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Introduction

 Fe2+ and Mn2+ threaten sustainability of wellfields due to water 

Quality Problems

 Aesthetic issues

 Potable issues

 Health issues

 Supply Problems

 Borehole clogging

Google image Google image Clogged flow meter (More Water, 2001)

Ultimately limits use of the water 

and/or 

increases costs to maintain supply

giving groundwater a bad name



Iron (and Mn) removal principle

 Iron is soluble in reduced form (Fe++)

 Iron is insoluble in oxidized form (Fe+++)

 Aquifers with reducing conditions yield Fe++

 Iron is removed by oxidation and precipitation as 

various (hydr)oxides

 Either ex-situ or in-situ

 In-situ: create oxidizing zone in aquifer to retain

insoluble iron (Fe+++) in the aquifer



Subsurface iron 

removal patent (1900)

Applied 

in Berlin

Modified from Olthoff (1986)

Since the 1970’s several different designs 

implemented with the main two including: 

Applied in:

• Bangladesh

• China 

• Denmark

• Egypt

• France

• Germany

• India

• Norway

Modified from van Halem et al. (2008)

• Sweden

• Switzerland

• The Netherlands

• USA

In-situ iron removal methods
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 Reduce or obviate the need for above-ground removal 

treatment

 In addition:

 Simple and Cost-effective to operate

 Lower space requirements

 Lower energy consumption

 No chemicals necessary

 No hazardous by-products formed

Benefits of in-situ iron removal

For example:

An in-situ iron removal set-up in India

which produces 2 m3 of drinking water

per day at US$ 1

(Sen Gupta et al., 2009)



 Co-removal of other ions

 Arsenic (As3+)

 Phosphate (PO4
3-)

Benefits of in-situ iron removal



 Reduce Fe and Mn in abstracted water below WHO (2008) 

guidelines

 Fe < 0.3 mg/ℓ 

 Mn < 0.1 mg/ℓ

 Vyredox-approach

 Ozone as the oxidant

Atlantis Aquifer pilot study

Groundwater 

flow direction

G30966

Mean Fe = 0.5 mg/l

Mean Mn = 0.2 mg/l



 Prototype Design

Experimental Layout



 Four different injection configurations applied

 With/without abstraction

Testing Ozone/Oxygen Injection



DWS Assistance . . . &

. . .  Capacity Building

High water table
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 Injection at 4DNE no abstraction

 Injection 4 m from production borehole

 Injection rate 1.8 m3/h

 Injected DO3 ranged 0.3-0.5 mg/ℓ; DO ranged 15-19 mg/ℓ

Findings
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Findings – Production Borehole
 Injection at 4 m with abstraction
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Findings – Production Borehole DO

 Injection into 4DNE (4 m)

 Concurrent abstraction

 DO at Prod Bh G30966 and 8DNE (8 m)
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 The results confirmed that in-situ iron removal in the Atlantis 

Aquifer was feasible even at a low injection rate and volume 

(compared to international case studies)

 Using ozone was innovative and may increase the efficiency of 

in-situ Fe and Mn removal from DOC-rich groundwater

 Ozone generation was also very effective in providing a high DO 

in the subsurface comparable to using oxygen gas

 Higher pH conditions and longer term applications are needed 

for the desired Mn removal

 Promising technique for South African primary aquifers (and 

potentially secondary aquifers) as it treats the cause of the 

problems maintaining good quality groundwater, even at a 

small-scale application

Research Conclusions 



Groundwater in South Africa

 Maintaining water security is a global challenge

 South Africa ranked the 30th driest country

 Groundwater plays a significant role in domestic water supply



South Africa’s experience
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Research Impact
 Pilot scale testing completed successfully

 Next step full scale application at operational 

water supply

Key advantage:

 In situ treatment permanently addresses the 

cause of the problem

 Only alternative is rehabilitation which only 

addresses the symptoms and only provides 

temporary relief at a very high cost



 Improving production borehole longevity

 Reduction in iron-related clogging processes at the borehole

 Fe(III)-oxides reduce potential for further mobilisation

Benefits of in-situ iron removal

Sourced from van Halem et al. (2011)

50µm
Oasen’s De Put WTP, Netherlands 

Operation since 1996 - current

Data taken from Appelo et al. (1999)
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