A VAN SCHALKWYK AD WARD BJ MIDDLETON

AN EVALUATION OF HYDROLOGICAL FLOOD ESTIMATION TECHNIQUES: PHASE I. THE ESTABLISHMENT OF A SMALL CATCHMENT DATA BANK (Part 1: Text)

Report to the WATTER RESEARCH COMMISSION by STREFFEN ROBERTISON AND KIRSTIEN (CIML) INC

139/1/85

WATER RESEARCH COMMISSION

RESEARCH PROJECT - EVALUATION OF FLOOD ESTIMATION TECHNIQUES

PHASE 1 : THE ESTABLISHMENT OF A SMALL CATCHMENT HYDROLOGICAL DATA BANK PART 1 : TEXT

by A van Schalkwyk, A D Ward and B J Middleton

REPORT CI.3392/7

JULY 1985

ISBN 0 908 356 35 8

Steffen, Robertson and Kirsten (Civil) Inc 16th Floor 20 Anderson Street JOHANNESBURG 2001 P O Box 8856 JOHANNESBURG 2000 Tel: (011) 832-1201

WATER RESEARCH COMMISSION

RESEARCH PROJECT - EVALUATION OF FLOOD ESTIMATION TECHNIQUES

PHASE I : THE ESTABLISHMENT OF A SMALL CATCHMENT HYDROLOGICAL DATA BANK

CONTENTS - PART 1

1	INTRODUCTION	1
2	DATA COLLECTION PROCEDURE	2
	2.1 General	4
	2.2 Questionnaire	4
	2.3 Data acquisition	7
		,
3	SMALL CATCHMENT DATA BANK	10
	3.1 Printed format	10
	3.2 Computer based data file	11
	3.3 Access to the Data Bank	12
4	SELECTED MONITORED CATCHMENTS	14
-		00
5	OTHER CATCHMENTS	23
6	CONCLUSIONS	39
J.		35

CONTENTS - PART 2

1 QUESTIONNAIRE

2 DATA ACQUISITION SHEET

- 3 SELECTED SMALL CATCHMENT INFORMATION SHEETS
- 4 REFERENCES RELATED TO DATA MONITORING PROGRAMMES

ii

LIST OF FIGURES

Pa	qe
_	_

Figure	2.1	QUESTIONNAIRE STATISTICS - HYDROLOGICAL DATA BANK	8
	4.1	LOCATION OF SELECTED SMALL CATCHMENTS	15
	5.1	WEATHER BUREAU FIRST-ORDER METEOROLOGICAL STATION AND WEATHER OFFICES	29
		LIST OF TABLES	
Table	2.1	QUESTIONNAIRE STATISTICS	6
	3.1	SELECTED CATCHMENTS FOR WHICH COMPUTERIZED DATA FILES ARE AVAILABLE	13
	4.1	LOCALITY, LAND-USE AND AREA OF MONITORED SMALL CATCHMENTS	14
	4.2	AREA AND LAND-USE DISTRIBUTION OF MONITORED CATCHMENTS	16
	4.3	DETAILS OF MONITORING PROGRAMMES	17
	5.1	DEPARTMENT OF WATER AFFAIRS - RIVER GAUGING STATIONS	25

ACKNOWLEDGEMENTS

The authors wish to express their appreciation to:

The Water Research Commission for providing funding for this research project.

All the organizations mentioned in this report who so willingly assisted with data collection and checking of the manuscript.

Staff at Steffen, Robertson and Kirsten Inc for their valuable assistance, in particular Mr S Lorentz, Mrs L Rolland, Mr J Stern, Ms P Small and Mrs H Hindley. AvS/hh

REPORT CI.3392/7

July 1985

WATER RESEARCH COMMISSION

THE ESTABLISHMENT OF A SMALL CATCHMENT HYDROLOGICAL DATA BANK

1 INTRODUCTION

At present hydrologists and engineers in Southern Africa face two major problems in small catchment hydrology:

. availability of small catchment hydrological data

absence of suitable guidelines on the selection, use and expected accuracy of the different flood estimation techniques.

Hydrological information is needed by the designer both for basic design and to assess the hydrological effects of land-use modifications. Although extensive research has been conducted using data from small catchments in Southern Africa, these data are not readily accessible. In addition to the Department of Water Affairs, 25 organizations currently collect hydrological data on more than 120 catchments.

Selection of a design technique should normally go hand in hand with data availability. Frequently, however, techniques are applied with insufficient data. The hydrologist or engineer is usually aware of the data deficiencies but is seldom able to assess the effect on the design solution. Even when there are no constraints on data collection or design, it is sometimes not possible to assess the accuracy associated with hydrological designs. Furthermore, on ungauged catchments where designs are based on some future land-use modification, gauging of the catchment might provide little information of value at the design stage.

Research by universities and institutes in South Africa and overseas has resulted in numerous methods for simulating the response of a catchment to a storm event. The design engineer faces the difficult task of selecting an appropriate design method with little guidance as to which technique can be expected to produce the most reliable result for the situation at hand. Great reliance is often placed on the selected method and seldom is a sensitivity analysis of the various parameters conducted.

To help meet the needs of design engineers and hydrologists, the Water Research Commission has funded a two-phase research project comprising:

• Phase AI : Establishment of a small catchment hydrological data bank

. Phase II : Evaluation of small catchment flood estimation techniques

For the purposes of this project a small catchment is defined as one which has a hydrological response that is not influenced significantly by the catchment channel characteristics (with the upper limit set at 100 km^2).

This report contains details of Phase 1 of the project.

The purpose of Phase I of the project is to collate and document the available hydrological catchment information measured on small catchments by organizations in Southern Africa. Sources of suitable hydrological catchment data were identified by distributing questionnaires to all parties and organizations known or thought to be involved with hydrological studies. Tremendous interest was shown in the survey and over 66 percent of the questionnaires were returned. Details of the questionnaire and data acquisition investigations are presented in Section 2.

A computer-based data file containing information from small catchments throughout Southern Africa has been established. The format of the data bank is described in Section 3. Details of the selected catchments are presented in Section 4.

In addition to the catchments contained in the data bank, several major studies, which at present do not monitor both rainfall and streamflow information, were identified. Descriptions of these are presented in Section 5.

The Department of Water Affairs is currently recording flow information at over 800 hydrological gauging stations. Nearly 300 of these are located on small catchments. Some gauging stations are being operated by other organizations, such as universities, for research purposes, and these are reported on in Section 4. The information for the remainder of the catchments has, however, not been included in the small catchment data bank as the Department of Water Affairs is in the process of establishing its own data bank. Some of the data collected by the Department will however be used in Phase II of the study.

It should also be noted that the Department of Water Affairs is primarily responsible for obtaining streamflow information and it would be necessary to combine Weather Búreau rainfall and climatic information with its data bank to obtain catchment information similar to that contained in the small catchment data bank described in this report.

2 DATA COLLECTION PROCEDURE

2.1. General

Small catchment data sources were identified by distributing questionnaires to all organizations known or thought to be involved with catchment monitoring programmes. Notices requesting information were also placed in relevant technical journals. The response to the latter approach however, was poor. This may be ascribed to the fact that the questionnaires had a very wide coverage.

Direct contact was then made with the organizations identified as being monitors of hydrological aspects of small catchments. A specially prepared data acquisition sheet was used to acquire relevant physiographic and climatic factors pertaining to the monitored catchments.

The objectives, format and results of the questionnaire as well as details of the data acquisition are given below.

2.2 Questionnaire

Objectives

The purposes of the questionnaire were to :

- identify sources of small catchment hydrological data
- establish type of data collected
- establish data requirements of end users
- ascertain flood estimation techniques commonly used.

Format of Questionnaire

To meet these objectives, the questionnaire consisted of four parts addressing matters related to general background, hydrological data collected, hydrological data required and the use of flood estimation techniques.

A system of codes was adopted to minimize time spent on filling out the questionnaire and facilitate handling of the information recorded on the questionnaire.

A copy of the questionnaire is given in Part 2 of the report.

. Response to Questionnaire

Questionnaires were sent to 284 organizations located throughout South Africa, South West Africa, Lesotho, Swaziland and the Homelands. A further 11 complimentary copies were sent to interested parties. This latter group was not included in the overall statistics of the project.

To tacilitate data handling the organizations were divided into 9 groups. An indication of the coverage received by each organization group is also given in Table 2.1.

The response to the questionnaire was 66 percent, i.e. one hundred and eighty-nine (189) questionnaires were returned. The best response was obtained from the Administration Boards (80%) with State Departments following at 78%. The Homelands and territories outside South Africa recorded a relatively poor response. This may be ascribed to a lower level of development in these regions and consequently a limited interest in hydrological analysis. 6

							<u>.</u>
ORGANIZATION	NUMBER SENT	NUMBER RETURNED	PERCENTAGE RESPONSE	NUMBER MONITORING SMALL CATCHMENTS	NUMBER REQUIRING DATA	NUMBER USING MODELS	NUMBER NOT INTERESTED
STATE DEPARTMENTS1	23	18	78	4	10	10	6
DEPEND. HOMELANDS	33	17	52	0	8	5	9 .
ALMINISTRATION ²	10	8	80	0	6	5	1
MUNICIPALITIES	46	32	70	4	24	28	2
UNIVERSITIES	35	27	77	5	14	8	11
CONSULTANTS ³	84	51	61	1	44	43	7
STATUTORY BODIES4	24	18	75	3	10	6	7
WATER BOARDS	5	3	60	2	1	0	2
OUTSIDE RSA5	24	15	62	7	1	1	· 8
TOTAL	284	189	66	26	118	106	53

TABLE 2.1 : QUESTIONNAIRE STATISTICS

1 State Departments

2 Provincial Administration and Development Boards

3 Engineering Consultants

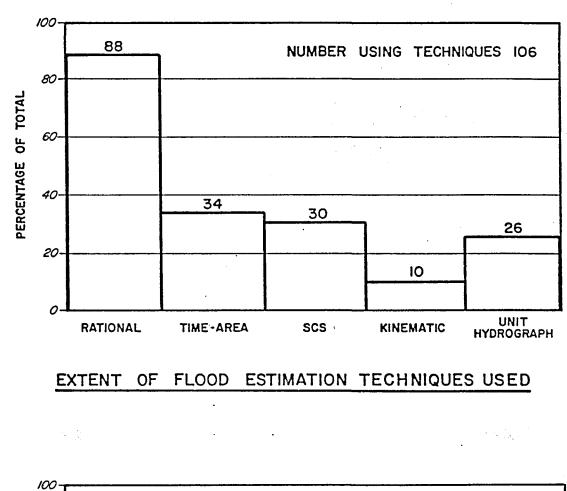
4 Parks Boards; Sasol; Iscor; CSIR; Mining Houses; S A Transport Services

5 Swaziland; Lesotho; South West Africa; Independent National States

The survey revealed that of the 189 organizations that responded to the questionnaire, 26 organizations are involved with catchment monitoring programmes, 106 use flood estimation techniques, 118 organizations required recorded climatic information and 53 have no interest in hydrological parameters or flood estimation.

The 26 organizations involved in monitoring hydrological aspects on small catchments are active on more than 120 small catchments throughout Southern Africa. The catchments are located mainly in rural areas, the land-use being predominantly veld.

The monitoring programmes are undertaken mainly by Universities, Municipalities and State Departments. In most instances catchments are monitored for research purposes. Municipalities and private concerns monitor catchments mainly to obtain design information. Runoff is the most commonly measured parameter followed by rainfall. Climatic (temperature, evaporation and wind) and water quality data are recorded on about 45% of the catchments.


Recorded hydrological data are required by 62 percent (118) of the 189 organizations that responded to the questionnaire. The most frequent data requirements are rainfall (79 percent of 118) and runoff (92 percent of 118). Other climatic and water quality data are required by about 60 percent of the organizations (see Fig 2.1).

Flood estimation techniques are widely used. The Rational method is used by 88 percent of the 106 organizations currently involved with flood estimation. The unit hydrograph method is applied by 26 percent of the organizations and the SCS (U.S.D.A. Soil Conservation Service) method by 30 percent (Fig 2.1). The Time-Area method is used by 34 per cent of the organizations. The kinematic method is rarely applied due to its higher degree of complexity and the need for computer facilities.

The survey also revealed that presently only 79 (viz 42%) of the 189 participating organizations have access to electronic computers.

2.3 Data Acquisition

The questionnaire survey showed that some 26 organizations were involved with catchment monitoring programmes. Contact was made telephonically with these organizations to establish the suitability of the monitored catchments for inclusion in the Small Catchment Data Bank. A visit was then made to these organizations to gather the relevant catchment information. A data acquisition form was prepared for this purpose. A system of codes was used to ease the filling out of the data acquisition sheet. A copy of the data acquisition sheet is given in Part 2 of the report.

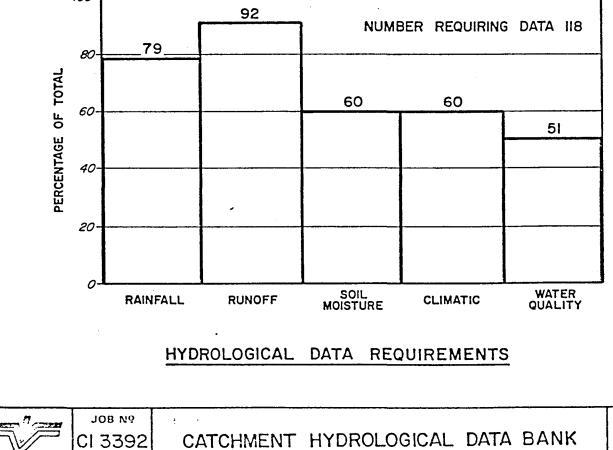


FIG N9 2.1

A 16.09 62.

- physical parameters of the catchment
- instrumentation type and distribution
- rainfall, runoff, other climatic and water quality data
- status of data processing.

Contact with the organizations revealed that of the 26 involved with catchment monitoring programmes, 14 collected both rainfall and runoff data. The catchments monitored by these organizations were therefore considered suitable for Phase II of this project, ie the evaluation of flood estimation techniques. These catchments are termed "Selected" Catchments. Details of each of these catchments are given in Section 4 of this report.

For each of the selected catchments cursory checks were made on the information recorded on the data acquisition sheets. In cases where basic parameters were omitted, an estimated value was inserted where possible. For example, the average catchment slope was estimated and presented as one of the following ranges:

- flat 0-5%
- moderate 5-10%
- steep +10%

The mean altitude was taken to be the average between the elevation of the highest point in the catchment and the elevation of the flow recording stations.

During the course of the study, the need for additional information on the data acquisition sheet such as magisterial district, province, vegetation, soils and geology was identified and the sheet was updated.

Several telephone conversations were had with the organizations monitoring selected catchments to verify the information finally contained on the data acquisition sheets. The information was subsequently captured on computer and is stored in code form as described in Section 3.

3 SMALL CATCHMENT DATA BANK

The Small Catchment Data Bank was assembled to provide ready access to hydrological data monitored on small catchments. Unlike other current hydrological data banks, the Small Catchment Data Bank also contains the complete range of physical and hydrological parameters of each of the monitored catchments.

Only 109 of the monitored catchments were considered suitable for detailed description and inclusion in the data bank. These catchments are discussed in Section 4. Other monitored catchments not included in the data bank include:

- catchments monitored by the Department of Water Affairs, who have an already established data bank for streamflow
- catchments with an inadequate rainfall/runoff data base, i.e.
 either rainfall or runoff not recorded.

Brief descriptions of these other catchments are, however, given in section 5 together with details of the organizations involved.

The data bank was established in two forms :

- printed

- computer magnetic tape.

3.1 Printed format

The printed form consists of two pages of information per catchment as discussed in Section 4 and listed in Part 2 of the report. The information given, in sequential order, includes:

- catchment identification and location
- catchment details
- data collected
- streamflow recording station details

- background information on the monitoring organization and programme
- information files
- physical catchment information
- a map of the catchment
- recorded data, ie type of data, station number, instrument type, period of records and status of data.

The printed form is structured to assist the end user to :

- minimise time spent on locating relevant catchment information
- identify monitored catchments in the particular area of interest
- establish the type and format of data recorded
- establish the availability of recorded data
- provide access to the information stored on the computer
- based data bank.

These files are similar in format to the Data files presently being developed by the Department of Water Affairs (DWA), the major difference being that the DWA catchment and measuring weir descriptions will be in essay form.

3.2 Computer Based Data File

The computer based Data Bank contains two file types viz, catchment information files, and data files.

The catchment information files contain the same details of the 109 monitored selected small catchments as that shown on the printed form. The information is not stored as text, but as codes, derived from the data acquisition sheet. The information is also stored in the sequential format of the data acquisition form, which is different to the printed form. A computer program was written to translate the computer information file into the printed form.

It was envisaged at the start of the project that the data files would contain raw data recorded by the monitoring organization and, in cases where available, processed data. However, data formats developed by the individual organizations were developed specifically for their own use and consequently the formating is inconsistent and the computer compatibility of the files varies from organization to organization (see Table 3.1). This computer incompatibility has made it difficult to store raw or processed data on the data files. The Data Bank will therefore contain at this stage only selected hyetographs and hydrographs for the catchments used in Phase II of the research project.

3.3 Access to the Data Bank

On completion of the research project it is proposed that the computer files comprising the Data Bank would be taken over and operated by the Department of Water Affairs. Catchment information files and data files containing selected events could therefore be accessed through DWA.

Additional hydrological data would become available as the Data Bank develops and data are re-formatted and made compatible with DWA formats. In the meantime, six of the monitoring organizations have computerized data which are available, from these organizations, for more than 40 catchments with an average period of record of about 10 years, as shown in Table 3.1. In most cases the chart reduction procedure is break-point digitization. The captured information can therefore be retrieved at any convenient time resolution.

TABLE 3.1 : SELECTED CATCHMENTS FOR WHICH COMPUTERISED DATA FILES ARE AVAILABLE

		RAINFALL RECORD		RUNOFF	RECORD	
Organization	Catchment	Period (years) From To	Status of Data	Period (years) From To	Status of Data	Computer
Directorate of Forestry	G1M14 G1M15 G1M16 G1M17 G1M18 G2M02 G2M03 G2M06 G2M07 G2M09 G2M09 G2M10 G2F01 G1F02 G4F01 G4F01 G4F02	1968-1984 1968-1984 1968-1984 1961-1984 1961-1984 1961-1984 1940-1984 1940-1984 1940-1984 1940-1984 1940-1984 1944-1984 1967-1984 1967-1984	Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed	1968–1984 1968–1984 1968–1984 1961–1984 1961–1984 1940–1984 1940–1984 1947–1984 1947–1984 1961–1984 1966–1984 1968–1984 1968–1984	Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed Processed	
Department of Water Affairs	C8M24 C8M25		Processed Processed			
CSIR (Durban)	Pinetown	1978–1981	Processed	1978–1981	Processed	CYBER 750 CDC Compatible
Rhodes University	Q9M20 Q9M21 Q9M22 Q9M23 Q9M24 FR01	1975–1984 1975–1984 1975–1984	Processed Processed Processed Processed Processed Not available	1976-1984 1976-1984 1976-1984 1976-1984 1976-1984	Processed Processed Processed	
University of Natal*	V1M12 V1M15 V1M19 V1M20 V1M28 V7M03 V7M11 U2M16 U2M18	1977-1984 1964-1984 1964-1984 1977-1984 1977-1984 1964-1984 1977-1984		1977-1984 1964-1984 1964-1984 1977-1984 1974-1984 1964-1984 1977-1984	Processed Processed Processed Processed Processed Processed Processed	
University of Zululand	W1M12 W1M13 W1M14 W1M15 W1M16 W1M17	1975-1984 1975-1984 1975-1984 1975-1984	Processed Processed Processed Processed Processed Processed	1977-1984 1980-1984 1977-1984 1977-1984	Processed Processed Processed Processed	

*Only stations with the most suitable data for general use are provided.

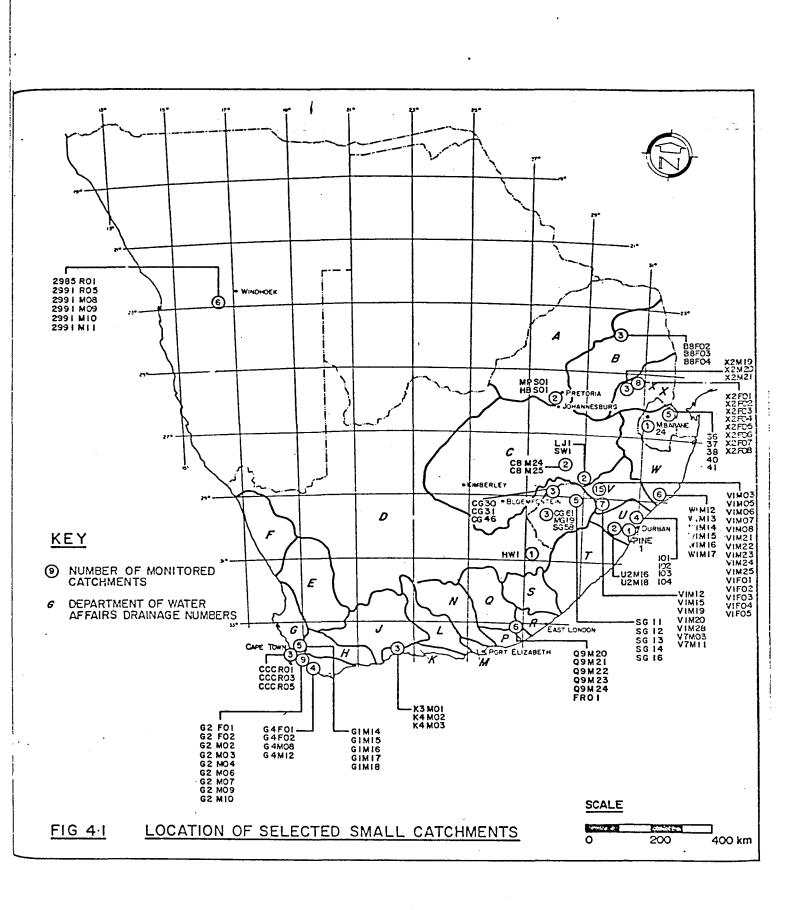
و بر الم الم المراجع الم الم المراجع ا

and the second state of the second state of the second state of the second state of the second second second st

al a same and the same

4 SELECTED MONITORED CATCHMENTS

Catchments are classed as "selected" if the recorded data are extensive and considered of value in terms of Phase II of this project, i.e., Evaluation of Flood Estimation Techniques. Generally, these catchments contain a good rainfall/runoff data base.


There are 109 selected catchments presently being monitored by 14 organizations throughout Southern Africa. The location of the selected catchments are shown on Fig 4.1.

LOCALITY	LAND USE							
(Drainage Zone)	URBAN	AGRICULTURE	VELD	FOREST	MINING	TOTAL		
A	1- 10 km² 1*		10-100 km ² 1			2		
[.] . В			$0-1 \text{ km}^2$ 2	0-1 km ² 1		3		
с			$\begin{array}{ccc} 1-10 \ \text{km}^2 & 1 \\ 10-100 \ \text{km}^2 & 3 \end{array}$			4		
D		10-100 km ² 1 +100 km ² 1	10-100 km ² 10			12		
G	10-100 km ² 2		0- 1 km ² 8 1- 10 km ² 10	0- 1 km ² 2 1- 10 km ² 2 10-100 km ² 1		25		
K			10-100 km ² 2	10-100 km ² 1		3		
Q			0- 1 km ² 1 1- 10 km ² 3 10-100 km ² 2			б		
U	0-1 km ² 1	0-1 km ² 4		1- 10 km ² 2		7		
v			0- 1 km ² 14 1- 10 km ² 5 10-100 km ² 2	$\begin{array}{c} 0-1 \ \text{km}^2 \ 1\\ 1-10 \ \text{km}^2 \ 2 \end{array}$		24		
W		1- 10 km ² 1 10-100 km ² 2	0- 1 km ² 1 1- 10 km ² 1 10-100 km ² 5 +100 km ² 1	1- 10 km ² 1		12		
x			$\begin{array}{c} 0-1 \ \text{km}^2 \ 4 \\ 1-10 \ \text{km}^2 \ 3 \end{array}$		•	13		
SWA			10-100 km ² 6			6		

TABLE 4.1 : LOCALITY, LAND-USE AND AREA OF MONITORED SMALL CATCHMENTS

"Number of monitored catchments

.

The majority of the catchments (97%) are located in predominantly rural environments and the land-use is therefore mainly veld. Four of the selected catchments are located in urban areas. Nineteen catchments are predominantly forested areas while nine catchments are predominantly agricultural catchments (see Table 4.1 and 4.2). Because land-use changes have occurred on certain of the catchments during the course of the monitoring programme, the totals given in Table 4.1 and 4.2 exceed the total number of selected catchments.

2702					
Area km ²	Urban	Agriculture	Veld	Forest	TOTAL
0-1	1	4	30	7	42
1-10	1	1	23	10	35
10-100	2	3	31	2	38
+100		1	1		2
TOTAL	4	9	85	19	117

Rainfall and runoff are recorded on all of the selected catchments. The average period of record is about 20 years. Other climatic data and water quality information are monitored on about one-third of the catchments.

Details of the organizations undertaking monitoring programmes and information regarding the monitoring programmes are given in Table 4.3. A list of all the selected catchments is given in Table Bl in Part 2. The catchments are grouped according to the DWA drainage regions. Details are also given of the organization undertaking the monitoring programme, catchment area, land-use and period of available rainfall/runoff record.

TABLE 4.3 : DETAILS OF MONITORING ACTIVITIES

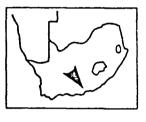
Name of Organization	No of Catch- ments	Catchment size (km ²)	Land-use	Locality	Monitoring Period	Purpose of study	Future Extensions
Department of Water Affairs*	2	9–83	Urban, agricul- ture and veld	Bethlehem	1980-present	To investigate possibility of increasing runoff by cloud seeding.	None
Directorate of Forestry	47	0,121-3,564	Veld and afforestation	Stellenbosch, Cathedral Peak, Sabie	1935-present	To determine the influence of manage- ment regimes on the water yielding pro- perties of mountain catchment areas	None
Department of Agriculture and Water Supply	1	100	Veld	Lady Grey	1973-present	Research into sediment estimation and silt movement	None
Cape Town Municipality	3	2061	Urban, mountain and forest	Cape Town	1958-present	For flood drainage design	Extension of flow and moni- toring
University of Natal	9	0,41-34	Agriculture, veld and afforestation	De Hoek Ntabahlope Cedara	1964-present 1977-present	To develop rainfall/ runoff models for small catchments	Sediment, TDS sampling
Rhodes University	9	0,04-73	Agriculture, veld and afforestation	Grahamstown Wilderness	1975-present	Research into the development and testing of lumped parameter conceptual rainfall/runoff models in semi-arid and sub-humid catch- ments	Installation of 5 rainfall gauges
University of the Witwatersrand	2	1-10,36	Urban	Johannesburg	1982-present	To determine rain- fall, runoff and water quality for research purposes	None
University of Zululand	6	0,67-82,9	Agriculture, veld and afforestation	Zululand	1975-present	To evaluate techni- ques for estimating catchment runoff	Sediment and TDS sampling
De Wet Shand	2	14,5-25	Veld	Qwa Qwa _	1976-present	To estimate catch- ment yield	None
CSIR Natal	1	0,12	Urban	Pinetown	1978–1981	To estimate the input of pollutants to an urban catch- ment	None
S A Sugar Assoc.	4	0,035-0,5	Agriculture	Tongaat	1977-present	Studying effects of different cane management practices on runoff	Rainfall simu tion and mode ling techniqu on adjacent p
Lesotho Met Office	11	6-108	Veld and agriculture	Lesotho	1950-present	To determine catch- ment runoff yield	None
SWA Water Affairs	6	17,3-131	Veld	South West Africa	-	Research for struc- ture design and erosion control	None
Swaziland Met Office	6	8–119	Urban, agricul- ture, veld and forest	Swaziland	1974-present	To estimate catch- ment runoff yield.	None

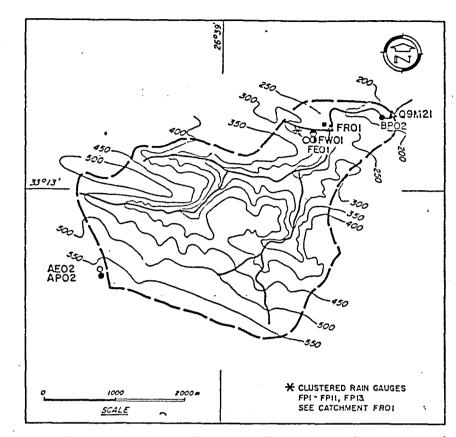
*Special monitoring programme and not included in the general DWA hydrological data accumulation programme.

Each of the selected catchments is documented in a standardized twopage information sheet. Information contained in the description includes catchment characteristics, hydrological parameters, gauge details and recorded data. Also affixed to the information sheet is a map of the catchment showing gauge location, topography and in some cases, land-use. Examples of the two-page information sheets of a selected catchment are given below (see Rhodes University - Q9M21 -Albany, Eastern Cape and Council for Scientific and Industrial Research -Pine 1 - Pinetown, Natal).

The two-page information sheets for each of the selected catchments are given in Part 2 of the report. The catchments have been grouped firstly under DWA drainage region, then in accordance with the numerical numbering system as used by DWA. Fig 4.1 and Table B.1, also given in Part 2, facilitate the location of the write-up of a particular selected catchment.

Part 2 of the report also contains a list of references related to the catchment monitoring programme.


Rhodes University - Q9M21 - Albany,Eastern Cape


CATCHMENT IDENTIFICATION

CATCHMENT IDENTIFIC	CATION			•
	deg. 13.	00 min. E.	GAUGE REFERENCE NO NEAREST TOWN MAGISTERIAL DISTRICT PROVINCE OR COUNTRY	Q9M21 Grahamstown Albany Eastern Cape
CATCHMENT DETAILS				•
CATCHMENT AREA AVERAGE CATCHMENT & MEAN ALTITUDE MEAN ANNUAL PRECIPI NO OF DAMS IN CATCH SHAFE FACTOR DRAINAGE DENSITY	ITATION	9.10 sq.km. Flat (3.7%) 370 m ANSL 420 mm 0 No details No details	VEGETATION LAND USE SOILS BINOMIAL SOIL TYPE GEOLOGY	Valley Bushveld Veld Lithosols No details Sandstone, mudstone & shales of the Ecca Group (Karoo Sequence) and Dwyka tillite (Karoo Sequence)
DATA COLLECTED				
RAINFALL RINOFF CHEMICAL TDS SEDIMENT EVAPORATION	Yes Yes Yes Yes Yes Yes		TEMPERATURE WIND RELATIVE HUMIDITY NET RADIATION SOIL MOISTURE INFILIRATION	Yes Yes Yes No No
RAINFALL data are a	available	, RINOFF data are	available, OTHER CLI	MATIC data are available
STREAMFLOW RECORDIN	G STATIC	n details		
CONTROL MEASURING LIMIT RATING CURVE STORAGE CAPACITY BE PERCENTAGE OF STORA BACKGROUND INFORMAT	AGE SILTE	75.90 cu Calculate TRGL No detail	5	NCTT
OFGAN IZATION DEPARTMENT CONTACT PERSON ADDRESS	Hydrolo Dr D A	gical Research Un : 94		•
TELEPHONE	(0461)	4014		
THE MONITORING PRO	GRAMME	- started : - purpose :	1976 To develop & test lum conceptual rainfall/r semi-arid sub-humid c	unoffmodels in
		- future extensions :	None	
INFORMATION FILES				
CATCHMENT INFORMAT CATCHMENT MAP LIST OF REFERENCES RAINFALL DATA RUNOFF DATA		Q9M21 Q9M21.M2 RHCDES.J Q9M21.R2 Q9M21.F1	np Ref Nin	xdate : January 1985)
PHYSICAL CATCHMENT	INFORMA	FION		
LAND USE		1976 to 1984		
DRAINAGE CHARACTER	ISTICS	Stream is season	al and well defined	

. KEY : Measuring site for

Rainfall	•
Runoff	▲
Water Quality	Ħ
Evaporation	0
Temperature	•
Wind	0
Soil Condition	۵

RECORDED DATA

				····			
PARAMETER MEASURED	SI.JION NUMBER		FERIOD	NO. OF BREAKDOWNS	MEASURING FREQUENCY		PROCESSED DATA
RAINFALL	AP02 'I BP02 I FP1 I FP2 I FP4 I FP4 I FP5 I FP6 I FP7 I FP8 I FP9 I	Casella Siphon Casella Siphon Tipping Bucket Tipping Bucket Tipping Bucket Tipping Bucket Storage Gauge Storage Gauge Storage Gauge Storage Gauge Storage Gauge Storage Gauge Storage Gauge	1975-1984 1963-1984 1963-1984 1983-1984 1983-1984 1983-1984 1983-1984 1983-1984 1983-1984 1983-1984 1983-1984	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Continuous Continuous Continuous Continuous	Computer tape Computer tape Computer tape Computer tape Computer tape	Computer tape Computer tape Computer tape Computer tape Computer tape Computer tape Computer tape
RINOFF CHEMICAL TDS SEDIMENT	C9M21 FR01 FR01 FR01 FR01 FR01	Ott Ott Pump Sampler Cond Neter Surveys	1976-1984 1982-1984 1983-1984 1981-1984 1982-1984	0-25 % 0-25 % 75-100%	Continuous	Paper strip Paper strip Data sheet Paper strip Data sheet	Computer tape Computer tape
EVAFORATION TEMPERATURE WIND REL.HUNIDITY NET RADIATION	AE02 FE01 FW01 FW01 FW01	Class A Pan Class A Pan Thermograph Anemcmeter Hydrograph	1983-1984 1983-1984 1983-1984 1983-1984 1983-1984 	0-25 % 0-25 % 0-25 %	> Daily > Daily Daily Daily Daily	Data sheet Data sheet Paper strip Paper strip Paper strip	
SOIL MOISTURE		1		1	 	 +	

Majority of gauges are owned by Water Research Commission

CATCHMENT IDENTIFICATION

	29 deg. 49.00 min. S. 30 deg. 52.00 min. E.	NEAREST TOWN MAGISTERIAL DISTRICT	
RIVER	Palmiet	PROVINCE OR COUNTRY	Natal

CATCHNENT DETAILS

CATCHMENT AREA	.12 sq.km.	VEGETATION	
AVERAGE CATCHMENT SLOPE	Flat (2%)	LAND USE	Urban
MEAN ALTITUDE	347 m AMSL	SOILS	Lithosols
MEAN ANNUAL PRECIPITATION	1000 mm	BINOMIAL SOIL TYPE	No details
NO OF DAMS IN CATCHMENT	0	GEOLOGY	Table Mountain Group - Quartzite, shale,
SHAPE FACTOR	No details		tillite
DRAINAGE DENSITY	No oetails		
			•

DATA COLLECTED

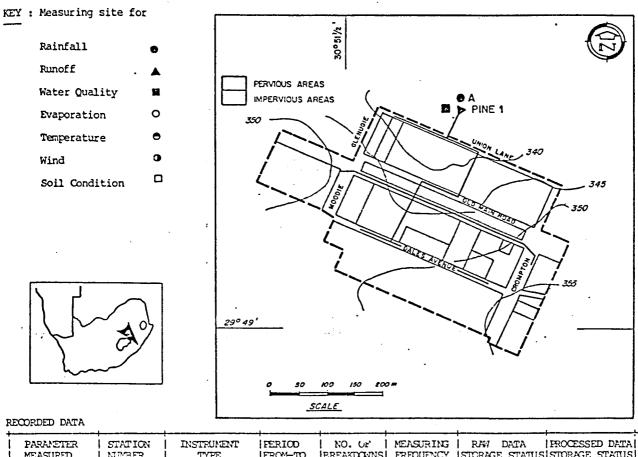
RAINFALL	Yes		TEMPERATURE	No
RUNOFF	Yes		WIND	NO
CHEMICAL	Yes		RELATIVE HUMIDITY	No
TDS	Yes		NET RADIATION	No
SEDIMENT	Yes	<i>:</i>	SOIL MOISTURE	No
EVAPORATION	No		INFILTRATION	No

RAINFALL data are available, RINOFF data are available

STREAMFLOW RECORDING STATION DETAILS

CONTROL MEASURING LIMIT	Pipe section 762mm diameter .50 cumec at .61 metres
RATING CURVE	Calibrated
STORAGE CAPACITY BEHIND CONTROL	No details
PERCENTAGE OF STORAGE SILTED	No details

BACKGROUND INFORMATION


ORGANIZATION DEPARTMENT CONTACT PERSON	Nation Mr D I	hal Institute for Simpson	
ADDRESS	Counc	x 17001	Water Research & Indus Research
TELEPHONE	(031)	255531	
THE MONITORING	Programme	- started : - purpose :	1978 To estimate the import of pollutants to an urban catchment by atmospheric fallout & their export by storm runoff
		- future extensions :	

INFORMATION FILES

CATCHMENT INFORMATI CATCHMENT MAP LIST OF REFERENCES RAINFALL DATA RUNOFF DATA	ON FILE			MAP	-	(Last	update	:	January	1985)
PHYSICAL CATCHMENT	INFORMATION										
LAND USE	1978	to	1981	100 9	urban						

DRAINAGE CHARACTERISTICS Stream is seasonal but not well defined

.

PARAMETER MEASURED	STATION NUMBER	INSTRUMENT TYPE	FERIOD FROM-TO	NO. Ur EREAKDOWNS	MEASURING FREQUENCY		PROCESSED DATA
RAINFALL	A	Casella Sipnon	1978-1981	025 %	Continuous	Paper strip	Computer tape
RUNOFF CHEMICAL TDS SEDIMENT	PT1 PT1 PT1 PT1	Auto Sampler Auto Sampler	1978-1981 1978-1981 1978-1981 1978-1981 1978-1981	025 % 025 %	Continuous Continuous	Paper strip Data sheet Data sheet Data sheet	Computer tape Computer tape Computer tape Computer tape
EVAPORATION TEMPERATURE WIND REL.HUMIDITY NET RADIATION							
SOIL MOISTURE	 	1					

Majority of gauges are owned by Council for Scientific & Indust Research

5 OTHER CATCHMENTS

Apart from the catchments described in Section 4, a considerable amount of additional hydrological information is being gathered throughout Southern Africa. The information includes a wide range of hydrological parameters, but in many instances, the various parameters are being monitored in isolation. The data therefore does not represent a complete hydrological and physical picture of the monitored catchment. This information is consequently not considered suitable for inclusion in the Small Catchment Data Bank.

Catchments classed as 'other catchments' include catchments monitored by the South African Department of Water Affairs. These catchments are maintained by the Department and are presently being banked in the Water Affairs Data Bank now under development. Including these catchments in the Small Catchment Data Bank would therefore be a duplication of work. Also included under other catchments are details of data accumulated by the Weather Bureau.

There are also a number of monitoring programmes which are still in the planning stage. Where sufficient details are available, the scope of work to be undertaken is given.

The 'other catchment' monitoring programmes are a good source of additional small catchment information and enhances the usefulness of the Small Catchment Data Bank. Details regarding the monitoring programmes are therefore given below. The information presented includes :

- . details of the organization undertaking monitoring programmes
- . background to monitoring programme
- . details of monitoring programme
- . discussion of data recorded.

5.1 Department of Water Affairs

The primary function of the Department of Water Affairs is the development and control of South Africa's water resources to ensure the provision of sufficient water of acceptable quality at reasonable cost.

To meet these objectives, a country-wide network of more than 800 river flow stations has been established. Flow records are also obtained from 180 existing dams and provide information on river flow, flood peaks, chemical quality and sediment loads. About 280 of the monitored catchments are smaller than 100 km² in area and are listed in Table 5.1. Evaporation is measured at about 170 sites near large dams.

The earliest monitoring programmes were started at the turn of the century. Readings were initially taken on a daily basis, but many of the gauging points are now fitted with continuous flow recorders.

The recorded data are processed by hydrologists in the Department and part of the hydrological data is already stored in computerized data banks. Access may be had through the Department.

Contact Person : Mr D Zietsman; Mr J Schutte Address : Directorate of Hydrology Department of Water Affairs Private Bag X313 Pretoria 0001 : (012) 299-2736/8 Telephone

TABLE 5.1 : DIRECTORATE OF WATER AFFAIRS - RIVER GAUGING	STATIONS ((100 Km4)
--	------------	-----------

Station No	River	Latitude	Longitude	Area km²	Start Date	Date Closed
A2424	Brandvlei	260 09.	270 35.3/41	13	1953	
A2433	Nouklip-Cog	250 52.1/2"	270 47'	15	1964	
A2435	Skeerpoort	250 521	270 47'	93	1954	
A2H38	Waterkloof Oncer	250 44'	270 12.3/4.	17	1970	
A2M39	Waterkloof Bo	250 43'	270 11.1/4'	3,6	1971	
A2443	Riverside Spruit	250 47.1/2'	230 02*	24	1771	1973
A2447	Klein Jukskel	260 04'	270 58.1/41	65	1971	
A2153	Sterkstrom	259 48.1/2'	2/9 28.1/21	88	1973	
A2454	Hartbeesspruit	259 41'	230 17.1/4'	35	1992	
×2156	Steenoondspruit	250 44'	230 10.3/4'	10	1962	
		250 441	230 10*	66		
A2157	Skinnerspruit				1932	
A3M16	Wilgeboonspruit	250 35.3/4'	250 13.1/2	29	1965	
A4M09	Witharkspruit	230 58.3/4'	2/9 43'	10	1980	·
70:70	Badselcop	240 34.1/2'	280 38.1/2*	70	1954	
NG-11	Groot-W1	240 45.1/2'	290 20.3/4"	73	1966	
YEN18	Rasloop	240 46.1/4"	290 21.1/4'	12	1973	
YEA73	Hessie se Water	240 39.3/4*	290 27.1/4'	16	1973	
A6-20	Middelfonteinspruit	249 40.1/4'	280 33.3/4'	٤4	1973	
A621	De Wetspruit	240 381	280 35.3/4'	16	1973	•
A6422	Rartebeeslaxyte- spruit	240 361	280 36.1/2'	1,7	1973	
10:24	Kootjie se Loop	240 18.1/2"	280 54.1/2	23	1973	l
A97.22	Putshindudi	220 54.1/2"	300 31.3/4"	95	1931	1
ASMOS	Tshinane	220 53.3/4"	300 31.1/2"	62	1931	1
A9:406	Livhungwa	230 02.1/4	300 16.3/4"	16	1951	1
29:07	Latonanda	230 03.1/4"	300 14.3/4"	47	1951	i
B65:02	Treur	249 41'	1 300 491	97	1909	1939
B6M03	Treur	240 41.1/4"	300 43.3/4"	92	1959	1
86%06	Kransklocispr*.t	240 55.1/2	300 32.3/4'	<u>.</u>	1953	
B6M07	Vyehoek	240 43.1/4"	ŧ	85	1971	<u> </u>
B7M02	Ngvabitsi	240 05.1/2			1948	
TB7M03	Selati	240 07.1/2			1948	1973
B7:06	Ngotso	240 081	310 42.3/4"	·	1952	1951
B7H14	<u>}</u>	240 67.1/2				1.551
	Selati	· · · · · · · · · · · · · · · · · · ·		83	1973	
B8::05	Broederstroom	230 43.1/2	·	17	2948	1956
B3M26	Broederstroom	230 51'	290 56.3/4	1	1943	
B8M12	Hadkeleni	230 44'	300 04.1/4	1,15	1951	
C2120	Rlip	260 111	270 491	45	1 1952	1964
C2M23	Wonderfonteinspruit	260 13.1/2	270 44.1/2	83	1957	
C2+26	Middelvleispruit	250 14'	270 40	25	1957	1
C2:27	Kooksoordspruit	260 14'	270 39.	4,3	1957	•
C2+28	Pietfonteinspruit	260 14.3/4	270 35.1/2	31	1957	1
C2M30	Oog van Wonder- fontein	269 18.3/4	270 29.1/4	0,83	3.957	1
С2+33	Buffelsdoring- spruit	260 26.1/2	270 19.1/2	21	1957	1971
C2M34	Blyvocruitsigspruit	250 24.1/4	2/0 24.1/4	1 19	1957	1966
C2:436	Rietvalleispruit	260 23.3/4		7,6	1957	1963
C2+137	Du Toitspruit	260 27.1/2	· 2/0 03.1/4	• 71	1957	1953
C2+38		260 16.3/4		13	1957	
C2-51		260 26.1/4			<u>+</u>	
C2:52		260 24.3/4			1966	
С2н62	fontein	250 24.1/4	· · · ·	1,4	1990	
105:021		299 431	259 14.3/4	+	- <u></u>	
	-i					
0121	Kgabanyane	290 17.1/4	260 55.1/4	38	1583	<u> </u>

Station No	River	Latitude	Longitude	Area Icm²	Start Date	Date Closed
D2415	Caledon	280 35.3/4"	250 36'	83	1959	
D4M03	Swartbas	250 43 .	200 01.1/2*	70	1941	1318
D424	Folopo-oog	250 531	250 01.1/4'	22	1955	
E17:02	Tee ·	320 47.3/4"	19° 05'	45	1938	1943
E1%03	Noordhoeks	329 42.3/4*	1yº 04'	68	1933	1943
ELM04	Boontjies	320 37.3/41	190 04.1/2.	61	1938	1943
E2M05	Kleinbrak	310 56*	45.1/2'	85	1923	1947
E 2M06	Kruis	330 09.	190 22.1/41	40	1929	·
E2M10	Kruis	330 66.3/4.	190 23.1/2"	77	-	
10،1D	Wenners	330 501	130 05.	85	1903	1922
C17:03	Franschhoek	330 53.1/2'	190 04.3/4"	40	1949	
G1M04	Berg	330 55.1/2'	190 03.3/41	70	1949	
G1W09	Brakkloofspruit	330 23.1/41	190 10.1/4'	5,7	1954	
GIH10	Knolvleispruit	330 23.1/2"	190 09.1/21	10	1964	
G1M11	Watervals	330 22.3/4'	190 051	27	1954	
G1M12	Watervals	330 21.1/4"	190 06.3/4'	36	1964	
C1×13	Banghoek	330 54.3/4'	180 56.1/2"	25	1963	
G1/21	Klein-Berg	330 11'	190 09.1/4"	19	1968	
G1729	Leeu	330 09.1/2"	190 031	36	1972	
C1×30	Kron	330 37.1/2'	190 05'	12	1969	
51432	Ben thoek	330 57.1/4	180 58.3/4"	7,5	1975	
GLAGS	Banghoek	330 56.3/4'	18° 58'	11	1975	
G1437	Kras	330 37.3/4"	180 59,1/2'	69	1978	
GIM38	Walvehoek	330 56.1/2'	190 02.1/2'	-17	1978	
G1H39	Doring	330 32.1/2"	180 55.1/2'	43	1978	
G1M40	Vis	330 21.1/2'	180 57.1/2'	39	1979	
G1M41	Kompagnjies	330 28.3/4"	180 58.3/4"	121	1979	
G1M42	Banghoe':	<u> </u>	-	7,6	1980	l
G2M01	Planke brug	330 54.1/4"	180 51.1/4'	70	1934	1937
C2/05	Jonkershoek	330 58.1/2"	100 56.1/4'	31	1940	
G2408	Jonkersnoek	330 59.1/4"	180 57.1/4'	20	1947	· ·
G22116	Lourens	340 05.1/4"	180 51.1/2'	92	1970	l
G2M17	Veldwagters	330 54.1/2"	180 471	0,35	1971	<u> </u>
C2:13	Silverstroom	330 35.	180 21.3/4"	26	1974	
G3M05	Papkuils	320 391	180 38'	86	1973	<u>.</u>
	Jakkals	340 10.	190 081	2,0	1954	<u> </u>
G4H10		340 10.1/2		6,7	1964	
GUNII		340 07.1/2		63	1365	1975
G4M13		340 09.3/4	190 081	2,1	1965	<u> </u>
CSHC6		340 31*	190 58.1/2'		<u>.</u>	<u> </u>
ETWO4			190 20.1/2"	+	1928	+
ELM05			190 19.1/4'	<u> </u>	1950	1952
812407		330 341	190 09'	84	1950	<u> </u>
HIMII		330 38.1/2			1953	1954
ELM13		330 21.1/2		53		
81914			190 24.1/2	t	1965	
BIN16		330 25.1/4		<u> </u>	<u>i</u>	1973
ELM17		330 441	190 071	61	1969	
BLM19		330 35.1/2		66	1969	
81220	Earthees	330 33.1/2	190 26'	13	1972	<u> </u>

•.

TABLE 5.1 : DIRECTORATE OF	WATER AFFAIRS -	RIVER GAUGING	STATIONS (<100 km ²)

Station No	River	Latitude	Longitude	Area km²	Start Date	Date Closed
H2M05	Rocielsclocf	330 27.1/21	190 37'	15	1969	
H4M03	Vink	330 41.1/3"	190 43.1/4.	5/	1931	1947
844:05	Willen Nels	230 45.3/41	190 52'	24	1950	!
H4M07	K 00	330 38.1/4'	190 49.3/41	43	1965	
H4M09	Hoeks	340 00.1/2.	190 50.1/41	18	1967	
84510	Houtbaais	330 59.1/2"	190 49.1/4"	25	1967	1977
84M12	Waterkloofspruit	330 57.1/4'	190 35.1/4	14	1959	
84M15	Houtbaais	330 59.1/2'	190 49'	25	1978	
85503	Boesnans	340 02.1/2'	158.3/41	25	1959	[
E6M04	Baviaans	340 031	190 33.1/21	34	1949	1963
B6M05	Baviaans	340 01.3/4'	190 33.1/2'	24	1963	
R6MD6	Elanda	330 58'	190 27.1/2'	56	1964	
B6MC7	Du Toits	330 56.1/2'	190 10.1/4'	46	1964	
B6NOS	Piviersonderend	340 03.3/4'	190 04.1/4'	38	1964	[
B6M10	Waterkloof	330 591	190 19.3/4	25		
			190 17.1/2	13 11	1969	
85:11	Waterkloof	340 05.3/4"			1974	1948
872:02	Puis		200 45'	16	1938	1948
872:04	Puis	330 54.3/4"	200 42.3/4*	28	1951	[
87805	Eermitage	330 59.1/4'	200 25.1/2'	9,0	1954	
H7K07	Grootkloof	340 00.1/4"	200 33*	24	1958	
E9:01	Kalferkuils	349 01.1/2'	210 24.1/2	27	1955	1958
R9M02	Vet	340 00.3/4"	210 12'	89	1953	
E3733	Korinte	340 00.1/4"	210 10'	37	1963	1964 .
E9M04	Kruis	340 00.3/4"		÷	1969	
31915	Bok	330 21.1/4'	j	<u></u>	1974	
370-16	Shelblear	330 17.1/4	↓	<u> </u>	1974	
32406	Wilgehaut	330 29.1/2.		; 	1955	
32407	Joubert	330 29.1/2"		<u> </u>	1955	
33805	Rlip	330 46.1/2.			1925	1947
23%73	Perdepoort	330 22.1/4	· · · ·	÷	1966	
33:15	Klein-Leroux	330 25.1/2		<u> </u>	1966	
33H16	Wilge	330 32.3/4		32	1957	
J3M20	Meul	330 27.1/2	210 57.3/4	35	1974	[
J4%23	Weyers	340 021	210 35.1/4	95	1955	
34H04	Langtou	330 59.1/4	210 46.3/4	99	1967	<u></u>
K1M32	Beneke	330 56	220 08	3,8	1958	<u> </u>
K2M01	Groot-Brak	330 56*	220 10'	45	1952	1958
R3M02	Pooi	330 56 .	220 27.3/4	1,0	1961	<u> </u>
K3M04	Malgas	330 571	220 25.1/2	34	1951	<u> </u>
X3405	Tours	330 56.3/4	• 220 36.3/4	• 78		
נמאכא'	Gouna	330 59.1/2	230 02.1/2	• 91	1959	
K7H01	Bloukrans	330 57 1.4	1 230 38.1/2	• 57	1961	<u> </u> .
K8#21	Kruis	330 59.	240 01.1/4	• 26	1961	
Kano	2' Elands	330 591	240 031	35	1961	
Letio	l Wabooms	330 52'	230 50.1/4	• 21	1965	· ·
LBMO	2 Haarlenspruit	330 44.1/4	230 18.1/4	• 52	1970	
C2 KC	1 Kramspruit	329 29.1/2	250 48.1/2	52	1 1927	1947
0 8M0	3 Naude's	320 43 .	250 391	54	1955	1965
C 9%6	7 Ealfour	320 33.1/	1 269 40.1/	1 82	1928	1943
C98:0	9 Markazana	320 39.1/	1 250 41.1/1	21 75	1928	1938
C9M1	J Lap	330 21.1/4	1 260 51.3/	1 46	1563	
5 (SSP1	9 Palfour	320 33.1/	1 250 40.2/	1 70	5 197	2

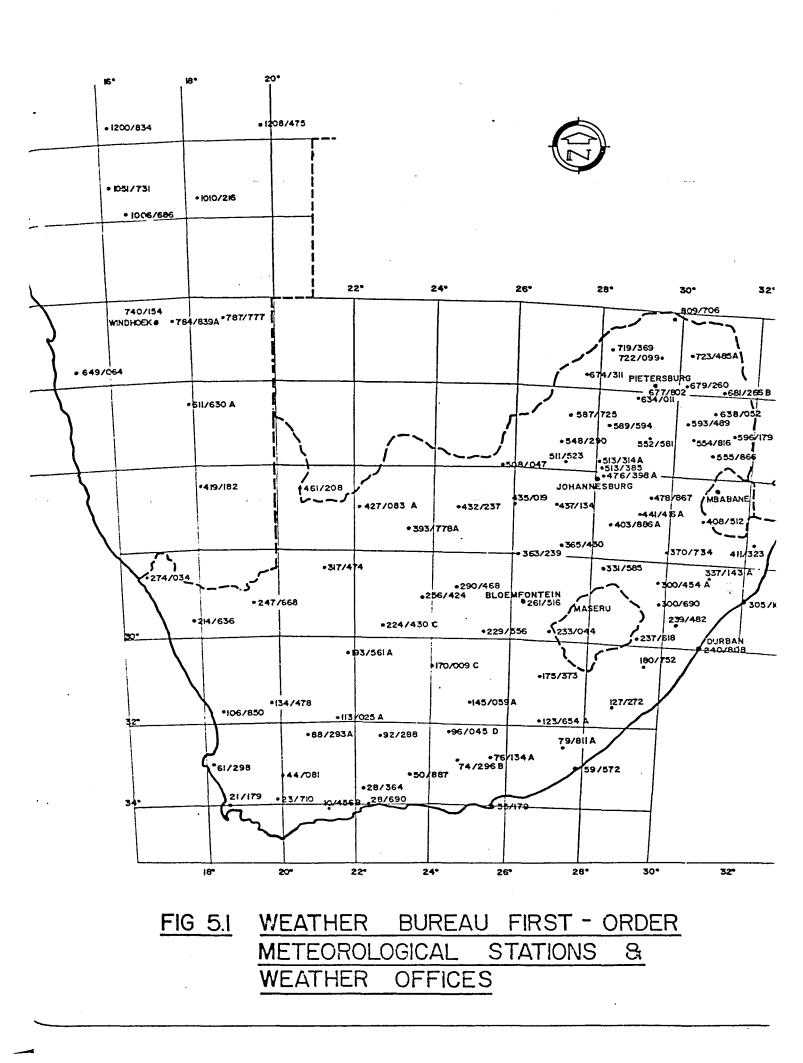
.

Station No	River	Latitude	Longitude	Area km²	Start Date	Cate Closed
RIM06	Rabula	320 45.2/41	270 66.1/4	100	1943	
RLM07	Mtwaku	320 38.1/41	279 11.1/21	33	1948	
PLM28	Ngalongalo	320 38.1/4"	270 11.1/4'	39	1948	
214:09	Welf	320 43'	270 06.1/4	57	1948	
PIM10	Quiliquili	32º 40'	270 12.1/4'	31	1948	
71411	Knyameni	320 39.1/4'	270 05.1/41	43	1948	
RIM12	Cata	320 38.1/4'	270 06.3/4	56	1948.	
RIM14	Туше	320 38.1/4"	250 56.1/4.	70	1953	
R2M01	Buffalo	329 441	270 17.3/4'	29	1919	
R2M04	Tyusha	320 45'	270 18.1/2.	12	1941	1952
R2M07	Zele	320 46.3/41	270 23.1/4"	82	1947	
R2%28	Quencie	320 46'	270 22.1/2*	61	1947	· ·
R2H12	Mggahvebe	320 47.1/4"	2/0 15.3/41	15	1959	
R2413	Pnoqesha	320 48.3/41	270 11'	8,6	1950	
รระงา	Lubisi Strem	310 47.1/2'	2/9 27'	8,4	1970	
541201	Cathcartspruit	320 17.1/4"	27º C3.1/4'	6,0	1947	1957
SEM01	Kubusi	320 34.3/4"	2/0 22'	90	1947	
75108	hvupukazi	300 16'	29° 53.3/4'	42	1952	
T7M02	Koazana	310 37.3/4'	290 12.1/4'	73	1967	1958
02408	Inkwaleni	290 37.1/4'	300 16.1/2'	9,6	1957	
02409	Tenjaan	290 37.1/4'	300 14.3/4'	8,1	1957	
02410	Msindusaan	290 37.1/21	300 14.1/2"	30	1957	
02M17	Rietspruit	290 33.3/4'	300 15.1/4'	3,6	-	
C2M19	Rietspruit Trib.2	290 32.3/4'	300 16.3/4'	0,06	-	
02/20	Rietspruit Trib.3	290 32.3/4"	300 16.3/4'	0,10	-	L
02*21	Cramond	290 25.1/4'	300 25.3/4"	4,3	1981	
04203	Elizbitwa .	290 00.1/2'	300 47.2/41	49	1956	1976
04.94	Nselení	290 01.	309 47.	11,5	1956	1976
07:01	Zwateni	290 50.3/4'	300 14.1/4"	16	1949	ļ
נמאדט	Lovu Trib. 1	290 50.1/2'	300 16.1/2	0,28	1955	1973
072.04	Lovu Trib. 2	290 50.1/2"	300 16.1/4'	0,31	1962	1973
07805	Lovu. Trib. 3	290 50.1/2'	300 16.1/4	0,57	1962	1973
U7M06	Lovu. Trib. 4	290 50.3/4		0,28	<u> </u>	1973
VIEII	Bloukrans Trib. 11				<u>+</u>	·
V1M13	Blockrans Trib. 15		<u>i — — — — — — — — — — — — — — — — — — —</u>	C,10		<u> </u>
VIEI4			299 38.1/4	- 	+	
VIMIE			<u>+</u>	0,04	1	
V1H17 V1H18	Bloukrans Trib. 13		+		1	
V1-18		230 59.1/4	+		1962	
V1+29		280 30.1/2	+	0,21	1967	- <u> </u>
VIM30		280 30.3/4	· †		1968	
V1+32		280 39.1/2		69	1 1974	+
VINJA		280 40.1/2			1974	
V2M03		290 13.1/2		42		
V7r.04		290 03.1/2				
V77:05		290 C2.1/4	290 39'	25	1962	:
V7P.36	Klein-Boesmans Trib. 20	290 02.1/2	290 39.3/4	• 0,4	4 1962	2
V7H07	Klein-Boesmans Trib. 21	299 02.1/2	290 32.1/2	' 25	1962	2
V7%08	Ricin-Boesmans Trib. 24	290 03.1/4	290 391	2,8	1963	2

TABLE 5.1 : DIRECTORATE OF WATER AFFAIRS - RIVER GAUGING STATIONS (<100 km ²)

Station No	River	Latitude	Longitude	Area kt.2	Start Date	Date Closed
₹0.47۷	Klein-Boesmans Trib. 26	299 02.1/4'	290 38.1/2'	0,49	1962	
V7M10	Flein-Boesmans Trib. 28	290 02.1/4'	290 39'	0,08	1962	
נגאלא	Klein-Boesnans Trib. 27	290 02.1/4'	290 38.3/4'	0,28	1962	
V7HL4	Klein-Boestans	290 02.3/4'	290 391	0.83	1967	
V7:115	Klein-Boesnans Trib. 31	290 02.1/3*	290 39.1/2"	0,10	1957	
WINC3	Novalini	230 431	310 31'	62	1923	1931
W1H34	Malazi	280 52.1/2'	310 27.1/2'	20	1948	
W12:05	Muluzone	259 34.1/41	310 23.1/2"	45	1948	
W2M07	Bizankulu	270 57.1/21	310 11.1/2.	78	1955	
M3M70	Mbazwana	270 29.1/21	320 351	10	1968	
W3M14	Ppate	289 20*	320 21.3/4"	48	1969	
WENDS	Braksloot	270 23.3/41	310 39.1/2*	3	1972	
WSHO1	Jessievale Spruit	250 15.1/2'	30° 33'	16	1910	
NSK16	reindisi	260 19.1/4'	300 31.1/2"	6	1963	
X1:10	Eaveriontein	250 00*.	300 05.1/2	23	1954	1
X1=15	Shivalongubo	250 45.1/2"	310 15.1/4'	34	1959	
XTX30	Poponyane	250 50.1/4'	300 41'	43	1973	
X2H12	Dewson's Spruit	250 39.1/2'	300 15.1/24	91	1956	
X2/24	Suidkaap	250 42.3/4'	300 501	80	1954	•
X2*25	Eoutbosloop	250 17.1/2'	300 34.1/4"	25	1966	
X2*26	Pesearch	250 17.1/41	300 34.1/2'	14	1955	
X2:27	Blystaanspruit	250 17.3/4"	30° 35.3/4'	78	1955	
X2528	Kantoorbosspruit	250 17.3/4'	309 341	5,7	1966	
X2Y29	Visspruit	250 281	30° 49.1/4'	30	1964	
x2430	Suidkaap	250 431	309 47.1/4	57	1956	
X3M02	Klein-Sabie	250 05.1/4'	300 46.3/41	55	1948	
X3::03	rac-rac	240 59.1/2'	300 48.3/4.	52	1943	
X3::07	White Waters	250 09.1/4'	310 00.1/4	40	1963	1972
X3H10	Pearitsi	240 53.1/4'	310 02.3/4	97	1975	
X4.03	Metzimitsi	240 42'	310 56.3/4	27	1952	1961

5.2 Weather Bureau


The Weather Bureau is responsible for the accumulation and processing of meteorological statistics such as rainfall, temperature, wind and humidity. The Weather Bureau is also responsible for supplying daily weather forecasts.

In order to provide this service, the Weather Bureau has at present about 2 600 meteorological observation stations throughout South Africa. Rainfall is recorded continuously at about 100 of these stations, (Fig 5.1). Other meteorological parameters are also measured at these stations. At the remaining stations, rainfall is usually measured on a daily basis. The earliest of the stations was established in the 1850's.

The recorded data are stored on computer tape. The processed data have also been published in monthly and yearly reports and in a series of publications on the "Climate of South Africa". Published reports include information on long-term normal rainfall, mean temperatures, sunshine hours and surface winds. Access to the processed data may be had through the Weather Bureau, whereas published data are also available in the larger public libraries and those of the universities.

Address : Chief Director: Weather Bureau Climatological Information Private Bag X97 PRETORIA 0001 (012) 290-8025

Telephone :

5.3 Port Elizabeth Municipality

The City Engineer's Department, Roads and Stormwater Division is responsible for the design and maintenance of roads and stormwater systems in the Port Elizabeth Municipal area.

The municipal area embraces five river systems having catchment areas of between 10 and 100 km². A network of 12 automatic rainfall recording stations has been established. The recorders are all of the Casella tipping bucket type and the period of record is 5 years. Data on large storm events recorded from 1938 are also available.

The recorded rainfall data are processed by the Council and are being stored on ICL- compatible computer tapes. Access to the data may be had through Port Elizabeth City Engineers Department.

The processed data have been used, amongst other things, to prepare Intensity-Duration-Frequency Curves for the Port Elizabeth area.

Contact Person	:	Mr J McGillivray
Address	:	City Engineers Department
		POBox7
		PORT ELIZABETH
		6000
Telephone	:	(041)52-2080

5.4 Durban Municipality

30

The Hydraulics Branch of the City Engineers Department is responsible for the design of major stornwater systems in the Durban Municipal area. This area is spread over a large number of catchments with some streams rising outside the Municipal area.

A network of 16 automatic tipping bucket rain gauges covers most of the Municipal area. The gauges have been linked to a telemetry system to facilitate data collection and processing. The system has not been fully assembled and therefore very little recorded information is available as yet. Flow gauging on one catchment is planned for 1985.

Further information may be obtained from the Hydraulics Branch of the City Engineers Department.

Contact Person : Mr M W Pfaff City Engineers Department P O Box 680 Durban 4000 Telephone : (031) 69946

5.5 Johannesburg Municipality

The City Engineers Department of the Municipality of Johannesburg maintain 19 automatic rainfall recording gauges located throughout the greater Johannesburg area. The purpose of the monitoring programme is to provide storm rainfall input for design purposes.

The earliest rainfall recorders were installed in 1964. A further 7 recorders were installed in Johannesburg in 1983. All of the above recorders are of the Lambrecht Siphon type.

The recorded information is processed by the Municipality and is stored on computer tape. The data may be accessed through the Municipality. Contact Person : Mr R J Rutter Johannesburg Municipality Addresses : City Engineers Department Design Branch P O Box 4323 JOHANNESBURG 2000 Telephone : (011) 777-1111

5.6 Durban-Westville University

The Geography Department of the University of Durban-Westville is undertaking a monitoring programme in the Palmiet River Basin. The purpose of the study is to determine the water quality parameters of an urbanized catchment.

The Palmiet river is a tributary of the Umgeni river. The monitored catchment is $35,4 \text{ km}^2$ in extent and is located in the Pinetown area north of Durban. Almost the entire western portion of the catchment has been developed for industrial and urban use. The remainder of the catchment is a residential area.

The Palmiet study catchment contains 4 subcatchments. An extensive network of gauges has been established throughout these subcatchments and include :

- a continuous rainfall recorder
- three standard rainfall gauges with readings taken daily
- A Pan and Symons type evaporation pans
- maximum and minimum thermograph with measurements taken on a hourly basis
- twelve water samplers to determine the water quality.

The overall period of record for the above stations is 10 years. Most of the data is on data sheets. The water quality data has been computerized. The data may be accessed through the Department of Geography.

. . .

Contact Person	:	Prof G Du T De Villiers
Address	:	Geography Department
		University of Durban-Westville
•	:	Private Bag X54001
		Durban
		4000
Telephone	:	(031) 821-211 Ext. 320.

5.7 Pilanesberg Game Reserve

The Pilanesberg Game Reserve was proclaimed as a nature conservation area in 1979 and covers some 600 km². An intensive programme of land rehabilitation and game restocking has been undertaken.

To assist the programme, an extensive network of rainfall, evaporation and temperature gauges was established. Readings are taken on a daily basis in most cases, the remainder on a weekly basis. No runoff gauges have been installed.

The data are used to examine soil erosion hazards and to establish the veld carrying capacity.

The recorded data may be accessed through the Pilanesberg Game Reserve authorities.

Contact Person	:	Mr H D Patrickson
Address	:	Pilanesberg Game Reserve
		Research Section
		P O Box 1201
		MOGWASE
		0302
Telephone	:	(014292) 2405

5.8 Rand Water Board

The Rand Water Board was established in 1903 for the purpose of distributing potable water to an area presently covering about 17 000 square kilometers. The area extends from Pretoria in the north to Sasolburg in the south, and from Bethal in the east to Carletonville and Rustenburg in the west.

The Board abstracts nearly all its water requirements from the Vaal Dam and the Vaal River Barrage, with a small quantity being abstracted from boreholes at Zuurbekom pumping station. The water quality of the abstracted raw water is of concern to the Board in terms of its influence on purification costs. An extensive network of monitoring points has therefore been established on streams contributing flow to Vaal Dam and Vaal Barrage.

There are about 60 sampling points located in the Blesbokspruit, Elsburgspruit, Klipriver, Natalspruit and Rietspruit systems. A further 13 sampling points are located in the Vaal River Catchment upstream of Vaal Dam. Water samples are taken from the sampling points on a regular basis. The discharge is also noted. At major sampling stations, of which there are 6, flow recorders have been installed. The Board also has an extensive rain gauge network to facilitate water demand predictions. Rainfall is measured on a daily basis.

The analysed data are presented in the Annual Reports produced by the Board. Data sheets and flow charts are disposed of after a number of years.

Contact Person : Mr J Jones Mr S van der Merwe Address : Chief Engineer Rand Water Board P O Box 1127 JOHANNESBURG 2000 : (011)833-6650

Telephone

5.9 Phalaborwa Water Board

The Phalaborwa Water Board was established in 1963 to supply water for mining, industrial and domestic purposes. The main source of supply is the Olifants river. Storage is provided by a barrage constructed 16 km south of Phalaborwa.

The Board is particularly concerned about the quality of both the abstracted water and the effluents returned to the Olifants river. Two monitoring stations have therefore been established viz at Olifantsrivier near Mica and at Phalaborwa. Both catchments are about 47 000 km² in area and are therefore not suitable for inclusion in this report. Extensive records are however available for both stations and details can therefore be obtained for the catchment located between the two stations. A brief description of this area (called the Phalaborwa catchment) follows.

The Fhalaborwa catchment area is 58 km² and land use is predominantly grazing veld. Rainfall and evaporation has been recorded since 1967. River flow is measured daily at the Barrage (since 1967), the control being calibrated sluice gates and outlet valves. Daily water samples are taken to establish the chemical content, and sediment load, the latter record being since 1974 and the former since 1967.

The above data are available on the original data sheets and may be accessed through the board.

Contact Person	:,	Mrs I M Retief
Address	:	Phalaborwa Water Board
		Private Bag X01014
		PHALABORWA
		1390
Telephone	:	(01524) 5821

5.10 Fort Hare University

The Faculty of Agriculture of the University of Fort Hare in the Eastern Cape is monitoring the runoff from an 80 ha catchment. The monitoring programme was initiated in 1981 to determine runoff yields from small catchments to aid design of rural development schemes.

The catchment is located about 30 km south of Fort Beaufort on the Grahamstown road. It is relatively steep and the vegetation consists mainly of mixed veld and shrub. The catchment is underlain by the Ecca series. There are two dams in the catchment. The upper dam has a storage capacity of 4 000 m³ and the lower dam 41 000 m³.

Recorded information includes rainfall and runoff volumes, both on a daily basis. Runoff volumes are determined by measuring the levels in the lower dam.

The recorded data are stored on data sheets. Access to the available catchment and hydrological data may be had through the Faculty of Agriculture, Fort Hare University.

Contact Pe	erson :	Prof M D Radford
Address	:	Faculty of Agriculture
		Fort Hare University
		Private Bag X1314
		Alice
		5700
		Republic of Ciskei
Telephone	:	(043) 522-281

5.11 Ciskei Department of Agriculture and Forestry

The Department of Agriculture of the Ciskei Government is responsible for the development of Agricultural Schemes throughout the Ciskei. To assist the analysis of peak runoffs and runoff yields, a large network of flow recording stations have been developed.

The stations were originally established by the South African Department of Water Affairs, who are still responsible for the processing of the recorded data. Since independence of Ciskei, two additional monitoring programmes were initiated on small catchments (Cata Catchment and Sandile Catchment).

The Cata catchment has its outlet at the Cata Dam Reservoir. Water levels are recorded on a weekly basis. Continuous recorders are provided at the spillway and on a weir some 900 m downstream of the dam. The weir commands an additional catchment area (other than the dam catchment area) of $1,3 \text{ km}^2$. Information on peak runoff estimates from a $1,3 \text{ km}^2$ catchment are therefore possible.

The Sandile Catchment has its outlet at the recently constructed Sandile dam. A hydrological recording station measuring rainfall, runoff, evaporation and temperature will be established at the dam. The monitoring programme will commence in 1985.

The above catchment and hydrological information may be accessed through the Department of Agriculture and Forestry, Ciskei Government.

Contact Person	:.	Mr D Walters
Address	:	Department of Agriculture and Forestry
		Engineering Branch
		Private Bag X501
		Zwelitsha
		5608
Telephone	:	(0433) 4525

5.12 Transkei Department of Agriculture and Forestry

The Department of Agriculture and Forestry, Government of Transkei is responsible for the development of rural water supply schemes, agricultural and forestry projects throughout Transkei. A network of flow gauging on major river stations has been established for the evaluation of available water resources.

The existing gauging network consists of 25 stations, of which 19 were established by the S A Department of Water Affairs (DWA). Since the independence of Transkei, the responsibility of managing the monitoring programme has passed to the Transkei Department of Agriculture and Forestry.

Unfortunately, due to shortages of technical staff, data collection, since 1979 has been erratic. The situation, after 1983, has improved with the appointment of professional and technical staff in the hydrological sub-section.

Information regarding hydrological data can be obtained from the Department of Agriculture and Forestry, Transkei Government.

Contact Person	:	Mr P N Mbokodi, (Secretary General)
		Mr B Mian, (Hydrological Engineer)
Address	:	Department of Agriculture & Forestry
		Engineering Branch
		Private Bag X5002
		UMTATA
		5100
•		TRANSKEI
Telephone	:	(0471) 249430
Telex	:	TT701

6 CONCLUSIONS

- A Questionnaire survey was used to identify:
 - . sources of small catchment hydrological data
 - . type of data collected
 - . hydrological data requirements of end users
 - . flood estimation techniques currently in use.
- Of the total of 284 questionnaires distributed (excluding duplications and complimentary copies):

(66% of those sent)

(71%) } of those returned

(28%) (14%)

- . 189 were returned
- 53 answered no to all categories
- . 26 collect hydrological data
- 135 use hydrological data
 - 106 use flood estimation techniques (56%) }
- Twenty-six organizations collect hydrological data on over 120 small catchments. Fourteen organizations monitor both rainfall and runoff on 109 catchments.
- Most of the monitored catchments are located in rural areas. Four of the catchments have been extensively developed.
- Of those organizations using hydrological data, runoff and rainfall parameters are most frequently required followed by other climatic information and water quality aspects.
- A variety of flood estimation techniques is currently being used, the Rational method being the most extensively adopted. The SCS (U.S.D.A. Soil Conservation Service) and Time-Area methods are also in frequent use.
- A Small Catchment Data Bank has been established. It contains information on 109 selected small catchments.
- Information on other relevant monitoring programmes is given.

. .