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ABSTRACT

Five methods of interpolating three-dimensional surfaces were examined
in a literature survey, and as a result four of these were tested for
their ability to satisfy a series of accuracy goals. The methods tested
are known as Inverse Squared Distance, Multiquadratic interpolation,
Polsnomial | surface fitting and Distance weighted least-squares
interpolation. The method that performed the best, Inverse Squared

Distance, was used for the subsequent research carried out.

A computer program was developed that enabled the plotting of contours
of rainfall intensity over small time steps. This was applied to a
10.36Km2 area peri-urban catchment using data from five rain-gauges
monitoring the catchment. A modification of a well tested overland flow
model, WITWAT, was used to generate runoff hydrographs for the
catchment and hence the spatial variation of real storm events were
maintained. The shapes of the resultant runoff hydrographs were
compared with other methods of rainfall distribution.



SYNOPSIS

The estimation of runoff from a catchment is an important process that
underlies the majority of hydrological planning and design studies.
Estimation can be divided into three distinct aspects; rainfall falling
to the ground, the movement of the water over and through the land
surface and the movement of the water through channels. The second and
third aspects form the focus of most runoff models, and this is being
modelled with increasing degrees of detail and discretisation. The
apparent gap in detail covering the first aspect, that of rainfail
falling to the ground surface, forms the basis for this project.

Several computerised methods of describing detailed distributions of
rainfall patterns from recorded rainfall data were studied. The most
suitable method was selected using the criterion of how well it
satisfied a series of general accuracy goals. To achieve a thorough
evaluation, extensive testing was carried out. The results and

conclusions of this testing process is reported upon.

A method of producing contour maps of rainfall intensity for time steps
over the duration of the storm event was developed. Rainfall data from
a peri-urban catchment of a“oit 10km? area were used and a la 'z
number of storm events studied in this way. It was discovered that a
single storm event was composed of several cells, whose behaviour is
extremely erratic. These cells are of small aerial extent (about 4km
diameter) and short duration (mostly less than 20 minutes). The study
of cells has formed the subject of several papers by other authors, and
pertinent points from these papers have been included in this study.

The visual display of changing storm 'patterns with time provides a
means of analysing features of storm events which is not possible with
statistically based methods, such as cross correlation techniques. The
development and decay of storm cells could be examined, and
characteristics determined. Widely varying shapes of contour maps were
noticed in the study: Each storm intensity contour map. represented 5

minutes of storm event, and changes from one 5 minute interval to the
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subsequent showed convoluted, spotty, selective and planar
distributions of rainfall over a small catchment and over small time
spans. This presented a far more complex interpretation of storms than
depicted by simplistic design storms which have constant intensity over
‘the storm duration or Thiessen distributions which allocate rainfall to
weighted areas contributed to by the nearest gauge. Both these methods
are commonly used to describe rainfall input for rainfall/runoff

process models.

An adapted version of a well tested runoff model was used to determine
the effects that different shapes of rainfall patterns used as an input
would have on runoff hydrographs. This made it possible to distribute
real rainfall events spatially over the catchment, as well as
temporally. Hence real storms were broken down to five minute time
intervals, and the rainfall intensity from each time interval
distributed over the catchment in accordance with the actual shape of
the storm for that time interval. It was also possible to use
conventional rainfall distribution methods as an input to the runoff

medel.

In this way several types of rainfall input were used for the purposes
of comparison; single gauges to represent the whole catchment, Thiessén
weig i averages of the existing gauges and the spatial distribution
method selected (Inverse Squared Distances). The resultant hydrographs
exhibited widely varying shapes for the same event. This indicated that
current popular methods of rainfall representation for runoff models do
not agree with each other (when studying the same event), or with a

more accurate representation of real rainfall events.

The main conclusion,. and suggestion for further study is that a new
generation of runoff models should be developed which include a spatial
distribution of rainfall that accurately describes real events. The
benefits derived from the current trend to describe the physical
parameters of catchments (slope, ground cover, soil permeability
properties etc.) in great detail over smaller and smaller areas or
sub-areas within a study catchment is largely negated when the rainfall

input is distributed as a lumped occurrence over the catchment.
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| GENERAL INTRODUCTION

This report is concerned with the effect that storm shape and movement
has on runoff from a catchment. Runoff from a catchment is becoming
more important in urban drainage design as pipe networks and retention
structures have to be designed with the least cost for the least risk
possible, and in rural catchment studies where volumes required for
sﬁorage structures, erosion quantities and siltation of storage
structures need to be evaluated.

Required storage volumes, erosion and siltation quantities, water
quality variations and peak flow rates all depend on the runoff that
occurs from a catchment, and more particularly after a storm event. To
be able to estimate the volume of topsoil eroded from a field one has
to be able to estimate the amount and energy of water available to move
soil particles - i.e. runoff. Similarly, the load carried in a channel,
siltation rates, maximum flow depths and maximum flow rates depend on

the estimation of runoff. The understanding and modelling of the

process that r-:lates incident precipitation to resultant runoff is

therefore vitally important to Hydrologists, Engineers and Planners.

The maximum rate of runoff possible from a storm event is particularly
important, especially .. flood analysis studies. This is ver. de_ endant
on storm pattern - i.e. the position of the storm event over the
catchment and how this changes with time, the distribution of rainfall
intensity throughout the aerial coverage of the storm event and how the
characteristics of the storm event change during the lifetime of the
storm event. Very little atteﬁtion is paid to these aspects and this
project attempts to remedy this situation.

Our understanding of the physical processes that will produce rainfall
from any set of atmospheric conditions are limited. Thus from the
hydrologists point of view this aspect of the problem becomes
empirical, or stochastic, as opposed to deterministic. There is an
added complication in that collection of data is dependent on waiting

for events to happen. By comparison, other branches of engineering can



often produce more samples of materials that are to be tested if there
is a gap in the available data. Hence there is a large probability
component in hydrological modelling. To reduce possible errors of
estimation and design (of runoff peaks, volumes etc.), the physical
(deterministic) processes that produce runoff from rainfall are being
analysed in increasing degrees of accuracy. A concurrent study of the
stochastic aspects of the process (patterns of rainfall) to the same

degree of accuracy and analysis is called for.

Classical techniques for modelling the rainfall-runoff process involve
-arithmetic averaging of raingauge data at some stage. Whether it is an
aerial averaging where the rainfall is averaged out over the area it
fell in, as in the case of thiessen polygons for example, or if it is a
temporal and occurrence averaging, where the number of events with a
certain depth are grouped together and probabilities of occurrence are
postulated, as in the case of design storms, a means of aggregating and
simplifying the rainfall data is employed. With the growth in
popularity of micro-computers. and computer based packages it is
possible to study events in smaller time steps and smaller spatial

areas, hence increasing the degree of discretisation and accuracy.

Hydrological models which process infiltration, evapotranspifation,
subsurface flow, overland flow and channel routing are available, and
attempt to model the rainfall-runoff process to varying degrees of
accuracy (e.g. Green and Stephenson, 1986). The complexity of some
models and calculation requirements make these models ideal for

computerisation.

Rainfall-runoff process models wuse rainfall as a cause in a
cause-effect relationship. Hence the nature of the rainfall input will
have a significant effect on the nature of the output of these process
models. Commonly, "design storms” are used as an input and are
characterized by constant rainfall intensities corrected by an aerial
reduction factor and applied to the whole catchment. Other types of
inputs include weighted averages of hyetographs from raingauges in the
catchment and characteristic shapes or "templates” uéed to generate
rainfall data (e.g. Chicago, bi-modal).



It is one intention of this report to show that there are several
factors associated with storms that will have an effect on the shape of
the runoff hydrograph for a catchment which are not accounted for with
present models. Such factors include; the physical size of the
catchment in relation to the real size of the storm event, the
variation of ground levels within the catchment, and the duration,

movement and type of storm event that occurs in the area.

For the purposes of this study, then, the rainfall-runoff process can
be grouped into two concepts; the first being the pattern of rainfall
as it strikes the ground at various levels of intensity, the second
being the mechanisms that explain how the water moves from one area to
another via the land surface and eventually through channels. The first
concept is the basis for the research in this project, while the second
is used in a "black—box* approach to show the effects of the first.

A computerised method that models detailed distributions of rainfall
intensities was used to determine the effects of storm shape and
movement on runoff. Contours of rainfall iitensities over five-minute
time intervals were plotted for several storm events, and the resultant
runoff determined by an existing and well tested runoff model. Several
other methods for distributing rainfall over a catchment were also used

and these results compared.



2 STORM CRIGINS

The nature of the precipitation that reaches the ground must depend on
the nature and the origin of the precipitation. Hence a brief
introduction to storm types is given here. There are three basic causes
of precipitation from the upper atmosphere; orographic, convective and
frontal systems (which are again divided into»warm fronts, cold fronts
and occluded fronts). The size and nature of storm origins will
influence the intensity and area affeéted by a storm event, and this

effect is significant for the modelling of catchments.

This introductory chapter is largely based on "The Earth Sciences" by
Strahler (1963) unless otherwise stated.

2.1 CAUSES OF PRECIPITATION

2.1.1 Convection

Convection storms are caused by warm, moist air rising and becoming
unstable. These storms produce some of the most severe storm events
with torrential downpours, high wind speeds and are often accompanied ‘
by lightning.

A trigger 1is necessary to cause ascent of an air mass, and this is
usually ascribed to a warm surface that the air mass passes over, thus
heating the air and causing it to rise. There are several other causes.
though, such as latent heat of condensation, which will cause heating

of an air mass and also produce convectional movement.

Once a trigger exists to initiate the vertical movement of air, the
next criterion occurs if the air becomes unstable. This implies that a
parcel of air becomes warmer than the surrounding air (for reasons
intrinsic to the air mass, and relative to the surrounding air) and
rises of 1its own accord. The scale and rate of rising and amount of
moisture present in the air will determine the severity of the storm

event.



2.1.2 COrographic

In this type of event, a physical obstruction (such as a mountainside
or escarpment) forces an air mass to rise, when prevailing winds cause
movement of air horizontally. The resultant precipitation is generally
of two degrees of severity; a light persistent rain where the air mass
is essentially stable or heavy convection type showers where the air

mass has become unstable.

This effect may be visible on any continent where there is a mountain
range near the coastline (e.g. California area on the North American
continent and Natal area on Southern Africa) with the windward side of
the mountain range characterized by high rainfall areas and the leeward
side characterized by low rainfall and hot, dry conditions. ,

In equatorial and tropical regions orographic rainfall is mostly of the

severe type and produces violent monsoon events, and is the source of

many record storm events.

2.1.3 Frontal

A front is the term applied to the boundary or interface where two
dissimilar air masses meet. The main differences between air masses is
in temperature, dehsity and moisture content. These differences appear
trivial, but in actual fact air masses do not mix well at all. It is
‘better to imagine two air masses meeting as in water and oil meeting,

rather than two similar miscible air masses of differing temperatures.

There are three types of frontal systems; cold fronts, warm fronts and
occluded fronts, each with different characteristics with potential for

producing different storm events.

.Cold fronts A cold air mass invades an area occupied a warm
air mass, and because of the difference in

temperatures, forces the warm air to rise.



.Warm fronts

Horizontal movement of the air and ground friction
produces a bluntening of the cold wedge near the
ground surface, which can result in an abrupt
lifting of the warm air and the production of
unstable air (see figure 2.1).

FIGURE 2.1 COLD FRONT
(After Strahler, 1963)

A warm air mass invades an area occupied by a cold
air mass., A more gentle gradient is produced as
the warm air moves up the face of the cold air.
These fronts tend to move more slowly and cover a
wider expanse than the cold fronts (see figure
2.2).

FIGURE 2.2 WARM FRONT
(After Strahler, 1963)



.Occluded fronts This occurs when a cold front has caught up with
and pushed into a warm front. Relatively speaking
there are three separate masses of air; a cold
mass, a less cold mass and a warm mass. The warm
mass is trapped between the other two masses and
forced up (see figure 2.3).

FIGURE 2.3 OCCLUDED FRONT
{After Strahler, 1963)

The severity of the Storm event is determined by the degree of
instability in the air masses. Other factors such as moisture content,
prevailing atmospheric conditions and topographical effects will
de cermine the size, duration and movement of the storm event. These

factors establish the nature of the resultant precipitation.

2.2 CLOUD TYPES

Visible evidence of water in the atmosphere is seen by the shape or
type of clouds, and the resultant nature of precipitation. To become
visible, clouds need water droplets or ice crystals in the order of
0.02mm to 0.06mm diameter. These form by condensation around tiny
‘hygroscopic nuclei (such as chemical compounds suspended in the
atmosphere). Growth occurs (when there is water available) by more
condensation and collision of particles. This growth becomes rapid as

the saturation point of the air mass is approached.



In the upper layers, water can exist in a supercooled state as a liquid

far below zero

degrees Celsius. Clouds higher than 6.5km are however

generally composed entirely of ice.

There are two generic terms for cloud shapes:

.Stratiform

.Cumuloform

These are blanket-like layers of cloud and occur
when the air moves in laminar type layers. There
is some mixing, but the extent of vertical
movement is small.

These are flat-based globular shaped clouds. They
often extend to very high levels and are formed by
rising air currents. The clouds are comprised of
cells that rise in a series of bubble-like masses
rather than a continuous column. As they move
vertically Vupward, air is entrained latérally from

the surrounding air.

Clouds are divided into four categories, defined by the height at which

the cloud is situated and by the process of their formation. This is

shown in figure 2.4.
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.High clouds These are usually higher than Tkm and are composed
entirely of ice crystals.

.Middle clouds These are found at heights between 2km and 7km.
Altocumulus wusually indicate fair weather while
altostratus frequently produce rain.

.Low clouds These occur from ground round level to 2km above
the surface. Stratocumulus are best seen in the
clearing period following a storm, while
nimbostratus are evident as a dense, grey blanket
and may produce heavy rain. They may extend up
into the middle layer.

.Vertical clouds Clouds formed as a result of vertical movement of
air are the thunderstorm type. They may grow from
cumulus (with cauliflower shaped tops) to
cumulonimbus or thunderheads, which prodhce
violent rains and storms. These clouds
occasionally estend to heights of 18km in the

tropics.

2.3 SCALES OF STORM EVENTS

The above discussion is important to the hydrologist. The physical size
of the catchment, the geographical location and nature of relief
changes within the catchment to be modelled will influence the type of
storm event which can be expected in that area. The aerial exient of
- the storm event must also be related to the size of the catchment. If a
catchment is to be realistically modelled, fhen the characteristics of
possible storm events must be modelled as accurately as necessary, in
addition to the description of the physical parameters of the
catchment.



The discussion above is related to intensity of rainfall that can e
expected from cloud cover. The discussion below is related to the
aerial extent of the cloud cover. It 1is convenient to adopt the
definitions of size or scale used by meteorologists. Eagleson (1970)

describes these as:

.Microscale This describes areas with diameters less than
about 5km or 6km and convective cells predominate.
A stationary observer would see short intense
bursts of rainfall. The cells move with an
apparently random motion, with speeds of 30 to
65km/h. The propagation is not normally in the
same direction as the mean wind in the cloud

layer.

.Mesoscale This describes areas of about 35km to 50km. The
conditions that enable convective cells to occur
remain for longer periods than the individual
cells, hence an agglomeration of cells would
define a mesosc. le event. A thunderstorm is a ~

mesoscale event.

.Synoptic scale This \describes rareas of up to several hundred
kilometers in extent, and is a descripticn of
frontal systems. This 1is the scale of most
satellite photographs of weather conditions, and

shows many mesoscale events linked together.

-Thus for a more accurate study on a catchment, the size of the
catchment should be compared with the scales listed above, and this
information used in conjunction with an estimation of expected rainfall
intensity to determine the nature of the storm events to be applied to

the area under study.

The focus of this project is to determine what effect storm shape

variations can have on the resultant runoff from a catchment.
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3 PREVIOUS WORK ON STORM CHARACTERISTICS

Several diverse aspects of spatial and temporal phenomena of storms
have been ' researched. What follows is a summary of the most pertinent
to this project.

3.1 WEATHER PREDICTION

(After Gauntlett and Leslie, 1975)

Models to predict weather patterns for areas have been developed. These
models are mostly numerical in nature and fall under the general
heading of Numerical Weather Prediction (NWP) models. This forms an
alternative to statistically and empirically based inputs for catchment
simulation models. In this case, NWP models exclude Planetary Boundary
Layer models (which deal with very low-level effects such as

sea-breezes, fog, urban pollution etc.).

The lower limit of time resolutions available with these models is down
to about one hour, and the lower limit of spatial resolutions is down
to areas of about two hundred square kilometers. Hence these models
de.l with macroscale (synoptic) and ..cscscale events. Microscale, or
‘single cell events are not modelled. A drawback of macroscale NWP
models is that they tend not to be able to incorporate the effects of

topography with sufficient accuracy.

At the time Gauntlett and Leslie wrote their paper, there were three
main drawbacks to NWP models:

. It is generally ©both difficult and expensive to measure

atmospheric conditions at sub-synoptic scales.

. Mesoscale systems are markedly non-linear, and difficult to
analyze. In addition, major theoretical advances in meteorology
concern planetary and synoptic scale phenomena and not mesoscale

systems.
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. The demands on computing power are high. Increasing resolution in
the vertical and horizontal direction by a factor of two requires
approximately one order of magnitude increase in the number of

calculations.

Recent advances in computer technology will have made the computation
times much shorter, but in 1975 a comprehensive limited area (of about
one thousand square kilometers) as an input for an NWP model, when run
on a third generation CDC 7600 computer would take in the order of

seven hours per simulated day in computing time.

In a more recent study, Corradini (1985) studied a hilly area in the
Upper Tiber River in Italy. The model incorporated the essential
physics of orographic rainfall processes on a synoptic to mesoscale
level. Case studies were limited to events occurring ahead of surface
warm fronts, which unfortunately excludes convective type events. The
results showed that the parameterized numerical model used was -
~ acceptable for simulating orographic effects down to a mesoscale level,
estimating mean aerial rainfall and also for designing raingauge

networks.

On a synoptic scale, NWP models are very accurate when predicting -
weather patterns, and enjoy considerable accuracy on a mesoscale. But
in 1light of the above factors, it unlikely that NWP models -ill be

applied to microscale events in the near future.

3.2 MICROSCALE STUDIES

Several authors have studiea microscale phenomena, as they are of chief
concern to the hydrologist, especially for small catchments (in the
order of 10km2? and less). Microscale phenomena are usually treated as
single convection cell events and several cells are grouped together to
make up the average thunderstorm event. In the absence of techniques
such as XNWP models, statistically based methods and interpolation
methods are applied firstly to real data, and then often used to
generate synthetic data. Two examples of this are full correlation

analysis and surface fitting.
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In general, cells are all small scale (less than 10km in diameter),
have varying shapes (spherical to elliptical to irregular), and have
varying but short lifetimes (in the order of thirty minutes).
Berndtsson and Niemczynowics (1986) suggest that it is important to
distinguish between humid climates and semi-arid climates. In the
following paragraphs, studies carried out in England, Tunisia and
southern Israel will be examined, thus covering a wide range of
climatic =zones. It is possible that a correlation may exist that can be
transported from catchment to catchment: The overriding climatic

conditions may determine the prevalent nature of the microscale events.

Climatic conditions are well known for areas throughout the globe,
whereas the cellular structure of storms is not known in such detail.
Definition of the cell characteristics constituting a storm event would
describe the storm event accurately and this may lead to a definition
of storm types for study areas in general. Several authors have studied
the characteristics of microscale (cellular) events. Some differing

climatic zones are examined below:

3.2.1 ENGLAND

(After Shaw, 1982)

Shaw used the ..:thud of full correlation analysis to study cell
parameters in two areas; Cardington in Bedfordshire and Winchcombe in
the Cotswold, England. It was found that cells passing over a dense
network of gauges produced large variations of intensities within small
aerial distances and small time differences. Significant changes were
observed sometimes over distances of less than lkm and times of less

than 2 minutes.

Cells were found to be typically elliptical and had nominal dimensions
of 3km x 1.5km on the major and minor axes. Lifetimes were typically
from 4 to 6 minutes. The computed velocity of drift of the surface
rainfall pattern was found to agree well with the mean 700mbar wind
velocity for that day. The estimated direction of movement of the storm
pattern as a whole was found to agree strongly with the upper air wind
directions. This does not agree with work done by Marshall (1975) over

the same area.
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The randomness of these events is borne out by the standard deviations
Shaw lists next to the parameters measured. For example; for lengths of
major axes, standard deviations can be as high as about half the quoted

value.

Shaw does state that the correlation technique may not be applicable if
the storm center does not pass over the area studied, and this may
account for some of the deviations. It appears that the nature of the
storm event itself affects the correlation (i.e. if it exhibits a

steady or convectional storm pattern) as well.

3.2.2 TUNISTA

(After Berndtsson and Niemczynowicz, 1986)

Berndtsson and Niemczynowicz studied a small catchment (just under
20km?) in northern Tunisia over a 2 year period. The
cross-correlation technique was used to determine spatial relationships
‘between gauges for the storms studied. Stoms with the highest
intensities over a five mihute time interval were selected for the
study. In general, depths of Omm to 27mm were experienced, with an
average intensity of 7.2mm/hr. The 10 study storms used represented 10%
to 30% of the mean annual precipitation between 1982 and 1983.

High intensities were foundbbetween 5 and 15 minute time spans. Total
durations were in the range of 20 to 80 minutes, but for the purposes
of their study the duration was limited to 1 hour as subsequent
intensities were deemed inconsequentially 1low by Berndtsson and
Niemczynowicz. The typical cell size for this 1 hour duration was found
to be about 6km2 to 7Tkm2. Correlations on a monthly basis were also
examined, but no cellular patterns were determined. Instead a NE-SW
parallel type pattern emerged.
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Monthly, daily and hourly values were cross-correlated and it was found
that although monthly and daily values were adequately correlated up to
distances of 2km to 3km, hourly values were not well correlated at
these distances. At distances of less that lkm however, correlations of
0.8 to 0.9 were found for hourly events. Unfortunately, the study does
not say whether shorter time intervals were cross-correlated or not,

and what the results might have been.

They found that high intensity rainstorms were over represented when
real data was compared with theoretical intensity-duration-frequency
_curves. Berndtsson and Niemczynowicz suggest that this may have been an
unusual year, or that ‘the theoretical curves have a bias. Either way
there is a large variation, both spatiélly and temporally, between the
theoretical curves and the observed data. This means that use of the
theoretical curves may lead to inaccurate assessments for short

duration events.

3.2.3 ISRAEL

(After Sharon, 1972)

Sharon studied a very arid region in southern Israel, Southern Arava.
"The area has mean annual precipitation figures of 30mm to 35mm, which
are fairly constant throughout the region over long periods. The study
area occurs within a small region which has a uniform long-term average

rainfall and weather condition history.

Sharon was investigating the occurrence of 'spotty rain’, a term that
describes large spatial variations in rainfall where small percentages
of area receive high intensities of rainfall. Three years of data from
three stations, all within 15km of each other were used. Events when
all three gauges had less than 3mm total rainfall were ignored. The
following was found: '

. The highest value for a storm event was used as a reference
Value, and compared to the other gauge values. The results of

this set of comparisons are as follows:



-On 70% of the days, the other 2 stations recorded less than
1/2 of the highest value.
-On 60% of the days, the other 2 stations recorded less than
1/3 of the highest value
-On 50% of the days, the other 2 stations recorded less than
1/7 of the highest value

. On 4 of the 21 days of rain that were studied, all three stations
received the same order of magnitude rainfall. On 11 of the 21
days, the ratio between highest and lowest depth exceeded 20:1.

. This describes the nature of spotty rain, and it was found that
60% of the total rainfall comes from spotty rainfall events.

Two general types of rainfall were distinguished in the study; one
being a spatially uniform event lasting a few hours, the other being of
a- localized or spotty nature associated with high intensities and small

durations.

3.3 OTHER FACTORS

It has been shown that rainfall varies considerably, both spatially and
temporally. The most ._oomon methods of determining how this rainfall
varies 1is by recording stations or gauges. Unfortunately this is in

itself an inaccurate procedure:

In a étudy of 12 gauges over a 9m x 15m grid it was found that a 95%
confidence limit experienced errors of up to 13% for large storms. High
ground level wind velocities are frequently associated with
thunderstorm events and this can produce large errors in rain gauge
readings. It has been suggested that a 20% increase in measured aerial
rainfall be allowed because of this (Hall and Barclay, 1975).

In many cases, gauges are located close to areas of settlement. These
tend to be in valleys or on shallow slopes, which are on elevations
lower than the average elevation for the basin as a whole. This leads

‘to calculated averages being lower than actual averages {(Eagleson,
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1970). Berndtsson and Niemczynowicz (1986) fbund that for monthly and
daily values, correlation coefficients of about 0.6 were found for the

influence of altitude on rainfall depth.

A linear relationship between altitude and total rainfall depth has
been suggested and is of the form:

Dn = Do + V.h

where h is the height above a datum in meters, Do, is the rainfall
depth at that datum in .millimeters, Dun is the new expected depth in
millimeters at the height h and V is a factor that varies between 0.2
and 1.0. V has to be calibrated for the particular area. This has been
proposed for long-ﬁerm (e.g. yearly) values (Chebotarev, 1960).

The various time distributions of design storms to be routed over a
study catchment has also been studied in detail (e.g. Lambourne and
Stephenson, 1986). Generic types as the Chicago, Triangular, Moment
and Bimodal hyetograph shapes have been investigated. It was found that
the bimodal variation proposed-in the report performec better than the
others tested for use in highveld areas. A simple statistically based
model describing cellular structures of storms was also utilized in the
study. While this is a considerable improvement on constant intensity
events, it does not address a key aspect of this report: The
investigation of spatial and temporal variations with an accuracy
comparable to the level of discretization employed in most overland

runoff models when describing the ground surface properties.

3.4 EFFECTS ON RUNOFFE

In a study by Sieker (1978) it was found that there was considerable
effect when design-storms and measured storms were routed over the same
catchment. '
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Design storms are characterized by;
-a specified duration which is related to a real catchment by
(generally) the estimate of time it takes for a drop of water to
travel the length of the catchment, '
-a frequency function of the total rainfall and
-a constant intensity over the duration of the time estimate.
This event 1is superimposed over the whole cétchment, taking aerial
reduction factors into account where necessary. By contrast, real
events have varying intensities and durations and large random

components to their movement.

Sieker found that while studying a small catchment (0,54km2), 50%
errors in runoff estimation were found when comparing naturally based
storms and design storms for ten year recurrence intervals. The

naturally based storms gave the higher runoff value.

3.5 STUDY PROPOSAL

Studies have shown that there ¢ re sharp drops in rainfall intensities
at small distances from local peaks_(see above). It has also been shown )
that using data based on so-called design storms (of constant
intensities) and data based on real storms can give significantly
different results for runoff hydrographs. Therefore current techniques

for modelling storms do not describe the events adequately.

The author wished to. study the pattern of rainfall and the resultant
runoff. It 1is wultimately the pattern of rainfall impinging on fhe
ground that determines funoff. This is not the same as the pattern of
rainfall as it leaves the base of the clouds, as high wind speeds and
local effects can divert the distribution of rain on it’s path to the
ground. This could not satisfactorily be studied using correlation
techniques, numerical weather studies, individual hyetographs or radar
tracking. This defined the direction of study for this project: The

effect spacial and temporal distribution of real storms has on runoff.

A representation of how the rainfall intensity varied with time and
space on the dground surface of a catchment was needed. In order to
achieve this a means of fitting a mathematical surface to the measured
rainfall over a study catchment swwas developed. '
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This mathematical model was used to produce contour maps of rainfall
intensity for several storm events and used as an input to a computer
model to produce runoff hydrographs for a study catchment.

Contour maps of storm events give a qualitative evaluation of storm
shapes and movements, provided that the storm events can be divided
into small time intervals with several maps produced for each storm
event. General conclusions about cell size, duration and movement can

be determined from examining these contour maps.

The comparison of runoff hydrographs, where the rainfall input for the
computer runoff model is determined by a rainfall distribution model
and other more conventional distributions of rainfall gives a
quantitative evaluation of the effects of storm shape and movement, and

current techniques of distributing rainfall over a catchment.

The following chapters deal with proposed methods for
three-dimensional rainfall interpolation and the evaluation of the
proposed methods to satisfy a series of goals outlined in the next
chapter. -

19



1 GRIDDING PROCESS

4.1 INTRODUCTION

Researchers have shown that the variation of rainfall intensity over
short distances and time durations, and therefore the characteristics
of rainfall resulting from storm events varies greatly (Shaw, 1982,
Berndtsson and Niemczynowicz, 1986 and Sharon, 1972). This has been
examined by studying several parameters (see chapter three). A computer
method is developed for studying the effects of spatial variations of
rainfall on runoff. This relies on measured rainfall data from rainfall

recording stations.

Methods of data collection are becoming more and more sophisticated.
Modern data loggers have the facility to measure rainfall depths
accurately at very short time intervals (down to fractions of a second
with the better loggers). Synchronization of a network of gauges is
also vastly inproved over mechanical methods as modern data loggers

have accurate built-in clocks.

An important factor when modelling storm events on a computer is the
nature of the raw dataz to be interpreted. This can be classified by
several categories, but we will only 1look at the geographical
clagsifications of data points here. Ripley (1981) lists some patterns
such as; uniform random, centric systematic, stratified random and
nonaligned systems. These patterns have a significant impact on the

accuracy of the output of the various models.

The most fundamental distinction, though, is whether the data is
regular or not. In this research project, regular implies that the data
points are set out on a regular grid in the X—Y_plane, and there is one
z~-value associated with each (x,y) point. Any other configuration is
not regular and will be called irregular.
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It 1is convenient to have the data in this regular format, especially
for computer contouring programs. It is, however, seldom possible to
obtain data in this form. This introduces the need for methods to
convert the raw, irregular data into a convenient regular grid pattern.

This is then in a suitable format for plotting contours.

The process of converting irregular data to regular data is termed
gridding and this 1is where the focus of the programming component of
this project lies. As an introduction to the difficulties associated
with interpreting data, examine figures 4.1 to 4.4 below:

As can be seen, there are many possible surfaces that can be fitted to
the simple example given here. It would be more accurate if a data
point was available for the center of the study area. When dealing with
random events such as storms, this advance knowledge is not possible

and gauges are fixed in position and number.

FIGURE 4.1 RAW DATA

FIGLRE 4.2 SURFACE ONE
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FIGURE 4.3 SURFACE TWO FIGURE 4.4 SURFACE THREE

In the case of rainfall measurement, there can be anything from séy
three to three hundred rain-gauges in the study catchment. This is
mostly a function of catchment size and 1oney available to set up
recording networks. The resultant accuracy of interpolation is strongly
influenced by this, and this factor is dealt.with in the discussion at

the end of this section.

Once the raw data has been gridded, it remains to take the grid and
interpolate contours. Thus the production of contour maps of a
three-dimensional surface traditionally is a two step process; gridding
and contouring. For most micro-computers, memory space limitationé

requires that these two processes be separate for large systems of
data. '

There are commercial software packages that can do this, but these are
not suitable to the further requirements of importing and exporting
data to and from the gridding-contouring processes. These packages also
appear to give time of computation less emphasis than is appropriate

here.
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In order to evaluate the gridding methods to be compared, a set of
goals was defined. These goals are:

1) The interpolated storm must be the same size as the real
storm.

2) The interpolated depth-values must equal the known
depth-values where they coincide spatially.

3) The method must not be too sensitive to missing data.

4) The average depth-value over the whole study area for

the interpolation storm must be the same as for the real
storm.
5) The method must be fast.

The methods examined for the gridding process are discussed in more

detail in their own chapters, but a list follows below:

i) Polynomial surfaces
ii) Multiquadratic fitting
iii) Inverse squared distances
iv) Distance weighted quadratic surfaces
v) Krigging
vi) Thiessen polygon method (though not a gridding process)

The first two and fourth and fifth methods all attempt to find a
"trend" of one form or another, based on the available data, for the
interpolation. What this means, is that the methods postulate a general
form or trend that the rainfall event adheres to. It is the trend that
creates the shape of the interpolation surface in the absence of data,
and influences the shape in the presence of data. ’

This is not so noticeable when there are a large number of data points,
but in sparse areas, this trend can be identified. With the smaller
catchments (where there are say ten or less gauges) there are large
areas which are not close to any rain-gauge. In these areas, it is
often this very trend that is a cause for large inaccuracies. This is

dealt with more fully later in this chapter.
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These are by no means the only methods available, but on the basis of a
literature survey, these appear to be the most popular. There are many
variations of each of these methods and also other methods that are
very similar although derived from different roots.

For some studies, the mean precipitation over a catchment is needed,
and the methods also have to compared with each other by some means for
relative merits and accuracy. For these reasons, and because of it’s
high 1level of performance, the Thiessen polygon weighting method was

also examined.

The method of Krigging was not included in the comparative testing of
methods. There were several reasons for this, the chief one being
whether the method was in fact valid when applied to storms. This is
dealt with in more detail in a later chapter. As the testing of various
methods was not intended to be the main thrust of this project, and in
view of the fact that four other methods were tested, this did nbt
detract from the value of the overall project . l

It is also intended that the method finally used for the gridding
process can be used to provide a more detailed input for spacial
overland flow models - a more rationally spread out grid of rainfall

points can be input as opposed to fewer isolated node points.

4.2 LITERATURE SURVEY

This portion of the literature survey. focussed on which method for the
gridding processes was to be used. Three publications were examined
initially; Heymann and Markham (1982), Maaren et al (1984) and Ripley
(1981). These publications indicated that possibly five gridding
methods and the Thiessen polygon method would be appropriate to the
subject and therefore suitable for study. The publications also gave
indications of how to write the necessary programs that were used in
the study.
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Of the three publications, the book by Ripley gives the most
mathematically rigorous description of the theory behind some of the
gridding methods. The other two give indications of the accuracy of the
gridding methods, although not in great detail. The Council for
Scientific and Industrial Research (CSIR) report by Heymann and Markham
{1982) gives the most detailed description of the process of Krigging.

While the five methods were being researched, it was noted that many
publications referred to the same "root" sources. This indicated to
the author that the origins of these methods were few, while

adaptations were numerous.

The five methods described in the literature survey are:

4.2.1 Polynomial surfaces v
The fitting of polynomial surfaces by the method of least
squares 1is well documented,- and can be found in mo=t numerical -
methods textbooks and some statistics textbooks. The most
frequently discussed variations of the method concern what
order of polynomial surface is to be fitted to the data. In the
absence I a more detailed study on gridding methods, this
method 1is most commonly used where a method is required to

interpret three-dimensional data.

4.2.2 Inverse squared distance weighted method
The inverse squared distance weighted method is,
mathematically, the most straightforward. The method is easy to
program and fast to apply as it does not require the solving of
any matrices, which the others do. There is some discussion as.
to what function of inverse distance to use (e.g. fourth power,
exponentials or combinations). The method is otherwise very
simple. The method is not restricted to the gridding

application and is used in other disciplines such as surveying.
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1.2.3 Multiquadratic method
The multiquadratic method relies on the fitting of a series of
right circular quadratic cones to the study catchment (hence
the term multiquadratic surface). The cones then have differing
impact to the point being interpolated depending on their
relative distances from the point . )

4.2.4 Distance weighted quadratic surfaces
This method is a combination of the fist two and fits a
"roving" polynomial to the point of interest, the known data
points being weighted by distance for their significance in
setting up the polynomial surface. This is repeated for each
point to be interpolated. ‘

4.2.5 Krigging
The Krigging method, is a statistical method that makes
use of correlations inherent in the data. It derives it’'s
name from Dr. Krige, who adapted work by Matheron and
Delhomme and applied it to the mining industry. There
still exists some doub; as to the validity of the method

for application to storms (Heymann and Markham, 1982).
This method was not tested for this reason.

4.2.6 Thiessen polygon weights

While not actually a gridding method, most literature
covering this topic rate the method very highly for
estimation of mean precipitation over a catchment (Heymann
and Markham, 1982). Since mean precipitation is also one
of the desired ocutputs of the gridding-contouring process,
the method was also used, as a comparison for the the
other gridding methods. *

The methods can be classified in broad categories, frequently referred
to in the literature. Examples of these categories are; numerical
integration (Thiessen method), smoothing techniques (polygon method and
distance weighted quadratic surfaces), interpolation techniques

(inverse squared distance and multiquadratic) and correlation



techniques (Krigging) {after Heymann and Markham, 1982). These
classifications, while being instructive, are not germane to the issues
in this project. Consequently the categories are used very loosely

throughout the project and do not specify any particular method.

Once the methods to be studied were determined, it was necessary to
find ways of evaluating and comparing them in order to make rational,
educated decisions about their relative merits and shortcomings. An
analytical approach was feasible, but the mathematics required would be
excessive and difficult to extrapolate into a useful comparison of the
methods. Hydrology is an applied science, and it was deemed more useful
to produce some comparisons that have more immediate meaning to most
hydrologists (such as sum of squared residuals, correlation

coefficients, efficiency coefficients etc.).

In this respect, the methods of comparisons were adaptations of
standard statistical methods that are mostly used for two-dimensional
studies. These may be applied to the three-dimensional case without
loss of accuracy, as in both cases they will reflect a relationship
between a measured and calculated parameter. There was ver~ little
literature available on the testing of three-dimensional interpolation
models.

The publications examined which ..scussed the gridding processes used
testing techniques that suited each particular study. The author feels
that for a research project such as this, more general methods were
needed. It was necessary to determine a '"test statistic"” that would
make it possible to evaluate the gridding processes. However, a fact
that was to emerge from the literature survey on testing techniques was
that there are numerous statistically based tests that fulfill the same
function; that of determining the accuracy of fit of an interpolation
method. ’

Without prior experience it is difficult to determine if any one test
statistic is superior to another. A single "best test" was in fact
impossible to find, as some test statistics behave better in some
situations than in others. It became evident that any test statistic
would be insensitive to reflecting some particular type of error under

some condition.
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A simple example of this is that the arithmetic mean of residuals might
give a fair indication of how good the fit is for an average
precipitation figure, but is inadequate for showing how good the fit is
for discreet points, where the absolute arithmetic mean or sum of
squared residuals would be more appropriate. The decision was made to
use several tests statistics and extract the most meaningful at the

completion of the study.
The following sections of chapter four reflect the detailed findings of

the 1literature survey on the gridding methods and test statistic

parameters.

4.3 POLYNOMTAL _SURFACES

This method wuses the process of 1least squares to fit a
three-dimensional polynomial surface to the available data. The size or
order of polynomial surface is a function of the number of data points.
In this chapter, order means the highest power that any term in the
equation is raised to. The order of equations used varies greatly,
depending on the application. Sixth order polynomials are, however,

commonly used.

The general form of the polynomial equation used by the test computer

program for this method is:
Z = ao + ai1x + azy + asx?2 + asxy + asy? + ...

The polynomial surface equation is evaluated for the unknown
coefficients a; by the method of least squares (Chatfield 1983, pp.
179). This method minimizes the squére of the distance between the
observed data points and the calculated data points. To set up the set
of simultaneous equations used to solve for the unknown coefficients,
it 1is necessary to differentiate the polynomial surface equation Qith

respect to each unknown coefficient.
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Each differential equation 1is summed over the total number of data
points, the corresponding values from the known (x,y,z) data set being
substituted into the simultaneous equations. The sum associated with an
unknown coefficient is placed in the column corresponding to that

coefficient.

In this way, as many simultaneous equations are generated as there are
unknowns, and this defines the size of the square matrix that will have
to be solved for the unknown coefficients. It also defines the minimum
number of data points necessary to get a unique solution to the
coefficients. An unfortunate consequence of using least squares to
determine - the unknown coefficients, is that it often produces
ill-conditioned matrices for solution. The Hewlett Packard used for the
solution and processing of data worked to sixteen decimal places. This
facility reduced the errors associated with ill-conditioned matrices

considerably

Conventional matrix notation can be used to describe the system of

simultaneous equations to be solved as:
Z=Q.A

Where A is the vector of unknown coefficients ai, Z contains the
rainfall terms and Q the coordinate terms generated from the least

squares equations.

The system of simultaneous equations is solved by the method of
LU-Decomposition. Fach coefficient in the polynomial surface equation
makes a different contribution to the surface proportional to the
magnitude of the coefficient and the magnitude of the product of the x

and y terms.

A primary. consideration when using this method is which terms to
include in the polynomial surface equation. Krumbein (1966) has shown
that the orders bf the respective x-y terms can be generated from a
block diagram as shown in figure 4.5. If the equation is generated
using ‘this block diagram, then the size of matrix is related to the

order of equation bjy:

29



matrix size = (order+l)(order+2)/2

Implicit in this approach, is that there exists an equation which
accurately describes the known data. The method relies heavily on this
assumption, as one equation is fitted to the whole data set. In many
cases this may not be valid, and some terms included in the polynomial
surface equation may not be as important as others that have been left

out.

An alternative approach, then, is to evalﬁate terms in descending order
of influence. In this context influence is proportional to the relative
magnitudes of the coefficients. Miesch and Connor (1968) have shown
that a stepwise regression procedure generally results in a more
efficient evaluation of coefficients, as far as their influence goes.
However, when they compared this to a Krumbein type equation of similar
number of terms, the two approaches produced markedly differing

patterns of residuals.
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(After Cliff, 1975)
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The stepwise regression approach tends also to be more dependant on the
nature of the data. The main drawback of this is that the terms which
will have the most significant influence must be reevaluated each time
the method is used, which is time-consuming if the process is repeated
often. If there are no other criteria, then the choice of method would

be which gives the best results, and that requires some experience in
the particular nature of the data being analysed. For this study,
calculétion time was important, and the block diagram approach to

generating equations was tested.

In either approach, it is still assumed that the initial polynomial
surface equation describes the known data accurately. It is the
experience of the author that this method performs very well if the
data is of a known family of curves, and this family is used as the

initial surface equation.

Each coefficient can be identified as producing different spacial
phenomena, or three-dimensional form that contributes to the surface
shape as a whole. This will be explained using a slightly different
notation for the polynom: al sﬁrface equation, one that suits Krumbein's
block diagram better. In this notation, the general form of the

equation is:
Z = ago + a10X + 01y + A20X2 + aiXy + +a02y? + e

The subscript serves a dual purpose, firstly it shows where the
coefficient fits in on Krumbein’s block diagram as a (row,column)
coordinate system, and, secondly, gives the exponent value for the x
and y terms relating to that coefficient in the form ax exp,y exps

The significance of the first six coefficients are then:

ago;- Moves the surface up and down the Z-axis as a
whole.
ao1,210; Represent two flat sheets that slope left to

right and slope top to bottom, the high side
depending on the sign of the coefficient.
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az0,302; Represent two  horizontal u-shaped channels
{parabolic cross-section), one running from left
to right, the other from right to left. The sign
determines whether the parabola is inverted or
not.

ai; Represents a saddle-shaped term.

Subsequent terms of higher orders produce more complicated components
to the surface. The example above shows a second order or quadratic
three-dimensional surface equation.” As can be seen, the magnitude of
the coefficients and the (x,y)  values determines the relative
importance of the spatial phenomena at that (x,y) coordinate position.
For such an (x,y) coordinate set, the interpolated Z-value is built up
out of the collection of differing three-dimensional forms to represent

the surface at that point.

Intuitively, the higher the order of equation used, and the more data
points used, the more accurate the interpolated surface will be. The
forier is unfortunately often untrue, while the latter does have some

validity, but requires clarification.

In many practical cases there is only a small number of rain-gauges,
say less than ten, in the catchment. This limits the Qrder or equation
to cubic or less, and limits the potential accuracy of the fit: If the
actual surface is convoluted by nature, it is unlikely that a quadratic
or cubic equation will be a good fit. In such cases there would be an
improvement if a higher order equation were to be used since the higher
order surface could interpolate the convolutions better, but only up to
a point. (This is only possible if there are enough rain-gauges td

allow unique solutions to the simultaneous equations.)

With higher order equations, there is a tendency for oscillations or
ripples to appear between known data points. This is even more
pronounced at the edges of the interpolated area. The method then

becomes unsuitable for interpolation with higher order equations.
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With an infinite number of data points a surface could be found to fit
the data exactly, but  this is clearly impossible under the
circumstances. A popular compromise is to use sixth order polynomials

for the interpolation.

The least-squares method minimizes the square of the distance between
known and calculated points and tries to produce a best-fit. This is
done for the whole area covered, so the value that is minimized is
better understood as an average difference, and this average difference
is minimized. The result of this is that the average error of
interpolation is often very small, but the error at discrete points is

sometimes very large.

An increase in the number of data points will certainly reduce the mean
error of interpolation, but may have little effect on interpolation at
discreet points, as the type and order of polynomial surface equation

is not changed.

An advantage of this method is that it is simple to integrate the
resulting surface equation to determine a volume of rainfall for the
study area. The boundaries of the area for integration do have to be
definable mathematical curves, as they determine the limits in the

double integral necessary to find the volume.

4.4 MULTIQUADRATIC SURFACES

Multiquadratic analysis is a term coined by Hardy (1971), and is used
to describe methods where surface equations of one or two sheets are
utilized to represent a known set of surface data. The method was first
applied to topographical problems, but now\enjoys a much wider field of
application. Typical surface equations that could be wused are
hyperbolic paraboloids, hyperboloids, ellipsoids, sbheres, paraboloids

and cones of various description.
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The basic concept is to fit a series of equations to the known data
points, with one equation fitted to one data point. The shape of each
particular equation depends on the nature of the surrounding data -
hence the irregularity of the actual surface determines how flat or

steép the fitted equations beccme.

The effects of these equations is then summed over the whole area of
interest and produces the interpolation surface. It has been common
practice to use equations of quadratic order, hence the name
multiquadratic, but the process can equally be applied to cubic,

quartic and higher order equations.

Hardy (1971) suggests that different types of equations could be suited
to different types of surfaces, but also states that his research has
not yet enabled him to .form definite conclusions as to what type of
quadratic surface best represents a type of topography. A detailed
mathematical analysis of the theory of multiquadratic surfaces can be
found in Lee et al (1974).

The multiquadratic method vas first applied to areal rainfall
estimation by Shaw and Lynn (1972). This work was used as a basis by
Adanmson (1978) for the analysis of a five day storm in the Crocodile
River catchment and the regional evaluation of annual mean rainfall in
an ‘area just north of Nelspruit, both areas being in southern Africa.
"Work done by Hardy (1971) suggests that a special case of the right
circular cone quadratic be used for the interpolation. Other quadrics
tested tended to displace maximums and minimums.

Two relevant quadric surfaces are:

Circular hyperboloids where:

z =cj[(x; -x)2+ (y; -y)2 +a]os _ S 8

and Circular paraboloids where:

z = cjllxy - x)2 + (y; - y)2] e veed(2)
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As suggested by Hardy, Shaw and Lynn (1972) used the right circular
cone which is a special case of (1) with a = 0. Hence equation (1)
becomes:

z =cjl(x; - x)2 + (y; - y)2}o.s I 53

what remains then is to apply equation (3) to each point where
interpolation 1is desired, in such a way that all the known data points
have an influence in the value of z. This process is repeated at every
point where an interpolated value is required. The unknowns are the
constants c¢j, which influence the shape of the fitted cone, and which
are dependant on the known data. '

To determine the values of the constants c¢j;, equation (3) can be

rewritten in a form that is more convenient for computerization where:

n
Zi =.ZCJ[(X5-Xi)2+ (y‘, —yi)zlo's ...ocooo'o(q’)
3= :
In the above formula, n 1is the number of known data points, i the
" subscript that pertains to the known coordinate set currently being
worked with, and j the subscript that pertains to all the known

coordinate sets.
An algorithm for setting up this method for use can be written as:

. Select the coordinates of the itP known data set;
this gives the value (xi,yi). |

. For each known data point, including the itk set, calculate
the value of [(x; =xi)2% + (y; - yi)2]o.5,
with the known data points giving the values for

(xi)Yi,2zi).

The value of c¢; is then the only unknown and a system of equations

can be set up which can be conveniently written in matrix notation as:
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Z=A.C

where: A is the result of each {{x; - xi)2 + (y; - yi)eje.s
calculation, with 1 giving the row position and j the column
position value.
C is the column vector of the unknowns cj;.

Z is the column vector of the known z: values.
The solution to this system of equations is determined by solving:
C=A-1.Z

For the coefficients cj;. This system of equations was solved by
LU-Decomposition. Once this has been achieved, the surface can be
interpolated for any coordinate set (x,y) by summing equation (3) over
all the known data points. Thus equation (3) becomes:

z=}'fc;'[(Xj—X)2+(yj—y)2]°~5 N ¢
J=1t - .

In this case, the point to be interpolated at gives the value of the
coordinate set (x,y), and the known data points give the values of the
coordinates and constants (x;,yj,c;i). Thus the interpolated value
z is built up tfrom the influences of all the component cones in

relation to their distance from the interpolation point.

A conceptual picture of how this method works can be described as
follows:

Imagine a flat plate in the shape of the study area at an

elevation of z = 0. Also imagine a dot on this plate at the
{x,y) coordinates of each known data point (i.e. all the known
data points).

At each known data point a cone has been fitted, the vertex of
these cones is at z = 0 (by definition since a = 0). The
steepness or shallowness of the walls depends on the magnitude
of cj;. Depending on the sign of c¢j;, these cones may be

above or below the flat plate. Hence a series of "funnels" can
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be placed at each known data point, with the vertex on the flat
plate. Each of the cones extends over the whole study area.

What results is a flat plate with as many cones as there are
knmown data points attached to the plate at the (x,y)
coordinates of the known data points. The cones may be above or
below the flat plate, but the walls will extend over the whole

study area.

To interpolate a z value at an arbitrary (x,y) point, one must
first draw an imaginary line perpendicular to the flat plate at
that point, and extend it both sides of the flat plate.
Consistent with the method, this perpendicular 1line must
intersect all the fitted cones. The interpolated z-value is
then a weighted sum of the z-values of the intersection points
with each of the fitted cones.

The weights are determined by the distance from the apex of the cone to
the (x,y) coordinates of the interpolation point; with a decreasing

influence for an increasing distance.

It follows from the above that the size of the matrix to be solved for
the c; coefficients is equal to the number of i1ain-gauges. This, in
turn, has a serious effect on the accuracy of the method. For small
numbers of rain-gauges an equally small number of cones can be set up
for the interpolation. Thus interpolation at a needed (x,y) coordinate
set results from the sum of a small number of cones, and the influence

of these dependant on their distance from the interpolation point.

Another drawback of the method.is this; because of the summing of the
many cones for an interpolation point, it is seldom possible for the
interpolated points to equal the known data points exactly. The other

cones will always have an influence on this point, albeit small.
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Adamson (1978) includes a routine for determining the volume under the
interpolation surface. The routine is limited to areas of a rectangular
shape though. This is not an insurmountable problem, as the study
catchment can be broken up into a series of rectangulaf shapes. The

main problem with this routine is the time taken for computation.

It was found that the time taken to compute the volume under the whole
study area was excessive, and that the Thiessen polygon mefhod produced
as reliable results but in a faster time. The author suggests that an
alternative method be wused for calculating the volume under the

surface.

4.5 INVERSE DISTANCE WEIGHTED SURFACE

This method produces an interpolated value by taking a weighted sum of
all the known z-values. The nature of the weighting function is one of
decreasing influence with increasing distance, and is normally some
function of the inverse of the distance between the interpolation point

and the known data points. Hence the name inverse distance weighting.

The method is the simplest mathematically and also the simplest to
.program, and does not require the solving of any matrices. There are no
surface equations that are fitted to the data, and therefore, this
method does not attempt to define a trend for the data.

If one considers a point (x,y) at which the interpolated z-value is

desired and:
. Let d,, dz; «eveey dn be the distances between the
point (X,¥) and the n known data points.
. Let f(d) be a function of d (such as f(d) = d-2).

Then the general form of this interpolation method can be written as:

z = £ zi.£(di)/( £ £(di))
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Where z 1is the interpolated value for the coordinates (x,y), zi are
all the known 2z values, f(di) are the distances between the
interpolation points (x,y) and the known data points acted on by the
function f(d) and f{(di) 1is the sum of all these distances acted on

by the same function.

It can be seen that each known z-value is multiplied by a weight and
then incorporated into the summation. After all the known z-values
have been summed in this manner, the total sum is divided by the
separate summation of all the weights. This is the standard inverse

distance technique.

In general the distance weighting function can be written as;
f(d) = d-»

where a is some positive constant, commonly between one and four.

The desired result is for the value of f(d) to be very large when d is
small and to decay to zero when d is large. The rate of decay leaves
considerable scor: for experimentation with this method. To this end,

there have been many different types of distance function suggested.

Ripley (1981) states that common choices for f(d) are d-a, e-ad,
and e-adz , where e 1is the base of natural logarithms and a is some
positive constant. In this project the first form of weighting function
was used, with a = 2. This approach has had success in the mining
industry (Heymann and Markham 1982), and because of the similarities in
the problems of these two fields, was tried here. This gives rise to

the specific inverse squared distance or ISD method.

There are more esoteric functions that have been suggested such as
f(d)=1/(d2 + <c)2, where ¢ is some small constant (McLain 1971).
These are suggested because of the practical limitations of computer
precision, and the desired prevention of overflow errors that may

result from dividing by very small numbers.
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Because the ISD method relies solely on the decaying influence of
z-value with distance, the method is very dependant on the physical .
size of the study catchment. Real distances are calculated and
pérformed on by the inverse squared distance function.

Consider a real catchment. If the coordinates of the gauges are in
terms of millimeters, meters, or kilometers, there is going to be a
significant difference in the interpolation result. Although the
relative displacement of the gauges does not change, the order of
magnitude of the distances does. Since this value is to be squared,
inverted, and used as a weight in the summation of a z-value estimate,

this becomeé a corner-stone in the accuracy of the method.

This becomes an added problem if the method is to be applied to many
catchments, all of differing sizes. Intuitively one would assume that
it 1is desirable for gauges that are close together to have similarly
large effects on interpolation points, as would be the case in a small
catchment. However, in small catchments maintained by Water Systems
Research Group at the University of the Witwatersrand it was found that
there could be 1large differences in r~corded rainfall between

rain-gauges less than one kilometre apart for the same storm event.

This indicates that these small catchments have similar interpolation
problems to larg.. catchments, and should be treated i., a similar way.
If this is not done, then the effects of these differing amounts of
rainfall in small catchments are not reflected during interpolation and
the method becomes insensitive and therefore inaccurate.

A suggestion 1is to scale all catchments in sucH a way that the
resultant catchment which the computer program works with is of a set
size. This means that any catchment is mapped onto a representative
catchment ofA fixed size best suited to the accuracy of the method. The
actual size of this catchment can be determined empirically as the one
that yields the best results. This will be discussed later in more
detail.
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It is possible for a desired interpolation point to coincide with a
known data point (e.g. if a regular grid is being set up for the whole
study area). In this case, a distance of zero is calculated and a
computational error results when trying to divide by this distance
squared. It is easy to trap for this condition by setting the ISD
function = 1 if d = 0. In this project, this was extended to include
the case of f(d) = 1 if d <= 1 as well.

If this is not done, then on the occasions that d is less than one, but
not equal to zero, a weight much larger than one can result, and this
may seriously effect the accuracy of interpolation at that point. The
broader significance of including this condition is that the ISD
function can never be greater than one. This means that no interpolated
z-value can ever be greater than the maximum known z-value. Hence this
method cannot produce z-values higher than any of the known data
points, a characteristic that is not shared by any of the other methods
tested. This not true for the reverse case of interpolated values less
than the minimum known data point. The condition does occur, since the

influence of any rain-gauge decreases with distance.

This could be extended to the extreme where the study area is
surrounded by a gradually flattening surface with an increase in
distance from the study area, until at an infinité distance, the

interpolation surface is completely flat with z = 0.

The disadvantage of this method 1is that it does not lend itself to
integration of a convenient function to calculate the volume under the
interpolation surface. A method such a Thiessen polygons would have to
be employed to calculate a mean rainfall estimate for the study area.
An alternative to this is to fit a series of splines to the now regular
grid over the study area and integrate this over the relevant area.

Simpson’s approximation can also be applied, with faster results.

4.6 DISTANCE WEIGHTED QUADRATIC SURFACES
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This method can be considered as a combination of the first and third
methods discussed i.e. polynomial surfaces and inverse distance
weighted method. The method also sets up a polynomial surface equation,
but gives known data points that are closer to the desired

interpolation point more influence than those that are further away.

The main difference between this method and the polynomial surface
method is that it sets up a new polynomial surface for every desired
interpolation point. The method does also use the least-squares
approach to determine the unknown coefficients for the polynomial

surface equations.

As before, there is flexibility in the order of the polynomial sﬁrface
equation and which terms to include or exclude. If there are many
desired points of interpolation (in this project the test programs used
100), then the methods can be time consuming. This is aggravated with
this method when large order polynomial surfaces are used each time. To
alleviate this, it was decided to limit the polynomial surface equation
to a quadratic.

The process then becomes:

. Choose the desired interpolation point.

. Work out a series of weights inversely proportional to the
distance between the interpolation point and all the known
data points.

. Use the least-squares method to set up and solve a quadratic
surface equation, where the component terms are premultiplied
by the relevant weight.

. Back-substitute the coordinates of the interpolation point |
into this now defined quadratic surface and calculate the
_interpolation z-value directly. ‘

This whole procedure has to be repeated for each new interpolation
point.
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The following mathematical description of the method is wvastly
simplified if preceding work is utilized. The discussion in chapter 4.3
on polynomial surfaces for which terms to be used in generating the
polynomial surface equation applies equally to this method. Hence in
this project, a Krumbein-type quadratic surface equation was used. The
discussion in chapter 4.5 on the inverse distance weighted method for
which function of distance to use similarly applies here. Hence in this

project, an inverse distance function of f(d) = d-? was used.

The method is described by McLain (1974) as follows:

The Krumbein-type quadratic surface equation can be written as:

Z = ago + a10X + @01y + az20X? + a11Xy + ao02y? eeesa(l)

From this, the least squares equation can be postulated as:
Q:£‘(Zi-Zki)2 (@
=

Where zxi are the known 2z-values and 2z; are the interpolated
z-values as defined by equation (1) (and adding an i subscript to each
z, X, and y term). The standard procedure is to differentiate equation
(2) with respect to each unkmown coefficient and use the known data to
fill the resulting squar 1amrix (in this case a six by six matrix)
built up from the differentiation and then to solve for the unknowns
aim. With this method one first has to postulate a new type of

least-squares equation where:

Q = 3 (zxi-zi) 2. £(d) ((xki=xi) 2 + (yki-yi)?) ceeen(3)
':l

Where f(d) is the inverse distance function, (xi,vi,zi) are the

coordinates and z-values of the interpolation point and

(xxi,¥Yxi,2zki) are the coordinates and 2z-values of all the known

data points.
As before, 2z:i 1is defined by equation (1) with an i subscript added to

the z, x, and y terms. Equation (3) is differentiated with respect to

each coefficient aim in turn, and. the resulting six equations are
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each set equal to zero, and solved for the z:i terms. The six
equations are summed over all the values of i, and this setup forms the
basis of the least-squares matrix to be solved. Written in conventional

matrix notation this becomes:
Z = B.A

Where Z contains all the terms with a z; in, B contains all the terms
with Xiyi terms and A contains the unknowns aim. This has

solution:
A =B-t,2Z2

This was solved by LU-Decomposition. The method also suffers from the
problem of ‘ill-conditioned matrices, as did the polynomial surface
method. However, since the polynomials have been limited to quadratics,
the magnitudes of the elements of the solution matrix never reach the
extremes that a solution matrix for a sixth ordef polynomial equation
would. The ill-conditioning is introduced by the weighting factors that
premultiply the component te ms. Many of these weights are going to be
very sméll numbers, and this produces the differences in magnitudes of

the solution matrix, and therefore the ill-conditioning.

This method produceé as many polynomial surfaces as tiere are desired
interpolation points. It would be possible to integrate each of these
over their respective areas of influence and obtain a total volume
figure for the whole catchment. The determination of the areas of
influence may be difficult to determine and for many interpolation
points the process would be time consuming. It is suggested that an
alternative method for calculating total volumes be employed.

4.7 KRIGGING
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This method differs from the others discussed because of it’s strong
statistical basis. The name krigging comes from Dr. Krige, who adapted
work done by Delhomme and Matheron on spatial correlation. The method
wags first applied to the field of mineral resource estimation, and
krigging can be considered to cover both best linear unbiased
estimators of a point and the best linear weighted moving average of a
block. The former considers estimates at a point while the latter

considers estimates within a predefined block or area.

Point krigging, as it is sometimes referred to, was first introduced to
the hydrological world by Gambolati and Volpi (1979) in a study of
groundwater contour mapping in Venice (Heymann and Markham, 1982).

The method is a stochastic one. A stochastic process is a physical
process whose structure involves a random mechanism (Chatfield, 1983
pp. 349). It uses the correlation existing between any two points in
the area of a storm (Heymann and Markham, 1982). The general problem
can be stated as:

Consider a storm ever: S having true unknown characteristics
Z(s), and a series of m samples of known magnitude Z(s;),
with i =1, 2, .... m (i.e. rain-gauge data).

It is desirable to find a series of weights a; such that

S* = ‘i aiZ(si)

is the best estimator of Z(S). This is done by cémputing the
the variance of the error of the method (after David 1977). The
pursuit of this estimation of variance of Z{(S) by Z* then
becomes the " problem of finding what is termed a variogram. The
determination of the nature of this variogram forms the basis

of the accuracy and applicability of the method.
It 1is convenient to conceptualize the variogram as a statistical

description of the influence any lknown data point has over the desired

estimation point. There are many different types of variograms such as
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the spherical model, the De Wijsian model, the linear model and many
exponential models, to name a few (David, 1977). These different
variogram models would have a critical effect on the continuing

accuracy of this method when applied to storm events.

This method was not used as a test method in this project. There were

several reasons for this:

. There was no direction given in the literature as to which
variogram would be appropriate for the storms to be studied.
It is possible that with extensive testing, a most
appropriate variogram could be found, but it was felt that
this exceeded the bounds of this project.

. Ideally, large quantities of data would be used to
empirically determine the most appropriate variogram specific
to this study. However, this kind of information would be
available as a consequence of this very project, and could

not, therefore, be used in it’s production.

. The technique is based on the assumption that the rainfall
events measured are stationary. This implies that " the
cdrfelation pattern may show a direction, but that this
pattern must be the same at all points in the storm. It is
the condition of stationarity that may not be satisfied in
convection storms (Heymann and Markham). As mentioned above,
this could be verified or not as separate result of this
study, but it was felt that this exceeded the bounds for this
report.

In view of the fact that four other methods were going to be tested, it
was also decided that leaving out this method would not have a

detrimental effect on the final outcome of the project.

For a detailed discussion of this method, refer to the book by David
(1977).
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4.8 THIESSEN WEIGHTS

This section presents a brief discussion on the computation of the
Thiessen weight or polygon method. The method is very simple in
concept, and assigns a weight to each rain-gauge associated with the
study area for a particular event, the sum of all the weights being
one. Values obtained from each rain-gauge are multiplied by this weight

and then summed to give an average value for the whole study area.

The value of the weight is determined by dividing the study area into a
series of polygons. The dimensions of the polygons are defined by the
condition that the 1line defining the border of two adjacent polygons
must be equidistant to the two nearest rain-gauges. This divides the
study area into a set of polygons, whose areas can be determined. These
individual areas are each divided by the total area to give the weight
of that rain-gauge. The study area boundary forms the outside edge for
the external polygons.

Heymann and Ma 'kham (1982) found that overall, this method provided the
most accurate estimates of rainfall volumes for their tests. The method
also appeared to be robust, as tests were done with gauges left out,
and the method performed well inder these conditions. -

The programming of the method is based on two papers by Diskin (1969
and 1970} the second being a revision of the concept introduced in the
first paper. In the first paper he suggests a Monte Carlo procedure for
estimation of the weights: Random points are generated within the study
area, and a counter is incremented for whichever gauge is nearest to
the random point. This is repeated for many such random points until a

reasonable spread of points, and therefore, a reasonable accuracy has
been obtained.

The second paper does away with the necessity of random points, and
suggests the superposition of a regular grid of points over the study
area. This 1is in fact the best outcome of the Monte Carlo procedure,

and eliminates large amounts of computing time.
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As before, each point within the study area is considered, and a
counter incremented for the nearest gauge. Each point is considered
once, and it becomes convenient to work in a series of horizontal rows.
Accuracy is determined by the number of points used for the grid. This
number is dependent on the number of gauges in the study area, but

obviously has a minimum value.

More sophisticated approaches for defining polygons exist, such as the
edge defining algorithm proposed by Croley and Hartmann, and the
modifications to the Monte Carlo method suggested by Shih and Hamrick.
For this project, the method as described by Diskin’s second paper was
more than adequate. Any Thiessen weights calculated for this project

were done using the program written on this basis.

In a later chapter, the testing process is described and it is
mentioned that the test data sets were composed of one hundred data
points in a regular grid pattern. This provided a very fast method of
working out a mean depth-value for the study area, if the Thiessen
method is employed: Because the data is spaced in a regular grid
pattern, the aiea of each polygon reduces to a square whose dimensions

are the same as those of the grid point spacing.

This is further simplified if one examines the general form of the
thiessen method:

1)

Zmean = %(Wiczi)/(“f’i)

[(Rdl .
Where w; 1is the weight (calculated as the fraction of the associated
area of the polygon over the total area) and z; the depth-value

associated with the rain-gauge i.

If the area associated with an internal data point is called dA then
the weight associated with this depth-value becomes dA/(total area).
The total area value can also be written in terms of dA and is of the

form:
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total area = (no. of y rows - 1).{(no. of x rows - 1).dA
The weight for the internal depth-value then becomes:
weight value = 1/((no. of y rows - 1).(no. of x rows - 1))

Which is a simple number to calculate, is constant for all internal
depth-values and is independant of the actual areas involved. It can be
shown that edge point weights are half this value and corner point
weights one quarter of this wvalue by applying the Thiessen polygon
method. The calculation of a mean depth-value then becomes the process
of summing all internal depth values and multiplying this by the weight
value, summing all the edge depth-values and multiplying this by half
the weight value, summing the four corner depth-values and multiplying
by a quarter of the depth-value and summing these three results.

This 1is faster than any other method suggested so far but only has

application if the depth-values are in a regular grid formation.

In many studies there are several rain-gauges within or near the study
area that can be used to contribute towards rainfall data. It is often
necessary to average the data collected from such rain-gauges in some
way before the recorded data can be used as an input to a
rainfall-runoff process model. Thiessen weight.s provide a method of
doing this: "

The records from each rain-gauge are divided into synchronised
time steps. The weighted average for each time step is
calculated by multiplying the rainfall intensity (or depth) for
each time step by the appropriate Thiessen weight and summing

the values from a time step together.
This averaged value for a time step is applied to the study
area as a whole, and is sometimes further modified by an aerial

reduction factor for larger catchment areas.

This approach is tested in chapter 6.
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4.9 TESTING PROCESS

With four alternative methods that could perform the same task, that of
gridding, it became necessary to devise a process toc evaluate each
method and determine the most suitable. The remainder of this project
relies heavily on this section of programming, and it was decided to

test these methods as thoroughly as possible for this reason.

Two alternatives were available; a rigorous mathematical analysis of
the performance of the methods or a series of tests giving results in
some meaningful variables (e.g. correlation coeffiéient). It was
decided that the latter would be more useful in this case, as it would
be more immediately obvious how the methods compared if this type of
testing was undertaken. It was also desirable to get a "feel" for the
different methods and how they behaved.

Adopting a testing by comparison process requires two things; firstly
there must be a rawv data set to be used as an input, and secondly the
true values for a full description of the whole system to be predicted
must be known (in this context, a full description of the whole system °
means knowing the depth-values over the whole study area for the same
" points that the gridding process is going to interpolate at). The
process then becomes; use the raw data to predict a description of the
system and compare this with the known description of the system by
some means. This must be repeated with different data sets to achieve a

reasonable degree of confidence in the results.

Relating this to a real catchment introduces the fundamental problem of
this type of testing: It is possible to collect a reliable series of
records for several storm events, but almost impossible to have the
corresponding full description of the whole system. It becomes
necessary then to either work from an existing contour map and extract
the relevant raw data and known grid points, or to generate artificial
data.



In other studies of this nature, the method adopted was to work with
known storm events and to leave out various combinations of gauges, and
to determine the accuracy of fit to the now unknown gauge. It is the
opinion of the author that this is more a test of the robustness of the
method than the inherent accuracy or lack thereof. While this approach
was used, a more realistic means of testing was also defined and used
in the early stages of this study.

The option of working from contour maps of storm events was examined
but the process of extracting grid points and reasonable values to
simulate gauges was deemed impractical as many such data sets would be
needed and this method would be time consuming. An alternative approach
based on generated data was used.

Several reasons made this approach more attractive as a testing
process: »

. The four methods were computer based and it would be convenient
to generate data directly as a computer-readable file.

. To make the testing as general as possible, it would be
necessary to test different shaped patchments (and different
gauge locations) as well as different storm events for the same
catchments. It would . more time efficient if these could be
generated by computer and processed automatically.

. There is a wide fluctuation in the number of gauges per
catchment in real studies. In order not to prejudice the
testing process it would be necessary to work with many
different numbers of gauges per catchment. This flexibility was
only allowed with generated data (in a reasonable time-span).

. The methods of comparison are statistically based techniques
and require large émounts of computation. This could easily be
done at the same time Aas the gridding process, if the full

description of the system was known.

In the end, a compromise between time taken for generating data and
thorough testing for accuracy determined the final process. Three raw

data sets were generated - each comprised of a regular ten by ten grid



of one hundred depth-values. The x and y difference between grid points
for each data set was changed, thus creating three different shape
areas. The three sets were named testla, test2a and test3a, and are
referred to by these names in the testing process. It was convenient to
work with up to one hundred gridded points as this could be converted
into a percentage figure to represent a required density of rain-gauges

for a required accuracy of fit.

Testla was derived from a generated contour map simulating a storm cell
on the edge of a catchment, where grid points were extracted from the
map by interpolating a depth-valﬁe according to the contour heights
nearby. Test2a was generated from a pre—defiped three-dimensional

quadratic surface given by:
z =15+ 7x - 3y + 9x2 + 2y?

The various z-values for the corresponding grid points were calculated
by substituting in the coordinates of the grid points and finding the
z-value. This equation is easy to integrate over an area for a total
volume of precipitation figure, and this could be useful later on. On
the basis of the 1literature survey the common use of the polynomial
method suggested that storm patterns may féllow a polynomial trend. For
this reason a >lynomial type storm pattern was i :luled to try and

simulate a real storm pattern.

Test3a was generated from a more complex function given by:

z = 6.8IN(x) - COS(3y) + LOG(x) - 1.002v¥

The 1idea was to create an undulating surface with a disguised trend to
determine how well the methods could interpret hills and troughs in the
data. This function could also be easily integrated for a volumetric

figure.

To satisfy the conditions set out above, the following process of

selecting data was used:



The full data set (i.e. testla, test2a or test3a) was read in by

the gridding process currently being tested.

. A varying but controlled number of (x,y,z) coordinate sets were
selected at random from the full data set, thus simulating the
known rain-gauge depth amounts from a storm event. For this
portion of the testing between three and one hundred points
were selected at fixed intervals.

. The gridding process was applied to this new data set and the
values for the whole area generated.

. The generated values could then be compared with the original
test data set read in (i.e. testla,test2a or test3a) and the
accuracy of the fit determined.

. As mentioned above, a varying but controlled number of
coordinate sets were selected randomly from the test data set.
This was controlled by the subset ne (3, 4, 5, 6, 7, 8, 9, 10,
15, 20, 30, 40, 50, 60, 80, 100}, where n is the number of
points selected at any time.

. Over and above this, when a particular number of coordinate
sets was being worked with, the process of 1 indomly selecting
simulated gauges and gridding was repeated twenty times, each
time with a new set of randomly selected points. Each time the
generated grid points were compared with the known test set.

The varying number of points selected (from three to one hundred)
simulated the varying number of gauges found in real situations. The
randomly selected coordinate sets for each number of points simulated
the different catchment shapes by the varying (x,y) coordinates of the
coordinate set. The fact that each of the twenty cases were
interpolating to the same simulated storm event does not detract from
the value of the tests. When ninety points were being used for the
interpolation, it was considered that this was equivalent to the
robustness tests mentioned above. In this way maximum use was made of
the three data sets. '

One would expect that as the number of coordinate sets approached one
hundred the accuracy of fit would also increase - this was true in

general. The final case (when the full set of one hundred data points



are used to grid the study area) would give an indication of how well
the method 1is able to interpolate the known data exactly. It was hoped
that all the methods would be able to interpolate exactly at all known
data points, but this was not the case, as will be shown later.

Having set up the framework for testing the methods it became necessary
to decide what variables would be used for the comparisons. To this end
the paper by Green and Stephenson (1986) was used, as it gives a
detailed summary of criterion for comparison of single event models.

It became evident that there was no single test statistic that gave a
consistently reliable indication of how well the method was performing.
Some test statistics behaved well under certain conditions but badly in
others. In view of the extensive amount of testing that was to be
carried out it was deemed prudent to use several test statistics at
every test and later determine the most meaningful, rather than leave
something out and have to re-test the whole lot again at considerable

waste of time.

On the basis of recommendations made in the article meﬁtioned above,
and the author’s 6wn experience, the following test statistics were
used:

. Arithmetic mean of errors.

. Absolute arithmetic mean of errors.

. Sum of squared residuals.,

. Root mean square error.

. Coefficient of variation.

. Mean of known depth-values.

. Mean of interpolated depth-values.

. Standard deviation of errors.

. Efficiency.

. Correlation coefficient.

Every time the data was gridded, the interpolated values were compared
with the known values and the above ten test statistics calculated.
This was done twenty times for each number of coordinate sets, and so

there would be twenty values for a test statistic for a set number of



simulated gauges and test data set. The maximum, minimum and mean of
the twenty values were also calculated where appropriate. It is
arguable whether the errors followed a normal distribution, and so the
standard deviation of errors was not used to compare methods directly,

but more to give a "feel” to the variations in accuracy.

Several other aspects of the methods were also tested: The sensitivity
of the methods to real distances between gauges was examined, the shape
of the gridded surface was compared to the actual shape, the percentage
of the absolute arithmetic mean of errors over the mean of the known
depth-values was calculated and the time taken to complete the gridding
process are some examples. This last value became important in

selecting which method would be used in the remainder of the project.

The output of the testing process was printed and formed the basis of
the comparative graphs and discussion in the concluding chapter for the
gridding methods.

4.10 DISCUSSION ON GRIDDING METHODS

This chapter is based on “te {indings of the author while completing
this project. The method of up setting test data sets is described in
the previous chapter, and this chapter includes the discussion of the

results and implications of the testing process.

The gridding method that was used for the remainder of the project was
selected based on how closely it satisfied the goals outlined in

chapter 4.1. It is convenient at this stage to repeat these goals:

1) The interpolated storm must be the same size and shape
as the real storm.

2) The interpolated depth-values must equal the known
depth-values where they coincide spatially.

3) The method must not be too sensitive to missing data.

1) The average depth-value over the whole study area for
the interpolation storm must be the. same as for the real

storm.
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5) The method must be fast.

Figures 4.6 to 4.8 show the one hundred depth-values for each test data
set. They also show the contour shapes that were drawn from the test
data sets, using a contouring program developed by the author. The
numerical values of the three test data sets were used for a
quantitative comparison, as has been discussed in the previous chapter.
The three contour maps were used for a qualitative comparison of the
four methods tested.

The four methods tested were inverse squared distances (ISD),
multiquadratic method (MQUAD), polynomial surface fitting (POL) and
distance weighted least-squares quadratic surface fitting (DIST). For
convenience, the methods will be referred to by their abbreviations

shown in parentheses.

To give an indication of how well the methods satisfy goals two to
four, which demand various degrees of numerical accuracy, the sum of
squared residuals for all the tests has been reproduced in figures 4.9)
to 4.11). Each figure corresponds to one test data set, the four
diagrams (a, b, ¢ & d) correspond to each method’s behavior while
‘gridding that data set. The horizontal axis, labelled number of data

points, represents the number of rain-gauges in a catchment
Several general conclusions can be determined from these diagrams:

. The most obvious indication 1is how badly all methods behave
with small numbers of rain-gauges.

. The distance between the maximum and minimum graphs indicate a
kind of deviation, or consistency in the method - the wider the
band the less confidence there is in the output of the method.

. The degree of oscillations in the early portions of many of the
graphs is more an indication that twenty different tests were
not adequate per number of data points, than any conclusive
statement about accuracy. What is reasonable to say though, is
that for less than ten gauges one can expect widely fluctuating

degrees of accuracy.
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. Many of the tests show that the methods behave badly even when
all one hundred depth-values were used. It appears that this is
a characteristic of the method, and not the data set.

In an attempt to evaluate goal number four, that of average estimates\
being the same for interpolated storms and real storms, two statistics
are presented. The ratio of the absolute arithmetic mean of errors over
the mean of depth values for the real storm are presented as a
percentage for all the methods and test cases (figure 4.12a to figure
4.12c).

The choice of the ratio of absolute arithmetic mean of errors (AAME)
over the mean of all depth values was prompted by a need to
conceptualize the relative magnitude of the error of interpolation. The
AAME value on it’s own gives an indication of the magnitude of the
average fit for the whole area, but this can be misleading in the case
of two extremes whén the actual depth-values are large in magnitude
{(121.8 for test2a) or small in magnitude (6.2 for testla). The AAME
value was then compared with the mean depth-value to give an indication
of the scale of the erroi. At it’s best, this value should be as small
as possible as soon as possible, thus showing the magnitude of error is

small in comparison with the values being measured.

In addition, figure 4.13 shows the arithmetic mean of error values for
all three test sets for one hundred data points. This is intended to
show how the methods perform when all the data is available for
interpolation, and shows what is likely to be the best performance
possible for the methods. This figure was instructive in showing which
methods were undesirable for the latter part of this project, working
on the rationale that if the method does not behave well with all one
hundred data points present, it wouldn’t behave as well as others will
with less than one hundred data points available for interpolation.

The -ISD method behaves consistently throughout. Although the percentage

error starts at about 45% each time, it is never higher than this. The

other methods sometimes fluctuate wildly in the areas of low numbers of
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contours. For the purposes of this project, this implies a reliability
in the ISD method that the other methods do not exhibit -~ especially in
the areas of low numbers of data points (rain-gauges).

In testZ2a, both the POL and DIST methods behave very well. This is
easily explained if one remembers that test2a was derived from a
quadratic equation in the first place, and as these methods use
polynomials to generate their interpolation values, it is not
surprising that they behave well. It must be noted that for the other
test data sets, the methods behave very badly in the area of low
numbers of data points.

The MQUAD method also behaves consistently in all three test data sets.
Unfortunately, the percentage error for less than ten data points is
mostly greater than 200%.

The results from figures 4.12 a to ¢ can be sumarized as follows:

. Methods POL and DIST behave both badly and unpredictably for
low nu bers of data points, except when the original polyncmial
surface equation used +to set up the interpolation is known to
follow the trend of the data closely (as in the case of
test2a). At higher numbers of data points they behave well.

. The MQUAD method behaves consistently for all test cases, but
has very large errors in areas of low numbers of data points.
For high numbers of data points, the method behaves well.

. The ISD method behaves consistently for all test cases, and
although the error is large in low numbers of data points, the

method is more consistently accurate than the other three.

. None of the methods behave exceptionally well in areas of low
numbers of data points. The author suggests that this is not a
fault of the methods themselves, but rather that they are being
expected to perform far beyond the limits of their accuracy for
the quantity of data being supplied as an input. This is an
intrinsic problem of the process of gridding —.availability of

enough data points to enable a reliable fit.
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Figures 4.14 a to d are included as a qualitative comparison of the
methods. The figures show how all four methods interpolate to data set
testla. The four contour maps are very similar to the original data set
(figure 4.6b). ’

It was found that if there existed large relative differences in the
data, then the ISD method tended to allow the influence of the high
values to "spill over" and introduce false depth-values near these
peaks. This characteristic could probably be reduced by re-examining
the distance weighting function to allow less influence from data
points further away or to introduce a scaling factor for these cases
that would reduce the extremes before gridding, and then re-scale the

surface afterwards.

The methods behaved very well for the other data sets tested. The one
exception to this is the POL method when applied to testla. This is
shown in figure 4.15b, with the original data set shown in figure
4.15a.

The process of selection did in fact become one of rejecting the least
suitable methods until there was only one left. The results of figures
4,152 and b, and the unstable nature of the POL method as shown by
figures 4.9b, 4.11b, 4.12a and c suggested the rejection of this method
at this stage. l

The fifth goal mentioned at the beginning of the chapter is that of
speed. The whole process of gridding, contouring and plotting of maps
is likely to be repeated many times for a storm event. It is therefore
desirable to have a fast method. Figure 4.16 gives times taken for the
gridding process for the four methods tested. It can be seen that the
time taken by the DIST method 1is in the order of three minutes for
about five rain-gauges, which is a typical number of gauges for a small
catchment. This time excludes the time taken for contouring and
plotting/storing the map information. The DIST method was therefore
rejected because of the long times taken for gridding.
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FIGURE 4.14a PLOT OF TEST1A USING ALL 200 GAUGES
METHOD USED IS: ISD

FIGURE 4.14b PLOT OF TESTiA USING ALL 100 GAUGES
METHOD USED IS: POL
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FIGURE 4.14c PLOT OF TEST1A USING ALL 100 GAUGES

METHOD USED IS: MQUAD

FIGURE 4.14d PLOT 0F TESTIA USING ALL 100 GAUGES
METHOD USED IS: DIST
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This then left two methods to choose from, the MQUAD method and
the ISD method. In figure 4.16 the MQUAD method shows an
exponential increase in time taken for griding. This is explained
by the fact that the method has to solve a square matrix of size
equal to the number of rain-gauges, and the time taken to do this»
increase exponentially with the size of the matrix. This would
be a drawback if more than about thirty rain-gauges are used in
the study area. The sfudy catchment focused on in the latter part
of this study had five rain-gauges., so this was not a significant

criterion for this project.

However, examination of figure 4.13 shows that the MQUAD method
behaved badly when all one hundred data points were available for
interpolation. Figures 4.9¢c, 4.10c and 4.11c show the method to
be more unstable and consistently less accurate than the ISD

method., as seen in figures 4.9a., 4.10a and 4.1la.

On this basis it was‘decided to use the ISD method for the
remainder of this project; that is the examination of storm

movement anu storm patterns.
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5 CONTOURING PROCESS

A fast, accurate method of producing contours from a regular grid was
needed for this project. A further requirement was the ability to
produce a hardcopy of the contour maps for later study. A method using

a simple roving three-dimensional surface was developed.

The format of interpolation points for the gridding process was a ten
by ten grid of one hundred interpolated depth values. Hence, the output
data file from the gridding program made it possible to determine the
coordinates of each of the 100 interpolated points, and also the depth
value at these interpolation points for the simple 10 by 10 grid

system.

Spatially, this resulted in a series of 81 rectangles ona 9 by 9
layout of rectangles, the corners of each rectangle defined by a set of
four interpolated depth values. The distance between each interpolation
point was the same in the x-direction, and also the same in the
v-direction. This enabled considerable computational time-saving, as
will be discussed below. A roving three-dimensional surface was fitted
to each rectangle in turn, the contours evaluated, and the results

printed on the screen directly. The relative position of each rectangle
| to it’s neighbours had to be taken into account to print the contours
in the correct place on the screen. This was superimposed over the
outline of the catchment. The final product was dumped directly to the

printer.

The value at the intersection of the diagonals of each rectangle was
evaluated by taking the average of the four corner values (this is an
application of the ISD method, but because the distances used are the
same, it reduces to an arithmetic average calculation). This defined
four equilateral triangles of equal area, with differing'but constant
orientation, and differing inclinations determined by the heights of

the vertices.
In addition, each rectangle was converted to a square with dimensions

of one hundred units, by dividing the distances between interpolation
points by a delta-x and delta-y value. This simplified the coding by
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making interpolation calculations completely generéllfor any data set
to be interpolated. The coordinates of the contours, once calculated,
were post-multiplied by the same delta-x and delta-y values to regain

the original coordinate system.

Thus, the roving three-dimensional surface used was simplified to four
general plains, as opposed to a higher order polynomial expression. The
advantage of this is that defining the four plains in the way described
above produced a series of equations that were implicit and could be
solved directly. Higher order expressions would have réquired iterative
solutions, and considerably more computational time. An algorithm was
developed for evaluating the point of entry and exit any contour would
have, if it fell within the limits of the three vertices of the
triangle. This was repeated as four sub-portions of the program for the
four orientation possible in one square. This process was repeated for
each of the 81 squares on the interpolation grid. Because each triangle
was joined tol it’s neighbour by the same slope edge, contours always

matched up at the edges of each triangle and square.

Hence two coordinate syrtems were used: A local coordinate system
related to the bottom left hand corner of each square, which remained
constant for each square, and a global coordinate system related to the
bottom 1left hand corner of the real system. Each time a square had been
completely evaluated, the results were éonverted to the global
coordinate system and plotted on the screen. This method of splitting
the contouring into +two distinct portions made the determination of
contour positions, which required the most,calculation,bvery fast. The
conversion to the global coordinate systems was used when each
rectangle was completely contoured and the results were superimposed

over the catchment map on the screen.

The accuracy of the method was found to be more than adequate for the
task, and was more a function of the number of interpolation points
than the use of four triangular plane surfaces. The method is simple in
concept, but the programming proved to be more complex than
anticipated. The complete listing of this program is given in appendix
E.



G _STUDY CATCHMENT

A peri-urban catchment with marked changes in elevation and of a
suitzble area was desired for this study. The catchment used,
Montgommery Park, is in the north western area of Johannesburg
municipality and contains ten smaller suburbs. At present the land use
is peri-urban, with a continuing expansion of residential areas. The
area of the catchment is about 10.36km2. The change in elevation from
lowést to highest point in the catchment is about 200m, which is high

for this geographical location.

The catchment 1is drained by the Montgomery Spruit, a tributary of the
Braamfontein Spruit. The Montgomery Spruit flows in a north easterly
direction. The northern boundary of the catchment is bordered by a
north facing escarpment, with a south facing dip slopé of about 10°.
Thus the catchment has high areas to the north, west and south, with
shallow areas in the centre and east, where the Montgomery Spruit

leave s the catchment (see figure 6.1).

The land use is varied, with natural vegetation predominating. Soil is
also natural with a small amount of landfill the southern portion of
the catchmeunic. 7here are some light industry stands, but most are

residential. A breakdown of land use is seen in table 6.1.

Land Use Percentages - Montgomery Park.
Land Use Type Percentage
Rural - Low level vegetation 77,0
Rural - High level vegetation 2,5
Urbanised areas 18,0
Landfill 2,5
Water surfaces <1,0

TABLE 6.1 LAND USE PERCENTAGES
{After Lambourne and Stephenson, 1986}
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There are five rain-gauges in the catchment. Four of them are within
the boundary of the catchment. Two of the gauges are of the syphon
type, while the other three are tipping bucket types, with resolutions
of .2mm per tip. All five gauges are logged by means of clockwork
recorders. Charts are changed weekly, except for one of the gauges,
which is changed monthly.

Various attempts were made to determine the relative influence of the

five gauges, such as building a scale relief model and calculating the

Thiessen weights (see figure 6.2).

6.1 STORM PATTERN CHARACTERISTICS

As described in chapter four, four gridding methods were tested to
determine the most reliable way of producing storm patterns from
rain-gauge data. The method chosen, Inverse Squared Distances (ISD),
was used to convert the five gauge readings into a grid of interpolated
depths over the whole catchment. "hese depths were then converted to
contours of cbmmon intensities, using a program written by the author.
This entailed three stages:

. Converting five charts into intensities of rainfall at five
minute time intervals and synchronizing the data by real-time
into one file. Five minutes was considered a reasonable balance
between accuracy of resolution and saving of storage space on

disc.

Reading this file and interpolating the depths for each five
minute time interval over the whole catchment by the ISD
method.

Taking each five minute interpolation and producing a contour

map of rainfall intensities for the whole catchment, and

printing this map.
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The total real-time duration of this file was then from the first onset
of rain till the last measurement of rain over all five gauges. The
number of maps produced per storm event is the real-time duration in
minutes divided by five. Storms with rainfall at four or less gauges

were not considered.

Twenty-one storm events were extracted from records starting at the
beginning of 1987 and ending in the middle of 1988, and studied in this
way. A large variety of events was studied, with mean total depths
ranging from about Smm to about 55mm, and durations varying from about
100 minutes to about 1000 minutes.

6.1.1 FINDINGS FROM CONTOUR MAPS

With twenty-one storms studied, hundreds of five-minute maps were
produced. It is not feasible to include all of them here, and hence
some definitive characteristics are highlighted in this section by the

author.

Figure 6.3, from a storm on the 3/02/87, shows a series of eighteen
maps in sequence with cross-sections. In the beginning a cell of high
intensity forms over gauge one. As this starts to decay, another cell
forms at gauge four, and the two of them produce rain at a medium
intensity for some twenty-five minutes. These two disappear, and a
third cell of high intensity forms over gauge five and remains in
effect for some twenty-five minutes. This 1is fairly typical of the
storms studied, with several cells starting and decaying in different-
parts of the catchment at different times during the duration of one

storm event.

The cross-sections give an added dimension to visualize the differences

in intensities across the catchment.
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An unknown quantity is whether two cells can overlap, or combine
partially. It is difficult to measure this from the ground, as local
wind effepts may produce what appears to be two combined cells. Figure
6.4, a map from a storm on the 13/11/87, could show either one large

cell, or two cells overlapping.

TORM START TIME: 3:3%33 MIN FRSSEDs 38
CONTOUR IMTERVAL: (183mm-nr MAR TIME 3TEP1 %min

INTENSITY
(tmnshe)

]

a
41.4a§
28
3>.a

FIGURE 6.4 ABSENCE OF CENTRAL RAINGAUGE MAKES ANALYSIS DIFFICULT IN
THIS CASE

There was also evidence of spotty rain in the study catchment. Figure
6.5, from a storm on the 27/11/87, shows a large amount of rainfall
appearing at one gauge, and very little elsewhere. Conditions before
and after this time interval did not exhibit thi- lisproportionality in

intensities.

STORM START TIME: :172:33 MIN PRSSED: 1893
CONTOUR INTERVAL1 (8mmsnr MAR TIME STEP: Snitin

GRUGE INTENSITY
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s wn-—
~ NN

FIGURE 6.5 SPOTTY RAINFALL FOR THE STORM ON 27/11/1987
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There were some events which did not have a marked cellular structure.

Figure 6.6, from a storm on the 21/01/88, shows a more plahar

distribution of rainfall, as opposed to isolated cellular events.
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FIGURE 6.6 ABSENCE OF CELLULAR STRUCTURE FOR THE STORM ON 21/01/1988 .
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At the other extreme,

appearing.

there were cases of

Figure 6.7, from a storm on the 24/01/88,

very convoluted shapes

shows a series of

six maps where the shape of one map appears to have little bearing on

the shape of the previous or subsequent map.
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In some cases it was possible to discern movement of individual cells.
Figure 6.8, from a storm on the 2/03/88, shows a cell that originates
over gauge number one and drifts south over gauge number two and
decays. This sequence lasts about twenty-five minutes, and on the last

map one can see the emergence of a new cell over gauge number two.

storm start time: 17.45 ain passed: 35 Storm start time: 17.45 ain ssed:
contour interval: 10mm/hr map time step: S min ) contour interval: iCmm/hr nap 5.1.. ,,é.:? s min
Gauge Intensity Gauge Intensit
No. (am/hr) No. (l-/hr)y
1 33.00 1 20.24
2 3 2 66
3 3.42 3 34.2
4 16.32 4 0.64
5 7.6 5 38.4
[y
~
storm start time: 17.45 2in passed: 40
N : ¢ storm start ¢ : i
contour interval: 10mm/hr 3ap time step: 5 min contou: intg;\ir:: }g'l:?h.r ::: gll.u‘ié.:? .

Gauge Intensity Gauge Int
No. (mm/hr) N‘:-; (n"/,;.:;cy
1 54.4 1 32.8
2 29.1 2 36.6
3 16.97 3 31
M 2 4 6.75
5 11.28 s 9.6
4
storm start time: 17.45 uin passed: 45 storm start time: 17.45 min passed: so0
contour intarval: 10mm/hr map time step: 5 ain contour interval: 10zm/hr Bap time step: 5 min
Gauge Intensity
No. (mm/hr) Gauge Intensity
1 52.96 No. (zm/hr)
2 108.3 1 o
3 30.4 2 34,8
4 10.56 3 9.2
5 36.98 4 6.71
5 6

FIGURE 6.8 MOVEMENT OF A CELL OVER THE STUDY CATCHMENT
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There were cases when the local storm did not cover the study catchment

over a significant area. Figure 6.9,

from a storm on the 11/03/88,

shows a period of thirty minutes, during which time only gauge number

four received any significant rainfall.
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FIGURE 6.9 PARTIAL COVERAGE OF CATCHMENT BY STORM EVENT/CELL
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Because the areal coverage of storm cells is in the same order of

magnitudes as the distances between the gauges in the study catchment,
it was felt that the absence of a gauge in the centre of the catchment
may have affected the study. Figure 6.10, from a storm on the 6/11/87
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FIGURE 6.10 A CENTRAL RAINGAUGE WOULD CLARIFY THEE TWO CONTOUR MAPS

86



shows two maps where a long, narrow belt of rain running in a
North-East to South-West direction could just as easily have produced
the effect shown as two individual cells over gauges one and three. The
absence of further definite data makes any attempts at more detailed

interpolation spurious.

This is not to be confused with the patterns shown in figure 6.3. In
this case it 1is wunlikely that a single cell could produce the high
intensities over gauges one and four, and the low intensities over
gauges two and five, because of the physical size such intense cells

are purported to have (about 3km diameter, from chapter 3).

6.2 TOPOGRAPHICAL, EFFECTS

A istudy was also done on the effects elevation might have on rainfall
amounts at the gauges in the catchment. The total depths of rainfall
for the twenty-one storms were added up for each gauge and a linear
correlation done with height above mean sea level (see figure 6.11).
The equation of the line of best fit was found to be:

Depth = 0.9645xHeight - 1127
where Depth is in mm and Heigh. is in m above sea level.

The cérrelation coefficient for the fit was 0.63.
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FIGLRE 6.11 ELEVATION EFFECTS ON RALNFALL’
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6.3 CELL SIZES AND DURATIONS

Consider figure 6.12, which shows bar graphs of rainfall intensity for
each of the five gauges in the study catchment for the same storm event
{10/11/87). There are several factors that can be highlighted:

The total depths for each of the gauges are of similar
magnitudes, and close to the mean depth for the whole
catchment.

The shapes of the bar graphs for the five gauges are completely

different - there is no apparent general storm shape.

The start times and end times for the storm event measured at

the five gauges are all different.
The duration of the event measured at each gauge is different.

It is often possible to detect cellular structures, where the
storm event is broken into groups of .ainfall by periods of no

or very little rain (seen clearly at gauges three and five).

This storm events was chosen becruse it was typical of the storms
studied and is of short duration, which. made it easier to draw
attention to the above points. This’particular storm also shows that
having the total depths at the measuring gauges being of similar
magnitudes does not guarantee similarity of shape characteristics.
Spottiness of rainfall would be expected when the depths measured are
very different between gauges, but this shows that consistency of total

depth is a bad indicator of lack of spottiness.

The fact that the storm was first detected at different times at the
five gauges might indicate a trend for the catchment. It was found that
some events were initially detected in the saﬁe' five minute time
interval at more than one gauge, and other events at only one gauge.
For the twenty-one storms studied, the number of times that rainfall

was first detected at the five gauges was eight times for gauge one,
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eight times for gauge two, six times for gauge three, seven times for

gauge four and four time for gauge five.

The number of times rainfall was first detected at one gauge only was
also determined and this was four times at gauge one, five times at
gauge two, twice at gauge threé, three times at gauge four and once at
gauge five. The only common factor to emerge from this was that gauge
five (which is wunder the shadow of the highest part of the catchment,
but is not the highest gauge) had rainfall starting there significantly

less often than the other four gauges.

The duration of the whole event can be taken as the time from the first
onset of rain at any gauge until no more rain is measured at any gauge.
This is a far more complex situation than design storms of constant
intensity and set duration, and even weighted averages of gauge depths
for the whole event. This definition of storm duration is however not
very useful, as it includes times at the beginning and end of the storm
event when there 1is comparatively little rain. For practical use,
though, some means of comparing ‘storm events and relating them to

reurn periods and degrees of severity must be determined.

The contours of storm shapes are useful for a qualitative examination'
of storm events and cells, but not for a quantitative analysis. For the

purposes of individual cell durations, a different technique was used:

For the storms used to determine cell duration, each gauge was
-studied  individually. The duration of cells for several
intensities was determined. For example, at gauge number one
for the storm on 15/01/87 the durations of cells of intensities
greater than or equal to 2.5mm/hr were measured and counted,
and four cells of 40, 5, 50 and 15 minutes were found. This was

done for the other four gauges as well.

Cells of intensities greater than or equal to 2.5mm/hr, 5mm/hr,
10mm/hr, 15mm/hr, 20mm/hr, 30mm/hr, 40mm/hr,... etc. were
measured and counted. This information was then pooled for the

storm events and gauges to determine a mean cell duration.
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The author found that there was a steadily decreasing number of cells
with an increaéing cell intensity. When the mean duration was
calculated, it was found that there were two definite plateaus; one at
a mean duration of about 22 minutes for intensities between 2.5mm/hr
and 20mm/hr, and the second at a duration of about 11 minutes for
intensities between 20mm/hr and above. Standard deviations were in the

same order of magnitude as the mean values.

The author does not suggest that cells of intensities between 2.5mm/hr
and 20 mm/hr will have durations of 22 minutes, or that those of
intensities greater than 20mm/hr will have durations of about 11
minutes, as this cannot be concluded from the manner in which these
figures were derived. What this could indicate, though, is that there
may be typical cell characteristics that can be extracted for a
catchment and later built into a design model.

In keeping with other studies, examination of contour maps shows cell
dimensions of about 3km diameter. This was noticed both at the peak and
also for a large portion of the cell’s duration, suggesting an upper

limit to the areal size of a single cell.

‘6.4 EFFECTS OF HYETOGRAPHS ON RUNOFE

The =above work 1is enlightening, but needs to have practical
implications to the hydrologist for it to be relevant. A means of
determining the quantitative effect different storm shapes would have
on a éatchment was necessary. The most obvious is the characteristics
of the resultant runoff hydrograph when a storm event is routed over a
catchment.

To this end, a reliable runoff model was needed. The model developed by
Green (Green and Stephenson, 1985) called WITWAT was used, for several

reasons.

. The model is used extensively is Southern Africa and has
therefore been tested often.
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The original model was developed on a Hewlett Packard, which
was compatible with the Hewlett Packard used by the author. The
relevant software was made available to the author by Dr.
Green. The original calibrated data sets used for Montgomery
Park were made available to the author.

It would be necessary to modify WITWAT to accept spatially
varying intensities as storm inputs. This had already been done
{Lambourne and Stephenson, 1986) and this software was made
available to the author by Dr. Lambourne. It was then necessary
to convert the measured data from raingauges into a suitable
format for this modified version of WITWAT,

Of the twenty-one storms, eight were selected for use with the overland
model. This was mostly due to practical considerations of memory space:
The real storms had durations of up to 1000 minutes, and the spatial
version could only accept up to 108 ordinates (540 minutes). This meant
that storms which could not be realistically cut to below 540 minutes
duration had to be left out.

Seven runs were made for each storm event. Five of these were routing
the measured hyetograph at the five gauges as a spatial event over the
. whole catchment. In many practical applications, there is a gauge
density of 1less than one gauge per 10km2., Data from this type of
arrangement must, per force, be applied to large areas surrounding the
gauge. These first five tests were done to investigate the possible

errors in this.

The sixth run used a weighted event, with Thiessen weights applied to
the corresponding intensity at each five minute interval. The whole

storm was converted in this way and applied over the whole catchment.

The seventh run used a special data file that was set up using the ISD
method. Some way of distributing the rainfall spatially was needed.
Each five minute time interval had rainfall intensities interpolated
and applied to the center of gravity of each discrete area defined by
Green (Green and Stephenson, 1985) for the catchment.
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Many studies are done using design storms of constant intensity. To
give some means of comparison with other catchments, some constant
intensity design storms were also routed over the study catchmnet. The
mean annual precipitation for this area is 720mm, and this gives rise
to ‘the Intensity-Duration-Frequency (IDF) curves shown in figure 6.13.
This figure was derived using the inland equation developed by op ten
Noort and Stephenson (1982). ' ‘

Intensity - Duration - Frequency
Montgommery Park  (MAP = 720 mm)

Intensity (mm/hour)

300
276
260 AN
225 VAN
200l — SN
176 \i\\\\ 100y
50— NS o T~
N NN
126 \\\\\\\q \% I =] —
100 \\\\\N\EE e
75 \\\‘\\‘\f‘\\\\jg:?\\\;N\\“\§\\CEEEEEEE:£::::-—~‘
50 o =
T T
25
0

O 01 02 03 04 05 06 07 08 09 1 11 12 13
Duration (hours)

FIGURE 6.13 INTENSITY - DURATION - FREQUENCY CURVES FOR MONTGOMERY PARK
(MAP = 720 mm) '

Three return periods were examined; two year events, five year events
and ten year events. In each return period, the worst combination of
intensity and duration was found for the catchment. The resultant

hydrographs are shown in figure 6.14.
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FIGURE 6.14.DESiGN STORM HYDROGRAPHS

The intensities and durations for the three design storms are 42.6mm/hr
over 35 minutes, 44.3mm/hr over 50 minutes and 51lmm/hr over 55 minutes
for the 2, 5 and 10 year events respeétively. This calculates out at
24.8mm, 36.9mm and 46.8mm total rainfall depth for the three design
storms. The peak flowrates are 6.5 cumecs, 11.3 cumecs and 16.2 cumecs
reached at times 80 minutes, 70 minutes and 75 minutes after the start
of rainfall. These design storms are included to give some frame of
reference to the actual storms studied, and since no real event had a

depth exceeding 46.8mm rainfall, no further design storms were used.
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Findings from real storms showed a large variation in runoff. Figure
6.15 shows all seven runoff hydrographs from the storm on 15/01/87. It
can be seen from the graphs that the lowest peak flowrate is about 0.7
cumecs, while the highest peak flowrate is about 1.5 cumecs - a factor
of two difference. This cannot be explained by varying depths of
rainfall, as for this event the depths were 16.2mm, 19.3mm, 19.2mm,

15.4mm, 16.7mm and 17.4mm for gauges 1, 2, 3, 4, 5 and the Thiessen
weighted option. ‘

The spatial storm, when routed over the catchment, produces a
hydrograph somewhere between the highest and lowest hydrographs for
individual gauges. If the spatial storm were to exceed the bounds of
the highest or loﬁest hydrographs, then this would indicate a nett loss
or gain in rainfall and hence an error (since there cannot be more rain

than the maximum value, or less than the minimum value).
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FIGURE 6.15 HYGROGRAPHS FOR THE STORM ON 15/10/1987



As mentioned above, the hyetographs from all five gauges were routed
over the catchment as individual storms to simulate what would happen
if there were only one gauge in the study catchment. To give an idea of
a worst case, the hydrographs from a storm on the 6/11/87 is included
here (see figure 6.16). This event has minimum depth recorded as 6mm,
and maximum depth recorded as 19.6mm at gauges one and ‘three

respectively . The Thiessen weighted mean depth of rainfall is 9.8mm.
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FIGURE 6.16 HYDROGRAPHS FOR THE STORM ON 6/11/1987

As can be seen, the difference in hydrograph characteristics is very
large. Using the values from either ‘gauge one or gauge three would
result in considerable errors in peak flowrate or runoff volume

estimation.
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Another event with total depths of similar magnitudes is the storm on
A the 10/11/87 (see figure 6.17). The five hyetographs for the five
raingauges for this event can be found as figure 6.12 above. The
difference between the minimum (gauge one) and maximum (gauge five)
depths and the Thiessen weighted depth is 17% (less) and 28% (greater)
respectively. This can be compared to the resultant peak flowrates
comparisons of 22% (less) and 53% (greater), and the resultant volumes
comparisons of 19% (less) and 33% (greater) for these same gauges.

These trends are similar for all the storm events studied.
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FIGURE 6.17 HYDROGRAPHS FOR THE STORM ON 10/11/1987
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If one examines the results of the spatial hydrographs from figures
6.15, 6.16 and 6.17, there appears no easy correlation as with the
hydrographs produced by the Thiessen weighted events. Figure 6.15 shows
a hydrograph close to the lower bound, figure 6.16 shows a hydrograph
close to the middle and figure 6.17 shows a hydrograph close to the
upper bound.

6.5 DISCUSSION

Clearly, a single rainfall event is composed of several cells that are
the major producer of rainfall during that event. If one is to model
rainfall properly then one must introduce this aspect into the model.
What could be investigated further is whether there is a typical limit
to the areal size of individual cells. From this study, it appears as
if there is, and that this size is reached in the early portion of a
cell’s life. Further growth is apparent in higher intensities within
the same area, as opposed to an expanding of areal size.

It has been shown that rainfall varies considerably across a catchment.
Wéighting discrete time steps of a rainfall event by some means such as
Thiessen weights is an improvement on constant intensity storms.:
However,' in many practical situations, such as in the study catchment,
the distributicn of raingauges is not even. Because of this, some
gauges are constantly weighted higher than others, and this lumped
rainfall is applied to the whole catchment.

If for some reason (e.g. relief differences or physical obstructions),
one gauge had significantly more or less rainfall than others in a
catchment, and this gauge also had a significantly high or low
weighting, then the rainfall input would have an intrinsic error. The
magnitude of this error may be small, but with an increasing pressure
on models and planners for accuracy and confidence in results, this
should be investigated.
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The picture presented by this report of storm movements is a complex
one as far as modelling goes. Spotty rain, convoluted cellular
distributions of high intensities and planar distributions of
intensities have all been found to exist over the study catchment.

Sometimes all three existed at some stage in the same storm event.

The trend with computer runoff models appears to be to include higher
levels of discretisation of the catchment for descriptions of the
physical aspects of the catchment: Ground coverage is divided up by the
type of land use (e.g. impervious and characteristics of perviousness),
vegetation types and their areal coverage are important (for protection
of  ground from erosion and the amount of potential evaporation) and the
~soil characteristics are also evaluated (to determine the degree of

ponding, the ability to absorb moisture and transmit subsurface water).

The author feels that the value of this work is largely negated if the
rainfall used as an input for the models is not refined to the same
degree. As shown above, rainfall is a very variable quantity over short
distances and small times. This also introduces a subtle point for
c: libration of models: If the correct distribution of rainfall is not
used when models are being calibrated, then some physical parameters
must be artificially adjusted to produce the required performance. This
is not desirable.

It has been shown above that considerable errors can occur in runoff
calculations if the best estimate of rainfall (i.e. closest to the real
event) is not wused. The author suggests that this is also true for
calibration of models, and that a more refined method of rainfall input

be used for calibration.

Sieker (1978) cast doubts on the assumption that a recurrence interval
of storm events matched the corresponding recurrence interval for
runoff events. For design purposes some form of correlation is required
though. A re-evaluation of this position is called for, with a better

informed notion of storm characteristics.
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7 DISCUSSION

Several points have had attention drawn to them in this project. The
most significant of these are discussed in chapters 4.10 and 6.5, but a

summary is reproduced here before the final discussion section.

A single rainfall event is a composition of several component
cells whose individual behaviour is erratic. The description of
these cells in parameters useful to hydrologists is very important

for the accurate study and understanding of rainfall events.

The distribution of raingauges in a catchment are not optimal
arrangements for computer interpolation, and uneven representation
of gauges can occur. There are seldom enough raingauges for a high
level of accuracy when interpolating storm events, which have
extreme variations in intensities over small distances - in most

cases significantly less than the distances between gauges.

The pattern of rainfall intensities from real rainfall events over
their duration varies radically, both with time and space.
Hyetographs from the same catchment for the same storm event can.
appear totally unrelated to each other, even though the gauges are
all within about 2km of each other, as was found in this study.

This makes accurate calibration of models difficult

Process models that model the rainfall-runoff process are being
produced in package format on micro-computers with increasing
levels of discretisation and accuracy with regard to the modeling
of so0il, slope and vegetation parameters. To benefit from this,
the description of distribution of rainfall over the catchment
must be to the same accuracy. Rainfall forms the major input for a
cause and effect relationship and if this is not taken into
account the benefits of discretisation will lost when the areas

are lumped together under averaged rainfall inputs.
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. The current use of design storms is based on the assumption that the
probability of a rainfall event of a certain magnitude happening is
the same as the probability of a runoff event of a certain magnitude
happening. This is not necessarily true for real storm events, as
for a given average depth of rainfall totally different sections of
a catchment can be affected by different storm events, and hence

produce totally different hydrograph characteristics.

The above discussion serves to highlight further issues. Addressing

these in part form the basis for the discussion in this final chapter:

Tﬁe number of raingauges in a catchment have a significant effect on
the accuracy of rainfall measurement. This is related to both the
accuracy of the numerical technique employed, and the number and
distance between the gauges available for the study. An important
aspect 1is the requirements of the study; whether it is for small urban
studies, drainage regions or water resource management, composed of
several drainage regions. An intrinsic assumption is that the
raingauges themselves are accuraté, and that their time synchronisation
is to acceptable levels - the author suggest to within five minutes of

each other for meaningful results.

The accuracy benefits of applying the numerical method used in this
project to catchments of large aerial sizes is unknown. However,
understanding that storm events are erratic in behaviour, and can be
physically smaller in area than the study catchment indicates the
numerical method’s advantage in describing storm events more precisely
than current popular techniques. It is therefore reasonable ﬁo
speculate and expect an increase in accuracy, if such a numerical

technique is used for large area studies.

To consider catchments in their correct relation to stdrm event size,
it would be beneficial to classify catchment studies by the same
classification applied” to storm events, that is microscale for less
than about 6km diameter, mesoscale for less than about 50km diameter

and synoptic scale for much larger catchment studies.
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This would aid in focusing attention on what aspects of the storm event
are most influential to that scale of study (i.e. topographical,
relief, aerial extent, wide variations in rainfall intensity etc.).
Related to this is whether it is possible to link cell characteristics

with overall climatic and topographical characteristics.

Two distinct types of storm event are possible: long duration low
intensity and short duration high intensity storms. The effects of
either are very different. For event models, the so0il moisture
conditions have to be estimated accurately to produce a calibrated
catchment. If ‘combinations of these two types of events have occurred
on a real catchment, the resultant runoff can be very different to
single events spaced far apart. While the immediate effect of a low
intensity storm event is small, it may saturate the soil to a degree
that an otherwise moderate storm then event becomes extreme. It was
noticed that long duration events studied often exhibited qualities of
both types of storm event.

In most runoff modelling studies the start and end time of the storm
event is ‘ationalised by some means, giving the same start and end time
to each discrete sub-area within the study catchment. By comparison,
the real events exhibited large differences in start and end times for
the five rain-gauges in the study catchment. The discrepancy between
modelled and actual storm behaviour highlights the inability of current
techniques to describe storm events to an acceptable level of accuracy.
This also corroborates the observed erratic nature of real storm

events.

Other questions occurred to the author as a consequence of this

project. These are listed below as suggestions for further study.

SUGGESTIONS FOR_FURTHER STUDY

How much are the shapes of cells (and therefore runoff) influenced
by the method used to study them?
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A method of relating the recurrence of real storm events to the
recurrence of runoff events must be determined. This is a complex
relationship and the design-storm approach of constant intensities
is not to be trusted as representing real events. This relationship

should be investigated for planning and design purposes.

A new generation of runoff model incorporating the spatial structure

of real or reality-based storms is necessary.

Initially, a method such as ISD used in this report could be
incorporated, but the task expected of these methods exceeds their
bounds of accuracy at common levels of raingauge density. The author
expects that models based on the physical nature of storms (such as
the NWP types) can be developed to model small catchments to
sufficient resolution and accuracy. Investigation of this and
available alternatives, and the possibility of linking to a
computer-based runoff model could be investigated. '
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