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EXECUTIVE SUMMARY

CLIMATE CHANGE AND WATER RESOURCES IN

SOUTHERN AFRICA:
Studies on Scenarios, Impacts, Vulnerabilities and Adaptation

R.E. Schulze
(Editor)

WRC Project K5/1430 “Climate Change and Water Resources in South Africa:
Potential Impacts of Climate Change and Mitigation Strategies”

This Executive Summary is presented under the following headings:

Background

Project Objectives

Project Outcomes

Summaries of Chapter Contents

Take-Home Messages from the Project, in a Nutshell
Acknowledgements

Capacity Building

Recommendations for Future Research

BACKGROUND

A focus on potential impacts of climate change on the water sector of southern Africa (in the context
of this report, made up of the Republic of South Africa together with Lesotho and Swaziland) was
triggered by a series of activities and events in the first three years of the new millennium which
included the World Summit on Sustainable Development, the Intergovernmental Panel on Climate
Change reports in 2001, the third World Water Forum, as well as active South African participation in
the International Geosphere-Biosphere Programme and Dialogue on Water and Climate, among
others. Additionally, there was the realisation that perturbations in climate parameters, particularly of
rainfall, were largely amplified by the hydrological system and that if climate changes were to manifest
themselves in the manner which international science was predicting, it would add a further layer of
concern to the management of southern Africa’s already high risk and stressed water sector, with
potential implications to the entire region’s socio-economic well-being, but particularly that of the poor.

These concerns culminated in the Water Research Commission’s soliciting a two-year research
project in mid-2002 titled

“Climate Change and Water Resources in South Africa: Potential Impacts of
Climate Change and Mitigation Strategies”

The project was awarded to a consortium of four South African universities, viz. KwaZulu-Natal (lead
organisation), Cape Town, Witwatersrand and Pretoria, within each of which specialist expertise and
international experience existed in one or more of climate scenario development, impacts modelling
and/or the human dimension and climate change.

PROJECT OBJECTIVES

This research project set out with five main objectives, some of them with sub-objectives. These are
listed below with, in each case, a short reference to indicate in which chapter(s) of the project report
the objective/sub-objective was addressed.



Objective 1: The Development of Plausible Climate Change Scenarios for Southern
Africa

- Sub-Objective 1: Evaluating the Envelope of Future Climate Projections,
Characterising the Uncertainty and Placing Quantifiable Error Bars
on the Regional Projections

- Sub-Objective 2: Investigating the Hemispheric-Scale Dynamical Responses to
Greenhouse Gas Forcing in the Context of Southern Africa, as
Simulated by Different GCMs

- Sub-Objective 3: Analysis of Southern African Regional Dynamics and Feedbacks in
the Context of Climate Change

- Sub-Objective 4: Empirical vs RCM-Based Downscaling

- Sub-Objective 5: Historical Trends and Variability.

These sub-objectives are all addressed in Chapters 2 - 4, with sub-objective 5 further evaluated
in Chapters 15 - 19, while Chapter 5 synthesises the findings of the preceding three chapters.

Objective 2: Investigation of the Potential Impacts of Climate Change on Hydrological
Responses and Associated Water Resources

- Sub-Objective 1: Design and Refinement of an Interlinked Quaternary Catchment
Level Database for Southern Africa for Application with Daily
Hydrological Modelling under Present and Future Climate Scenarios

- Sub-Objective 2: Selection of a Suitable Daily Hydrological Modelling System

- Sub-Objective 3: Assessment of a Range of Impacts of Climate Change on
Hydrological Responses

- Sub-Objective 4: Re-Application of Above Impact Studies to the Thukela Catchment,
as a Detailed Study Area.

Chapter 6 introduces the southern African hydrological “landscape” upon which climate change
would be superimposed. Chapters 7 and 8 cover the first 2 sub-objectives, while the impacts
studies per se make up Chapters 9 - 11. In Chapters 12 - 14 three additional case studies on
potential impacts of hypothetical, but plausible, future climate scenarios on hydrological
responses in southern Africa are presented.

Objective 3: Investigation of Possible Water Related Socio-Economic Impacts of
Climate Change in the Thukela Catchment and Factors Contributing to
Future Risk

This objective is covered in Chapters 21 - 25 by first providing a conceptual framework on
vulnerability, adaptive capacity, coping and adaptation (Chapters 21 and 22), followed by three
case studies (Chapters 24 and 25) with emphasis on research undertaken in the Thukela
catchment. Beyond the contract obligations, a study on perceptions of climate change was
carried out among different stakeholders in the water sector (Chapter 23).

Objective 4: Recommendations on Some Strategies to Adapt to, and Cope with,
Water-Related Impacts of Potential Climate Change

While Chapter 21 already addresses many aspects of coping and adaptation, a short overview
of South African policy documents on climate change with respect to water resources (Chapter
26) prefaces a longer chapter, Chapter 27, which addresses broader issues of adaptation in the
water sector and provides more specific conclusions of South African stakeholders with regard
to policy/legal instruments, institutional/managerial issues and research/monitoring needs.

Objective 5. Detection of Effects of Climate Change and Recommendations on
Appropriate Monitoring Systems for its Detection

- Sub-Objective 1: Changes Already Evident
- Sub-Objective 2: Monitoring Systems for Detection.

The first of these sub-objectives is reviewed and researched in depth in Chapters 15 - 19 in a



southern African context, while the second is evaluated in terms of southern Africa’s rainfall
network in Chapter 20.

All objectives set out at the commencement of the project, plus some additional ones, have been met
and are reported upon, setting the scene for addressing more practical issues on how to cope with,
legislate for and adapt to, issues related to climate change in the southern African water sector.

PROJECT OUTCOMES
The outcome of this project is this Report titled

“Climate Change and Water Resources in Southern Africa: Studies on Scenarios,
Impacts, Vulnerabilities and Adaptation”.

The Report of 470 pages has been written as 29 chapters in 9 sections which reflect the major
objectives of this study. The sections are as follows:

. Section A:  Executive Summary, Table of Contents and Glossary of Terms

. Section B:  Background to the Project
This consists of a single chapter providing background concepts as well as the history of, and
rationale behind, the project.

. Section C:  Development of Plausible Climate Change Scenarios for Southern Africa
Four chapters provide the conceptual foundation and uncertainties to the various downscaling
approaches adopted, which provide the project with future climate scenarios.

. Section D:  An Investigation of the Potential Impacts of Climate Change on
Hydrological Responses and Associated Water Resources over Southern Africa
This section is made up of nine chapters covering the current hydrological “landscape” in
southern Africa, the hydrological model selected, the databases which are used as a
framework for the impact studies, the impact studies per se at the scales of southern Africa
and that of a designated Water Management Area, viz. the Thukela catchment, and some case
studies.

. Section E:  Detection of Climate Change in Southern Africa
The six chapters making up this section consist first, of a review of, and a description of
methods for, detecting climate change, followed by studies on detecting changes in
temperature, hydrological responses and rainfall as well as an evaluation of the southern
African rainfall station network in regard to detection.

. Section F: Vulnerabilities and Sensitivities of Communities to Climate Risks
Five chapters make up this section, starting with two chapters on the conceptual framework on
vulnerability, adaptive capacity, coping and adaptation, followed by a survey on perceptions of
climate change held by different stakeholders in South Africa, a case study on climate change
and water poverty and a chapter on case studies on climate and development with regard to
farming communities - one operating at small-scale and the other at a large-scale.

. Section G:  Adapting to Climate Change in South Africa
The last technical section of two chapters focuses on policy in regard to climate change and
the water sector in South Africa and on adaptations to climate change by the water sector.

. Section H:  Synthesis and Recommendations for Future Research
Take-home messages from the project are highlighted and, based on the outcomes of this
project, some recommendations are made for future research.

. Section I: Technology Transfer and Capacity Building
This section presents the activities of the project team in the fields of relevant publications,
workshops attended, presentations made and students trained over the duration of the project
from 2003 to mid-2005.

The various chapters, which are of different lengths and at different technical/conceptual levels, are
presented as “independently interdependent” entities, with each chapter standing on its own, but
forming an important component “link” in the “chain” that makes up the entity of this project. With
each chapter “standing on its own”, it goes without saying that certain issues are covered in more
than one chapter.

What follows below are summaries of the chapter contents.
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SUMMARIES OF CHAPTER CONTENTS
SECTION B : BACKGROUND TO THE PROJECT

CHAPTER 1 LOOKING INTO THE FUTURE: WHY RESEARCH IMPACTS OF POSSIBLE
CLIMATE CHANGE ON HYDROLOGICAL RESPONSES IN SOUTHERN AFRICA?

Roland Schulze
(15 pages, 9 figures, 1 box)

Climate Change and Water Resources: Some Background
History of this Project
Rationale
Background Concepts 1: Why does the Hydrological System Amplify Changes in Climate?
Background Concepts 2: As a Consequence of Greenhouse Gas Forced Warming, the Natural
Hydrological System Will Experience Major Repercussions
1.6 Background Concepts 3: These Changes in the Climatic Drivers of the Hydrological System
(ACO,, AT, AP) Take on Different Regional Significances in Southern Africa Because of Different
Individual and Local Sensitivities to Change
1.7 Background Concepts 4: Previous Studies Already Show that Impacts of Climate Change may be
Felt Sooner over Southern Africa than We Wish, with Impacts Not Spread Evenly Across the
Region
1.8 Background Concepts 5: Water Resources Planners Cannot View Climate Change Impacts on
Hydrological Responses in Isolation, without Considering Additional Impacts the Climate Change
may have on Shifts in Baseline Land Cover and on Land Use Patterns
The Way Forward
0 References
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Abstract

This chapter first provides a general background to the link between climate change and water
resources, then gives a brief history of the project’'s coming into effect and its objectives, together with
the rationale behind it. Thereafter, by way of background, it highlights reasons why the hydrological
system can amplify/intensify changes in climate (especially of rainfall), how the “drivers” of climate
change (viz. changes in CO, concentrations as well as in temperature and in rainfall patterns) can
impact on hydrological responses and how these drivers can result in different sensitivities of runoff
responses in different parts of southern Africa. The chapter furthermore illustrates that previous
studies had already indicated that impacts of climate change on the region’s water resources would
probably be experienced earlier than expected in certain areas and how changes in land use and
baseline land cover could affect hydrological responses in a future climate.

SECTION C: DEVELOPMENT OF PLAUSIBLE CLIMATE CHANGE SCENARIOS FOR
SOUTHERN AFRICA

CHAPTER 2 CLIMATE CHANGE SCENARIOS: CONCEPTUAL FOUNDATIONS, LARGE
SCALE FORCING, UNCERTAINTY AND THE CLIMATE CONTEXT

Bruce Hewitson, Mark Tadross and Chris Jack
(18 pages, 8 figures)

21 Preamble

2.2 Foundational Issues Underlying Regional Climate Change Scenarios
23 Large Scale Response to Greenhouse Gas Forcing

24 Southern Africa Regional Feedbacks and Dynamics

2.5 Downscaling Methodology

2.6 Concluding Thoughts

2.7 References

Abstract

The development of regional scenarios is an evolving, and maturing, research activity. Consequently,
care needs to be taken in interpreting scenarios, particularly taking cognisance of the caveats and
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limitations, as well as the sources of uncertainty involved. Chapter 2 outlines the conceptual basis for
regional scenarios, and explains the two primary downscaling tools employed, viz. empirical and
dynamical models, and their limitations. Following this, the issues of uncertainty are explored, along
with consideration of the sources of uncertainty and the impact on the credibility of regional climate
projections. A key source of uncertainty, viz. feedback mechanisms, is discussed in greater detail.

CHAPTER 3 SCENARIOS DEVELOPED WITH EMPIRICAL AND REGIONAL CLIMATE
MODEL-BASED DOWNSCALING

Bruce Hewitson, Mark Tadross and Chris Jack
(18 pages, 23 figures)

3.1 Introduction to Empirical Downscaling

3.2 Results from Empirical Downscaling

3.3 Summary Comments on the Empirical Downscaled Projections
3.4 Downscaling with Regional Climate Models

3.5 Concluding Thoughts

3.6 References

Abstract

The regional climate change scenarios for South Africa, as projected by empirical and RCM
downscaling tools, are presented. The downscaling considers the regional response to large-scale
circulation change as simulated by three GCMs. The downscaling shows notable regional agreement
between the GCMs when following the empirical approach. The RCM-based approach has qualitative
agreement with the empirical projections, but there are some notable regional differences.
Nonetheless, there are common messages of consensus around precipitation; a wetter escarpment in
the east, a shorter winter season in the southwest, a slight increase in intensity of precipitation, and
drying in the far west of southern Africa. For temperature, the country as a whole is projected to
experience an increase in temperature, with the maximum increase in the interior.

CHAPTER 4  SIMULATIONS OF CLIMATE AND CLIMATE CHANGE OVER SOUTHERN AND
TROPICAL AFRICA WITH THE CONFORMAL-CUBIC ATMOSPHERIC MODEL

Francois Engelbrecht
(18 pages, 8 figures)

41 Introduction

4.2 The Conformal-Cubic Atmospheric Model
4.3 Experimental Design and Observed Data
4.4 Simulations of Present-Day Climate

45 Simulations of Climate Change

4.6 Discussion and Conclusions

4.7 References

Abstract

In this chapter, climate simulations by the Conformal-Cubic Atmospheric Model (C-CAM) for the
period 2070-2100 are compared to simulations for the period 1975-2005. Lower boundary forcing was
obtained from the CSIRO Mk3 OAGCM, which was integrated for the period 1961-2100 with
increasing greenhouse gas concentrations. The simulation of present-day climate by C-CAM has
been shown to capture the regional characteristics of minimum and maximum screen-height
temperature well over southern and tropical Africa. The model simulation of present-day average
monthly rainfall over a 31 year period, expressed as a percentage of the average total yearly rainfall
of the model, shows a remarkable correspondence to the associated observed monthly CRU fields for
a 30 year period. A realistic climate change scenario has been developed for the period 2070-2100
using C-CAM. The scenario is of high enough spatial resolution to be of use in impact studies. From
the simulation it appears that the future Austral winter climate of southern and tropical Africa will be
controlled by an intensification of the subtropical high-pressure belt. Frontal rain bands are simulated
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to shift to the south in the future climate compared to the present-day average position. This leads to
a general decrease in winter rainfall over the typical winter rainfall regions of South Africa in the model
simulation. Much of the eastern subcontinent is simulated to experience an increase in rainfall in the
early summer within the context of the future climate. This change appears to be a response to a
simulated southeastward shift in the average position of the ITCZ. In late summer most of southern
Africa is simulated to become drier, however, with some parts of Namibia and the western interior of
South Africa experiencing significantly wetter conditions in the future climate. More intense
subsidence under stronger mid-level high-pressure systems has been inferred as the reason for the
above-mentioned drier conditions.

CHAPTER 5 GENERAL CONCLUSIONS ON DEVELOPMENT OF PLAUSIBLE CLIMATE
CHANGE SCENARIOS FOR SOUTHERN AFRICA

Bruce Hewitson, Francois Engelbrecht, Mark Tadross and Chris Jack

(5 pages, 1 figure)

5.1 Context Review

5.2 Competency of Downscaling

5.3 Common Messages of Regional Change
5.4 Future Directions

Abstract

This chapter seeks to synthesise the messages of Chapters 2 to 4, discussing the key issues of
context and credibility of the regional projections. It is concluded that the results obtained are, within
limits, a significant advance in our understanding of the regional nature of future climate change, and
that the methodologies have matured to the point where statements about the pattern changes at a
regional scale can be made with some confidence. However, the confidence in the projections is
weaker for the magnitude of change. The advances made are, nevertheless, a solid foundation for
future development, and recommendations are made as to priorities for future work.

SECTION D: AN INVESTIGATION OF THE POTENTIAL IMPACTS OF CLIMATE CHANGE ON
HYDROLOGICAL RESPONSES AND ASSOCIATED WATER RESOURCES OVER
SOUTHERN AFRICA

CHAPTER 6 SETTING THE SCENE : THE CURRENT HYDROCLIMATIC “LANDSCAPE” IN
SOUTHERN AFRICA

Roland Schulze

(12 pages, 7 figures, 1 table)

6.1 Introduction

6.2 Premise 1: Even when Considering Average Present Climatic Conditions, We Already Live in a
High Risk Hydroclimatic Environment in Southern Africa

6.3 Premise 2: An Already High Inter-Annual Rainfall Variability is Amplified by the Natural
Hydrological System

6.4 Premise 3: Intra-Annual Variabilities of Hydrological Responses are Even Higher than Inter-
Annual Ones

6.5 Premise 4: Different Components of the Hydrological System Differ Markedly in their Responses
to Rainfall Variability

6.6 Premise 5: Streamflow Variability is High in Individual External Subcatchments, but in a River
System Becomes Attenuated in Internal and Mainstem Subcatchments

6.7 Premise 6: Land Use Change by Intensification or Extensification of Biomass Often Increases
Flow Variability Because it Changes the Partitioning of Rainfall into Stormflow and Baseflow
Components

6.8 Premise 7: Degradation of the Landscape can Amplify Further any Hydrological Responses,
Especially Higher Order Responses

6.9 Concluding Thoughts

6.10  References



Abstract

The southern African hydroclimatic environment, even under present climatic conditions, is already a
harsh one. As a backdrop to assessing potential impacts of climate change, a brief review is
undertaken of present hydroclimatic conditions, upon which any perturbations of future climate will be
superimposed. Amongst the basic premises made are that the hydrological system amplifies any
variability in climate, that different components of the hydrological system differ markedly in their
responses to rainfall variability, that streamflow variability is considerably higher in external than in
internal (mainstem) subcatchments, that land use change often increases flow variability and that
degradation of the landscape amplifies further any hydrological responses. Each premise is backed
up with maps which clarify the points made.

CHAPTER 7 SELECTION OF A SUITABLE AGROHYDROLOGICAL MODEL FOR CLIMATE
CHANGE IMPACT STUDIES OVER SOUTHERN AFRICA

Roland Schulze
(16 pages, 10 figures)

71 The Background Against which Management of the Hydrological System has to Operate

7.2 Considerations and Requirements when Modelling Impacts of Climate Change on the Hydrological
System

7.3 The ACRU Agrohydrological Modelling System for Simulations of Climate Change Impacts on
Hydrological Responses and Water Resources Assessments

7.4 Conclusions: Is ACRU a Suitable Model for Climate Change Impact Studies on Hydrological
Processes and Water Resources?

7.5 References

Abstract

The background in which the hydrological system has to be managed is a complex one as it is
essentially already a “damaged” ecosystem. This requires managers to take an holistic view of
planning, as is embodied in the DPSIR (Drivers, Pressures, States, Impacts and Responses)
approach, especially when climate change becomes an added stressor. The requirements, when
modelling climate change impacts on the hydrological system, include the ability to explicitly model
the dynamics of runoff generating mechanisms, to distinguish clearly between landscape-based and
channel-based processes, and then modelling all those processes across a range of climatic regimes,
land use practices and spatial scales. These requirements demand a physical-conceptual and
process-based model to be selected which can account for non-linear dynamic responses. The daily
timestep and multi-purpose ACRU model is evaluated according to the above criteria. Its advantages
are highlighted, but shortcomings are also discussed. In conclusion the ACRU model is considered
highly suitable for use in simulating impacts of climate change on hydrological responses

CHAPTER 8 THE SOUTHERN AFRICAN QUATERNARY CATCHMENTS DATABASE:
REFINEMENTS TO, AND LINKS WITH, THE ACRU SYSTEM AS A FRAMEWORK
FOR MODELLING IMPACTS OF CLIMATE CHANGE ON WATER RESOURCES

Roland Schulze, Michele Warburton, Trevor Lumsden and Mark Horan

(29 pages, 17 figures, 7 tables)

8.1 Overview and Objectives

8.2 Initial Structure of the ACRU Input Database

8.3 Revised Structure of the ACRU Input Database

8.4 The Pre-Populated Quaternary Catchments Input Database

8.5 Analyses on Climate Change Impacts with the Quaternary Catchments Database
8.6 Selections of Catchments from the Quaternary Catchments Input Database
8.7 Simulation of Agrohydrological Responses from Individual Catchments

8.8 Simulation of Agrohydrological Responses from Cascading Catchments
8.9 Extraction of Output from ACRU for Presentation

8.10  Further Refinements to the Quaternary Catchments Database

8.11  Conclusions



8.12 References
Abstract

Underpinning the entire assessment of climate change impacts on hydrological responses in southern
Africa is the Quaternary Catchments Database (QCDB) which contains 1 946 Quaternary Catchments
(QCs), each populated with a 50 year daily rainfall and temperature data file, as well as soils and land
cover information. The QCs are linked hydrologically for streamflows generated with the ACRU
model to flow from “external” to “internal” QCs and along mainstem rivers which eventually discharge
either into the ocean or to neighbouring downstream countries. Additionally, the QCDB supports all
the functionality of ACRU as a multi-purpose model which can simulate, inter alia, crop vyields,
irrigation requirements and sediment yield. This review of the QCDB supercedes a previous one by
Hallowes et al. (2004) and highlights the refinements developed specifically for this project, i.e.
primarily the introduction of the 50 year time series of daily temperatures for each QC and the totally
revised, updated, quality controlled and intensively researched daily rainfall datasets for each QC.

CHAPTER 9 AN ASSESSMENT OF IMPACTS OF CLIMATE CHANGE ON
AGROHYDROLOGICAL RESPONSES OVER SOUTHERN AFRICA

Roland Schulze, Trevor Lumsden, Mark Horan, Michele Warburton and
Manjulla Maharaj

(49 pages, 32 figures, 1 table)

9.1 Setting the Scene

9.2 Baseline Climate

9.3 Baseline Land Cover

9.4 Terminology Used

9.5 Scenarios of Climate Change Using the C-CAM Regional Climate Model

9.6 Assessing Potential Impacts of Climate Change on Water Resources When Using Regional
Climate Model Output: Problems Identified and the Approach Adopted

9.7 Comparison of Agrohydrological Model Drivers and Responses Between Future and Present
Climate Scenarios

9.8 Agrohydrological Drivers 1: Rainfall Parameters

9.9 Agrohydrological Drivers 2: Temperature Parameters

9.10  Agrohydrological Drivers 3: Potential Evaporation, E,

9.11  Agrohydrological Responses 1: Occurrences of Permanent Wilting Point in the Topsoil

9.12  Agrohydrological Responses 2: Stormflow

9.13  Agrohydrological Responses 3: Baseflow

9.14  Agrohydrological Responses 4: Accumulated Streamflows

9.15  Agrohydrological Responses 5: Net Irrigation Requirements

9.16  Agrohydrological Responses 6: Sediment Yields

9.17  Agrohydrological Responses 7: Partitioning of Rainfall into “Blue”, “Green” and “White” Water
Flows

9.18  Agrohydrological Responses 8: Design Rainfall and Extreme Events

9.19  Discussion and Conclusions

9.20 References

Abstract

In this chapter a brief history of climate change in relation to the water sector in South Africa precedes
explanations and definitions of terms used, and a brief description of the regional climate model which
is applied in subsequent sections on impacts on hydrological responses, viz. the C-CAM Regional
Climate Model. After highlighting and illustrating problems which hydrological modellers typically
encounter when using GCM or RCM climate input in their models, a “ratio of future to present”
approach is opted to illustrate potential impacts of climate change on inputs into, and outputs from,
the daily timestep conceptual-physical ACRU agrohydrological model. Future:present ratio changes
between inputs of rainfall, temperature and potential evaporation are evaluated with respect to mean
annual, as well as the 10th, 50th and 90th percentiles of annual values, and inter-annual coefficients
of variation. Additionally, process-relevant and event-based ratios are calculated to explore potential
impacts of climate perturbations on daily hydrological responses. Similarly, output from the ACRU
model runs with present and future RCM daily climate input are analysed as ratio changes of
parameters of soil water content, stormflows, baseflows, accumulated streamflows, net irrigation
requirements, sediment yield, design hydrological values and so-called “blue”, “green” and “white”
water flows. The ACRU model, when using C-CAM daily output from its present and future climate
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scenario runs, as input for agrohydrological simulations, illustrates that in some cases major ratio
changes might in future result in “hotspots” of hydrological change, many of which may need to be
acted upon by water resources managers. The present winter rainfall region in the Western Cape is
one such “hotspot” of major concern. The credibility of the outcome of this study depends to a large
extent on the downscaled output of daily climate values from one single regional climate model
(RCM), viz. C-CAM. It is well appreciated that GCMs, from which the RCMs are developed, have
known biases and that these are carried forward in the RCMs. More than one RCM, as well as
proven empirical downscaled approaches, should therefore be used in subsequent hydrological
impact studies in order to seek consistency in identifying “hotspots” of regional change. Finally, in
interpreting the results of this study, it is important to bear in mind that the regional patterns of change
and the sign of that change, rather than the magnitudes, are important.

CHAPTER 10 THE THUKELA CATCHMENT: PHYSICAL AND SOCIO-ECONOMIC
BACKGROUND

Roland Schulze, Dennis Dlamini and Mark Horan

(19 pages, 18 figures, 13 tables)

10.1  Setting the Scene

10.2  Physiography

10.3  Climate

10.4  Soils

10.5 Land Cover and Land Use
10.6  Socio-Economic Profile

Abstract

The 29 062 km? Thukela catchment was selected as the case study Water Management Area for this
climate change impacts study because of its diversity in physiography, climate, soils, land use and
socio-economic profile. As a backdrop to chapters which follow on hydrological responses in the
Thukela under present and future climate scenarios, the diverse elements of the catchment are
described in this chapter by way of maps and accompanying descriptions on, inter alia, altitude,
slopes, climatic variability, soil characteristics and land use patterns, as well as demography and its
spatial distribution, education, income and household services, most of which highlight the
underdevelopment of many areas within the catchment, which make them vulnerable to impacts of
climate change.

CHAPTER 11 SENSITIVITY STUDIES OF HYDROLOGICAL RESPONSES IN THE THUKELA
CATCHMENT TO SPATIAL AND TEMPORAL REPRESENTATIONS WHEN
USING A BASELINE AND A PROJECTED FUTURE CLIMATE SCENARIO

Roland Schulze, Mark Horan and Ryan Gray
(22 pages, 16 figures)

11.1  Objectives

11.2  Why the Thukela Catchment?

11.3  Scaling Down from Southern Africa to the Thukela: What Remains and What Changes?

11.4  Shifts in Annual and Monthly Rainfall Patterns with Climate Change

11.5  Sensitivity of Runoff Parameters to Plausible Changes in Driver Variables of Climate Change

11.6  Shifts in Patterns of Reference Potential Evaporation with Climate Change

11.7  Baseline Hydrological Responses and Shifts in Patterns of Streamflows with Climate Change

11.8  Net Irrigation Requirements in the Thukela Catchment Under Baseline and Changed Climatic
Conditions

11.9  Sediment Yields in the Thukela Catchment Under Baseline and Changed Climatic Conditions

11.10 Partitioning of Rainfall into “Blue”, Green” and “White” Water Flows in the Thukela Catchment
Under Baseline and Changed Climatic Conditions

11.11  Concluding Thoughts

11.12 References

Xii



Abstract

The underlying theme of this chapter is the concept of sensitivity of hydrological responses in the
Thukela catchment to both baseline climate and to a projected future climate. Examples are provided
of the sensitivity of hydrological model output to higher levels of spatial disaggregation of the Thukela
catchment into 235 hydrologically homogeneous response zones (vs 86 Quaternary Catchments), of
evaluating baseline and climate changed hydrological input and output at higher temporal resolutions
(such as monthly vs annual), or the different sensitivities of individual components of runoff (i.e.
stormflow and baseflow) or transpiration (i.e. transpiration from topsoil water vs transpiration from
subsoil water), to climate change. It is illustrated that, while climate change may be a global
phenomenon, its effects play themselves out at very local levels within operational catchments such
as the Thukela, and at very specific times of the year.

CHAPTER 12 CASE STUDY 1: CHANGES IN HYDROCLIMATIC BASELINES UNDER
DIFFERENT HYPOTHETICAL, BUT PLAUSIBLE, SCENARIOS OF CLIMATE
CHANGE: INITIAL FINDINGS ON SENSITIVE AND ROBUST HYDROCLIMATIC
ZONES IN SOUTHERN AFRICA

Roland Schulze
(8 pages, 3 figures, 2 tables)

12.1  Baselines of Climates and their Importance

12.2  Changes in Distributions of Képpen Climate Zones with Hypothetical, but Plausible, Climate
Change Scenarios: Methods

12.3  Evaluation of Results from Climate Change Scenarios
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12.5 References

Abstract

The importance of baselines of climate, climatic zones and of land cover in hydrological response
studies is stressed, especially when the hydrological landscape may be in a state of flux as a result of
perturbations in climate. In this chapter the changes in distributions of Képpen climate zones over
southern Africa are evaluated for a number of hypothetical, but plausible, climate change scenarios.
Major shifts in the zones are illustrated, with some zones shrinking significantly while others would
enlarge. In particular the winter and all year rainfall regions are shown to be sensitive to changes in
climate. The shifts are indicative of potential geographical shifts in baseline land cover in a future
climate, with possible marked hydrological repercussions.

CHAPTER 13 CASE STUDY 2: POTENTIAL IMPACTS OF SHIFTS IN HYDROCLIMATIC
ZONES ON DESIGN HYDROLOGY APPLICABLE TO SMALL CATCHMENTS IN
SOUTHERN AFRICA

Roland Schulze
(7 pages, 2 figures, 2 tables)

13.1  Background

13.2  Hypotheses and Outline

13.3  The SCS Technique for Determining Design Flood Hydrographs

13.4  Hypothesis 1: Relationships Exist Between Antecedent Soil Moisture Conditions (AS) and
Specific Koppen Climate Zones

13.5 Hypothesis 2: Spatial Changes in Kdppen Zones over South Africa May Have Significant
Consequences in Design Hydrology at a Location

13.6  Conclusions

13.7 References

Abstract

In this chapter two hypotheses are postulated. The first is that within spatially defined hydroclimatic
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zones relatively consistent conditions of antecedent soil water status, which affect design hydrological
responses, exist but that these conditions differ between hydroclimatic zones. Second, if the first
hypothesis is correct, then shifts in hydroclimatic zones resulting from climate change may alter a
location’s design hydrology. In a test of the above, it was established that a close relationship existed
between median AS and mean annual precipitation (MAP) within individual Képpen Climate Classes
in southern Africa, but that these relationships differed between Koppen Climate Classes in the
region. Using the SCS equations for determining design stormflows and peak discharges, it was
shown by way of worked examples that marked changes in design floods are possible when Képpen
climate zones shift geographically with climate change, with potentially serious repercussions in
design hydrology.

CHAPTER 14 CASE STUDY 3: POTENTIAL IMPACTS OF A HYPOTHETICAL, BUT
PLAUSIBLE, CLIMATE CHANGE SCENARIO ON WITHIN-COUNTRY
RESERVOIR MANAGEMENT FOR IRRIGATION, AND OUT-OF-COUNTRY FLOW
OBLIGATIONS IN THE MBULUZI CATCHMENT, SWAZILAND

Roland Schulze and Dennis Dlamini
(6 pages, 6 figures)

141 Introduction

14.2  The Mbuluzi Catchment: Where is it Located, What are its Climate Characteristics?

14.3 A Hypothetical, but Plausible, Climate Change Scenario and Methods of Analysis

14.4  Simulated Consequences of a Plausible Climate Change Scenario on Flows and Reservoir
Performance

14.5 Conclusions

14.6  References

Abstract

With climate change likely to impact on the management of reservoir operations as well as on
meeting international downstream water obligations, a case study is undertaken on Swaziland’'s 2 959
km? Mbuluzi catchment to assess possible impacts of a hypothetical, but plausible, climate change
scenario on inflows into the Mnjoli Dam, the reservoir's performance, considering it to be the major
supplier of water for all-year-round irrigation of sugarcane, and on outflows of the Mbuluzi river into
downstream Mozambique. Impacts are particularly severe for 1:10 year dry hydrological conditions,
with over 40% reductions to inflows into Mnjoli Dam as well as outflows to Mozambique, while in such
dry years irrigation demand is simulated to draw down the dam to dead storage levels in 7 months of
the year. Potential repercussions of such impacts are discussed.

SECTION E: DETECTION OF CLIMATE CHANGE IN SOUTHERN AFRICA

CHAPTER 15 DETECTION OF CLIMATE CHANGE: A REVIEW OF LITERATURE ON
CHANGES IN TEMPERATURE, PRECIPITATION AND STREAMFLOW, ON
DETECTION METHODS AND DATA PROBLEMS

Michele Warburton and Roland Schulze
(18 pages, 3 figures, 5 tables)

15.1 Introduction

15.2 A Review of Climate Change Detection Studies

15.3  Methods Used to Detect Climate Change

15.4  Problems Encountered in Detecting Climate Change
15.5 Discussion and Conclusions

15.6  References

Abstract
It has become accepted that long-term global mean temperatures have increased over the twentieth
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century. To date, the warmest year on record is 1998. However, whether or not climate change can
be detected at a local or regional scale is still questionable. The numerous new record highs and
lows of temperatures recorded over South Africa for 2003, 2004 and 2005 provide reason to examine
whether changes can already be detected in southern Africa’s temperature record and modelled
hydrological responses. As a preface to this, a literature review on detection of climate change, of
methods used and data problems encountered, is undertaken. Temperatures have been shown to be
increasing in the USA, Venezuela, Colombia, Europe and China. In particular, trends towards
increasing minimum temperatures and decreasing cold spell frequencies have been found. Warming
has also been shown over South Africa. However, the magnitude of change is variable, according to
the literature. Increasing precipitation trends have been shown for the USA and UK, with a tendency
for more heavy falls on rain days. Hulme (1992) shows decreases in rainfall for northern Africa and
increases for Tunisia, Algeria and the Nile Basin. Over southern Africa the extremes of rainfall show
intensification. Few hydrological detection studies have been undertaken, and the results are often
inconclusive. Simple statistics, linear regression and the Mann-Kendall non-parametric test are the
methods reviewed for detecting change. The Mann-Kendall test is chosen for this study as it is a
simple statistical test of trend that is not affected by non-normally distributed data. Problems exist in
the detection of climate change. Inhomogeneity in climatic datasets, as well as the lack of long-term,
high quality daily datasets is problematic. Streamflow datasets, in particular, are a problem, as the
network of gauges is relatively sparse in southern Africa and where they do exist, they are often
poorly maintained and neglected. Thus, the advantage of generating streamflow estimates from
physical conceptual models is explored. Detection of climate change at a regional level may indicate
vulnerable areas and demonstrate to decision makers that climate change is a current reality.

CHAPTER 16 IS SOUTH AFRICA'S TEMPERATURE CHANGING? AN ANALYSIS OF TRENDS
FROM DAILY RECORDS, 1950 - 2000

Michele Warburton, Roland Schulze and Manjulla Maharaj

(21 pages, 28 figures)

16.1 Introduction

16.2  Analyses to be Undertaken

16.3  Temperature Data Used in this Study

16.4  Results 1: Trends Over Time in Annual and Seasonal Means of Temperatures

16.5 Results 2: Trends over Time in Occurrences of Temperatures Above and Below Selected
Percentiles

16.6  Results 3: Trends over Time in the Number of Days Above and Below Predefined Thresholds

16.7 Results 4: Trends in Occurrences of Frost and the Length of the Frost Season

16.8  Results 5: Trends in Heat and Chill Units

16.9 Results 6: A Comparison of Means and Variabilities of Temperature for 1950 - 1970 vs 1980 -
2000

16.10 Overall Conclusions: Is South Africa’s Temperature Changing? A Summary of Findings

16.11 References

Abstract

With changes in global temperature evident and regional changes over various northern hemisphere
countries evident, southern Africa’s temperature record is examined for changes. The Mann-Kendall
non-parametric test is applied to time series of annual means of minimum and maximum temperature,
summer means of maximum temperature and winter means of minimum temperature. Furthermore,
changes in the upper and lower ends of the temperature distribution are examined by applying the
Mann-Kendall test to numbers of days and numbers of 3 consecutive days above/below thresholds of
10th and 90th percentiles of minimum and maximum temperatures, as well as threshold values of
minimum (i.e. 0°) and maximum (i.e. 40°C) temperatures. A second analysis, using the split sample
technique for the periods 1950 - 1970 vs 1980 - 2000, was performed for annual means of daily
maximum and minimum temperatures, summer means of daily maximum temperatures, winter means
of daily minimum temperatures and coefficients of variability of daily maximum and minimum
temperatures. Two clear clusters of warming emerge from almost every analysis, viz. a cluster of
stations in the Western Cape and a cluster of stations around the midlands of KwaZulu-Natal, along
with a band of stations along the KwaZulu-Natal coast. Another finding is a less severe frost season
over the Free State and Northern Cape. While certain changes are evident in temperature
parameters, the changes are not uniform across southern Africa.
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CHAPTER 17 DETECTION OF TRENDS OVER TIME IN HYDROLOGICAL DRIVERS AND
RESPONSES OVER SOUTHERN AFRICA

Michele Warburton and Roland Schulze
(22 pages, 22 figures)

17.1  Hypotheses on Changes in Hydrological Drivers and Responses with Global Warming

17.2  Analyses Undertaken to Determine Whether Changes in Hydrological Drivers and Responses are
Evident Yet

17.3  Modelling Assumptions Made

17.4  Analysis of Median Annual Reference Potential Evaporation

17.5  Analysis of Median Annual Soil Water Content of the Topsoil Horizon

17.6  Trends over Time in Annual Accumulated Streamflows

17.7  Accumulated Streamflows in Median, Dry and Wet Years

17.8 Ranges of Streamflows Between Wet and Dry Years

17.9  Analysis of Baseflows

17.10 Changes in the Seasonality of Streamflows

17.11 Changes in the Concentrations of Streamflows

17.12 Analysis of Changes in Gross Irrigation Demand

17.13 Conclusions

17.14 References

Abstract

Precipitation and evaporation are the primary drivers of the hydrological cycle, with temperature an
important driver of evaporation. Thus, with changes in various temperature parameters having been
identified over many parts of southern Africa, the question arises whether any changes can be seen
as yet in hydrological responses. The ACRU model is used to generate daily streamflow values and
associated hydrological responses from a baseline land cover, thus eliminating all possible human
influences on the catchment and channel. A split-sample analysis of the simulated hydrological
responses for the 1950 - 1969 vs 1980 - 1999 periods is undertaken. Trends over time in streamflow
are examined for medians, dry and wet years, as well as the range between wet and dry years. The
seasonality and concentration of streamflows between the periods 1950 - 1969 and 1980 - 1999 are
examined to determine if changes may be identified. Potential evaporation, soil water content of the
topsoil horizon, baseflow and irrigation demand are other hydrological variables examined to
determine if changes may already be noted. Potential evaporation, computed as a function of
temperature parameters, appears to have increased over the interior of southern Africa. Streamflows
in the ‘driest’ year in 10 have increased in the Northern Cape, Eastern Cape and eastern Free State.
Streamflow in the ‘wettest’ year in 10 has increased markedly over KwaZulu-Natal, as has the range
of flows between dry and wet years. Some trends found were marked over large parts of Primary
Catchments, and certainly require consideration in future water resources planning.

CHAPTER 18 HISTORICAL PRECIPITATION TRENDS OVER SOUTHERN AFRICA: A
CLIMATOLOGY PERSPECTIVE

Bruce Hewitson, Mark Tadross and Chris Jack
(6 pages, 5 figures)

18.1 Historical Precipitation Trends
18.2  The Climate Context

18.3  Precipitation Trend Analysis
18.4  Concluding Thoughts

18.5 References

Abstract

This chapter assesses the historical climate change over southern Africa, focusing on circulation
changes and changes in the totals as well as attributes of rainfall. The results show clear historical
regional trends per decade of mean monthly precipitation totals, mean monthly number of raindays
and mean monthly dry spell durations. These historical trends have notable regional implications in
hydrological responses.
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CHAPTER 19 HISTORICAL PRECIPITATION TRENDS OVER SOUTHERN AFRICA: A
HYDROLOGY PERSPECTIVE

Michele Warburton and Roland Schulze

(14 pages, 16 figures)

19.1 Introduction

19.2 Data and Methods Used

19.3 Analysis of Median, Lowest and Highest Annual, Summer and Winter Season Rainfalls
19.4 Ranges of Rainfall Between Years with Low and High Rainfalls

19.5 Analysis of the Number of Rainfall Events Above Predefined Threshold Amounts

19.6 Can the Changes Evident in Hydrological Responses be Explained be Changes in the Rainfall
Regime? A Discussion
19.7 References

Abstract

With strong changes over time in simulated hydrological responses already evident in certain Primary
Catchments of South Africa using daily rainfall input data from 1950 - 1999 (Chapter 17), it became
necessary to examine the rainfall regimes of the Quaternary Catchments’ “driver” rainfall stations in
order to determine if these hydrological response changes were supported by changes in rainfall
patterns over time. A split-sample analysis was, therefore, performed on the rainfall input of each
Quaternary Catchment. Not only medians were considered, but the higher and lower ends of the
rainfall distribution were also analysed, as were the number of rainfall events above pre-defined daily
thresholds. The changes evident over time in rainfall patterns over southern Africa vary from
relatively unsubstantial increases or decreases to significant increase and decreases. The winter
rainfall region of southern Africa is shown to be experiencing more rainfall in the later 1980 - 1999
period compared to the earlier 1950 - 1969 period. The southeastern Free State consistently
indicates a decrease in rainfall in the later period for almost all rainfall parameters analysed. The
Limpopo and North-West Provinces, along the borders of South Africa with Botswana and Zimbabwe,
and an area stretching into the Northern Cape, represents another region consistently displaying a
decrease in rainfall in the later period for the various parameters analysed. The changes evident in
rainfall thresholds of 10 mm and 25 mm per day varied spatially across the country, and “hotspot”
areas of change in the Western Cape, southeastern Free State, Limpopo and North-West provinces
were identified.

CHAPTER 20 ON THE SOUTHERN AFRICAN RAINFALL STATION NETWORK AND ITS DATA
FOR CLIMATE CHANGE DETECTION AND OTHER HYDROLOGICAL STUDIES

Michele Warburton and Roland Schulze
(10 pages, 6 figures, 2 tables)

20.1  Some Basic Rainfall Network Requirements for Detection and Other Studies
20.2  Objectives of this Research

20.3  The Rainfall Station Network over Southern Africa

20.4  Method of Analysis for Selecting Quaternary Catchment “Driver” Rainfall Stations
20.5 An Evaluation of the Re-Selected “Driver” Rainfall Stations

20.6  Conclusions

20.7 References

Abstract

Basic requirements for rainfall networks, the data from which are to be used in climate change
detection and other hydrological studies, include at minimum one station per Quaternary Catchment
(QC) with an already long, uninterrupted daily rainfall record of high reliability. In this chapter the
latest comprehensive rainfall station network for southern Africa is first described, before a multiple
criterion method is outlined for re-selection of QC “driver” rainfall stations. The re-selection
procedures are then evaluated and a lack of stations with reliable long records is identified, inter alia,
in the hydrologically sensitive mountain areas of the Drakensberg and Western Cape. It is concluded
that the selected rainfall stations for the QCs in southern Africa generally have good rainfall records,
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except for the regions already mentioned. A set of monitoring principles is presented, which should
be followed if rainfall stations which are selected are to be considered suitable for climate change
detection and other hydrological studies.

SECTION F: VULNERABILITIES AND SENSITIVITIES OF COMMUNITIES TO CLIMATE RISKS

CHAPTER 21 VULNERABILITY, ADAPTATIVE CAPACITY, COPING AND ADAPTATION: A
CONCEPTUAL FRAMEWORK

Coleen Vogel and Paul Reid
(8 pages, 2 figures, 1 table)

211 Preamble

21.2  Introduction

21.3  Vulnerability and Adaptive Capacity

21.4  Determinants of Adaptive Capacity

21.5  Vulnerability, Coping and Adaptation: A Broader Perspective
21.6  From Concept to Case Study

21.7  References

Abstract

Global environmental change (GEC) poses several challenges for society. GEC includes a variety of
multiple stresses that ultimately shape and configure various risks to society such as climate change
and climate variability. Effective management of environmental risk requires a better understanding of
two components of the risk profile, viz. vulnerability (which includes coping and adaptive capacities)
and hazards (e.g. drought and floods). Technocratic approaches to risk management, with a strong
focus on hazard detection, sensitivity and risks only provides one dimension of global environmental
change risk management. Increasingly a more nuanced approach, that has strong relevance for
southern African countries, focuses on a better understanding of vulnerability to climate risks. A
framework for assessing vulnerability and adaptive response to climate variability is traced in this
chapter.

CHAPTER 22 WHY ADOPT A VULNERABILITY APPROACH?
Samantha Boardley and Roland Schulze
(5 pages, 1 table)

22.1  Vulnerability and Adaptive Capacity
22.2  Whatis the Vulnerability Approach?
22.3  Conclusions

224 References

Abstract

Vulnerability is considered to be a function of exposure, sensitivity and adaptive capacity, with the
latter, in turn, dependent on wealth, technology, education, information, skills, infrastructure, access to
resources and stability as well as management capabilities. Adaptive capacity, therefore, reflects the
resilience, stability, robustness and flexibility of a system, such as a farm or a community. The
vulnerability approach is not so much a matter of considering only scientific accuracy, as it is of taking
an approach of effective communication with affected stakeholders and considering local community
needs. A vulnerability approach enables adaptive management options to be linked to decision-
making processes already in place, thus starting with the system (e.g. a community) and not with the
hazard per se. Vulnerability assessments, while difficult to quantify do, however, tailor adaptive
assistance to local needs.

Xviii



CHAPTER 23 PERCEPTIONS HELD BY DIFFERENT STAKEHOLDERS ON THE
VULNERABILITY OF WATER RESOURCES IN SOUTH AFRICA TO CLIMATE
CHANGE

Samantha Boardley and Roland Schulze
(21 pages including appendices, 12 figures)

23.1 Climate Change and Water Resources: Some Background

23.2  Perceptions of Previously Disadvantaged Rural, Urban and Township Domestic Water Users

23.3  Perceptions of Water Resources Managers, Decision-Makers and Stakeholders

23.4  Comparative Study: How do Managers Concerns Compare with Those Concerns of Domestic
Water Users?

23.5  Overall Conclusions and Recommendations

23.6 References
Appendix A: Questionnaire on Perceptions of Climate Change: Domestic Water Users
Appendix B: Questionnaire on Perceptions of Climate Change: Water Resources Managers

Abstract

Following a brief review on vulnerability assessment and stakeholder perception studies, this chapter
outlines two questionnaire surveys of stakeholder perceptions on climate change and the water
sector. The first was with 187 university students from previously disadvantaged schools,
representing rural, urbanised and township domestic water users, and the second with a group of 17
managers and technocrats from the water and agriculture sectors. Results from the domestic water
users show a much higher awareness of climate change among urban compared with rural users,
with most having heard of climate change at school. However, their concerns focused on HIV/AIDS
and unemployment (53%) rather than on climate change (10%), but with a heightened concern for
water in the future. Water resources technocrats, on the other hand, perceived the impacts of climate
change on the water sector to date as moderate to high. A major concern of theirs was a lack of
understanding of the National Water Resource Strategy. Both groups highlighted the need for more
education and awareness-raising on issues of climate change and its potential impacts on the water
sector.

CHAPTER 24 WATER POVERTY WITHIN A CONTEXT OF CLIMATE CHANGE: A CASE
STUDY AT MESO-SCALE IN THE THUKELA CATCHMENT

Dennis Dlamini and Roland Schulze
(8 pages, 5 figures, 2 tables)

241  The Link Between Water Scarcity and Poverty

24.2  The Water Poverty Index

24.3  Superimposing a Hypothetical, but Plausible, Climate Change Scenario on the Resource
Component of the Water Poverty Index

24.4  Changes in Meso-Scale Hydrological Responses

245 Changes in Reductions in Both the Water Resources Component of the Water Poverty Index and
the Net Index

246  Conclusions

24.7 References

Abstract

The link between access to water and socio-economic wellbeing having been established by way of
introduction, the multi-disciplinary, multi-level, framework-based and composite Water Poverty Index
(WPI) is described with reference to its application at meso-catchment scale in the Thukela catchment
for a hypothetical, but plausible, climate change scenario. Spatial differences to changes in absolute
and relative reductions (i.e. a worsening) of the resources component of the WPI are shown for the
Thukela, which then manifest themselves in the net WPIL. The results highlight the possibility of a
worsening situation in areas within the Thukela catchment which are experiencing severe water
poverty already, should the climate change as postulated in the scenario used.
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CHAPTER 25 CLIMATE AND DEVELOPMENT: EXPERIENCES OF FARMERS IN KWAZULU-
NATAL, SOUTH AFRICA

Paul Reid, Ruth Massey and Coleen Vogel

(20 pages, 4 figures, 8 boxes, 1 table)

25.1  Background

25.2  Coping with Environmental Change? The Case of the Miiden Community Irrigation Scheme,
KwaZulu-Natal

25.3  Vulnerability Assessment in the Miiden Area

254  Perceptions of Climate Change in the Miiden Area

25.5 Building Resilience to Change in Miden: The Possible Role of Institutions

25.6  Living with Climate and Other Risks in the Midlands of KwaZulu-Natal: The Case of Large-Scale
Commercial Farmers

25.7  Identification of Risks by Sector and Farming Group that Heighten Vulnerability to Periods of
Climate Stress and Change in the Midlands of KwaZulu-Natal

25.8 Results from Questionnaire Surveys in the Midlands

25.9  Adaptive Capacity and Adaptation Strategies Identified by Small-, Medium- and Large-Scale
Farmers

2510 Possible Recommendations

25.11 Discussion

25.12 Conclusions

25.13 References

Abstract

A conceptual framework on climate-related stress, vulnerability, adaptive capacity and coping has
been outlined in a previous chapter (Chapter 21). In this chapter, results from two case studies are
presented which identify vulnerabilities and adaptive capacities of, first, a small-scale community of
irrigation farmers at Muden and, second, large-scale commercial farmers, both in the Midlands of
KwaZulu-Natal. In both case studies the Sustainable Livelihoods Framework approach is used. In
the case of the small-scale farmers, several multiple stressors that enhance vulnerability and
constrain adaptive capacity are given. These include lack of institutional organisation, lack of access
to information and broader governance issues associated with relevant authorities. For commercial
farmers, macro-economic and related factors, including the low price of sugar, the strong local
currency (at the time of writing), legislation, land redistribution, high input costs and labour issues,
including HIV/AIDS, are all shown to enhance vulnerabilities to climate variability. Broad common
themes affecting both small- and large-scale farmers are identified. Finally, the need for more
research on adaptive capacity to climate risks, linked to issues of sustainable development, is
recommended.

SECTION G:  ADAPTING TO CLIMATE CHANGE IN SOUTH AFRICA

CHAPTER 26 POLICY IN REGARD TO POTENTIAL IMPACTS OF CLIMATE CHANGE ON
WATER RESOURCES IN SOUTH AFRICA: AN OVERVIEW

Samantha Boardley and Roland Schulze

(5 pages)

26.1  Climate Change and Related Policies in South Africa

26.2  The National Climate Change Response Strategy for South Africa

26.3  The National Water Resource Strategy (NWRS): Some General Comments
26.4 The National Water Resource Strategy and Climate Change

26.5 Conclusions

26.6 References

Abstract

Two key documents of national level policy importance are reviewed in regard to climate change and
water resources in South Africa. The National Climate Change Response Strategy for South Africa
(NCCRS) highlights 10 general issues on climate change, most of which deal implicitly or explicitly
with the water sector, but the document’s emphasis is more on adaptation, with relatively little direct
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focus on climate change and water resources. The National Water Resource Strategy (NWRS) takes
a cautious line in regard to climate change, appreciating the vulnerability of the water sector to climate
change, but emphasizing uncertainties which still exist. The view is held that future updates of the
two documents will benefit from findings contained in this Report.

CHAPTER 27 ADAPTING TO CLIMATE CHANGE IN THE WATER RESOURCES SECTOR IN
SOUTH AFRICA

Roland Schulze

(28 pages, 7 figures, 5 tables, 1 box)

271  Introduction

27.2  Water Management and Adaptation

27.3  Challenges to Adaptation in the Water Sector

27.4 Reasons to Adapt to Climate Change in Any Event: An IPCC View

27.5 Views Held by Experts on Adaptation to Climate Change in the Water Sector

27.6  Recommendations by International Agencies on Adaptation Strategies for Water Resource
Management

27.7  Integrated Water Resources Management (IWRM) as a Pre-Requisite for Coping and Adaptation

27.8 Lessons Learned from the “Thukela Dialogue” on Climate Change and the Broader Water-Related
Sector

27.9  An Adaptation Matrix Based on Feedback from the South African Water Sector

27.10 Concluding Thoughts

2711 References

Abstract

This chapter presents an overview of thoughts, concepts and practical issues on adaptation to climate
change in South Africa’s water sector by first outlining who water managers are and what they
manage. The focus thereafter shifts to challenges faced by water managers in adapting to climate
change, including having to deal with many uncertainties which remain, to arguing for the adoption of
a “no regrets” approach to managing for predicted climate change. Views of international institutions
and experts on adaptation in the water sector are then presented. A plea is made for an integrated
approach to water management as a pre-requisite to coping with, and adapting to, the hydrological
manifestations of climate change.

Moving from a more generic/international view of adaptation to climate change in the water sector, to
a South African perspective, the “lessons learnt” from the “Thukela Dialogue”, a workshop on
managing water resources related issues on climate variability and climate change in South Africa,
are presented. These “lessons”, summarising stakeholders’ experiences and thoughts on legal/policy
aspects, surface and groundwater, design hydrology, monitoring/data, agricultural, environmental,
rural community and vulnerability aspects of the climate change:water link, forms the basis of a
proposed framework of adaptation needs in South Africa. Together with feedback from three further
workshops on climate change, the perceived adaptation needs and requirements identified by the
South African water sector are presented under the three major themes of legal/policy,
institutional/management and monitoring/research/information issues. The chapter concludes with
some thoughts on the adaptation process and limits to adaptation.

SECTIONH:  SYNTHESIS AND RECOMMENDATIONS FOR FUTURE RESEARCH
CHAPTER 28 SYNTHESIS AND RECOMMENDATIONS FOR FUTURE RESEARCH
Roland Schulze, Bruce Hewitson, Coleen Vogel and Francois Engelbrecht

(2 pages)

28.1 Take-Home Messages from the Project, in a Nutshell
28.2 Recommendations for Further Research

XXi



SECTION | TECHNOLOGY TRANSFER AND CAPACITY BUILDING

CHAPTER 29 TECHNOLOGY TRANSFER AND CAPACITY BUILDING
Roland Schulze, Coleen Vogel, Bruce Hewitson and Francois Engelbrecht
(10 pages)

29.1 Publications Related to This Project, 2003 - 2005

29.2  Publications in Press, as of June 2005

29.3  Attendance and/or Presentations at Symposia and Workshops, 2003 - June 2005
29.4 Climate Change Related Committees/Organising Duties

29.5 Visits to Scientific Institutions

29.6  Capacity Building

29.7 Research Teams, as of June 2005

29.8 Reference Group

TAKE-HOME MESSAGES FROM THE PROJECT, IN A NUTSHELL

While many “messages” have emanated from the research results presented in this report, the

following points synthesise some of the key findings:

. Climate scenarios derived from various GCMs and downscaled temporally and spatially by
different approaches, are displaying an ever-increasing consistency in patterns of anticipated
climate change over southern Africa. This implies that they can now be used with increasing
confidence by the impacts modelling community to make more definitive statements on

potential impacts of climate change on the water sector.

. Southern African hydroclimatic databases on baseline conditions, as well as South African
hydrological modelling systems have been developed/refined to the extent that wide-ranging
and innovative agrohydrological and water resources studies can now be undertaken for both
present and future climate scenarios. The tools developed are seen as powerful decision-

making aids to water resources policy-makers, strategists and operators.

. The hydrological impact studies undertaken in this project for a 1975 - 2005 “present” and a
2070 - 2100 “future” climate scenario, using downscaled output from only one of the available
global:regional climate modelling approaches, have identified several potential hotspots where
anticipated climate change could have wide-ranging water resource (as well as agricultural and
other) management implications. This, it is argued, requires the attention of planners now.
One notable hotspot is the present winter rainfall region which covers largely the Western Cape
province. Other areas’ water resources stand to benefit from predicted climate change. For
different components of the hydrological cycle certain areas in southern Africa have also been
identified as more sensitive in their responses than others. More in-depth interpretation of

results is still required of the various climate change impacts which were simulated.

. From climate records of the past 50 years, elements of climate change can already be clearly
detected in certain regions within southern Africa, be it for derivatives of rainfall, temperature or
for hydrological responses. Not all areas display equal change, and in some areas no change

can as yet be detected.

. Vulnerable communities in southern Africa already have to cope with multiple stresses, of which
climate variability is but one. Climate change will add an additional layer of stress, to which

adaptive strategies and adaptation policies will have to be directed.

. In adaptation strategies for the region’s water-related sector (including both small- and large-
scale agriculture and the environment), emphasis will need to be on the “uniquely South
African” situation, with its juxtapositioning of the developed vs the underdeveloped sectors of
the population and economy. Strategies will need to take cognisance of specific local
situational contexts, on the one hand, and national level policy and institutional issues, on the
other. The latter are ideally implemented through effective Integrated Water Resources
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Additionally, a significant amount of invaluable individual and institutional capacity was built amongst
the research and supervising staff involved in this project - capacity of a technical and conceptual
nature that will benefit not only future WRC-funded projects, but the southern African climate and
hydrological (as well as other) sectors as a whole. It is vital that this acquired expertise not be lost to
South Africa.

RECOMMENDATIONS FOR FUTURE RESEARCH

. It is vital that the momentum gained in climate scenario modelling be maintained and
strengthened, in order to further reduce the many uncertainties still surrounding the outputs
from regional climate models which are interpreted/used by the impacts and vulnerability
research communities.

. The hydrological impacts modellers need to apply other empirical downscaling and Regional
Climate Model output in a manner similar to that by which C-CAM RCM daily output was used
in this project, in order to be able to identify hotspots of climate change impacts with
consistency and greater certainty.

. For the hydrological community spatial downscaling of climate model output should, ideally, be
to the level of a typical Quaternary Catchment in potentially climate-sensitive areas, i.e.
approximately 100 - 500 km?.

. Impact studies of potential climate change on the water sector need to move from baseline
hydrological conditions of catchments to actual catchment conditions, which include present
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land uses, dams, irrigated areas, inter-basin transfers, return flows etc.

The hydrological research community needs to focus in more depth on second order and third
order consequences of possible climate change, e.g. on water quality responses, impacts on
terrestrial and aquatic environments, the water/agriculture linkage, extreme events and
potential international (downstream) impacts.

Adaptation strategies to climate change in the water resource sector of southern Africa need to
be placed on a “higher plane”, regarding both policy and implementation.

Outcomes of a major research project such as this one, with potential impacts on many

resource sectors in southern Africa, inter alia, need to be published in layman’s language and

summarised for policy-makers and the public at large, in order to

- sensitise relevant stakeholders to the potential consequences and challenges which are
likely to arise out of a changed future climate in the already high risk natural environment of
southern Africa and to

- maximise the benefits of this type of research funding to the Water Research Commission
(WRC), the researchers themselves and future collaborators.

In regard to all of the above, it is significant that the WRC has seen fit to fund a policy makers’
summary/guide on climate change and water resources in South Africa and a further 3-year
solicited research project on climate change and water resources, with emphasis not only on
improved climate modelling, but also on water-related environmental and policy issues for
southern Africa.

R.E. Schlulze
August 2005
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GLOSSARY OF TERMS

Selected from the IPCC WGII Third Assessment Report (2001), with adaptations to this Project

Acclimatisation
The physiological adaptation to climatic variations.

Adaptation

Adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates
harm or exploits beneficial opportunities. Various types of adaptation can be distinguished, including anticipatory and reactive
adaptation, private and public adaptation, and autonomous and planned adaptation:

— Anticipatory Adaptation: Adaptation that takes place before impacts of climate change are observed. Also referred to as
proactive adaptation.

— Autonomous Adaptation: Adaptation that does not constitute a conscious response to climatic stimuli but is triggered by
ecological changes in natural systems and by market or welfare changes in human systems.

Also referred to as spontaneous adaptation.

— Planned Adaptation: Adaptation that is the result of a deliberate policy decision, based on an awareness that conditions
have changed or are about to change and that action is required to return to, maintain, or achieve a desired state.

— Private Adaptation: Adaptation that is initiated and implemented by individuals, households or private companies. Private
adaptation is usually in the actor’s rational self-interest.

— Public Adaptation: Adaptation that is initiated and implemented by governments at all levels. Public adaptation is usually
directed at collective needs.

— Reactive Adaptation: Adaptation that takes place after impacts of climate change have been observed. See also adaptation
assessment, adaptation benefits, adaptation costs, adaptive capacity, and maladaptation.

Adaptation Assessment
The practice of identifying options to adapt to climate change and evaluating them in terms of criteria such as availability,
benefits, costs, effectiveness, efficiency, and feasibility.

Adaptation Benefits
The avoided damage costs or the accrued benefits following the adoption and implementation of adaptation measures.

Adaptation Costs
Costs of planning, preparing for, facilitating, and implementing adaptation measures, including transition costs.

Adaptive Capacity
The ability of a system to adjust to climate change (including climate variability and extremes) to moderate potential damages,
to take advantage of opportunities, or to cope with the consequences.

Afforestation

Planting of new forests on lands that historically have not contained forests. For a discussion of the term forest and related
terms such as afforestation, reforestation, and deforestation, see the IPCC Special Report on Land Use, Land-Use Change,
and Forestry (IPCC, 2000).

Aggregate Impacts

Total impacts summed up across sectors and/or regions. The aggregation of impacts requires knowledge of (or assumptions
about) the relative importance of impacts in different sectors and regions. Measures of aggregate impacts include, for example,
the total number of people affected, change in net primary productivity, number of systems undergoing change, or total
economic costs.

Albedo

The fraction of solar radiation reflected by a surface or object, often expressed as a percentage. Snow-covered surfaces have a
high albedo; the albedo of soils ranges from high to low; vegetation-covered surfaces and oceans have a low albedo. The
Earth’s albedo varies mainly through varying cloudiness, snow, ice, leaf area, and land-cover changes.

Alkalinity
A measure of the capacity of water to neutralize acids.

Alpine
The biogeographic zone made up of slopes above timberline and characterized by the presence of rosette-forming herbaceous
plants and low shrubby slow-growing woody plants.

Anoxia
A deficiency of oxygen, especially of such severity as to result in permanent damage.

Anthropogenic
Resulting from or produced by human beings.

Aquifer

Astratum of permeable rock that bears water. An unconfined aquifer is recharged directly by local rainfall, rivers, and lakes ,
and the rate of recharge will be influenced by the permeability of the overlying rocks and soils. A confined aquifer is
characterized by an overlying bed that is impermeable and the local rainfall does not influence the aquifer.
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Arid Regions
Ecosystems with <250 mm precipitation per year.

Baseflow
Sustained flow in a river or stream that is primarily produced by groundwater runoff, delayed subsurface runoff, and/or lake
outflow.

Baseline/Reference

The baseline (or reference) is any datum against which change is measured. It might be a “current baseline,” in which case it
represents observable, present-day conditions. It might also be a “future baseline,” which is a projected future set of conditions
excluding the driving factor of interest. Alternative interpretations of the reference conditions can give rise to multiple baselines.

Basin
The drainage area of a stream, river, or lake, also termed catchment or watershed.

Biodiversity
The numbers and relative abundances of different genes (genetic diversity), species, and ecosystems (communities) in a
particular area.

Biodiversity Hot Spots
Areas with high concentrations of endemic species facing extraordinary habitat destruction.

Biome
A grouping of similar plant and animal communities into broad landscape units that occur under similar environmental
conditions.

Biosphere

The part of the Earth system comprising all ecosystems and living organisms in the atmosphere, on land (terrestrial biosphere),
or in the oceans (marine biosphere), including derived dead organic matter, such as litter, soil organic matter, and oceanic
detritus.

Biota
All living organisms of an area; the flora and fauna considered as a unit.

C; Plants
Plants that produce a three-carbon compound during photosynthesis, including most trees and agricultural crops such as rice,
wheat, soybeans, potatoes, and vegetables.

C, Plants
Plants that produce a four-carbon compound during photosynthesis (mainly of tropical origin), including grasses and the
agriculturally important crops maize, sugar cane, millet, and sorghum.

Carbon Dioxide (COy)

A naturally occurring gas, also a by-product of burning fossil fuels and biomass, as well as from land-use changes and other
industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth’s radiative balance. It is the
reference gas against which other greenhouse gases are measured and therefore has a Global Warming Potential of 1.

Carbon Dioxide Fertilization

The enhancement of the growth of plants as a result of increased atmospheric carbon dioxide concentration. Depending on
their mechanism of photosynthesis, certain types of plants are more sensitive to changes in atmospheric CO2 concentration. In
particular, C3 plants generally show a larger response to CO2 than C4 plants.

Carrying Capacity
The number of individuals in a population that the resources of a habitat can support.

Catchment
An area that collects and drains rainwater.

Cholera
An intestinal infection that results in frequent watery stools, cramping abdominal pain, and eventual collapse from dehydration.

Climate

Climate in a narrow sense is usually defined as the “average weather,” or more rigorously, as the statistical description in terms
of the mean and variability of relevant quantities over a period of time ranging from months to thousands of years. The classical
period is 3 decades, as defined by the World Meteorological Organization (WMO). These quantities are most often surface
variables such as temperature, precipitation, and wind. Climate in a wider sense is the state, including a statistical description,
of the climate system.

Climate Change
Climate change refers to any change in climate over time, whether due to natural variability or as a result of human activity.
This usage differs from that in the United Nations Framework Convention on Climate Change (UNFCCC), which defines
“climate change” as: “a change of climate which is attributed directly or indirectly to human activity that alters the composition of
the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.” See also
climate variability.
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Climate Model (Hierarchy)

A numerical representation of the climate system based on the physical, chemical, and biological properties of its components,
their interactions and feedback processes, and accounting for all or some of its known properties. The climate system can be
represented by models of varying complexity (i.e., for any one component or combination of components a hierarchy of models
can be identified, diff e ring in such aspects as the number of spatial dimensions; the extent to which physical, chemical, or
biological processes are explicitly represented; or the level at which empirical parameterizations are involved. Coupled
atmosphere/ocean/ sea-ice General Circulation Models (AOGCMs) provide a comprehensive representation of the climate
system. There is an evolution towards more complex models with active chemistry and biology. Climate models are applied, as
a research tool, to study and simulate the climate, but also for operational purposes, including monthly, seasonal, and
interannual climate predictions.

Climate Prediction

A climate prediction or climate forecast is the result of an attempt to produce a most likely description or estimate of the actual
evolution of the climate in the future (e.g., at seasonal, interannual, or long-term time scales. See also climate projection and
climate scenario.

Climate Projection

A projection of the response of the climate system to emission or concentration scenarios of greenhouse gases and aerosols,
or radiative forcing scenarios, often based upon simulations by climate models. Climate projections are distinguished from
climate predictions in order to emphasize that climate projections depend upon the emission/concentration/radiative forcing
scenario used, which are based on assumptions, concerning, for example, future socioeconomic and technological
developments that may or may not be realized and are therefore subject to substantial uncertainty.

Climate Scenario

A plausible and often simplified representation of the future climate, based on an internally consistent set of climatological
relationships, that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate
change, often serving as input to impact models. Climate projections often serve as the raw material for constructing climate
scenarios, but climate scenarios usually require additional information such as about the observed current climate. A “climate
change scenario” is the difference between a climate scenario and the current climate.

Climate System

The climate system is the highly complex system consisting of five major components: the atmosphere, the hydrosphere, the
cryosphere, the land surface, and the biosphere, and the interactions between them. The climate system evolves in time under
the influence of its own internal dynamics and because of external forcings such as volcanic eruptions, solar variations and
human-induced forcings such as the changing composition of the

atmosphere and /and use.

Climate Variability

Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of
extremes, etc.) of the climate on all temporal and spatial scales beyond that of individual weather events. Variability may be
due to natural internal processes within the climate system (internal variability), or to variations in natural or anthropogenic
external forcing (external variability). See also Climate Change.

Desert
An ecosystem with <100 mm precipitation per year.

Desertification

Land degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors, including climatic variations and
human activities. Further, the United Nations Convention to Combat Desertification (UNCCD) defines land degradation as a
reduction or loss in arid, semi-arid, and dry sub-humid areas of the biological or economic productivity and complexity of rain-
fed cropland, irrigated cropland, or range, pasture, forest, and woodlands resulting from land uses or from a process or
combination of processes, including those arising from human activities and habitation patterns, such as: (i) soil erosion caused
by wind and/or water; (ii) deterioration of the physical, chemical, and biological or economic properties of soil; and (iii) long-term
loss of natural vegetation.

Disturbance Regime
Frequency, intensity, and types of disturbances, such as fires, inspect or pest outbreaks, floods, and droughts.

Diurnal Temperature Range
The difference between the maximum and minimum temperature during a day.

Downscaling
Reducing the scale of a model from a global to regional level.

Drought
The phenomenon that exists when precipitation has been significantly below normal recorded levels, causing serious
hydrological imbalances that adversely affect land resource production systems.

Ecosystem

A distinct system of interacting living organisms, together with their physical environment. The boundaries of what could be
called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus the extent of an ecosystem may
range from very small spatial scales to, ultimately, the entire Earth.

Ecosystem Services
Ecological processes or functions which have value to individuals or society.



Edaphic
Of or relating to the soil; factors inherent in the soil.

Effective Rainfall
The portion of the total rainfall that becomes available for plant growth.

El Nifio-Southern Oscillation (ENSO)

El Nifio, in its original sense, is a warm water current that periodically flows along the coast of Ecuador and Peru, disrupting the
local fishery. This oceanic event is associated with a fluctuation of the inter-tropical surface pressure pattern and circulation in
the Indian and Pacific Oceans, called the Southern Oscillation. This coupled atmosphere-ocean phenomenon is collectively
known as El Nifio-Southern Oscillation. During an El Nifio event, the prevailing trade winds weaken and the equatorial
countercurrent strengthens, causing warm surface waters in the Indonesian area to flow eastward to overlie the cold waters of
the Peru current. This event has great impact on the wind, sea surface temperature, and precipitation patterns in the tropical
Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world. The opposite of an EI Nifio
event is called La Nifa.

Emission Scenario

A plausible representation of the future development of emissions of substances that are potentially radiatively active (e.g.,
greenhouse gases, aerosols), based on a coherent and internally consistent set of assumptions about driving forces (such as
demographic and socioeconomic development, technological change) and their key relationships. In 1992, the IPCC presented
a set of emission scenarios that were used as a basis for the climate projections in the Second Assessment Report (IPCC,
1996). These emission scenarios are referred to as the 1S92 scenarios. In the IPCC Special Report on Emission Scenarios
(Nakicenovic et al., 2000), new emission scenarios—the so -called SRES scenarios—were published.

Endemic
Restricted or peculiar to a locality or region. With regard to human health, endemic can refer to a disease or agent present or
usually prevalent in a population or geographical area at all times.

Epidemic
Occurring suddenly in numbers clearly in excess of normal expectancy, said especially of infectious diseases but applied also
to any disease, injury, or other health-related event occurring in such outbreaks.

Erosion
The process of removal and transport of soil and rock by weathering, mass wasting, and the action of streams, glaciers, waves,
winds, and underground water.

Eutrophication
The process by which a body of water (often shallow) becomes (either naturally or by pollution) rich in dissolved nutrients with a
seasonal deficiency in dissolved oxygen.

Evaporation
The process by which a liquid becomes a gas. The combined process of evaporation from the Earth’s surface and transpiration
from vegetation.

Exposure
The nature and degree to which a system is exposed to significant climatic variations.

Extreme Weather Event

An event that is rare within its statistical reference distribution at a particular place. Definitions of “rare” vary, but an extreme
weather event would normally be as rare as or rarer than the 10th or 90th percentile. By definition, the characteristics of what is
called “extreme weather” may vary from place to place. An “extreme climate event” is an average of a number of weather
events over a certain period of time, an average which is itself extreme (e.g., rainfall

over a season).

Feedback
A process that triggers changes in a second process that in turn influences the original one; a positive feedback intensifies the
original process, and a negative feedback reduces it.

Greenhouse Effect

Greenhouse gases effectively absorb infrared radiation emitted by the Earth’s surface, by the atmosphere itself due to the
same gases, and by clouds. Atmospheric radiation is emitted to all sides, including downward to the Earth’s surface. Thus
greenhouse gases trap heat within the surface-troposphere system. This is called the “natural greenhouse effect.” Atmospheric
radiation is strongly coupled to the temperature of the level at which it is emitted. In the troposphere, the temperature generally
decreases with height. Effectively, infrared radiation emitted to space originates from an altitude with a temperature of on
average -19°C, in balance with the net incoming solar radiation, whereas the Earth’s surface is kept at a much higher
temperature of on average 14°C. An increase in the concentration of greenhouse gases leads to an increased infrared opacity
of the atmosphere, and therefore to an effective radiation into space from a higher altitude at a lower temperature. This causes
a radiative forcing, an imbalance that can only be compensated for by an increase of the temperature of the surface-
troposphere system. This is called the “enhanced greenhouse effect.”

Gross Primary Production
The amount of carbon fixed from the atmosphere through photosynthesis.



Groundwater Recharge

The process by which external water is added to the zone of saturation of an aquifer, either directly into a formation or indirectly
by way of another formation. The particular environment or place where an organism or species tends to live; a more locally
circumscribed portion of the total environment.

Human System

Any system in which human organizations play a major role. Often, but not always, the term is synonymous with “society” or
“social system” (e.g., agricultural system, political system, technological system, economic system); all are human systems in
the sense applied in the TAR.

(Climate) Impact Assessment
The practice of identifying and evaluating the detrimental and beneficial consequences of climate change on natural and human
systems.

(Climate) Impacts

Consequences of climate change on natural and human systems. Depending on the consideration of adaptation, one can
distinguish between potential impacts and residual impacts.

— Potential Impacts: All impacts that may occur given a projected change in climate, without considering adaptation.

— Residual Impacts: The impacts of climate change that would occur after adaptation. See also aggregate impacts, market
impacts, and non - market impacts.

Indigenous Peoples

People whose ancestors inhabited a place or a country when persons from another culture or ethnic background arrived on the
scene and dominated them through conquest, settlement, or other means and who today live more in conformity with their own
social, economic, and cultural customs and traditions than those of the country of which they now form a part (also referred to
as “native,” “aboriginal,” or “tribal” peoples).

Infrastructure
The basic equipment, utilities, productive enterprises, installations, and services essential for the development, operation, and
growth of an organization, city, or nation.

Integrated Assessment

A method of analysis that combines results and models from the physical, biological, economic, and social sciences, and the
interactions between these components, in a consistent framework to evaluate the status and the consequences of
environmental change and the policy responses to it.

Introduced Species
A species occurring in an area outside its historically known natural range as a result of accidental dispersal by humans (also
referred to as “exotic species” or “alien species”).

Invasive Species
An introduced species that invades natural habitats.

Land Use
The total of arrangements, activities, and inputs undertaken in a certain land-cover type (a set of human actions). The social
and economic purposes for which land is managed (e.g., grazing, timber extraction, conservation).

Local Agenda 21

Local Agenda 21s are the local plans for environment and development that each local authority is meant to develop through a
consultative process with their populations, with particular attention paid to involving women and youth. Many local authorities
have developed Local Agenda 21s through consultative processes as a means of reorienting their policies, plans, and
operations towards the achievement of sustainable development goals. The term comes from Chapter 28 of Agenda 21—the
document formally endorsed by all government representatives attending the UN Conference on Environment and
Development (also known as the Earth Summit) in Rio de Janeiro in 1992.

Maladaptation
Any changes in natural or human systems that inadvertently increase vulnerability to climatic stimuli; an adaptation that does
not succeed in reducing vulnerability but increases it instead.

Montane
The biogeographic zone made up of relatively moist, cool upland slopes below timberline and characterized by the presence of
large evergreen trees as a dominant life form.

Net Primary Production (NPP)
The increase in plant biomass or carbon of a unit of a landscape. NPP is equal to Gross Primary Production minus carbon lost
through autotrophic respiration.

Orography
The study of the physical geography of mountains and mountain systems.

Phenology

The study of natural phenomena that recur periodically (e.g., blooming, migrating) and their relation to climate and seasonal
changes.



Photosynthate
The product of photosynthesis.

Photosynthesis

The process by which plants take carbon dioxide from the air (or bicarbonate in water) to build carbohydrates, releasing oxygen
in the process. There are several pathways of photosynthesis with different responses to atmospheric CO2 concentrations. See
also CO2 fertilization, C3 plants, and C4 plants.

Physiographic
Of, relating to, or employing a description of nature or natural phenomena.

Rangeland
Unimproved grasslands, shrublands, savannas, and tundra.

Regeneration
The renewal of a stand of trees through either natural means (seeded onsite or adjacent stands or deposited by wind, birds, or
animals) or artificial means (by planting seedlings or direct seeding).

Reinsurance
The transfer of a portion of primary insurance risks to a secondary tier of insurers (reinsurers); essentially “insurance for
insurers.”

Reservoir

A component of the climate system, other than the atmosphere, that has the capacity to store, accumulate, or release a
substance of concern (e.g., carbon, a greenhouse gas, or precursor). Oceans, soils, and forests are examples of reservoirs of
carbon. “Pool” is an equivalent term (note that the definition of pool often includes the atmosphere). The absolute quantity of
substances of concern held within a reservoir at a specified time is called the “stock.” The term also means an artificial or
natural storage place for water, such as a lake, pond, or aquifer, from which the water may be withdrawn for such purposes as
irrigation, water supply, or irrigation.

Resilience
Amount of change a system can undergo without changing state

Respiration
The process whereby living organisms convert organic matter to carbon dioxide, releasing energy and consuming oxygen.

Riparian
Relating to or living or located on the bank of a natural watercourse (as a river) or sometimes of a lake or a tidewater.

Runoff
That part of precipitation that does not evaporate. In some countries, runoff implies surface runoff only. In this study, runoff is
made up of stormflow plus baseflow from a specified catchment or subcatchment.

Salinisation
The accumulation of salts in soils.

Scenario (Generic)
A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of
assumptions about driving forces and key relationships. Scenarios may be derived from projections, but are often based on
additional information from other sources, sometimes combined with a “narrative storyline.” See also Climate Scenario and
emissions scenario.

Sea-Level Rise

An increase in the mean level of the ocean. Eustatic sea-level rise is a change in global average sea level brought about by an
alteration to the volume of the world ocean. Relative sea-level rise occurs where there is a net increase in the level of the ocean
relative to local land movements. Climate modelers largely concentrate on estimating eustatic sea-level change. Impact
researchers focus on relative sea-level change.

Semi-Arid Regions

Ecosystems that have >250 mm precipitation per year, but are not highly productive; usually classified as rangelands.

Sensitivity

Sensitivity is the degree to which a system is affected, either adversely or beneficially, by climate-related stimuli. The effect may
be direct (e.g., a change in crop yield in response to a change in the mean, range, or variability of temperature) or indirect (e.g.,
damages caused by an increase in the frequency of coastal flooding due to sea level rise).

Southern Oscillation

A large-scale atmospheric and hydrospheric fluctuation centered in the equatorial Pacific Ocean, exhibiting a pressure
anomaly, alternatively high over the Indian Ocean and high over the South Pacific. Its period is slightly variable, averaging 2.33
years. The variation in pressure is accompanied by variations in wind strengths, ocean currents, sea-surface temperatures, and
precipitation in the surrounding areas.

Stakeholders
Person or entity holding grants, concessions, or any other type of value that would be affected by a particular action or policy.



Stimuli (Climate-Related)
All the elements of climate change, including mean climate characteristics, climate variability, and the frequency and magnitude
of extremes.

Stochastic Events
Events involving a random variable, chance, or probability.

Streamflow
Water within a river channel, usually expressed in m%s or mm/day. In the context of this study, streamflow is made up of runoff
accumulated from a specific subcatchment and all upstream contributions flowing into that subcatchment.

Succession
Transition in the composition of plant communities following disturbance.

Surface Runoff
The water that travels over the soil surface to the nearest surface stream; runoff of a drainage basin that has not passed
beneath the surface since precipitation.

Sustainable Development
Development that meets the needs of the present without compromising the ability of future generations to meet their own
needs.

Synoptic
Relating to or displaying atmospheric and weather conditions as they exist simultaneously over a broad area.

Timberline
The upper limit of tree growth in mountains or high latitudes.

Transpiration
The emission of water vapor from the surfaces of leaves or other plant parts.

Uncertainty

An expression of the degree to which a value (e.g., the future state of the climate system) is unknown. Uncertainty can result
from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from
quantifiable errors in the data to ambiguously defined concepts or terminology, or uncertain projections of human behavior.
Uncertainty can therefore be represented by quantitative measures (e.g., a range of values calculated by various models) or by
qualitative statements (e.g., reflecting the judgment of a team of experts).

Unique and Threatened Systems

Entities that are confined to a relatively narrow geographical range but can affect other, often larger entities beyond their range;
narrow geographical range points to sensitivity to environmental variables, including climate, and therefore attests to potential
vulnerability to climate change.

United Nations Framework Convention on Climate Change (UNFCCC)

The Convention was adopted on 9 May 1992, in New York, and signed at the 1992 Earth Summit in Rio de Janeiro by more
than 150 countries and the European Community. Its ultimate objective is the “stabilization of greenhouse gas concentrations in
the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.” It contains
commitments for all Parties. Under the Convention, Parties included in Annex | aim to return greenhouse gas emissions not
controlled by the Montreal Protocol to 1990 levels by the year 2000. The Convention entered in force in March 1994.

Vector-Borne Diseases
Disease that is transmitted between hosts by a vector organism (such as a mosquito or tick— for example, malaria, dengue
fever, and leishmaniasis).

Vernalization
The act or process of hastening the flowering and fruiting of plants by treating seeds, bulbs, or seedlings so as to induce a
shortening of the vegetative period.

Vulnerability

The degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate
variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate variation to which a system
is exposed, its sensitivity, and its adaptive capacity.

Water Consumption
Amount of extracted water irretrievably lost at a given territory during its use (evaporation and goods production). Water
consumption is equal to water withdrawal minus return flow.

Water Stress
A country is water stressed if the available freshwater sup ply relative to water withdrawals acts as an important constraint on
development. Withdrawals exceeding 20% of renewable water supply has been used as an indicator of water stress.

Water Use Efficiency

Carbon gain in photosynthesis per unit water lost in evapotranspiration. It can be expressed on a short-term basis as the ratio
of photosynthetic carbon gain per unit transpirational water loss, or on a seasonal basis as the ratio of net primary production or
agricultural yield to the amount of available water.
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