The program should then be improved to

cope with the spatial distribution of rainfall over a

catchment.

- 86 -

4. The Muskingum-Cunge routing algorithm has been found both

during the test runs and the analysis of the drainage

systems for the proposed Waterval town to be stable and

superior to the original routing algorithm in WTTSKM.

However due to the short lengths of conduit and relatively

steep slopes, kinematic routing is unecessary and a time

shift method would have sufficed. Ihis was found to be

particularly true in the case of pipes which are normally

smooth. However if WTTSKM was to be applied to large rural

catchments where the channels are long and relatively rough,

a routing method such as Muskingum-Cunge which models the

attenuation of a flood wave in a channel would be necessary.

5. With the WTIWAT and WITSKM models the simulation of the

rainfall-runoff process for urban catchments in terms of

water quantity has been successfully modelled. More

attention should now be given to the modelling of the

quality of the runoff that can be expected from urban

catchments.

- 87 -

REFERENCES

Abbot, M.B. "C-omputational H y d r a u l i c s , " Pitman Pub l . L t d . London,

1979.

Chow, V.T., "Open channel hydraulics," McGraw-Hill, New York, 1959.

Constantinides, C.A., "Two Dimensional kinematic modelling of the

rainfall-runoff process," Water Systems Research Programme,

University of the Witwatersrand, Report No. 1/1982, February

1982.

Courant, R., Friederichs, K.O., and Lewy, H., "Uber die partiellen

differenzengleichungen der mathematischen physik," math.

Ann. 100, 1928

Cunge, J.A., "On the subject of a flood propagation computation method

(Muskingum method).," Journal of hydraulic research, vol 7,

no 2, 1969.

Cunge, J.A., Holly, F.M., and Verwey, A., "Practical aspects of

computational river hydraulics," Pitman, Bath, Britain, 1980

Green, I.R.A, "WITWAT stormwater drainage program-Version II," Water

Systems Research Programme, University of the Witwatersrand,

Report No. 2/1984, May 1984.

Green, I.R.A, and Stephenson, D.," Urban hydrology and drainage:

WITWAT stormwater drainage program,"Water Systems Research

Programme, University of the Witwatersrand, Report No

2/1984, May 1984.

Green, I.R.A, and Stephenson, D., "Urban hydrology and drainage :

Comparisons of urban drainage models for use in South

Africa," Water Systems Research Programme, University of the

Witwatersrand, Report no. 3/86, May 1986.

Green, W.H., and Ampt, G.A., "Studies on soil physics, 1, The flow of

air and water through soils," Journal of Agr. Sec., 4(1),

1911.

Henderson, F.M, "Open channel flow," Maanillan, New York, 1966. •

Henderson, F.M., and Wooding R.A., "Overland flow and groundwater flow

from a steady rainfall of finite duration," Jnl. of

Geophysical Research, Vol. 69, No. 8, April 1964.

- 88 -

Holden, A.P, Personal ccsnmunication , University of the Witwatersrand

,1989

Holden, A.P, and Stephenson, D., "Improved four-point solution of the

kinematic equations," Journal of Hydraulics Research, Vol

26, No 4, 1988,pp 413-423.

Hope, A.S., and Mulder, C.J., "Hydrological investigations of small

catchments in the Natal coastal belt and the role of

physiography and land-use in the rainfall-runoff process,"

University of Zululand, 1979.

Huber, W.C., Heaney, J.P., Nix, S.J., Dickenson, R.E., and Polman,

D.J., "Storrnwater management model, User's Manual, Version

iii ," Dept. of Environmental Engineering Sciences,

University of Florida, Gainesville, Florida, U.S. A, May

1982.

James, W., and Robinson, M.A., "Time and space resolution for

continuous dynamic storm and runoff model studies,"

Proceedings of the conference on hydraulics and hydrology in

the small computer age, Florida,U.S.A, August 1985.

Kirkby, M.J., "Hillslope hydrology," John Wiley and sons, Britain,

1978.

Kolovopoulos, P., "Modelling the effect of urbanization on storm flow

in the Braamfontein Spruit," Water Systems Research

Programme, University of the Witwatersrand, Report No.

11/1986, June 1986.

Kolovopolous, P., " Free surface water level computation," Doctoral

thesis, Dept. Civil Engineering, University of the

Witwatersrand, 1988.

Li, R.M., and Rogers, J.J., "Short course - rivers 76 program,"

Colorado State University, U.S.A, August 1976.

Lighthill, F.R.S, and Whitham, C.B., "On kinematic Waves, 1. Flood

movement in long rivers," Proc. Royal Society, London, Ser.

A, Vol 229, May 1955.

Manley, R.E., "Calibration of hydrological model using optimization

techniques," ASCE, Jnl. hydraulics division, February 1978.

Mulder, G.J., "Die invloed van infiltrasie op stormwaterafloop in die

opvanggebied van die Ntuzerivier (Zoeloelandse kusstrook),"

Water Research Commission report no. 66/4/84, September

1984.

- 89 -

Nash, J.E., and Sutcliffe, J.V., "River flow forecasting through

conceptual models. Part 1-A discussion of principles," Jnl.

of Hydrology, Vol 10, 1970.

Ponce, V.M, "Diffusion wave modelling of catchment dynamics," ASCE,

Journal of hydraulics division, vol 112, no 8, August 1986.

Ponce, V.M, and Yevjevich, V., •Maskingum-Cunge method with variable

parameters," ASCE, Journal of hydraulics division, vol 104,

no 12, Dec 1978

Preissmann, A., "Propagation des intumescences dans les canaux et les

riviers," l'e Congres 1'Association Francaise de Calcule,

Grenoble, France, 1961.

Rawitz, E., Engman, E.T., and Cline, G.D., "Use of mass balance method

for examining the role of soils in controlling watershed

performance," Water resources research, 6(4), 1970.

Rawls, W.J., Brakensiek, D.L., and Saxton, K.E., "Soil water

characteristics," American Society of Agric. Eng., St

Josephs, Michigan, U.S.A, paper 81-2510, 1981.

Rawls, W.J., Brakensiek, D.L., and Miller, N., "Green-Ampt

infiltration parameters from soils data," ASCE, Journal of

hydraulics division, voll09, no. 1, Jan 1983.

Stephenson, D., "Application of a stormwater management program,"

Transactions of South African Institute of Civil Engineers,

June 1989.

Stephenson, D., "Direct optimization of Muskingum routing

coefficients," Jnl. of Hydrology, Vol 41, 1979.

Stephenson, D., and Meadows, M.E., "Kinematic hydrology and

modelling," Elsevier, Amsterdam, 1986.

Sternberg, J.D., "Unsteady flow in drain pipes," M.Sc. thesis, Dept.

of Civil Engineering, University of the Witwatersrand,

February 1989.

Terstriep, M.L., and Stall, J.B., "The Illinois urban drainage area

simulator, HHJDAS,11 Illinois State Water Survey, Urbana,

Bulletin 58, 1974.

Tischendorf, W.G., "Tracing stormflow to varying source area in small

forested watershed in south eastern Piedmont," PhD

dissertation, Univ Georgia, Athens, Georgia, 1969.

Wilson,E.M., "Engineering Hydrology," Macmillan, London, 1974

A-l

APPENDIX A ' OBSERVED STORM EVENTS

A.I Newark Street

A. 1.1 Storm 15

Tims interval between hyetograph ordinates (mm/h) = 1 minute

0 77 107 107 91 107 46

61 15

Time interval between hydrograph ordinates (nr/s) = 1 minute

0 0,006 0,031 0,054 0,068 0,065 0,054

0,042 0,034 0,023 0,017 0,011 0,008 0,006

0,003

A. 1.2 Storm 23

Time interval between hyetograph ordinates (mm/h) = l minute

31

61

46

61

107

31

61

46

77

46

15

91

61

77

31

15

91

15

77

15

31

61

46

137

0

31

61

77

61

15

46

61

46

91

Time interval between hydrograph ordinates (m3/s) = l minute

0

0,02

0,04

0,037

0,059

0,014

0,001

0,028

0,034

0,04

. 0,068

0,013

0,004

0,033

0,028

0,042

0,057

0,012

0,008

0,045

0,028

0,045

0,04

0,01

0,011

0,051

0,023

0,05

0,028

0,008

0,012

0,048

0,021

0,069

0,023

0,014

0,044

0,035

0,068

0,017

A-2

A.2 Sunninqhill Park

A.2.1 Storm 7 January 1987

Time interval between hyetograph ordinates (mm/h) = 5 minutes

0 7,2 112,8 103,2 60,0 24,0 7,2

Time interval between hydrograph ordinates (m3/s) = 5 minutes

0,23 0,23 2,09 3,10 4,92 4,89 3,63

2,52 1,56 1,14 0,76 0,76 0,76 0,76

A.2.2 Storm 9 January 1987

Tims interval between hyetograph ordinates (mm/h) = 5 minutes

0

9,6

4,8

Time interval between hydrograph ordinates (m3/s) = 5 minutes

7

7

2

,2

,2

,4

62

2

4

,4

,4

,8

98

9

,4

,6

100,

4,

8

8

60,0

0

36,0

0

o,
4,

o,

A. 3

34

45

95

0

3

0

,14

,28

,61

Zululand

0,98

2,24

0,61

W1M17

2,

1,

25

74

2,

1,

76

33

5,

1,

72

33

4,

o,
45

95

A.3.1 Storm 7 February 1977

Time interval between hyetograph ordinates (mm/h) = 15 minutes

1,7

2,4

11,4

2,4

0,5

18,8

0,3

3,4

7,6

0,8

0,3

0,3

4,0

13,0

1,3

7,6

0,3

6,2

1,7

1,3

1,9

10,5

1,7

0,7

0,6

0,7

53,3

2,3

4,0

0,2

0,6

32,6

2,9

1,2

A-3

Observed hydrograph

Time (mins) Observed flow (m3/s)

0 0

20 0,18

43 0,19

91 0,34

114 0,34

174 0,25

190 0,38

198 1,81

198 3,5

219 4,3

292 0,78

351 0,5

397 0,62

478 0,28

568 0,21

643 0,15

A.3.2 Storm 9 November 1977

Time interval between hyetograph ordinates (mm/h) = 15 minutes

0 18,8 101,9 54,7 14,3 0,4

A-4

Observed hydrograph

Time (mins) Observed flow (m3/s)

0
15

39

43

46

52

62

83

88

124

167

234

264

A. 4

0
0,005

0,014

0,09

0,25

1,37

1,96

1,31

0,88

0,38

0,19

0,10

0,08

Waterval catchment

A.4.1 Storm 3 February 1987

Time interval between hyetograph ordinates (mm/h) = 5 minutes

1,2

56,0

ime

0

0,22

0,11

26,3

11,0

97,4

3,0

141

0

interval between hydrograph

0

0,22

0,09

0

0,23

0,05

o,
o,

,8

,8

136

0

ordinates

0

21

04

o,
o,
o,

,4

,2

(m3/s)

04

19

03

63,9 43

= 5 minutes

0,11 0,

0,17 0,

,0

17

14

A-5

A.4.2 Storm 21"March 1987

Time interval between hyetograph ordinates (mm/h) = 5 minutes

1,6

7,2

13,5

4,2

2 ,7

10,8

19,5

3,3

7,2

17,3

11,2

4 ,0

17,4

21,4

9,7

17,3

16,5

6,5

10,9

15,8

7 ,0

8,0

17,6

6,9

The rainfall event of 21 March 1987 did not cause runoff

A.4.3 Storm 26 September 1987

Time interval between hyetograph ordinates (mm/h) = 5 minutes

0,3 10,6 23,3 . 49,2 67,3 61,3 41,6

16,2 0 1,6

Time interval between hydrograph ordinates (m3/s) = 5 minutes

0

1,75

0,4

0,02

0

1,63

0,24

0,01

0

1,5

0,14

0,01

0

1,3

0,09

0,14

1,1

0,05

0,94

0,8

0,03

1,8

0 ,5

0,03

B-l

APPENDIX B GOODNESS-OF-FTT CRITERIA

B.I General

There are a variety of goodness-of-f it techniques that can be employed

to examine how output from a hydrological simulation model conforms to

the corresponding observed data. The techniques can range from

subjective visual methods to purely objective techniques where the fit

is measured by a value output by a mathematical function of the

difference between modelled and observed values. The criteria used

depends very much on the purpose for which the model was developed and

the aims of the user. Peak flows maybe all that is of interest to the

design engineer. However a comparison of observed and simulated runoff

volumes or even hydrograph shapes could be important if storage is

contemplated.

A number of goodness-of-fit criteria are discussed in Green and

Stephenson (1986) and the recommended criteria used in their report

have been used in this study.

B.2 Criteria Used

B.2.1 Graphical Plots

Graphs of observed and simulated hydrographs for each of the storm

events for each of the catchments will be presented. These, although

subjective, make for an immediate qualitative assessment of the

goodness-of-fit of a run. Errors in shape, volumes, and peak flow rate

are immediately obvious. A graphical plot also gives an idea of the

capabilities of the program.

B.2.2 Peak Flowrate, Volume, and Mean Flowrate

WTTSKM is essentially a single event model and therefore the peak

runoff rates are one of the most important outputs. A direct

B-2

comparison of peaks will therefore be of value as will the time to

peak. The difference is highlighted by calculating the ratio of the

simulated to observed peak flow rates and the percentage error in the

simulated peak. Similarly the percentage error and the ratio of

simulated to observed are calculated for the volume and mean flow

rates.

B.2.3 Dimensional, Ordinate Dependent Shape Factors

One of the most commonly used factors for assessing the

goodness-of-fit as regards the shape of a hydrograph is the sum of

squares criterion defined by:

n 2
G = 2 [cfe(t) -qs(t)]

where G is the objective function to be minimized

q^t) is the observed flowrate at time t

qs(t) is the simulated flowrate at time t

n is the number of ordinates used in the

comparison.

A further criterion which reduces the effect of large magnitude

outliers and the effect of residuals whose values are less than unity

, was suggested by Stephenson (1979). This criterion is defined by:

3Q " qs /i

Although the volumes of the observed and simulated hydrographs may

'agree closely, the shapes of the hydrographs maybe cosiderably

different. A statistic which highlights this difference is the sum of

the absolute areas of divergence between the two hydrographs, given

by:

n (residual) ̂ + (residual) i,-,
2 / — dt /
i=l 2 i

B-3

where A is the sum "of absolute area of divergence between the two

hydrographs

dt is the time step

Hie above criteria all depend on the dimensions used as well as the

number of ordinates describing the hydrographs. This makes comparison

between storm events of different durations for a particular catchment

difficult as well as comparisons between calibrations on different

catchments. However for the purposes of this investigation the ability

of WTTSKM to calibrate for each event for each catchment is being

investigated and compared to WTIWAT so these statistics will suffice.

B.2.4 Dimensionless Measures of Fit

Nash and Sutcliffe (1970) proposed a dimensionless coefficient of

model efficiency in the form

where E is the efficiency of the model

-2 n 2

F2 = Z [<fc(t) - qs(t)]5'

. 2 v r " , 2
Fo" = 2 [q^t) - q]

where q is the mean of the observed flows

A further statistic proposed by Manley (1978) is the proportional

error of estimate (PEE) which is given by

1 n q^t) - qs(t) 2 1/2
PEE = [- 2 []]

n i=l

C - 1

APPENDIX C USER MANUAL

C.I Introduction

WITSKM has been written in the BASIC programming language for IBM

compatible PC 's using the DOS operating system. The system has been

written for a computer system having a hard drive (c: drive), 640 Kb

EAM, and an EGA card and colour screen. The program can be adapted for

a dual floppy drive system and monochrome Hercules card if required.

The program consists of an editor, computation, calibration, and

connectivity graphics subprograms. The program operation is controlled

from the editor subprogram by calling the other subprograms into

memory using the chain command. After the computation, calibration, or

connectivity graphics subprograms have run, the control is returned to

the appropriate menu in the editor subprogram. The user controls the

operation of the program using a series of five menus. These are the

startup, primary, edit, output, and connectivity menus. Each of the

menus displays a number of options on the screen. The arrow keys are

used to move the cursor opposite the required option and the ENTER key

is then used to select the option. Each of the menus will be discussed

in section C.4 of this Appendix.

WITSKM simulates same of the more pertinent processes involved in

rainfall-runoff. To use the model successfully, the implications of

the assumptions made and theory used in modelling these processes is

required. In addition the correct level of catchment discretization

and values of the models parameters must be used. Guidelines on

parameter estimation are given in this manual (section C.6). However

the best way of gaining a feel for the parameters to use for different

land-use and vegetation cover types is to calibrate the model against

recorded data for different catchments. It was for this reason that

the calibration subprogram was included in WITSKM. The catchment data

included in this report and in Green and Stephenson (1986) can be used

for this purpose.

C - 2

C.2 Loading and Starting WTTSKM

For a computer system having a hard drive, a directory should be

created using DOS on the c: drive of the hard disk for storing the

program, data and results files. Once the directory has been created

copy the contents of the disk into the directory. For dual floppy

drive systems insert the program disk into drive a:. Drive B: is used

for the storage on a floppy disk of data and computation results. A

floppy disk should always be installed in drive B:. To start the

program, type WTTSKM and enter. The message Chaining editor

subprogram should appear on the screen.

C.3 Module^ and Connectivity

The module types available in WTTSKM are:

1. Overland flow modules

2. Circular pipes

3. Trapezoidal channels

4. Detention/retention storage dams

5. Compound channels

6. Aquifers

The numbers 1 - 6 above are used in the program to identify the module

types. The appropriate number is entered during the data input

procedure described in C.5. Each module is identified by a user

supplied module number. Any number between 1 and 400 maybe used. The

module numbers are used to determine the connectivity for the routing

of flows from one module to the next. This is done by specifying the

downstream module number and in the case of channels and pipes the

module number of the module to which overflows must be routed is also

entered. This feature is used for the modelling of dual drainage. A 0

is used for the downstream module number of the last module

discharging from the catchment. The modules can be entered in any

order and the program will determine the connectivity and the order in

C - 3

which the modules must be calculated. If an error in the connectivity

has been made due to entering the downstream or overflow module

numbers incorrectly, a message will be written to the screen to this

effect and control is returned to the primary menu.

For overland flow modules and aquifers, the module number of the

underlying aquifer must also be specified. If information on the soils

is available as regards depths, water table levels and soil properties

then interflow and subsurface flow can be modelled if required. The

various soil horizons can be modelled by a stack of aquifer modules

underlying the overland flow module with the infiltration parameters

being entered with the aquifer data. Each stack of aquifers is limited

to three aquifers and the overland flow module. For the lowest aquifer

in the stack a 0 is entered for the infiltration module number. If

subsurface flow is not to be modelled then a 0 is entered for the

infiltration module number when entering the overland flow module

data. The program then automatically creates a dummy aquifer having a

module number from 900 upwards. The infiltration parameters for this

aquifer are entered with the overland flow module data.

The maximium number of each of the types of modules that can be

entered is given below:

Overland flow modules - 70

Pipe modules - 20

Trapezoidal channel modules - 20

Storage modules - 3

Compound channel modules - 5

Aquifer modules - 70

The total number of modules however must not exceed 140 and the

maximum number of time steps allowed is 100. The program can handle 10

modules flowing onto a particular module i.e a maximum of 10 upstream

modules are allowed for any particular module. Similarly in modelling

dual drainage a maximium of 6 modules can overflow onto any module.

C - 4

C.4 Menus

C.4.1 Startup Menu

The startup menu is the first menu displayed on the screen after

starting the program by entering WTTSKM at the DOS prompt. The menu is

reproduced below (Figure 1) and the options available are discussed.

w i T s K M

Kinematic Modular Flow Model

You may

-• enter new data or

edit existing data

duplicate a data file

print a data file

run the program with an existing data file

quit

Move -• up or down to select option then press spacebar or <—' to enter

Figure 1 : Startup menu

Enter new data : If a new data set is to be entered from the beginning

then select this option from the menu. To enter the new data, the user

answers a series of questions and fills in annotated tables. The

details of the procedure for the entering of new data and the data

required for the different modules is presented in section C.5. Once

the data for the final module has been entered, a zero is

C - 5

entered for the module number and control is returned to the primary

menu. It is recommended that after the data is entered the file data

option in the primary menu be used to save the data.

Edit existing data : If this option is selected the program will ask

for the name of the data file. All data files used with WITSKM have

the extension .DAT. When entering the filename this extension is NOT

entered. For example the Sunninghill data file maybe called SUN71.DAT

however SUN71 will be entered. Once the filename has been entered, the

data is read from the file and control of the program transferred to

the primary menu.

Duplicate a data file : This option is useful if an existing data file

can be edited for use for another catchment or for analysing another

management option. The program asks:

Enter source filename

The filename is entered remembering to leave off the .DAT extension.

The data is then read from the file and the program asks :

Enter destination filename

Once the filename has been entered (excluding the .DAT extension) the

data is written to the disk under the new data filename. The control

of the program is then returned to the primary menu.

Print a data file : This option allows a data file to be printed out

on a printer. The printout routine has been written for the IBM

proprinter but has been found to work on the Star printer as well. The

program prompts the user for the filename of the data to be printed

out. Once printed out, control is transferred to the primary menu.

C - 6

Run the program with an existing data file : This allows the user to

run the program immediately if no editing of the data is required.

Once this option has been selected and the name of the data file is

entered, the computation subprogram is loaded. Once the computations

have been completed the control of the program is returned to the

output menu.

Quit : This option terminates the program and returns to DOS.

C.4.2 Primary Menu

w i T s K M

You may

-• edit data

file data '.'

create a duplicate data file

output data to printer

run the program

output connectivity

quit

Move -• up or down to select option then press spacebar or •*—' to enter

Figure 2 : Primary menu

Edit data : This option passes control to the editing menu which is

described in section C.4.3.

File data : This option allows for the saving of data to the disk. In

the case of a dual floppy drive system, the data is written to the B:

drive. If the data has not been saved to disk before, the program will

ask for a filename for the data. Once this has been entered, the

C - 7

data is written to the disk. If the data has previously been saved,

the data is written to the disk under the original filename. If a new

filename for the edited data is required, the data must first be saved

under the original filename and then the "create a duplicate data

file" option in the primary menu can be used to duplicate the data

under another filename. It is recommended that the new file is created

before any data editing is undertaken.

Create a duplicate data file : This option is the similar to the

duplicate file option in the startup menu. The difference being that

only the destination filename is required as the source file is the

data file presently being worked with. Once the destination filename

has been entered, the data is read from the disk and subsequently

written to the disk under the new filename. The control is then

returned to the primary menu and any future editing will be carried

out on the new data file.

Output data to printer : This option is the same as the "print a data

file option" in the startup menu.

Run the program : This option will load the computation subprogram for

the calculation of the runoff for the catchment. Before this option is

excercised, the data should be saved and the connectivity should also

be checked using the output connectivity option on this menu.

Output connectivity : Selection of this option transfers control to

the connectivity menu shown below.

You may

-• Output connectivity table to printer

Output connectivity to screen

Quit

Figure 3 : Connectivity menu

C - 8

Output—connectivitv table to printer : This option will output to

the printer all the modules and give, for each module, the module

numbers of the modules immediately upstream. A similar table is

output giving, for each module, the module numbers of the modules

which overflow onto any particular module.

Output connectivitv to screen : Selection of this option will

load the graphics connectivity subprogram. This program draws on

the screen the module layout. The module numbers are shown for

each module and the following symbols are used to represent the

different module types.

T
I
I

Overland Flow Module

Pipe Module Storage Module

Channel Modules Aquifer

Figure 4 : Symbols used for connectivity output to screen

C - 9

The graphics presentation does not allow for the checking of the

overflow modules. The output to printer option can be used for

this purpose.

Quit : This option is used to return to the primary menu.

C.4.3 Edit Menu

WITSKM DATA EDIT

You may

-• browse through the data

update a specific module

insert a module

delete a module

quit

Move -• up or down to select option then press spacebar or <*—' to enter

Figure 5 : Edit menu

Browse throucfri the data : This option allows the user to browse

through the data. The spacebar is used to move from one set of data to

the next. Any particular set of data can be edited using the UP and

DOWN arrow keys. Once the data item has been selected the new value is

typed in and the ENTER or ARROW keys can be used to enter the data

C - 10

value. All the module data including the data set title and rainfall

data can be edited using the browse option. Hie ESC key can be used at

any time to exit browse mode and return to the edit menu.

The browse option is in fact the only way of editing the time step and

rainfall data. When editing the computation time step data, the number

of rainfall intensity values is automatically adjusted for each time

step. The system used however requires that the new value for the

timestep is a multiple of the original value. For example if the

timestep was originally 5 minutes and the storm duration 1 hr, there

will be 12 rainfall intensity values. If the time step is halved to

2,5 minutes, the rainfall intensity values for each of the 5 minute

time intervals is doubled to give values for the 2,5 minute intervals

thereby giving the required 24 intensity values.

Update a specific module : If only a specific module is required to be

updated then this option is selected. The program prompts the user for

the module number of the module to be updated. The data for that

module is then displayed on the screen and the arrow keys can be used

as in browsing the data, to select the data items to be updated. Once

the edit has been completed the SPACE BAR is pressed to return to the

edit menu.

Insert a module : This option is used if a module is to be added. The

procedure followed is the same as that described in entering new data

in section C.5.

Delete a module : Upon selecting this option the program prompts the

user for the module number to be deleted. Once the module number has

been entered the module is deleted.

Quit : This option returns control of the program to the primary menu.

C - 11

C.4.4 Output Menu

WITSKM - Output mode

You may

-• Print output to printer

Plot output to screen

Call calibration program

Output results to a file

quit

Move -• up or down to select option then press spacebar or *—' to enter

Figure 6 : Output menu

Print output to printer : Selecting this option allows the hydrograph

for any module to be output to the printer. Tiny number of modules

maybe output merely by entering the appropriate module numbers. In

addition at the head of the printout will be printed the name of the

data file, the title of the data set, the rainfall and time step

information followed by the module and hydrograph data. For each of

the modules output, the module number, the volume in m3 of the

outflow hydrograph are printed out. For the overland flow modules the

rainfall volume over that particular catchment is also printed out

while for the conduits the capacity (cumec) of the conduit when

flowing full is output. For all the modules the time, inflow

hydrograph to, and the outflow hydrograph from the modules are printed

out. For the pipe, channel, and aquifer modules in addition to the

above hydrograph data, the overflows from the module are output if its

capacity is exceeded. In the case of storage modules, the depth (m) of

the water in the dam is also output. Once the required module data has

been output a 0 is entered to return control to the output menu.

C - 12

Plot output to screen : This option allows the inflow and outflow

hydrographs to be plotted to the screen. If the DOS graphics is

installed a screen dump of the plots maybe done. On the screen is

displayed the inflow and outflow hydrographs together with the peak

inflow and outflow rates and the volume under the outflow hydrograph.

To display the hydrograph for a module, the program prompts the user

for the module number. Once entered the hydrographs are displayed on

the screen for that module. Any key is then pressed to return to the

prompt for the next module to be displayed. Once completed a 0 is

entered to return to the output menu.

Call calibration program : Choosing this option will load in the

calibration subprogram for comparison of observed and simulated

output. The program asks for the name of the data file containing the

observed data. This data file must be in a particular format as shown

below:-

n

time 1, observed flow 1

time 2, observed flow 2
ii »2

time n, observed flow n

where n is the number of observed data points

The program then asks2 for the module number of the module with which

to compare the observed data. Plots are then displayed on the screen

of the observed and simulated hydrographs. The observed hydrograph

being the broken line. By pressing any key the goodness-of-fit

criteria as described in Appendix B are displayed on the screen. By

pressing any key again the output menu is again displayed.

C - 13

Output of results to a file : This option allows computation results

to be output to a disk. The data is output in ASCII so the data file

can be used as input to graphics packages such as Statgraphics to

produce output . for reports. The program asks for a name for the data

file to save the data to. The .DAT extension is automatically added to

the filename by the program so the filename entered must exclude the

extension. This is followed by a prompt for the module number whose

output hydrograph is to be saved to disk. The two questions are then

repeated until all the hydrographs to be saved to disk have been

output. A zero (0) is entered to return to the output menu.

C.5 Data Entry

A series of prompts and annotated tables are used to facilitate the

inputting of new data. The annotated tables are those used to display

the module data on the screen when using the browse option of the edit

menu. For a prompt the appropriate data is typed and then entered

using the INTER key. Upon striking the enter key the next prompt or

table is displayed on the screen. For the annotated tables, AKRCW keys

are used to move the cursor through the table and the default zero

values can be changed as in editing using the browse or update of a

specific module options of the edit menu. The first section of the

data input procedure is to enter the data set title, time data, and

the rainfall intensity data. This is then followed by the module data.

To end the data input procedure a zero is entered at the prompt for

the module number. Control is then returned to the primary menu where

the data should be saved to file using the "file data" option. The

following tables and prompts are used by the program to input the

data:

1. Title Entry

w i T s K M

Enter a title describing the data set

Title line

Figure 7 : Prompt for entry of title

C - 14

A single line of up to 72 characters can be entered as a title to

describe the data or simulation run (Fig. 7). Once the title has

been typed the ENTER key is used to input the title and move to

the next table.

2. Entry of time data

The input of this data is by means of a table (Fig. 8):

w i T s K M

Time interval (hours) : 0.000

Simulation duration (hours) : 0.00

Rainfall duration (hours) : 0.00

Enter new data else press space bar for next screen

Figure 8 : Entry table for time data

The UP and DOWN arrow keys are used to move through the table.

Once the correct data has been entered the SPACEBAR is used to

display the next screen (for information on the computation time

step, and simulation duration see C.6)

3. Entry of Rainfall Intensities

The entry of this data is by means of a table (Fig. 9). Based on

the time step and rainfall duration the program will display the

correct number of rainfall intensities on the screen. The ARROW

keys are used to move through the table and enter the required

rainfall data in mm/hr. Once entered the SPACEBAR is pressed to

get the next screen which is the entry of the module data.

C - 15

WITSKM - Rain entry mode

Rainfall Intensities in mm/hr :

0.0 0.0 0.0 0.0 0.0 0.0

Enter new data else press space bar for next screen

Figure 9 : Entry table for rainfall intensities

4. Entry of Connectivity and Module Type Data

The program uses a series of prompts for the entry of the module

number, downstream module number, and module type. The program

also prompts for the infiltration module number in the case of

the overland flow and aquifer modules or the overflow module

number in the case of pipes and channels. The module number for a

particular module must be unique and be an integer between 1 and

400. The type of module is identified by one of the following

codes:

Code Module type

1 Overland flow plane

2 Pipe

3 Trapezoidal channel

4 Storage basin

5 Compound channel

6 Aquifer

Once all the information describing the connectivity of the

modules and module type has been entered, tables are used for the

entry of the remaining module data.

C - 16

5. Entry of Module Data

Overland flow data : Two tables (Figs 10 and 11) are used to

enter the overland flow plane data depending on the infiltration

module number entered. If a zero is entered then a dummy aquifer

is created and the infiltration parameters for the dummy aquifer

are entered with the module data as shown below.

WITSKM - Data Entry Mode

Module number
Downstream module
Module type
Width of catchment (m)
Length of catchment(m)
Manning n of catchment
Slope of catchment (m/m)
Permeability (mm/h)
Suction head (m)
Moisture content (Fraction by volume)
Porosity

1
2
1
0
0

0.0000
0.0000

0.0
0.000
0.000
0.000

Enter new data else press space bar for next screen

Figure 10 : Entry table far overland data without aquifer

The slopes, lengths, and widths of the catchments are estimated

from topographical maps of the area being modelled. The

infiltration and roughness parameters are estimated according to

the guidelines given in section C.6. If the infiltration module

number is greater than zero then the infiltration data is entered

with the underlying aquifer and only the following data as shown

below (Fig 11) need be entered

C - 17

WITSKM - Data Entry Mode

Module number
Downstream module
Module type
Width of catchment (m)
Length of catchment(m)
Manning n of catchment
Slope of catchment (m/m)
Parallel module for infiltration

2
3
1
0
0

0.0000
0.0000

6

Enter new data else press space bar for next screen

Figure 11 : Entry table for overland data with aquifer

Pipe data : The data required for the pipe module are shown below

(Fig 12).

WITSKM - Data Entry Mode

Module number
Downstream module
Module type
Pipe length (m)
Slope (m/m)
Roughness n
Pipe diameter (m)
Parallel module for overflows :

2
3
2
0

0.000
0.000
0.00

0

Enter new data else press space bar for next screen

Figure 12 : Entry table for pipe data

C - 18

Trapezoidal channel data :

WITSKM - Data Entry Mode

Module number
Downstream module
Module type
Length of trapezoidal channel (m)
Bed slope (m/m)
Roughness n
Base width of trapezoidal channel (m)....
LH side slope (horiz/vert)
RH side slope (horiz/vert)
Maximum flow depth (m)
Parallel module for overflows

4
5
3
0

0.000
0.000
0.00
0.00
0.00
0.00

0

Enter new data else press space bar for next screen

Figure 13 : Entry table for trapezoidal channel

To describe the shape of this type of channel the base width, the

left and right hand side slopes and the maximum flow depth in the

channel are required. If a rectangular channel is to be modelled

then the side slopes would be entered as zeroes. The program

determines the flow that the channel can convey at the maximum

flow depth. For any inflows to the channel that exceed this flow

rate (capacity of the channel), the excess flow is rerouted to

the overflow module as specified by the overflow module number.

Storage basin data : In modelling detention/retention storage

basins provision has been made for storage facilities to have a

bottom outlet if required. The table displayed on the screen

initially is the table for a storage facility having a bottom

outlet (Fig 14). The Yes for outlet in the table can be changed

to No and the table is changed to that for a facility without a

bottom outlet (Fig 15). The levels and water depths in the

storage basin are all expressed relative to the same origin which

is normally taken as the bottom of the storage basin at the

C - 19

dam wall. A definition sketch and description of the equations

describing the flow through the outlet and spillway are given in

Chapter 3.

WITSKM - Data Entry Mode

Module number
Downstream module
Module type
Coeff a in stor(m*3)=a*(depth(m))"b ...
Coeff b in stor(m"3)=a*(depth(m))"b
Spillway level (m)
Outlet
Outlet invert level (m)
Coeff c for unsubmerged outlet c*dep*d
Coeff d for unsubmerged outlet c*dep"d
Coeff e for submerged outlet e*dep"f ..
Coeff f for submerged outlet e*dep"f ..
Coeff g for spillway g*dep"h
Coeff h for spillway g*dep"h
Depth or diam (m) of outlet
Initial water level in dam (m)

5
6
4

0.0
0.000
0.00
Yes
0.00
0.00
0.00
0.00
0.00
0.0

0.000
0.000
0.00

Enter new data elBe press space bar for next screen

Figure 14 : Entry table for storage basin with outlet

WITSKM - Data Entry Mode

Module number
Downstream module
Module type
Coeff a in stor(m~3)=a*(depth(m))"b
Coeff b in stor(m~3)=a*(depth(m))~b.
Spillway level (m) "...
Outlet
Coeff g for spillway g*dep~h
Coeff h for spillway g*dep~h
Initial water level in dam (m)

5
6
4

0.0
0.000
0.00
No
0.0

0.000
0.00

Enter new data else press space bar for next screen

Figure 15 : Entry table storage basin without outlet

C - 20

Compound channels : Compound channels are modelled using the separate

channel method. The type of channel that can be modelled is that

having a main channel flanked by flood plains (Fig. 16). The model

cannot cope with 2 main channels as shown in figure 17. To apply this

method the channel is divided into channel segments based on

considerations of roughness and channel geometry. The maximum number

of channel segments that can be input is 5. To describe the shape of

the channel, the coordinates of the channel points are entered. The

first and last points entered must have the same elevation. The

coordinate system used requires the origin to be on the left of the

channel section as shown in figure 16. The X axis gives the horizontal

position of the points while the y axis gives the elevation of the

points. A maximum of 10 points can be entered to describe the channel

cross section. In addition the program requires the point numbers at

the boundaries of the channel segments. Three tables are used to enter

the required input and are presented in figures 18, 19, and 20 for the

channel given in figure 16.

(9; 2)

Figure 16 : Typical compound channel section

C - 21

Figure 17 : Compound channel section having 2 main channels

WITSKM - Data Entry Mode

Module number : 1
Downstream module : 2
Module type : 5
Length of compound channel (m) : 500.00
Bed slope (m/m) : 0.010
No. of points describing channel : 8
No. of channel segments : 3
Parallel module for overflows : 0

Enter new data else press space bar for next screen

Figure 18 : Table for compound channel data entry

C - 22

WITSKM - Data Entry Mode

Enter points describing channel section :

X coordinate (m) Y coordinate (m)

1.00 2.00
1.50 1.00
5.00 0.75
5.50 0.50
6.00 0.25
6.50 1.50
8.00 1.50
9.00 2.00

Enter new data else press space bar for next screen

Figure 19 : Table for entry of channel section points

WITSKM - Data Entry Mode

Enter point numbers for channel segments :

Segment no. Left point Right point Roughness (n)

1
2
3

1
3
6

3
6
8

0.055
0.040
0.055

Enter new data else press space bar for next screen

Figure 20 : Table for the entry of segment roughnesses and boundary

points

C - 23

Aquifers : The data, required for aquifers is given below in

figure 21.

WITSKM - Data Entry Mode

Module number
Downstream module
Module type
Width of aquifer (m)
Length of aquifer(m)
Depth of aquifer (m)
Slope (m/m)
Height of water table (m)
Moisture content(fraction by volume)
Porosity
Suction head (m)
Permeability (mm/h)
Parallel module for infiltration

4
6
6
0
0

0.00
0.000
0.000
0.000
0.000
0.000
0.00

0

Enter new data else press space bar for next screen

C.6. Guidelines for Parameter Estimation

C.6.1 General

The guidelines given in this section are based on the assumption that

the user is familiar with the problem to be solved, the processes

involved and the solution methodologies. The decision whether aquifer

modules are to be used for the modelling of interflow and subsurface

flow will depend on the objective for which the model is to be used

and the amount of data on the depths and properties of the soil layers

of the catchment. For most urbanized catchments the modelling of

interflow and subsurface will not be necessary and the Horton type

approach will suffice.

C - 24

C.6.2 Level of Discretization

Ihe level of discretization i.e the number of subcatchnents or modules

into which the catchment is divided depends largely on the information

available to the user and the objectiye of the simulation. Factors to

be considered in discretizing are sub-watershed boundaries, the

location of the natural drainage channels, areas having similar

topographical/land-use characteristics and the major pipe and channel

networks. In discretizing the catchment into overland flow modules, it

must also be remembered that the subcatchments are modelled as a

sloping rectangular plane. This implies that the shape of the modules

should be as close to rectangular as possible.

C.6.3 Guidelines for Choice of Time Data.

In using WITSKM the following guidelines are given in choosing the

computation time step:

1. The time step should be chosen such that there are at least

5 time steps to the hydrograph peak. This results in

consistent results as any further reduction in the time step

does not usually cause a change in peak or a substantial

improvement in the hydrograph shape.

2. The simulation duration should be about twice the rain storm

duration.

3. In choosing the time step, the user must bear in mind the

smaller the time step the longer the computation time will

be.

4. The Muskingum-Cunge routing method has been found to be

robust and produces results for most choices of computation

time step. However the scheme has been found to produce the

best results if the time and spatial increments are such

that the Courant number Cr = 1. The Oourant number is given

by

Cr = cdt/dx C.I

C.6.4

C - 25

where c is the. wave celerity, and dt and dx are the

computation time and spatial increments respectively.

Hydraulic Resistance to Overland Flow

The values for Manning's roughness coefficient are not as well known

for overland flow as for channel flow. However summarized below in

Table C.I are typical Mannings "n" values as presented in Green and

Stephenson (1984). When an overland flow module is a mixture of cover

types an average value for Mannings n must be estimated based on the

area of each cover type.

Table C.I : Typical Manning Roughnesses for Overland Flow

Surface

Concrete or Smooth asphalt
Bare sand, rough asphalt or
concrete paving
Bare loam soil, packed clay
Sparse vegetation
Short veld grass
Dense turf
Dense shrubbery and forest
litter

Manning Roughness

0,012 - 0,013
0,014 - 0,016

0,033
0,053 - 0,013

0,20
0,35

0,40 - 0,48

C.6.4 Infiltration Parameters

The estimation of the infiltration parameters for the Green-Ampt

infiltration equation remains more of an art than a science. Only by

calibration against recorded data can parameters be chosen with

confidence for different land-ude types for ungauged catchments. Rawls

et al (1983) analysed soil data that had been collected on some 5000

soil horizons in the U.S.A and was able to determine the Green-Ampt

parameters based on the soil texture classification as proposed by the

United States Department of Agriculture. In Table C.2, a summary of

the parameters presented by Rawls et al is given for different classes

of soil. The values presented in brackets for the porosity and the

C - 26

suction head give the range of values obtained for these parameters.

The hydraulic conductivity, given in Table C.2 is half of the saturated

hydraulic conductivity. This is the value of K recommended by Bouwers

(1966) and Constantinides (1982) for use in the Green-Ampt

formulation.

The figures provided in Table C.2 serve only as guidelines and are

applicable to undeveloped areas. If a catchment has been urbanized,

the hydraulic conductivity K estimated from Table C.2 according to

soil type, must be adjusted to allow for the impervious areas. In

deciding the amount to reduce the hydraulic conductivity by the degree

that the impervious areas are connected together must be taken into

Table C.2 : Green-Ampt Parameters for different soil classifications

Soil Class

sand

loamy
sand

sandy
loam

loam

Silt
loam

clay
loam

sandy
clay

silty
clay

clay

Porosity

0,42
(0,35-0,48)

0,40
(0,33-0,47)

0,41
(0,28-0,54)

0,43
(0,33-0,53)

0,49
(0,39-0,58)

0,31
(0,23-0,5)

0,32
(0,21-0,44)

0,42
(0,33-0,51)

0,39
(0,27-0,50)

Suction Head
(m)

0,05
(0,01-0,25)

0,06
(0,01-0,27)

0,11
(0,03-0,45)

0,09
(0,01-0,59)

0,17
(0,03-0,95)

0,21
(0,05-0,91)

0,24
(0,04-1,40)

0,29
(0,06-1,39)

0,32
(0,06-1,60)

Hydraulic Conductivity
(mm/h)

118

30

11

3,4

6,5

1

0,6

0,5

0,3

consideration. Given in Chapter 6 of the report the adjusted

parameters for sandy loam for the Sunninghill catchment land-use type

are pesented.

D - 1

TYPE modconnectivity
modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
Bio AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aguimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
ss2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE
TYPE Btormod

cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE

D - 2

prevstor AS SINGLE
END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON modu() AS modconnectivity, pipe() AS pipemod, storage() AS stormod
COMMON overlnd() AS overmod, aqui() AS aguimod, trapchan() AS trapmod
COMMON qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%, tint
COMMON expo, over(), rain(), pi
COMMON promptl$, flag.file%, tcode%
COMMON title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON compchan() AS compmod, x(), y(), n(), segno()

REM $DYNAMIC

REDIM qin(140, 100), qout(140, 100), modu(140) AS modconnectivity
REDIM overlnd(70) AS overmod, aqui(70) AS aquimod, pipe(30) AS pipemod
REDIM unit(140, 4), con(140, 12), ovflo(140, 6), order(2, 140)
REDIM over(140, 100), rain(100)
REDIM trapchan(25) AS trapmod, storage(3) AS stormod

REDIM compchan(5) AS compmod, x(5, 10), y(5, 10), n(5, 5), segno(5, 5, 2)

'Program to start up WITSKM

CLS
newmod% = 899
expo = 5 / 3
pi = 3.14159

pl% = 0: p2% = 0: p3% = 0: p4% = 0: p5% = 0: p6% = 0

promptl$ = " Enter new data else press space bar for next screen "

flag.file% = 0

tcode% = 1

LOCATE 11, 28
COLOR 0, 2

PRINT "Chaining editor subprogram"

CHAIN "editorf

END

D - 3

DECLARE SUB conmonu (title2$, choicel%)
DECLARE SUB fileoutput ()
DECLARE SUB modconnect (print.connec%)
DECLARE SUB firstmenu (titlelS, title3$, choice%)
DECLARE SUB Decondmenu (titlelS, title2$, choice%)
DECLARE SUB editmenu (titlelS, choicel%)
DECLARE SUB progend ()
DECLARE SUB outputmenu (titlel$, choicel%)
DECLARE SUB selectmenu (opt$(), NUMBEROPTIONS1, choice%)
DECLARE SUB duplicate ()
DECLARE SUB roadfile ()
DECLARE SUB writefile ()
DECLARE SUB insertmodule ()
DECLARE SUB deletemodule ()
DECLARE SUB updatemodule ()
DECLARE SUB browse ()
DECLARE SUB raininput ()
DECLARE SUB TimeBteplnfo ()
DECLARE SUB TitleEnter ()
DECLARE SUB inputeditor ()
DECLARE SUB graphpl ()
DECLARE SUB printout ()
DECLARE SUB data.echo ()
TYPE modconnectivity

modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
Bio AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
Slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
Slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE

D - 4

wid AS SINGLE
sel AS SINGLE
ss2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
Si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
CS AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
Bio AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED expo, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

screentitlel$ = " W I T S K M "
screentitle3$ = " Move " + CHR$(45) + CHR$(16) + " up or down to select option
then press spacebar or " + CHR$(17) + CHR$(196) + CHR$(217) + " to enter "

DO

SELECT CASE tcode%

CASE 1

CALL firstmenu(screentitlel$, screentitle3$, choice%)

SELECT CASE choice%

CASE 1
CALL TitleEnter
CALL Timesteplnfo
hyeto.number% = CINT(rain.time / tint)
CALL raininput
CLS

D - 5

COLOR 0, 2
LOCATE 1, 28
PRINT "WITSKM - Data Entry Mode"

CALL inputeditor
tcode% = 3

CASE 2
CALL readfile
tcode% = 3

CASE 3
CALL duplicate
tcode% «= 3

CASE 4
CALL readfile
CALL modconnect(O)
IF flag.esc% = 1 THEN

flag.esc% «= 0
ELSE

CALL data.echo
END IF
tcode% = 3

CASE 5
CALL readfile
CLS
LOCATE 11, 25
COLOR 0, 2
PRINT "Chaining computation subprogram"
COLOR 3, 0
CHAIN "witcom4f"

CASE 6
CALL progend

END

CASE 2

SELECT

flag% = 0

DO
CALL outputmenu(screentitIe3$, choice2%)

SELECT CASE choice2%
CASE 1

CALL printout
CASE 2

CALL graphpl
CASE 3

CLS
LOCATE 11, 25
COLOR 0, 2
PRINT "Chaining calibration subprogram"
COLOR 3, 0
CHAIN "calibf"

CASE 4
CALL fileoutput

CASE 5
flag% = 1

END SELECT

LOOP UNTIL flag% = 1

tcode% = 3

D - 6

CASE 3
edit.finish2% = 0

DO

CALL secondmenu(screentitlel$, screentitle3S, choice%)

SELECT CASE choice%

CASE 1

edit.finish% = 0

DO

CALL editmenu(screentitIe3$, choicel%)

SELECT CASE choicel%
CASE 1

CALL browse
IF flag.esc% = 1 THEN

flag.esc% = 0
END IF

CASE 2
CALL insertmodule
IF flag.esc% = 1 THEN

flag.esc% = 0
END IF

CASE 3
CALL updatemodule
IF flag.esc% = 1 THEN

flag.esc% = 0
END IF

CASE 4
CALL deletemodule

CASE 5
edit.finish% = 1

END SELECT

LOOP UNTIL edit.finish% = 1

CASE 2
CALL writefile

CASE 3
CALL duplicate

CASE 4
CALL modconnect(0)
CALL data.echo

CASE 5
CLS
LOCATE 11, 25
COLOR 0, 2
PRINT "Chaining computation subprogram"
COLOR 3, 0
CHAIN "witcom4f"

CASE 6

edit.finish% = 0

DO

CALL conmenu(screentitle3$, choicel%)

SELECT CASE choicel%
CASE 1

CALL modconnect(1)
CASE 2

D - 7

'CHAIN "planlasf"
CASE 3

edit.finish% = 1
END SELECT

LOOP UNTIL edit.finish% «= 1

CASE 7
CALL progend
edit.finiBh2% = 1

END SELECT

LOOP UNTIL edit.finiBh2% = 1

END SELECT

LOOP UNTIL tcode% = 0

END

SUB conmenu (title2$, choicel%)

REDIM opt$(3)

COLOR 7, 0
CLS
COLOR 0, 2: LOCATE 1, 32
PRINT "Connectivity Menu"

COLOR 7, 0
NUMBEROPTIONS = 3
opt$(l) = "Output connectivity table to printer"
opt$(2) = "Output connectivity to screen"
opt$(3) = "Quit"

COLOR 3, 0
LOCATE , , 0, 6, 7
LOCATE 7, 7: PRINT "You may"

FOR 1% = 1 TO NUMBEROPTIONS
LOCATE 7 + 2 * 1%, 15: PRINT opt$(l%)

NEXT 1%

LOCATE 23, 4: COLOR 0, 2
PRINT title2$
COLOR 6, 0
LOCATE 9, 10: COLOR 7, 0
PRINT CHR$(45) + CHR$(16)
LOCATE 9, 15

PRINT opt$(l)

CALL selectmenu(opt$(), NUMBEROPTIONS, choicel%)

ERASE opt$

END SUB

SUB editmenu (titlel$, choicel%)

REM $DYNAMIC

REDIM opt$(5)

COLOR 3, 0
CLS
COLOR 0, 2: LOCATE 1, 30

D - 8

PRINT " WITSKM DATA EDIT "

COLOR 0, 2
LOCATE 23, 4
PRINT titlelS

NUMBEROPTIONS = 5
opt$(l) = "browse through the data"
opt$(2) = "update a specific module"
opt$(3) = "insert a module"
opt$(4) = "delete a module"
opt$(5) = "quit"

COLOR 3, 0
LOCATE , , 0, 6, 7
LOCATE 7, 7: PRINT "You may"

FOR II = 1 TO NUMBEROPTIONS
LOCATE 7 + 2 * 1%, 15: PRINT opt$(l%)

NEXT 1%

LOCATE 23, 4: COLOR 0, 2
PRINT title3$
COLOR 6, 0
LOCATE 9, 10: COLOR 7, 0
PRINT CHR$(45) + CHR$(16)
LOCATE 9, 15

PRINT opt$(l)

CALL selectmenu(opt$(), NUMBEROPTIONS, choicel%)

ERASE opt$

END SUB

REM $STATIC

SUB firstmenu (titlel$, title3$, choice%)

REM $DYNAMIC

REDIM opt$(6)

COLOR 7, 0: CLS
COLOR 0, 2: LOCATE 1, 32: PRINT titlel$
COLOR 3, 0: LOCATE 4, 25: PRINT " Kinematic Modular Flow Model
NUMBEROPTIONS = 6
opt$(l) = "enter new data or"
opt$(2) = "edit existing data"
opt$(3) = "duplicate a data file"
opt$(4) = "print a data file"
opt$(5) = "run the program with an existing data file"
opt$(6) = "quit"
COLOR 3, 0
LOCATE , , 0, 6, 7
LOCATE 7, 7: PRINT "You may"
FOR 1% = 1 TO NUMBEROPTIONS

LOCATE 7 + 2 * 1%, 15: PRINT opt$(l%)
NEXT 1%

LOCATE 23, 4: COLOR 0, 2
PRINT title3$
COLOR 6, 0
LOCATE 9, 10: COLOR 7, 0
PRINT CHR$(45) + CHR$(16)
LOCATE 9, 15

D - 9

PRINT opt$(l)

CALL oelectmonu(opt$(), NUMBEROPTIONS, choicel)

ERASE opt$

END SUB

REM $STATIC

SUB outputmenu (titlel$, choicol%)

REDIM opt$(5)

SCREEN 0: WIDTH 80
COLOR 3, 0: CLS
COLOR 0, 2
LOCATE 1, 28: PRINT " WITSKM - Output mode "
COLOR 0, 2
LOCATE 23, 4
PRINT titlel$

NUMBEROPTIONS - 5

opt$(l) = "Print output to printer"
opt$(2) = "Plot output to screen"
opt$(3) = "Call calibration program"
opt$(4) = "Output results to a file"
opt$(5) = "quit"

COLOR 3, 0
LOCATE , , 0, 6, 7
LOCATE 7, 7: PRINT "You may"

FOR 1% = 1 TO NUMBEROPTIONS
LOCATE 7 + 2 * 1%, 15: PRINT opt$(l%)

NEXT 1%

COLOR 6, 0
LOCATE 9, 10: COLOR 7, 0
PRINT CHR$(45) + CHR$(16)
LOCATE 9, 15

PRINT opt$(l)

CALL selectmenu(opt$(), NUMBEROPTIONS, choicel%)

ERASE opt$

END SUB

SUB progend

COLOR 7, 0: CLS
COLOR 0, 2
LOCATE 10, 32
PRINT " Program ended ": COLOR 7, 0: LOCATE 20, 1

END

END SUB

SUB secondmenu (titlel$, title2$, choice%)

REDIM opt$(7)

COLOR 7, 0
CLS
COLOR 0, 2: LOCATE 1, 32

D - 10

PRINT titlel$

COLOR 7, 0
NUMBEROPTIONS = 7
opt$(l) = "edit data"
opt$(2) = "file data"
opt$(3) = "create a duplicate data file"
opt$(4) = "output data to printer"
opt$(5) = "run the program"
opt$(6) = "output connectivity"
opt$(7) = "quit"

COLOR 3, 0
LOCATE , , 0, 6, 7
LOCATE 7, 7: PRINT "You may"

FOR 1% = 1 TO NUMBEROPTIONS
LOCATE 7 + 2 * 1%, 15: PRINT opt$(l%)

NEXT 1%

LOCATE 23, 4: COLOR 0, 2
PRINT title2$
COLOR 6, 0
LOCATE 9, 10: COLOR 7, 0
PRINT CHR$(45) + CHR$(16)
LOCATE 9, 15

PRINT opt$(l)

CALL selectmenu(opt$(), NUMBEROPTIONS, choice%)

ERASE opt$

END SUB

SUB selectmenu (opt$(), NUMBEROPTIONS, choice%)

choice% = 1
8130 a$ = INKEY$: IF a$ = "" THEN 8130

IF aS = CHR$(27) THEN
flag.esc = 1
choice% = 7
GOTO 8490' escape

END IF
IF a$ = CHR$(13) OR a$ = CHR$(32) THEN 8490
IF ASC(MID$(a$, 1, 1)) <> 0 THEN 8130
I

1 Cursor down
i

IF ASC(MID$(a$, 2, 1)) = 80 OR ASC(MID$(a$, 2, 1)) = 89 THEN 8200 ELSE
8330
8200 cursor = CSRLIN + 1

choice% = (cursor - 7) / 2
LOCATE cursor - 2, 10: PRINT SPACE$(2)
LOCATE cursor - 2, 15: COLOR 3, 0: PRINT opt$(choice% - 1)
IF choice% <= NUMBEROPTIONS THEN 8250 ELSE 8280

8250 LOCATE cursor, 10: COLOR 7, 0: PRINT CHR$(45) + CHR$(16)
LOCATE cursor, 15: PRINT opt$(choice%)
GOTO 8130

8280 ' Wrap around - bottom to top
LOCATE 9, 10: COLOR 7, 0: PRINT CHR$(45) + CHR$(16): LOCATE 9, 15: PRINT

opt$(l)
choice% = 1
GOTO 8130

8330 • Cursor up

D - 11

IF ASC(MID$(a$, 2, 1)) = 72 OR ASC(MID$(a$, 2, 1)) = 91 THEN 8360 ELSE
8130
8360 cursor = CSRLIN - 3

choice* «= (cursor - 7) / 2
•IF K l THEN 1 = 1:GOTO 1110
LOCATE cursor + 2 , 10: PRINT SPACE$(2)
LOCATE cursor + 2, 15: COLOR 3, 0: PRINT opt$(choice% + 1)
IF choice% >= 1 THEN 8420 ELSE 8450

8420 LOCATE cursor, 10: COLOR 7, 0: PRINT CHR$(45) + CHR$(16)
LOCATE cursor, 15: PRINT opt$(choice%)
GOTO 8130

8450 ' Wrap around - top to bottom
LOCATE NUMBEROPTIONS * 2 + 7, 10: COLOR 7, 0: PRINT CHR$(45) + CHR$(16):

LOCATE NUMBEROPTIONS * 2 + 7, 15: PRINT opt$(NUMBEROPTIONS)
choice% = NUMBEROPTIONS
GOTO 8130

8490 LOCATE 23, 1: PRINT SPACES(79)
'Selected option entered ... value for L returned to menu

END SUB

DECLARE FUNCTION getfilename$ (headings)
DECLARE SUB clearscreenl ()
DECLARE SUB build.file.index (flag.index%)
DECLARE SUB screeneditor (NBLOCK%, NCOLS%, nfield%, nvalues%, counter%,
rowl(), coll(), a$, change*, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%,
flag.string%)
DECLARE SUB readfile ()
DECLARE SUB datain ()
DECLARE SUB dataout ()
DECLARE SUB TitleEdit ()
DECLARE SUB TitleEnter ()
DECLARE SUB Timesteplnfo ()
DECLARE SUB raininput ()
DECLARE SUB inputeditor ()
DECLARE SUB trapchanzero (p%)
DECLARE SUB aquizero (p%)
DECLARE SUB moduzero (p%)
DECLARE SUB overlndzero (p%)
DECLARE SUB pipezero (p%)
DECLARE SUB storagezero (p%)
DECLARE SUB compzero (p%)
DECLARE SUB ChangeModType (n%)
DECLARE SUB clearscreen ()
DECLARE SUB overlandinput (i%, newtype%)
DECLARE SUB pipeinput (i%, newtype%)
DECLARE SUB trapinput (i%, newtype%)
DECLARE SUB storinput (i%, newtype%)
DECLARE SUB compinput (i%, newtype%)
DECLARE SUB aquifinput (i%, newtype%)
TYPE modconnectivity

modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

D - 12

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
Slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
Bio AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
SSl AS SINGLE
ss2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,

D - 13

tint
COMMON SHARED expo, over(), rain(), pi
COMMON SHARED promptlS, flag.file%, tcode%
COMMON SHARED title$, file$, flag.eBC%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.inoert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

handler:

SELECT CASE ERR

CASE 53, 76

BEEP: BEEP: PRINT : PRINT : PRINT "File "; file$; " does not
exist .. . pretJB any key"

WHILE INKEYS = "": WEND
file$ «= getfilename$(headings)
RESUME

CASE 64, 52

BEEP
BEEP
PRINT
PRINT
PRINT "Bad filename (limited to 8 characters) ... press any

key"
WHILE INKEY$ «= "": WEND
file$ = getfilename$(headings)
RESUME

CASE ELSE
ON ERROR GOTO 0

END SELECT

END

SUB browse

CLS

TitleEdit

IF flag.esc% = 1 THEN
flag.esc% = 0
EXIT SUB

END IF

Timesteplnfo

IF flag.esc% = 1 THEN
flag.esc% = 0
EXIT SUB

END IF

raininput

IF flag.esc% = 1 THEN
flag.esc% = 0
EXIT SUB

END IF

CLS

COLOR 0, 2
LOCATE 1, 28

D - 14

PRINT "WITSKM - Browse Mode"

COLOR 3, 0

FOR i% = 1 TO nomod%

CALL clearscreen
flag.change% = 0

DO
IF flag.change% = 1 THEN

SELECT CASE modu(i%).typ
CASE 1

pl% = pl% + 1
modu(i%).pl = pl%

CASE 2
p2% = p2% + 1
modu(i%).pl = p2%

CASE 3
p3% = p3% + 1
modu(i%).pl = p3%

CASE 4
p4% = p4% + 1
modu(i%).pi = p4%

CASE 5
p5% = p5% + 1
modu(i%).pi = p5%

CASE 6
p6% = p6% + 1
modu(i%).pi = p6%

END SELECT
END IF

flag.change% = 0

IF modu(i%).modno < 900 THEN

SELECT CASE modu(i%).typ

CASE 1
newtype% = 1
overlandinput i%, newtype%

IF newtype% <> 1 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).of1 = 0
modu(i%).typ = newtype%
newtype% = 1
flag.change% = 1

END IF

CASE 2
newtype% = 2

pipeinput i%, newtype%

D - 15

IF newtypo* <> 2 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).of1 = 0
modu(i%).typ = newtype%
newtypo% = 2
flag.change% = 1

END IF

CASE 3
newtype* = 3
trapinput i%, newtype%

IF newtype% <> 3 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%) .ofl «= 0
modu(i%).typ = newtype%
newtype% = 3
flag.change% = 1

END IF

CASE 4
newtype% = 4

storinput i%, newtype%

IF newtype% <> 4 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).ofl « 0
modu(i%).typ = newtype%
newtype% = 4
flag.change% = 1

END IF

CASE 5
newtype% = 5

compinput i%, newtype%

IF newtype% <> 5 THEN
n% " i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%)•ofl = 0
modu(i%).typ = newtype%
newtype% = 5
flag.change% = 1

END IF

CASE 6
newtype% = 6

aquifinput i%, newtype%

IF newtype% <> 6 THEN
n% = i%
ChangeModType n%
modu(i%)•infmod = 0
modu(i%).ofl = 0
modu(i%).typ = newtype%
newtype% = 6
flag.change% = 1

D - 16

END IF'

END SELECT

IF flag.esc% = 1 THEN
£lag.esc% = 0
EXIT SUB

END IF

END IF

LOOP WHILE flag.change% = 1

NEXT i%

END SUB

SUB ChangeModType (n%)

clearscreen

SELECT CASE modu(n%).typ

CASE 1
p% = modu(n%).pi
overlndzero p%

FOR k% = p% + 1 TO pl%

SWAP overlnd(k% - 1), overlnd(k%)

FOR t% = 1 TO nomod%
IF modu(t%).typ = 1 THEN
IF modu(t%).pi = k% THEN

modu(t%).pi = k% - 1
END IF

END IF
NEXT t%

NEXT k%

pl% = pl% - 1

IF modu(n%).infmod >= 900 THEN

a% = modu(n% + l).pl
aguizero a%
moduzero n% + 1

FOR z% = a% + 1 TO p6%
SWAP aqui(z% - 1), aqui(z%)

FOR t% = 1 TO nomod%
IF modu(t%).typ = 6 THEN

IF modu(t%).pi = z% THEN
modu(t%).pi = z% - 1

END IF
END IF

NEXT t%

NEXT z%

FOR z% = n% + 2 TO nomod%
modu(z% - l).modno = modu(z%).modno
modu(z% - lj.dsmod = modu(z%).dsmod
modu(z% - l).ofl = modu(z%).ofl

D - 17

modu(2% - l).typ •» modu(z%) .typ
modu(z% - l).infmod « modu(z%).infmod
modu(z% - l).pl = modu(z%).pi

NEXT z%

nomod% « nomod% - 1

p6% = p6% - 1

END IF

CASE 2

p% «* modu(n%).pi
pipezero p%

FOR k% = p% + 1 TO p2%
SWAP pipe(k% - 1), pipe(k%)

FOR t% = 1 TO nomod%
IF modu(t%).typ «= 2 THEN

IF modu(t%).pl = k% THEN
modu(t%).pi = k% - 1

END IF
END IF

NEXT t%

NEXT k%

p2% = p2% - 1

CASE 3
p% = modu(n%).pi
trapchanzero p%

FOR k% = p% + 1 TO p3%
SWAP trapchan(k% - 1), trapchan(k%)

FOR t% = 1 TO nomod%
IF modu(t%).typ = 3 THEN

IF modu(t%).pi = k% THEN
modu(t%).pl = k% - 1

END IF
END IF

NEXT t%

NEXT k%

p3% = p3% - 1

CASE 4
p% = modu(n%).pi
storagezero p%

FOR k% = p% + 1 TO p4%
SWAP storage(k% - 1), storage(k%)

FOR t% = 1 TO nomod%
IF modu(t%).typ = 4 THEN

IF modu(t%).pi = k% THEN
modu{t%).pi = k% - 1

END IF
END IF

NEXT t%

NEXT k%

D - 18

p4% = p4% - 1

CASE 5
a% = modu(n%).pi
compzero a%

FOR z% = a% + 1 TO p5%
SWAP compchan(z% - 1), compchan(z%)

FOR t% = 1 TO nomod%
IF modu(t%).typ = 5 THEN

IF modu(t%).pl = z% THEN
modu(t%).pl = z% - 1

END IF
END IF

NEXT t%

NEXT z%

p5% = p5% - 1

CASE 6
a% = modu(n%).pl
aguizero a%

FOR z% = a% + 1 TO p6%
SWAP aqui(z% - 1), aqui(z%)

FOR t% = 1 TO nomod%
IF modu(t%).typ = 6 THEN

IF modu(t%).pl = z% THEN
modu(t%).pl = z% - 1

END IF
END IF

NEXT t%

NEXT z%

p6% = p6% - 1

END SELECT

END SUB

SUB clearscreenl

LOCATE 4, 28
PRINT SPACE$(20)

FOR jj% = 5 TO 15
LOCATE jj%, 1
PRINT SPACE$(79)

NEXT jj%

END SUB

SUB datain

ON ERROR GOTO handler

OPEN file$ FOR INPUT AS #1

LOCATE 6, 1: PRINT "Reading data from file
LOCATE 6, 24: PRINT file$

D - 19

INPUT #1, title$
INPUT #1, tint, cim.timo, rain.time, hyeto.number%, noit%, nomodt
INPUT #1, pl%, p2%, p3%, p4%, p5%, p6%, newmod%

FOR it « 1 TO hyeto.number*
INPUT #1, rain(it)

NEXT i%

FOR it = 1 TO nomod%
INPUT #1, modu(i%).modno
INPUT #1, modu(i%).demod, modu(i%).of1, modu(i%).typ,

modu(i%).infmod, modu(i%).pi

SELECT CASE modu(i%).typ

CASE 1
p% = modu(i%).pi
INPUT #1, overlnd(p%).man, overlnd(p%).slo, overlnd(p%).Ing
INPUT #1, overlnd(pt) .wJLd

CASE 2
p% = modu(it).pi
INPUT #1, pipe(p%) .Ing, pipe(p%) .diam, pipe(p%),B1O, pipe(p%).man

CASE 3
pt = modu(it).pi
INPUT #1, trapchan(pt).slo, trapchan(pt).man, trapchan(pt).Ing
INPUT #1, trapchan(pt).wid, trapchan(p%).BBI, trapchan(p%).BB2,

trapchan(p%).mdep

CASE 4
pt = modu(it).pi
INPUT #1, storage(pt).typ, storage(pt).a, storage(pt).b,

storage(pt).cl
INPUT #1, storage(pt).ecu, storage(pt).cu, storage(pt).ccs,

storage(pt).cs
INPUT #1, storage(pt).depth
INPUT #1, storage(pt).si, storage(pt).csp, storage(pt),sp,

storage(pt).stlev

CASE 5
pt = modu(i t) .p i

INPUT # 1 , c o m p c h a n (p t) . s l o , c o m p c h a n (p t) . I n g ,
compchan(pt).nosegs, compchan(pt).nopts

FOR jt = 1 TO compchan(pt).nopts
INPUT #1, x(pt, jt), y(pt, jt)

NEXT jt

FOR jt = 1 TO compchan(pt).nosegs
INPUT #1, segno(pt, jt, 1), segno(pt, jt, 2), n(pt, jt)

NEXT jt

CASE 6
pt = modu(it).pi
INPUT #1, agui(pt).slo, aqui(pt).wid, aqui(pt).Ing,

aqui(pt).depth
INPUT #1, aqui(pt).wtl
INPUT #1, aqui(pt).sorp, aqui(pt).perm, aqui(pt).imc,

aqui(pt).por

END SELECT

NEXT it

CLOSE #1

D - 20

END SUB

SUB dataout

ON ERROR GOTO handler

OPEN file$ FOR OUTPUT AS #1

WRITE #1, title$
WRITE #1, tint, sim.time, rain.time, hyeto.number%, noit%, nomod%
WRITE #1, pl%, p2%, p3%, p4%, p5%, p6%, newmod%
FOR i% = 1 TO hyeto.number%

WRITE #1, rain(i%)
NEXT i%

FOR i% = 1 TO nomod%
WRITE #1, modu(i%).modno
WRITE #1, modu(i%).dsmod, modu(i%).ofl, modu(i%).typ,

modu(i%).infmod, modu(i%).pi

SELECT CASE modu(i%).typ

CASE 1
p% = modu(i%).pi
WRITE #1, overlnd(p%).man, overlnd(p%).slo, overlnd(p%).Ing
WRITE #1, overlnd(p%).wid

CASE 2
p% = modu(i%).pi
WRITE #1, pipe(p%).Ing, pipe(p%).diam, pipe(p%).slo,

pipe(p%).man

CASE 3
p% = modu(i%).pi
WRITE#1, trapchan(p%) .slo, trapchan(p%) .man, trapchan(p%) .Ing
WRITE #1, trapchan(p%).wid, trapchan(p%).ssl,

trapchan(p%).ss2, trapchan(p%).mdep

CASE 4
p% = modu(i%).pi
WRITE #1, storage(p%).typ, storage(p%).a, storage(p%).b,

storage(p%).cl
WRITE #1, storage(p%).ecu, storage(p%).cu, storage(p%).ccs,

storage(p%).cs
WRITE #1, storage(p%).depth
WRITE #1, storage(p%).si, storage(p%).csp, storage(p%).sp,

storage(p%).stlev

CASE 5
p% = modu(i%).pi
WRITE #1, compchan(p%).slo, compchan(p%).Ing,

compchan(p%).nosegs, compchan(p%).nopts

FOR j% = 1 TO compchan(p%).nopts
WRITE #1, x(p%, j%), y(p%, j

NEXT j%

FOR j% = 1 TO compchan(p%).nosegs
WRITE #1, segno(p%, j%, 1), segno(p%, j%, 2), n(p%,

NEXT j%

CASE 6
p% = modu(i%).pi
WRITE #1, aqui(p%).slo, aqui(p%).wid, aqui(p%).Ing,

aqui(p%).depth
WRITE #1, aqui(p%).wtl

D - 21

WRITE #1,- agui (p%) .oorp, aqui(p%) .perm, agui(p%) . imc,
aqui(p%).por

END SELECT

NEXT i%

CLOSE #1

END SUB

SUB deletemodule

flag.change% = 0

DO

COLOR 3, 0
CLS
COLOR 0, 2
LOCATE 1, 28: PRINT " WITSKM - Delete mode "
COLOR 3, 0
LOCATE 4, 1
PRINT "Enter module number to be deleted (0 to return)"
LOCATE 4, 49
COLOR 7, 0: INPUT "", nn%
COLOR 3, 0

IF nn% «= 0 THEN EXIT SUB

FOR n% » 1 TO nomod%
IF modu(n%).modno = nn% THEN

ChangeModType n%
moduzero n%

FOR g% = n% + 1 TO nomod%
SWAP modu(q% - 1), modu(q%)

NEXT q%

nomod% «= nomod% - 1

EXIT SUB
END IF

NEXT n%

BEEP: BEEP: PRINT : PRINT
PRINT "Module "; nn%; " does not exist ... press any key"
WHILE INKEY$ = "": WEND

LOOP UNTIL flag.change% = 1

END SUB

SUB duplicate

clearscreen

IF flag.file% = 0 THEN

heading$ = "Enter source filename"
file$ = getfilename$(heading$)
flag.file% = 1
COLOR 3, 0

D - 22

END IF

LOCATE 8, 1
PRINT "Reading file "; file$
datain

heading$ = "Enter destination filename"
file$ = getfilenameS(heading$)
LOCATE 8, 1
PRINT "Writing to file "; file$
dataout

END SUB

FUNCTION getfilenames (headings)

clearscreenl
LOCATE 4, 1
PRINT headings
COLOR 7, 0
LOCATE 4, 28
INPUT "", filel$: COLOR 3, 0
getfilenameS = UCASE$(filel$)

getfilenameS = "b:n + filel$ + ".DAT"

END FUNCTION

SUB insertmodule

flag.change% = 0

DO

COLOR 3, 0
CLS
COLOR 0, 2
LOCATE 1, 28: PRINT " WITSKM - Update mode ": COLOR 3, 0
LOCATE 4, 1
PRINT "Enter module number to be updated (0 to return)"
COLOR 7, 0
LOCATE 4, 50
INPUT "", nn%
COLOR 3, 0
IF nn% = 0 THEN EXIT SUB

FOR i% = 1 TO nomod%

IF modu(i%).modno = nn% THEN

flag.change% = 0

DO
IF flag.change% = 1 THEN
SELECT CASE modu(i%).typ

CASE 1
pl% = pl% + 1
modu(i%).pi = pl%

CASE 2
p2% = p2% + 1
modu(i%).pi = p2%

CASE 3
p3% = p3% + 1
modu(i%).pi = p3%

D - 23

CASE

CASE

CASE

4
p4% = p4%
modu(i%).

5
p5% = p5%
modu(i%).

6
p6% = p6%
modu(i%).

END SELECT
END IF

flag.change% = 0

change% = 0

SELECT CASE modu(i%)

pi =

pi =

pi =

.typ

p4%

p5%

p6%

CASE 1
newtype% = 1
overlandinput i%, newtype%

IF newtype% <> 1 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).ofl = 0
modu (i%). typ «= newtype%
newtype% = 1
flag.change% •= 1
change% = 1

END IF

CASE 2
newtype% = 2

pipeinput i%, newtype%

IF newtype% <> 2 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).ofl = 0
modu(i%).typ = newtype%
nevrt:ype% = 2
flag.change% = 1
change% = 1

END IF

CASE 3
newtype% = 3
trapinput i%, newtype%

IF newtype% <> 3 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).ofl = 0
modu(i%).typ = newtype%
newtype% = 3
flag.change% = 1
change% = 1

END IF

D - 24

CASE 4
newtype% = 4

storinput i%, newtype%

IF newtype% <> 4 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).ofl = 0
modu(i%).typ = newtype%
newtype% = 4
flag.change% = 1
change% = 1

END IF

CASE 5
newtype% = 5

compinput i%, newtype%

IF newtype% <> 5 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).ofl = 0
modu{i%).typ = newtype%
newtype% = 5
flag.change% = 1
change% = 1

END IF

CASE 6
newtype% = 6

aquifinput i%, newtype%

IF newtype% <> 6 THEN
n% = i%
ChangeModType n%
modu(i%).infmod = 0
modu(i%).ofl = 0
modu(i%).typ = newtype%
newtype% = 6
flag.change% = 1
change% = 1

END IF

END SELECT

LOOP UNTIL change% = 0

EXIT SUB

END IF

NEXT i%

BEEP: BEEP: PRINT : PRINT
PRINT "Module "; nn%; " does not exist ... press any key"

WHILE INKEY$ = "": WEND

LOOP UNTIL flag.change% = 1

END SUB

D - 25

SUB readfilo

clearscreen
heading? = "Enter data filename"
file$ = getfilenameS(headings)

datain
flag.file% = 1
LOCATE 4, 1
PRINT SPACES(79)
LOCATE 6, 1
PRINT SPACES(79)

END SUB

SUB TitleEdit

REDIMrow(l), col(l)

clearscreen

COLOR 0, 2
LOCATE 23, 13
PRINT promptlS

COLOR 3, 0
LOCATE 4, 1
PRINT "Title"
COLOR 3, 4
LOCATE 6, 1
PRINT titleS
COLOR 3, 0

nvalues% = 1
NBLOCK% = 1
NCOLS% = 1
nfield% = 79
counter% = 1
M% = 1

row(M%) = 6
col(M%) = 1

flag.string% = 1

CALL Bcreeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),
col(), a$, change%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)

flag.string% = 0

IF flag.esc% = 1 THEN
EXIT SUB

END IF

FLAGNEXT% = 0
FLAGCR% = 0
FLAGCURSOR% = 0

IF change% <> 0 THEN title$ = a$

END SUB

SUB updatemodule

COLOR 3, 0

D - 26

CLS

COLOR 0, 2
LOCATE 1, 28
PRINT "WITSKM- Insert mode :"
COLOR 3, 0
flag.insert% = 1
inputeditor
flag.insert% = 0

END SUB

SUB writefile

clearscreen

IF flag.file% = 0 THEN
COLOR 3, 0
headings = "Enter data filename"
file$ = getfilename$(heading$)
flag.file% = 1

END IF

LOCATE 6, 1: PRINT "Writing data to file
LOCATE 6, 24: PRINT file$
dataout
LOCATE 4, 1: PRINT SPACE$(79)
LOCATE 6, 1: PRINT SPACE$(79)

END SUB

DECLARE SUB compzero (p5%)
DECLARE SUB aquifinput (i%, newtype%)
DECLARE SUB compinput (i%, newtype%)
DECLARE SUB aquizero (p6%)
DECLARE SUB moduzero (i%)
DECLARE SUB overlndzero (pl%)
DECLARE SUB pipezero (p2%)
DECLARE SUB trapchanzero (p3%)
DECLARE SUB storagezero (p4%)
DECLARE SUB trapinput (i%, newtype%)
DECLARE SUB storinput (i%, newtype%)
DECLARE SUB modulechange (ans$, i%)
DECLARE SUB pipeinput (i%, newtype%)
DECLARE SUB overlandinput (i%, newtype%)
DECLARE SUB modulenumberinfo (i%)
DECLARE SUB screeneditor (NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),
col(), a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)
DECLARE SUB leftarrow (M%, rowl(), col!(), counter%)
DECLARE SUB uparrow (counter%, M%, rowl(), coll(), NBLOCK%, NCOLS%)
DECLARE SUB rightarrow (M%, nvalues%, counter%, row!(), coll())
DECLARE SUB downarrow (counter%, NBLOCK%, M%, row!(), coli(), nvalues%,
NCOLS%)
DECLARE SUB clearscreen ()
TYPE modconnectivity

modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE

D - 27

Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
Bio AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
Bio AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
BBl AS SINGLE
BS2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE Btormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

D - 28

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED expo, over(), rain{), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, nevmiod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

END

SUB aquifinput (i%, newtype%)

REDIM row(13), col(13)

CALL clearscreen

COLOR 0, 2
LOCATE 23, 13
PRINT prompt1$

COLOR 3, 0
LOCATE 3, 1: PRINT "Module number :"
COLOR 3, 4
LOCATE 3, 45: PRINT USING "######"; modu(i%).modno
COLOR 3, 0
LOCATE 4, 1: PRINT "Downstream module :"
COLOR 3, 4
LOCATE 4, 45: PRINT USING "######"; modu(i%).dsmod
COLOR 3, 0
LOCATE 5, 1: PRINT "Module type :"
COLOR 3, 4
LOCATE 5, 45: PRINT USING "######"; modu(i%).typ

pnt% = modu(i%).pi
COLOR 3, 0
LOCATE 6, 1: PRINT "Width of aquifer (m) :"
COLOR 3, 4
LOCATE 6, 45: PRINT USING "######"; aqui(pnt%).wid
COLOR 3, 0
LOCATE 7, 1: PRINT "Length of aquifer(m) : "
COLOR 3, 4
LOCATE 7, 45: PRINT USING "######"; aqui(pnt%).Ing
COLOR 3, 0
LOCATE 8, 1: PRINT "Depth of aquifer (m) :"
COLOR 3, 4
LOCATE 8, 45: PRINT USING "###.##"; aqui(pnt%).depth
COLOR 3, 0
LOCATE 9, 1: PRINT "Slope (m/m) :"
COLOR 3, 4
LOCATE 9, 45: PRINT USING "##.###"; aqui(pnt%).slo
COLOR 3, 0
LOCATE 10, 1: PRINT "Height of water table (m) :"
COLOR 3, 4
LOCATE 10, 45: PRINT USING "##.###"; aqui(pnt%).wtl
COLOR 3, 0
LOCATE 11, 1: PRINT "Moisture content(fraction by volume) :"
COLOR 3, 4
LOCATE 11, 45: PRINT USING "##.###"; aqui(pnt%).imc
COLOR 3, 0
LOCATE 12, 1: PRINT "Porosity :"
COLOR 3, 4
LOCATE 12, 45: PRINT USING "##.###"; aqui(pnt%).por
COLOR 3, 0
LOCATE 13, 1: PRINT "Suction head (m) :"

D - 29

COLOR 3, 4
LOCATE 13, 45: PRINT USING "##.###"; aqui(pnt%).oorp
COLOR 3, 0
LOCATE 14, 1: PRINT "Permeability (mm/h)
COLOR 3, 4
LOCATE 14, 45: PRINT USING "###.##"; aqui(pnt%).perm
COLOR 3, 0
LOCATE 15, 1: PRINT "Parallel module for infiltration :"
COLOR 3, 4
LOCATE 15, 45: PRINT USING "######"; modu(i%).infmod

nvalues% «= 13
NBLOCK% «= 1
NCOLS% = 1
nfield% = 6
counter% = 1
FOR M% = 1 TO nvalues%

row(M%) = 2 + M%
col(M%) = 45

NEXT M%
M% = 1

flag.end% «= 0

DO
CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),

COl(), a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string*)

IF flag.eBC% =
EXIT SUB

END IF

1 THEN

IF CHANGE%
IF mm% «
IF mm% =
IF mm% =

= 1 THEN
1 THEN modu(i%).modno
2 THEN modu(i%).dsmod
3 THEN

VAL(a$)
VAL(a$)

newtype%
EXIT SUB

END IF

VAL(a$)

IF mm% = 4 THEN aqui(pnt%) .wid «= VAL(a$)
IF mm% = 5 THEN aqui(pnt%).Ing = VAL(a$)
IF mm% = 6 THEN aqui(pnt%).depth «= VAL(a$)
IF mm% = 7 THEN aqui(pnt%).slo » VAL(a$)
IF mra% = 8 THEN aqui(pnt%).wtl = VAL(a$)
IF mm% = 9 THEN aqui(pnt%).imc = VAL(a$)
IF mm% = 10 THEN aqui(pnt%).por = VAL(a$)
IF mm% = 11 THEN aqui(pnt%).sorp = VAL(a$)
IF mm% = 12 THEN aqui(pnt%).perm = VAL(a$)
IF mm% = 13 THEN modu(i%).infmod « VAL(a$)

COLOR 7, 1
LOCATE row(M%) + counter% - 1, col(M%)

IF mm% <= 5 OR mm% = 13 THEN
PRINT USING "######"; VAL(a$)

ELSEIF mm% = 8 OR mm% = 6 OR mm% = 12 THEN
PRINT USING "###.##"; VAL(a$)

ELSE
PRINT USING "##.###"; VAL(a$)

END IF
END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 0' reset
EXIT SUB

ELSEIF FLAGCURSOR% = 1 THEN

D - 30

CALL uparrow(couhter%, M%, row(), col(), NBLOCK%, NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% = 4 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCR% = 0 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)

END IF

LOOP UNTIL flag.end% = 1

END SUB

SUB aquizero (p%)
aqui(p%).depth = 0
aqui(p%).perm = 0
aqui(p%).sorp = 0
aqui(p%).imc = 0
aqui(p%).yprev = 0
aqui(p%).slo = 0
aqui(p%).wid = 0
aqui(p%).Ing = 0
aqui(p%).wtl = 0
aqui(p%).por = 0
aqui(p%).cap = 0
aqui(p%).volume = 0

END SUB

SUB clearscreen

COLOR 3, 0
FOR JJ% = 2 TO 23

LOCATE JJ%, 1: PRINT SPACES(79)
NEXT JJ%

END SUB

SUB compinput (i%, newtype%)

REDIM row(20), col(20)

CALL clearscreen

COLOR 0, 2
LOCATE 23, 13
PRINT prompt1$

COLOR 3/0
LOCATE 3, 1: PRINT "Module number :"
COLOR 3, 4
LOCATE 3, 45: PRINT USING "######"; modu(i%).modno
COLOR 3, 0
LOCATE 4, 1: PRINT "Downstream module :"
COLOR 3, 4
LOCATE 4, 45: PRINT USING "######"; modu(i%).dsmod
COLOR 3, 0
LOCATE 5, 1: PRINT "Module type :"
COLOR 3, 4
LOCATE 5, 45: PRINT USING "######"; modu(i%).typ

pnt% = modu(i%).pi

COLOR 3, 0: LOCATE 6, 1: PRINT "Length of compound channel (m)

D - 31

COLOR 3, 4: LOCATE 6, 45: PRINT USING "######"; compchan(pnt%).Ing
COLOR 3, 0: LOCATE 7,1: PRINT "Bed olope (m/m)

: "
COLOR 3, 4: LOCATE 7, 45: PRINT USING "##.###"; compchan(pnt%).olo
COLOR 3, 0: LOCATE 8, 1: PRINT "No. of pointB describing channel

: "
COLOR 3, 4: LOCATE 0, 45: PRINT USING "##.###"; compchan(pnt%).nopto
COLOR 3, 0: LOCATE 9, 1: PRINT "No. of channel segments

: "
COLOR 3, 4: LOCATE 9, 45: PRINT USING "###.##"; compchan(pnt%).nosegs
COLOR 3, 0: LOCATE 10, 1: PRINT "Parallel module for overflows

COLOR 3, 4: LOCATE 10, 45: PRINT USING "######"; modu(i%).ofl

nvalues% = 8
NBLOCK* = 1
NCOLS% = 1
nfield% = 6
counter% «= 1
FOR M% = 1 TO nvalueo%

row(M%) = 2 + M%
col(M%) = 45

NEXT M%
M% = 1

flag.end% = 0

DO

CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),
col(), a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.etring%)

IF flag.esc% = 1 THEN
EXIT SUB

END IF

IF CHANGE% = 1 THEN
IF mm% = 1 THEN modu(i%).modno = VAL(a$)
IF mm% = 2 THEN modu(i%).dsmod = VAL(a$)
IF mm% = 3 THEN

newtype% = VAL(a$)
EXIT SUB

END IF
IF mm% = 4 THEN compchan(pnt%).Ing = VAL(a$)
IF mm% = 5 THEN compchan(pnt%).slo = VAL(a$)
IF mm% = 6 THEN compchan(pnt%).nopts = VAL(a$)
IF mm% = 7 THEN compchan(pnt%).nosegs = VAL(a$)
IF mm% = 8 THEN modu(i%).ofl = VAL(a$)

COLOR 7, 1
LOCATE row(M%) + counter% - 1, col(M%)

IF mm% = 5 THEN
PRINT USING "##.###"; VAL(a$)

ELSEIF mm% = 4 THEN
PRINT USING "###.##"; VAL(a$)

ELSE
PRINT USING "######"; VAL(a$)

END IF

END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 01 reset
GOTO screenl

ELSEIF FLAGCURSOR% = 1 THEN

D - 32

CALL uparrow(counter%, M%, row(), col(), NBLOCK%, NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% = 4 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCR% = 0 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
END IF

LOOP UNTIL flag.end% = 1

screenl: CALL clearscreen

COLOR 3, 0
LOCATE 3, 1: PRINT "Enter points describing channel section :"
LOCATE 5, 10
PRINT "X coordinate (m)"
LOCATE 5, 30
PRINT "Y coordinate (m)"

COLOR 0, 2
LOCATE 23, 13
PRINT prompt1$

COLOR 3, 4
count% = 1
add% = 1
add2% = 1

FOR M% = 1 TO 2 * compchan(pnt%).nopts

IF count% = M% THEN
row(M%) = 6 + add%
col(M%) = 16
count% = count% + 2
LOCATE row(M%), col(M%)
PRINT USING "####.#"; x(pnt%, add%)
add% = add% + 1

ELSE
row(M%) = 6 + add2%
col(M%) = 34
LOCATE row(M%), col(M%)
PRINT USING "####.#"; y(pnt%, add2%)
add2% = add2% + 1

END IF

NEXT M%

nvalues% = 2 * compchan(pnt%).nopts
NBLOCK% = 1
NCOLS% = 2
nfield% = 6
counter% = 1

M% = 1

£lag.end% = 0

DO
CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),

), a$, CHANGE%, M%, nun%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)

IF flag.esc% = 1 THEN
EXIT SUB

D - 33

END IF

IF CHANGE% = 1 THEN

count* = 1
add% «= 1
add2% = 1

FOR k% = 1 TO 2 * compchan(pnt%).nopto

IF count% = k% THEN
IF M% = k% THEN

x(pnt%, add%) = VAL(a$)
ELSE

add% = add% + 1
count% = count% + 2

END IF
ELSE

IF M% = k% THEN
y(pnt%, add2%) = VAL(a$)

ELSE
add2% = add2% + 1

END IF
END IF

NEXT k%

END IF

COLOR 7, 1
LOCATE row(M%) + counter% - 1, col(M%)

PRINT USING "###.##"; VAL(a$)

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 0' reset
GOTO screen2

ELSEIF FLAGCURSOR% = 1 THEN
CALL uparrow(counter%, M%, row(), col(), NBLOCK%, NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% = 2 THEN
CALL leftarrow(M%, row(), col(), counter%)
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% = 3 THEN
CALL rightarrow(M%/ nvalues%, counter%, row(), col())
FLAGCURSOR% » 0

ELSEIF FLAGCURSOR% = 4 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
FLAGCURSOR% = 0

END IF

LOOP UNTIL flag.end% = 1

screen2: CALL clearscreen

LOCATE 3, 1: PRINT "Enter point numbers for channel segments :"

LOCATE 5, 1
PRINT "Segment no."
LOCATE 5, 14
PRINT "Left point"
LOCATE 5, 26 •
PRINT "Right point"
LOCATE 5, 38
PRINT "RoughnesB (n)"

D - 34

COLOR 0, 2
LOCATE 23, 13
PRINT prompt1$

COLOR 3, 0
FOR k% = 1 TO compchan(pnt%).nosegs

LOCATE 7 + k% - 1, 5
PRINT USING "###"; k%

NEXT k%

count% = 1
countl% = 2
add% = 1 •
addl% = 1
add2% = 1

COLOR 3, 4
FOR M% = 1 TO 3 * compchan(pnt%).nosegs

IF count% - M% THEN
row(M%) = 6 + add%
col(M%) = 16
count% = count% + 3
LOCATE row(M%), col{M%)
PRINT USING "######"; segno(pnt%, add%, 1)
add% = add% + 1

ELSEIF countl% = M% THEN
row(M%) = 6 + addl%
col(M%) = 28
LOCATE row(M%), col(M%)
PRINT USING "######"; segno(pnt%, addl%, 2)
addl% = addl% + 1
countl% = countl% + 3

ELSE
row(M%) = 6 + add2%
col(M%) = 40
LOCATE row(M%), col(M%)
PRINT USING "##.###"; n(pnt%, add2%)
add2% = add2% + 1

END IF

NEXT M%

nvalues% - 3 * compchan(pnt%).nosegs
NBLOCK% = 1
NCOLS% = 3
nfield% = 6
counter% = 1

M% = 1

flag.end% = 0

DO
CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),

, a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)

IF flag.esc% = 1 THEN
EXIT SUB

END IF

IF CHANGE% = 1 THEN

count% = 1
count1% = 2
add% = 1
addl% «= 1

D - 35

add2% - 1 •

COLOR 7, 1
LOCATE row(M%) + counter% - 1, col(M%)

FOR k% *= 1 TO 3 * compchan(pnt%).nooegs

IF count% «= k.% THEN
IF M% = k% THEN

eegno(pnt%, add%, 1) «= VAL(a$)
PRINT USING "######"; VAL(a$)

ELSE
add% «> add% + 1
count% = count% + 3

END IF
ELSEIF countl% = k% THEN

IF M% = k% THEN
segno(pnt%, addl%, 2) = VAL(a$)
PRINT USING "######"; VAL(a$)

ELSE
addl% = addl% + 1
countl% = countl% + 3

END IF
ELSE

IF M% = k% THEN
n(pnt%, add2%) = VAL(a$)
PRINT USING "##.###"; VAL(a$)

ELSE
add2% «= add2% + 1

END IF
END IF

NEXT k%

END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 0' reset
EXIT SUB

ELSEIF FLAGCURSOR% = 1 THEN
CALL uparrow(counter%, M%, row(), col(), NBLOCK%, NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% = 2 THEN
CALL leftarrow(M%, row(), col(), counter%)
FLAGCURSOR% " 0

ELSEIF FLAGCURSOR% - 3 THEN
CALL rightarrow(M%, nvalues%, counter%, row(), col())
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% = 4 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
FLAGCURSOR% = 0

END IF

LOOP UNTIL flag.end% = 1

END SUB

SUB compzero (p%)

FOR j% = 1 TO compchan(p%).nopts
x(p%, j%) »= 0
y(p%, j%) = 0

NEXT j%

D - 36

FOR j% = 1 TO compchan(p%).nosegs
segno(p%, j%, 1) = 0
segno(p%, j%, 2) = 0
n(p%, j%) = 0

NEXT j%

compchan(p%).slo = 0
compchan(p%).Ing = 0
compchan(p%).nosegs = 0
compchan(p%).nopts = 0

END SUB

SUB downarrow (counter%, NBLOCK%, M%, row(), col(), nvalues%, NCOLS%)

counter% = counter% + 1
IF counter% > NBLOCK% THEN

M.TEMP% = M%: M% = M% + NCOLS%
counter% = 1 ' re-set counter
IF M% > nvalues% THEN
M% = M.TEMP%: counter% = NBLOCK%
LOCATE row(M%) + NBLOCK% - 1, Col(M%): COLOR 7, 0

ELSE
LOCATE row(M%), Col(M%): COLOR 7, 0

END IF
ELSE

LOCATE row(M%) + counter% - 1, col(M%)
COLOR 7, 0

END IF

END SUB

SUB inputeditor

IF flag.insert% = 1 THEN
i% = nomod% + 1

ELSE
i% = 1

END IF

flag.out% = 0

DO

CALL modulenumberinfo(i%)

IF modu(i%).modno = 0 THEN
nomod% = i% - 1
EXIT DO

END IF

DO

typechange% = 0

SELECT CASE modu(i%).typ
CASE 1

pl% = pl% + 1
modu(i%).pi = pl%
IF modu(i%).infmod = 0 THEN

p6% = p6% + 1
i% = i% + 1
newmod% = newmod% + 1
modu(i%).modno = newmod%
modu(i% - 1).infmod = newmod%
modu(i%).typ = 6
modu(i%).pi = p6%

D - 37

modu(i%).domod *> 0
aqui(p6%).depth « 9991
newtypeS. •* 1
CALL overlandinput(it - 1, newtype%)

IF newtype% <> 1 THEN
CALL aquizero(p6%)
p6% «= p6% - 1
CALL moduzero(i%)
i% = i% - 1
CALL ovcrlndzero(pl%)
pl% «= pl% - 1
typochange% = 1
modu(i%).typ • newtype%
newtype% •= 1

END IF

ELSE
newtype% = 1
CALL overlandinput(i%, newtype%)

IF newtype% <> 1 THEN
CALL overlndzero(pl%)

typechange% = 1
roodu (i%). typ •= newtype%
newtype% «= 1

END IF

END IF

CASE 2
p2% «= p2% + 1
modu(i%).pl = p2%
newtype% «= 2
CALL pipeinput(i%, newtype%)

IF newtype% <> 2 THEN
CALL pipezero(p2%)
p2% = p2% - 1
tnodu (i %) . t y p «= newtype%
newtype% = 2
tvT3echange% * 1

END IF

CASE 3
p3% = p3% + 1
modu(i%).pi = p3%
newtype% = 3
CALL trapinput(i%, newtype%)

IF nevrt:ype% <> 3 THEN
CALL trapchanzero(p3%)
p3% = p3% - 1
modu(i%).typ = newtype%
newtype% = 3
typechange% = 1

END IF

CASE 4
p4% = p4% + 1
modu(i%).pi = p4%
storage(p4%).typ = 1
newtypei = 4
CALL storinput(i%, newtype%)

IF newtype% <> 4 THEN

D - 38

CALL storagezero(p4%)
p4% = p4% - 1
modu{i%).typ = newtype%
newtype% = 4
typechange% = 1

END IF

CASE 5
p5% = p5% + 1
modu(i%).pi = p5%
newtype% = 5
CALL compinput(i%, newtype%)

IF newtype% <> 5 THEN
CALL compzero(p5%)
p5% = p5% - 1
modu(i%).typ = newtype%
newtype% = 5
typechange% = 1

END IF

CASE 6
p6% = p6% + 1
modu(i%).pi = p6%
newtype% = 6
CALL aquifinput(i%, newtype%)

IF newtype% <> 6 THEN
CALL aquizero(p6%)
p6% = p6% - 1
modu(i%).typ = newtype%
newtype% = 6
typechange% = 1

END IF

END SELECT

LOOP WHILE typechange% = 1

IF flag.esc% = 1 THEN
flag.esc% = 0
nomod% = i% - 1
EXIT SUB

END IF

IF flag.insert% = 1 THEN
nomod% = i%
flag.out% = 1

ELSE
i% = i% + 1

END IF

LOOP UNTIL flag.out% = 1

END SUB

SUB leftarrow (M%, row(), col(), counter%)

M% = M% - 1
IF M% < 1 THEN M% = 1

LOCATE row(M%) + counter% - 1, col(M%): COLOR 7, 0

END SUB

SUB modulechange (ans$,

D - 39

COLOR 3, 0

FOR kk% •= 6 TO 20
LOCATE kk%, 1
PRINT SPACES(79);

NEXT kk%

IF modu(i%).typ = 4 THEN
pnt% = modu(i%).pl
IF ans$ = "Yes" OR ano$ «= "yeB" THEN

storage(pnt%).typ •» 1
ELSE

storage(pnt%).typ = 0
END IF

END IF

END SUB

SUB modulenumberinfo (i%)

newnum: CALL clearscreen

IF it > 1 THEN
IF modu(i% - l).modno >« 900 THEN

COLOR 3, 4
LOCATE 2, 1
PRINT USING "&###"; "Previous module = "; modu(i% - 2).modno

ELSE
COLOR 3, 4
LOCATE 2, 1
PRINT USING "&###"; "Previous module = "; modu(i% - l).modno

END IF
END IF

COLOR 3,0: LOCATE 4,1: PRINT "Module number ,
•« -

LOCATE 4, 45: PRINT SPACE$(10)
COLOR 7, 0: LOCATE 4, 45
INPUT "", temp

IF temp = 0 THEN
EXIT SUB

ELSE
FOR zv% = 1 TO i%

IF modu(zv%) .modno <= temp THEN
BEEP: BEEP: PRINT : PRINT : PRINT "Module number "; temp;

has already been used ... press any key"
WHILE INKEY$ = "": WEND
GOTO newnum

END IF
NEXT zv%

modu(i%).modno = temp

END IF

LOCATE 2, 1: PRINT SPACE$(30)

COLOR 3, 0
LOCATE 5, 1: PRINT "Downstream module :"
COLOR 7, 0
LOCATE 5, 45: INPUT "", modu(i%).dsmod

COLOR 3,0: LOCATE 7, 1: PRINT "Type of module

LOCATE 8, 3: PRINT "1 = overland flow plane'
LOCATE 9, 3: PRINT "2 = circular pipe"

D - 40

LOCATE 10, 3: PRINT "3 = trapezoidal channel"
LOCATE 11, 3: PRINT "4 = storage basin"
LOCATE 12, 3: PRINT "5 = compound channel"
LOCATE 13, 3: PRINT "6 = aquifer"

COLOR 7, 0
LOCATE 7, 45
INPUT "", modu(i%).typ

SELECT CASE modu(i%).typ

CASE 1
COLOR 3, 0
LOCATE 14, 1: PRINT "Parallel module for infiltration
COLOR 7, 0
LOCATE 14, 45
INPUT "", modu(i%).infmod

CASE 2, 3, 5
COLOR 3, 0
LOCATE 14, 1
PRINT "Parallel module for overflows :"
COLOR 7, 0
LOCATE 14, 45
INPUT "", modu(i%).ofl

END SELECT

END SUB

SUB moduzero (p%)

modu(p%).modno = 0
modu(p%).ofl = 0
modu(p%).dsmod = 0
modu(p%).infmod = 0
modu(p%).pi = 0

END SUB

SUB overlandinput (i%, newtype%)

REDIM row(11), col(11)

CALL clearscreen

COLOR 0, 2
LOCATE 23, 13
PRINT prompt1$

COLOR 3, 0
LOCATE 3, 1: PRINT "Module number
COLOR 3, 4
LOCATE 3, 45: PRINT USING "######"; modu(i%).modno
COLOR 3, 0
LOCATE 4, 1: PRINT "Downstream module
COLOR 3, 4
LOCATE 4, 45: PRINT USING "######"; modu(i%).dsmod
COLOR 3, 0
LOCATE 5, 1: PRINT "Module type ••
COLOR 3, 4
LOCATE 5, 45: PRINT USING "######"; modu(i%).typ

pnt% = modu(i%).pi
COLOR 3, 0: LOCATE 6, 1
PRINT "Width of catchment (m) :"
COLOR 3, 4: LOCATE 6, 45

D - 41

PRINT USING "######"; overlnd(pnt%).wid
COLOR 3, 0: LOCATE 7, 1
PRINT "Length of catchment (m) :"
COLOR 3, 4: LOCATE 7, 45
PRINT USING "######"; overlnd(pnt%).Ing
COLOR 3, 0: LOCATE 8, 1
PRINT "Manning n of catchment :"
COLOR 3, 4: LOCATE 8, 45
PRINT USING "#.####"; overlnd(pnt%).man
COLOR 3, 0: LOCATE 9, 1
PRINT "Slope of catchment (m/m) :"
COLOR 3, 4: LOCATE 9, 45
PRINT USING "#.####"; overlnd(pnt%).elo

IF modu(i%).infmod >= 900 THEN

pntl% = modu(i% + l).pl
COLOR 3, 0: LOCATE 10, 1
PRINT "Permeability (mm/h) :"
COLOR 3, 4: LOCATE 10, 45
PRINT USING "####.#"; aqui(pntl%).perm
COLOR 3, 0: LOCATE 11, 1
PRINT "Suction head (m) :"
COLOR 3, 4: LOCATE 11, 45
PRINT USING "##.###"; aqui(pntl%).sorp
COLOR 3, 0: LOCATE 12, 1
PRINT "Moisture content (Fraction by volume) ... :"
COLOR 3, 4: LOCATE 12, 45
PRINT USING "##.###"; aqui(pntl%).imc
COLOR 3, 0: LOCATE 13, 1
PRINT "Porosity :"
COLOR 3, 4: LOCATE 13, 45
PRINT USING "##.###"f aqui(pntl%).por
nvalues% = 11

ELSE

COLOR 3, 0: LOCATE 10, 1
PRINT "Parallel module for infiltration :"
COLOR 3, 4: LOCATE 10, 45
PRINT USING "######"; modu(i%).infmod
nvalues% = 8

END IF

NBLOCK% = 1
NCOLS% = 1
nfield% = 6
counter% = 1
FOR M% = 1 TO nvalues%

row(M%) = 2 + M%
col(M%) = 45

NEXT M%
M% «= 1

flag.out% = 0

DO

CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),
(), a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)

IF flag.esc% = 1 THEN
EXIT SUB

END IF

IF CHANGE% = 1 THEN

D - 42

IF mm% = 1 THEN modu(i%).modno = VAL(a$)
IF mm% = 2 THEN modu(i%).dsmod = VAL(a$)
IF mm% = 3 THEN

newtype% = VAL(aS)
EXIT SUB

END IF
IF mm% = 4 THEN overlnd(pnt%).wid = VAL(a$)
IF mm% = 5 THEN overlnd(pnt%).Ing = VAL(a$)
IF mm% = 6 THEN overlnd(pnt%).man = VAL(a$)
IF mm% = 7 THEN overlnd(pnt%).slo = VAL(a$)

IF modu(i%).infmod >= 900 THEN

IF mm% = 8 THEN aqui(pntl%).perm = VAL(a$)
IF mm% = 9 THEN aqui(pntl%).sorp = VAL(a$)
IF mm% = 10 THEN aqui(pntl%).imc = VAL(a$)

IF mm% = 11 THEN aqui(pntl%).por = VAL(a$)

ELSE

IF mm% = 8 THEN modu(i%).infmod = VAL(a$)

END IF

COLOR 7, 1: LOCATE row(M%) + counter% - 1, col(M%)

IF mm% = 6 OR mm% = 7 OR mm% >= 9 THEN
PRINT USING "#.####"; VAL(a$)

ELSEIF mm% = 8 THEN
PRINT USING "###.##"; VAL(a$)

ELSE
PRINT USING "######"; VAL(a$)

END IF
END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 01 reset
COLOR 3, 0
EXIT SUB
ELSEIF FLAGCURSOR% = 1 THEN

CALL uparrow(counter%, M%, row(), col(), NBLOCK%, NCOLS%)
FLAGCURSOR% = 0
ELSEIF FLAGCURSOR% = 4 THEN

CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,
NCOLS%)

FLAGCURSOR% = 0
ELSEIF FLAGCR% = 0 THEN

CALL downarrow(counter%, NBLOCK%, M%, row(), col(),
nvalues%, NCOLS%)

END IF

LOOP UNTIL flag.out% = 1

END SUB

SUB overlndzero (p%)
overlnd(p%).man = 0
overlnd(p%).slo = 0
overlnd(p%).Ing = 0
overlnd(p%).wid = 0

END SUB

SUB pipeinput (i%, newtype%)

D - 43

REDIM row(ll), col(ll) •

CALL clearscreen

COLOR 0, 2
LOCATE 23, 13
PRINT promptlS

COLOR 3, 0
LOCATE 3, 1: PRINT "Module number
COLOR 3, 4
LOCATE 3, 45: PRINT USING "######"; modu(i%).modno
COLOR 3, 0
LOCATE 4, 1: PRINT "Downstream module :"
COLOR 3, 4
LOCATE 4, 45: PRINT USING "######"; modu(i%).dsmod
COLOR 3, 0
LOCATE 5, 1: PRINT "Module type :"
COLOR 3, 4
LOCATE 5, 45: PRINT USING "######"; modu(i%).typ

pnt% = modu(i%).pi

COLOR 3,0: LOCATE 6, 1: PRINT "Pipe length (m)

COLOR 3, 4: LOCATE 6, 45: PRINT USING "######"; pipe(pnt%).Ing
COLOR 3, 0: LOCATE 7,1: PRINT "Slope (m/m)

tf

COLOR 3, 4: LOCATE 7, 45: PRINT USING "##.###"; pipe(pnt%).slo
COLOR 3,0: LOCATE 8, 1: PRINT "Roughness n

li

COLOR 3, 4: LOCATE 8, 45: PRINT USING "##.###"; pipe(pnt%).man
COLOR 3, 0: LOCATE 9,1: PRINT "Pipe diameter (m)

COLOR 3, 4: LOCATE 9, 45: PRINT USING "###.##"; pipe(pnt%).diam
COLOR 3, 0: LOCATE 10, 1: PRINT "Parallel module for overflows

COLOR 3, 4: LOCATE 10, 45: PRINT USING "######"; modu(i%).ofl

nvalues% = 8
NBLOCK% = 1
NCOLS% = 1
nfield% = 6
counter% = 1
FOR M% = 1 TO nvalues%

row(M%) «= 2 + M%
col(M%) = 45

NEXT M%
M% = 1

flag.end% = 0

DO
CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),

I, a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.String%)

IF flag.esc% = 1 THEN
EXIT SUB.

END IF

IF CHANGE% = 1 THEN
IF mm% = 1 THEN modu(i%).modno = VAL(a$)
IF mm% = 2 THEN modu(i%).dsmod = VAL(a$)
IF mm% = 3 THEN

newtype% « VAL(a$)
EXIT SUB

END IF

D - 44

IF mm% = 4 THEN pipe(pnt%).Ing = VAL(a$)
IF min% = 5 THEN pipe(pnt%) .slo = VAL(a$)
IF mm% = 6 THEN pipe(pnt%).man = VAL(a$)
IF mm% = 7 THEN pipe(pnt%).diam = VAL(a$)
IF mm% = 8 THEN modu(i%).ofl = VAL(a$)

COLOR 7, 1
LOCATE row(M%) + counter% - 1, col(M%)

i

IF mm% = 5 OR mm% = 6 THEN
PRINT USING "##.###"; VAL(a$)

ELSEIF mm% = 7 THEN
PRINT USING "###.##"; VAL(a$)

ELSE
PRINT USING "######"; VAL(a$)

END IF
END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 01 reset
EXIT SUB

ELSEIF FLAGCURSOR% = 1 THEN
CALL uparrow(counter%, M%, row(), col(), NBLOCK%, NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% = 4 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCR% = 0 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
END IF

LOOP UNTIL flag.out% = 1

END SUB

SUB pipezero (p%)

pipe(p%).slo = 0
pipe(p%).diam = 0
pipe(p%).Ing = 0
pipe(p%).man = 0
pipe(p%).cap = 0
pipe(p%).min = 0

END SUB

SUB raininput

REM $DYNAMIC

REDIM rain.temp(100), row(100), col(100)

clearscreen

COLOR 3, 0
CLS
COLOR 0, 2
LOCATE 1, 28: PRINT " WITSKM - Rain entry mode ": COLOR 3, 0

COLOR 0, 2
LOCATE 23, 13
PRINT promptl$

COLOR 3, 0

D - 45

LOCATE 6, 1
PRINT " Rainfall IntenoitieB in mm/hr :"

hyeto.number.prev% = hyeto.number*
hyeto.number% = CINT(rain.time / tint)
ratio «• (hyeto. number % / hyeto. number. prev%)

FOR it » 1 TO hyeto.number.prev%
rain.temp(i%) » rain(i%)
rain(i%) = 01

NEXT i%

IF ratio >= 1 THEN
k = 1
FOR it = 1 TO hyeto.number.prev%

1 = it * ratio
FOR jt = k TO 1

rain(j%) = rain.temp(i%)
NEXT j%
k = 1 + 1

NEXT i%

ELSE

jt = 0

FOR i% « (1 / ratio) TO hyeto.number.prev% STEP (1 / ratio)
j% = j% + 1
rain(j%) = rain.temp(i%)

NEXT i%

END IF

COLOR 3, 4

FOR it s i TO hyeto.numbert

IF.it > 10 THEN
col(it) = ((it * 8) - 7) - 80 * INT((it - 1) / 10)

ELSE
col(it) = (it * 8) - 7

END IF

row(it) = 10 + INT((it - 1) / 10) - 1

LOCATE row(it), col(it)

PRINT USING "####.#"; rain(it)

NEXT it

ERASE rain.temp

COLOR 3, 0

nvaluest = hyeto.numbert
NBLOCKt = 1
NCOLSt = 10
nfieldt = 6
countert = 1
Mt = 1
flag.endt = 0

DO
CALL screeneditor(NBLOCKt, NCOLSt, nfieldt, nvaluest, countert, row(),

col(), a$, CHANGEt, Mt, mmt, FLAGNEXTt, FLAGCURSORt, FLAGCRt, flag.stringt)

D - 46

IF flag.esc% = 1 THEN
ERASE row, col
EXIT SUB

END IF

IF CHANGE% = 1 THEN
rain(mm%) = VAL(a$)
LOCATE row(M%) •*• counter% - 1, col(M%)
COLOR 7, 1
PRINT USING "#####.#"; VAL(a$)

END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 0' reset
ERASE row, col
EXIT SUB

END IF
IF FLAGCURSOR% = 1 THEN

uparrow counter%, M%, row(), col(), NBLOCK%, NCOLS%
FLAGCURSOR% = 0

END IF
IF FLAGCURSOR% = 2 THEN

leftarrow M%, row(), col(), counter%
FLAGCURSOR% = 0

END IF
IF FLAGCURSOR% = 3 THEN

rightarrow M%, nvalues%, counter%, row(), col()
FLAGCURSOR% = 0

END IF
IF FLAGCURSOR% = 4 THEN

downarrow counter%, NBLOCK%, M%, row(), col(), nvalues%, NCOLS%
FLAGCURSOR% = 0

END IF

LOOP UNTIL flag.end% = 1

END SUB

REM $STATIC
SUB rightarrow (M%, nvalues%, counter%, row(), col())

M% = M% + 1
IF M% > nvalues% THEN M% = nvalues%
LOCATE row(M%) + counter% - 1, col(M%): COLOR 7, 0

END SUB

SUB screeneditor (NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(), col(),
a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)

FLAGCR% = I1set flag
a$ = ••"
b$ = ""
LOCATE , , 1, 6, 7
LOCATE row(M%) + counter% - 1, col(M%)

WHILE FLAGCR%
mm% = M%
CHANGE% = 0

7120 a$ = INKEY$: IF a$ = "" THEN 7120

SELECT CASE a$

CASE CHR$(27)
flag.esc% = 1
FLAGCR% = 0

D - 47

GOTO 7410' escape

CASE CHR$(32)
FLAGNEXT% «= 1
FLAGCR% = 0
GOTO 7410

CASE CHR$(13)
FLAGCR% «= 0
GOTO 7410

END SELECT

IF LEN(a$) > 1 THEN

arrowkey = ASC(MID$(a$, 2, 1))

SELECT CASE arrowkey

CASE 72, 91
CALL uparrow(counter*, M%, row(), col(), NBLOCK%, NCOLS%)
GOTO 7410

CASE 75, 88
CALL leftarrow(M%, row(), col(), counter%)
GOTO 7410

CASE 90, 77
CALL rightarrow(M%, nvalues*, counter%, row(), col())
GOTO 7410

CASE 80, 89
CALL downarrow(counter*, NBLOCK%, M%, row(), col(),

nvalues*, NCOLS%)
GOTO 7410

END SELECT

ELSE

7210 COLOR 7, 0: LOCATE row(M%) + counter* - 1, col(M%)
PRINT SPACES(nfield*)' elBe clear rest of field
LOCATE row(M%) + countor% - 1, col(M%)
PRINT a$;
ichar% = 1
CHANGE% = 1

WHILE FLAGCR%

7260 b$ = INKEY$: IF b$ = "" THEN 7260

IF b$ = CHR$(27) THEN
flag.esc% = 1
FLAGCR* = 0
GOTO 7410

END IF

IF flag.string* = 0 THEN
IF b$ = CHR$(32) THEN

FLAGNEXT* - 1
FLAGCR% = 0
GOTO 7410

END IF
END IF

IF b$ = CHR$(13) THEN
FLAGCR% = 0

D - 48

GOTO 7400 ~
END IF

IF LEN(bS) > 1 THEN

arrowkey = ASC(MID$(b$, 2, 1))

SELECT CASE arrowkey

CASE 72, 91
FLAGCURSOR% = 1
FLAGCR% = 0
GOTO 7400

CASE 75, 88
FLAGCURSOR% = 2
FLAGCR% = 0
GOTO 7400

CASE 90, 77
FLAGCURSOR% = 3
FLAGCR% = 0
GOTO 7400

CASE 80, 89
FLAGCURSOR% = 4
FLAGCR% = 0
GOTO 7400

END SELECT

ELSE

IF b$ = CHR$(8) THEN
e$ = a$: a$ = ""
ichar% = ichar% - 1
a$ = MID$(e$, 1, LEN(e$) - 1)
LOCATE row(M%) + counter% - 1, col(M%)
PRINT SPACE$(nfield%)
LOCATE row(M%) + counter% - 1, col(M%)
PRINT a$;

ELSE
a$ = a$ + b$
ichar% = ichar% + 1
IF ichar% > nfield% THEN

a$ = MID$(a$, 1, nfield%)
BEEP: GOTO 7260

END IF
LOCATE row(M%) + counter% - 1, col(M%) + ichar% -

1
COLOR 7, 0
PRINT b$
LOCATE row(M%) + counter% - 1, col(M%) + ichar%
b$ = ""

END IF
END IF

7400 WEND
END IF

7410 WEND

LOCATE , , 0

END SUB

SUB storagezero (p%)

storage(p%).cl = 0

D - 49

Btorage(p%).ol = 0
storage(p%).a = 0
storage(p%).b = 0
storage(p%) .stlev *= 0
storage(p%).typ = 1
storage(p%).ecu « 0
Btorage(p%),cu = 0
storage(p%).ccs = 0
storage(p%).cs = 0
storage(p%).csp = 0
storage (p%) .sp «= 0
storage(p%) .depth «= o
storage(p%) .critl «= 0
storage{p%).crit2 = 0
storage(p%).crit3 = 0
storage(p%).prevstor = 0

END SUB

SUB storinput (i%, newtype%)

REDIM row(17), col(17)

start: CALL ciearscreen

COLOR 0, 2
LOCATE 23, 13
PRINT promptlS

COLOR 3, 0
LOCATE 3, 1: PRINT "Module number :"
COLOR 3, 4
LOCATE 3, 45: PRINT USING "/#####"; nodu(i%).modno
COLOR 3, 0
LOCATE 4, 1: PRINT "Downstream module :"
COLOR 3, 4
LOCATE 4, 45: PRINT USING "######"; modu(i%).dsmod
COLOR 3, 0
LOCATE 5, 1: PRINT "Module type :"
COLOR 3, 4
LOCATE 5, 45: PRINT USING "######"; modu(i%).typ

pnt% = modu(i%).pi

COLOR 3, 0: LOCATE 6, 1: PRINT "Coeff a in stor(m*3)=a*(depth(m))*
a

COLOR 3, 4: LOCATE 6, 45: PRINT USING "####.#"; storage(pnt%).a
COLOR 3, 0: LOCATE 7, 1
PRINT "Coeff b in stor(m*3)=a*(depth(m))"b :"
COLOR 3, 4: LOCATE 7, 45: PRINT USING "##.###"; storage(pnt%).b
COLOR 3, 0: LOCATE 8, 1
PRINT "Spillway level (m) :"
COLOR 3, 4: LOCATE 8, 45: PRINT USING "###.##"; storage(pnt%).si
COLOR 3, 0: LOCATE 9, 1
PRINT "Outlet :"

IF storage(pnt%).typ = 1 THEN
COLOR 3, 4: LOCATE 9, 45: PRINT " Yes"

ELSE
COLOR 3, 4: LOCATE 9, 45: PRINT " No"

END IF

IF storage(pnt%).typ = 1 THEN
COLOR 3, 0
LOCATE 10, 1: PRINT "Outlet invert level (m)
COLOR 3, 4
LOCATE 10, 45: PRINT USING "###.##"; storage(pnt%).cl

D - 50

COLOR 3, 0
LOCATE 11, 1: PRINT "Coeff c for unsubmerged outlet c*depAd .. :"
COLOR 3, 4
LOCATE 11, 45: PRINT USING "###.##-; storage(pnt%).ecu
COLOR 3, 0
LOCATE 12, 1: PRINT "Coeff d for unsubmerged outlet c*dep*d .. :"
COLOR 3, 4
LOCATE 12, 45: PRINT USING "###.##"; storage(pnt%).cu
COLOR 3, 0
LOCATE 13, 1: PRINT "Coeff e for submerged outlet e*dep~f :"
COLOR 3, 4
LOCATE 13, 45: PRINT USING "###.##"; storage(pnt%).ccs
COLOR 3, 0
LOCATE 14, 1: PRINT "Coeff f for submerged outlet e*dep~f :"
COLOR 3, 4
LOCATE 14, 45: PRINT USING "###.##"; storage(pnt%).cs
COLOR 3, 0
LOCATE 15, 1: PRINT "Coeff g for spillway g*depAh "
COLOR 3, 4
LOCATE 15, 45: PRINT USING "####.#"; storage(pnt%).csp
COLOR 3, 0
LOCATE 16, 1: PRINT "Coeff h for spillway g*dep~h :"
COLOR 3, 4
LOCATE 16, 45: PRINT USING "##.###"; storage(pnt%).sp
COLOR 3, 0
LOCATE 17, 1: PRINT "Depth or diam (m) of outlet :"
COLOR 3, 4
LOCATE 17, 45: PRINT USING "##.###"; storage(pnt%).depth
COLOR 3, 0
LOCATE 18, 1: PRINT "Initial water level in dam (m) :"
COLOR 3, 4
LOCATE 18, 45: PRINT USING "###.##"; storage(pnt%).stlev
nvalues% = 16

ELSE
COLOR 3, 0
LOCATE 10, 1: PRINT "Coeff g for spillway g*dep*h :"
COLOR 3, 4
LOCATE 10, 45: PRINT USING "####.#"; storage(pnt%).csp
COLOR 3, 0
LOCATE 11, 1: PRINT "Coeff h for spillway g*dep*h :"
COLOR 3, 4

• LOCATE 11, 45: PRINT USING "##.###"; storage(pnt%).sp
COLOR 3, 0
LOCATE 12, 1: PRINT "Initial water level in dam (m) :"
COLOR 3, 4
LOCATE 12, 45: PRINT USING "###.##"; storage(pnt%).stlev
nvalues% = 10

END IF

NBLOCK% = 1
NCOLS% = 1
nfield% = 6
counter% = 1

FOR M% = 1 TO nvalues%
row(M%) = 2 + M%
col(M%) = 45

NEXT M%
M% = 1

flag.end% = 0

DO
CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),

col{), a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.String%)

IF flag.esc% = 1 THEN

D - 51

EXIT SUB
END IF

IF CHANGE%
IF mm%
IF mm%
IF mm%

1 THEN
1 THEN modu(i%).modno
2 THEN modu(i*i-demod
3 THEN

VAL(a$)

VAL(a$)
VAL(a$)

4 THEN Btorage(pnt%).a «
5 THEN storage(pnt%).b •
6 THEN storage(pnt%).si
7 THEN

newtype%
EXIT SUB

END IF
IF mm%
IF mm%
IF mm%
IF mm%

ans$ = a$
CALL modulechange(ans$, i%)
GOTO start

END IF
IF storage(pnt%).typ = 1 THEN

IF mm% = 8 THEN storage(pnt%).
IF mm% = 9 THEN storage(pnt%).
IF mm% = 10 THEN storage(pnt%)
IF mm% = 1 1 THEN storage(pnt%)
IF mm% = 12 THEN storage(pnt%)
IF mm% = 13 THEN storage(pnt%)
IF mm% = 14 THEN storage(pnt%)
IF mm% = 1 5 THEN storage(pnt%)
IF mm% = 16 THEN storage(pnt%)

VAL(a$)
VAL(aS)
= VAL(aS)

cl = VAL(a$)
ecu = VAL(a$)
.cu = VAL(a$)
.ccs = VAL(a$)
.cs = VAL(a$)
.csp = VAL(a$)
.sp = VAL(a$)
.depth = VAL(a$)
.stlev = VAL(a$)

COLOR 7, 1: LOCATE row(M%) + counter% - 1, col(M%)
IF mm% <= 3 THEN

PRINT USING ••######"; VAL(a$)
ELSEIF mm% = 4 OR mm% «= 13 THEN

PRINT USING "####.#"; VAL(a$)
ELSEIF mm% = 5 OR mra% = 15 OR mm% = 14 THEN

PRINT USING "##.###"; VAL(a$)
ELSE

PRINT USING "###.##"; VAL(a$)
END IF

ELSE
IF mm% = 8 THEN storage(pnt%).csp = VAL(a$)
IF mm% = 9 THEN storage(pnt%).sp = VAL(a$)
IF mm% = 10 THEN storage(pnt%).stlev = VAL(a$)

COLOR 7,. 1: LOCATE row(M%) + counter% - 1, col(M%)

IF mm% <= 3 THEN
PRINT USING "######"; VAL(a$)

ELSEIF mm% = 4 OR mm% = 8 THEN
PRINT USING "####./"; VAL(a$)

ELSEIF mm% = 6 OR mm% = 10 THEN
PRINT USING "###.##"; VAL(a$)

ELSE
PRINT USING "##.###"; VAL(a$)

END IF

END IF

END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 0' reset
EXIT SUB

ELSEIF FLAGCURSOR% = 1 THEN
CALL uparrow(counter%, M%, row(),
FLAGCURSOR% = 0

COl(), NBLOCK%, NCOLS%)

D - 52

ELSEIF FLAGCURSOR% = 4 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%, NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCR% = 0 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%, NCOLS%)

END IF

LOOP UNTIL flag.end% = 1

END SUB

SUB Timesteplnfo

REDIM row(3), col(3)

clearscreen

COLOR 0, 2
LOCATE 23, 13
PRINT prompt1$

COLOR 3, 0
LOCATE 4, 1
PRINT "Time interval (hours) :"
COLOR 3, 4
LOCATE 4, 45
PRINT USING "#.###"; tint
COLOR 3, 0
LOCATE 6, 1
PRINT "Simulation duration (hours) : "
COLOR 3, 4
LOCATE 6, 45
PRINT USING "##.##"; sim.time
COLOR 3, 0
LOCATE 8, 1
PRINT "Rainfall duration (hours) :"
COLOR 3, 4
LOCATE 8, 45
PRINT USING "##.##"; rain.time

nvalues% = 3
NBLOCK% = 1
NCOLS% = 1
nfield% = 5
counter% = 1

FOR M% = 1 TO nvalues%
row(M%) = 2 + 2 * M%
col(M%) = 45

NEXT M%

M% = 1

flag.end% = 0

DO
CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),

, a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)

IF flag.esc% = 1 THEN
EXIT SUB

END IF

IF CHANGE% = 1 THEN

D - 53

IF mm% = 1 THEN tint = VAL(a$)
IF mm% = 2 THEN Dim.time = VAL(a$)
IF mm% = 3 THEN rain.time = VAL(a$)
noit% = CINT(Bim.time / tint)

COLOR 7, 1
LOCATE row(M%) + counter% - 1, col(M%)

IF mm% «= 1 THEN
PRINT USING "#.###"; VAL(a$)

ELSE
PRINT USING "##.##"; VAL(a$)

END IF

END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 0' reeet
EXIT SUB

ELSEIF FLAGCURSORSs = 1 THEN
uparrow counter%, M%, row(), col(), NBLOCK%, NCOLS%
FLAGCURSOR% «= 0

ELSEIF FLAGCURSOR% = 4 THEN
downarrow counter%, NBLOCK%, M%, row(), col(), nvalues%, NCOLS%
FLAGCURSOR% » 0

ELSEIF FLAGCR* = 0 THEN
downarrow counter%, NBLOCK%, M%, row(), col(), nvalues%, NCOLS%

END IF

LOOP UNTIL flag.end% = 1

END SUB

SUB TitleEnter

clearscreen

COLOR 3, 0
LOCATE 3, 1
PRINT "Enter a title describing the data set
LOCATE 5, 1
PRINT "Title line"
COLOR 7, 0
LOCATE 5, 12
LINE INPUT "", title$

END SUB

SUB trapchanzero (p%)

trapchan(p%).slo = 0
trapchan(p%). Ing «= 0
trapchan(p%).man = 0
trapchan(p%).wid = 0
trapchan(p%).ssl = 0
trapchan(p%).ss2 = 0
trapchan(p%).mdep = 0
trapchan(p%).cap = 0

END SUB

SUB trapinput (i%, newtype%)

REDIM row(11), col(11)

CALL clearscreen

D - 54

COLOR 0, 2
LOCATE 23, 13
PRINT prompt1$

COLOR 3, 0
LOCATE 3, 1: PRINT "Module number :"
COLOR 3, 4
LOCATE 3, 45: PRINT USING "######"; modu(i%).modno
COLOR 3, 0
LOCATE 4, 1: PRINT "Downstream module :"
COLOR 3, 4
LOCATE 4, 45: PRINT USING "######"; modu(i%).dsmod
COLOR 3, 0
LOCATE 5, 1: PRINT "Module type :"
COLOR 3, 4
LOCATE 5, 45: PRINT USING "######"; modu(i%).typ

pnt% = modu(i%).pi

COLOR 3, 0: LOCATE 6, 1: PRINT "Length of trapezoidal channel (m)
. :"
COLOR 3, 4: LOCATE 6, 45: PRINT USING "######"; trapchan(pnt%).Ing
COLOR 3, 0: LOCATE 7, 1: PRINT "Bed slope (m/m)

COLOR 3, 4: LOCATE 7, 45: PRINT USING "##.###"; trapchan(pnt%).slo
COLOR 3, 0: LOCATE 8, 1: PRINT "Roughness n

COLOR 3, 4: LOCATE 8, 45: PRINT USING "##.###"; trapchan(pnt%).man
COLOR 3, 0: LOCATE 9, 1: PRINT "Base width of trapezoidal channel

(m).... :"
COLOR 3, 4: LOCATE 9, 45: PRINT USING "###.##"; trapchan(pnt%).wid
COLOR 3, 0: LOCATE 10, 1: PRINT "LH side slope (horiz/vert)

COLOR 3, 4: LOCATE 10, 45: PRINT USING "###.##"; trapchan(pnt%).ssl
COLOR 3, 0: LOCATE 11, 1: PRINT "RH side slope (horiz/vert)

COLOR 3, 4: LOCATE 11, 45: PRINT USING "###.##"; trapchan(pnt%).ss2
COLOR 3, 0: LOCATE 12, 1: PRINT "Maximum flow depth (m)

COLOR 3, 4: LOCATE 12, 45: PRINT USING "###.##"; trapchan(pnt%).mdep
COLOR 3, 0: LOCATE 13, 1: PRINT "Parallel module for overflows

COLOR 3, 4: LOCATE 13, 45: PRINT USING "######"; modu(i%).ofl

nvalues% = 11
NBLOCK% = 1
NCOLS% = 1
nfield% = 6
counter% = 1
FOR M% - 1 TO nvalues%

row(M%) = 2 + M%
col(M%) = 45

NEXT M%
M% - 1

flag.end% = 0

DO

CALL screeneditor(NBLOCK%, NCOLS%, nfield%, nvalues%, counter%, row(),
col(), a$, CHANGE%, M%, mm%, FLAGNEXT%, FLAGCURSOR%, FLAGCR%, flag.string%)

IF flag.esc% = 1 THEN
EXIT SUB

END IF

IF CHANGE% = 1 THEN

D - 55

IF mm% • 1 THEN modu(i%).modno «= VAL(a$)
IF mm* «= 2 THEN modu (i%).dsmod = VAL(a$)
IF mm% = 3 THEN

newtype* = VAL(a$)
EXIT SUB

END IF
IF mm* = 4 THEN trapchan(pnt%) . Ing •= VAL(a$)
IF mm% = 5 THEN trapchan(pnt%).slo «= VAL(a$)
IF mm% = 6 THEN trapchan(pnt%).man «= VAL(a$)
IF mm% «= 7 THEN trapchan(pnt%) .wid « VAL(a$)
IF mm% = 8 THEN trapchan(pnt%).BBI = VAL(a$)
IF mm% = 9 THEN trapchan(pnt%).BB2 = VAL(a$)
IF mm% = 10 THEN trapchan(pnt%).mdop = VAL(a$)
IF mm% = 11 THEN modu(i%).ofl = VAL(a$)

COLOR 7, 1
LOCATE row(M%) + counter% - 1, col(M%)
IF mm% = 5 OR ram% «= 6 OR mm% = 10 THEN

PRINT USING "##.###"; VAL(a$)
ELSEIF mm% = 7 OR mm% = 8 OR mra% = 9 THEN

PRINT USING "###.##"; VAL(a$)
ELSE

PRINT USING "######"; VAL(a$)
END IF

END IF

IF FLAGNEXT% = 1 THEN
FLAGNEXT% = 0' reset
EXIT SUB

ELSEIF FLAGCURSOR% = 1 THEN
CALL uparrow(counter*, M%, row(), col(), NBLOCK%, NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCURSOR% - 4 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%,

NCOLS%)
FLAGCURSOR% = 0

ELSEIF FLAGCR% = 0 THEN
CALL downarrow(counter%, NBLOCK%, M%, row(), col(), nvalues%, NCOLS%)

END IF

LOOP UNTIL flag.end% = 1

END SUB

SUB uparrow (counter%, M%, row(), col(), NBLOCK%, NCOLS%)

counter* = counter* - 1
IF counter* < 1 THEN

M.TEMP* = M%: M% «= M% - NCOLS*
counter* = NBLOCK* 're-set counter
IF M% < 1 THEN M% = M.TEMP*z counter* = I1 can't move higher than high
LOCATE row(M%) + counter* - 1, col(M%): COLOR 7, 0

ELSE
LOCATE row(M%) + counter* - 1, col(M%): COLOR 7, 0

END IF

END SUB

DECLARE SUB connecttable ()
DECLARE SUB setuppointermatrix (pointer(), index())
DECLARE SUB orderofcalculation (pointeri(), index!())
DECLARE SUB check (modnuml, order!(), count*, flagll, flag21)
DECLARE SUB overaquistack ()
DECLARE SUB upstreammods ()
DECLARE FUNCTION areapipel (angle, pnt%)
DECLARE FUNCTION storvoll (pnt%, yl)

D - 56

TYPE modconnectivity
modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
ss2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
CS AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE

D - 57

crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, Btorage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.eoc*, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

errorprocl:

SELECT CASE ERR
CASE 25, 24, 68

BEEP: BEEP: PRINT : PRINT : PRINT "printer not connected or
switched on ... press any key"

WHILE INKEY$ = "": WEND
RESUME

CASE ELSE
ON ERROR GOTO 0

END SELECT

END

SUB check (modnum, order(), count%, flagl, flag2)

mark% = 0
FOR j% = 1 TO eount% - 1

IF modnum = order(1, j%) THEN
flag2 = flag2 + 1
mark% = 1
EXIT FOR

END IF
NEXT j%
IF mark% = 0 THEN

flagl - 1
END IF

END SUB

SUB connecttable

ON ERROR GOTO errorprocl

WIDTH LPRINT 80
LPRINT CHRS(18);

1 i n e 1 $

titlel$ = " : no : mod no : upstream module nos
:"

LPRINT linel$
LPRINT titlel$

D - 58

FOR k% = 1 TO nomod%
LPRINT linel$
LPRINT " : ";
LPRINT USING "###"; k%;
LPRINT " : ";
LPRINT USING "###"; modu(k%).modno;
LPRINT " : ";
FOR j% = 1 TO 10

IF j% <= con(k%, 0) THEN
LPRINT USING "###"; modu(con(k%, j%)).modno;
LPRINT " : ";

ELSE
LPRINT " : ";

END IF
NEXT j%

NEXT k%
LPRINT linel$
LPRINT " modules 900 and up are dummy aquifers"
LPRINT

LPRINT
linel$ = " —
titlel$ = " : no : mod no : overflow module nos
LPRINT linel$
LPRINT titlel$

FOR k% = 1 TO nomod%

LPRINT linel$
LPRINT " : ";
LPRINT USING "##"; k%;
LPRINT " : ";
LPRINT USING "###"; modu(k%).modno;
LPRINT " : ";

FOR j% = 1 TO 5
IF j% <= ovflo(k%, 0) THEN

LPRINT USING "###"; modu(ovflo(k%, j%)).modno;
LPRINT " : ";

ELSE
LPRINT " : ";

END IF
NEXT j%

NEXT k%
LPRINT linel$
LPRINT " modules 900 and up are dummy aquifers"
LPRINT

END SUB

SUB modconnect (print.connec%)

CLS
LOCATE 11, 28
COLOR 0, 2
PRINT "Calculating connectivity"
COLOR 3, 0

REM $DYNAMIC

REDIM pointer(2, 141), index(165)

Call sub upstreanunods to determine the upstream modules and the
modules which flow onto each module.

D - 59

1 The number of upstream modules and their numbers are stored in array
' CON and the overflow modules in array OVFLO

CALL upstreammods

1 Call overaquistack to determine the overland and associated aquifers
1 The array UNIT is used to store the information.

CALL overaquistack

1 Call subs setuppointermatrix and orderofcalculation to determine the
' upstream - downstream order of calculation of the modules.

CALL setuppointermatrix(pointer(), index())

CALL orderofcalculation(pointer(), index())

IF flag.esc% = 0 THEN
IF print.connec% = 1 THEN

CALL connecttable
print.connect = 0

END IF
END IF

END SUB

REM $STATIC

SUB orderofcalculation (pointer(), index())

REM $DYNAMIC

REDIM test(140)

count% = 1
FOR k% = 1 TO nomod%

IF pointer(2, k%) = pointer(2, k% + 1) THEN
order (1, count%) «= modu (k%). modno
order(2, count%) = k%

1 LPRINT , order(1, count%), order(2, count%)
count% = count% + 1

END IF
NEXT k%

adder% = 0

DO UNTIL count% = nomod% + 1

FOR i% = 1 TO nomod%
flagl = 0
flag2 = 0
IF test(i%) = 1 GOTO 10

upsmod = pointer(2, i% + 1) - pointer(2, i%)
start = pointer(2, i%)
FOR k% = 0 TO upsmod - 1

modups = index(start + k%)
CALL check(modups, order(), count%, flagl, flag2)
IF flagl = 1 THEN

EXIT FOR
ELSEIF flag2 = upsmod THEN

order(1, count%) = modu(i%).modno
order(2, count%) = i%

' LPRINT , order(1, count%), order(2, count%)
count% = count% + 1
test(i%) = 1

END IF
NEXT k%

D - 60

10 : NEXT i%

adder% = adder% + 1

IF adder% > nomod% + 10 THEN
BEEP
BEEP
PRINT
PRINT "Connectivity incorrect. 11! Please1 check
PRINT "Press any key"
WHILE INKEY$ = "": WEND
ERASE test, pointer, index
flag.esc% = 1
EXIT SUB

END IF

LOOP

ERASE test, pointer, index

END SUB

REM $STATIC
SUB overaquistack

FOR j% = 1 TO nomod%
num% = 0
IF modu(j%).typ = 1 THEN

num% = num% + 1
unit(j%, 0) = num%
unit(j%, num%) = j%
1% = j%

DO
num% = num% + 1
FOR k% = 1 TO nomod%

IF modu(1%).infmod = modu(k%).modno THEN
unit(j%, 0) = num%
unit(j%, num%) «= k%
1% = k%

1 LPRINT unit(j%, 0), unit(l%, num%)
EXIT FOR

END IF
NEXT k%

LOOP UNTIL modu(1%).infmod = 0

END IF

NEXT j%

END SUB

SUB setuppointermatrix (pointer(), index())

position% = 1
pointer(2, 1) = position%

FOR j% = 1 TO nomod%
pointer(l, j%) = modu(j%).modno
FOR i% = 1 TO nomod%

IF modu(i%).dsmod = modu(j %).modno THEN
index(position%) = modu(i%)•modno
position% = position% + 1

END IF
IF modu(i%).ofl = modu(j%).modno THEN

D - 61

index(pooitIon*) = modu(i%).modno
position* = ponition% + 1

END IF
IF modu(i%).modno = modu(j%).infmod THEN

index (positions,) «= modu(i%).modno
position% = pooition% + 1

END IF
NEXT i%
pointer(2, j% + 1) » poeition%

NEXT j%

FOR k% = 1 TO position%
LPRINT pointer(1, k%), pointer(2, k%), index(k%)

NEXT k%

END SUB

SUB upBtreammods

FOR j% = 1 TO nomod%
count% = 0: add% = 0
FOR k% = 1 TO nomod%

IF modu(j%).modno = modu(k%).dsmod THEN
count% • count% + 1
con(j%, 0) = count%
con(j%, count%) «= k%

END IF
IF modu(j%) .modno •= mbdu(k%).ofl THEN

add% = add% + 1
ovflo(j%, 0) = add%
ovflo(j%, add%) = k%

END IF
NEXT k%

NEXT j%

END SUB

DECLARE SUB qcrit (h%, qcll, qc21)
DECLARE SUB outflow (h%, fla%)
DECLARE SUB newtrapdep (modnum%, i%, p%, ynewl)
DECLARE SUB volcalc (num%, volume 1)
DECLARE FUNCTION getfilename$ (heading$)
DECLARE SUB clearscreen ()
DECLARE SUB fileoutput ()
DECLARE SUB modconnect (print.connec%)
TYPE modconnectivity

modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE

D - 62

sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
ss2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
Ccs AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

D - 63

errorproc:

SELECT CASE ERR
CASE 25, 24, 68

BEEP: BEEP: PRINT : PRINT : PRINT "printer not connected or
switched on ... preso any key"

WHILE INKEYS •= "": WEND
RESUME

CASE 64, 52

BEEP
BEEP
PRINT
PRINT
PRINT "Bad filename (limited to 8 characters) ... press any

key"
WHILE INKEYS » "": WEND
RESUME begin

CASE ELSE
ON ERROR GOTO 0

END SELECT

begin: CALL fileoutput

END

SUB data.echo

ON ERROP GOTO errorproc

' Subroutine to print a data file
COLOR 3, 0: CLS : COLOR 0, 2
LOCATE 10, 22: PRINT " Printing data file "
LOCATE 10, 42: PRINT file$ + " ": COLOR 3, 0
LPRINT CHR$(27); CHR$(69)
LPRINT " WITSKM data file "; : LPRINT file$
LPRINT CHR$(27); CHR$(70);
LPRINT : LPRINT title$
LPRINT : LPRINT "Time interval (h) :"; tint
LPRINT "Simulation duration (h) :"; sim.time
LPRINT "Rainfall duration (h) :"; rain.time
LPRINT "Hyetograph ordinates (mm/h) :-"
FOR k% = 1 TO hyeto.number%

LPRINT " ";
LPRINT USING "####.##"; rain(k%);

NEXT k%
LPRINT ""
LPRINT
LPRINT : LPRINT "Number of modules : "; : LPRINT USING "###"; nomod%
LPRINT
WIDTH LPRINT 255
LPRINT CHR$(15);

FOR j% = 1 TO 6

count% = 0

FOR k% = 1 TO nomod%

IF modu(k%).typ = 1 AND j% = 1 THEN

count% = count% + 1.

D - 64

IF count% = 1 THEN
LPRINT " Overland Flow and Aquifer Modules"
LPRINT " "
LPRINT

L P R I N T

_ _ _ _ _ _ _ _ _ _ _ _ _ _ ___•**•*•_*»•»»__....•.________________•••_••«_________ —. "

LPRINT " .: No : D/S Mod : In f Mod : Lgt(m) : Wid(m) : S l o p e : Man n
Alpha : D e p t h (m) : Perm(tnm/hr) : Sue Hd(m): Por : Mois Con : W.T. L e v e l (m) : "

L P R I N T

-__________ — ..______________.-_..•____________________._______"
END IF

FOR z% = 1 TO uni t (k%, 0)
p% = unit(k%, z%)
pnt% = modu(p%).pl

LPRINT " : " ;
LPRINT USING "###"; modu(p%).modno;
LPRINT " : ";
LPRINT USING "###"; modu(p%).dsmod;
LPRINT " : ";
LPRINT USING "###"; modu(p%).infmod;
LPRINT " : ";
IF 2% = 1 THEN
alp = SQR(overlnd(pnt%).slo) / overlnd(pnt%).man

LPRINT USING "####.#"; overlnd(pnt%).Ing;
LPRINT " : H;
LPRINT USING "####.#"; overlnd(pnt%).wid;
LPRINT " : ";
LPRINT USING "#.###"; overlnd(pnt%).slo;
LPRINT " : ";
LPRINT USING "#.###"; overlnd(pnt%).man;
LPRINT " : ";
LPRINT USING "##.###"; alp;
LPRINT ": : : : :";
LPRINT " • : :"
ELSE

LPRINT USING "####.#"; aqui(pnt%).Ing;
LPRINT " : ";
LPRINT USING "####.#"; aqui(pnt%).wid;
LPRINT " : ";
LPRINT USING "#.###"; aqui(pnt%).slo;
LPRINT " : :";
LPRINT " : ";
LPRINT USING "###.##"; aqui(pnt%).depth;
LPRINT " : ";
LPRINT USING "###.##"; aqui(pnt%).perm;
LPRINT " : ";
LPRINT USING "##.###"; aqui(pnt%).sorp;
LPRINT " : ";
LPRINT USING "#.##"; aqui(pnt%).por;
LPRINT ": ";
LPRINT USING "#.###"; aqui(pnt%).imc;
LPRINT " : ";
LPRINT USING "### .##" ; aqu i (pn t%) .wt l ;
LPRINT « :»

END IF

NEXT 2%
L P R I N T

END IF

D - 65

IF modu(k%).typ = 2 AND j% = 2 THEN

count% = count% + 1

IF count% = 1 THEN
LPRINT
LPRINT " Pipe Moduleo "
LPRINT " "
LPRINT

L P R I N T

LPRINT " : No : D/S Mod : Ovf Mod : Lgt(m) : Diam(m) : Slope : Man
n : Alpha :"

L P R I N T "

END I F

pnt% = m o d u (k %) . p i
alp = SQR(pipe(pnt%).olo) / pipe(pnt%).man
LPRINT " :";
LPRINT USING "###"; modu(k%).modno;
LPRINT " : ";
LPRINT USING "###"; modu(k%).dsmod;
LPRINT " : ";
LPRINT USING "###"; modu(k%).of1;
LPRINT " : "/
LPRINT USING "####.#"; pipe(pnt%).Ing;
LPRINT " : ";
LPRINT USING "##.###"; pipe(pnt%).diam;
LPRINT " : ";
LPRINT USING "#.###"; pipe(pnt%).slo;
LPRINT M : ";
LPRINT USING "#.###"; pipe(pnt%).man;
LPRINT " : ";
LPRINT USING "##.###"; alp;
LPRINT ":"
END IF

IF modu(k%).typ = 3 AND j% = 3 THEN

count% = count% + 1

IF count% = 1 THEN
LPRINT " Trapezoidal Channel Modules"
LPRINT " "
LPRINT

L P R I N T

_ — _ — — — _ — _ — — __.._....___ — _ — ___________—____.__.._"
LPRINT " : No : D/S Mod : Ovf Mod : Lgt(m) : Base wid(m) : Slope

: LHS side slope : RHS side slope : Man n : Alpha : Depth(m) :"
L P R I N T

END I F

pnt% = m o d u (k %) . p i
alp = SQR(trapchan(pnt%).slo) / trapchan(pnt%).man
LPRINT " :";
LPRINT USING "###"; modu(k%).modno;
LPRINT " : ";
LPRINT USING "###"; modu(k%).dsmod;
LPRINT : ";
LPRINT USING "###"; modu(k%).of1;
LPRINT : ";
LPRINT USING "####.#-; trapchan(pnt%).Ing;
LPRINT " : ";

D - 66

LPRINT USING "#####-.##"; trapchan(pnt%).wid;
LPRINT " : ";
LPRINT USING "#.###"; trapchan(pnt%).slo;
LPRINT " : ";
LPRINT USING "####.##"; trapchan(pnt%).ssl;
LPRINT " : ";
LPRINT USING "####.##"; trapchan(pnt%).ss2;
LPRINT " : ";
LPRINT USING "#.###"; trapchan(pnt%).man;
LPRINT " : ";
LPRINT USING "##.###"; alp;
LPRINT ": ";
LPRINT USING "###.###"; trapchan(pnt%).mdep;

LPRINT " :"

END IF

IF modu(k%).typ = 4 AND j% = 4 THEN

count% = count% + 1

IF count% = 1 THEN
LPRINT " Storage Modules"
LPRINT " "
LPRINT

L P R I N T

LPRINT " : No : DS Mod : FSL(m) : St cof : St ex : Srt Lev(m) : cof
usub : ex usub : cof sub : ex sub : cof sp : ex sp : out d(m) : lev out(m):"

L P R I N T

END IF
pnt% = modu(k%).pl
LPRINT " : ";
LPRINT USING "###"; modu(k%).modno;
LPRINT ": ";
LPRINT USING "###"; modu(k%).dsmod;
LPRINT " : ";
LPRINT USING "###.##"; storage(pnt%).si;
LPRINT " : ";
LPRINT USING "####.#-; storage(pnt%).a;
LPRINT " : ";
LPRINT USING "#.###"; storage(pnt%).b;
LPRINT " : ";
LPRINT USING "#####.##"; storage(pnt%).stlev;
LPRINT " ; ";
LPRINT USING "####.###"; storage(pnt%).ecu;
LPRINT " : M;
LPRINT USING "/#.####"; storage(pnt%).cu;
LPRINT " : ";
LPRINT USING "####.##"; storage(pnt%).ccs;
LPRINT " : ";
LPRINT USING "#.####"; storage(pnt%).cs;
LPRINT " : ";
LPRINT USING "####.#"; storage(pnt%).csp;
LPRINT " : ";
LPRINT USING "#.###"; storage(pnt%).sp;
LPRINT " : ";
LPRINT USING "#####.##"; storage(pnt%).depth;
LPRINT " : ";
LPRINT USING "#####.##"; storage(pnt%).cl;
LPRINT " :"

END IF

D - 67

IF modu(k%).typ •» 5 AND j% «= 5 THEN

count% •= counts, + 1

IF count% c l THEN
LPRINT " Compound Channel Modules"
LPRINT " "
LPRINT

L P R I N T

LPRINT " : No : D/S Mod : Ovf Mod : Lgt(m) : Number of Segs : Slope
Number of Points :"

L P R I N T

END IF

pnt% = modu(k%).pl
LPRINT " :";
LPRINT USING "###"; modu(k%).modno;
LPRINT " : ";
LPRINT USING "###"; modu(k%).domod;
LPRINT " : ";
LPRINT USING "###"; modu(k%).of1;
LPRINT " : ";
LPRINT USING "####.#"; compchan(pnt%).Ing;
LPRINT " : ";
LPRINT USING "###"; compchan(pnt%).nosegs;
LPRINT " : ";
LPRINT USING "#.###"; compchan(pnt%).slo;
LPRINT " : ";
LPRINT USING "###"; compchan(pnt%).nopts;
LPRINT " :"

L P R I N T

LPRINT
LPRINT " X coordinate (m) Y coordinate (m)
LPRINT n

LPRINT

FOR jj% = 1 TO comDchan(pnt%).nopts
LPRINT " " ";"
LPRINT USING "##/.##"; x(pnt%, j
LPRINT " ";
LPRINT USING "###.##"; y(pnt%, j

NEXT jj%

LPRINT
LPRINT " Segment number left point right point roughness

(n) -
LPRINT "

LPRINT

FOR jj% = 1 TO compchan(pnt%).nosegs
LPRINT " ";
LPRINT USING "##"; jj%;
LPRINT H ";
LPRINT USING "###"; segno(pnt%, jj%, 1);
LPRINT " ";
LPRINT USING "###"; segno(pnt%, jj%, 2) ;
LPRINT " ";
LPRINT USING "##.###"; n(pnt%,

NEXT jj%

D - 68

END IF

NEXT k%
IF j% = 2 AND count% > 0 THEN

L P R I N T

LPRINT
END IF

IF j% = 3 AND count% > 0 THEN
L P R I N T

LPRINT
END I F

IF j% = 4 AND count% > 0 THEN
L P R I N

LPRINT
' END IF

NEXT j%

END SUB

SUB fileoutput

ON ERROR GOTO errorproc

flag% = 0

DO

clearscreen

heading$ = "Enter filename (0 to end)"

filel$ = getfilename$(heading?)

IF filel$ = "ciO.DAT" THEN
EXIT SUB

ELSE
OPEN filel$ FOR OUTPUT AS #1

END IF
getnum: clearscreen

LOCATE 4, 1
PRINT "Enter module number for data output"
COLOR 7, 0
LOCATE 4, 37
INPUT "", num%
COLOR 3, 0

modnum% = 0

FOR i% = 1 TO nomod%
IF modu(i%).modno = num% THEN

modnum% = i%
EXIT FOR

END IF
NEXT i%

D - 69

IF modnum% <> 0 THEN"
FOR j% = 0 TO noit%

PRINT #1, USING "####.##"; j% * tint • 60;
PRINT #1, " ";
PRINT #1, USING "####.###"; qout(i%, j%)

NEXT j%

CLOSE #1

ELSE

BEEP
BEEP
PRINT
PRINT
PRINT "Module "; num%; " does not exist ... press any key"
WHILE INKEY$ = "": WEND

GOTO getnum

END IF

LOOP UNTIL flag% = 1

END SUB

SUB graphpl

getno: SCREEN 0: WIDTH 80: CLS
LOCATE 4, 1: COLOR 3, 0: PRINT "Which module's output hydrograph do

you want plotted (0 to return)"
COLOR 7, 0: LOCATE 4, 68: INPUT "", num%
FOR i% = 1 TO nomod%

IF modu(i%).modno = num% THEN
modnum% = i%
GOTO grapplo

END IF
IF num% = 0 THEN GOTO last

NEXT i%
BEEP: BEEP: PRINT : PRINT : PRINT "Module "; num%; " does not exist

... press any key"
WHILE INKEYS = "": WEND
CLS 0
GOTO getno

grapplo: CALL volcalc(modnum%, vol)

SCREEN 2

peakl = 0
peak2 = 0
peak3 = 0
FOR k% = 1 TO noit%
IF qout(modnum%, k%) > peakl THEN

peakl = qout(modnum%, k%)
END IF
IF qin(modnum%, k%) > peak2 THEN

peak2 = qin(modnum%,
END IF
IF rain(k%) > peak3 THEN

peak3 = rain(k%)
END IF
NEXT k%

' rmax = peak3 + 5
xmax = noit% * tint

D - 70

VIEW (15, 15)-
WINDOW

' FOR i%
xl =
yl =
x2 =
y2 =
LINE

NEXT i%

(0, 0)-
= 0 TO

(600}
(xmax,
noit%

i% * tint
rain(i%
(i% + 1
rain(i%
(xl, yl

S

)

42), , 1
rmax)
- 1

) * tint
+ 1)
)-(x2, y2)

IF modu(modnum%).typ <> 6 THEN
LOCATE 5, 55: PRINT " peak inflow= ";
PRINT USING "####.###«• peak2
LOCATE 6, 55: PRINT "peak outflow= ";
PRINT USING ••####.###••; peakl
LOCATE 7, 55: PRINT "Volume";
PRINT USING "######.##"; vol

ELSE
LOCATE 5, 55: PRINT - peak inflow= ";
PRINT USING "####.###"; peak2 * 10001 * 36001
LOCATE 6, 55: PRINT "peak outflow= ";
PRINT USING "####.###"; peakl * 1000J * 36001
LOCATE 7, 55: PRINT "Volume";
PRINT USING "######.##"; vol

END IF

VIEW (32, 3)-(620, 165), , 1

IF peakl > peak2 THEN
ymax = peakl + peakl / 10
ELSE
ymax = peak2 + peak2 / 10
END IF

IF ymax = 0 THEN
ymax = .001

END IF
IF modu(modnum%).typ <> 6 THEN

LOCATE 12, 2: PRINT "cumec"
LOCATE 1, 1: PRINT USING "####.###"; ymax

ELSE
ymax = ymax * 1000 * 36001
LOCATE 12, 2: PRINT "1/hr"
LOCATE 1, 1: PRINT USING "####.###"; ymax

END IF
LOCATE 22, 2: PRINT "0"
LOCATE 23, 4: PRINT "0"
LOCATE 23, 39: PRINT "Time mins"
LOCATE 23, 73: PRINT USING "###.##"; sim.time * 60

WINDOW (0, 0)-(xmax, ymax)
FOR i% = 0 TO noit% - 1
xl = i% * tint
x2 = (i% + 1) * tint
yl = qout(modnum%, i%)
y3 = qin(modnum%, i%)
y2 = qout(modnum%, i% + 1)
y4 = qin(modnum%, i% + 1)

IF modu(modnum%).typ <> 6 THEN
LINE (xl, yl)-(x2, y2)
LINE (xl, y3)-(x2, y4)

ELSE
LINE (xl, yl * 1000 * 36001)-(x2, y2 * 1000! * 36001)
LINE (xl, y3 * 1000 * 36001)-(x2, y4 * 1000 * 36001)

D - 71

END IF

NEXT it
waiting: WHILE INKEYS •= "": WEND

GOTO gotno
last:

END SUB

SUB newtrapdep (modnum%, i%, p%, ynew)

cl = storage(p%).cl: si = storage(p%).si
d = storage(p%).depth
csp = storage(p%).csp: sp «= storage(p%).sp
ccs = storage(p%).ccs: CS = storage(p%).cs
yold «= si + .1

DO
abitl = ccs * cs * (yold - cl - .5 * storage(pnt%).depth) A (cs - 1)
abit2 = csp * sp * (yold - si) A (sp - 1)
dfdy = -abitl - abit2
f = ccs * (yold - cl - .5 * d) * cs
f = f + csp * (yold - si) A sp
f = qout(modnum%, i%) - f
ynew = yold - f / dfdy
diff = ABS(1 - ynew / yold)
yold = ynew

LOOP UNTIL diff <= .001

END SUB

SUB outflow (h%, fla%)

FOR k% = 1 TO noit%
IF qout(h%, k%) <> 0 THEN

fla% = 1
EXIT SUB

END IF
NEXT k%

END SUB

SUB printout

ON ERROR GOTO errorproc

WIDTH LPRINT 80
LPRINT CHR$(18);
SCREEN 0: WIDTH 80: CLS

LPRINT CHR$(27); CHR$(69)
LPRINT " WITSKM data file "; : LPRINT file$
LPRINT CHR$(27); CHR$(70);
LPRINT : LPRINT title?
LPRINT : LPRINT "Time interval (h) :"; tint
LPRINT "Simulation duration (h) :"; sim.time
LPRINT "Rainfall duration (h) :"; rain.time
LPRINT "Hyetograph ordinates (mm/h) :-"
FOR k% = 1 TO hyeto.number%
LPRINT " ";
LPRINT USING "####.##"; rain(k%);

NEXT k%
LPRINT ""
LPRINT

getno1: CLS

D - 72

LOCATE 4, 1
COLOR 3, 0
PRINT "Enter module number for output (0 to return)"
COLOR 7, 0: LOCATE 4, 50: INPUT "", num%
FOR i% = 1 TO nomod%

IF modu(i%).modno = num% THEN
modnum% = i%
GOTO skipl

END IF
IF num% = 0 THEN GOTO fini

NEXT i%
BEEP: BEEP: PRINT : PRINT : PRINT "Module "; num%; " does not exist

... press any key"
WHILE INKEY$ = "": WEND
GOTO getno1

skipl: CALL volcalc(modnum%, vol)

IF modu(modnum%).typ = 2 OR modu(modnum%).typ = 3 THEN
LPRINT " module number = "; modu(modnum%).modno;
IF modu(modnum%).typ = 2 THEN

LPRINT "capacity (mA3/s):";
LPRINT USING "####.###"; pipe(modu(modnum%).pi).cap
LPRINT "Volume (nr3):";
LPRINT USING "######.##"; vol

ELSE
LPRINT "capacity (mA3/s):";
LPRINT USING "####.##"; trapchan(modu(modnum%).pi).cap
LPRINT "Volume (m*3):n;
LPRINT USING "######.##"; vol

END IF
ELSEIF modu(modnum%).typ = 1 THEN

LPRINT " module number = "; modu(modnum%).modno
LPRINT "Volume Runoff (mA3):";
LPRINT USING "######.##"; vol
po% = modu(modnum%).pi
pol% = unit(modnum%, 2)
LPRINT "Rainfall Volume=";

rainvol = 0
FOR h% = 1 TO noit%

rainvol = rainvol + rain(h%) * tint * overlnd(po%).Ing *
overlnd(po%).wid / 1000!

NEXT h%
LPRINT rainvol

ELSE
LPRINT " module number = "; modu(modnum%).modno
LPRINT "Volume (mA3):";
LPRINT USING "######.##"; vol

END IF

LPRINT

LPRINT " ";
LPRINT " Time";
LPRINT " Inflow ";
LPRINT " Outflow";
IF modu(modnum%).typ <> 4 THEN

LPRINT " overflow "
ELSE

LPRINT " depth "
END IF

D - 73

LPRINT " ";
LPRINT " hr";
IF modu(modnumV

LPRINT "
LPRINT "

•

).typ <> 6 THEN
cumec";

cumec ";
IF modu(modnum%).typ <> 4 THEN

LPRINT "
ELSE

LPRINT "
END IF

ELSE
LPRINT "
LPRINT "
LPRINT "

END IF

LPRINT

cumec"

m "

1/hr";
1/hr ";
1/hr"

FOR i% = 0 TO noit%
IF modu(raodnum%).typ < 4 OR modu(modnum%).typ = 5 THEN
LPRINT " ";
LPRINT USING "####.##"; i% * tint;
LPRINT " ";
LPRINT USING "###.###"; qin(modnum%, i%);
LPRINT " ";
LPRINT USING "###.###"; qout(modnum%, i%);
LPRINT " ";
LPRINT USING "###.###"; over(modnum%, i%)

ELSEIF modu(modnum%).typ = 6 THEN
LPRINT " ";
LPRINT USING "####.##"; i% * tint;
LPRINT " ";
LPRINT USING "####.####"; qin(modnum%, i%) * 3600000!;
LPRINT " ";
LPRINT USING "####.####"; qout(modnum%, i%) * 36000001;
LPRINT M ";
LPRINT USING "####.####"; over(modnum%, i%) * 36000001

ELSE

CALL outflow(modnum%, fla%)

p% = modu(modnum%).pi
IF fla% = 0 THEN

LPRINT "no outflow from dam"
LPRINT
LPRINT "final level in dam="; (storage(p%).prevstor /

storage(p%).a) A (1 / storage(p%).b);
LPRINT " m"
GOTO getno1

ELSE
IF storage(p%).typ = 1 THEN

CALL qcrit(modnum%, qcl, qc2)
IF qout(modnum%, i%) = 0 THEN

dep «= storage(p%) .cl
ELSEIF qout(modnum%, i%) > 0 AND qout(modnum%, i%) <= qcl THEN

dep = (qout(modnum%, i%) / storage(p%).ecu) " (1 /
storage(p%).cu) + storage(p%).cl

ELSEIF qout(modnum%, i%) > qcl AND qout (modnum%, i%) <= qc2 THEN
dep = (qout (modnum%, i%) / storage(p%) .ccs) " (1 /

storage(p%).cs)
dep = dep + storage(p%).cl + .5 * storage(p%).depth

ELSE
CALL newtrapdep(modnum%, i%, p%, dep)

END IF
ELSE

D - 74

dep = (gout(modnum%, i%) / storage(p%).csp) (1 /
storage(p%).sp)

dep = dep + storage(p%).si
END IF

END IF
IF fla% <> 0 THEN

LPRINT " ";
LPRINT USING "####.##"; i% * tint;
LPRINT " ";
LPRINT USING "#####.###••; gin(modnum%, i%);
LPRINT " ";
LPRINT USING "#####.###"; gout(modnum%, i%);
LPRINT " ";
LPRINT USING »####.###••; dep

END IF
END IF
NEXT i%
LPRINT
GOTO getnol

fini:
END SUB

SUB gcrit (h%, gel, gc2)
p% = modu(h%).pi
gel = storage(p%).ecu * (1.5 * storage(p%).depth) * storage(p%).cu
gc2 = storage(p%).ccs * (storage(p%).si - storage(p%).cl - .5 *

storage(p%).depth) A storage(p%).cs
END SUB

SUB volcalc (num%, volume)

volume = 0

FOR j% = 1 TO noit%
element = (gout(num%, j% - 1) + qout(num%, j%)) * tint * 3600 / 2
volume = volume + element

NEXT j%

END SUB

D - 75

•Control program for the computation subprogram

DECLARE SUB QvsA (1%, q!(), a!(), b!(), nohtsI)
DECLARE SUB compoundcha (1%, i%, q(), a(), b(), nohts)
DECLARE SUB storagemod (1%, i%)
DECLARE SUB trapmodule (1%, i%)
DECLARE SUB pipemodule (1%, i%)
DECLARE SUB graphpl ()
DECLARE SUB printout ()
DECLARE SUB checkaquisat (pnt2%, pnt3%, i%, infilout!)
DECLARE SUB aquiroutel (infilin, infilout, pnt%, pntl%,
DECLARE SUB overroutel (infilout, pnt%, pntl%, i%)
DECLARE SUB potinfiltration (pnt2%, pnt3%, i%, infilt)
DECLARE SUB overlandl (1%, i%)
DECLARE SUB initialize ()
DECLARE SUB modconnect (print.connec%)
DECLARE SUB datainput ()

TYPE modconnectivity
modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
SS2 AS SINGLE
mdep AS SINGLE

D - 76

cap AS SINGLE
END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
Btlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
CCB AS SINGLE
CB AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
Bio AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.eBC%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

REDIM b(20), q(20), a(20)

CALL modconnect(0)

CALL initialize

CLS

FOR j% = 1 TO nomod%

1% = order(2, j%)

IF modu(l%).typ <> 6 THEN

IF modu(l%).typ = 5 THEN
CALL QvsA(l%, q(), a(), b(), nohts)

END IF

FOR it = 1 TO noit%
COLOR 7, 0
CLS
COLOR 0, 2
LOCATE 12, 20: PRINT SPACE$(29)
LOCATE 12, 20
nommert = modu(1%).modno
PRINT "time step no"; i%; " Module no "; nommer%

D - 77

COLOR 3, 0

SELECT CASE modu(l%).typ
CASE 1

CALL overlandl(l%, i%)
CASE 2

CALL pipemodule(l%, i%)
CASE 3

CALL trapmodule(l%, i%)
CASE 4

CALL Btoragemod{1%, i%)
CASE 5

CALL compoundcha(l%, i%, q(), a(), b(), nohts)
END SELECT

NEXT i%

END IF

NEXT j%

tcode% = 2

CLS

COLOR 0, 2
LOCATE 11, 28
PRINT "Chaining editor subprogram"
COLOR 3, 0
CHAIN "editor"

END

'Connectivity calculation module
DECLARE SUB connecttable ()
DECLARE SUB setuppointermatrix (pointer(), index())
DECLARE SUB orderofcalculation (pointerl(), index!())
DECLARE SUB check (modnum!, orderl(), count%, flagll, flag21)
DECLARE SUB overaquistack ()
DECLARE SUB upstreammods ()
DECLARE FUNCTION areapipe! (angle, pnt%)
DECLARE FUNCTION storvoli (pnt%, y!)

TYPE modconnectivity
modno AS INTEGER
ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
Slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE

D - 78

sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
Bio AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
BB2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
Btlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
CCB AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

D - 79

errorprocl:

SELECT CASE ERR
CASE 25, 24, 68

BEEP: BEEP: PRINT : PRINT : PRINT "printer not connected or
switched on ... press any key"

WHILE INKEY$ = "": WEND
RESUME

CASE ELSE
ON ERROR GOTO 0

END SELECT

END

SUB check (modnum, order(), count%, flagl, flag2)

mark% = 0
FOR j% = 1 TO count% - 1

IF modnum = order(1, j%) THEN
flag2 = flag2 + 1
mark% = 1
EXIT FOR

END IF
NEXT j%
IF mark% = 0 THEN

flagl = 1
END IF

END SUB

SUB connecttable

ON ERROR GOTO errorprocl

WIDTH LPRINT 80
LPRINT CHR$(18);

1 i n e 1 $

titlelS = " : no : mod no : upstream module nos

LPRINT linel$.
LPRINT titlel$

FOR k% = 1 TO nomod%
LPRINT linelS
LPRINT " : ";
LPRINT USING "##"; k%;
LPRINT " : ";
LPRINT USING "###"; modu(k%) .modno;
LPRINT " : ";
FOR j% = 1 TO 10

IF j% <= con(k%, 0) THEN
LPRINT USING "###"; modu(con(k%, j%)).modno;
LPRINT " : ";

ELSE
LPRINT " : ";

END IF
NEXT j%

NEXT k%
LPRINT linel$
LPRINT " modules 900 and up are dummy aquifers"
LPRINT

LPRINT

D - 80

linel$ - " "
titlol$ •» " : no : mod no : overflow module noo :"
LPRINT linelS
LPRINT titlelS

FOR k% « 1 TO nomod%

LPRINT linel$
LPRINT " : ";
LPRINT USING "##"; k%;
LPRINT " : ";
LPRINT USING "###"; modu(k%).modno;
LPRINT " : ";

FOR j% = 1 TO 5
IF j% <= ovflo(k%, 0) THEN

LPRINT USING "###"; modu(ovflo(k%, j%)).modno;
LPRINT " : ";

ELSE
LPRINT " : ";

END IF
NEXT j%

NEXT k%
LPRINT linel$
LPRINT " modules 900 and up are dummy aquifers"
LPRINT

END SUB

SUB initialize

1 INPUT "do you want to enter hydrograph for a module(y/n)"; ans$
ans$ = "n"
IF ans$ = "y" THEN

INPUT "module no"; modnum%
FOR j% = 1 TO nomod%

IF modu(j%) .modno «= modnum% THEN
num% •= j %
EXIT FOR

END IF
NEXT j%
FOR j% = 0 TO noit%

INPUT "flow"; qin(num%, j%)
NEXT j%

END IF

FOR i% = 1 TO nomod%

SELECT CASE modu(i%).typ

CASE 1
IF i% <> num% THEN

FOR j% = 0 TO noit%
qin(i%, j%) = .0001
qout(i%, j%) «= .0001

NEXT j%
END IF

CASE 2

pnt% = modu(i%).pl
alp = SQR(pipe(pnt%).slo) / pipe(pnt%).man
theta = .827 * 2 * pi
area = areapipe(theta, pnt%)
perim = pipe(pnt%).diam * theta / 2
r = area / perim

D - 81

pipe (pnt%)~. cap = alp * area * r * (m - 1)
theta = .02 * 2 * pi
area = areapipe(theta, pnt%)
perim = pipe(pnt%).diam * theta / 2
pipe(pnt%).min = alp * area * r * (m - 1)

IF i% <> num% THEN
FOR z% = 0 TO noit%
qin(i%, z%) = pipe(pnt%).min
NEXT z%

END IF

FOR z% = 0 TO noit%
qout(i%, z%) = pipe(pnt%).min
over(i%, z%) = 0!

NEXT z%

CASE 3
IF i% <> num% THEN
FOR z% = 0 TO noit%
qin(i%, z%) = .00001
NEXT z%

END IF

FOR z% = 0 TO noit%
qout(i%, z%) = .00001
over(i%, z%) = 01

NEXT z%
pnt% = modu(i%).pl
ss = trapchan(pnt%) .ssl + trapchan(pnt%).ss2
fact = SQR(1 + trapchan(pnt%).ssl * 2)
fact = fact + SQR(1 + trapchan(pnt%).ss2 * 2)
area = trapchan(pnt%).mdep * trapchan(pnt%).wid
area = area + ss * trapchan(pnt%).mdep * 2 / 2
perim = trapchan(pnt%).wid + trapchan(pnt%).mdep * fact
r = area / perim
trapchan(pnt%).cap = SQR(trapchan(pnt%).slo) * area
trapchan(pnt%).cap = cap * r A (m - 1) / trapchan(pnt%) .man

CASE 4
pnt% = modu(i%).pl

FOR z% = 0 TO noit%
qin(i%, z%) = 0J

NEXT z%

FOR z% = 0 TO noit%
qout(i%, z%) = 01

NEXT z%

IF storage(pnt%).typ = 0 THEN
storage(pnt%).critl = storvol(pnt%, storage(pnt%).si)

ELSE
storage(pnt%).critl = storvol(pnt%, storage(pnt%).cl)
ht = 1.5 * storage(pnt%).depth
qdt = storage(pnt%).ecu * ((ht) * storage(pnt%).cu)
qdt = qdt * tint * 3600
storage(pnt%).crit2 = qdt + storvol(pnt%, ht)

+ storage(pnt%).cl

ht = storage(pnt%).si - storage(pnt%).cl - .5 *
storage(pnt%).depth

qdt «= storage(pnt%).ccs * ((ht) * storage(pnt%).cs) *
tint * 3600

8torage(pnt%).crit3 = qdt + storvol(pnt%,
storage(pnt%).si)

END IF

D - 82

otorage(pnt%).prevotor = storvol(pnt%,
storage(pnt%).stlev)

CASE 5

FOR zl » 0 TO noit%
qin(i%, z%) •= 0!
qout(i%, z%) = 0!
over(i%, z%) «= 01

NEXT z%

CASE 6

pnt% «= modu(i%).pl
agui(pnt%).yprev = aqui(pnt%).wtl
qout(i%, 0) « aqui(pnt%).wtl * aqui(pnt%).perm *

aqui(pnt%).wid * aqui(pnt%).slo / (10001 *
36001)

aqui(pnt%).cap = aqui(pnt%).slo * aqui(pnt%).perm *
aqui(pnt%).depth * aqui(pnt%).wid / (10001
* 36001)

IF i% <> num% THEN
FOR j% «= 0 TO noit%

qin(i%, j%) = 01
aqui(pnt%).volume = 0

NEXT j%
FOR j% = 1 TO noit%

qout(i%, j%) «= 0
over(i%, j%) = 01

NEXT j%
END IF

END SELECT

NEXT i%

END SUB

SUB modconnect (print.connec%)

REM $DYNAMIC

CLS

COLOR 0, 2
LOCATE 11, 28
PRINT "Calculating connectivity"

COLOR 3, 0

REDIM pointer(2, 141), index(170)

' INPUT "do you want to output the calculation order ans(y\n)"; ans$

' Call sub upstreammods to determine the upstream modules and the
' modules which flow onto each module.
1 The number of upstream modules and their numbers are stored in array
1 CON and the overflow modules in array OVFLO

CALL upstreammods

' Call overaquistack to determine the overland and associated aquifers
' The array UNIT is used to store the information.

CALL overaquistack

' Call subs setuppointermatrix and orderofcalculation to determine the

D - 83

• upstream - downstream order of calculation of the modules.

CALL setuppointermatrix(pointer(), index())

CALL orderofcalculation(pointer(), index())

IF flag.esc% = 0 THEN
IF print.conned = 1 THEN

CALL connecttable
print.connec% = 0

END IF
END IF

END SUB

REM $STATIC

SUB orderofcalculation (pointer(), index())

REM $DYNAMIC -

DIM test(140)

count% = 1
FOR k% = 1 TO nomod%

IF pointer(2, k%) = pointer(2, k% + 1) THEN
order(1, count%) = modu(k%).modno
order(2, count%) = k%

' LPRINT , order(1, count%), order(2, count%)
count% = count% + 1

END IF
NEXT k%

adder% = 0

DO UNTIL count% = nomod% + 1

FOR i% = 1 TO nomod%
flagl = 0
flag2 = 0
IF test(i%) = 1 GOTO 10

upsmod = pointer(2, i% + 1) - pointer(2, i%)
start = pointer(2, i%)
FOR k% = 0 TO upsmod - 1

modups = index(start + k%)
CALL check(modups, order(), count%, flagl, flag2)
IF flagl = 1 THEN

EXIT FOR
ELSEIF flag2 = upsmod THEN

order(1, count%) = modu(i%).modno
order(2, count%) = i%

1 LPRINT , order(1, count%), order(2, count%)
count% = count% + 1
test(i%) = 1

END IF
NEXT k%

10 : NEXT i%

adder% = adder% + 1

IF adder% > nomod% + 10 THEN
BEEP
BEEP
PRINT
PRINT "Connectivity incorrect. Ill Please check "
PRINT "Press any key"
WHILE INKEY$ = "": WEND

D - 84

ERASE test, pointer, index
flag.eoc% «= 1
EXIT SUB

END IF

LOOP

ERASE test, pointer, index

END SUB

REM SSTATIC
SUB overaquistack

FOR j% = 1 TO nomod%
num% = 0
IF modu(j%).typ «= 1 THEN

num% = num% + 1
unit(j%, 0) «= num%
unit(j%, num%) = j%
1% = j%

DO
num% «= num% + 1
FOR k% ** 1 TO nomod%

IF modu(1%).infmod = modu(k%).modno THEN
unit(j%, 0) «= num%
unit(j%, num%) «= k%
1% = k%

1 LPRINT unit(j%, 0), unit(l%, num%)
EXIT FOR

END IF
NEXT k%

LOOP UNTIL modu(1%).infmod = 0

END IF

NEXT j%

END SUB

SUB setuppointermatrix (pointer(), index())

position% = 1
pointer(2, 1) = position%

FOR j% = 1 TO nomod%
pointer(l, j%) = modu(j%).modno
FOR 14 = 1 TO nomod%

IF modu(i%).dsmod = modu(j %).modno THEN
index (position%) = modu (i%).modno
position% = position% + 1

END IF
IF modu(i%).ofl «= modu(j%).modno THEN

index(position%) = modu(i%).modno
position% = position% + 1

END IF
IF modu(i%)• modno = modu'(j%) .infmod THEN

index(position%) = modu(i%).modno
position% = position% + 1

END IF
NEXT i%
pointer(2, j% + 1) = position% .

NEXT j%

D - 85

FOR k% = 1 TO position%
LPRINT pointer(1, k%), pointer(2, k%), index(k%)

NEXT k%

END SUB

SUB upstreanunods

FOR j% = 1 TO nomod%
count% = 0: add% = 0
FOR k% = 1 TO nomod%

IF modu(j%).modno = modu(k%).dsmod THEN
count% = count% + 1
con(j%, 0) = count%
con(j%, count%) = k%

END IF
IF modu(j%).modno = modu(k%).ofl THEN

add% = add% + 1
ovflo(j%, 0) = add%
ovflo(j%, add%) = k%

END IF
NEXT k%

NEXT j%

END SUB

'Subroutine for routing flow overland and through aquifers
'The infiltration is calculated using the subroutine potinfiltration
I

DECLARE SUB muscungcoeff (length, cl, k!, thetal, cofll, cof2i, cof3!, cof4!)
DECLARE SUB aquiroutel (infilinl, infoutl, pnt%, pntl%, i%)
DECLARE SUB overrcutel (infoutl, pnt%,-pntl%, i%)
DECLARE SUB depthforinfil.aqui (infilinl, pnt%, pntl%, i%, availdepl)
DECLARE SUB checkaquisat (pnt2%, pnt3%, i%, infoutl)
DECLARE SUB potinfiltration (pnt2%, pnt3%, i%, infiltl)
DECLARE SUB depthforinfil.plane (pnt%, pntl%, i%, availdepl)

TYPE modconnectivity
modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

D - 86

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
rain AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
BBI AS SINGLE
SB2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
CCS AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

END

SOB aquiroutel (infilin, infout, pnt%, pntl%,
' LPRINT "aquifer"; modu(pnt%).modno

LPRINT "infilin"; infilin; "infilout"; infilout

D - 87

effecstor = aqui(pnt1%).por - agui(pntl%).imc
denom = aqui(pntl%).Ing * effecstor * aqui(pntl%).wid
abit = {infilin - infout) * tint / (effecstor * 1000!)
abita = (qout(pnt%, i% - 1) - qin(pnt%, i% - 1)) * tint * 3600 / denom
y = aqui(pnt1%).yprev + abit - abita
qout(pnt%, i%) = y * aqui(pntl%).slo * aqui(pntl%).wid * aqui(pnt1%).perm

/ (10001 * 36001)
aqui(pnt1%).yprev = y
LPRINT "y="; y(pnt%, i%), "q="; qout(pnt%, i%)
LPRINT

END SUB

SUB checkaquisat (pnt2%, pnt3%, i%, infout)

effecstor = aqui(pnt3%).por - aqui(pnt3%).imc

aqui(pnt3%).volume = aqui(pnt3%).volume + infout * tint / 10001

LPRINT " volume="; volume(pnt2%, i

IF aqui(pnt3%).volume / effecstor >= aqui(pnt3%).depth
aqui(pnt3%).yprev THEN

aqui(pnt3%).volume = aqui(pnt3%).depth * effecstor
qout(pnt2%, i% - 1) = aqui(pnt3%).cap
aqui(pnt3%).yprev = aqui(pnt3%).depth

END IF

END SUB

SUB depthforinfil.aqui (infilin, pnt%, pntl%, i%, availdep)

availdep = 0

IF qout(pnt%, i% - 1) > 0 THEN
den = aqui(pnt1%).wid * aqui(pnt1%).perm * aqui(pntl%).slo / (1000!

* 3600!)
ybeg = qin(pnt%, i% - 1) / den
yend = qout(pnt%, i% - 1) / den

1 PRINT "ybeg="; ybeg; "yend="; yend
1 WHILE INKEY$ = "": WEND
availdep = (yend + ybeg) / 2

END IF

area = aqui(pntl%).wid * aqui(pnt1%).Ing
availdep = availdep + infilin * tint / 1000
availdep = availdep + (qin(pnt%, i% - 1) + qin(pnt%, i%)) * tint * 3600

/ (2 * area)
availdep = availdep * aqui(pntl%).por

END SUB

SUB depthforinfil.plane (pnt%, pntl%, i%, availdep)

availdep = 0
alp = SQR(overlnd(pntl%).slo) / overlnd(pnt1%) .man
area = overlnd(pntl%).wid * overlnd(pnt1%).Ing

IF qout(pnt%, i% - 1) > .0001 THEN
den = overlnd(pntl%).wid * alp
ybeg = (qin(pnt%, i% - 1) / den) * (1 / m)
yend = (qout(pnt%, i% - 1) / den) *• (1 / m)
availdep = (ybeg + yend) / 2

END IF

availdep = availdep + rain(i%) * tint / 10001

D - 88

IF (qin(pnt%, i%) + qih(pnt%, i% - 1)) / 2 > .0001 THEN
availdep «= availdep + (qin(pnt%, i% - 1) + qin(pnt%, i%)) * tint *

3600 / (2 * area)
END IF

1 LPRINT "availdep"; availdep

END SUB

SUB overlandl (1%, i%)

DIM availdepth(unit(1%, 0)), infilout(unit(1%, 0))

FOR k% = unit(l%, 0) TO 1 STEP -1
pnt% = unit(l%, k%)

FOR ft = 1 TO con(l%, 0)
qin(pnt%, i%) «= qin(pnt%, i%) + qout(con(pnt%,

NEXT f%

FOR nt = 1 TO ovflo(l%, 0)
qin(pnt%, i%) « qin(pnt%, i%) + over(ovflo(pnt%,

NEXT nt

IF k% <> 1 THEN
p% = modu(pnt%).pi
IF qin(pnt%, i%) > aqui(p%).cap THEN

pntl% = unit(l%, k% - 1)
qin(pntl%, i%) = qin(pntl%, i%) + qin(pnt%, i%) - aqui(p%).cap
qin(pntt, i%) = aqui(p%).cap

END IF

END IF

IF qj.n(pntt, it) <
qin(pntt, it) =

END IF

NEXT kt

FOR ft = 1

pntt =
pntlt =

TO unit(It,

unit(It, ft)
= modu(pntt).

01
01

0)

Pi

THEN

- 1

IF f% <> unit(It, 0) THEN
pnt2% = unit(It, ft + 1): pnt3t = modu(pnt2t).pi
IF aqui(pnt3t).perm <> 0 THEN

IF aqui(pnt3t).volume / (aqui(pnt3t).por - aqui(pnt3t).imc) <
aqui(pnt3%).depth THEN

CALL potinfiltration(pnt2t, pnt3t, it, potinfil)
ELSE

potinfil <= aqui(pnt3t) .perm
END IF

END IF

IF modu(pntt).typ = 1 THEN

CALL depthforinfil.plane(pntt, pntlt, it, availdepth(ft))

IF availdepth(ft) * 1000 < potinfil * tint THEN
infilout(ft) = availdepth(ft) * 1000 / tint

ELSE
infilout(ft) = potinfil

END IF
1 LPRINT " infiltration"; infilout

D - 89

ELSE
effecstor = aqui(pntl%).por - aqui(pntl%).imc

IF aqui(pntl%).volume / effecstor < aqui(pntl%).depth THEN
infilin = 0

ELSE
infilin = infilout{f% - 1)

END IF

CALL depthforinfil.aqui(infilin, pnt%, pntl%, i%,
availdepth(f%))

IF availdepth(f%) * 1000 >= aqui(pntl%).perm * tint THEN
infilout(f%) = aqui(pntl%).perm

IF infilout(f%) > potinfil THEN
infilout(f%) = potinfil

END IF

ELSEIF availdepth(f%) * 1000 < potinfil * tint THEN

infilout(f%) = availdepth(f%) * 1000 / tint

ELSEIF availdepth(f%) * 1000 > potinfil * tint THEN

infilout(f%) = potinfil

END IF
END IF

END IF
NEXT f%

FOR f% = unit(l%, 0) TO 2 STEP -1
pnt% = unit(l%, f%)
pntl% = modu(pnt%).pi
effecstor = aqui(pntl%).por - aqui(pntl%).imc
IF aqui(pntl%).perm <> 0 THEN
IF ABS(aqui(pntl%).volume / effecstor - aqui(pntl%).depth) <= .001

THEN
denom = aqui(pntl%).Ing * aqui(pntl%).wid * aqui(pntl%).por
infilt = aqui(pntl%).depth - aqui(pntl%).yprev
infilt = infilt + (aqui(pntl%).cap - qin(pnt%, i% - 1)) * tint *

3600 / denom
infilt = infilt * aqui(pntl%).por * 1000 / tint
infilt = infilt + infilout(f%)
IF infilt <= infilout(f% - 1) THEN

infilout(f% - 1) = infilt
END IF

END IF
END IF

NEXT f%

FOR f% = 1 TO unit(l%, 0)

pnt% = unit(l%,
pntl% = modu(pnt%).pi

LPRINT "potinfil", potinfil
IF f% <> unit(l%, 0) THEN

pnt2% = unit(l%, f% + 1): pnt3% = modu(pnt2%).pi

IF modu(pnt%).typ = 1 THEN

IF ABS(availdepth(f%) * 10001 - infilout(f%) * tint) < .0001 THEN
qout(pnt%, i%) = .0001

ELSE

D - 90

CALL overroutel(infilout(f%), pnt%, pntl%, i%)

END IF

LPRINT , i%, modu(pnt%).modno
LPRINT , "availdepth="; availdepth; "infilout="; infilout;

"rain="; rain(i%)
LPRINT "ql="; qin(pnt%, i% - 1), "q3=M, qout(pnt%, i% - 1)
LPRINT "q2=", qin(pnt%, i%), "qout=", qout(pnt%, i%)
LPRINT

ELSE

IF availdepth(f%) * 1000 = infilout(f%) * tint THEN
qout(pnt%, i%) = 0

ELSE
IF aqui(pntl%).volume / effecetor < aqui(pntl%).depth THEN

infilin •= 0
ELSE

infilin «= infilout(f% - 1)
END IF

CALL aquiroutel(infilin, infilout(f%), pnt%, pntl%, i%)

END IF

' LPRINT , i%, modu(pnt%).modno
LPRINT , "availdepth="; availdepth; "infilout="; infilout;

"rain="; rain(i%)
LPRINT "ql="; qin(pnt%, i% - 1), "q3<=", qout(pnt%, i% - 1)
LPRINT "q2=", qin(pnt%, i%), "qout=", qout(pnt%, i%)
LPRINT

END IF

IF aqui(pnt3%).perm <> 0 THEN

IF aqui(pnt3%).volume / (aqui(pnt3%).por - aqui(pnt3%).imc) <
aqui(pnt3%).depth THEN

CALL checkaquisat(pnt2%, pnt3%, i%, infilout(f%))
END IF

1 LPRINT "volume under aqui"; volume(pnt2%, i%)
END IF

ELSE

IF aqui(pntl%).perm <> 0 THEN

effecstor = aqui(pntl%).por - aqui(pntl%).imc

IF aqui(pntl%).volume / effecstor < aqui(pntl%).depth THEN
infilin = 0

ELSE
infilin = infilout(f% - 1)

END IF

IF aqui(pntl%).Ing <> 0 THEN
CALL aquiroutel(infilin, infilout(f%), pnt%, pntl%, i%)

END IF

END IF

END IF

IF modu(pnt%).typ = 6 THEN
IF qout(pnt%, i%) > aqui(pntl%).cap THEN

pnt4% = unit(l%, f% - 1)

D - 91

over(pnt%; i%) = gout(pnt%, i%) - aqui(pntl%).cap
qout(pnt4%, i%) = qout(pnt4%, i%) + qout(pnt%,

agui(pntl%).cap
qout(pnt%, i%) = aqui(pntl%).cap
aqui(pntl%).yprev = aqui(pntl%).depth

END IF
END IF

NEXT f%

END SUB

SUB overroutel (infout, pnt%, pntl%, i%)

alp = SQR(overlnd(pnt1%).slo) / overlnd(pnt1%).man
ql = qin(pnt%, i% - 1) / overlnd(pntl%).wid
q2 = qin(pnt%, i%) / overlnd(pnt1%).wid
q3 = qout(pnt%, i% - 1) / overlnd(pnt1%).wid
q = (ql + q2 + 2 * q3) / 4

cl = m * alp * (1/m) * ql * (1 - 1 / m)
c2 = m * alp A (1/m) * q2 A (1 - 1 / m)
c3 = m * alp A (1/m) * q 3 A (1 - 1 / m)
c = (cl + c2 + 2 * c3) / 4

theta = (1 + c * tint * 3600 / overlnd(pntl%) .Ing - q /
(overlnd(pnt1%).Ing * c * overlnd(pntl%)•slo)) / 2

k = overlnd(pntl%).Ing / c

IF theta < 0 THEN
theta = 0

ELSEIF theta > 11 THEN
theta = 11

END IF

CALL muscungcoeff(length, c, k, theta, cofl, cof2, cof3, cof4)

qran = (rain(i%) - infout) * overlnd(pnt1%).Ing / 1000 *
overlnd(pnt1%).wid / 3600

+ qout(pnt%, i% - 1)IF cofl * qin(pnt%, i%
* cof3 < 0 THEN
qout(pnt%, i%) =
IF qout(pnt%, i%)

qout(pnt%, i%)
END IF
EXIT SUB

ELSE
qout(pnt%, i%) =

+ qout(pnt%, i% - 1) * cof3
END IF

IF qout(pnt%, i%) < 0
qout(pnt%, i%) = .
EXIT SUB

END IF

- 1) + cof2 * qi

cof4 * qran
<= 0 THEN
« .0001

cofl * qin(pnt%,
+ cof4 * qran

THEN
0001

- 1) + cof2 * qin(pnt%

DO
q4 = qout(pnt%, i%) / overlnd(pnt1%).wid
c4 = m * alp * (1/m) * q 4 A (1 - 1 / m)
q = (ql + q2 + q3 + q4) / 4
c = (cl + c2 + c3 + c4) / 4
theta = (1 + c * tint * 3600 / overlnd(pnt 1%) .Ing - q /

(overlnd(pnt1%).Ing * c * overlnd(pnt1%).slo)) / 2
k = overlnd(pnt1%).Ing / c
IF theta < 0 THEN

D - 92

theta •• 0
ELSEIF theta > 1 THEN

theta «= 1
END IF
CALL muncungcoeff(length, c, k, theta, cofl, cof2, cof3, cof4)

qran = (rain(i%) - infout) * overlnd(pntl%) . Ing / 1000 *
overlnd(pntl%).wid / 3600

qtemp = cofl * qin(pnt%, i% - 1) + cof2 * qin(pnt%, i%) + qout(pnt%,
i% - 1) * cof3 + cof4 * qran

diff = ABS(qtemp - qout(pnt%,
qout(pnt%, i%) = (qtemp + qout(pnt%, i%)) / 2

IF qout(pnt%, i%) <*= 0 THEN
qout(pnt%, i%) «= .0001
EXIT SUB

END IF

LOOP UNTIL diff < .001

END SUB

SUB potinfiltration (pnt2%, pnt3%, i%, infilt)

effecstorbot «= aqui(pnt3%) .por - aqui(pnt3%).imc
gam = aqui(pnt3%).sorp * effecstorbot
f «* aqui(pnt3%) .volume

IF effecstorbot <> 0 THEN
b = 2 * f - aqui(pnt3%).perm * tint / 10001
c = -2 * aqui(pnt3%).perm * tint * (gam + f) / 10001
df = (-b + SQR(b A 2 - 4 * c)) / 2
infilt = df * 10001 / tint

IF (f + df) / effecstorbot > aqui(pnt3%).depth - aqui(pnt3%).yprev
THEN

infilt = aqui(pnt3%).perm * (1 + aqui(pnt3%).sorp /
aqui(pnt3%).depth)

END IF

END IF

END SUB

'Section of program to route flows through trapezoidal channels
t

DECLARE SUB muscungcoeff (length, cl, kl, theta!, cofl!, cof21, cof31, cof4!)
DECLARE SUB flowintomodule (indl%, ind2%)
DECLARE SUB trapchanroute (1%, i%)
DECLARE SUB newtraptrap (flowl, yfinall, 1%, pnt%)
DECLARE SUB trapchar (pnt%, yl, bl, cl)

TYPE modconnectivity
modno AS INTEGER
ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE

D - 93

wid AS SINGLE
END TYPE

TYPE aquimod
Slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
ss2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
Cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
CS AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod

D - 94

COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, ovcr(), rain(), pi
COMMON SHARED promptlS, flag.filo%, tcode%
COMMON SHARED title?, file$, flag.esct, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED Dim.time, rain.time, hyeto.number%, newmod%, flag.inoert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), eegno()

END

SUB newtraptrap (flow, yfinal, 1%, pnt%)

alp = SQR(trapchan(pntr.). slo) / trapchan(pnt%) .man
ybegin = (flow / (alp * trapchan(pnt%).wid)) A (3 / 5)
as = trapchah(pnt%).ssl + trapchan(pnt%). os2
b = trapchan(pnt%).wid
fact = SQR(1 + trapchan(pnt%).BEI A 2) + SQR(1 + trapchan(pnt%).BO2 A 2)

DO
area = ybegin * b + ss * ybegin A 2 / 2
perim = b + ybegin * fact
r = area / perim
dady = b + ybegin * ss
drdy = dady / perim - area * fact / pernr, A 2
dfdy = dady * r A (m - 1) + (m - 1) * area * r A (m - 2) * drdy
yfinal = ybegin - (area * r A (m - 1) - flow / alp) / dfdy
diff = ABS(yfinal - ybegin)
ybegin = yfinal

LOOP UNTIL diff < .001

END SUB

SUB trapchanroute (1%, i%)

pnt% = modu(l%).pl
FOR f% = 1 TO 3

SELECT CASE f%
CASE 1

flow = qin(l%, i% - 1)
CALL newtraptrap(flow, yin, 1%, pnt%)
CALL trapchar(pnt%, yin, bl, cl)

CASE 2
flow = qin(l%, i%)
CALL newtraptrap(flow, yint, 1%, pnt%)
CALL trapchar(pnt%, yint, b2, c2)

CASE 3
flow «= qout(l%, i% - 1)
CALL newtraptrap(flow, yout, 1%, pnt%)
CALL trapchar(pnt%, yout, b3, c3)

END SELECT
NEXT f%

q = (qin(l%, i% - 1) + qin(l%, i%) + 2 * qout(l%, i% - 1)) / 4
b = (bl + b2 + 2 * b3) / 4
c = (cl + c2 + 2 * c3) / 4

LPRINT "i%="; i%
LPRINT "b,q,c="; b; q; c V

' theta = (l - q / (b * c * trapchan(pnt%).Ing *
trapchan(pnt%).slo)) / 2

theta = (1 + c * tint * 3600 / trapchan(pnt%).ing - q / (b * c *
trapchan(pnt%).Ing * trapchan(pnt%).slo)) / 2

LPRINT "thetatc", theta

IF theta < 0 THEN
theta = 0

D - 95

ELSEIF theta > 1 THEN
theta = 1

END IF

LPRINT "theta="; theta

k = trapchan(pnt%).Ing / c
length = trapchan(pnt%).Ing
CALL muscungcoeff(length, c, k, theta, cofl, cof2, cof3, cof4)
LPRINT "cofl="; cofl; "cof2="; cof2; "cof3="; cof3; "cof4="; cof4

qout(l%, i%) = cofl * qin(l%, i% - 1) + cof2 * qin(l%, i%) +
qout(l%, i% - 1) * cof3

LPRINT "qout="; qout(l%, i%)
LPRINT

END SUB

SUB trapchar (pnt%, y, b, c)

alp = SQR(trapchan(pnt%).slo) / trapchan(pnt%) .man
as = trapchan(pnt%).ssl + trapchan(pnt%).ss2
fact = SQR(1 + trapchan(pnt%).ssl * 2) + SQR(1 + trapchan(pnt%) .ss2 A 2)
a r e a = t r a p c h a n (p n t %) . w i d * y + s s * y A 2 / 2
wetperim = trapchan(pnt%).wid + y * fact
b = trapchan(pnt%).wid + y * ss
r = area / wetperim
c = alp * r A (m - 1) * (m - (m - 1) * r * fact / b)

END SUB

SUB trapmodule (1%, i%)

CALL flowintomodule(l%, i%)

IF qin(l%, i%) <= 0 THEN
qin(l%, i%) = .0001

END IF
IF qin(l%, i%) > trapchan(modu(l%).pi).cap THEN

over(l%, i%) = qin(l%, i%) - trapchan(modu(l%).pi).cap
qin(l%, i%) = trapchan(modu(l%).pi).cap

END IF

CALL trapchanroute(l%, i%)

IF qout(l%, i%) < 0 THEN
qout(l%, i%) = .0001

END IF

IF qout(l%, i%) > trapchan(modu(l%).pi).cap THEN
qout(l%, i%) = trapchan(modu(l%).pi).cap

END IF

END SUB

'Section of program to route flows down compound channels

DECLARE SUB flowintomodule (indl%, ind2%)
DECLARE SUB interp (htl, xll, x2!, yll, y21, xintl, yintl)
DECLARE SUB searchforsegment (p%, htl, yl(), lpt!, rptl, flag!)
DECLARE FUNCTION area! (npts i, xl!(), yl1())
DECLARE FUNCTION periml (nptsI, x21(), y2J())
DECLARE SUB celcalc (qi, ql(), al(), cell, nohtsl)
DECLARE SUB topwidth (flowl, ql(), bl(), widl, nohtsl)
DECLARE SUB coeffs (kl, theta1, cofl!, cof21, cof31, cof4)

D - 96

TYPE modconnectivity
modno AS INTEGER
Ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
Bio AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
Bio AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
BB2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
Sl AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
CCS AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE

D - 97

crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
Slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED expo, over(), rain{), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

END

FUNCTION area (npts, xl(), yl())

a = 0 ,

FOR k = 1 TO npts
IF k = npts THEN
a = a + (yl(l) + yl(npts)) * (xl(l) - xl(npts)) / 2

ELSE
a = a + (yl(k + 1) + yl(k)) * (xl(k + 1) - xl(k)) / 2
END IF

NEXT k

area = ABS(a)

END FUNCTION

SUB celcalc (q, q(), a(), eel/ nohts)

i = 0
flag = 0

DO
IF q = q(nohts) THEN

eel = (q(nohts) - q(nohts - 1)) / (a(nohts) - a(nohts - 1))
flag = 1

ELSEIF q >= q(i) AND q < q(i + 1) THEN
flag = 1
eel = (q(i + 1) - q(i)) / (a(i + 1) - a(i))

END IF
i = i + 1

LOOP UNTIL flag = 1

END SUB

SUB coeffs (k, theta, cofl, cof2, cof3, cof4)

denom = tint * 3600 + k * (1 - theta)
cof2 = (tint * 3600 - k * theta) / denom
cofl = k * theta / denom
cof3 = (k * (1 - theta)) / denom

D - 98

cof4 = tint * 36001 /denom

END SUB

SUB compoundcha (1%, i%, q(), a(), b(), nohts)

p% = modu(1%).pi

CALL flowintomodule(l%, i%)

IF qin(l%, i%) > q(nohte) THEN
over(l%, i%) «= qin(l%, i%) - q(nohts)
qin(l%, i%) = q(nohtB)

END IF

ql = qin(l%, i% - 1)
q2 = qin(l%, i%)
q3 = qout(l%, i% - 1)
FOR k% = 1 TO 3

SELECT CASE k%
CASE 1

CALL celcalc(ql, q(), a(), cl, nohts)
CALL topwidth(ql, q(), b(), bl, nohts)

CASE 2
CALL celcalc(q2, q(), a(), c2, nohts)
CALL topwidth(q2, q(), b(), b2, nohts)

CASE 3
CALL celcalc(q3, q(), a(), c3, nohts)
CALL topwidth(q3, q(), b(), b3, nohts)

END SELECT
NEXT k%
c = (cl + c2 + 2 * c3) / 4
b = (bl + b2 + 2 * b3) / 4
qave = (ql + q2 + 2 * q3) / 4

theta = (1 + c * tint * 3600 / compchan(p%). Ing - qave / (b * c *
compchan(p%).slo * compchan(p%).Ing)) / 2

IF theta < 0 THEN
theta = 0

ELSEIF theta > 1 THEN
theta = 1

END IF

k = compchan(p%).Ing / c

CALL coeffs(k, theta, cofl, cof2, cof3, cof4)

qran = rain(i%) * compchan(p%).Ing / 10001 * b / 36001
qout(l%, i%) = ql * cofl + q2 * cof2 + q3 * cof3 + cof4 * qran
IF qout(l%, i%) < 0 THEN

qout(l%, i%) = .00001
END IF

END SUB

SUB interp (ht, xl, x2, yl, y2, xint, yint)

slope = (x2 - xl) / (y2 - yl)
xint = slope * (ht - yl) + xl
yint = ht

END SUB

FUNCTION perim (npts, x2 (), y2())

D - 99

FOR k = 1 TO npts - 1
xsqrd = (x2(k + 1) - x2(k)) A 2
ysgrd = (y2(k + 1) - y2(k)) - 2
p = p + (xsgrd + ysgrd) " .5

NEXT k

perim = p

END FUNCTION

SUB QvsA (1%, q(), a(), b(), nohts)

REM $DYNAMIC

REDIM height(20), xl(20), yl(20), x2(20), y2(20)

p% = modu(l%).pi

nohts = 10

FOR k% = 2 TO compchan(p%).nopts
IF y(p%, k%) > y(p%, k% - 1) THEN
htlowpt = y(p%, k% - 1)
EXIT FOR

END IF
NEXT k%

depth = y(p%, 1) - htlowpt

yinc = depth / nohts

a(0) = 0
q(0) = 0

FOR k% = 1 TO nohts

height(k%) = htlowpt + k% * yinc

FOR kk% = 1 TO compchan(p%).nosegs

lpt = segno(p%, kk%, 1)
rpt = segno(p%, kk%, 2)

CALL searchforsegment(p%, height(k%), y(), lpt, rpt, flag)

IF flag = 1 THEN

IF height(k%) > y(p%, lpt) AND height(k%) > y(p%, rpt) THEN
flagl = 1

ELSEIF height(k%) <= y(p%, lpt) AND height(k%) <= y(p%, rpt) THEN
flagl = 2

ELSEIF height(k%) <= y(p%, lpt) AND height(k%) > y(p%, rpt) THEN
flagl = 3 •

ELSE
flagl = 4

END IF

SELECT CASE flagl

CASE 1

npts = rpt - lpt + 3
xl(l) = x(p%, lpt)

D - 100

yl(l) «• height(k%)
xl(npto) » x(p%, rpt)
yl(npto) = height(k%)

FOR kkk% • 1 TO rpt - lpt + 1
xl(l + kkk%) «= x(p%, lpt + kkk% - 1)
x2(kkk%) «« x(p%, lpt + kkk% - 1)
yl(kkk% + 1) = y(p%, lpt + kkk% - 1)
y2(kkk%) «= y(p%, lpt + kkk% - 1)

NEXT kkk%

segarea = area(nptB, xl(), yl())
npts = npts - 2
segperim = perim(npts, x2(), y2())

CASE 2

FOR kkk% •= lpt + 1 TO rpt
IF height(k%) > y(p%, kkk%) THEN

CALL interp(height(k%), x(p%, kkk% - 1), x(p%, kkk%),
y(p%, kkk% - 1), y(p%, kkk%), xl(l), yl(l))

lpt = kkk%
EXIT FOR

END IF
NEXT kkk%

FOR kkk% «• rpt - 1 TO lpt STEP -1
IF height(k%) > y(p%, kkk%) THEN

CALL interp(height(k%), x(p%, kkk% + 1), x(p%, kkk%),
y(p%, kkk% + 1), y(p%, kkk%), xval, yval)

rpt = kkk%
EXIT FOR

END IF
NEXT kkk%

npts = rpt - lpt + 3
xl(npts) = xval
yl(npts) = yval

FOR kkk% = 1 TO rpt - lpt + 1

y(p%, kkk% -

xl(kkk%
yl(kkk%

NEXT kkk%

segarea = i
segperim =

CASE 3

FOR kkk% =

+ 1) = x(p%, lpt +
+ 1) «= y(p%, lpt +

irea(npts, xl(), yl(
perim(npts, xl(), y

lpt + 1 TO rpt
IF height(k%) > y(p%, kkk%)

CALL interp(height(k%),
l)f y(P*» kkk%), xl(l), yl(l))

lpt '
EXIT

END IF
NEXT kkk%

= kkk%
FOR

kkk% -
kkk% -

))
1())

THEN
x(p%,

1)
1)

kkk% - 1), x(p%, kkk%),

npts = rpt - lpt + 3
xl(npts) = x(p%, rpt)
yl(npts) = height(k%)
x2(l) =
y2(l) =

FOR kkk% = 1 TO rpt - lpt + 1
xl(kkk% + 1) - x(p%, lpt + kkk%
yl(kkk% + 1) = y(P% + kkk% -

1)
1)

D - 101

x2(kkk% + l) = x(p%, lpt + kkk% - 1)
y2(kkk% + 1) = y(p%, lpt + kkk% - 1)

NEXT kkk%

segarea = area(npts, xl(), yl())
npts = npts - 1
segperim = perim(npts, x2(), y2())

CASE 4

FOR kkk% = rpt - 1 TO lpt STEP -1
IF height(k%) > y(p%, kkk%) THEN

CALL interp(height(k%), x(p%, kkk% + 1), x(p%, kkk%),
y(p%, kkk% + 1), y(p%, kkk%), xl

rpt = kkk%
EXIT FOR

END IF
NEXT kkk%

npts = rpt - lpt + 3
xl(npts) = x(p%, lpt)
yl(npts) = height(k%)
x2(l)
y2(l)

FOR kkk% = 1 TO rpt - lpt + 1
xl(kkk% + 1) = x(p%, rpt - kkk% + 1)
yl(kkk% + 1) = y(p%, rpt - kkk% + 1)
x2(kkk% + 1) = x(p%, rpt - kkk% + 1)
y2(kkk% + 1) = y(p%, rpt - kkk% + 1)

NEXT kkk%

segarea = area(npts, xl(), yl())
npts = npts - 1
segperim = perim(npts, x2(), y2())

END SELECT

1 LPRINT "ht="; height(k%); "segarea="; segarea; "segperim="; segperim
r = segarea / segperim
qseg = SQR(compchan(p%) .slo) * segarea * r A (2 / 3) / n(p%, kk%)
q(k%) = q(k%) + qseg
a(k%) = a(k%) + segarea
b(k%) = xl(npts) - xl(l)

LPRINT "a="; a(k%); "q="; q(k%)
LPRINT "qseg="; qseg; "q(k%)="; q(k%); "a(k%)="; a(k%)

END IF

NEXT kk%
1 LPRINT
NEXT k%

ERASE height, xl, x2, yl, y2

END SUB

REM $STATIC
SUB searchforsegment (p%, ht, y(), lpt, rpt, flag)

flag = 0
FOR k% = lpt TO rpt

IF ht > y(p%, k) THEN
flag • 1
EXIT SUB

END IF

D - 102

NEXT k%

END SUB

SUB topwidth (flow, q(), b(), wid, nohts)

i = 0
flag = 0

DO
IF flow >= q(i) AND flow <= q(i + 1) THEN

slo - (b(i + 1) - b(i)) / (q(i + 1) - q(i))
wid « Bio * (flow - q(i)) + b(i)
flag = 1

END IF
i = i + 1

LOOP UNTIL flag «= 1

END SUB

'Section of program to route flows down pipes

DECLARE FUNCTION areapipe! (angleI, pnt%)
DECLARE SUB muscungcoeff (length, c!, ki, thetal, cofll, cof21, cof31, cof41)
DECLARE SUB newtrappipes (flowl, thetfinl, 1%, pnt%)
DECLARE SUB flowintomodule (indl%, ind2%)
DECLARE SUB piperoute (1%, i%)
DECLARE SUB pipechar (indic%, angle 1, bl, cl)
TYPE modconnectivity

modno AS INTEGER
ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
Slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

ENp TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

D - 103

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
551 AS SINGLE
552 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, over(), rain(), pi
COMMON SHARED promptlS, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

END

FUNCTION areapipe (angle, pnt%)

halfa = angle / 2

areapipe = pipe(pnt%).diam * 2 * (halfa - SIN(halfa) * COS(halfa)) / 4

END FUNCTION

SUB flowintomodule (indl%, ind2%)
FOR f% = 1 TO con(indl%, 0)

qin(indl%, ind2%) = qin(indl%, ind2%) + qout(con(indl%, f%), ind2%)
NEXT f%

D - 104

FOR n% «= 1 TO ovflo(inai%, 0)
qin(indl%, ind2%) » gin(indl%, ind2%) + over(ovflo(indl%, n%),

ind2%)
NEXT n%

END SUB

SUB muscungcoeff (length, c, k, thcta, cofl, cof2, cof3, cof4)

denom «= tint * 3600 + k • (1 - theta)
cof2 = (tint * 3600 - k * theta) / denom
IF cof2 < 0 THEN

theta = c * tint * 3600 / length
denom = tint • 3600 + k * (1 - theta)
cof2 = 0

END IF
cofl » k * theta / denom
cof3 = (k * (1 - theta)) / denom
cof4 = tint * 3600 / denom

END SUB

SUB newtrappipes (flow, thetfin, 1%, pnt%)

alp «= SQR(pipe(pnt%) .BIO) / pipe(pnt%) .man
IF ABS(pipe(pnt%).cap - flow) < .0001 THEN

thetfin = .827 * 2 * pi
EXIT SUB

END IF

thetbeg = 5.15 - 2.2 * SQR(LOG(pipe(pnt%).cap) - LOG(flow))
IF thetbeg < .1 * 2 * pi THEN

thetbeg = .1 * 2 * pi
END IF
d = pipe(pnt%).diam

DO
halthet = thetbeg / 2
area = areapipe(thetbeg, pnt%)
perim = d * halthet
r = area / perim
dadth *= d A 2 * SIN (halthet) A 2 / 4
abit = d * COS(halthet) « SIN(halthet) / (2 * thetbeg * 2)
abitl = d * (1 - 2 * SIN(halthet) * 2) / (4 * thetbeg)
drdth = abit - abitl
dfdth = dadth * r A (m - 1) + area * (m - 1) * r A (m - 2) * drdth
thetfin = thetbeg - (area * r A (m - 1) - flow / alp) / dfdth
value = alp * area * r A (m - 1)
PRINT "dfdth"; dfdth; "thetfin"; thetfin; "flow calc"; value

diff = ABS(1 - value / flow)
thetbeg = thetfin

LOOP UNTIL diff <= .01

END SUB

SUB pipechar (indic%, angle, b, c)

d = pipe(indic%).diam
alp = SQR(pipe(indic%).slo) / pipe(indic%).man
hala = angle / 2
coshala = COS(hala)
sinhala = SIN(hala)
y = d * (1 - coshala) / 2
a = d A 2 * (hala - coshala * sinhala) / 4
p = hala * d
r = a / p

D - 105

b = 2 * (d * y - y A 2) "
abit = 2 / (d * angle * 2 * TAN(hala))
abit2 = (2 - 1 / SIN(hala) "2) / (d * angle)
drda = abit + abit2
c = alp * (r A (m-1) + (m-1) * a * r ~ (m-2) * drda)

END SUB

SUB pipemodule (1%, i%)

CALL flowintomodule(l%, i%)

IF qin(l%, i%) < pipe(modu(l%).pi).min THEN
qin(l%, i%) = pipe(modu(l%).pi).min

END IF

IF qin(l%, i%) > pipe(modu(l%).pi).cap THEN
over(l%, i%) = qin(l%, i%) - pipe(modu(l%).pi).cap
qin(l%, i%) « pipe(modu(l%).pi).cap

END IF

CALL piperoute(1%, i%)

IF qout(l%, i%) < pipe(modu(l%).pi) .min THEN
qout(l%, i%) = pipe(modu(l%).pi) .min

END IF

END SUB

SUB piperoute (1%, i%)

pnt% — modu(l%).pl

FOR f% = 1 TO 3

SELECT CASE f%
CASE 1

flow = qin(l%, i% - 1)
CALL newtrappipes(flow, thetin, 1%, pnt%)
CALL pipechar(pnt%, thetin, bl, cl)

CASE 2
flow = qin(l%, i%)
CALL newtrappipes(flow, thetint, 1%, pnt%)
CALL pipechar(pnt%, thetint, b2, c2)

CASE 3
flow = qout(l%, i% - 1)
CALL newtrappipes(flow, thetout, 1%, pnt%)
CALL pipechar(pnt%, thetout, b3, c3)

END SELECT

NEXT f%
LPRINT "thetin="; thetin; tlthetint="; thetint; Bthetout=B; thetout
LPRINT "cl="; cl; "c2="; c2; "c3="; c3
q = (qin(l%, i% - 1) + qin(l%, i%) + 2 * qout(l%, i% - 1)) / 4
b = (bl + b2 + 2 * b3) / 4
c = (cl + c2 + 2 * c3) / 4

theta - (1 + c * tint * 3600 / pipe(pnt%) .Ing - q / (b * c *
pipe(pnt%).Ing * pipe(pnt%).slo)) / 2
1 theta = (1 - q / (b * c * pipe(pnt%).Ing * pipe(pnt%).slo)) / 2

IF theta < 0 THEN
theta = 0

ELSEIF theta > 11 THEN
theta = 1!

END IF

D - 106

k = pipe(pnt%).Ing / c"
length •= pipe(pnt%).Ing
CALL muBCungcoeff(length, c, k, theta, cofl, cof2, cof3, cof4)

1 LPRINT "theta="; theta; "b="; b; "c="; c
1 LPRINT "cofl="; cofl; "cof2="; cof2; "cof3="; cof3; "cof4="; cof4
1 LPRINT "ql="; qin(l%, i% - 1); "q2="; qin(l%, i%); "q3="; qout(l%,

- 1)
qout(l%, i%) = cofl * qin(l%, i% - 1) + cof2 * qin(l%, i%) + qout(l%,

- 1) * cof3
LPRINT "q4="; qout(l%, i%)

1 LPRINT "1%="; 1%; "i%"; i%;
END SUB

'Program section to route flows through a storage module

DECLARE FUNCTION storvol1 (pnt%, yl)
DECLARE SUB flowintomodule (indl%, ind2%)
DECLARE SUB stornrap (pnt%, value!, ynewl, index!)
DECLARE SUB storageroute (1%, i%)
TYPE modconnectivity

modno AS INTEGER
ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE

. cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
Slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
ss2 AS SINGLE

D - 107

mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
Si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
cs AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, agui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED m, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title?, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

END

SUB storagemod (1%, i%)

CALL flowintomodule(l%, i%)

CALL storageroute(1%, i%)

END SUB

SUB storageroute (1%, i%)

pnt% = modu(l%).pl

value = storage(pnt%).prevstor + qin(l%, i%) * tint * 3600

IF value <= storage(pnt%).critl THEN
qout(l%, i%) = 01

ELSEIF storage(pnt%).typ = 0 THEN
CALL stornrap(pnt%, value, y, 4)
qout(l%, i%) = storage(pnt%).csp * (y - storage(pnt%).si)

storage(pnt%).sp

D - 108

ELSEIF storage(pnt%).typ - 1 THEN
IF value > storage(pnt%).critl AND value <= storage(pnt%).crit2 THEN

CALL stornrap(pnt%, value, y, 1)
qout(l%, i%) «= storage(pnt%).ecu * (y - storage(pnt%) .cl)

storage(pnt%).cu
ELSEIF value > storage(pnt%).crit2 AND value <«= storage(pnt%).crit3

THEN
CALL Btornrap(pnt%, value, y, 2)
qout(l%, i%) • storage(pnt%).CCB * (y - storage(pnt%).cl - .5 *

storage(pnt%).depth) " Btorage(pnt%).CB
ELSEIF value > storage(pnt%).crit3 THEN

CALL stornrap(pnt%, value, y, 3)
qout(l%, i%) = Btorage(pnt%).CCB * (y - storage(pnt%).cl -

storage(pnt%).depth * .5) * storage(pnt%).CB
qout(l%, i%) = qout(l%, i%) + storage(pnt%).csp * (y

storage(pnt%).si) A storage(pnt%).sp
END IF

END IF

IF value <= storage(pnt%).critl THEN
storage(pnt%).prevstor « value

ELSE
storage(pnt%).prevstor = storvol(pnt%, y)

END IF

END SUB

SUB stornrap (pnt%, value, ynew, index)

a = storage(pnt%).a: b = storage(pnt%).b
cl = storage(pnt%).cl: si = storage(pnt%).si

SELECT CASE index

CASE 1
ecu = storage(pnt%) .ecu: cu «= storage(pnt%) .cu
yold «= .75 * storage(pnt%) .depth + cl

DO
dfdy = a * b * yold A (b - 1) + ecu * cu * (yold - cl) *• (cu

- 1) * tint * 3600
numer = (a * yold * b + ecu * (yold - cl) ~ cu * 3600 * tint

- value) / dfdy
ynew = yold - numer
diff = ABS(1 - ynew / yold)
yold = ynew

LOOP UNTIL diff <= .01

CASE 2
ccs = storage(pnt%).ccs: cs = storage(pnt%).cs
yold = (1.5 * storage(pnt%).depth + si) / 2

DO
dfdy = a * b * yold A (b - 1) + ccs * cs * (yold - cl - .5 *

storage(pnt%).depth) A (cs - 1)
numer = (yold - cl - .5 * storage(pnt%).depth) A cs
ynew = yold - (a * yold A b + ccs * numer * 3600 * tint -

value) / dfdy
diff = ABS(1 - ynew / yold)
yold = ynew

LOOP UNTIL diff <= .01

CASE 3
csp = storage(pnt%).csp: sp = storage(pnt%).sp
ccs = storage(pnt%).ccs: cs = storage(pnt%).cs
yold = si + .1

D - 109

DO
abit = a * b * yold " (b - 1)
abitl = ccs * cs * (yold - cl - .5 * storage(pnt%).depth) *

(cs - 1)
abit2 = csp * sp * (yold - si) * (sp - 1)
dfdy = abit + (abitl + abit2) * tint * 3600
f = a * yold A b + (ccs * (yold - cl - .5 *

storage(pnt%).depth) * cs) * 3600 * tint
f = f + (csp * (yold - si) * sp) * tint * 3600
ynew = yold - (f - value) / dfdy
diff = ABS(1 - ynew / yold)
yold = ynew

LOOP UNTIL diff <= .01

CASE 4
csp = storage(pnt%).csp: sp = storage(pnt%).sp
yold = si + .1

DO
dfdy = (csp * sp * (yold - si) A (sp - 1)) * tint * 3600 + a

* b * yold A (b - 1)
f = a * yold * b + csp * (yold - si) A sp * tint * 3600
ynew = yold - (f - value) / dfdy
IF ynew > 0 THEN

diff = ABS(1 - ynew / yold)
valuel = a * ynew * b + csp * (ynew - si) * sp * tint *

3600
yold = ynew

ELSE
diff = 0 !

END IF
LOOP UNTIL diff <= .01

END SELECT

END SUB

FUNCTION storvol (pnt%, y)

storvol = storage(pnt%).a * y * storage(pnt%).b

END FUNCTION

D - 110

'Program for comparison of observed to simulated results

DECLARE SUB goodoffit ()
DECLARE SUB interp (tim!(), timeS(), flow!(), i%, j%, flw!)

TYPE modconnectivity
modno AS INTEGER
ofl AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE
imc AS SINGLE
cap AS SINGLE
volume AS SINGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
ss2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE

D - 111

CCS AS SINGLE
CB AS SINGLE
csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, Btorage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED expo, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%

COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

REM $DYNAMIC

CALL goodoffit

tcode% = 2

SCREEN 0

CLS

COLOR 0, 2
LOCATE 11, 28
PRINT "Chaining editor subprogram"

COLOR 3, 0

CHAIN "editor"

errorproc:

SELECT CASE ERR
CASE 25, 24, 68

BEEP: BEEP: PRINT : PRINT : PRINT "printer not connected or
switched on ... press any key"

WHILE INKEY$ = "": WEND
RESUME begin

CASE 53, 76
BEEP: BEEP: PRINT : PRINT : PRINT "File does not exist ...

press any key"
WHILE INKEY$ = "": WEND
RESUME begin

CASE 64, 52

BEEP

D - 112

BEEP
PRINT
PRINT
PRINT "Bad filename (limited to 8 characters) ... press any-

key"
WHILE INKEY$ = "": WEND
RESUME begin

CASE ELSE
ON ERROR GOTO 0

END SELECT

begin: CALL goodoffit

tcode% = 2
SCREEN 0

CLS

COLOR 0, 2
LOCATE 11, 28
PRINT "Chaining editor subprogram"
COLOR 3, 0

CHAIN "editor"

END

REM $STATIC

•Subroutine to calculate goodness of fit criteria

SUB goodoffit

REM $DYNAMIC

REDIM tim(160), flo(160), time(160), flow(160)

ON ERROR GOTO errorproc

SCREEN 0: WIDTH 80: CLS
LOCATE 4, 1: COLOR 3, 0: PRINT "Enter observed data filename"
COLOR 7, 0: LOCATE 4, 30: INPUT "", filenames

CLS

getno: LOCATE 4, 1: COLOR 3, 0: PRINT "Module number of simulated output"
COLOR 7, 0: LOCATE 4, 35: INPUT "", num%

FOR i% = 1 TO nomod%
IF modu(i%).modno = num% THEN

modnum% = i%
GOTO grapplo

END IF
IF num% = 0 THEN GOTO last

NEXT i%

BEEP: BEEP: PRINT : PRINT : PRINT "Module "; num%; - does not exist
... press any key"

WHILE INKEY$ = "": WEND
CLS

GOTO getno

grapplo: OPEN filenames FOR INPUT AS #1

INPUT #1, nopts%

D - 113

peak.obB = 0
FOR j% = 0 TO noptD% - 1

INPUT #1, tim(j%), flo(j%)
IF flo(j%) > peak.obB THEN

peak.obB = flo(j%)
END IF

NEXT j%

peak.sim = 0
FOR j% = 0 TO noit%

IF qout(modnum%, j%) > peak.Bim THEN
peak.sim = qout(modnum%, j%)

END IF
NEXT j%

1% = 0

FOR i% = 0 TO noit%
time(i%) = i% * tint * 60

FOR j% = 1% TO noptB% - 1
IF time(i%) < tim(j%) THEN
IF j% <> 0 THEN
CALL interp(tim(), time(), flo(), i%, j%, y)
flow(i%) = y
1% = j%
EXIT FOR
ELSE
flow(i%) = flo(j%)

END IF
ELSEIF time(i%) = tim(j%) THEN
flow(i%) =

END IF
NEXT j%

NEXT i%

SCREEN 9
VIEW (10, 10)-(610, 320), , 1
xmax = tint * noit% * 60
IF peak.sim > peak.obs THEN

ymax «= peak.sim + .01
ELSE

ymax = peak.obs + .01
END IF

WINDOW (0, 0)-(xmax, ymax)

FOR j% = 1 TO nopts% - 1
xl = tim(j% - 1)
yl = flo(j% - 1)
x2 = tim(j%)
y2 = flo(j%)
LINE (xl, yl)-(x2, y2), , , &HFF00

NEXT j%

FOR j% = 1 TO noit%
xl = (j% - 1) * tint * 60
yl = qout(modnum%, j% - 1)
x2 = j% * tint * 60
y2 = qout(modnum%, j%)
LINE (xl, yl)-(x2, y2)

NEXT j%
WHILE INKEY$ = "": WEND

D - 114

rat.peak = peak.sim / peak.obs

CLS 0

LOCATE 4, 1: COLOR 3,0: PRINT "Start and finish point and time step
for stats calcs"

COLOR 7, 0: LOCATE 4, 57: INPUT "", start, finish, timestep

count = 0
total = 0
volsim = 0
FOR j% = 1 TO noit%
count = count + 1
total = total + qout(modnum%, j%)
ave = (qout(modnum%, j% - 1) + qout(modnum%, j%)) * tint * 3600 /

2
volsim = volsim + ave

NEXT j%
ave.sim = total / count

count = 0
total = 0
volobs = 0
FOR j% = 1 TO noit%

count = count + 1
total = total + flow(j%)
volobs = volobs + (flow(j% - 1) + flow(j%)) * tint * 3600 / 2
diffl = flow(j% - 1) - qout(modnum%, j% - 1)
diff2 = flow(j%) - qout(modnum%, j%)
a = a + ABS.(((diffl + diff2) * tint * 3600) / 2)

NEXT j%
ave.obs = total / count

count = 0
FOR j% = 1 TO noit%

count = count + 1
diff = flow(j%) - qout(modnum%, j%)
diffe = flow(j%) - ave.obs
diffsqr - diffsqr + diff * 2
absdiff = absdiff + ABS(diff)
diffesqr = diffesqr + diffe * 2
IF flow(j%) > 0 THEN

pee = pee + (diff / flow(j%)) * 2
END IF

NEXT j%
eff = 1 - diffsqr / diffesqr
pee = (pee / count) " .5

PRINT " Observed Simulated Ratio (sim/obs) "
PRINT " ";
PRINT "Peak(cub m/s) ";
PRINT USING "####.###"; peak.obs;
PRINT " ";
PRINT USING "#####.###"; peak.sim;
PRINT " ";
PRINT USING "##.####"; rat.peak
PRINT " ";
PRINT "Volume (cub m) ";
PRINT USING "#####.##"; volobs;
PRINT " ";
PRINT USING "######.##"; volsim;
PRINT " ";
PRINT USING "##.####"; volsim / volobs
PRINT " ";

D - 115

PRINT "Ave flw(cutr m/o)" ;
PRINT USING "#/.#####••; a v c o b o ;
PRINT " ";
PRINT USING "###.#####"; ave.Dim;
PRINT " ";
PRINT USING "##.####"; ave.Dim / ave.obs
PRINT
PRINT
PRINT " ";
PRINT "SSR (cub m/s)"2 ";
PRINT USING "###.####"; diffsqr
PRINT " ";
PRINT "SAR (cub m/s) ";
PRINT USING »###.####"; absdiff
PRINT " ";
PRINT "Coef Eff ";
PRINT USING "#.##"; eff
PRINT " ";
PRINT "Prop err of est ";
PRINT USING "##.##"; pee
PRINT " ";
PRINT "Abs Areas of div ";
PRINT USING "#####.#"; a

WHILE INKEY$ = WEND

CLOSE #1

ERASE tim, flo, flow, time

END SUB

REM $STATIC

'Subroutine to interpolate observed hydrograph for change in time step

SUB interp (tim(), time(), flo(), i%, j%, flw)

slo = (flo(j%) - flo(j% - 1)) / (tim(j%) - tim(j% - 1))
flw = flo(j% - 1) + slo • (time(i%) - tim(j% - 1))

END SUB

D - 116

'Program to output connectivity to screen

DECLARE SUB dataoutl (filel$)
DECLARE SUB datainl (filel$)
TYPE modconnectivity

modno AS INTEGER
o£l AS INTEGER
typ AS INTEGER
dsmod AS INTEGER
infmod AS INTEGER
pi AS INTEGER

END TYPE

TYPE overmod
man AS SINGLE
slo AS SINGLE
Ing AS SINGLE
wid AS SINGLE

END TYPE

TYPE aquimod
slo AS SINGLE
wid AS SINGLE
Ing AS SINGLE
depth AS SINGLE
wtl AS SINGLE
sorp AS SINGLE
perm AS SINGLE
por AS SINGLE '
imc AS SINGLE
cap AS SINGLE
volume AS SJNGLE
yprev AS SINGLE

END TYPE

TYPE pipemod
slo AS SINGLE
diam AS SINGLE
Ing AS SINGLE
man AS SINGLE
cap AS SINGLE
min AS SINGLE

END TYPE

TYPE trapmod
Slo AS SINGLE
Ing AS SINGLE
man AS SINGLE
wid AS SINGLE
ssl AS SINGLE
BS2 AS SINGLE
mdep AS SINGLE
cap AS SINGLE

END TYPE

TYPE stormod
Cl AS SINGLE
si AS SINGLE
a AS SINGLE
b AS SINGLE
stlev AS SINGLE
typ AS INTEGER
ecu AS SINGLE
cu AS SINGLE
ccs AS SINGLE
cs AS SINGLE

D - 117

csp AS SINGLE
sp AS SINGLE
depth AS SINGLE
critl AS SINGLE
crit2 AS SINGLE .
crit3 AS SINGLE
prevstor AS SINGLE

END TYPE

TYPE compmod
slo AS SINGLE
Ing AS SINGLE
nosegs AS INTEGER
nopts AS INTEGER

END TYPE

COMMON SHARED modu() AS modconnectivity, pipe() AS pipemod, storage() AS
stormod
COMMON SHARED overlnd() AS overmod, aqui() AS aquimod, trapchan() AS trapmod
COMMON SHARED qin(), qout(), unit(), con(), ovflo(), order(), nomod%, noit%,
tint
COMMON SHARED expo, over(), rain(), pi
COMMON SHARED promptl$, flag.file%, tcode%
COMMON SHARED title$, file$, flag.esc%, pl%, p2%, p3%, p4%, p5%, p6%
COMMON SHARED sim.time, rain.time, hyeto.number%, newmod%, flag.insert%
COMMON SHARED compchan() AS compmod, x(), y(), n(), segno()

1 'File PLANLAST.BAS in QB
2 "This file forms a combination of PLAN.BAS (ex-PLAN6.BAS) and
3 'PLANTA.BAS (ex-PLAN8.BAS).
4 'Routine to draw n sequences with unlimited side branches up to the 2nd
5 'order, forming a modular representation of one or more catchments.
6 'Dr W.A.J. Paling, 19-7-1990

filel$ = "b:temp.skm"

CALL dataoutl(filel$)

ERASE con, over, order, ovflo, unit, rain, qin, qout, trapchan
ERASE aqui, pipe, compchan, storage, overlnd

REM $DYNAMIC

10 REDIM il(140), i2(140), typ(140), kl(140), k2(140, 15), k3(400), k4(400,
15)
11 REDIM L2(400), TEMP(140), SEQ(50, 30), SUBR(5, 50, 20), TAL(10), NOL(30)
12 REDIM RECX(50), RECY(50), RAINl(900), RAIN2(900), RAIN3(900), p(30)
13 'The dimension of K3, K4 and L2 should at least correspond with the

CLS
LOCATE 11, 28
COLOR 0, 2: PRINT "screen connectivity routine"
nail « 0

30 FOR i = 1 TO nomod%
50 IF modu(i).modno < 900 THEN

nail = nail + 1
il(nall) = modu(i).modno
i2(nall) = modu(i).dsmod
typ(nall) = modu(i).typ

END IF
80 NEXT i

100 ' Backward Connectivity
110 FOR i = 1 TO nail fKl() = quantity of incoming nodes

D - 118

120 kl(i) = 0 " 'K2(,) = data file sequence nr of incoming node
130 FOR j - 1 TO nail
140 IF i2(j) <> il(i) THEN 170
150 kl(i) » kl(i) + 1
160 k2(i, kl(i)) •= j

•PRINT "I«="; I; "K1(I)="; K1(I); "K2(I,K1(I))="; K2(I, K1(I))
170 NEXT j
180 NEXT i
200 ' Forward Connectivity
210 FOR i = 1 TO nail *L2() • data file sequence nr of subsequent node
220 FOR j = 1 TO nail
230 IF i2(i) «= 0 GOTO 270
240 IF il(j) <> i2(i) THEN 260
250 L2(i) «= j: GOTO 270
260 NEXT j
270 NEXT i
300 • Establish the Individual Rows
310 FOR i = 1 TO nail 'change from sequence nrs to code nrs
320 k3(il(i)) = kl(i)
330 'PRINT "I = "; I; "I1(I)«="/ 11(1); MK3 (11(1))="; K3(I1(I)),
340 FOR j = 1 TO k3(il(i))
350 k4(il(i), j) = il(k2(i, j))
360 'PRINT "J="; J; "K4(11(1),J)="; K4(I1(I), J),
370 NEXT j: 'PRINT
380 NEXT i: 'PRINT

L = 0: LMAX = 0
FOR i = 1 TO nail
IF kl(i) <> 0 THEN 520 'find a starting point of a row
K = i: L = L + 1: NL = 1: j = 1
TEMP(j) = il(i)

500 IF L2(K) = 0 THEN 510 'arrived at the end of a row
j = j + l:NL = NL + l
TEMP(j) = il(L2(K))
K = L2(K)
GOTO 500

510 IF NL > LMAX THEN LMAX = NL 'NL «= nr of blocks in a row
FOR j = 1 TO NL
SEQ(L, j) = TEMP(NL - j + 1) 'SEQ stores sequences of code nrs
'PRINT "L="; L; "J^; J; "SEQ(L,J) = "; SEQ(L, J)

NEXT 'LMAX = max nr of columns
520 NEXT 'L ** max nr of rows

XL = 610 / LMAX: YL «= 320 / L
XL1 = .1 * XL: XL2 = .2 * XL: XL3 = .3 * XL: XL4 = .4 * XL
XL5 = .5 * XL: XL6 = .6 * XL: XL7 = .7 * XL: XL8 = .8 * XL
XL9 = .9 * XL
XL05 = .05 * XL: XL25 = .25 * XL: XL65 = .65 * XL: XL85 = .85 * XL
YL1 = .1 * YL: YL2 = .2 * YL: YL3 = .3 * YL: YL4 = .4 * YL
YL5 = .5 * YL: YL6 = .6 * YL: YL7 = .7 * YL: YL8 = .8 * YL
YL9 = .9 * YL: YL05 = .05 * YL

600 ' Create Subsets
SALL = 1: PP = 1: p(PP) = SEQ(1, 1)
FOR K = 1 TO L
TAL(K) « 0 'TAL() = nr of rows in a subset
FOR i = 1 TO L
IF SEQ(i, 1) <> p(PP) THEN AA = SEQ(i, 1): GOTO 610
TAL(K) = TAL(K) + 1
FOR j - 1 TO LMAX: SUBR(K, TAL(K), j) = SEQ(i, j): NEXT

610 NEXT
FOR i = 1 TO K

PRINT AA, p(i)
IF (AA = p(i)) OR (AA = 0) THEN 620

NEXT
PRINT
SALL «= SALL + 1: PP = PP + 1: p(PP) = AA

NEXT
620 FOR S = 1 TO SALL

PRINT USING "Subset nr = ##"; S

D - 121

REDIM trapchan(20) AS trapmod, storage(3) AS stormod
REDIM compchan(5) AS compmod, x(5, 10), y(5, 10), n(5, 5), segno(5, 5,

2)

filel$ = "b:temp.skm"

CALL datainl(filel$)

KILL "b:temp.skm"

tcode% = 3

SCREEN 0
WIDTH 80

CLS
COLOR 0, 2
LOCATE 11, 28
PRINT "Chaining editor subprogram"
COLOR 3, 0

CHAIN "editorf"

END
3000 ' Subroutine for Drawing Modules in Series

FOR II = 1 TO nail
IF il(II) = NODE THEN numl = typ(II): GOTO 3010

NEXT
3010 IF numl = 1 THEN 3020

' green background square
LINE (XP + XL2, YP - YL8)-(XP + XL8, YP - YL2), 1, BF: GOTO 3030

3020 ' green parallelepipidum
PX1 = XP + XL05: PX2 = XP + XL65
PX3 = XP + XL85: PX4 = XP + XL25
PY1 = YP - YL2: PY3 = YP - YL6
LINE (PX1, PY1)-(PX2, PY1), 1: LINE (PX2, PY1)-(PX3, PY3), 1
LINE (PX3, PY3)-(PX4, PY3), 1: LINE (PX4, PY3)-(PX1, PY1), 1
PAINT (XP + XL5, YP - YL5), 1, 1

3030 IF k3(NODE) = 0 THEN 3040
• yellow line on the left
LINE (XP, YP - YL5)-(XP + XL2 - 1, YP - YL5)
1 yellow line on the right

3040 LINE (XP + XL8 + 1, YP - YL5)-(XP + XL - 1, YP - YL5)
1 green arrows —
PSET (XP + XL - 1, YP - YL5), 1: DRAW "NH2;G2"
IF numl <> 1 THEN 3050
• catchment J"*
RECX(KLM) = XP + XL2: RECY(KLM) = YP - YL: KLM = KLM + 1: GOTO 4040

3050 IF numl <> 2 THEN 3060
• pipeline
IF XL < (5 / 8) * YL THEN R = .25 * XL ELSE R = .25 * YL
CIRCLE (XP + XL5, YP - YL5), R, 2
PSET (XP + XL5, YP - YL5), 2
DRAW "NL=" + VARPTR$(R) + "NR=" + VARPTR$(R) + "BD=" + VARPTR$(YLl)
DRAW "P 3,2;"

3060 IF numl <> 4 THEN 3070
• rectangular channel
PSET (XP + XL3, YP - YL3), 2
DRAW "NU=" + VARPTR$(YL4) + "R=" + VARPTR$(XL4) + "NU=" + VARPTR$(YL4)
DRAW "U=" + VARPTR$(YL2) + "L=" + VARPTR$(XL4) + "R=" + VARPTR$(XL2)
DRAW "BD=" + VARPTR$(YL1) + "P 3,2": GOTO 4040

3070 IF numl <> 3 AND numl <> 5 THEN 3080
• channel with sloping sides
LINE (XP + XL3, YP - YL7)-(XP + XL4, YP - YL3), 2
LINE (XP + XL4, YP - YL3)-(XP + XL6, YP - YL3), 2
LINE (XP + XL6, YP - YL3)-(XP + XL7, YP - YL7), 2
LINE (XP + .35 * XL, YP - YL5)-(XP + .65 * XL, YP - YL5), 2

D - 122

PAINT (XP + XL5, YP -"YL4), 3, 2
3080 IF numl <> 6 THEN 4040

1 ?aquifer?
LINE (XP + XL3, YP - YL3)-(XP + XL7, YP - YL6), 3, BF
FOR k3 = 1 TO 3

PSET (XP + (.2 + k3 * .15) * XL, YP - YL6), 2
DRAW "NH'

VARPTR$(YL1)
NEXT k3

4040 'continue
4045 '
5000 NUM = NODE

a = .1
PSET (XP

VARPTRS(YLl) "NU* + VARPTRS(YLl) + "NE«

Draw NumborB

IF NUM <
IF NUM <

5010 IF NUM <
5020 IF NUM <
5030 IF NUM <
5040 IF NUM <
5050 IF NUM <
5060 IF NUM <
5070 IF NUM <
5080 GOSUB 5510: NUM

+ a * XL, YP - .05 * YL), 2
1000 THEN 5100
9000 THEN 5010 ELSE GOSUB 5590: NUM = NUM - 9000: GOTO 5090
8000 THEN 5020 ELSE GOSUB 5580: NUM = NUM - 8000: GOTO 5090
7000 THEN 5030 ELSE GOSUB 5570: NUM = NUM - 7000: GOTO 5090
6000 THEN 5040 ELSE GOSUB 5560: NUM = NUM - 6000: GOTO 5090
5000 THEN 5050 ELSE GOSUB 5550: NUM = NUM - 5000: GOTO 5090
4000 THEN 5060 ELSE GOSUB 5540: NUM •= NUM - 4000: GOTO 5090
3000 THEN 5070 ELSE GOSUB 5530: NUM = NUM - 3000: GOTO 5090
2000 THEN 5080 ELSE GOSUB 5520: NUM = NUM - 2000: GOTO 5090

NUM - 1000
5090 a = a + .125

IF NUM < 100 THEN PSET (XP + a * XL, YP - .05 * YL), 2: GOSUB 5500: a =
a + .125

IF NUM < 10 THEN PSET (XP + a * XL, YP - .05 * YL), 2: GOSUB 5500: a =
a + .125
5100 IF NUM < 100 THEN 5200

PSET (XP + a * XL, YP - .05 * YL), 2
IF NUM <

5110 IF NUM <
5120 IF NUM <
5130 IF NUM <
5140 IF NUM <
5150 IF NUM <
5160 IF NUM <
5170 IF NUM

900 THEN 5110 ELSE GOSUB 5590:
800 THEN 5120 ELSE GOC-UB 5580:
700 THEN 5130 ELSE GOSUB 5570:
600 THEN 5140 ELSE GOSUB 5560:
500 THEN 5150 ELSE GOSUB 5550:
400 THEN 5160 ELSE GOSUB 5540:
300 THEN 5170 ELSE GOSUB 5530:

< 200 THEN 5180 ELSE GOSUB 5520:

NUM
NUM
NUM
NUM
NUM
NUM
NUM
NUM

NUM - 900:
NUM - 800:
NUM - 700:
NUM - 600:
NUM - 500:
NUM - 400:
NUM - 300:
NUM - 200:

GOTO 5190
GOTO 5190
GOTO 5190
GOTO 5190
GOTO 5190
GOTO 5190
GOTO 5190
GOTO 5190

5180 GOSUB 5510: NUM «= NUM - 100
125
10 THEN PSET

5190 a = a + .
IF NUM <

a + .125
5200 IF NUM < 10 THEN 5300

(XP + a * XL, YP - .05 * YL), 2: GOSUB 5500: a

PSET (XP + a * XL, YP - .05 * YL), 2
IF-NUM

5210 IF NUM <
5220 IF NUM <
5230 IF NUM <
5240 IF NUM
5250 IF NUM
5260 IF NUM <
5270 IF NUM <
5280 GOSUB 5510: NUM
5290 a = a + .125
5300 PSET (XP + a

90 THEN 5210 ELSE GOSUB 5590:
80 THEN 5220 ELSE GOSUB 5580:
70 THEN 5230 ELSE GOSUB 5570:

< 60 THEN 5240 ELSE GOSUB 5560:
< 50 THEN 5250 ELSE GOSUB 5550:
< 40 THEN 5260 ELSE GOSUB 5540:
< 30 THEN 5270 ELSE GOSUB 5530:

20 THEN 5280 ELSE GOSUB 5520:
NUM - 10

NUM
NUM
NUM
NUM
NUM
NUM
NUM
NUM

NUM
NUM
NUM
NUM
NUM
NUM
NUM
NUM

90:
80:
70:
60:
50:
40:

GOTO 5290
GOTO 5290
GOTO 5290
GOTO 5290
GOTO 5290
GOTO 5290

30: GOTO 5290
20: GOTO 5290

XL, YP - .05 * YL),
IF NUM < 9 THEN 5310 ELSE GOSUB 5590: GOTO 5390

5310 IF NUM < 8 THEN 5320 ELSE GOSUB 5580: GOTO 5390
5320 IF NUM < 7 THEN 5330 ELSE GOSUB 5570: GOTO 5390
5330 IF NUM < 6 THEN 5340 ELSE GOSUB 5560: GOTO 5390
5340 IF NUM < 5 THEN 5350 ELSE GOSUB 5550: GOTO 5390
5350 IF NUM < 4 THEN 5360 ELSE GOSUB 5540: GOTO 5390
5360 IF NUM < 3 THEN 5370 ELSE GOSUB 5530: GOTO 5390
5370 IF NUM < 2 THEN 5380 ELSE GOSUB 5520: GOTO 5390
5380 IF NUM < 1 THEN 5385 ELSE GOSUB 5510: GOTO 5390
5385 GOSUB 5500
5390

D - 119

FOR i = 1 TO TAL(S) '
PRINT USING "Row = #### "; i;
FOR j = 1 TO LMAX

PRINT USING "######"; SUBR(S, i, j);
NEXT
PRINT

NEXT
NEXT
FOR i = 1 TO 500: NEXT

1000 ' Start Drawing
CLS : KEY OFF: SCREEN 9: COLOR 1, 0
XP = 610: YP = YL
FOR SS = 1 TO SALL

• establish longest row in subset
NLON = 0 'NLON = nr of nodes in longest row
FOR i = 1 TO TAL(SS) 'RLON = subset sequence nr of longest row
M = 0
FOR j = 1 TO LMAX + 1
IF SUBR(SS, i, j) <> 0 THEN M = M + 1: GOTO 1010
IF M > NLON THEN NLON = M: RLON = i: GOTO 1020

1010 NEXT
1020 NEXT

• draw longest row
FOR i = 1 TO NLON
NODE = SUBR(SS, RLON, i)
XP = XP - XL:_GOSUB 3000

NEXT
YP1 = YP - YL5
• branches
FOR n = NLON - 1 TO 1 STEP -1
IF k3(SUBR(SS, RLON, n)) <= 1 THEN 1100
• first order branches
XP1 = XP
NOL(l) = SUBR(SS, RLON, n + 1)
FOR K = 2 TO k3(SUBR(SS, RLON, n))
YP = YP + YL
SNLON = 0
FOR i = 1 TO TAL(SS)
IF SUBR(SS, i, n) <> SUBR(SS, RLON, n) THEN 1040
FOR j = 1 TO k3(SUBR(SS, RLON, n))
IF SUBR(SS, i, n + 1) «= NOL(j) THEN 1040

NEXT
M = 0
FOR j = n + 1 TO NLON + 1
IF SUBR(SS, i, j) <> 0 THEN M = M + 1: GOTO 1030
IF M > SNLON THEN SNLON = M: SRLON = i: GOTO 1040

1030 NEXT j
1040 NEXT i

FOR i = 1 TO SNLON 'draw 1st order branch
NODE = SUBR(SS, SRLON, n + i)
GOSUB 3000: XP = XP - XL

NEXT
IF (k3(L2(NODE)) = 1) AND (L2(NODE) <> n) THEN 1050
GOSUB 1200 'second order branches

1050 NOL(K) = SUBR(SS, SRLON, n + 1)
XP = XP1

NEXT K
LINE (XP + XL, YP - YL5)-(XP + XL, YP1)
XP = XP1

1100 XP = XP + XL
FOR i = 1 TO k3(SUBR(SS, RLON, n)): NOL(i) = 0: NEXT

NEXT n
XP = 320: YP = YP + YL

NEXT SS
GOTO 2000

1200 ' second order branches
XP » XP + XL: YP2 = YP - YL5

RECY(O)), 3
+ VARPTR$(YL1) "BD VARPTR$(YL1)

D - 120

FOR NN = SNLON - 1 TO 1 STEP -1
XP2 «• XP
NOLI = SUBR(SS, SRLON, n + NN + 1)
IF k3(SUBR(SS, SRLON, n + NN)) = 1 THEN 1240
FOR JJ = 1 TO k3(SUBR(SS, SRLON, n + NN))
NODE = k4(SUBR(SS, SRLON, n + NN), JJ)
IF NODE = NOLI THEN 1230
YP = YP + YL

1210 GOSUB 3000
IF k3(NODE) = 0 THEN XP •= XP2: GOTO 1230
NODE = k4(NODE, 1): XP «= XP - XL: GOTO 1210
XP «= XP2

1230 NEXT JJ
LINE (XP2 + XL, YP - YL5)-(XP2 + XL, YP2)

1240 XP = XP + XL
NEXT NN
RETURN

2000 • Rain
PZ1 = RECX(0) + XL05 - 1: PZ2 = RECY(0)
PZ3 = RECX(0) + XL65 + 1: PZ4 = RECY(O) + YL4 - 1
FOR i = 0 TO 6
PSET (RECX(O) + XL05 + i * XL1,
DRAW "D=" + VARPTR$(YL1) + "BD="

NEXT i
•LINE (PZ1, PZ2)-(PZ3, PZ4), 2, B
GET (PZ1, PZ2)-(PZ3, PZ4), RAIN1
PUT (PZ1, PZ2), RAIN1
FOR i = 0 TO 6
PSET (RECX(0) + XL05 + i * XLl, RECY(O)), 3
DRAW "BD=" + VARPTR$(YL1) + "D

NEXT i
"LINE (PZ1, PZ2)-(PZ3, PZ4), 2, B
GET (PZ1, PZ2)-(PZ3, PZ4), RAIN2
PUT (PZ1, PZ2), RAIN2
FOR i = 0 TO 6
PSET (RECX(O) + XL05 + i * XLl, RECY(O)), 3
DRAW "BD=" + VARPTRS(YLl) + BBD=" + VARPTR$(YL1) + "D=" + VARPTR$(YL1)

NEXT i
'LINE (PZ1, PZ2)-(PZ3, PZ4), 2, B
GET (PZ1, PZ2)-(PZ3, PZ4), RAIN3
PUT (PZ1, PZ2), RAIN3
FOR i = 0 TO KLM - 1: PUT (RECX(i), RECY(i)), RAIN1: NEXT i

2500 a$ = INKEYS
IF a$ <> "" THEN 9999
FOR i = 0 TO KLM - 1
PUT (RECX(i), RECY(i)), RAIN1: PUT (RECX(i), RECY(i)), RAIN2

NEXT i
FOR i = 0 TO KLM - 1
PUT (RECX(i), RECY(i)), RAIN2: PUT (RECX(i), RECY(i)), RAIN3

NEXT i
FOR i = 0 TO KLM - 1
PUT (RECX(i), RECY(i)), RAIN3: PUT (RECX(i), RECY(i)), RAIN1

NEXT i
GOTO 2500
FOR i = 0 TO KLM - 1
PUT (RECX(i), RECY(i)), RAIN1: PUT (RECX(i), RECY(i)), RAIN2

NEXT i

+ VARPTRS(YLl) + "BD=" + VARPTR$(YL1)

9999 ERASE L2, TEMP, SEQ, SUBR, TAL, NOL
ERASE RECX, RECY, RAIN1, RAIN2, RAIN3, p
ERASE il, i2, kl, k2, k3, k4

REDIM qin(140, 100), qout(140, 100)
REDIM overlnd(70) AS overmod, aqui(70) AS aguimod, pipe(20) AS pipemod
REDIM unit(140, 2), con(140, 10), ovflo(140, 8), order(2, 140)
REDIM over(140, 100), rain(100)

D - 123

5400 RETURN
5500 DRAW "L2;U4;R2;D4;": RETURN
5510 DRAW "U4;": RETURN
5520 DRAW "L2;U2;R2;U2;L2;": RETURN
5530 DRAW "NL2;U2;NL1;U2;L2;": RETURN
5540 DRAW "U2;NU2;L2;U2;": RETURN
5550 DRAW "NL2;U2;L2;U2;R2;": RETURN
5560 DRAW "NU2;L2;U2;NR2;U2;R2;M: RETURN
5570 DRAW "U4;L2;": RETURN
5580 DRAW "U2;NL2;U2;L2;D4;R2;": RETURN
5590 DRAW "NL2;U4;L2;D2;R2;": RETURN

REM $STATIC

SUB datainl (filel$)

OPEN filel$ FOR INPUT AS #1

INPUT #1, titles

INPUT #1, tint, sim.time, rain.time, hyeto.number%, noit%, nomod%
INPUT #1, pl%, p2%, p3%, p4%, p5%, p6%, newmod%

draw
draw
draw
draw
draw
draw
draw
draw
draw
draw

0
1
2
3
4
5
6
7
8
9

FOR i% =-1-TO-hyeto.number%
INPUT #1, rain(i%)

NEXT i%

FOR it = 1 TO nomod%
INPUT #1, modu(i%).modno
INPUT #1, modu(i%).dsmod, modu(i%).of1, modu(i%) .typ,

modu(i%).infmod, modu(i%). pi

SELECT CASE modu(i%).typ

CASE 1
p% = modu{i%).pi
INPUT #1, overlnd(p%).man, overlnd(p%).slo, overlnd(p%).Ing
INPUT #1, overlnd(p%).wid

CASE 2
p% = modu(i%).pi
INPUT #1, pipe(p%) .Ing, pipe(p%) .diam, pipe(p%) .slo, pipe(p%) .man

CASE 3
p% = modu(i%) .pi r,s;
INPUT #1, trapchan(p%).slo, trapchan(p%).man, trapchan(p%).Ing
INPUT #1, trapchan(p%).wid, trapchan(p%).ssl, trapchan(p%).ss2,

trapchan(p%).mdep

CASE 4
p% = modu(i%).pi
INPUT #1, storage(p%).typ, storage(p%).a, storage(p%).b,

storage(p%).cl
INPUT #1, storage(p%).ecu, storage(p%) .cu, storage(p%).ccs,

storage(p%).cs
INPUT #1, storage(p%).depth
INPUT #1, storage(p%).si, storage(p%).csp, storage(p%) .sp,

storage(p%).stlev

CASE 5
p% = modu(i%).pi

INPUT #1, compchan(p%).slo, compchan(p%).Ing,
compchan(p%).nosegs, compchan(p%).nopts

FOR j% = 1 TO compchan(p%).nopts
INPUT #1, x{p%, j%), y(p%,

NEXT j%

D - 124

FOR j% « 1 TO compchan(p%).noQego
INPUT #1, oogno(p%, j%, 1), segno(p%, j%, 2), n(p%, j

NEXT j%

CASE 6
p% = raodu(i%).pi
INPUT #1, aqui(p%).olo, aqui(p%).wid, aqui(p%).Ing,

aqui(p%).depth
INPUT #1, aqui(p%).wtl
INPUT #1, aqui(p%).Dorp, aqui(p%).perm, aqui(p%).imc,

aqui(p%).por

END SELECT

NEXT i%

CLOSE #1

END SUB

SUB dataoutl (filelS)

OPEN filel$ FOR OUTPUT AS #1

WRITE #1, title$
WRITE #1, tint, aim.time, rain.time, hyeto.number%, noit%, nomod%
WRITE #1, pl%, p2%, p3%, p4%, p5%, p6%, newmod%

FOR it = 1 TO hyeto.number%
WRITE #1, rain(i%)

NEXT i%

FOR i% = 1 TO nomod%
WRITE #1, modu(i%).modno
WRITE #1, modu(i%).dsmod, modu(i%).of1, modu(i%).typ,

modu(i%).infmod, modu(i%).pi

SELECT CASE modu(i%).typ

CASE 1
p% =» modu(i%).pi
WRITE #1, overlnd(p%).man, overlnd(p%).slo, overlnd(p%).Ing
WRITE #1, overlnd(p%).wid

CASE 2
p% = modu(i%).pi
WRITE #1, pipe(p%).Ing, pipe(p%).diam, pipe(p%).slo,

pipe(p%).man

CASE 3
p% = modu(i%).pi
WRITE#1, trapchan(p%) .slo, trapchan(p%) .man, trapchan(p%) . Ing
WRITE #1, trapchan(p%).wid, trapchan(p%).ssl,

trapchan(p%). sa2, trapchan(p%).mdep

CASE 4
p% = modu(i%).pi
WRITE #1, storage(p%).typ, storage(p%).a, storage(p%).b,

storage(p%).cl
WRITE #1, storage(p%).ecu, storage(p%).cu, storage(p%).ccs,

storage(p%).cs
WRITE #1, storage(p%).depth
WRITE #1, storage(p%).si, storage(p%).csp, storage(p%).sp,

storage(p%).stlev

CASE 5

D - 125

p% * modu(i%).pi
WRITE #1, compchan(p%).slo, compchan(p%)-Ing,

compchan(p%).nosegs, compchan(p%).ncpts

FOR j% = 1 TO compchan(p%).nopts
WRITE #1, x(p%, j%), y(p%, j%)

NEXT j%

FOR j% = 1 TO compchan(p%).nosegs
WRITE #1, segno(p%, j%, 1), segno(p%, j%, 2), n(p%, j%)

NEXT j%

aqui(p%).depth

aqui(p%).por

END SELECT

NEXT i%

CLOSE #1

CASE 6
p% • modu(i%).pi
WRITE #1, aqui(p%).slo, aqui(p%).wid, aqui(p%).Ing,

WRITE #1, aqui(p%).wtl
WRITE #1, aqui(p%).sorp, aqui(p%).perm, aqui(p%).imc,

END SUB

