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EXECUTIVE SUMMARY 
 

BACKGROUND 
The impacts of commercial trees on South Africa’s water resources is a topic of significant concern to many 
from varying points of view, from policy and decision makers, to the forestry industry and stakeholder 
concerned about the impacts at their local scale. In particular, the ongoing disputes surrounding genus 
exchange has resulted in increased conflict surrounding the impacts of commercial forestry on water 
resources. Under the National Water Act of 1998, the use of land for commercial afforestation is a 
streamflow reduction activity (SFRA). The tools used in the SFRA assessment have developed over time. The 
most recent prior to this project, was the development the SFRA Assessment Utility to assist in water use 
licensing by Jewitt et al. (2009). The SFRA Assessment Utility provided estimates of reductions at a finer 
scaler and an improved consideration of low flows. However, as the regulation of afforestation needs to be 
achieved within an environment that is continually changing and evolving with regard to legal, social and 
biophysical characteristics, an update to the SFRA Assessment Utility was required to address and include 
the following, 
 

- The utility estimates the streamflow reductions of three commercial forestry species, namely Pinus 
patula, Eucalyptus grandis and Acacia mearnsii. However, as the forestry industry currently uses 
more than 40 species, hybrids and clones, there is a pressing need to expand the knowledge on the 
water use of the different species, clones and hybrids used by the forestry industry. 

- Update the hydrological baseline against which the impacts of afforestation are assessed to the 
CWRR clusters as developed by WRC project K5/2437 (Toucher et al., 2020). 

- As Leaf Area Index (LAI) was used to determine the water use parameters for the CWRR clusters, 
expand the LAI database for the commercial forestry species.  

- Include into the SFRA Assessment Utility the updated quinary catchments climate and soils 
database, as well as updates to the ACRU model.  

 
The outcomes of the project are captured in two final reports, Deliverable 8 which details the field-based 
studies to expand the knowledge of the water use of different commercial tree species and this Deliverable 
9 which details the updates and advances made to the inputs and parameters used in the ACRU model runs. 
The outputs of the ACRU model runs are contained in the updated SFRA Assessment Utility. 
 

PROJECT AIMS 
The following were the aims of the project: 

1. To expand the knowledge of the estimates of water use of different clones and hybrids of eucalypt, 
wattle and pine species (e.g. clones/hybrids most commonly used, clones/hybrids planted in 
optimal sites). 

2. To address shortcomings in the availability of leaf area index information for different SFRA species, 
clones and hybrids. 

3. To improve existing tools used for the estimation of the impacts of SFRA through the inclusion of 
improved soils data and baseline land cover data, as well as the inclusion of the latest process 
results related to water use (i.e. evapotranspiration) of SFRA clones, hybrids and species. 

 
The outcomes, findings and products of the project are comprised of two final reports. This document 
details the research that contributes to the SFRA Utility to address Aims 3 and 4, while the other deliverable 
speaks to Aim 1, which focuses on the improved water use estimation of SFRA species. 
 
Given the structure of the report as stand-alone Chapters, a summary of each is provided. 
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CHAPTER 2: MAPPING SOIL HYDROLOGICAL ATTRIBUTES AT 
TERRAIN UNIT SPATIAL RESOLUTION FOR THE 
SOUTH AFRICAN PRODUCTION FORESTRY 
INDUSTRY

The soils used in the quinary catchments database, prior to this project, were based on the Agricultural 
Research Council (ARC) and Institute for Soil-Climate-Water (ISCW) division of the country at 1 in 250 000 
scale into zones of similar broad soil categories referred to as land types.  Any particular land type is made 
up of many different (although similar) soil series, and with the committee-based knowledge of the water 
holding capacities of the individual soils within a land type, through a process of area weighting, land type 
specific values of the hydrological parameters were derived. With advances in GIS and computing, it has 
become possible to subdivide landscapes in catenal sequences using elevation, slope, aspect and surface 
curvature and spatially identify the position of the terrain unit (i.e. crest, scarp, mid slope, foot slope and 
valley floor). As the ARC not only included the breakdown of land types as a whole by ratio of soil series, 
but also the percentages of each catenal sequence in the land type, as well as the soil series percentages 
for each catenal stage, the soil series per terrain unit was identified as well as the location of each terrain 
unit. Thus, the country was divided into small homogeneous areas of, for example, crests, mid slopes, with 
their associated soil mixes. 

For the key soils physical attributes of
- Thicknesses of Topsoil and Subsoil Horizons
- Soil Water Content at the Soil’s Permanent Wilting Point 
- Soil Water Content at the Soil’s Drained Upper Limit
- Soil Water Content when Soils are at Total Porosity
- Saturated Redistribution Rates

Algorithms and working rules were established to determine the parameters for each terrain unit and its 
associated Land Type soils series. 

The outcome was that significant spatial information gain was obtained when using TU level information 
compared with the use of Land Type information (Figure A), which has aggregated and, as such, has area-
averaged much the detail available on the soils of South Africa. 

Figure A: Example of the spatial information gain when utilising terrain unit information (left) 
compared with detail when using area-averaged Land Type information (right map: Schulze and Horan, 

2008)
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CHAPTER 3: INVESTIGATION OF THE POTENTIAL USE OF THE 
ROOT ZONE STORAGE CONCEPT 

 
This chapter did not speak directly to the aims of the project but was supplement and undertaken to 
potentially advance knowledge related to an alternative approach to modelling the root zone. The question 
addressed was “Can the root zone storage concept be used to determine the root zone storage capacity 
and thus the soil depth under commercial tree species?” 
 
Soil and rooting depth are key parameters in hydrological and land-surface modelling; however, the 
distribution of soil and rooting depths are largely unknown due to the difficulties in measurement and the 
high variance between soil type, plant species and combinations thereof within modelling units. A common 
trait amongst many plant species is a deep complex rooting system. The rooting systems are essential in 
the determination of the soil pedogenesis, soil water partitioning and soil chemistry processes. Further, 
research efforts are focused on shallow root systems whist the study of deep root systems are scant, due 
to challenging procedures to observe and measure deep systems. Studies show that the majority of the 
soils are deeper than 1.2 metres and many plants grow beyond this depth. However, the depth of 1.2 
metres is often considered as the maximum soil depth in literature and hydrological modelling, e.g. the 
ACRU model. The misrepresentation of soil and root depths in hydrological models causes uncertainty in 
hydrological prediction and land-surface modelling.  
 
Root-zone storage capacity can be considered as a volume of water per unit area within the range of plant 
roots and available for transpiration. Vegetation survives by extracting plant available water between the 
field capacity and wilting point of their immediate soil, thereby creating a moisture storage volume known 
as the root-zone storage capacity. The vegetative roots structurally adapt to establish an equilibrium 
resulting in the avoidance of water shortage within the ecosystem, whilst minimising root growth necessary 
to avoid water stress. Thus, climate has a strong influence on the hydrologically active root-zone, whist 
periods of drought and flood are critical situations that affect the establishment of the root-zone.  
 
Successful studies have been performed internationally using the root-zone concept but not as yet in South 
African conditions. The most accurate and popular method of estimating the root-zone capacity is using the 
water balance principle. Of the eight current studies using the water balance method, the methods by 
Nijzink et al. (2016), Wang-Erlandsson et al. (2014) and the DiCaSM routine are the most appropriate under 
South African conditions and for the potential use in ACRU. Thus, these were further investigated for two 
well-monitored catchments, viz. the Two Streams and Cathedral Peak Catchment VI.  
 
The ACRU model was set up and calibrated for both catchment using data that is readily available (i.e. 
maximum and minimum temperature, precipitation and streamflow) to identify the weaknesses within a 
common modelling environment. As the purpose was to use commonly available information as a way of 
determining the model adequacy under typical conditions, the observed evaporation and soil moisture data 
that was available in this case was used solely for the purpose of validation and not in the model calibration.  
 
The methodology followed was:  
1. The ACRU model was run using daily observed precipitation and maximum and minimum 

temperatures. Hargreaves and Samani daily was used internally to estimate the potential evaporation. 
The daily observed streamflow was used in the calibration of the model.  

2. As observed, actual evaporation and soil moisture are not commonly available, these were not used 
in the calibration of the model. In the calibration process, only parameters were that were known or 
could be estimated with use of the ACRU manual were adjusted.  

3. The calibration statistics were calculated on the best fit of streamflow obtained only from commonly 
available input data and parameters. Once all the parameters and information that would be 
commonly available for South African catchments were adjusted, the calibration process ceased.  

4. The simulated actual evaporation and soil water was validated against observed data.  
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5. The root zone storage calculations were undertaken with both the observed and the simulated actual 
evaporation, observed precipitation, interception and observed streamflow. This was to test the 
robustness of the methodology to data scarcity.  

6. The observed gravimetric water content, permanent wilting point and field capacity were converted 
to a depth of water using the soil depth before being compared to the root-zone storage capacity. To 
validate the root-zone storage capacity estimations, the estimations needed to be adjusted to reflect 
a water content within the soil profile using the permanent wilting point as the lower limit of the water 
in the root zone. 

 
The results showed that the ACRU model performed poorly at Cathedral Peak VI and more so at Two 
Streams. The streamflow simulations at Cathedral Peak Catchment VI were fair. However, the actual 
evaporation and soil water simulations were poor. At Two Streams the simulation of the streamflow, actual 
evaporation and soil water were all poor. The poor performance could be the conceptualisation of and 
uncertainty with the use of the crop coefficient in the estimation of actual evaporation in the ACRU model 
and consequently the soil water. Added to this, the lack of adequate root depth and distribution 
information, and poor soils data further compounds the poor estimation of the soil water.  
 
Three methods were used to estimate the root-zone storage capacity for each of the catchments, however, 
validation was only undertaken for the Two Streams catchment. Across the soil profile, the root-zone 
storage capacity methods produced better simulation of the soil water than the ACRU model at the Two 
Streams catchment. The goodness of fit statistics showed a poor simulation for all the root-zone storage 
capacity methods and the ACRU simulation compared to the observed data. However, the estimated root-
zone storage capacity methods produced better statistics compared to the ACRU simulation. The estimated 
root-zone storage capacity methods all produce an accurate bias, which indicates that the volume of water 
within the soil profile was comparable to observed values, but the root zone storage capacities were 
substantially more reactive to the rainfall compared to the observed data. The goodness of fit statistics 
suggest that the DiCaSM method produced the best simulation of the observed soil water although all three 
methods produced less variance than the observed data. 
 
The root-zone storage capacity is a core component in determining a dynamic hydrological response and 
could be a valuable concept in improving the development of dynamic models. The concept of root-zone 
storage in hydrological modelling would need to be treated as a dynamically evolving parameter as a 
function of vegetation and climate. The use of the root-zone storage concept within the ACRU model could 
limit the model uncertainty. The method could allow areas of limited soils and rooting data to be modelled 
more accurately and the implication of afforestation be fully understood. However, the study was limited 
to two small catchments and the data used for validation was for a short time. A more spatially and 
temporally explicit study would improve the understanding and confidence in the methodology and 
concept. Although this study has its limitations, it could be considered as proposing a step forward in the 
modelling of soil water in South Africa 
 

CHAPTER 4: THE CWRR CLUSTERS AS A HYDROLOGICAL 
BASELINE 

The previously accepted hydrological baseline against which the impacts of SFRA activities were assessed 
was the Acocks (1988) Veld Types. The Acocks (1988) Veld Types which were mapped at a course resolution 
were agriculturally based, with a veld type defined as “an agro-ecological unit of vegetation whose range 
of variation is small enough to permit the whole of it to have the same farming potentialities” (Acocks, 
1953). The South African National Biodiversity Institute (SANBI) produced a finer scale vegetation map 
(SANBI, 2012) using a “sound theoretical classification of the vegetation of South Africa” that describes and 
maps the vegetation diversity across South Africa, based on the current knowledge of vegetation structure 
and biogeographical patterns (Mucina and Rutherford, 2006). The SANBI (2012) vegetation maps have been 
broadly accepted by numerous disciplines as a good representation of natural vegetation. The WRC project 
K5/2437 (Toucher et al., 2020) clustered the vegetation units of the SANBI (2012) map into hydrologically 
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relevant clusters to which vegetation and water-use parameters, for use in the ACRU model, were assigned 
using a consistent and repeatable methodology. Importantly, the crop coefficients were derived using a 
method which made use of LAI. The recommendation of the project was to assess SFRA impacts relative to 
the CWRR clusters for which consistent vegetation and water use parameters had been determined. 
 

CHAPTER 5: ADDRESSING THE SHORTCOMINGS IN THE 
AVAILABILITY OF LEAF AREA INDEX 
INFORMATION FOR COMMERCIAL TREE SPECIES 

There is an urgent need to more adequately understand and better represent the biophysical characteristics 
of commercial forestry species, hybrids and clones in the tools that are used as decision support systems 
so that their hydrological impacts can be more accurately quantified. For such purposes, Leaf Area Index 
(LAI) is a key parameter as it is often used to characterize vegetation biophysical properties and plays an 
important regulatory role in terrestrial-atmospheric exchanges.  
 
LAI is often a critical data input to various evapotranspiration, hydrological and climatic models. However, 
LAI data is seldom available in SA at spatio-temporal scales that can be used to guide and inform 
management decisions for localised applications due to the challenges experienced with traditional in-situ 
data acquisition approaches. While remote sensing represents a suitable alternative to traditional 
approaches, the global satellite-based LAI products that are used most frequently may be too coarse to 
provide representative estimates of LAI within the various commercial forestry compartments. Statistical 
approaches which utilize satellite-derived vegetation indices (VIs) to estimate LAI have been most 
frequently applied to address this limitation, as VIs can be generated relatively easily at various spatio-
temporal resolutions and are often used in conjunction with or as a surrogate to LAI to account for 
vegetation characteristics. Despite the success and relative simplicity of these approaches, the acquisition, 
storage, processing and analysis of the large volumes of satellite data that are now available can prove to 
be a barrier to users that lack the computational resources and technical skills required to effectively utilize 
this data. With the emergence of geospatial cloud computing platforms and convenient machine learning 
packages many of the aforementioned barriers have now been removed. In light of these advancements, 
we proposed a methodology to acquire moderate resolution LAI (LAIMR) estimates using the Google Earth 
Engine (GEE) cloud computing platform and machine learning.  
 
Fifteen sites distributed within the KwaZulu-Natal and Mpumalanga provinces of South Africa were selected 
as study areas. Coarse spatial resolution MODIS LAI and vegetation index (VI) products were acquired for 
each of these sites to establish the LAI-VI relationship which was then used to develop machine  
learning-based models (MLBMs) to estimate LAIMR using VIs derived from Landsat or Sentinel-2 data. All 
satellite-based datasets were accessed within the GEE platform and were further processed prior to their 
export for further analysis. The caret and caretEnsemble packages available in R statistical software were 
then used to develop and test the MLBMs using these datasets. A mix of simple and complex machine 
learning algorithms which included i) generalized linear model (GLM), ii) decision tree (CART), iii) k nearest 
neighbour (kNN), iv) random forest (RF) and v) support vector machine (SVM) was selected for application. 
Additionally, two new MLBMs were developed using an ensembling approach which involved using the 
aforementioned algorithms as base algorithms and stacking these algorithms to combine their predictions. 
Model performance was first assessed by performing a 10-fold cross validation with 3 repeats on the data 
reserved for training. Thereafter, the 3 best performing models were selected and applied using the data 
reserved for validation. Following this two-step process the best performing model was then selected to 
estimate LAI using estimates of NDVI and EVI.  
 
The finer spatial resolution NDVI and EVI estimates were first upscaled to the MODIS LAI spatial resolution 
prior to their use in the selected MLBM. The rationale for this was so that the estimated LAI could be 
evaluated against MODIS LAI product values, as these were the only long-term records available. During 
each of these various phases the performance of the MLBMs were evaluated using commonly applied 
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machine learning performance metrics. Upon completion of the MLBM evaluations, LAIMR was estimated 
using the NDVI and EVI estimates derived at the original Landsat and Sentinel-2 spatial resolutions. 
 
During the validation and testing phases of the study, LAI estimates were compared against the 
corresponding MODIS LAI product values. The results of these investigations demonstrated that MLBMs 
performed satisfactorily across the majority of the study sites, producing correlation coefficients ranging 
from 0.62-0.97 and 0.29-0.84 for the validation and testing phases, respectively. Comparisons between the 
LAI estimates derived using the different finer spatial resolution VIs showed that there were no major drop-
offs in performance of the MLBMs when using Landsat- and Sentinel-derived VIs to estimate LAI, which is 
possibly a consequence of the compatibility of the bands between these sensors.  
 
Despite the satisfactory performance of the MLBMs during the various phases of the study, it should be 
noted that a major limitation of the methods applied herein is that the accuracy of the estimated LAI will 
largely be influenced by the accuracy of a coarse spatial resolution LAI product. Furthermore, it was also 
noted that there was a decrease in the performance of the MLBMs when using VIs derived from Landsat or 
Sentinel-2 data to estimate LAI as compared to the use of MODIS derived VIs. This can be largely attributed 
to inherent limitations associated with the proposed methodology, such as i) the lack of moderate-high 
spatial resolution LAI records that could be used for training and testing purposes, and ii) saturation effects 
associated with the use of VIs. Notwithstanding these limitations, the proposed methodology has been 
shown to be flexible and robust and can be a useful approach to acquire LAIMR estimates with fairly 
reasonable accuracy in data limited circumstances. Furthermore, the synergistic use of geospatial cloud 
computing platforms and convenient machine learning packages provide users with greater opportunities 
to more effectively utilize information rich satellite datasets which in turn can serve enhance the capabilities 
of existing decision support tools used to guide and inform water resources management decisions. 
 

CHAPTER 6: DETERMINING CROP COEFFICIENTS FOR 
COMMERCIAL TREE SPECIES 

The accurate quantification of evapotranspiration (ET), which is a key variable within ACRU and many other 
hydrological models, forms a crucial component of modelling hydrological response under various land 
uses. While many ET estimation procedures exist, the use of the Food and Agricultural Organization method 
(FAO-56) which is based on the reference evapotranspiration and crop coefficient (Kc) remains one of the 
most widely used approaches and is the method used in most hydrological models including ACRU. 
However, the lack of well-established Kc coefficients in these non-cropping environments derived from 
conventional measurement approaches is limited. To address this situation, alternate Kc estimation 
procedures have been recommended/proposed to derive Kc as a function of variables which directly 
influence it. One of the variables that is most frequently utilized for such purposes is LAI.  
 
Since remote sensing-based methods provide a pragmatic approach to fairly easily acquire spatially and 
temporally explicit LAI data across large geographic extents, there exists great potential for utilizing these 
datasets to derive Kc in non-agricultural and natural environments. Considering the recent advancements 
in geospatial cloud computing and machine learning, the focus of this study was to leverage the processing 
and analysis capabilities of these platforms to derive Kc estimates for various commercial forest species, 
clones and hybrids which are presently lacking but urgently required and necessary to improve the 
management and regulation of this activity. 
 
In this study we applied and evaluated two approaches to estimate Kc as a function of satellite-derived LAI 
estimates, i.e. a relatively simplistic conventional estimation procedure and a machine learning based 
approach. For this purpose, Kc was initially quantified through daily in-situ measurements of ET and ETo to 
account for vegetation characteristics and weather conditions at two sites. The daily ET and ETo were then 
scaled up to monthly totals and these values were used to create a monthly time series of Kc for each of the 
sites. Thereafter, the GEE platform was used to acquire MODIS LAI data for the two sites. This data was 
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then summarized to create a time-series of average monthly values that was consistent with the KcObs 

dataset.  
 
For the estimation of Kc using a machine learning-based approach, the monthly KcObs and LAI dataset for 
each of the sites were combined into a single dataset to maximize the use of the relatively limited data that 
was available whilst also allowing for the development of a generic model that could be used to estimate 
Kc for various forestry species, hybrids and clones in the region when only LAI data is available. The caret 
and caretEnsemble packages available in R statistical software were used to develop and test the machine 
learning based models (MLBMs). A mix of simple and complex machine learning algorithms which included 
i) generalized linear model (GLM), ii) decision tree (CART), iii) k nearest neighbour (kNN), iv) random forest 
(RF), and v) support vector machine (SVM) was selected for application. Additionally, a new MLBM was 
developed using an ensembling approach which involved using the aforementioned algorithms as base 
algorithms and stacking these algorithms to combine their predictions. Model performance was assessed 
by performing a k-fold cross validation approach. Thereafter, the best performing model was then selected 
to estimate the average monthly Kc using the average monthly LAI values for each of the sites. Once the 
average monthly Kc was derived for each of the sites using both the conventional and machine learning-
based approaches, these values were used in conjunction with the daily ETo to estimate daily ET. The daily 
ET estimates were then scaled up to monthly totals and these values along with the monthly Kc were then 
compared against the corresponding values measured in-situ. Estimated Kc and ET were evaluated through 
comparisons against in-situ measurements using commonly applied performance metrics. 
 
The results of our investigations demonstrated that Kc could be estimated relatively accurately using 
satellite-derived LAI estimates as inputs to both a conventional and machine-learning based estimation 
approach. The range of the estimated Kc-RMSE values (0.06-0.20) when compared against KcObs, are within 
the range of published values (0.04-0.30). Furthermore, both techniques were found to perform relatively 
well during the winter months. This is particularly noteworthy, as it is during the drier periods when forest 
species are likely to have greater impacts on available water resources, therefore, this is when it is 
particularly important to accurately estimate ET.  
 
The estimation of ET using the aforementioned Kc estimates was also quite promising with simulated values 
being in good agreement with the measured values, producing R2 values ranging from 0.72 and 0.89. 
Overall, the results of the investigations demonstrated the utility of using satellite-derived estimates of LAI 
for the estimation of Kc. Both the conventional and machine learning based approaches showed good levels 
of performance, however, the ability of the machine learning based approaches to more adequately 
account for complex relationships between variables can prove to be invaluable when attempting to 
estimate Kc by extrapolating Kc-LAI models to ungauged or data scarce sites.  
 
Despite the success of the investigations, the methods employed herein are limited by the assumptions 
that were factored into the analyses as well as the reliance on in-situ measurements. Nevertheless, in this 
study we demonstrated how the use of geospatial cloud computing and machine learning based approaches 
can provide a robust and efficient means to handle large volumes of data and optimally utilize this data. 
Furthermore, through the development of a generic Kc-LAI model in this study, Kc values for the various 
commercial forest species, clones and hybrids can be seamlessly generated using easily accessible and 
readily available satellite-based estimates of LAI. This can prove to be particularly advantageous for future 
hydrological modelling applications and may allow for improved understanding and estimation of the 
hydrological impacts of commercial forestry in the region. 
 
Using the MLBM described above, Kc values were derived. With using an LAI based approach, the record of 
LAI obtained from the satellite imagery needs to be as long as possible and the forestry compartment had 
to be as large as possible. Together with ICFR, a compartment database that gave the compartment size, 
species and age, was used to select appropriate sites. Not all the forestry species could be included, as for 
some suitable compartments where the trees had been planted a few years back to give a long enough 
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record of LAI could not be identified. However, 15 sites to represent the dominant species were included 
and differences in same species grown in different ICFR climate zones were included. 

For each of the sites, MODIS LAI (MCD15A3H V6 level 4, 500 m spatial and 4-day temporal resolution), 
Landsat 7 and 8 (Collection 1 Tier 1 calibrated top-of-atmosphere reflectance, 30 m spatial and 16-day 
temporal resolution) and Sentinel-2 (MultiSpectral Instrument, Level-1C, 10 m spatial and 5-day temporal 
resolution) images were imported into GEE. Using the MLBM LAI values from the Landsat and Sentinel-2 
VI’s were estimated. Following which the MLBM was applied to estimate the Kc values for the 15 sites for 
the three LAI products. The Kc values were averaged monthly. The Kc estimated using the three LAI products 
were generally similar (Figure B), and the variation between the maximum and minimum Kc values across 
all species and LAI products is 0.15. The greatest variation between the maximum and minimum Kc value 
for a species is for E. grandis x nitens in both a warm temperate dry (WTD) and cool temperate moist (CTM) 
climate zone, and when using the Landsat or Sentinel-2 LAI products. Overall, the variation between the 
minimum and maximum Kc values was less when using the MODIS LAI product. Negligible variation occurred 
between the minimum and maximum Kc values for E. grandis warm temperate moist (WTM), E. grandis x 
urophylla WTM and P. elliottii x caribaea WTM. Kc values estimated using MODIS LAI will be the primary set 
of Kc values used. It must be noted that these are FAO-reference potential related, non-standard Kc values. 

Figure B: Maximum (top of line), minimum (bottom of line) and average (marker) Kc values estimated 
with the MODIS LAI (black), Landsat LAI (grey) and Sentinel LAI (blue)
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CHAPTER 7: OTHER ACRU INPUT PARAMETERS 
In addition to the monthly Kc (CAY) values, ACRU requires further vegetation related parameters, namely 
the monthly vegetation interception loss (VEGINT in mm.rainday-1), coefficient of initial abstraction 
(COIAM), percentage surface cover (PCSUCO), fraction of active roots in the topsoil horizon (ROOTA), the 
effective rooting depth (EFRDEP), degree of root colonisation in the subsoil (COLON), and fraction of the 
soil’s plant available water (PAW) at which total evaporation is assumed to drop below maximum 
evaporation due to drying of the soil (CONST). These were determined using remotely sensed, field-based 
data (where possible) or literature via a clearly documented and repeatable methodology. Further to this, 
ACRU requires streamflow response parameters to be input which are used to govern the portion of 
generated stormflow exiting a catchment on a particular day, as well as the portion of baseflow originating 
from the groundwater store, which contributes to streamflow. As a summary, all parameters are provided 
in Table A.  
 

Table A: Vegetation input parameters and streamflow response variables 

Parameter Value Method/evidence 

VEGINT Varies per species 
(MODIS LAI for 15 sites 
used) and per quinary 
catchment (as rainfall 
dependent). 

Two methods were considered: 
1. the simplistic Von Hoyningen-Huene Method and 
2. the more complex “variable storage Gash model”. 

LAI is a primary input to both methodologies. 
The decision was made to utilise the Von Hoyningen-Huene estimates, 
which matches the approach taken in the baseline project. Hence, the 
same method was used to estimate VEGINT in ACRU for both natural 
vegetation and for the forest species, hybrids and clones, thus 
facilitating a fair comparison. 

ROOTA 0.65 across all months 
and species 

Literature based. Studies (mostly international) related to the roots of 
the commercial tree species grown in South Africa typically tend to 
focus on the depth of the tree roots, or the root distribution profile. 
Common findings were that  
- A significant portion of the active roots were found in the 

upper soil horizons; 
- Distribution of the root profile was heavily dependent and 

influenced by site characteristics. 
Using the literature available and given the limited information 
relating the fine root distribution, the site dependence of the rooting 
distribution and the low sensitivity of the ACRU model to the 
parameter, a consistent monthly ROOTA value was selected. 

EFRDEP 0 across all months and 
species 

Setting EFRDEP to 0 defaults the EFRDEP to combined depth of the 
input soil horizons. The combined soil depths of the input horizons do 
not exceed 3 m. However, several studies provided evidence of active 
root depths for the commercial tree species grown in South Africa to 
depths of 8 m and deeper. Therefore, the EFRDEP for all the tree 
species was set to 0 to default to the maximum permitted effective 
root depth. 

CONST 0.2 for eucalypts, 
0.3 for pines, and 
0.4 for wattle. 
 

Allen et al. (1998) provides average fractions of total available soil 
water content (called the depletion fraction or p) that can be depleted 
from the root zone before plant stress occurs for various crops and 
vegetation types. As CONST is the fraction of plant available water in a 
soil horizon when total evaporation is reduced, it can be defined as 
the inverse of p, i.e. CONST = 1 – p. According to Allan et al. (1998), p 
ranges from 0.1 to 0.8 and provided a value of 0.7 for conifer trees 
(CONST = 0.3), compared to 0.2 (CONST = 0.8) for drought sensitive 
vegetable crops. These values were used as limits for CONST values, 
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Parameter Value Method/evidence 

as well as the findings by Dye (1996) of the drought tolerance of 
Eucalypts. 

COIAM 0.35 across all months 
and species 

The working rule defined by Schulze (2004) that for dense forests 
COIAM = 0.35 throughout the year, because the deep litter layer 
enhances initial infiltration before stormflow commences was used. 

PCSUCO 100.00 Schulze (2004) assumed that a greater above-ground biomass 
resulted in higher litter cover, and through consultation with the 
National Biodiversity Institute developed a sigmoidal relationship 
between PCSUCO and maximum Kc, where for a Kc of greater than 
0.85, PCSUCO = 100.00. The maximum Kc value for all commercial 
forestry species exceeded 0.85. 

COLON 100.00 A COLON value of 100% for a given soil horizon implies that the roots 
in that horizon can access water from 100% of the horizon, provided 
water is available in the soil. Within the ACRU model, the root 
colonisation of the topsoil A-horizon is assumed to be 100% and thus, 
monthly input values of COLON are only required for the B-horizon 
(ACRU FDSS Workshop No3, 1995). As the maximum soil depth is 
limited to 1.2 m within the ACRU model, and trees have been found to 
root to 8 m, COLON was assumed to be 100%. 

SMDDEP 0 (default to depth of 
A-horizon) 

SMDDEP was set to the thickness of the topsoil, which is the 
suggested default value (Smithers and Schulze, 1995). Hence, the 
effective soil depth from which stormflow is generated is the topsoil 
depth. The same value was used in the baseline simulation. 

QFRESP 0.3 Schulze (2011) recommends 0.30 as being typical at the spatial scale 
of quinary catchments and is based on experimental evidence. 

COFRU 0.009 A typical value is 0.009 (or 0.9%) for the quinary catchments (Schulze, 
2011). 

 

CHAPTER 8: MODEL DESCRIPTION AND INPUTS 
Use of the ACRU agrohydrological model for assessment of potential SFRAs has been accepted by DWS 
(Gush et al., 2002; Jewitt et al., 2009). The previous SFRA model output used in the SFRA Utility was 
produced with ACRU Fortran version 3.31. Since then, significant updates to the ACRU model have taken 
place. Of significant benefit to this project is the improvements made by Kunz et al. (2020) to ACRU to 
optimise the speed at which the model runs, as well as significant changes made to the print and statistics 
utilities to optimise their computational performance and output format which facilitated being able to 
undertake the different species runs. Since 2009, the ACRU model has been compiled into a Java version. A 
comparison of the differences in streamflow generated by the Fortran version of ACRU when compared to 
that from the Java version showed a difference in the way in which the two versions adjust the daily crop 
coefficient within the model. The Fortran version was programmed to reset the daily crop coefficient (Kc) 
value to that of the monthly input value at the beginning of every month. However, this monthly “resetting” 
procedure was removed in the Java version, thus allowing the daily Kc value to continue decreasing until 
recovery from stress begins when the soil water content rises above a threshold value. The Fortran version 
of the model was modified to mimic the Java version. ACRU version 3.52 was used in this project. 
 
As the runoff simulated by the ACRU model is extremely sensitive to rainfall input, it cannot be over-
emphasised that rainfall data used as input for ACRU must be as error-free as possible. Hence, the improved 
the quinary catchments climate database was used in this project. The improvements included changes to 
driver rainfall stations used, correction of extreme rainfalls and a change to the use of lapse rate adjusted 
observed temperatures (which replaced values derived from the 1’x1’ gridded temperature database). A 
further addition to the climate database used is that daily reference evapotranspiration (ETo in mm) were 
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calculated using the FAO56 version of the Penman-Monteith equation, and then adjusted to be A-pan 
equivalent reference evaporation using the PenPan method developed by Kunz et al. (2015). Similarly, the 
Kc values derived for the forestry species were converted to A-pan equivalent values using the PenPan 
method.   
 

CHAPTER 9: HYDROLOGICAL IMPACTS OF COMMERCIAL 
AFFORESTATION 

This project produced updated data for inclusion in the SFRA Utility, by broadening the number of species 
included and making use of the revised climate and soils databases available, as well as undertaking the 
assessment against the CWRR clusters hydrological baseline.  
 
The ACRU model was used to simulate mean monthly and annual runoff response for: 

 baseline conditions (MARBASE), i.e., the runoff produced from a land cover of natural vegetation (the 
CWRR clusters), and 

 each of the forestry scenarios (MARFOR), assuming a 100% change in land cover. 
 
This was done using the updated quinary climate database and improved quinary soils database. The only 
variables that were altered between the model runs under the various tree species and the baseline were 
the vegetation related parameters.  
 
The framework suggested Jewitt et al. (2009) that a 10% reduction in mean annual runoff (MAR) by a land 
use can be considered a significant reduction or that a 25% reduction of low flows can be considered 
significant was used. Maps showing simply the quinary catchments where the change in MAR, under the 

 
 

CHAPTER 10: SFRA UTILITY 
The initial version of the SFRA Utility was developed in 2009 as part of the SFRA project (Jewitt et al., 2009) 
was modified by Kunz et al. (2015) to improve its performance and to facilitate the dissemination of ACRU 
output related to the water use of selected biofuel crops. A key improvement being the change to an XML 
file to avoid installation problems associated with the Microsoft Access database previously used. For this 
project, further improvements were made to the version of the SFRA Utility developed by Kunz et al. (2015). 
Core to the utility is the data simulated by the ACRU model. As these datasets grow through the addition 
of more scenarios, the decision was made to store the monthly time series data produced by ACRU’s post-
processing software, as opposed to the raw daily time series files outputted by ACRU. This required a 
complete restructuring of the data reading and aggregation processes within the utility. Further 
development has also been focused on restructuring and updating the code base from the original .NET 
Framework 2.0 technology, since it is becoming increasingly difficult to deploy software requiring these 
older technologies onto newer computing systems. The original map interface was dependant on this older 
framework and thus, was removed from the utility as it would only hamper the installation and was not 
deemed necessary to correctly use SFRA Utility. 
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CHAPTER 11: Genus Assessment Utility User Manual (Version 
2.0.0.2) 

The user manual providing information on installation and operation of the SFRA Utility. 
 

CHAPTER 12: CONCLUSIONS & RECOMMENDATIONS 
The project brought the simulations under commercial tree species into alignment with other national scale 
simulations for the impacts of biofuel crops, climate change impacts, bamboo impacts and those that will 
be used in the ongoing WRC project titled “Development of Datasets for Multi-Scale Water Resource 
Assessments towards a Water Secure South Africa” by undertaking the model runs with the latest version 
of the ACRU model as well as the revised quinary catchments climate database. A significant advancement 
in this project was the improvements made to the quinary soils database used as input to the ACRU model 
given the critical role soils play in the regulation and generation of catchment hydrological responses. Using 
the South African soils terrain unit database, substantial gain in spatial resolution was obtained over the 
previous use of only land type information.  
 
The revised hydrological baseline, CWRR clusters, together with the associated vegetation water use 
parameters required as input by ACRU was used as the reference against which the impacts of commercial 
afforestation were assessed. This move away from the Acocks (1988) Veld Types as the baseline can be 
considered a step forward as the SANBI (2012) vegetation map, from which the clusters were derived, has 
become the accepted natural vegetation map for South Africa by other disciplines, and the biome concept 
as well as the typical vegetation structures within those, have become commonly understood and referred 
to. More importantly, the documented and repeatable method used to derive the vegetation water use 
parameters allows for alignment across water use parameters for other land cover and land use types.  
 
Literature and the experiences gained in the field-based component of this project, illustrated the 
significant influence of site characteristics on the growth, rooting patterns and the water use of commercial 
tree species. Sites with shallow soils or those in rain shadows will have different growth characteristics to 
those on wetter slopes or more favourable soils. Further, the growth patterns may even vary across a 
compartment due to variations in slope and soils. For determining the impacts of commercial tree species 
on streamflow generation, a broad picture, representative of large portions of the area under that 
commercial tree species, is needed. Thus, field-based studies to understand water use and determine LAI 
pose significant challenges. Thus, a method for developing a LAI database and determining Kc values that 
were more broadly representative of trees within a large compartment was developed. The method chosen 
took advantage of the recent advancements in geospatial cloud-based computing platforms, most notably 
Google Earth Engine and machine learning and aligned with the methodology used to derive vegetation 
water use parameters for the CWRR clusters, where remotely sensed LAI is used to estimate Kc. The Kc 
values estimated from MODIS LAI using machine learning showed good correlation to Kc values calculated 
from observed data. However, similar to the challenges experienced in the baseline project, very few 
datasets of total evaporation were available over commercial trees to develop and validate the model for 
determining Kc from LAI. Data for only two species grown at the same site was available. However, like the 
baseline project, the method is documented, repeatable and is consistent across species. As more data 
becomes available, the water use parameters can be refined.  
 
Through the project, the required ACRU input vegetation parameters for seven Eucalyptus, four Pinus and 
Acacia mearnsii were derived. All of the estimated monthly Kc values were above 1, and both the month-
by-month variation in Kc values for a specific species and between species was low. Generally, the Kc values 
for sites in the WTM climate zone had the smallest variation in the monthly values. ACRU model simulations 
were undertaken with version 3.52 (enhanced performance), the updated South African TU database, 
revised quinary catchments climate database, using the derived vegetation water use parameters for the 
11 species, hybrids and clones, as well as the vegetation water use parameters for the CWRR clusters. All 
model inputs were held constant between the runs, except for the vegetation water use parameters. A 
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comparison to the ACRU output in the previous SFRA utility developed in 2009 were not undertaken due to 
the extent of the changes made to the 1) ACRU model, 2) climate and soils databases used as input, 3) 
changes in the reference land cover, and 4) methodology used to derive water use parameters. Further, 
these database updates and the use of a consistent and repeatable methodology to determine the 
vegetation water use parameters across both the land use of impact and the reference, represent a step 
forward in the science that can be used to support the implementation of the declaration of land used for 
commercial afforestation as a SFRA. 
 
The various approaches developed and implemented in this study are by no means considered 
“exhaustive”. Although much effort was spent on producing simulated output that is considered reliable 
and error-free, the following suggestions would further improve the accuracy of modelled results: 
 

 The root zone storage concept showed potential and therefore warrants further investigation. 
 More process-based research is needed to improve ACRU’s ability to simulate deep-rooted 

vegetation.  
 The ACRU model should be modified to use FAO56 (i.e. Penman-Monteith) reference 

evapotranspiration.  
 Expand the database used for the derivation of crop coefficients from LAI, additional compartment 

data and additional evapotranspiration data to strengthen the machine learning algorithms 
developed in this project. 

 
Reflecting on the project as a whole, the following recommendations are made: 

 There is a need for agreement on the best measure of forestry water use. Should the measurement 
be of just the water use of the trees (i.e. green water) or of the water productivity which includes 
soil water evaporation and intercepted water?  

 Agreement on scale also needs to be reached. Measurement at the scale of a tree (or cluster of 
trees) is valuable in terms of tree level water use and process understanding. However, these site-
specific findings are possibly not broadly applicable nor able to be incorporated into modelling that 
is undertaken at a quinary catchment scale with supporting databases of that resolution.  

 Given the repeatable method derived in this project, it is suggested that 5-year updates that utilise 
any additionally available field-based datasets, additional LAI sites and any quinary database or 
model updates be undertaken, and this be aligned with similar updates to the baseline.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Concerns over catchment-scale hydrological impacts of forest plantations in South Africa were already 
being expressed by 1915, with research on this subject starting in 1935 and still continuing today as there 
remain questions around the water use of the different commercial forestry species, clones and hybrids. 
Since the introduction of the Afforestation Permit System in 1972 using the Nänni curves, the method and 
tools used to assess the impacts of commercial afforestation have been continuously updated. With the 
declaration of commercial afforestation as a streamflow reduction activity (SFRA) in 1999, these tools and 
methods became more important. Gush et al. (2002) produced tables of reductions in mean, median and 
low flows in an average year relative to a baseline flow derived from modelled results using the ACRU 
model. More recently, Jewitt et al. (2009) developed the SFRA Assessment Utility to assist in water use 
licensing, which provided estimates of reductions at a finer scaler and an improved consideration of low 
flows. However, as the regulation of afforestation needs to be achieved within an environment that is 
continually changing and evolving with regard to legal, social and biophysical characteristics. Therefore, an 
update to the SFRA Assessment Utility was required with an inclusion of improved knowledge to address 
the current questions. 
 
The current SFRA Assessment Utility (Jewitt et al., 2009) estimates the streamflow reductions of commercial 
forestry based on the water use of three species, namely Pinus patula, Eucalyptus grandis and Acacia 
mearnsii. However, the forestry industry currently uses 17 Pinus, 26 Eucalyptus and 3 Acacia species, 
hybrids and clones. Thus, there is a pressing need to expand the knowledge on the water use of the different 
species, clones and hybrids used by the forestry industry. This need has become more important with the 
ongoing disputes surrounding genus exchange. Due to changes in the demands for the various forestry 
products, and to a lesser extent pests and diseases, there has been a shift towards eucalypts over pines, 
particularly in KwaZulu-Natal (FSA, 2016). Thus, in some forestry compartments, a genus exchange has 
occurred or is planned. The Department of Water and Sanitation (DWS) issued a notice in October, 2015 
for the draft of Regulations on Afforestation Genus Exchanges in Terms of the National Water Act, 1998 
(Act No.36 of 1998). The draft Genus Exchange Regulations state that any existing afforestation water user 
that wishes to exchange the genus of their plantation or part thereof, is required to apply to the responsible 
authority for authorisation to implement the proposed exchange (DWS, 2015). In terms of assessing and 
evaluating the conditions associated with genus exchanges, the following aspects are considered by DWS: 
 
(a) the exchange ratio must be determined by using the best information available on the water use of 

the different genera at quinary or quaternary catchment level; 
(b) the genus exchange must not cause an increase in the existing lawful water use of the property, 

where the DWS regulations only allow an exchange in the authorised genus of an equal area or a 
reduced area of the existing lawful afforestation area based on the differences in the water use of 
the different genera. Therefore, an exchange to a genus with a higher water use than the existing 
lawful genus will lead to the amendment of the original authorisation, resulting in a proportionally 
smaller area to be planted. Alternatively, an exchange to a genus with a lower water use than the 
existing lawful genus will not necessarily result in an increased size of the planted area, unless 
authorised in a water use licence; 

(c) Reductions in both total flows and low flows must be accounted for the determination of the 
amendment to be made to the planted area. 
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These regulations were contested by Forestry South Africa (FSA) using a commissioned report (Gush, 2016) 
which claimed that DWS had overstated the reductions in areas required when switching from pines to 
eucalypts. DWS took the decision to suspend the Genus Exchange Regulations pending a review. This 
project addresses the knowledge gaps surrounding the influences of genus exchange on water use. 
 
Beyond the above concerns two additional knowledge gaps have been highlighted by DWS, Gush (2016) 
and Jewitt et al. (2009). The first knowledge gap is around determining the most representative tree age 
for rotation length water use. In the initial growth phases, water use is low, but is followed by rapid 
increases associated with high leaf area indices (LAI) and canopy closure (Scott and Smith, 1997; Dye and 
Bosch, 2000; Clulow et al., 2011), thereafter water use flattens out as the trees reach maturity. With the 
genetic selection towards faster growth rates, canopy closure and a higher LAI are reached earlier, changing 
the water use curve of the trees. Linked to this, the rotation lengths have decreased, particularly for 
eucalypts and thus, the water use of the trees is predicted to be higher in the initial growth phases but the 
length of time they use water is reduced. This trade-off between faster growth rates resulting in greater 
initial water use, with shorter rotation lengths needs to be better understood. With improved knowledge 
on the water use of the various species, hybrids and clones through the proposed project, this question will 
be also be addressed. The water-use of tree stands with different planting densities (espacement) are a 
further confounding aspect that needs to be considered together with the representative tree age for 
rotation length. Due to mechanical harvesting and silviculture, stand densities may be decreased from 1667 
spha (3 x 2 m spacing) to 1333 spha (3 x 2.5 m spacing). However, for biomass production the stand densities 
may be increased to 2222 spha (3 x 1.5 m). How these changes in stand density will affect water use remains 
unclear, and needs to be addressed through field-based observations and research. 
 
The second knowledge gap concerns the baseline vegetation against which the water use of the commercial 
tree species is compared. At the outset of this project, DWS supported the use of natural vegetation in the 
form of the Acocks (1988) Veld Types as the reasonable standard or reference land cover against which to 
assess land use impacts (Schulze, 2004; Jewitt et al., 2009). However, concerns about the use of Acocks 
(1988) Veld Types had been raised by Jewitt et al. (2009). These concerns centred on the country-wide scale 
resolution of the Acocks (1988) maps with relatively little local scale detail and that the water use 
parameters of each veld type were derived using expert knowledge. The detailed SANBI (2012) maps of 
natural vegetation, together with a larger database of natural vegetation water use, allowed for a revised 
hydrological baseline (together with associated water use parameters) to be developed through WRC 
project K5/2437 (Toucher et al., 2020). Linked to this, is the continual need to ensure that the hydrological 
model results used in the assessment of SFRAs are based on the best available data. Furthermore, the 
climate and soils information that produced the model results used in the SFRA Assessment Utility (Jewitt 
et al., 2009) has been superseded by recent work done within the Centre for Water Resources Research 
(CWRR). Thus, the opportunity exists for a revised estimation of the water use of commercial trees to be 
made against this updated baseline, an updated quinary catchments climate and soils database, thereby 
addressing current shortcomings. This will lead to an update of the SFRA Assessment Utility produced by 
Jewitt et al. (2009), both in terms of the data/information included in the utility and the functionality of the 
utility. 
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1.2 Project aims 

The following were the aims of the project: 
 

1. To expand the knowledge of the estimates of water use of different clones and hybrids of eucalypt, 
wattle and pine species (e.g. clones/hybrids most commonly used, clones/hybrids planted in 
optimal sites). 

2. To address shortcomings in the availability of leaf area index information for different SFRA species, 
clones and hybrids. 

3. To improve existing tools used for the estimation of the impacts of SFRA through the inclusion of 
improved soils data and baseline land cover data, as well as the inclusion of the latest process 
results related to water use (i.e. evapotranspiration) of SFRA clones, hybrids and species. 

 
The outcomes, findings and products of the project are comprised of two final reports. This document 
details the research that contributes to the SFRA Utility to address Aims 3 and 4, while the other deliverable 
speaks to Aim 1, which focuses on the improved water use estimation of SFRA species. Initially the project 
included an aim ‘to expand the knowledge on the water use of different stand densities’, however, it was 
recommended at a stakeholder workshop, and support by the reference group, that this aim was beyond 
the reach of the project and should not be a focus of the project. 
 

1.3 Scope and limitations 

The impacts of commercial trees on South Africa’s water resources is a topic of significant concern to many 
from varying points of view, from policy and decision makers, to the forestry industry and stakeholder 
concerned about the impacts at their local scale. In particular, the ongoing disputes surrounding genus 
exchange has resulted in increased conflict. From the project’s inception workshop held in April 2018, it 
was clear that the project was not going to be able to answer the numerous questions surrounding forestry 
and water use. However, a detailed “bigger picture” that could answer some of the questions can only be 
built from a number of detailed pictures of smaller areas. At the same workshop, concerns were raised 
about the intended use of the research in policy. As was noted at the workshop, this project was a scientific 
research project not a policy research project. The project aimed to expand the scientific understanding 
and evidence base related to the water use of afforestation and to improve the existing tools that could be 
used to estimate the impacts. For each of the project aims, the scope of the work undertaken and the 
limitations are detailed. 
 
Aim 1: To expand the knowledge of the estimates of water use of different clones and hybrids of eucalypt, 
wattle and pine species (e.g. clones/hybrids most commonly used, clones/hybrids planted in optimal sites). 
 
The research activities undertaken related to this aim are detailed in Deliverable 8 that accompanied this 
final report. To address this aim, field-based studies were undertaken at selected sites. The number of sites 
that could be instrumented was constrained by budget. The species investigated were those commonly 
grown in South Africa for which no water use data existed. Site selection was influenced by logistical 
constraints and the desire to pair sites of different genera. The project has met this aim and expanded the 
knowledge on water use estimates of different species, but also provided further evidence of the influence 
of site characteristics on tree water use.  
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Aim 2: To expand the knowledge on the water use of different stand densities. 
 
At the inception workshop, there was much discussion surrounding this aim of the project. The suggestions 
were that considering stand density should not be prioritised, but rather the focus should be on collecting 
field-based data on aspects that could be adequately addressed, given the restricted number of sites that 
could be instrumented. As only four sites were instrumented, field-based investigations into stand density 
could not be undertaken as this would limit the advancement of the understanding of tree water use for a 
greater number of species. Therefore, developing a relationship between LAI and stand density using 
remote sensing was the path considered to address this. 
 
Aim 3: To address shortcomings in the availability of leaf area index information for different SFRA species, 
clones and hybrids. 
 
The initial approach to expand leaf area index (LAI) information was through field based activities. The 
challenges related to obtaining accurate estimates of LAI in field, and the logistical challenges around the 
field-based activities, meant a different approach was followed. This approach took advantage of the recent 
advancements in geospatial cloud-based computing platforms, by using Google Earth Engine (GEE) and 
machine learning packages that are available to analyse and utilise the available LAI remotely sensed 
products. Further to this, a methodology was developed to enhance the spatial resolution of coarse spatial 
resolution LAI products through the use of vegetation indices (VIs) derived from finer spatial resolution 
satellite datasets. This aspect of the study has been written up as a journal article and is currently under 
review. 
 
Aim 4: To improve existing tools used for the estimation of the impacts of SFRA through the inclusion of 
improved soils data and baseline land cover data, as well as the inclusion of the latest process results related 
to water use (i.e. evapotranspiration) of SFRA clones, hybrids and species. 
 
The scope of work undertaken to address this aim has been considerable. As noted under Aim 3, a method 
to derive crop coefficients from remotely sensed LAI values was developed using GEE and machine learning. 
The method produced acceptable crop coefficients when compared to values derived using the limited 
observed data available. The other ACRU parameters and variables related to vegetation water use were 
also estimated using an approach that is deemed consistent and repeatable. 
 
The quinary catchments climate database was revised using observed temperature data, which accounted 
for the altitude difference between the temperature station selected to represent each quinary and the 
quinary’s average altitude. A revised quinary catchments soils database at the terrain unit (TU) scale with 
associated attributes required for input to the ACRU model was developed. Mapping the soils at the TU 
scale represented a significant gain in spatial detail. Hence, these updated databases were used to estimate 
streamflow generated from the baseline vegetation layer, as defined by the CWRR clusters, and that from 
commercial tree species. This ensured consistency between the methods used to simulate the reference 
and impact land use. The outputs from these simulations were then included in an improved SFRA Utility 
to provide a tool for the assessment of the impacts of commercial afforestation on downstream water 
availability. Another avenue that was investigated to improve existing tools, was consideration of the root 
zone storage concept and the potential of using it within the ACRU modelling framework, in order to further 
improve root water uptake as well as overcome the paucity of available rooting information.  
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1.4 Structure of the Report 

Chapter 2 describes the improved quinary catchments soils database that was developed by ascribing soil 
physical attributes to the mapped terrain units. To supplement and potentially advance knowledge, the 
question of whether the root zone storage concept could be used to determine the root zone storage 
capacity and thus, the soil depth under commercial tree species is addressed in Chapter 3. Although the 
study was limited in scope, the results suggested that the root zone storage concept showed potential and 
warranted further investigation. Chapter 4 provides a short summary of the revised hydrological baseline 
that was developed by Toucher et al. (2020) that was used in this project.  
 
Chapter 5 describes the activities undertaken to address the shortcomings in the available LAI from the 
field-based studies to the revised approach which utilised GEE and machine learning. This chapter underpins 
the methodology used to estimate crop coefficients as described in Chapter 6. Building from this, the 
estimation and derivation of other required ACRU inputs are detailed in Chapter 7. A brief description of 
the ACRU model and the quinary databases is given in Chapter 8, with the hydrological impacts of 
commercial afforestation being assessed in Chapter 9. The SFRA Utility and improvements made are 
described in Chapter 10, followed by conclusions and recommendations in Chapter 11. 
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CHAPTER 2. MAPPING SOIL HYDROLOGICAL 
ATTRIBUTES AT TERRAIN UNIT SPATIAL 
RESOLUTION FOR THE SOUTH AFRICAN 

PRODUCTION FORESTRY INDUSTRY 

R.E. Schulze1 and S. Schütte1 

 

1 Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg 
 

2.1 Background 

The soils used in the quinary catchments database, which is used in the ACRU model runs to provide input 
to the SFRA Utility developed by Jewitt et al. (2009), are based on the Agricultural Research Council (ARC) 
and Institute for Soil-Climate-Water (ISCW) division of the country at 1 in 250 000 scale into zones of similar 
broad soil categories with a particular focus on agriculture. These divisions are referred to as land types and 
are based on broad categorisations, but include detail as to the predominant soil forms and series of an 
area and their texture classes. Any particular land type is made up of many different (although similar) soil 
series, and with the committee-based knowledge of the water holding capacities of the individual soils 
within a land type, through a process of area weighting, land type specific values of the hydrological 
parameters were derived. A computerized set of algorithms, designed by Pike and Schulze (2004) called 
autosoils was created to do this. 
 
With the advent of GIS and finer resolution digital elevation models, coupled with the improvement of 
computing power and GIS functionality, it has become possible to subdivide landscapes in catenal 
sequences using elevation, slope, aspect and surface curvature. It is possible to identify spatially with a high 
level of precision the positions of crests, scarps, mid slopes, foot slopes and valley floors. Fortuitously, when 
the ARC published the Land Types, it not only included the breakdown of land types as a whole by ratio of 
soil series, but also the percentages of each catenal sequence in the land type, as well as the soil series 
percentages for each catenal stage. Based on this it is possible to identify with more detail, both spatially 
and from a soils mix perspective, the soil series per sequence, and then by extension, the location of each 
sequence. Using this, the country can be divided into small homogeneous areas of, for example, crests, mid 
slopes, with their associated soil mixes. This Chapter describes the methodology which has been followed 
to achieve this. 
 

2.2 Introduction 

Marked spatial differences in the rates of, and lags in, forest hydrological processes occur both within a 
plantation and a catchment, as well as between different plantations and different catchments as a 
consequence of responses associated with different soil properties. In essence, forest growth and 
hydrological responses, be they evaporation, surface/near surface runoff or baseflow, differ as a result of 
the vertical sequences of soil properties because these regulate 

  entry into, 
  storage and retention in, and 
  redistribution within, and out of, the soil profile.  
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Some forest (and other crop) hydrologically important vertical sequence scenarios are sketched in the seven 
self-explanatory soil profiles making up Figure 2-1. This figure illustrates that the forester and hydrologist 
have to be concerned with

respective thicknesses of various soil horizons;
surface properties of the soil (e.g. crusting, sealing, cracking, site preparation) which affect the 
soil’s infiltrability, i.e. the rate of water entry into the soil;
the sequence of soil horizons in regards, for example, to
- the distributions of clay, sand and silt percentages within the soil profile as they relate to the 

redistribution rates of water (permeability, hydraulic conductivity); or 
- impeding layers within the soil profile, either natural or man-made, which may cause 

drainage/waterlogging problems or induce interflow to occur;

furthermore
the water holding capability of the soil, which (other than being related to soil depth) finds 
expression, inter alia, through
- its textural composition into percentages of clay, silt and sand, and
- the amount of water a soil of a given texture retains at specified/critical soil water conditions, 

viz. at the soil’s
permanent wilting point (i.e. the soil water content constituting the lower limit of soil water 
available to the plant; see later), at its
drained upper limit (previously also termed field capacity, i.e. the soil water content held by 
capillary forces that are great enough to resist gravity after natural percolation from the soil has 
ceased; see later), and when the soil water content is at 
total porosity, i.e. at saturation (when all pore spaces are filled with water; see later), and under 
which condition water retention may be increased when the soil’s bulk density is decreased, e.g. 
by tillage practices;  

furthermore, with 
soil properties may influence the depth and density of the plant root system, since these roots have 
a major effect on soil water extraction patterns; or with
drainage rates of water above threshold wetnesses of the soil, occurring between soil horizons 
within the plant’s root zone and out of the root zone.

Figure 2-1: Soil profile characteristics of concern to the agro-hydrologist (Schulze et al., 1991)
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Other factors, not considered in this document, may also operate, for example,  
  the inherent erodibility of the soil and how that might be altered by pre- and post-harvest 

management practices, or  
  the capillary fringe just above the water table into which, in certain landscapes, tree roots may 

penetrate and utilise that water for growth. 
 
With soil physical attributes playing such a key role in the water use by, the growth of, and runoff responses 
from, plantation forests, these attributes need to be ascertained and mapped at a high spatial resolution. 
On a national scale, within those areas which are climatically suitable for plantation tree growth, this spatial 
resolution is the so-called soils terrain unit.  
 
This Chapter will thus address 

  the concept of terrain units within a South African soils context, 
  the soils components of mapped terrain units and their derivation from South Africa’s Soils Land 

Types, 
  properties of a South African soils terrain unit database, 
  definitions of the key soils physical attributes to be mapped, together with the algorithms used to 

map those attributes at TU resolution, and  
  the mapped outcomes, including interpretations of results from a forestry perspective.   

 

2.3 Terrain units in a South African soils context 

2.3.1 Background to Soils Terrain Units in South Africa 

The background to identifying, defining and delineating soils terrain units (TUs) in South Africa is based on 
a method devised by Kruger (1973) when researching concepts, techniques and procedures for a global 
natural resource survey. Kruger, in turn, made use of ideas by Hammond (1964) on the analysis of properties 
of land form mapping and those of King (1953) on landscape evolution. 
 

2.3.2 Soils Terrain Units Defined 

As defined in SIRI (1989), a terrain unit (TU) is any part of the land surface with homogeneous slope and 
form (e.g. a convex or a concave slope or a near-vertical cliff). Terrain can be thought of as being made up 
of all, or some, of the following kinds of TUs, viz. 

  a crest 
  scarp 
  midslope 
  footslope and the  
  valley bottom. 

 
An idealised representation of terrain units is illustrated in Figure 2-2. 
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Figure 2-2: Idealised representation of terrain units from crest to scarp to midslope (here termed 
“middleslope”), footslope and valley bottom (SCWG, 1991)

A terrain type in the above context denotes an area of land over which there is a marked uniformity of 
surface form and which, at the same time, in the South African soil mapping context, could be shown easily 
on a map at a scale of 1:250 000. Land shown on a map as belonging in a terrain type may cover only a 
single terrain type (e.g. a floodplain), or it may cover a single crest-valley bottom sequence, or it may cover 
a large number of crest to valley bottom sequences that repeat themselves three-dimensionally (e.g. a large 
area of rolling hills). Although a terrain type is not without genetic implication (e.g. influenced by geology 
or large-scale landscape upliftment), it is the morphology and not genesis that is the basis for its delineation 
and description.

In Figure 2-3, a ‘1’ represents a crest, ‘3’ a midslope, ‘4’ a footslope and ‘5’ a valley bottom. A ‘2’, which 
would represent a scarp, is not shown in this diagram.  Terrain types can either be single phase, as in the 
top diagram of Figure 2-3, or they can be multi-phase, as in the bottom diagram, where the symbol 3(1)

indicates a second phase midslope and 3(2) a third phase midslope.

Whether a TU is a footslope or a midslope depends 
on its position in the landscape (with a midslope lying immediately below a crest or scarp) and, to 
an extent, 
on the steepness of the slope, whereby in contrast to a midslope, a scarp is steeper than 100% (i.e. 
45°) and usually steeper than 70°.

Figure 2-3: Idealised examples of single phase (top) and multi-phase (bottom) terrain types (after SIRI, 
1989)
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In actual South African landscapes, TUs take on many combinations of sequences of crest, scarp, midslope, 
footslope and valley bottom, as the examples in Figure 2-4, taken from the “Land Types of the Maps 2330 
Tzaneen and 2430 Pilgrim’s Rest” (SIRI, 1989), illustrate.  

Terrain unit surveys were originally undertaken with the use of 1:50 000 and 1:250 000 with boundaries 
drawn in the office and then field-checked, with the chief criteria for delimitation having been the pattern 
and density of the drainage system, relief and slope, profile and extent of each of the TUs, and with the TU 
inventories made after the Land Type boundaries had been finalised.

Figure 2-4: Examples of terrain unit sequences from actual South African landscapes (SIRI, 1989)
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2.4 The soils components of mapped terrain units and their derivation 
from soils land types 

While a soils terrain unit is considered to be a relatively homogeneous topographic/landscape entity, each 
TU is nevertheless made up of different (albeit generally related) soil groupings, each with different (albeit 
generally related) soil physical attributes. These soil groupings are termed “soil series”, with a TU made up 
of several soil series. This section provides, in a series of steps, some background to the derivations and 
definitions of soil series from a perspective of the specific soil classification system that was used to map 
soils across South Africa, viz. the Binomial classification system, and which provided the basic information 
on the soil series making up the TUs.    
 
Point of Departure 1: The Binomial Soil Classification System into Soils Land Types  
 
Background 
The two seminal publications to date on classification systems for South African soils are the Taxonomic 
Classification by the Soil Classification Working Group, SCWG (1991) in their so-called Blue Book, and its 
precursor, the Binomial Classification by MacVicar et al. (1977), i.e. the so-called Red Book, with an updated 
classification in the process of being complete.   
 
At the heart of being able to map hydrological attributes of soils at TU resolution over South Africa, 
however, are the detailed and readily available soil maps, now also available digitally, based on the Binomial 
Classification by MacVicar et al. (1977), together with their associated soils inventories from which soil 
groups were deduced. Elements of the Binomial classification system which are relevant to the objectives 
of mapping hydrological attributes of soil across South Africa are therefore described briefly below. 
 
Master and Diagnostic Soil Horizons and Their Relevance to Mapping Hydrological Soils Attributes at 
Terrain Unit Level 
Soil as a medium in which hydrological processes occur has a heterogeneous character by virtue of its 
horizonation, which controls rates of water uptake, storage and redistribution, both vertically and laterally. 
Horizons formed under given genetic conditions tend to be reproduced over and over again, with their 
organisation resulting in a small number of vertically stratified, usually easily identifiable and generalised 
master horizons (MacVicar et al., 1977). 
 
The specific properties of master horizons led to the recognition by MacVicar et al. (1977) of fairly rigorously 
defined topsoil and subsoil diagnostic horizons, in which a vertical grouping of pedological features, which 
may be identifiable (i.e. diagnosed) in the field, is recognised. These diagnostic horizons of the Binomial 
classification system are shown in Figure 2-5, classed into 5 diagnostic topsoil and 15 diagnostic subsoil 
horizons, each with unique soil characteristics.  
 



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES

pg 12

Figure 2-5: Diagnostic topsoil and subsoil classes in the Binomial system (After MacVicar et al., 1977)

While defined according to many genetic and other criteria, in regards to the hydrological soil mapping at 
TU level, the following diagnostic horizons in Figure 2-5 are identified as important as they were used 
explicitly in the working rules developed for calculations of 

soil water content at permanent wilting point
saturated redistribution of soil water from the top- to the subsoil, and
saturated redistribution of soil water out of the subsoil,

viz. the 
vertic topsoil horizon – with high clay contents (hence low hydraulic conductivities) as well as 
shrink/swell properties, which imply high infiltrability (macropore flow) when the soil is dry and 
low infiltrability when it is wet; 

and in the subsoil, the
G horizon – which is strongly gleyed and characterised by waterlogging for the greater part of the 
year; 
soft plinthic horizon – containing manganese oxides and hydrates, but not hard as a result of only 
periodic (rather than more permanent) saturation; 
hard plinthic horizon, or ironpan – consisting of a hard indurated zone and indicating very poor 
drainage and a potential for waterlogging;
prismacutanic horizon – displaying abrupt increases in clay content and firmness with depth, with 
associated decreases in hydraulic conductivity/permeability; 
gleycutanic horizon – with marked evidence of gleying and a well-developed structure; 
neocutanic horizon – formed in recent sediments/unconsolidated material with some aggregation 
of soil particles and a clay increase with depth;
ferrihumic horizon – often on sandy material under fynbos in the winter/all year rainfall region, 
and quite variable in hardness; 
pedocutanic horizon – which is clay-enriched and sometimes displays an abrupt textural transition, 
but is not as wet as a G-horizon; 
lithocutanic horizon – which has characteristics largely attributable to material in various stages of 
alteration between hard rock and homogenized soil;
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  regic sand – usually coarse-textured sand to sandy loam, unstructured with generally loose 
consistency, found in dry regions; and while not a diagnostic horizon, also 

  hard rock – which has no or only a minimal soil cover and is impermeable. 
 
This does not imply that the remaining four diagnostic topsoil horizons, viz. the organic, humic, orthic and 
melanic horizons, nor the remaining subsoil horizons, viz. the yellow brown apedal, red apedal and red 
structured horizons are not of importance in mapping hydrological attributes of soils at TU level – they just 
do not feature in explicit equations in the working rules which are based on information contained in the 
Terrain Unit Database.   
 
From Diagnostic Soil Horizons to the Soil Forms and Soil Series Used in Terrain Unit Analyses 
Groupings of soils within a TU are by soil form and soil series. 
 
From the diagnostic soil horizons described above, the concepts of soil forms and soil series are now 
described from a perspective of mapping soil hydrological attributes at TU resolution. 
 
Soils are organised combinations of horizons and the grouping of specific kinds of diagnostic horizons in 
specific sequences has resulted in the concept of broadly defined soil forms, of which 41 were identified in 
South Africa in the Binomial classification system (MacVicar et al., 1977) and more than 70 in subsequent 
classifications.  
 
Each soil forms is, in turn, subdivided into soil series. These are defined, inter alia, for the purpose of 
enabling non-soil scientists such as hydrologists to describe soils more specifically according to criteria 
influencing a soils response, e.g. in regards to hydrological responses. The concept of a soil form divided 
into a number of series is akin to the plant Kingdoms classification into genera and species. A number of 
soil physical and chemical criteria are used in the identification of soil series. Criteria important to 
hydrological responses include 

  soil texture properties – with a soil’s clay content (which influences soil water retention and 
redistribution) being divided into five classes, also with abrupt textural discontinuities being 
indicative of interflow potential and/or hydraulic conductivity changes and sand being graded into 
coarse, medium and fine, with these textural properties being the prime criteria used in the 
working rules of hydrological attributes in conjunction with the TU Database; 

  degree of leaching – classed into highly (dystrophic), intermediate (mesotrophic) and minimally 
(eutrophic) leached categories, these being indicative of the soils permeability and the ease to 
which saturated drainage (percolation) can take place, and with the degrees of leaching being 
related to the level of aridity of the soil water regime; 

  calcareousness – the degree of which is again associated with levels of permeability and aridity of 
the soil water regime; 

  surface crusting tendencies – which would influence infiltrability; 
  cutan formation – associated with the degree of illuviation and/or the soils shrink/swell potential, 

i.e. swelling when wet and shrinking when dry; and the 
  degree of wetness – usually associated with bottomland soils which may be hydrologically more 

responsive in stormflow generation as a result of lateral flow accumulation in the bottomlands and, 
under certain conditions, groundwater ridging. 

 
Soil Forms and Soil Series as the Key Criteria to the Land Type Inventories as the Basis for Mapping Soil 
Hydrological Attributes 
The most detailed mapping unit for the entire country to which hydrological soil attributes could be linked 
is the soils Land Type. Soils Land Type maps, together with the soils inventories linked / associated with 
them, were produced by the Agricultural Research Council’s Institute for Soil, Climate and Water (ISCW) 
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and its predecessor, the Soil and Irrigation Research Institute (SIRI), with mapping originally in hard copy, 
but subsequently available digitally. Some background on that approach, relevant to the present study, is 
provided below. 

A Land Type (MacVicar et al., 1974) is a class of land over which macroclimate, terrain form and soil patterns 
each display a marked degree of uniformity. This uniformity is such that with insights and technologies 
available in the 1980s it was originally believed that there would be little advantage in mapping, on a 
countrywide basis, smaller and more uniform landscape entities for the purpose of, for example, 
hydrological modelling. The ISCW, in having an agricultural rather than a hydrological mandate, also 
endeavoured to capture those natural factors that determine agricultural, rather than hydrological, 
responses. The Institute thus initiated the Land Type surveys with the aims of

delineating soils Land Types, with fieldwork at a scale of 1:50 000, but eventual mapping 
at 1:250 000 resolution,
defining each Land Type, and
analysing, in-depth, the soil profiles within Land Types (SIRI, 1987).

The Land Type maps were compiled by superimposing detailed climate maps for the region over a 
pedosystem map and then identifying unique Land Type units. Examples of soils Land Type maps based on 
the Binomial Classification system are shown in Figure 2-6. 

Figure 2-6: Examples of Soil Land Type maps, around Lake St Lucia (left) and Durban (right) in 
KwaZulu-Natal Province of South Africa (SIRI, 1989)

Land Types over South Africa were grouped into nine broad soil patterns, A, B, C… which were then further 
sub-divided into map units coded Aa, Ab, Ac... Ai etc., with a mapping unit representing soils of a certain 
uniformity in regards, inter alia, to colour, base status, depth range and other factors. With reference to 
those sub-divisions, numbered Land Types were then identified in South Africa with, for example, Ae23 
being the 23rd Land Type, with specific local soil properties, of the broader mapping unit Ae. In total some 
6 000 Land Types were delineated over South Africa.   
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Point of Departure 2: From Inventories of Information Associated with Each Soils Land Type to Terrain 
Unit Information 
 
Land Type Inventory Information Relevant to Terrain Unit Delineation  
The delineated and mapped Land Types, of which there are over 6 000, are accompanied by detailed 
tabulated inventories of information on each Land Type. These Land Type inventories were compiled using 
data collected during the terrain, soil and climate survey phases. Each Land Type is made up of a number 
of soil series.  
 
The inventory of each Land Type contains information regarding, inter alia,  

  the percentage, by area, of the individual soil series making up that Land Type, and  
  for each soil series within a Land Type contains information on soil physical properties such as clay 

content, soil texture class, soil profile thickness and soil depth limiting material. 
 
More importantly in the inventory (but not mapped with the Land Types) of each of the 6 000+ Land Types 
is information on the soil series which are found in up to 5 terrain units (TUs) making up a Land Type. These 
TUs, which had been identified in the field (cf. previous section), are mentioned here again, being  

  the crest, termed TU1, which is defined as being convex shaped, 
  the scarp, or TU2, which is akin to a cliff,  
  the midslope, TU3, which is concave in shape, 
  the footslope, TU4, also concave in shape, and 
  the valley bottom, or TU5, often also known a wet area adjunct to a stream. 

 
A key question arising at this juncture is whether there is significant hydrological information gain by 
mapping from Land Type resolution to TU resolution. This is addressed in the next sub-section by way of a 
sensitivity analysis. 
 
Sensitivity of Hydrological Responses to Terrain Unit Information within a Soils Land Type 
Intuitively, because each TU within a Land Type is comprised of different (but usually related) individual soil 
series, each with different soil thicknesses and hydrological properties, it stands to reason that each TU 
within a single mapped Land Type should have a different hydrological response. That this is so, is illustrated 
in Figure 2-7 in which the different soil water contents of the topsoil of the crest (TU1), of the footslope 
(TU4) and the topsoil of the valley bottom (TU5) of Land Type Ac207, all modelled with the ACRU daily time-
step and process-based model (Schulze, 1995 and updates), are shown for an identical climate time series 
and the same land use. 
 
From Figure 2-7 there is significant hydrological information gain in going from the Land Type to the TU 
resolution. 
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Figure 2-7: Modelled soil water contents (in m/m) of the respective topsoils of three terrain units of a 
soils Land Type, illustrating the importance of identifying individual TUs within a soils Land Type in 

regards to hydrological

Point of Departure 3: Delineation of Terrain Units within Soils Land Types

Beukes’ Technique
While still employed at the Agricultural Research Council (ARC) of South Africa, Beukes (2018, pers. com.; 
now retired) superimposed a Digital Elevation Model (DEM) with a 90 m resolution (pixel) over each 
mapped soils Land Type which had been identified in South Africa, and then used Neighbourhood Analysis 
to compute the slope to the North, East, South and West pixel from the pixel of interest in order to 
determine convexity or concavity to the neighbouring pixels (Beukes, 2018; pers. com.). On the premise 
that that the crest was convex shaped, but that the midslope was concave in shape, he then applied Zonal 
Statistics to delineate / map the individual TUs within a Land Type. Following that procedure, he 
superimposed satellite imagery at a 30 m resolution over the map of TUs to refine the delineations of the 
TUs, especially the valley bottoms in hilly areas, as a 90 m DEM, while being at a satisfactory spatial 
resolution in flattish terrain, was found to be too coarse where it was hilly. 

The TU Database
From Beukes’ ARC Database of Terrain Units per Soils Land Type, based on the refined 90 m DEM, 27 491 
spatially defined TUs across South Africa were identified by the techniques described above, with 

6 793 of those TUs being convex-shaped crests, 
6 586 TUs being concave midslopes, 
7 046 TUs identified as footslopes and 
7 066 TUs being valley bottoms. 

For each TU in this Terrain Unit Database (TUDB) 
the Land Type is identified (e.g. Ia155, Fb143 and Db218 in Table 2-1),
the TU numbers within the Land Type are listed (e.g. TU1, TU3, TU4 and TU5 within Land Type 
Fb143 in Table 2-1),
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the percentages of each TU in a Land Type are given (e.g. in Table 2-1 TU5 makes up 20% of Land 
Type Fb143, TU4 30%, TU3 30% and TU1 the remaining 20%),   
the spatial extent of each TU is given by the number of 90 x 90 m pixels making it up (e.g. Table 2-1
shows TU5 of Land Type Ia155 to be made up of 1 560 pixels and TU4 of 14 180 pixels), 
the soil series constituting a TU are then listed, with up to 15 soil series in the original TUDB, but 
with only up to 8 series shown in the example of Table 2-1, where it is seen that TU5 of Land Type 
Ia155 is made up of soil series Ar10, Va40, Oa46, Va10 and Oa13), and 
the individual areas, as percentages, of each soil series within a TU are then listed (e.g. in Table 2-1, 
for TU5 in Land Type Ia155 soil series Ar10 makes up 50% of the TU, Va40 20%...).

Table 2-1: Extract from the Terrain Unit Database showing selected attributes of the Terrain Unit 
Database up to soil series level information (original source: Beukes, 2018)

Further to that, in Table 2-2, 
soil profile depths for each soil series in a TU are given in mm, with a set of working rules shown 
later in Figure 2-10 which are applied to determine respective thicknesses of the topsoil and subsoil 
for each soil series in the TU,

while in Table 2-3
clay percentages for each soil series in a TU are given for the topsoil (in the upper table) and for 
the subsoil (in the lower table), with this information used with a set of working rules shown later 
for the determination of the permanent wilting point and the drained upper limit for the top- and 
subsoils.

Table 2-2: Further extract from the Terrain Unit Database showing soil profile depths (mm) per soil 
series in a TU in the last eight columns (Original source: Beukes, 2018)
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Table 2-3: Another extract from the Terrain Unit Database showing (top table) clay percentages in the 
topsoil and (bottom table) in the subsoil per soil series in a TU in the respective last eight columns 

(Original source: Beukes, 2018)

The full TUDB from which the above extracts were made contains a wide range of other attributes of the 
constituent soil series in a TU which are unrelated to mapping hydrological soils attributes.

Illustration of the Spatial Detail of Terrain Unit Mapping
To illustrate the spatial detail from mapping South Africa’s soils at the TU level, an area to the north and 
west of Durban in KwaZulu-Natal was selected (Figure 2-8). The figure shows the delineated crests in dark 
brown, midslopes in light brown, footslopes in green and the valley bottoms in dark blue (Figure 2-8). 
Scarps, taken to be vertical to near-vertical, are assumed to have no spatial extent when mapped in plan 
view. The black polygons on the map are Quinary Catchments delineations, i.e. the hydrologically and 
agriculturally relatively homogeneous spatial unit now widely used in South Africa in water resources and 
climate change studies and for which currently area-averaged soils attributes are a modelling input. Within 
a Quinary Catchment the large number of TUs, each with their own hydrological attributes, are seen clearly. 
When the rectangular inset in Figure 2-8 is zoomed in upon in Figure 2-9, the degree of detail of the TU 
delineations is even more amply evident, with individual pixels of a specific TU visible in places. It is at this 
level of spatial detail that the hydrological attributes of soils were mapped.
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Figure 2-8: Terrain units and Quinary Catchments west and north of Durban, South Africa

Figure 2-9: Zooming in from the inset in Figure 8 to show more detail on soils Terrain Units in dark 
brown (crests), light brown (midslopes), green (footslopes) and dark blue (dark blue) within Quinary 

Catchments (black)
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2.5 Definitions of key soil physical attributes and algorithms used 

2.5.1 Determination of thicknesses of topsoil and subsoil horizons 

Importance in Hydrology of the Thickness of the Topsoil Horizon 
The topsoil is the “action” horizon in both forestry and in hydrology, as it is the horizon  

  into which rainfall infiltrates, 
  which contains most of the plant’s roots, 
  out of which most transpiration and soil water evaporation occurs, 
  which may be disturbed by forest management practices such as site preparation,  
  the soil water content of which largely controls stormflow responses to rainfall, and  
  which can display cracks in shrink-swell type clay soils. 

 
Importance in Hydrology of the Thickness of the Subsoil Horizon 
The subsoil horizon, on the other hand, 

  is the “moisture storage” horizon, which 
  largely determines plant available water, 
  controls recharge into the vadose/ groundwater zones, and 
  is the contact horizon overlying either unconsolidated material or parent material which, in a 

wetland/bottomland, can also be a gleyed horizon).  
 
Determining Respective Horizon Thicknesses 
The Terrain Unit Database, based on information from the Land Type inventories, provides a total depth, 
or thickness, of the soil profile for each of the soil series within a TU, as shown in the example in Table 2-2. 
The active root depth of plantation forests is taken to be the total soil profile depth as given in the TUDB, 
with a maximum depth of 1 500 mm assumed for modelling purposes when that depth is exceeded.  
Experience-based working rules, initially developed by Angus and Schulze (1990) and Schulze et al. (1991), 
and then modified by Schulze and Horan (2005) and again by Schulze (2018; for the present study), have 
been developed and are used to 
 

  modify the total soil profile depth given in the TUDB for use in modelling, and to then 
  partition the total depth into respective thicknesses of top- and subsoil horizons. 

 
These working rules are summarised by the flowchart shown in Figure 2-10, where THICK is the soil profile 
thickness (mm), as given in the TUDB and shown by way of example in Table 2-2. 
 
The working rules are essentially self-explanatory. However, key features are that the maximum soil 
thickness is assumed to be 1 500 mm, as indicated above, and that where the total active root depth is 
deeper than 500 mm the topsoil is assumed to be 0.30 m thick, while when below 500 mm the topsoil 
horizon is assigned a thickness of 60% of the total profile thickness and a special case is made for rocks, 
which are assigned an arbitrary “soil” thickness of 10 mm. 
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Figure 2-10: Flowchart illustrating the working rules for the determination of the thicknesses of the 
topsoil (DEPAHO; m) and the subsoil (DEPBHO; m) when using information contained in the Terrain Unit 

Database

2.5.2 Determination of soil water content at the soil’s permanent wilting point

The Concept of the Permanent Wilting Point
Permanent Wilting Point (PWP) is taken here as the dry (i.e. lower) limit of soil water available to plants. At 
the stage of permanent wilting point, the hydraulic conductivity is so low that water cannot move to the 
roots fast enough, even over short distances, and no water is available for transpiration. As such the soil 
water content at PWP, viz. PWP, is usually assumed to be a soil characteristic with a matric potential 
assumed to be fixed at -1 500 kPa. 

This it is not strictly so, however, as it depends also on the plant as well as on the depth, intensity and 
ramification of the root system at the different depths in the soil profile at which the plant is attempting to 
extract soil water. 

Overall, values of soil water content at permanent wilting point for top- and sub-soil horizons of the soil 
profile will depend, inter alia, on the

soil texture, i.e. dependent on the particle size distribution of the soil into percentages of clay, silt 
and sand, where particularly the percentage of the fine clay is important, as well as the
percentage organic matter, the soil’s
bulk density,  
instability of the soil in regard to swell/shrink properties found in vertic topsoils and prisma- and 
pedo- as well as certain gleycutanic subsoils, and the
change of clay content with depth.

Not every one of the above variables is contained, either explicitly or by implication, in the Land Type 
inventories on which the TUDB is based, and certain simplified rules thus had to be applied, as explained 
below.
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Soil Water Content at Permanent Wilting Point
Soil water content, in m/m, largely reflects the texture class of the soil and especially its clay percentage. 
The flowchart making up Figure 2-11 has thus been derived from Hutson’s (1984) equations when using 
clay content as the only variable, based on over 3 000 soil analyses. 

As may be gleaned from Figure 2-11, the PWP also depends largely on Hutson’s (1984) findings that values 
are affected by whether the soils are stable or unstable and, if unstable with shrink-swell characteristics, 
whether the diagnostic horizons are vertic and, if not, whether or not they are either prismacutanic, or 
gleycutanic, or pedocutanic soils, in which case the soil water content is different to that of stable soils not 
displaying those characteristics. 

It should be stressed that in many soil series in South Africa clay content increases with depth as a result of 
the translocation of finer clay particles down the soil profile, mainly in higher rainfall areas. This is illustrated 
for Land Type Db218 in Table 2-3. For that reason alone, the PWP of a subsoil will frequently be higher than 
that of its topsoil.  

Figure 2-11: Flowchart illustrating the working rules for the determination of soil water content at 
permanent wilting point when using information contained in the Terrain Unit Database

With reference to the soil forms with unstable soils which are given in Figure 2-11, some key hydrological 
properties of which were described in the section on “Master and Diagnostic Soil Horizons and Their 
Relevance to Mapping Hydrological Soils Attributes at Terrain Unit Level”
they are as follows: 

Vertic soils are all soil series of the following soil forms: Rensburg Rg
Arcadia Ar

Prismacutanic soils are all soil series of the following soil forms Estcourt Es
Sterkspruit Ss

Pedocutanic soils are all soil series of the following soil forms: Bonheim Bo
Swartland Sw
Valsrivier Va

Gleycutanic soils are all soil series of the following soil forms: Kroonstad Kd
Pinedene Pn

Lithocutanic soils are all soil series of the following soil forms: Cartref Cf
Glenrosa Gs
Mayo My 
Nomanci No



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES

pg 23

2.5.3 Determination of soil water content at the soil’s drained upper limit

The Concept of the Drained Upper Limit
Drained Upper Limit (DUL) is the soil water condition reached when water has been allowed to percolate 
naturally from the soil until drainage ceases and the water remaining is held by capillary forces that are 
great enough to resist gravity. The soil water content at DUL, DUL, is often described as being the wet limit 
of the soil water available freely to plants. This theoretical definition has drawbacks when applied to soils 
in a natural environment and DUL can be described as the soil water content below which the hydraulic 
conductivity is sufficiently small for redistribution of moisture due to hydraulic head to be ignored.  A 
definition in terms of matric potential is difficult owing to the fact that DUL may vary with texture, but it 
is conventionally taken to fall somewhere between -5 and -33 kPa.  In this document a value of -10 kPa is 
used as the matric potential representing DUL. 

Soil Water Content at the Soil’s Drained Upper Limit
From Hutson’s (1984) analyses of over 3 000 soil samples, values of soil water content at the DUL for top- 
and sub-soil horizons of the soil profile will depend, inter alia, on the 

percentage of clay
percentage of silt, the 
bulk density, and the
change of clay content with depth.

Applying Hutson’s simplified equations using only clay content as a variable, as that is what is available in 
the TUDB, and in recognition that for many soils the clay content increases with depth (see Table 2-3), his 
equations for soil water content at DUL are given in Figure 2-12. 

Figure 2-12: Flowchart illustrating the working rules for the determination of soil water content at the 
drained upper limit when using information contained in the Terrain Unit Database

Profile Plant Available Water 
Profile Plant Available Water (PAW, in mm) is assumed to be the water in the soil profile which is readily 
available to plants. Conventionally, 

PAW =  DUL - PWP. 

The concept of PAW is not without flaws, however, as plants can extract soil water at levels > DUL, albeit 
at a reduced rate (Schulze, 1995). Furthermore, at a given fraction of PAW between DUL and PWP plant 
stress sets in, implying again a reduced rate of a plant’s ability to extract soil water. This fraction of PAW is 
often fixed at around 0.5 (i.e. 50% PAW), especially for agricultural crops, but under natural conditions it 



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES 
 

 
pg 24 

varies according to soil texture (fraction is higher in clays, lower in sandy soils) as well as varying on a day-
by-day basis with different crops, depending on atmospheric demand (the hotter the day, the higher the 
fraction because plants close their stomata) and the plant’s critical leaf water potential (i.e. some plants are 
inherently more resilient to stress than others).  
 
In the case of plantation species, the fraction of PAW at which stress sets in varies by genus, it being 
assumed in modelling of Pinus species to commence at 0.3PAW already since pines are conservers of soil 
water, while for Eucalyptus species it is set at 0.2PAW as eucalypts use soil water freely until there is very 
little available water remaining before stress sets in.  
 
Because PAW represents a store of water available, it will depend on 

  soil texture, with different textures having different water holding capacities (e.g. loam can hold 
more water than clay or sand) and 

  soil profile depth, where depth here refers to the profile’s depth to which plant roots are active. 
 
Profile PAW may be expressed as 
PAW=([DEPAHO*1000*DUL1]–[DEPAHO*1000*WP1])+[DEPBHO*1000*DUL2]–[DEPBHO*1000*WP2]) 
 

2.5.4 Determination of soil water content when soils are at total porosity, i.e. when the 
soil is totally saturated   

Some Background on Soil Water Content at Porosity 
Total porosity (PO in m/m) is the percentage soil volume occupied by voids, and as such contains the 
maximum possible soil water storage, with all pore spaces filled with water.  At total porosity the soil is 
therefore saturated with water.  The matric potential at saturation is 0 kPa. 
 
Hydrologically the soil water content at saturation attains significance because it is the difference between 
PO of a critical soil depth and the actual soil water content for the same depth which defines the soil water 
deficit, S (mm) – a crucial variable used in the computation of stormflows in the ACRU model (Schulze, 1995 
and updates).  
 
In the maps which follow on soil water content at saturation for the topsoil ( PO1), the soil is assumed not 
to be tilled. It should be noted that, depending on the soil’s texture class, a freshly tilled topsoil’s PO1 can 
increase by between 11% and 34% (average: 20%) because of a change in bulk density with ploughing, with 
this increase gradually declining to between 2% and 25% (average: 12%) by the end of the growing season 
as the soil compacts again.  
 
Estimation of Soil Water Content at Total Porosity under Various Conditions 
The amount of water held by a soil when all pore spaces are filled at saturation, is used in computations of 
soil water redistribution and stormflow generation. Total porosity will depend largely on the soils 

  texture class, which reflects its percentages of the sand, silt and clay fractions, its 
  bulk density, which generally varies with clay content and depth, and its 
  state of tillage, through which bulk density of the tilled layer is changed. 

 
For this study soil texture class is the only variable used (Figure 2-13). Note that soil water content at total 
porosity is highly variable within a given soil texture class (Hutson, 1984). The South African database on 
total porosity values is, furthermore, not extensive. Hence, literature derived values of total porosity, by 
soil texture class, are used. These are given in Figure 2-13. 
In Figure 2-13 reference is made to the ACRU model’s Soils Database (Smithers and Schulze, 1995 and 
updates). If that is not readily accessible, the percentage clay given in the Terrain Unit Database (Table 2-3) 



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES

pg 25

can be used in conjunction with the South African texture triangle (Figure 2-14) to determine the soil texture 
class, especially since a silt content around 10% may be assumed as a general value for most of South African 
soils (Hutson, 1984).

Figure 2-13: Soil water content (m/m) for soil texture classes at porosity for topsoils (PO1) and subsoils 
(PO2) 

Figure 2-14: South African texture triangle (MacVicar et al., 1977)
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2.5.5 Determination of saturated redistribution rates, or saturated drainage

Some Background on Saturated Redistribution Rates
Saturated drainage occurs when soil water content exceeds the soil water content at drained upper limit, 

DUL.  The daily amounts of drainage are dependent on a fraction of that excess water (i.e. the soil water 
content exceeding DUL) which, in a soil with two horizons, would drain

from the topsoil to the subsoil horizon when the topsoil’s DUL is exceeded, and
from the subsoil out of the active root zone when the subsoil’s DUL is exceeded.

Redistribution Rates from Topsoil to Subsoil
The redistribution fraction of the “excess” water per day from top- to subsoil is dependent, as a point of 
departure, on soil texture, with clays draining slowly and sands rapidly, and with this initial rate then 
modified, as illustrated in Figure 2-14. 

These redistribution fractions depend largely (but not solely) on soil textural conditions. However, South 
African soils are hydrologically complex, and are characterised by hydraulic discontinuities because of their 
heterogeneous horizonation. Where gradual or abrupt changes toward finer textures take place between 
the top-and subsoil horizons the redistribution rate is reduced.  Similarly, where impervious stonelines, 
clay- or other hardpan horizons occur in the subsoil of a soil profile, rates are reduced, as illustrated in 
Figure 2-15. 

Figure 2-15: Flowchart illustrating the working rules of saturated redistribution of soil water from the 
topsoil into the subsoil

With reference to the soil attributes shown in Figure 2-15 which modify saturated redistribution of soil 
water from the topsoil into the subsoil, some key hydrological properties of which were described in the 
section on “Master and Diagnostic Soil Horizons and Their Relevance to Mapping Hydrological Soils 
Attributes at Terrain Unit Level”, they are as follows:
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Duplex soils are all soil series of the following soil forms: Cartref Cf
Constantia Ct
Estcourt Es
Houwhoek Hh
Kroonstad Kd
Lamotte Lt
Longlands Lo
Shepstone Sp
Vilafontes Vf
Wasbank Wa

Pedocutanic soils are all soil series of the following soil forms: Bonheim Bo
Swartland Sw
Valsrivier Va

Neocutanic soils are all soil series of the following soil forms: Inhoek Ik
Oakleaf Oa
Vilafontes Vf

Ferrihumic soils are all soil series of the following soil forms Houwhoek Hh
Lamotte Lt

G-Horizon soils are all soil series of the following soil forms: Katspruit Ka
Rensburg Rg
Willowbrook Wo

Redistribution Rates out of the Subsoil
As illustrated in Figure 2-16, the initial texture-based redistribution rates out of the subsoil are modified by 
a different set of conditions. 

With reference to the soil attributes shown in Figure 2-16 which modify saturated redistribution of soil 
water out of the subsoil, some key hydrological properties of which were described in the section on 
“Master and Diagnostic Soil Horizons and Their Relevance to Mapping Hydrological Soils Attributes at 
Terrain Unit Level”, they are as follows:

Figure 2-16: Flowchart illustrating the working rules of saturated redistribution out of the subsoil
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With reference to the soil attributes shown in Figure 2-16 which modify saturated redistribution of soil 
water from the topsoil into the subsoil, some key hydrological properties of which were described in the 
section on “Master and Diagnostic Soil Horizons and Their Relevance to Mapping Hydrological Soils 
Attributes at Terrain Unit Level”, they are as follows: 
 

Duplex soils are all soil series of the following soil forms: Cartref Cf 
 Constantia  Ct 
 Estcourt Es 
 Houwhoek Hh 
 Kroonstad Kd 
 Lamotte Lt 
 Longlands Lo 
 Shepstone Sp 
 Vilafontes Vf 
 Wasbank Wa 
Pedocutanic soils are all soil series of the following soil forms: Bonheim Bo 
 Swartland Sw 
 Valsrivier Va 
Neocutanic soils are all soil series of the following soil forms: Inhoek Ik 
 Oakleaf Oa 
 Vilafontes Vf 
Ferrihumic soils are all soil series of the following soil forms: Houwhoek Hh 
 Lamotte Lt 
G-Horizon soils are all soil series of the following soil forms: Katspruit Ka 
 Rensburg Rg 
 Willowbrook Wo 

 
Redistribution Rates out of the Subsoil 
As illustrated in Figure 2-17, the initial texture-based redistribution rates out of the subsoil are modified by 
a different set of conditions.  
 
With reference to the soil attributes shown in Figure 2-17 which modify saturated redistribution of soil 
water out of the subsoil, some key hydrological properties of which were described in the section on 
“Master and Diagnostic Soil Horizons and Their Relevance to Mapping Hydrological Soils Attributes at 
Terrain Unit Level”, they are as follows: 
 

Lithocutanic soils are all soil series of the following soil forms: Cartref Cf 
 Glenrosa Gs 
 Mayo My 
 Nomanci No 
Regic Sand soils are all soil series of the following soil forms: Fernwood Fw 
Hard Rock soils are all soil series of the following soil forms: Milkwood Mw 
 Mispah Ms 
Hard Plinthic soils are all soil series of the following soil forms: Glencoe Gc 
 Wasbank Wa 
Soft Plinthic soils are all soil series of the following soil forms Avalon Av 
 Bainsvlei Bv 
 Longlands Lo 
 Tambamkulu Tk 
 Westleigh We 
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Figure 2-17: Flowchart illustrating the working rules of saturated redistribution out of the subsoil

2.6 Mapped outcomes and interpretations of results from a forestry 
perspective.

In the sub-sections to follow the forestry plantation study area is first defined, followed by displays of maps 
of the various soils parameters assessed, initially at a South Africa-wide level and then zoomed in to an area 
around Durban in KwaZulu-Natal to illustrate the spatial detail that can be attained when mapping at 
Terrain Unit resolution.  

2.6.1 The plantation forestry study area

The plantation forestry study area within South Africa is shown in Figure 2-18 (top) in relation to mean 
annual precipitation (Figure 2-18 bottom left) and its inter-annual coefficient of variation (Figure 2-18
bottom right). It has been defined as essentially areas with MAP in excess of 600 mm which simultaneously 
display a relatively low inter-annual CV of rainfall, by South African criteria, at < 30%.
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Figure 2-18: The plantation forestry study area within South Africa (top) in relation to mean annual 
precipitation (bottom left) and (bottom right) its inter-annual coefficient of variation (Bottom maps: 

Schulze, 2008)

2.6.2 Thickness of the topsoil

Topsoil thickness in the areas potentially afforestable in South Africa are shown in Figure 2-19 (top) to range 
from < 0.10 m to 0.3 m, the maximum thickness to which topsoils have been defaulted in this study. Many 
areas display topsoil thicknesses below what could be considered an optimum at 0.3 m, given that most 
tree roots reside in the topsoil. The zoomed-in map shows that topsoil thickness can vary widely across very 
short spaces.
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Figure 2-19: Thickness of the topsoil (m) mapped at TU resolution
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2.6.3 Thickness of the subsoil

The thickness of the subsoil in the potential forest areas of South Africa ranges from < 0.1 m to > 0.8 m, 
with most subsoil thicknesses in the range of 0.2 to 0.4 m – not particularly thick (Figure 2-20 top). The 
zoomed-in map does, however, show that in many areas actually under plantation forestry in the midlands 
of KwaZulu-Natal at present the subsoils are in the range of 0.3 to 0.5 m thick (Figure 2-20 bottom), but as 
in the case of topsoils, showing a wide range of thicknesses over short distances.

Figure 2-20: Thickness of the subsoil (m) mapped at TU resolution
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2.6.4 Thickness of the subsoil (m) mapped at TU resolution

The entire soil profile thickness in the South African areas potentially afforestable from a climatic 
perspective range from <0.1 m to > 0.8 m (Figure 2-21 top), with many soils where plantation forestry is 
actually practised in the range of 0.4 to 0.8 m thick, as shown in the zoomed-in map within KwaZulu-Natal 
in Figure 2-21 (bottom). It may even be argued that plantation forestry utilises among the best agricultural 
soils in the east of South Africa.  

Figure 2-21: Thickness of the entire soil profile (m) mapped at TU resolution



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES

pg 34

2.6.5 Soil water content in the topsoil at Permanent Wilting Point

Soil water content at the permanent wilting point (PWP) is the lowest amount of water a soil can hold under 
field conditions, and for the topsoil this is shown in Figure 2-22 (top) to range from < 0.08 m per m thickness 
of soil to > 0.30 m/m, but mostly from 0.12 to 0.20 m/m in the actual “forestry belt”. As with other soil 
hydrological parameters, PWP of the topsoil can vary quite markedly over short distances as the zoomed-
in map of Figure 2-22 (bottom) shows.

Figure 2-22: Soil water content at permanent wilting point (m/m) of the topsoil mapped at TU resolution
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2.6.6 Soil water content in the subsoil at Permanent Wilting Point

As for the topsoil, the PWP of the subsoil in the potential plantation forest areas of South Africa varies from 
< 0.08 m/m to > 0.30 m/m (Figure 2-23), with a tendency for the subsoil’s PWP to be slightly less than that 
of the topsoil.

Figure 2-23: Soil water content at permanent wilting point (m/m) of the subsoil mapped at TU resolution
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2.6.7 Soil water content in the topsoil at the Drained Upper Limit

As a rule of thumb, soils hold approximately 0.1 m/m more water at DUL than they do at PWP. Patterns of 
soil water content of the topsoil at the drained upper limit show values in the range of 0.18-0.32 m/m 
(Figure 2-24) and in the main forestry areas generally between 0.24 and 0.30 m/m, depending on the clay 
fraction in the soil. The low topsoil DUL values along the east coast are indicative of the sandy soils there.

Figure 2-24: Soil water content at drained upper limit (m/m) of the topsoil mapped at TU resolution
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2.6.8 Soil water content in the subsoil at the Drained Upper Limit

A slightly more coherent picture emerges in the map of the forestry areas of South Africa of the soil water 
content of the subsoil at the drained upper limit compared with that of the topsoil (cf. Figure 2-25 vs Figure 
2-24). Translocation of clay particles into the subsoil results in higher values in the subsoil by approximately 
0.02 m/m (i.e. 20 mm/m), with these increasing by up to 0.06 m/m (60 mm/m) where soils with a high clay 
fraction predominate, which is mainly in the wetter eastern forest potential regions of South Africa.

Figure 2-25: Soil water content at drained upper limit (m/m) of the subsoil mapped at TU resolution
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2.6.9 Total profile plant available water

With PAW of the total soil profile representing a store of water available, it depends on both soil texture 
(with different textures having different water holding capacities) and on the total soil profile thickness (i.e. 
the combined thicknesses of the top- and subsoils), assuming that plant roots are active throughout the 
entire profile. Values in the forestry areas of South Africa range from < 20 mm to > 100 mm (Figure 2-26), 
with the higher values reflecting either deep soils (e.g. the east coast of KwaZulu-Natal) or high clay 
contents. High values of PAW are beneficial to the forest industry as trees develop deep root systems from 
which water may be extracted.

Figure 2-26: Plant available water (mm) in the in the entire soil profile mapped at TU resolution
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2.6.10 Soil water content in the topsoil at saturation

Mapped values of soil water content at saturation in the topsoil, when all the soil’s pore spaces are filled 
with water, display a narrow range in the potential plantation forestry areas of South Africa, from < 0.42 to 
> 0.48 m/m, with most of the higher values in the eastern coastal areas (Figure 2-27).

Figure 2-27: Soil water content in the topsoil at saturation (m/m) mapped at TU resolution
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2.6.11 Soil water content in the subsoil at saturation

As was the case with soil water content at saturation in the topsoil, for the subsoil a very narrow range of 
values is evident in the forestry belt of South Africa, with values most commonly in the range of 0.42 to 
0.44 m/m (Figure 2-28), the exception again being the deep sandy east coast zone.   

Figure 2-28: Soil water content in the subsoil at saturation (m/m) mapped at TU resolution
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2.6.12 Drainage rates from the topsoil to the subsoil

Drainage rates indicate the fraction per day of excess soil water, i.e. soil water content above the drained 
upper limit, which drains from an upper to a lower soil horizon. Drainage rates from the top- to the subsoil 
in the climatically suitable plantation forestry areas of South Africa display a wide range from < 0.2 to > 0.8 
of the excess soil water draining down per day (Figure 2-29), but mostly in the range of 0.3 to 0.5.

Figure 2-29: Drainage rates (fraction of excess water per day) from the topsoil to the subsoil, mapped at 
a resolution of terrain units
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2.6.13 Drainage rates out of the subsoil

Drainage rates out of the subsoil display much more spatial heterogeneity than those from the top- to the 
subsoil because they are influenced not only by soil texture, but also by a range of impeding layers below 
the active root zone of a soil. The relatively high drainage rates along the northeastern coastline of KwaZulu-
Natal (> 0.60/day; Figure 2-30), are indicative of the sandy nature of the soil there while similarly the 
Mpumalanga-Free State axis of low drainage rate values (0.20-0.30/day) reflect the relatively high clay 
contents of soils there.

Figure 2-30: Drainage rates (fraction of excess water per day) out of the subsoil, mapped at a resolution 
of terrain units
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2.7 Concluding Thoughts 

There is significant spatial information gain when using TU level information compared with the use of Land 
Type information, which has aggregated and, as such, has area-averaged much the detail available on the 
soils of South Africa. This is illustrated in Figure 2-31, which shows the spatial detail of the thickness of the 
topsoil horizon mapped from TUs (left map) versus that mapped from Land Type information (right map), 
using the identical thickness classes in the legend.

Figure 2-31: Example of the spatial information gain when utilising terrain unit information (left) 
compared with detail when using area-averaged Land Type information (right map: Schulze and Horan,

2008)

The gain in spatial information becomes even more evident when the area blocked off in white in the 
already zoomed in map of the thickness of the entire soil profile of Figure 2-32 (left) is Figure 2-31 enlarged 
even more to that of the right-hand map of Figure 2-32. Soil hydrological characteristics mapped at the 
spatial resolution of terrain units, as shown in this document, have important potential applications which 
go beyond those of the forest industry and will be utilised as the soils data in the Quinary catchments 
database.   

Figure 2-32: Further example of spatial information gain when utilising spatial terrain unit soils 
information, from (left) a region/provincial to (right) a local perspective
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CHAPTER 3. INVESTIGATION OF THE POTENTIAL 
USE OF THE ROOT ZONE STORAGE CONCEPT 

R. Horan1 and M.L. Toucher1,2 

 

1 Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg 
2 South African Environmental Observation Network 

 

3.1 Introduction 

The improved soils information presented in Chapter 2 was used in quinary catchments database and the 
refined SFRA runs produced in this project. However, to supplement and potentially advance knowledge, a 
further question related to the soils information was addressed during the course of the project. The 
question is: 
 
“Can the root zone storage concept be used to determine the root zone storage capacity and thus the soil 

depth under commercial tree species?” 
 
Hydrological modelling, in particular the ACRU model, has become the accepted method of assessing the 
impact of commercial afforestation on water resources (Jewitt and Schulze, 1999). However, hydrological 
models require detailed catchment scale soils data to generate satisfactory results as soils play a critical 
role in the regulation and generation of catchment hydrological responses (Schulze and Pike, 2004).  As no 
universal soils map for South Africa exists, as described in Chapter 2, the Land Type maps are used with 
hydrological parameters assigned to the TU for the purpose of hydrological modelling. A further problem, 
however, is the lack of detailed root depth estimates and understanding of their establishment over time 
to input into hydrological models. Typically, coarsely averaged values from literature are used along with 
the assumption that porosity drives the root zone storage capacity. 
 
A possible alternative to intensive soils mapping is the use or requiring detailed rooting information, is the 
incorporation of the root zone storage concept into hydrological modelling. Successful studies have been 
performed in Asia, Europe and the United States of America using this concept but not as yet in South 
African conditions. For example, Nijzink et al. (2016), detected the change in root zone storage with 
deforestation but little work has been performed on the root zone storage capacity under afforestation.  
The utilization of the root zone storage capacity under commercial afforestation could potentially be useful 
in the improvement of modelling for SFRA purposes. 
 

3.2 Literature review of the root zone storage concept 

The hydrological regime and the partitioning of water fluxes within a catchment is altered by the continuous 
adaption of vegetation to change in the biosphere (Black, 1997; Wagener et al., 2007; Nijzink et al., 2016). 
Vegetation survives by extracting plant available water between the field capacity and wilting point of their 
immediate soil (Vietz, 1972). Within their sphere of influence, vegetative roots create a moisture storage 
volume known as the root-zone storage capacity (Moore and Heilman, 2011). The root-zone storage 
capacity exists in the unsaturated soil and is a vital component of the hydrological regime (Rodriguez-Iturbe 
et al., 2007 and Nijzink et al., 2016). The role of the soils in the hydrological cycle and how they are 



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES 
 

 
pg 45 

represented in ACRU is, to an extent, covered in Chapter 2. Therefore, the uncertainties introduced in 
modelling due to below ground parameter estimation are reviewed prior to the root zone storage concept. 
 

3.2.1 Increased modelling uncertainty due to below ground parameter estimation and 
process parameterisation 

The root profile distribution acts as the primary control of water uptake through the soil horizons. In current 
modelling methods, the root depth and root vertical profile, are pivotal in determining the movement of 
water through the soil-vegetation-atmosphere continuum (Gu et al., 2007). The depth and structure of the 
root system determines the maximum amount of soil water that can potentially be taken up by the plant 
xylem and transpired by the vegetation (Tron et al., 2015). The ability to uptake water is critically important 
during the dry season and prolonged drought (Lobet et al., 2014). Root growth and the process of root 
water uptake is spatially and temporally dynamic and reacts to the availability of water within the soil profile 
(Bleby et al., 2010; Jung and McCouch, 2013).  
 
Models considering below-ground vegetation began to emerge in the early 1970s. These models were 
based on mathematical representations of root depth distribution in soil. Over the last two decades, more 
complex architectural models have been developed and the use of more computer-intensive methods have 
been utilised (Dupuy et al., 2010). Most catchment-scale models are originally developed to address 
stationary scenarios and are not well equipped to deal with predicting the variance in hydrological 
parameters due to change (Nijzink et al., 2016). Although modelling studies have been performed with the 
attempt to incorporate temporal change, most or all of the changes to the hydrological parameters have 
been assumed or estimated (Legesse et al., 2003; Mahe et al., 2005; Fenicia et al., 2009). More systematic 
approaches have only recently gained momentum, with the incorporation of temporal change into the 
model formulation (Nijzink et al., 2016; Zhang et al., 2016). 
 
In most hydrological models, two plants of the same species growing in two different soils would be 
considered to have the same average rooting depth. This would subsequently mean that the plants have 
access to different volumes of water because of the difference in the porosity of the two soils. Research by 
Milly (1994); Schymanski et al. (2008) and Troch et al. (2009), has shown that this is not the case and that 
plants design their root systems to access similar volumes of water and limit unnecessary carbon 
investment in root growth. Recently this consideration has been supported by De Boer-Euser et al. (2016), 
who showed that in most environments the water balance-derived estimates for the root-zone storage 
capacity are as accurate as the soil-derived estimates and concluded that the maximum rooting depth 
controls the transpiration of the plants and the soil drainage.  
 
Soil and rooting depth are key parameters in hydrological and land-surface modelling (Fan et al., 2017). The 
global distribution of soil and rooting depths are largely unknown due to the difficulties in measurement 
and the high variance between soil type, plant species and combinations thereof within modelling units 
(Yang et al., 2016). A common trait amongst many plant species is a deep complex rooting system. The 
rooting systems are essential in the determination of the soil pedogenesis, soil water partitioning and soil 
chemistry processes (Pierret et al., 2016).  Current research efforts are focussed towards shallow root 
systems whist the study of deep root systems remain disproportionate, due to challenging procedures to 
observe and measure deep systems.  
 
The rooting depth of a plant directly affects their resilience to environmental stresses (Maeght et al., 2013). 
Deep roots enhance many functions such as bedrock weathering, determination of the soil water and 
regulation of chemical cycles. However, little is known about the limits to which roots grow and the factors 
that determine this limit (Beerling and Berner, 2005).  A study by Fan et al. (2017), showed that in well-
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drained uplands, the rooting depth followed the infiltration depth to the capillary fringe. In waterlogged 
lowlands, the roots remained shallow to avoid anaerobic respiration conditions. These results suggest that 
the variation in rooting depths observed under the same climate for the same species is due to different 
topographic positions.  
 
Large portions of continental landmasses are characterised by shallow soils overlying weathered bedrock 
and cemented soil layers (Schwinning, 2010; Zhao et al., 2017).  Studies show that the majority of the soils 
are deeper than 1.2 metres and many plants grow beyond this depth. However, the depth of 1.2 metres is 
often considered as the maximum soil depth in literature and hydrological modelling (Richter and 
Markewitz, 1995; FAO, 2006). The drivers of deep root growth remain poorly understood (Maeght et al., 
2013). Deep rooting could be a more prevalent and a more important trait due to the overall distribution 
of root biomass through the deeper layers (da Silva et al., 2011). The misrepresentation of soil and root 
depths in hydrological models causes uncertainty in hydrological prediction and land-surface modelling 
(Schwinning, 2010 and Vrettas and Fung, 2017). Schwinning (2010) suggested that further research is 
necessary to improve the characterization of dynamic water recharge and depletion throughout the root-
zone.  
 

3.2.2 Background and Introduction to the Root Zone Storage capacity concept 

Root-zone storage capacity can be considered as a volume of water per unit area within the range of plant 
roots and available for transpiration (Zhu et al., 2008; De Boer-Euser et al., 2016; Mao and Liu, 2019). 
Vegetation survives by extracting plant available water between the field capacity and wilting point of their 
immediate soil (Coppin and Richards, 1990; Irmak and Djaman, 2016). Within their sphere of influence, 
vegetative roots create a moisture storage volume known as the root-zone storage capacity (Schenk and 
Jackson, 2002). It is a vital component of the hydrological regime (Nijzink et al., 2016).  
 
Vegetation has a significant influence on the hydrological cycle (Bates, 1921; Zegre, 2008). The vegetative 
roots structurally adapt to establish an equilibrium resulting in the avoidance of water shortage within the 
ecosystem (Eagleson, 1982).  Research suggests that root systems are designed for the most efficient 
extraction of water from the soil to meet the transpiration demands of the canopy while minimising the 
root growth necessary to sustain these demands (Milly, 1994). Studies, for example by Reynolds et al. 
(2000); Laio et al. (2001); Schenk and Jackson (2002), show that climate has a strong influence on the 
hydrologically active root-zone, whist periods of drought and flood are critical situations that affect the 
establishment of the root-zone.  
 
The root-zone storage capacity currently cannot be physically measured in the field (Gao et al., 2014). 
Within hydrological models, if the root-zone is considered, it is normally treated as a calibration parameter 
or a range of soil parameters estimated on assumed knowledge about the in-situ soil characteristics and 
estimates of the rooting depth (Liu et al., 2006). Generally, this parameter is conceptually considered to 
change with season but not over the growth cycle of the plant (Figure 3-1). This does not reflect the real-
world processes accurately and could be a potential source of error when modelling non-stationary 
conditions (Blasone et al., 2008).  Models account for the seasonal change in effective rooting depth and 
the colonisation of each horizon but do not account for the change in the root collar diameter or volume of 
roots (Figure 3-1). 
 
Recently there have been an increased number of studies focussed on determining the root-zone storage 
capacity. Summarising available literature, six methods of estimating the root-zone storage capacity have 
been identified for application in hydrological modelling.  
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The first of these approaches is the field observation approach (Wang-Erlandsson, 2014). This approach 
estimates the rooting depth using the rooting depth measurements taken by removing vegetation from the 
soil profile and measuring the length of the longest rooting structure (Zeng, 2001). This method is 
advantageous as it relies on actual observations and measurements of vertical root distributions, but is 
handicapped by data scarcity, location bias, vegetation and soil heterogeneity and the assumption that 
water uptake is from a set portion of the soil profile. 

Figure 3-1: A basic conceptualisation of the root-zone storage within common hydrological models in 
wet and dry periods under grassland conditions

The Lookup Table approach, where mean biome rooting depths and soil texture are determined from 
literature (Wang-Erlandsson et al., 2014), is favoured in hydrological modelling to parameterise the root-
zone storage capacity. Although this approach is useful in land-use change studies, it has a significant 
downfall in that it assumes that the root-zone storage is solely based on vegetation and soil type, with no 
climatic consideration other than those indirectly expressed through vegetation and soil characteristics 
(Collins and Bras, 2007; Wang-Erlandsson et al., 2014).  

Two approaches that have proven valuable are the Optimisation approach and the inverse modelling 
approach. The Optimisation approach predicts the rooting depth based on existing soil, vegetation and 
climate variables, including but not limited to soil hydraulic properties and root distribution. This method 
can incorporate complex algorithms, complicated eco-hydrological modelling and analytical modelling 
(Collins and Bras, 2007). The Inverse Modelling approach makes use of satellite data to estimate the rooting 
depth using either absorbed photosynthetically active radiation or total terrestrial evaporation along with 
different rooting depth parameterisations (Kleidon, 2004). This approach is highly dependent on ground-
truthed soil information and accurate evaporation estimations. The value of both with further development 
could be enhanced. 

The Calibration approach, a commonly used approach, is whereby a hydrological model is calibrated on the 
root-zone storage capacity using records of precipitation, runoff and evaporation and for use only at a 
catchment scale.  However, these parameters are strictly tied to the model used and not transferable 
between models as they compensate for uncertainties in the model structure. Further, the calibration 
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becomes more uncertain when only discharge data is available as the parameterisation absorbs the 
uncertainty in data (Pappenberger and Beven, 2006). The approach of interest in this study is the water 
balance approach, and this is reviewed in more detail. 
 

3.2.3 The Water Balance approach 

The root-zone storage capacity is strongly related to climate variables utilised in the estimation (Kleidon 
and Heimann, 1998; Gentine et al., 2012; Gimbel et al., 2015), thus as an alternative approach to 
parameterization of the root-zone storage capacity and to allow for temporal variability, a water balance 
approach is considered (De Boer-Euser et al., 2016; Gao et al., 2014; Wang-Erlandsson et al., 2016, Nijzink 
et al., 2016). This approach is climate-driven and thus incorporates climatic and vegetation conditions in a 
dynamic hydrological parameter (De Boer-Euser et al., 2019). It should be noted that this method estimates 
a catchment representative root-zone storage capacity, which reflects the root-zone storage capacity for 
all the combinations of vegetation that exist in a catchment (De Boer-Euser et al., 2019). The currently 
published studies are discussed in chronological order below.  
 
The first published paper was that of Zhu et al. (2008) who performed one of the first root-zone storage 
studies. This study considered the temporal variation of the root-zone storage capacity under natural 
undershrub in China. The root-zone storage capacity was modelled using a two-layer soil water balance 
model. This model comprised of a shallow surface layer and a root-zone layer. Model results from this study 
were found to simulate the observed data sufficiently well.  
 
Following the work of Zhu et al. (2008), at the Centre for Ecology and Hydrology, a simple root-zone storage 
routine was developed and integrated into the in-house Distributed Catchment Scale Model (DiCaSM). The 
model utilises a routine based on a root-zone water balance to determine the storage. Precipitation, 
streamflow and interception are used to calculate the infiltration into the root-zone. The total evaporation 
and recharge are calculated as water fluxes out of the root-zone and the remaining water is considered to 
be storage.  Although there are no studies that have specifically isolated the root-zone storage routine, 
there are many studies that have used the DiCaSM model successfully as a whole entity, these include 
D'Agostino et al. (2010), Montenegro and Ragab (2010), Montenegro and Ragab (2012), Ragab (2012) and 
Afzal et al. (2018). 
 
Wang-Erlandsson et al. (2014) calculated the root-zone storage capacity by estimating the soil moisture 
deficit constructed from a time series of water inflow and outflow through the root-zone storage system 
(Figure 3-2). A simple method using remotely sensed data, which can be adapted for in-situ observed data, 
was developed for the estimation of the root-zone storage capacity.  It is assumed that the vegetation 
optimises the root-zone storage capacity and does not require any vegetation and soils data. The method 
is additionally model-independent. The advantages of the Wang-Erlandsson et al. (2014) technique over 
field-based studies is that it can be utilised with remotely sensed data. Remotely sensed data can reduce 
the dependence on human and financial capital, limit the need for intrusive measuring techniques, 
compliment modelling methods that make use of indirect observation data and contribute to the 
understanding of areas with limited direct observational studies. The Wang-Erlandsson et al. (2014) 
technique allows for the inclusion of irrigation and additional variables if they are available to adjust the 
root-zone storage. 
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Figure 3-2: The soil moisture deficit constructed from a time series of water inflow and outflow through 
the root-zone storage system (Wang Erlandsson et al, 2014)

Building on the work of Wang-Erlandsson et al. (2014), Gao et al. (2014) tested a theory of treating the root-
zone as a reservoir. The mass curve technique, an engineering method for reservoir design, was applied to 
over 300 catchments and was used to estimate catchment-scale root-zone storage capacity from effective 
rainfall and plant transpiration. It was found that the mass curve technique derived root-zone storage 
capacities reflected the model-derived estimates well. The estimates of root-zone storage capacity derived 
by Gao et al. (2014) could be used to constrain hydrological models. Furthermore, they concluded that root 
systems are controlled by climate and that ecosystems can potentially dynamically design their root systems 
to combat periods of drought.  

Zhao et al. (2016) improved the mass curve technique for the root-zone of Gao et al. (2014) by incorporating 
a snowmelt module. Zhao et al. (2016) found the root-zone storage capacity estimates to vary greatly with 
changes in climatic conditions and soil characteristics whilst being most sensitive to changes in the 
transpiration of ecosystems. The adjusted mass curve technique proved to be a simple but effective tool 
for the root-zone storage capacity estimation in different climatic regions of China, however, the inclusion 
of additional climatic regions will improve knowledge on the variability of the storage capacity. 

De Boer-Euser et al. (2016) undertook a study to investigate the nature of vegetative adaption to the root-
zone storage capacity, especially under drought conditions. Precipitation and evaporative demand data 
were used in this methodology. The climate-based calculations were compared with a proportion of soil 
water measurements and modelled data within 32 catchments in New Zealand. It was found that the range 
of values between the catchments was greater for the climate-based calculations compared with those of 
the soil derived data in humid climates but was similar in arid climates. Using a model, it was shown that 
the climate-derived root-zone storage capacity better reproduced the hydrological regime signatures for 
humid catchments. However, in arid climates, the model produced similar results. De Boer-Euser et al. 
(2016) concluded that the climate-based root-zone storage capacity is a valuable addition in the process of 
understanding the root-zone storage capacity and reducing hydrological model uncertainty.

Nijzink et al. (2016) introduced a catchment-scale root-zone storage capacity estimation method using 
climatic data to reproduce the temporal evolution of root-zone storage capacity over the growth cycles and 
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multiple seasons. This method considers the maximum deficit between daily precipitation and transpiration 
as a proxy for root-zone storage capacity. The calculated values from this method were validated against 
model results from four different hydrological models over a two-year period. The calculated water-balance 
root-zone storage capacities were found to be similar to the values obtained from the hydrological models 
and proved a promising method to reflect the time-dynamic behaviour of a catchment.  
 
De Boer-Euser et al. (2019) extended on the De Boer-Euser et al. (2016) study using a water balance-based 
method to estimate the root-zone storage capacity in Boreal forests. The study investigated the relationship 
between catchment and vegetation characteristics and the root-zone storage capacity. The intention was 
to further understand the physical meaning of the root-zone storage capacity parameter. A climate-derived 
root-zone storage capacity parameter was compared with climate variables and vegetation characteristics. 
It was concluded that the dynamic root-zone storage capacity gives additional information about the 
hydrological characteristics as of a catchment and represents climatic and vegetation conditions in a single 
dynamic hydrological parameter. This could be valuable in the assessment of changing conditions.  
 
Lastly, Mao and Liu (2019) developed a hydrological model to simulate the root-zone storage capacity on a 
global scale. They claimed that most root-zone storage studies are focussed on the soil water at a certain 
depth rather than the water stored within the rooting system. The root-zone storage capacity was 
integrated into a well-validated lumped model to reflect the natural spatial heterogeneity of the plant 
rooting system across the globe. The model mimicked the observed root-zone storage capacity in most 
regions well, however, the regions of high latitudes were not considered and thus results from these regions 
cannot be justified. 
 

3.2.4 Summary 

A possible alternative to intensive soils mapping is the use or incorporation of the root-zone storage concept 
into hydrological modelling. This concept will overcome the problems associated with the lack of or 
inaccurate rooting and soil depths and the uncertainty of vegetative growth curves. Successful studies have 
been performed internationally using this concept but not as yet in South African conditions. There are 
several ways to estimate the root-zone storage capacity. Currently, the most accurate and popular method 
is using the water balance principle. The root-zone storage capacity is a core component in determining a 
dynamic hydrological response and could be a valuable concept in improving the development of dynamic 
models. The concept of root-zone storage in hydrological modelling would need to be treated as a 
dynamically evolving parameter as a function of vegetation and climate. A number of successful studies 
using the various variations of the water balance approach have recently been published. The strength of 
this approach is that the dynamic nature of the climate and vegetation temporally and across a catchment 
can be represented in a single parameter. The input data can be remotely sensed data or in-situ 
measurements of commonly measured climate variable and limited below ground information is necessary. 
The approach has been proven successful across a range of climate zones however, performs better in 
humid environments. At the time of this study, there were no published results from high altitude 
catchments.  
 
Of the eight current studies using the water balance method, the methods by Nijzink et al. (2016), Wang-
Erlandsson et al. (2014) and the DiCaSM routine are the most appropriate under South African conditions 
and for the potential use in ACRU.  The Nijzink et al. (2016) method was tested under commercial 
afforestation in New Zealand thus it is the best choice of method to test under South African commercial 
forestry.  Wang-Erlandsson et al. (2014) was developed for grassland conditions and thus it is a strong choice 
for comparison between grassland and afforestation conditions in South Africa.  Although this method was 
developed for remotely sensed data, the nature of the fundamental equations allows for the input of  
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in-situ point observations. The DiCaSM method provides a strong opportunity to test an existing routine in 
a small scale catchment model that is similar to ACRU in its functioning. The utilization of the root-zone 
storage capacity could not only improve modelling in regions of limited below ground data but additionally, 
under commercial afforestation, it could potentially be useful in the improvement of modelling for SFRA 
purposes. 
 

3.3 Methodology  

Two well monitored catchments (Two Streams and Cathedral Peak Catchment VI) with sufficient length 
data were be used. It must be noted that the ACRU model was set up and calibrated for both catchment 
using data that is readily available (i.e. maximum and minimum temperature, precipitation and streamflow) 
to identify the weaknesses within a common modelling environment. As the purpose was to use commonly 
available information as a way of determining the model adequacy under typical conditions, the observed 
evaporation and soil moisture data that was available in this case was used solely for the purpose of 
validation and not in the model calibration. A summary of the steps followed in the methodology, with a 
detailed explanation, is provided below.   
 
1. The ACRU model was run using daily observed precipitation and maximum and minimum 

temperatures. Hargreaves and Samani daily was used internally to estimate the potential 
evaporation. The daily observed streamflow was used in the calibration of the model.  

2. As observed actual evaporation and soil moisture are not commonly available, these were not used 
in the calibration of the model. In the calibration process, only parameters were that were known or 
could be estimated with use of the ACRU manual were adjusted.  

3. The calibration statistics were calculated on the best fit of streamflow obtained only from commonly 
available input data and parameters. Once all the parameters and information that would be 
commonly available for South African catchments were adjusted, the calibration process ceased.  

4. The simulated actual evaporation and soil water was validated against observed data.  
5. The root zone storage calculations were undertaken with both the observed and the simulated actual 

evaporation, observed precipitation, interception and observed streamflow. This was to test the 
robustness of the methodology to data scarcity.  

6. The observed gravimetric water content, permanent wilting point and field capacity were converted 
to a depth of water using the soil depth before being compared to the root-zone storage capacity. 
To validate the root-zone storage capacity estimations, the estimations needed to be adjusted to 
reflect a water content within the soil profile using the permanent wilting point as the lower limit of 
the water in the root zone. 

 

3.3.1 Site description 

Both the Cathedral Peak Catchment VI and the Two Streams Catchment are located in KwaZulu-Natal, South 
Africa (Figure 3-3) and are intensely monitored by the South African Environmental Observation Network 
(SAEON) and University of KwaZulu-Natal, respectively. 
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Figure 3-3: Location of Two Streams and Cathedral Peak Catchment VI within South Africa.

The Two Streams Research Catchment (0.65 km2) is in the ‘midlands mistbelt grassland’ bioregion (Clulow, 
2011). The area experiences a humid climate with predominantly summer rainfall. The annual rainfall 
ranges from 659 to 1139 mm (Everson et al., 2018). The dominant soil forms are apedal and plinthic with 
dolerite dykes and sills present in the area. The Two Streams Catchment forms part of the Mistley-Canema 
Estate belonging to Mondi Forestry and was afforested with Acacia mearnsii until November 2017 (Everson 
et al., 2018).  Rainfall, relative humidity, temperature and wind are monitored. The evaporation is estimated 
using an eddy covariance tower situated within the stand. The streamflow has been monitored continuously 
since 1999 using a 457.2 mm 90° V-notch weir, logger (CR200X, Campbell Scientific) and pressure transducer 
(CS451, Campbell Scientific) (Clulow, 2011). Groundwater is monitored at four boreholes located in the 
centre, western, northern and eastern corners of the plantation. Soil water is monitored using time-domain 
reflectance probes to a depth of 2.4 m in the centre of the plantation.

The Cathedral Peak research catchment IV is situated within the uKhahlamba Drakensberg Park. The 
vegetation is fire-maintained grasslands. The majority of the rainfall (85%) falls within the summer months, 
October to March (Morris et al., 2016). An estimated 50% of the rain originates from thunderstorms whilst 
some less intense longer events can last for several days. The MAP is 1400 mm (Morris et al., 2016). The 
catchment comprises of Drakensberg Basalt Group which intermittently overlies the Clarens Formation 
Sandstone. The sampled soils are moderately weathered and can be considered immature. The profiles are 
at least 1.5 m deep and have an average pH of 5.5 in the surface horizon and 6.6 in partly decomposed rock. 
The dominant soil forms are Hutton and Griffin (Kuenene et al., 2009). 

3.3.2 Data acquisition

The physical characteristics of the catchments were obtained from various sources and used in the 
modelling exercises whilst the observed and estimated climate data, interception and recharge estimations 
and streamflow measurements, were assembled into a time series for each catchment extending from 
March 2007 until October 2013 and from July 2014 until August 2018 for both the Two Streams and 
Cathedral Peak catchment VI, respectively. The model input data used is extensively detailed in Horan 
(2020). 
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3.3.3 Calibration of the ACRU model 

The ACRU model setups were not calibrated to their full potential but to the full extent possible with 
commonly available data as mentioned previously. The ACRU model setups were previously calibrated for 
Two Stream by Clulow et al. (2011) and for Cathedral Peak Catchment VI by Horan (2017) for different time 
periods. The model configurations were run for both catchments using the new climate forcing data and 
were calibrated further where possible under the set-out data constraints for the new time period. 
 
For Cathedral Peak Catchment VI, the model under-simulated the low flows and over-simulated the 
magnitude of the high flows as not enough water was retained during the receding limb of the hydrograph. 
Parameters were adjusted systematically to improve the simulation. The soil depths for the A and/or B 
horizons were altered, and it was decided that an A horizon depth of 0.34 m and B horizon of 1.4 m provided 
the best simulation of streamflow. The model was run using the altered soil depths and the simulation was 
much improved. The SMDDEP was altered to various depths.  A SMDDEP of 0.3 m yielded the best result 
when compared to the observed data.  
 
For Two Streams, the model simulated the low flows well but the magnitude of the high flows were 
significantly under simulated whilst the duration of high flow is over-simulated. Parameters were adjusted 
systematically to improve the simulation. The soil depths for the A and/or B horizons were altered and it 
was decided that an A horizon depth of 0.2 m and B horizon of 0.57 m provided the best simulation of 
streamflow. The model was run using the altered soil depths and the simulation was much improved. The 
SMDDEP was altered to various depths. A SMDDEP of 0.2 m yield the best result when compared to the 
observed data. 
 

3.3.4 The estimation of the root-zone storage capacity 

Three methods were used to estimate the root-zone storage capacity for both catchments. For each 
catchment, identical datasets are used between the three methods to allow for comparison of results. Each 
dataset consisted of precipitation, actual evaporation, interception and streamflow at a daily time step. For 
the validation of the calculated root-zone storage capacity, the root-zone storage capacity needed to be 
adjusted to reflect a water content within the soil profile. The root-zone storage is the water available for 
plant uptake and thus can be defined as the water content above the permanent wilting point. The 
permanent wilting point was added to the root-zone storage content estimations to reflect the water 
content in the soil profile.  
 
The different methods used in the estimation of the root-zone storage capacity are described below.  
 
Nijzink Method  
The change in interception storage over time was calculated by subtracting the actual evaporation and 
effective precipitation from the gross precipitation (Eq 3.1).  
 

=  
(3.1) 

 
where: 
I  = Interception (mm) 
t  = time (days) 
Pg = Gross Precipitation (mm) 
Et = Actual evaporation (mm) 
Pe = Effective Precipitation (mm) 
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The maximum root-zone storage capacity was calculated using the integral of the subtraction of the 
effective precipitation from the evapotranspiration over the time period (Eq 3.3).  
 

= ( )  
(3.2) 

 

= ([ ]  [ ] ) (3.3) 
 

where: 
RZSC = Root-zone storage (mm) 
Et = Actual evaporation (mm) 
Pe = Effective Precipitation (mm) 
 
The absolute values of the root-zone storage were calculated for each time period, the maximum value was 
determined for the time series and assumed to be the maximum root-zone storage capacity of the 
catchment.  
 
Wang Method  
Although the Wang method was derived for use with remote sensing datasets, in this study the fundamental 
equations from Wang-Erlandsson et al. (2014) were applied to in-situ point climate data. As the first step, 
the inflow (Eq 3.4) and the outflow (Eq 3.5). of the system were calculated using daily datasets of 
precipitation, actual evaporation and interception.  
 

= = +  (3.4) 
 

where: 
Fout = Flow out of the system (mm) 
Et = Actual Evaporation (mm) 
I =Interception (mm) 
 

= +  (3.5) 
 

where: 
Fin = inflow to the system (mm) 
Pg = Precipitation (mm) 
Firr = Irrigation applied within the system (mm) 
 
The difference between the inflow and the outflow was calculated for each time step and the accumulated 
difference (A) was defined as follows (Eq 3.7).  
 

=  .  
(3.6) 

 
= [ ] [ ]  (3.7) 

 

where: 
tn = final time interval 
tn-1 = initial time interval 
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The soil moisture deficit is calculated. The soil moisture deficit, by definition, cannot be negative as it is to 
be considered as a running estimate of the root-zone storage capacity.  Thus the following is assumed (Eq 
3.8): 
 

( ) =  (3.8) 
 
where: 
D(tn) = Soil moisture deficit (mm) 
If D(tn) < 0 then D(tn) becomes 0 
If D(tn)> 0 then remains the initial value 
 
The soil moisture deficit for the previous time interval is calculated as follows (Eq 3.9 and Eq 3.10): 
When D(tn) < 0 
 

( ) = (0 + ) (3.9) 
 
And when D(tn)> 0: 
 

( ) = ( ) +  (3.10) 

 
 
As the final step, the root-zone storage capacity is calculated (Eq 3.11): 
 

= ( ( ), ( ), ( ) … ( ) (3.11) 
 
DiCaSM Routine 
The DiCaSM model runs a simple routine to calculate the root-zone storage capacity. This routine requires 
the groundwater recharge per time interval, which was not available as an observed measurement.  
 
The method used to estimate the groundwater recharge is an empirical relationship developed by Kumar 
(1977) for use in cases where recharge observation measurements are limited. The empirical relationship 
is defined as (Eq 3.12): 
 

 =  0.63  .  (3.12) 
 
where: 
G  = Groundwater recharge (mm) 
Pe  = Effective precipitation (mm) 
 
With groundwater recharge estimates, the root-zone storage capacity method within the DiCaSM model 
(Ragab, 2010) could be applied. The root-zone storage capacity was calculated using (Eq 3.13):  
 

=   –  –  (3.13) 
 
where: 
RZSC = change in root-zone storage capacity (mm) 
Et  = Actual Evaporation (mm) 
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3.4 Results 

3.4.1 Comparison of observed and simulated streamflows and soil water  

The streamflow at the outlets of the Two Streams catchment and Cathedral Peak catchment VI were 
simulated using the ACRU model. The streamflow was simulated for the Two Streams catchment from 
March 2007 until October 2013, and from July 2014 to April 2017 for Cathedral Peak. The performance of 
the model to simulate the streamflow was assessed using Nash-Sutcliff Efficiency (NSE), Kling-Gupta 
Efficiency (KGE), Root Mean Squared Error (RMSE), R2 and percent bias.  
 
In comparison to the observed streamflow, the model produced a poor simulation of streamflow at Two 
Streams as evident from the negative NSE and KGE values (Table 3-1). ACRU under-simulates the magnitude 
of the high flows but over-simulates the duration of high flow and over-simulates of the low flows resulting 
in an over-simulation of the total streamflow by 125% over the time period. The summer months were 
simulated better than the winter months (Table 3-1). Based on the suggestions in Smithers and Schulze 
(1995), the poor simulation could be attributed to errors in the soil parameters used or the actual 
evaporation. For Cathedral Peak catchment VI, in comparison to the observed streamflow, the model 
produced a fair simulation of streamflow with NSE and KGE values between 0.45 and 0.55 (Table 3-1). ACRU 
is over-simulating the magnitude of the high flow but receding too quickly and under-simulating the low 
flows resulting in a 12% under-simulation of the total discharge over the time period. The winter months 
were better simulated than the summer months (Table 3-1). The simulated hydrograph receded too rapidly, 
and the low flows were not maintained well. Based on the suggestions in Smithers and Schulze (1995), the 
concerns in the simulated streamflow could be attributed to errors in the soil parameters used or the actual 
evaporation.  
 
Table 3-1: The overall and seasonal streamflow goodness of fit statistics for the Two Streams (TS) and 

Cathedral Peak Catchment VI (CP6) calculated using the daily streamflow values 

Catchment TS CP6 
NSE -0.28 0.45 
KGE -0.64 0.52 
RMSE 0.44 1.48 
R2 0.03 0.65 
Bias (%) 125 -12 
Summer NSE -0.21 0.46 
Winter NSE -1.88 0.51 

 
Due to data availability, the verifications using observed soil water could only be undertaken for the Two 
Streams catchment from November 2011 until October 2013. The observed data was obtained from Time 
Domain Reflectometer (TDR) soil water probes at 0.4 m intervals through the soil profile to a depth  
of 2.4 m. The soil water storage for the A and B horizons was selected as an output from the ACRU model 
simulation for the Two Streams catchment. The simulated soil water storage was compared to the observed 
data for the relevant horizons (Figure 3-4 and Figure 3-5). In the A horizon, the observed and simulated soil 
water fluctuated within the range of plant available water, the fluctuations have a visibly fair correlation 
and good seasonal trend (Figure 3-4) but statistically the simulation is poor with an NSE of -0.29, and R2 of 
0.17. The simulated soil water is more responsive to rainfall than the observed soil water causing the 
temporal correlation of the peaks to be weak and 23% over simulation. The simulated soil water reduced 
to the permanent wilting point in the dry season whereas the observed soil water did not. In the B horizon, 
the model produced a poor simulation with an NSE of -0.47 and R2 of 0.27. The ACRU model over-simulated 
the magnitude and flux of the soil water (Figure 3-5). The observed data formed a smooth curve with a 
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single peak within the bounds of the plant available water whilst the simulated soil water was far more 
responsive. 

There is not always a response to rainfall in the A soil horizon. This could be due to multiple factors such as 
low rainfall intensity, high levels of canopy interception, litter interception, immediate water uptake by 
water stressed trees and possibly surface sealing of the soil below the canopy which affects the infiltration. 
The simulated soil water in the B horizon fluctuated to a greater extent than the observed soil water. The 
B horizon is much deeper than the A horizon and therefore the response to rainfall events is lagged. Soil 
water in the B horizon tends to be taken up immediately by the trees as there is evidence that they are 
continuously stressed. 

Figure 3-4: The daily simulated soil water (blue line) and the daily observed soil water (black line) in the 
A horizon plotted within the field capacity (purple dashed line) and the wilting point (blue dashed line) for 

the period of November 2011 until October 2013.
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Figure 3-5: The daily simulated soil water (blue line) and the daily observed soil water (black line) in the 
B horizon plotted within the field capacity (purple dashed line) and the wilting point (blue dashed line) for 

the period of November 2011 until October 2013

3.4.2 Observed and simulated actual evaporation

The actual evaporation was simulated by the ACRU model (using the maximum and minimum 
temperatures) was compared to the observed records for the respective catchments from March 2007 until 
October 2013. The actual evaporation simulated by the model was used to determine the accuracy of the 
partitioning of water into the components of the water balance in the ACRU model. The overall and seasonal 
performance of the model to simulate the actual evaporation was assessed using NSE, KGE, RMSE, R2 and 
percent bias (Table 3-2). The model produced a very poor simulation of the actual evaporation resulting in 
negative NSE and KGE values and a large RMSE for both catchments (Table 3-2). At Two Streams, the actual 
evaporation was under simulated by 50% over the time period (Table 3-2) and this was particularly evident 
in the daily time series (Figure 3-6). The seasonal NSE suggests that the winter months are simulated slightly 
better than the summer months (Table 3-2), however, the under-simulations in the dry season are more 
evident than in the wet season (Figure 3-6). The model reduced the actual evaporation to zero in periods 
of the dry season because of the soil water drying out. This is not realistic as the catchment was afforested 
with evergreen Acacia mearnsii that continues to transpire throughout the year as confirmed by the 
observed evaporation (Figure 3-6). 

Table 3-2: The overall and seasonal actual evaporation goodness of fit statistics for the Two Streams 
(TS) and Cathedral Peak Catchment VI (CP6) calculated using the daily observed and simulated actual 

evaporation values

Catchment TS CP6
NSE -0.06 -0.19
KGE -0.17 0.165
RMSE 2.3 1.9
R2 0.17 0.10
Bias (%) -50 -33
Summer NSE -0.17 -0.44
Winter NSE -0.04 0.15
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Figure 3-6: The daily observed evaporation (purple line) and the daily actual evaporation estimated by 
the ACRU model (using the maximum and minimum temperatures) (blacked dashed line) at the Two 

Streams Catchment over the period of March 2007 until October 2013.

The actual evaporation was simulated by ACRU (using the minimum and maximum temperatures) at 
Cathedral Peak Catchment VI from July 2014 until August 2018. In comparison to the observed evaporation 
records, the model poorly simulated the actual evaporation as evidenced by low NSE and KGE values, a 
large RMSE and a negative bias of 33% over the time period (Table 3-2). The seasonal NSE suggests that the 
winter months were simulated better than the summer months (Table 3-2), however, from the daily time 
series the under-simulations in the dry, winter season were more evident (Figure 3-7). The poor temporal 
simulation in comparison to the observed data is evident from the daily time series (Figure 3-7), for 
example, due to late rains in (April) 2016 and the re-sprouting of the vegetation following initial senesce, 
the observed evaporation was at a maximum for a longer time than the simulated evaporation. ACRU was 
unable to account for the re-sprouting of senescing vegetation (due to intra-annual variation of rainfall) 
within the modelling period as stationary monthly crop coefficients are input, thus the model simulates the 
same transpiration trend every year. 
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Figure 3-7: The daily observed evaporation (red line) and the daily actual evaporation estimated by the 
ACRU model (blacked dashed line) at Cathedral Peak Catchment VI over the period of July 2014 until 

August 2018.

The ACRU model performed poorly at Cathedral Peak VI and more so at Two Streams. The streamflow 
simulations at Cathedral Peak Catchment VI were fair however the actual evaporation and soil water 
simulations were poor. At Two Streams the simulation of the streamflow, actual evaporation and soil water 
were all poor. McNamara (2018) illustrated that the ACRU model output is highly sensitive to the crop 
coefficient parameter. Thus, the conceptualisation of and uncertainty with the use of the crop coefficient 
(Allen et al., 2005 and Kunz et al., 2015) in the estimation of actual evaporation in the ACRU model could 
be contributing to the poor simulations of actual evaporation and consequently the soil water. In South 
Africa, there is a lack of site-specific crop coefficient data and thus estimations from FAO and other sources 
are commonly used. Added to this, the lack of adequate root depth and distribution information, and poor 
soils data further compounds the poor estimation of the soil water. The use of the root-zone storage 
capacity concept could potentially be used in addressing the uncertainties with the crop coefficient and the 
data deficits. It incorporates both climatic and vegetation conditions into a single dynamic hydrological 
parameter and represents all the combinations of the vegetation in a catchment (De Boer-Euser et al., 2019) 
and thus removing the reliance on the crop coefficient, rooting and soils data.

3.4.3 Root-zone storage capacity

Three methods were used to estimate the root-zone storage capacity for each of the catchments. The first, 
the Nijzink et al. (2016) method is based on a complex long-term water balance principle which supersedes 
the second method developed by Wang-Erlandsson et al. (2014). The final method is adapted from the 
DiCaSM model root-zone storage routine, which requires a groundwater recharge calculation, and for the 
purposes of this study, the method developed by Kumar (1977) was used. The results from the three 
methods are presented for each catchment.
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Two Streams Catchment 
All three methods produced root-zone storage capacities that displayed strong seasonal trends throughout 
the study period with sporadic high peaks in the summer months in response to large rainfall events in the 
catchment (Figure 3-8). The median root-zone storage capacity (Table 3-3) and the daily root-zone storage 
time series (Figure 3-8) show that the Nijzink method estimates the greatest root-zone storage capacities 
and the Wang method estimates the lowest root-zone storage capacities. The Nijzink method results have 
the greatest variability in the calculated root-zone storage capacities and were very responsive to rainfall 
events. The root-zone storage capacities calculated using the DiCaSM method were the least variable. The 
DiCaSM method produced a root-zone storage capacity similar to that of the Nijzink method (Table 3-3) but 
did not produce sporadic peaks in response to the rainfall events evident from the range and the time series 
plot.

Table 3-3: Statistics of the root-zone storage capacities estimated using the Nijzink, Wang and DiCaSM 
methods at Two Streams.

Nijzink Wang DiCaSM
Mean (mm) 6.1 4.0 6.04
Median (mm) 5.3 3.1 5.6
Variance (mm) 17.6 14.4 7.8
Range (mm) 39.7 29.8 16.7

Figure 3-8: Estimated daily root-zone storage capacity for the Nijzink (red line), Wang (blue line) and 
DiCaSM (dashed black line) methods and daily rainfall (black line) at the Two Streams catchment for 

March 2007 to October 2013.
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The root-zone storage capacities were re-calculated using the same methodologies (Nijzink, Wang and 
DiCaSM) however, the observed evaporation was replaced with the simulated actual evaporation using the 
to determine the sensitivity to the actual evaporation input in the root-zone storage capacity and to 
investigate the robustness of this method to data scarcity.  
 
Using the simulated actual evaporation in the Nijzink method decreased the mean root-zone storage 
capacity however, it increased the variance and the range over the time period (Table 3-4). Higher peaks in 
the root-zone storage were calculated using the simulated actual evaporation although the mean and 
median were lower than those derived using the observed evaporation. Using the simulated actual 
evaporation in the Wang method decreased the mean root-zone storage capacity and slightly increased the 
variance and the range over the time period (Table 3-4). A significant decrease in the root-zone storage 
capacity using the simulated actual evaporation was seen in the dry season when the simulated actual 
evaporation was significantly under-simulated. Using the simulated actual evaporation in the DiCaSM 
method decreased the mean root-zone storage capacity, the variance and the range over the time period 
(Table 3-4). Throughout the time period, the root-zone storage capacity estimated using the simulated 
actual evaporation was significantly lower than when using the observed evaporation. The DiCaSM method 
was highly sensitive to the evaporation component but less sensitive to the precipitation then the Nijzink 
and Wang methods. 
 
Table 3-4: Statistics of the root-zone storage capacities estimated using the Nijzink, Wang and DiCaSM 
methods with observed evaporation (OET) and simulated actual evaporation (SET) for the Two Streams 

catchment. 

 Nijzink Wang DiCaSM 
 OET SET OET SET OET SET 
Mean (mm)  6.1 4.1 4.0 2.9 6.04 2.7 
Median (mm) 5.3 2.6 3.1 1.6 5.6 2.1 
Variance (mm) 17.6 23.0 14.4 159 7.8 5.2 
Range (mm) 39.7 40.2 29.8 30.8 16.7 11.6 

 
Cathedral Peak Catchment VI 
The Nijzink, Wang and DiCaSM methods produced very similar root-zone storage capacities for Cathedral 
Peak catchment VI that displayed strong seasonal trends throughout the study period with sporadic high 
peaks in the summer months in response to rainfall events in the catchment (Figure 3-9). The median root-
zone storage capacity (Table 3-5) and the daily root-zone storage time series (Figure 3-9) show that the 
Nijzink and DiCaSM methods estimated the greatest root-zone storage capacities and the Wang method 
estimated the lowest root-zone storage capacities. The Nijzink method resulted in the greatest variability 
within the calculated root-zone storage capacities and was highly responsive to rainfall events. The root-
zone storage capacities calculated using the DiCaSM method were the least variable and did not respond 
rapidly to rainfall. 
 

Table 3-5: Statistics of the root-zone storage capacity estimated using the Nijzink, Wang and DiCaSM 
methods at Cathedral Peak catchment VI over the period July 2014 to August 2018. 

 Nijzink Wang DiCaSM 
Mean (mm)  8.4 6.8 8.6 
Median (mm) 7.0 5.5 8.0 
Variance (mm) 61.3 33.2 23.0 
Range (mm) 110.5 83.0 77.7 
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Figure 3-9: Daily root-zone storage capacity calculated using the Nijzink (purple line), Wang (green line) 
and DiCaSM (blue line) methods and the daily rainfall (black line) for the Cathedral Peak Catchment VI 

from July 2014 to August 2018.

The root-zone storage capacities were re-calculated using the same methodologies (Nijzink, Wang and 
DiCaSM) however, the observed evaporation was replaced with the simulated actual evaporation to 
determine the sensitivity to the actual evaporation input in the root-zone storage capacity and to 
investigate the robustness of this method to data scarcity. 

Using the simulated actual evaporation in the Nijzink method decreased the mean root-zone storage 
capacity and more markedly decreased the median, as well as slightly increasing the variance and range 
over the time period (Table 3-6). Using the simulated actual evaporation in the Wang method resulted in 
little difference in the mean root-zone storage capacity, variance or range (Table 3-6). Using the simulated 
actual evaporation in the DiCaSM method decreased the mean root-zone storage capacity and increased 
the variance and the range over the time period (Table 3-6). Following the calculations and understanding 
of the sensitivities of the three root-zone storage capacity methods, it was necessary to validate the 
calculated root-zone storage capacities with the observed soil water measurements.

Table 3-6: Statistics describing the root-zone storage capacity estimated using the Nijzink, Wang and 
DiCaSM methods with observed evaporation (OET) and simulated actual evaporation (SET) for the 

Cathedral Peak catchment VI.

Nijzink Wang DiCaSM
OET SET OET SET OET SET

Mean (mm) 8.4 7.5 6.8 6.3 8.6 7.48
Median (mm) 7.0 5.2 5.5 4.7 8.0 6.3
Variance (mm) 61.3 71.8 33.2 34.7 23.0 28.7
Range (mm) 110.5 113.6 83.0 84.7 77.7 80.7
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3.4.4 Validation of the root-zone storage capacity in hydrological modelling 

The validation of the calculated root-zone storage capacity with observed soil water data was only 
undertaken at Two Streams as there is no soil water data available for Cathedral Peak Catchment VI. The 
root-zone storage capacity was defined as the water in the root-zone available to the plant and thus the 
calculated root-zone storage capacities were adjusted using the permanent wilting point for the profile.  
The observed soil water and the ACRU simulated soil water were produced as a soil water content value 
(metres per metre). The water content for each horizon was weighted by the depth of the soil horizon to 
produce a depth of water in millimetres. To account for the soil water throughout the extent of the soil 
profile the depth of soil water in the A and B horizons were summed. 
 
Across the soil profile, the root-zone storage capacity methods produced better simulation of the soil water 
than the ACRU model at the Two Streams catchment. The goodness of fit statistics showed a poor 
simulation for all the root-zone storage capacity methods and the ACRU simulation compared to the 
observed data (Table 3-7). However, the estimated root-zone storage capacity methods produced better 
statistics compared to the ACRU simulation. The estimated root-zone storage capacity methods all produce 
an accurate bias, which indicates that the volume of water within the soil profile was comparable to 
observed values but the root-zone storage capacities were substantially more reactive to the rainfall 
compared to the observed data (Figure 3-10). The goodness of fit statistics suggest that the DiCaSM method 
produced the best simulation of the observed soil water although all three methods produced less variance 
than the observed data. 
 
Table 3-7: Statistics and goodness of fit measures describing the root-zone storage capacity estimated 

using the Nijzink, Wang and DiCaSM methods and the ACRU simulated soil water at Two Streams. 

 Observed Simulated Nijzink Wang DiCaSM 
Mean (mm) 440.69 480.97 435.77 437.75 445.80 
Median (mm) 437.87 476.81 434.23 435.23 443.86 
Range (mm) 109.50 150.58 79.47 88.53 68.34 
KGE - -0.47 0.047 0.142 0.235 
NSE - -0.39 -0.02 -0.10 0.11 
Bias (%) - 10 -1.5 -0.64 1.09 

 

3.5 Discussion and conclusion 

The limited calibration of the ACRU model at Two Streams, utilising data commonly available in South Africa, 
yielded a poor simulation of the streamflow and additionally through an independent validation of the 
actual evaporation and soil water it was found that these were simulated poorly. The model under-
simulates the high flows and actual evaporation whilst over-estimating the low flows and soil water. The 
model is retaining too much water in the soil profile resulting in the magnitude of high flows being reduced 
and lag time being extended in the summer. Both soil layers store excess soil water in the wet season and 
dry out in the dry season. The over-estimation of the soil water in B horizon maintains the water available 
in the intermediate zone. The baseflow is generated as a function of water available in the intermediate 
zone. Baseflow occurs year around which maintains the low flows in the stream through the winter. In 
reality the soils would retain less water and the baseflow would cease in the winter. The model reduces the 
transpiration minimum in the winter months as the soil water in the B horizon is at PWP. In reality the trees 
would continue to transpire through the deep rooting system during the winter. The inaccuracies in the 
simulations could be occurring for the conceptualisations of the soil profile and baseflow generation in the 
model.  
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Figure 3-10: Daily estimated root-zone storage capacity using the Nijzink (grey line), Wang (pink line) 
and the DiCaSM (green line) methods with the observed soil water (blue line) and ACRU simulated soil 

water (black line) in the soil profile at Two Streams. 

The limited calibration of the ACRU model at Cathedral Peak Catchment VI, utilising data commonly 
available in South Africa, yielded a fair simulation of the streamflow and additionally through an 
independent validation of the actual evaporation it was found that it was simulated poorly. The model over-
simulates the high flows whilst under-estimating the low flows and actual evaporation. The model does not 
retain the receding limb of the hydrograph as in reality. Due to the conceptualisation of the soil profiles and 
rooting structure in the model it was found that there were periods in the winter where the soil water 
flatlines in the B horizon. This is due to all the roots retreating to the A horizon and thus no water can 
evaporate/transpire from the B horizon and because the soil water is far below DUL it cannot drain to the 
intermediate zone (The ACRU assumption is that drainage only occurs downwards and then only when the 
soil is above or some value close to DUL), so it remains stationary at this level until big rains or roots return 
to the B horizon. The model can only release baseflow through the intermediate zone. If this zone is dry no 
baseflow will occur. The catchment seems to have a large storage that is released (probably laterally 
through bank discharge or shallow groundwater uprising) in the winter but ACRU struggles to simulate this 
and thus cannot replicate the low flows well. For the Cathedral Peak Catchment VI, the model simulation 
of the actual evaporation followed a seasonal pattern as the monthly crop coefficients for the grassland 
repeated consistently through the years. However, late April rains resulted in the grass continuing to 
transpire into winter. This transpiration in April and May was not accounted for when estimating the actual 
evaporation using the potential evaporation and crop coefficients. It would be recommended to utilise 
observed evaporation, where available, to account for varying climatic conditions and abnormalities which 
the inter-annual stationarity of the monthly crop coefficient values does not. However, for most sites in 
South Africa no observed records of actual evaporation are readily available. 
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The uncertainty in the conceptualisation of the soils routine within ACRU and the limited availably of soils 
and rooting data provided an opportunity to investigate the root-zone storage capacity concept. Literature 
suggests that the root zone storage capacity is independent of the soil depth, the number of horizons in the 
soil profile and the vegetation rooting depth. Three methods were used to calculate the root-zone storage 
with both observed and calculated actual evaporation. The variation between the root-zone storages 
produced using the three different methods with the same input data were significant. These variations 
increased when using the simulated actual evaporation. The Nijzink and DiCaSM methods produced the 
highest root-zone storage capacities at both the Two Streams catchment and Cathedral Peak Catchment VI. 
The Nijzink method had the greatest variance and was highly responsive to rainfall events. The DiCaSM 
method had the least variance. The Nijzink and Wang methods were shown to be sensitive to evaporation 
in the wet and dry season but more sensitive to the precipitation in the wet season. The Wang method was 
less sensitive to evaporation in the winter than the Nijzink method. The DiCaSM method was highly sensitive 
to the evaporation component but did not produce as many high peaks as the Nijzink and Wang methods, 
thus suggesting less sensitivity to precipitation. 
 
The Nijzink method and the Wang method estimated a mean root-zone storage capacity of approximately 
430 mm at Two Streams. This is in strong agreement with the work of Nijzink et al (2016) in the HJ Andrews 
catchment under a coniferous canopy and with Wang-Erlandsson et al. (2014) under deciduous forest and 
less of an agreement with De Boer-Euser et al. (2019) where a root-zone storage capacity of approximately 
410 mm, 395 mm and 325 mm respectively were estimated. The agreement with the work of Nijzink et al 
(2016) and Wang-Erlandsson et al. (2014) proves promising for the potential use of the root-zone storage 
concept in South Africa as it suggests that the both these methods are capturing the simplified forest 
hydrological processes, critical in the development of these internationally recognised methods, at Two 
Streams relatively accurately. The study area of De Boer-Euser et al. (2019) was vastly climatically different. 
Based on the conclusion of Wang-Erlandsson et al. (2014) that the vegetation had less effect on the root-
zone storage capacity than the variation in climate, this could account for the lower root-zone storage 
capacity in the De Boer-Euser et al. (2019) study.  
 
The Wang method estimated a mean root-zone storage capacity of approximately 130 mm at Cathedral 
Peak Catchment VI. This falls within the range of root-zone storage capacity (100-150 mm) determined by 
Wang-Erlandsson et al. (2014) for grassland vegetation. The strong correlation of the Wang method at both 
Two Streams and Cathedral Peak Catchment VI with the results of Wang-Erlandsson et al. (2014) highlights 
the strength of the concept in being independent of vegetation within the catchment. This finding could 
demonstrate that one method can be utilised for a multiple vegetation types. The results for the three 
methods are relatively similar and thus it could be said with caution that the three methods could be used 
under various vegetation types. It would be recommended that additional studies in more climatically, 
vegetative and spatially diverse catchments are necessary to confirm this finding. 
 
Although soil depth at Cathedral Peak Catchment VI (0.77 m) is substantially shallower than at Two Streams 
(1.74 m), the mean calculated root-zone storage across the three methods was greater at Cathedral Peak 
Catchment VI than that at Two Streams. This could suggest that the root-zone storage capacity reflects the 
catchment climate and vegetative conditions rather than the soil depth. This is consistent with the work of 
Srinivasan et al. (2015) who describes that commercial plantations create unsaturated conditions in the 
root-zone and therefore reduce the immediate root-zone storage capacity even though the roots may be 
deeper. The work of Laio (2006) who found that plants distribute their roots in soil depth-independent 
fashion to achieve soil moisture uniformity throughout the root-zone. At a local scale, it is likely that root 
development is not limited to climatic variation alone but also site conditions. However, studies such as 
Schenk and Jackson (2002) and Feddes et al. (2001) found that rooting depths very closely correlated with 
climatic factors such as MAP and potential evaporation. 
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The increase in effective rainfall and decrease in actual evaporation of grassland environments could be 
additional contributing factors. Wang-Erlandsson et al. (2014) recorded that the global mean root-zone 
storage capacity of a grassland ranges between 10 mm greater and 50 mm smaller than a deciduous forest, 
when using a variety of models and input datasets, and concluded that the vegetation had less effect on 
the root-zone storage capacity than the variation in climate. Additionally, De Boer-Euser et al. (2019) found 
that vegetation characteristics did not strongly correlate with the patterns of the estimated root-zone 
storage capacities. In consideration of the studies mentioned above, the difference in root-zone storage 
capacities at Two Streams and Cathedral Peak Catchment VI could be attributed to varying climate 
conditions between the two catchments rather than the soil depth or vegetation. The two catchments have 
a high variance in climatic conditions as well as elevation. Two Streams has an elevation of 1 000 m.a.s.l. 
and a MAP of 964 mm whilst Cathedral Peak Catchment VI has a greater elevation and MAP of 1 952 m.a.s.l. 
and 1 135 mm, respectively. The water balance approach to the root-zone storage estimation assumes a 
classical water balance approach and a non-leaky catchment for it to be successful along with accurate 
observed climate data.  
 
At Two Streams the soil water contents estimated using the root-zone storage capacities provided a better 
simulation of the observed soil water than the ACRU model did. The results from the Two Streams 
catchment indicate that the calculated root-zone storage capacity could provide a viable alternative 
method of soil water estimation. The performance of ACRU and the root-zone storage capacity concept 
were evaluated on a daily timestep. This might not be the most appropriate and representative timestep 
for assessing soil water simulations as the long term or seasonal fluctuations could be of more significance. 
The model fit could improve when using a longer timestep as the fluctuations would be less impactful. The 
calculated root-zone storage capacity is independent of soil and rooting characteristics. Boer-Euser et al. 
(2016) determined that a climate derived root-zone storage capacity better reproduced soil water 
signatures than the traditional soil parameter derived root-zone storage capacity. Federer et al. (2003) 
stated that when utilising the BROOK90 and WBM models, increasing the number of soil layers 
conceptualised in the models and the inclusion of the rooting depth parameters had an insignificant effect 
on the monthly soil water estimates compared with using a single soil layer without the rooting depth 
parameter. The study undertaken by Robock et al. (1994) showed no evidence that a complicated biosphere 
model better simulated the soil water compared to a simple bucket-type hydrological model. Similarly, 
Baroni et al. (2010) concluded that the soil water simulated using the simple ALHymus model had a smaller 
normalised root mean squared error and mean error than the soil water simulated by a more complex 
SWAP model. In agreement with these studies, Orth et al. (2015) determined that two complex models HBV 
and PREVAH performed better than the simple water balance model (SWBM) in the simulation of 
streamflow but not for the soil water component. SWBM had approximately 0.8 correlation with the 
observed soil water compared with an approximate 0.6 for the HBV and PREVAH models. The above-
mentioned studies and the root-zone storage validation illustrate that a simple, one layer, climate-driven, 
water balance soils routine may provide a better representation of the soil water than a highly complex, 
multi-layered, parameter-based alternative. Overly complex models can suffer from over-parameterization 
in the simulation of soil water.   
 
Intensive soils data and measured rooting depths were used in the modelling of both catchments however, 
the soil water results yielded, were poor.  This highlights the possibility that although there are uncertainties 
with the use of soils data and rooting characteristics in hydrological modelling, the model conceptualisation 
could be an equally significant source of error. The root-zone storage concept could provide an alternative 
method to decrease modelling uncertainty where limited soils data and rooting depths are available.  
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The use of the root-zone storage concept within the ACRU model could limit the model uncertainty. The 
method could allow areas of limited soils and rooting data to be modelled more accurately and the 
implication of afforestation be fully understood. There is opportunity for the concept to be used with future 
climate data to provide predictions of the root-zone storage for the future. The study was limited to two 
small catchments, over a period of six and four years, respectively. The soil water data used in the validation 
was only representative of a two-year period under mature commercial forestry. A more spatially and 
temporally explicit study would improve the understanding and confidence in the methodology and 
concept. Although this study has its limitations, it’s a step forward in the modelling of soil water in South 
Africa. 
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CHAPTER 4. THE CWRR CLUSTERS AS A 
HYDROLOGICAL BASELINE 

M.L. Toucher1,2 

 

1 Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg 
2 South African Environmental Observation Network 

 

4.1 Background and introduction 

The second knowledge gap, as noted in the introduction, concerns the baseline vegetation against which 
the water use of the commercial tree species is compared. Currently, DWS supports and accepts the use of 
natural vegetation in the form of the Acocks (1988) Veld Types as the reasonable standard or reference 
land cover against which to assess land use impacts (Schulze, 2004; Jewitt et al., 2009). However, concerns 
about the use of Acocks (1988) Veld Types were raised by Jewitt et al. (2009). These concerns centred on 
the country-wide scale resolution of the Acocks (1988) maps with relatively little local scale detail and that 
the water use parameters were derived using expert knowledge. The detailed SANBI (2012) maps of natural 
vegetation, together with a larger database of natural vegetation water use, has allowed for a revised 
hydrological baseline (together with associated water use parameters) to be developed through WRC 
project K5/2437 (Toucher et al., 2020).  
 
The recommendations of WRC K5/2437 is that the CWRR clusters, a hydrological grouping of the SANBI 
(2012) vegetation map, be considered as the new hydrological baseline against which assessments are 
made. Through this project, the CWRR clusters will be used as the hydrological baseline against which the 
impacts of commercial afforestation on flows are assessed. A summary of the key aspects of WRC K5/2437 
is provided here given that this new baseline will be adopted by this project. The full details are provided in 
Toucher et al. (2020).  
 

4.2 The CWRR clusters 

The Acocks’ (1953, 1988) Veld Types were agriculturally based, with a veld type defined as “an agro-
ecological unit of vegetation whose range of variation is small enough to permit the whole of it to have the 
same farming potentialities” (Acocks, 1953). Whereas the SANBI vegetation map was developed with the 
aim of producing a “sound theoretical classification of the vegetation of South Africa” that describes and 
maps the vegetation diversity across South Africa, based on the current knowledge of vegetation structure 
and biogeographical patterns, producing a baseline vegetation map and associated descriptions which can 
be used by various specialist and disciplines (Mucina and Rutherford, 2006). The fine scale at which the 
SANBI (2012) vegetation map is drawn and more importantly the methodology used to produce it, have led 
to it being largely adopted by other disciplines as a good representation of natural vegetation.  
 
The SANBI (2012) vegetation map defines 453 vegetation units. The vegetation unit is defined as “a complex 
of plant communities ecologically and historically (both in spatial and temporal terms) occupying habitat 
complexes at the landscape scale” (Mucina and Rutherford, 2006). The vegetation complexes within a 
vegetation unit share similar general ecological properties, e.g. position on ecological gradient and nutrient 
levels, and appear similar in vegetation structure, particularly floristic composition. Often the division of a 
vegetation unit is more floristic then based on vegetation structure. For hydrological modelling purposes it 
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was not feasible nor practical to adopt the 453 vegetation units as the baseline. Thus, the SANBI (2012) 
vegetation units were grouped into clusters of vegetation units that respond hydrologically similar, known 
as the CWRR clusters. The clustering was undertaken by developing hydrological profiles for each of the 
vegetation units and was then hierarchical clustered using Euclidean distances and Ward method to 
produce robust and compact clusters. After which expert opinion was sought. This process resulted in 128 
CWRR clusters being defined (Figure 4-1).  
 
Due to the finer scale at which the SANBI (2012) vegetation map was drawn, the CWRR clusters provide a 
finer spatial resolution map of natural vegetation for use as a hydrological baseline vegetation then the 
Acocks’ (1988) Veld Types. Although the number of vegetation units may not appear to be greatly more for 
the CWRR clusters, it is the more detailed mapping which is advantageous. The CWRR clusters align better 
to the altitude and underlying geology then the Acocks’ (1988) Veld Types. This implies that with the CWRR 
clusters, different clusters will be mapped on the different topographic formations across the landscape, 
i.e. the flat valley bottoms will have a different cluster to the valley slopes. Previously with the Acocks’ 
(1988) Veld Types different topographic formations may have had the same veld type given the resolution 
of mapping. As the impacts of a land use are assessed against the natural vegetation it replaces, this 
improvement in resolution may significantly affect the assessed land use impact in certain locations. Beyond 
this, the SANBI (2012) vegetation maps have gained acceptance in the ecological community, as well as with 
practitioners concerned with land management. This together with the SANBI vegetation units aligning with 
the biomes for which a common understanding of the vegetation structure exists, provides a convincing 
argument for the change to the CWRR clusters as the baseline vegetation to use in determining the 
hydrological baseline. 
 

Figure 4-1: CWRR Clusters derived from the statistically clustered hydrological profiles of the SANBI 
(2012) vegetation units 
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To be able to adopt the CWRR clusters as the hydrological baseline, the vegetation and water use 
parameters required by the ACRU agrohydrological model (Schulze, 1995) needed to be derived for each 
cluster. WRC project K5/2437 developed repeatable, scientifically defensible methodologies for the 
estimation of all the required vegetation and water use input parameters. 
 

4.3 Hydrological Parameterisation of the CWRR Clusters 

The vegetation water parameters required as input for the hydrological model that were derived for the 
CWRR clusters include, 

 crop coefficient (Kc) 
 vegetation interception losses (VEGINT) 
 the effective rooting depth (EFRDEP) 
 the fraction of effective roots in the topsoil horizon (ROOTA) 
 the root colonisation of the B-horizon (COLON) 
 the coefficient of initial abstraction (COIAM)  
 the percentage surface cover by vegetation or mulch/litter (PCSUCO) 

 
The approach adopted by WRC project K5/2437 for each of these variables was to use observed or remotely 
sensed data and a documented approach that could be repeated. A brief summary of the method used to 
produce each variable is provided below.  
 
Of the required ACRU model input parameters to describe the vegetation, the model output is most 
sensitive to Kc. Kc provides a means for estimating the land covers potential evapotranspiration rate, relative 
to the evapotranspiration from a reference crop, expressed as  
 

=  
(4.1) 

 
Where, 
Kc  = the crop coefficient (dimensionless) 
ETc = crop (or vegetation) evapotranspiration (mm.d-1 or mm.month-1) 
ETo = reference crop evapotranspiration (mm.d-1 or mm.month-1) 
 
Therefore, to derive Kc, an estimate of the actual vegetation evapotranspiration was required as well as the 
reference crop evapotranspiration which was derived using climate data and the FAO Penman-Monteith 
equation. The proposed and first approach taken to estimate the actual evapotranspiration of the CWRR 
clusters used remote sensed LandSAT 4/5 images and the Surface Energy Balance System (SEBS) model. A 
validation study was undertaken as the initial step to determine the viability of the approach. The 
evapotranspiration estimated using the SEBS model was compared to in-situ observed evapotranspiration 
values at sites located in seven of the South African biomes. The results of the validation study were 
considered acceptable, despite the SEBS model tending to overestimate the evapotranspiration of natural 
vegetation. The methodology was then scaled up to estimate the water use of each of the CWRR clusters 
through using a representative Quinary assigned to each cluster. The results obtained and produce 
evapotranspiration estimates which did not correspond to the expected seasonal trends of 
evapotranspiration for vegetation types nor the expected pattern of evapotranspiration across the biomes. 
The contributors to this included several temporal and spatial resolution issues. Compared to the expected 
number of LANDSAT images based on an 8-day resolution over a ten-year period, few images were 
considered acceptable due to cloud cover. To the extent that for some clusters no images were acceptable 
over the ten-year period. This implied that a soil water stress factor could not be used as it would have 
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further decreased the number of acceptable images. The lack of observed evapotranspiration data for 
natural vegetation limited the corrections which could be applied. Thus, alternatives for determining the Kc 
values had to be explored.  
 
Literature supported the use of leaf area index (LAI) to determine Kc for natural vegetation and the 
estimates of LAI obtained from the remotely sensed MODIS product proved to be consistent, both 
seasonally and across the biomes as well as in alignment with in-situ observations. Methods to estimate 
the Kc values using LAI were verified. None of the methods performed well, thus an equation was fitted 
between the Kc values produced for sites where evapotranspiration was observed over natural vegetation 
and the remotely sensed LAI these sites. The derived relationship explained 75% of the variation in Kc using 
LAI. Fair confidence existed in the long-term monthly Kc values produced for the CWRR clusters using this 
equation. Further, the methodology used was repeatable, transparent and standardised with the possibility 
of being revisited to produce revised Kc values as more data becomes available. The vegetation interception 
was estimated using the MODIS LAI product and both the Von Hoyningen-Huene (VHH) Method and the 
variable storage Gash model. The rooting parameters (EFRDEP, ROOTA and COLON) were developed using 
historical root measurements and observations from previous studies and linking these to the physical 
properties of the vegetation clusters. The COIAM values were derived using the working rules defined by 
Schulze (2004). The PCSUCO values were estimated using the LAI derived Kc values for each cluster and the 
working rules derived by Schulze (2004). A full database of vegetation water use parameters for each of the 
clusters for the different methods investigated accompanied the report. 
 

4.4 Hydrological Response under the CWRR Hydrological Baseline as 
Compared to Acocks (1988) Veld Types 

The hydrological response under the CWRR clusters were simulated with the ACRU agrohydrological model 
configured using input data from the Quinary catchments database (following the methodology of Jewitt 
et al., 2009) and the following vegetation water use parameters derived by Toucher et al. (2020) for the 
clusters  
 

- Kc (Derived Eq) 
- VEGINT (VHH) 
- ROOTA 
- COIAM 
- PSCUCO (Derived Eq) 
- COLON was set to 100 and CONST to 0.4 

 
and compared to the hydrological response simulated under the Acocks (1988) Veld Types baseline  
(Figure 4-2). A higher runoff under the CWRR clusters was evident along the east coast of the South Africa 
relative to the runoff produced under the Acocks’ (1988) Veld Types. Whereas lower runoffs were generally 
produced for areas in the Free State and Eastern Cape provinces under the CWRR clusters relative to Acocks’ 
(1988) Veld Types. The generally higher crop coefficients in winter months for the CWRR clusters for these 
areas were the cause behind the decreased flows; whereas the increased flows corresponded to areas 
where the crop coefficients of the CWRR clusters were generally lower. To note, these simulations were 
undertaken using the original soils data and climate.  
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4.5 Concluding thoughts 

The methodology used by Toucher et al. (2020) was clearly documented and repeatable. Using LAI to derive 
the Kc was supported in the literature, and through investigation in the project using LAI derived from 
MODIS satellite estimates to determined Kc proved to be consistent with vegetation structure across the 
biomes. In terms of the vegetation water use parameters, the simulated streamflow output from the ACRU 
model is most sensitive to changes in the crop coefficient and following this the percentage surface cover 
which is related to the crop coefficient. Thus, a recommendation from the project was to improve the 
vegetation water use parameters for all current and potential future SFRAs, to allow streamflow reductions 
to be simulated accurately relative to the CWRR clusters baseline streamflow. The use of the methodology 
for estimating Kc from LAI should be investigated for the commercial forestry crops and other land uses for 
consistency.

Figure 4-2: Changes in the mean annual runoff in mm under the CWRR clusters using the derived LAI 
based equation relative to Acocks’ (1988) Veld Types.

Changes in Mean Annual Runoff (mm) under the CWRR
clusters relative to Acocks (1988) Veld Types
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5.1 Background and introduction 

It is not practical to measure the water use of the various species, clones and hybrids used by the forestry 
industry, particularly as new clones are continuously being developed. Added to this, is that the 
measurements would need to be undertaken across a range of tree ages and different stand densities. Thus, 
a more easily obtainable surrogate measure is required. The surrogate that has been proposed is the Leaf 
Area Index (LAI). Thus, an identified aim of the project (Aim 3) is “To address the shortcomings in the 
availability of leaf area index information for different SFRA species, clones and hybrids”.  
 
LAI, defined as the one-sided leaf area (m2) per unit ground surface area (m2) (Wang et al., 2017), is a key 
canopy structural parameter, which controls the exchange of energy, carbon and water between the 
canopy and the atmosphere (Wang et al., 2017; Chen et al., 2018). LAI varies over the development of the 
trees and with the forestry management practices, as well as with tree species, tree density, seasonality, 
and site conditions (Jonkheere et al., 2004). Together with leaf biomass, LAI has a strong relationship to 
productivity (Peduzzi et al., 2012). Thus, LAI is a critical input variable to process models that estimate the 
growth and water use of forests (Liu et al., 2015). Advances in the estimation of LAI from remotely sensed 
data mean that high resolution LAI estimates that can be used as input to modelling are more readily 
available. Through this project a methodology to derive moderate spatial resolution LAI estimates from 
coarser spatial resolution satellite products has been developed. The methodology was written as a journal 
paper and submitted to Remote Sensing Applications Society and Environment, and is under review. The 
paper is included in this chapter as it was submitted. However, prior a review of the use of to estimate tree 
water use is provided.  
 
To note, field-based measurements of LAI were attempted during the course of the project. Representative 
sites that covered the dominant species and climate zones were selected. With three compartments 
selected per dominant species and climate zone to represent young, intermediate and mature trees. A LiCor 
LAI 2200 plant canopy analyser was to obtain the infield estimates of LAI. A significant constraint of the LAI 
2200 is that the optimal conditions for accurate measurements are diffuse lighting, i.e. early morning or 
late afternoon with no cloud cover. This requirement significantly hampered the field campaigns to the 
extent that it was determined that the only feasible path forward was to use satellite-based estimations of 
LAI. 
 

5.2 Review of using Leaf Area Index to estimate evapotranspiration 

As stated above, a strong relationship exists between tree productivity and leaf area (Peduzzi et al., 2012). 
Several studies have demonstrated relationships between LAI and evapotranspiration. For example, Al-Kaisi 
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et al. (1989) found that 90-95% of the variation in transpiration could be described using LAI. Bian et al. 
(2018) showed a high correlation between evapotranspiration and LAI for the Poyang Lake watershed, 
China. Considering trees specifically, tree transpiration has been linked to LAI by several researchers (e.g. 
Vertessy et al., 1995; Hatton et al., 1998; Kelley et al., 2007; Whitley et al., 2008, 2009, 2013; Zeppel, 2013). 
These studies are reviewed below.  
 
Whitley et al. (2008; 2009; 2013) reported promising findings and described the development of relatively 
simple, but robust methods to assess stand transpiration using only solar radiation, vapour pressure deficit 
and soil moisture content, plus LAI as inputs. In essence, the approach they took was to modify the Jarvis-
Stewart method to allow for the estimation of tree transpiration directly, rather than a two-step approach 
of estimating canopy conductance with the Jarvis-Smith equation and then using this to estimate 
transpiration using the Penman-Monteith equation. In some cases, these models have been shown to 
outperform the more complex Penman-Monteith equation, especially under high transpiration conditions 
and have the advantage of fewer input requirements. The approach taken was based on the understanding 
that tree stand water use (Ec) can be calculated from canopy conductance (Gc) and vapour pressure deficit 
(D), since  
 

Ec = Gc x D and Gc = LAI x Gs (5.1) 
 
Where Gs is stomatal conductance and is a function of its driving environmental variables. Therefore, 
canopy water use can be calculated from: 
 

Ec = LAI Gs (Rs  (5.2) 
 
This equation holds for well coupled forests (Whitley et al. 2008; 2009; 2013) and, although functionally 
equivalent to the Penman-Monteith equation, requires fewer measurements and is simpler to fit. Whitley 
et al. (2008) concluded that the modified Jarvis-Stewart functions adequately described the response of 
open woodland stand water use to variation in solar radiation, vapour pressure deficit and soil moisture 
content.  
 
Building on earlier work that established an empirical relationship between LAI and available soil water for 
tree growth at regional scales (Grier and Running, 1977; Gholz, 1982; Nemani and Running 1989; Pierce  
et al., 1993), Hatton et al. (1998) investigated whether leaf efficiency varied among eucalypt species grown 
at the same site with seasonal water limitations. The findings indicated that the leaf efficiency of different 
eucalypts species grown at the same site is similar regardless (Figure 5-1). These findings supported those 
of Vertessy et al. (1995) who demonstrated a linear relationship between LAI and tree transpiration  
(Figure 5-2) for a 15-year-old mountain ash forest in Australia. Similarly, Kelley et al. (2007) found a close 
relationship between LAI and tree water use for a eucalypt stand with two species in northern Australia. 
O’Grady et al. (1999) investigated how transpiration patterns vary across the seasons for an open forest in 
Australia and the findings of a tight relationship between transpiration and leaf area or DBH for both 
dominant eucalypt species lead them to conclude that the major determinants of spatial variability in stand 
water use are basal area and LAI. 
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Figure 5-1: Tree leaf area versus mean daily transpiration for a plantation growing on a saline 
groundwater gradient in South Australia (Hatton et al., 1998)

Figure 5-2: Leaf area versus mean daily transpiration for the sampled mountain ash trees (Vertessy et 
al., 1995)

Due to the increasing need to be able to model tree water use to allow for an improved understanding of 
water budgets under global change, Zeppel (2013) undertook a quantitative review to investigate whether 
functional convergence occurs in the relationships between tree size, leaf area, sapwood area and water 
use in evergreen trees across sites under water limited conditions. Functional convergence is defined as 
different species having similar relationships between two different physiological properties. Zeppel (2013) 
considered a wide range of species across multiple genera, varying tree sizes and diverse ecosystems, 
incorporating differences in microclimates and most importantly water availability. 

Zeppel (2013) compiled data from a number of previous studies where diameter at breast height (DBH), 
sapwood area (SA), leaf area and tree water use was determined. This data was then tested for 
homogeneity of variances, after which slopes and intercepts were compared for all species using analysis 
of covariance. Only species with three or more data points were included. The results showed that there 
were different relationships between the species for leaf area and DBH (Figure 5-3); SA and DBH 
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(Figure 5-4) and leaf area and tree water use (Figure 5-4). Similarly, no functional convergence within the 
eucalypt genera was evident for the relationships between leaf area and DBH (Figure 5-3); SA and DBH 
(Figure 5-4). However, and most notable in the context of this study, is that the slope of leaf area and tree 
water use within the eucalypt genera did not differ significantly across the species (Figure 5-5). The 
intercept did vary between species. Zeppel (2013) suggests that the differences in the intercepts may be 
due to nutrient and water availability at the site rather than inherent genetically based differences; and 
goes on to state that the relationship may require canopy closure to be reached to hold. The eucalypt trees 
included in the study by Zeppel (2013) spanned a 100-fold difference in size across a range of sites. The 
similar slope across the species implies, that for a given leaf area, all eucalypts use the same volume of 
water. This finding has particular relevance for this study, together with the convergence of hydraulic traits 
in eucalypt species by O’Grady et al. (1999). These results imply that through the development of a 
relationship between leaf area and tree water use data for eucalypt species, the relationship could be up 
scaled and would be applicable across the genera to species where the water use has not been monitored,
provided leaf area was available.

Figure 5-3: The relationship between leaf area (m2) and diameter at breast height (DBH, mm), for (a) all 
genera and (b) eucalypts only. The inset in (b) shows a close-up of trees with DBH to 250 mm (Zeppel, 

2013).
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Figure 5-4: The relationship between sapwood area (m2) and diameter at breast height (DBH; mm), for 
(a) all genera and (b) eucalypts only. The inset in (b) shows a close-up of trees with DBH to 250 mm 

(Zeppel, 2013).

Figure 5-5: The relationship between leaf area (m2) and tree water use (L day-1), for (a) all genera and (b) 
eucalypts only. The inset in (b) shows a close-up of trees with leaf area to 150 m2 (Zeppel, 2013).
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From the literature reviewed, there appears to be support for a strong relationship between LAI and tree 
water use of eucalypts that is similar across all species. However, this is under the following conditions 

 Canopy closure 
 Water limited conditions, at least for a part of the year 
 Leaf areas are in equilibrium with rainfall; and 
 Where tree water use is defined solely as the transpiration component of evapotranspiration. 

 
In South Africa, with soil water limited conditions, soil water is recognised as primary factor influencing the 
growth of commercial plantations. In the South African environment, can soil water be sufficiently 
recharged where LAI (and thus water use) remain high throughout the rotation (Albaugh et al., 2013)? 
O’Grady et al. (2011), based on findings that vegetation which can access groundwater has a higher LAI, 
suggested that the use of the difference between LAI and the LAI attainable for that climate wetness index 
could be used to estimate groundwater discharge. Accounting for the use of groundwater under 
commercial tree stands in South Africa has been a long-standing area of concern in forestry water use 
estimations. Using LAI in the manner suggested by O’Grady et al. (2011) may have the potential to address 
this concern.  
 
A South African study which has considered the relationship between LAI and transpiration for a tree crop 
is that by Gush and Moodley (2007). Although not a commercial tree plantation, Gush and Moodley (2007), 
as an alternative to modelling, demonstrated that the transpiration of Jatropha curcas could be determined 
from the LAI values (Figure 5-6). By fitting a third order polynomial equation through the LAI and 
transpiration (mm) measurements, Gush and Moodley (2007) derived an equation that could be used to 
determine transpiration (mm) from a LAI value. Building from this, the available LAI and evapotranspiration 
data from the Two Streams catchment was considered as a case study to investigate whether LAI could be 
used to explain evapotranspiration. 
 

Figure 5-6: Relationship between Leaf Area Index and transpiration for different ages of Jatropha 
curcas trees (Gush and Moodley, 2007) 
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5.3 Estimating evapotranspiration from leaf area index: A case study 
from Two Streams Catchment 

The Two Streams catchment experiments have been used over the past 17 years to study the impact of 
commercial trees on hydrological processes (Everson et al., 2008) with detailed observations and 
hydrological modelling.  The observations from the catchment have provided a good opportunity to extend 
the understanding of hydrological processes such as low flows and deeper soil water dynamics under 
commercial tree plantations as well how hydrological models perform. Streamflow gauging was started in 
1999 in a mature stand of wattle trees (Acacia mearnsii).  Following a short calibration period, all the trees 
in the riparian zone were cleared in July 2000.  The trees in the remainder of the catchment were removed 
in 2004/2005 and the catchment was replanted with wattle in August 2006.  In 2014, a study was concluded 
on the impacts of the newly planted A. mearnsii rotation on the water balance of the catchment (WRC 
K5/2022). In November 2017 the trees were clear felled and a short WRC funded project (K5/2780) was 
undertaken to main monitoring leading up to the clear felling as well as determining the impacts of mature 
A. mearnsii on the water balance. 
 
The Two Streams catchment is situated 70 km from Pietermaritzburg near Seven Oaks on the Greytown 
road.  It is located in the summer rainfall ‘midlands mistbelt grassland’ Bioregion, with a mean annual 
precipitation that ranges from 659 to 1139 mm. The components of the hydrological cycle and variables are 
observed through the catchment include  

 Streamflow which is monitored at a V-notch weir using a pressure transducer. 
 Climatological variables at two Automatic Weather Station (AWS)  
 Soil water contents  
 Groundwater monitored in four boreholes were drilled in 2001 and 2007.  
 Total evaporation monitored using an Eddy Covariance system mounted on a lattice mast erected 

close to the centre of the Wattle stand (6 ha). Transpiration has been measured for short periods 
of time. 

 
Beyond this, the tree growth parameters have been monitored. The full records for these variables are 
presented in Everson et al. (2018). The in-situ data from the Two Streams catchment was used to investigate 
whether a relationship between LAI and evapotranspiration was evident.   
 
Given the limited transpiration data available for the Two Streams catchment, the relationship between 
evapotranspiration and in-situ LAI was investigated (Figure 5-7). The assumption made is that once canopy 
closure of a commercial forest stand is reached, the soil water evaporation component of total 
evapotranspiration is minimal and transpiration is dominant. The data included in the analysis is from 2008 
following canopy closure. Unfortunately, the number of LAI measurements taken were limited, only 16 of 
the 42 months for which evapotranspiration data existed had in-situ LAI measurements. The points inside 
the red circle on Figure 5-7 are the wetter summer months. No strong relationship between 
evapotranspiration and in-situ LAI was evident from the limited data included. Given the sparsity of the in-
situ LAI measurements, remotely sensed LAI values obtained from the MODIS satellite were considered. 
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Figure 5-7: Plot of in-situ monthly LAI against monthly evapotranspiration (mm) for the Two Streams 
catchment (periodic data from 2008-2017)

The mean monthly MODIS LAI values for the Two Stream catchment were obtained for the months that in-
situ evapotranspiration data were available. The mean monthly remotely sensed LAI was plotted against 
the 42 monthly evapotranspiration values (Figure 5-8). A linear relationship between LAI and 
evapotranspiration was evident, however, it was not strong with only 60% of the variation in 
evapotranspiration being explained by the mean monthly LAI values. A possible contributor to the weak 
relationship would be the resolution of the MODIS images as the pixels extended beyond the catchment. 
The preference would be to investigate the Sentinel-2 LAI data, unfortunately this data is only available 
from 2015 onwards which would only provide 5 points to test on. Referring back to the literature review, 
for the relationship between LAI and tree water use to hold canopy closure is needed. The tree species was 
A. mearnsii, and it was considered to have reached canopy closure by the end of 2007. However, the canopy 
is not as dense as eucalypt species and it was noted that towards the end of the rotation (2017) several 
trees had already died, possibly contributing to the weak relationship. Without canopy closure, the 
measured evapotranspiration used was not solely transpiration as there would have been soil water 
evaporation. Thus, the criteria that tree water use be solely transpiration for the relationship to be held 
was not met. Additionally, the criteria identified from the literature that the LAI be in equilibrium with the 
rainfall was not met. Although there is a response of the LAI values to the drier, winter months the response 
appears to be lagged. 
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Figure 5-8: Plot of remotely sensed mean monthly LAI against monthly evapotranspiration (mm) for the 
Two Streams catchment (periodic data from 2008-2017)

Despite this, however, there does appear to be a relationship between LAI and evapotranspiration which 
needs to be further explored as more data becomes available and, together with the strong evidence from 
the literature of a relationship between LAI and tree water use, there is justification for using LAI to describe 
water use. The first step towards achieving this was to determine if finer resolution remotely sensed LAI 
values for a long time period could be obtained. 

5.4 Deriving moderate spatial resolution leaf area index estimates from 
coarser spatial resolution satellite products0F

1

5.4.1 Introduction

Commercial afforestation in South Africa (SA) is a major contributor to employment and the country’s GDP, 
however, there exists a long history of concern regarding its impacts on water resources. Extensive research 
has been undertaken within SA which has contributed to commercial afforestation being declared a 
streamflow reduction activity (SFRA) in the National Water Act of South Africa (1998). Consequently, this 
industry is now highly regulated, with water use licenses being required for the growth of commercial trees 
(Nänni, 1970; Van der Zel, 1995; Scott et al., 1998; Gush et al., 2002; Dye and Versfeld, 2007; Jewitt et al., 
2009). 

The research which the regulations governing commercial afforestation activities were based on, centred 
around the impacts of three species (Pinus patula, Eucalyptus grandis and Acacia mearnsii) on streamflow. 
However, the forestry industry currently uses 17 Pinus, 26 Eucalyptus and 3 Acacia species, hybrids and 
clones (Toucher and Everson, 2018). Furthermore, in some plantations there has been a shift towards 
utilizing certain species over others (for e.g. replacing Pinus spp. with Eucalyptus spp.) due to current timber 

1 This sub-chapter is a paper that has been submitted to Remote Sensing Applications Society and Environment. The paper 
is currently under review. The text as it stands here is the same as that submitted to the journal with the authors of 
Chapter 5 as the authors of the paper.
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demands. This has become quite a contentious issue and has raised a number of concerns regarding the 
impact of this practice on water resources.  
 
Subsequently, there is an urgent need for further research to better understand the biophysical 
characteristics and hydrological impact of these species, hybrids and clones so that the tools which are used 
as decision support systems to issue water use licences, can be updated and adapted accordingly (Toucher 
and Everson, 2018). For such purposes, the accurate quantification of Leaf Area Index (LAI) can play an 
important role as it is a key parameter used to characterize vegetation biophysical characteristics and is an 
essential component which influences exchanges in energy, water and CO2 between terrestrial 
environments and the atmosphere (Bonan, 1993; GCOS, 2011). LAI is defined as the total single-sided leaf 
area per unit ground area (Myneni, 2002) and is often a critical data input to various evapotranspiration, 
hydrological and climatic models (Törnros and Menzel, 2014; Fang et al., 2019a; Pasqualotto et al., 2019; 
Zhai et al., 2020; Zhang et al., 2020).  
 
Despite its importance, spatially and temporally explicit LAI data records are not always readily available in 
SA particularly for the various species, hybrids and clones used by the forestry industry. This situation is 
quite problematic as the tool used to guide and inform the issuing of water use licenses in SA relies on 
outputs from a hydrological model where LAI is an essential input variable. Subsequently, the ability to 
accurately quantify LAI can play a central role in updating and improving existing tools to better understand 
and quantify the hydrological impacts of commercial afforestation activities. 
 
LAI data can be acquired from field-based measurements or from remotely sensed estimates. However, the 
acquisition of LAI via remote sensing (satellite-earth observation, aerial and un-manned aerial) platforms is 
generally more popular due to the laborious, costly and sometimes destructive nature of field-based 
approaches. Furthermore, remote sensing allows for longer term and larger scale estimation of LAI with 
minimal effort (Alexandridis et al., 2013; Clevers et al., 2017; Dube et al., 2019; Qiao et al., 2019). Remote 
sensing of LAI is based on the hypothesis that LAI increases with increased vegetation biomass, eliciting an 
increase in reflectance and absorption of light in the near infra-red and red regions of the electromagnetic 
spectrum, respectively (Knyazikhin et al., 1999).  
 
Remote sensing of LAI can be broadly classified into two categories (Yin et al., 2015; Alexandridis et al., 
2019): i) empirical methods which are based on the statistical relationship between vegetation indices (VIs) 
and LAI and ii) physically based approaches which rely on the inversion of radiative transfer models (RTMs). 
RTMs attempt to describe spectral variations in canopy reflectance as a function of vegetation and soil 
characteristics based on knowledge pertaining to physical processes governing photon transport within the 
vegetation canopy (Yin et al., 2015). Additionally, hybrid models have also been developed to create 
integrated LAI models which aim to combine the strengths of the aforementioned methods (Yin et al., 2015; 
Alexandridis et al., 2019).  Global satellite-derived LAI products such as MODIS, GLASS, GEOV2, GLOBMAP, 
PROBA-V and VIIRS have become increasingly available and used over the past decade, playing a pivotal 
role in providing input to terrestrial-ecosystem and land-surface models (Fang et al., 2019b).  The relatively 
high temporal resolution (4-10 days) and record length of these products makes them well-suited to 
monitor long-term trends, as well as intra- and inter-annual variations of LAI in response to climatic and 
phenological changes (Meyer et al., 2019).  
 

may exceed the size of the area of interest, subsequently this has limited their use to predominantly global 
and regional studies (Ganguly et al., 2012; Ovakoglou et al., 2020; Pasqualotto et al., 2020; Zhang et al., 
2020). More recently, it has become possible to generate LAI data at finer spatial resolutions (20 m) by 
processing Sentinel-2 imagery using tools available within the Sentinel Application Platform (SNAP). 
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However, the Sentinel-2 satellite has only been in orbit since 2015 and thus it is not possible to derive 
moderate spatial resolution LAI data prior to this date (Ovakoglou et al., 2020).  
 
A common approach to address these limitations has been to use statistical approaches using vegetation 
indices (VIs) to estimate LAI (Alexandridis et al., 2019), since VIs can be generated fairly easily at various 
spatio-temporal resolutions using satellite-imagery and are often used in conjunction with or as an 
alternate to LAI to monitor and evaluate vegetation characteristics (Meyer et al., 2019; Ovakoglou et al., 
2020). Although several studies have successfully demonstrated how satellite-derived VIs can be used for 
the estimation of LAI for global, regional and localised applications (Gao et al., 2012; Clevers et al., 2017; 
Alexandridis et al., 2019; Meyer et al., 2019; Padalia et al., 2019; Ovakoglou et al., 2020; Pasqualotto et al., 
2020), data collection, storage and processing, particularly for long-term time series analyses may create 
barriers to many users that lack the computational power and technical abilities to effectively utilise these 
datasets (Gorelick et al., 2017; Robinson et al., 2017; Chen and Wang, 2018).  
 
Recent advancements in geospatial cloud-based computing platforms, most notably Google Earth Engine 
(GEE) have removed many of these barriers allowing for a wider range of users to access, process and 
disseminate data (Frake et al., 2020). Furthermore, convenient machine learning packages are now 
becoming increasingly available which offer greater opportunities to more effectively analyse and utilise 
these information rich satellite earth observation datasets (Houborg and McCabe, 2018; Shao et al., 2021). 
Considering these advancements, we aim to explore and evaluate the potential of using GEE and machine 
learning to acquire moderate-spatial resolution estimates of LAI (LAIMR) for various species, hybrids and 
clones used by the commercial forestry industry in SA.  
 
The objective of this study is two-fold.  Firstly, to establish whether the use of freely available satellite-earth 
observation data can be used to provide LAIMR estimates in data limited circumstances for localised 
applications and then produce LAIMR estimates for select commercial forest plantations situated within the 
KwaZulu-Natal and Mpumalanga provinces of SA. 
 

5.4.2 Materials and methods 

5.4.2.1 Study Area 

The study sites are located within the eastern region of SA, with 10 of these situated in the KwaZulu-Natal 
(KZN) province and 5 situated in the Mpumalanga province (Figure 5-9). Altitude within KZN ranges from 0 
to 3448 m.a.s.l along the eastern coastal and western escarpment regions, respectively (DWA, 2013). The 
topographical range has contributed to a varied climate, with warm sub-tropical conditions experienced 
along the coastal regions and progressively cooler conditions experienced further inland and towards the 
mountainous regions (DWA, 2013). KZN experiences relatively high rainfall, with mean annual precipitation 
ranging from 800-1500 mm. The majority of rainfall occurs during the summer months as thunderstorms 
(Kapangazwiri et al., 2017). Snowfall is also experienced occasionally in the high lying mountainous regions. 
Mean annual temperatures range from 25°C summer to 20°C in winter (Ndlovu and Demlie, 2020).  
 
The 10 KZN study sites fall within the Pongola-uMzimkhulu water management area (WMA), which is quite 
a complex WMA to manage, as there is a high demand for water resources from various sectors such as 
agriculture, commercial afforestation, industry, mining, urban and domestic users. This WMA is a crucial 
contributor to SA’s total water resources, accounting for approximately 40% of the total water availability 
(DWA, 2013). Furthermore, there are a number of rivers which flow through this WMA that share their 
catchments with neighbouring countries. Therefore, it is important that water resources within the 
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province are carefully managed to ensure that needs of all users are adequately met without threatening 
the sustainability of the resource. 

The 5 Mpumalanga study sites are located within the south-eastern region of the Inkomati-Usutu WMA. 
Altitude within Inkomati-Usutu WMA ranges from 140 to above 2000 m.a.s.l (DWA, 2012). A majority of 
this WMA experiences a warm sub-tropical climate. Mean annual precipitation ranges from 400-1200 mm, 
with higher rainfall being received in the elevated western regions (DWA, 2012). Commercial afforestation 
is one of the largest consumers of water resources within the WMA, requiring approximately 13% of 
available water resources. According to DWA (2012), large portions of the WMA regularly experience water 
stress. Therefore, managing water resource allocations to the various competing users is a complex 
endeavour. This situation is further complicated by having to ensure that the water resources requirements 
of Mozambique and Swaziland are factored into management decisions (DWA, 2021). 

Considering, the importance and complexity of managing the Pongola-uMzimkhulu and Inkomati-Usutu 
WMAs in concert with the impact of commercial afforestation on water resources, these study sites are 
ideally situated to test and evaluate the methodology proposed in this study as commercial forest 
plantations are a prominent feature within these provinces (Dye, 2013). The study sites were distributed 
between three climatically diverse zones and were selected based on the age of the commercial trees grown 
at each site, as well as the geographic extent of coverage. The rationale for this was to ensure that i) there 
was adequate representation of species, hybrids or clones within each climate zone ii) satellite-derived data 
covered different phenological growth stages and iii) the mixed-pixel effect would be potentially limited by 
allowing for data to be extracted from pure-pixels. 

Figure 5-9: Geographic distribution of 
the study sites with respect to a) Africa, 

b) South Africa and the c) Inkomati-
Usuthu and d) Pongola-uMzimkhulu 

WMAs (DWA, 2020)
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5.4.2.2 Data collection and processing 

Downscaling of coarse spatial resolution satellite-derived LAI products is often implemented to acquire 
higher spatial resolution LAI estimates, since spatially and temporally representative in-situ measurements 
of LAI are generally unavailable to develop and test algorithms.  Downscaling of these LAI products usually 
involves the use of VIs that are derived at a finer spatial resolution to enhance the spatial information of 
the coarser resolution LAI product (Zhang et al., 2020).  
 
The normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have been most 
frequently used for this purpose. However, the use of EVI may be preferred due to the saturation of NDVI 
at medium to high LAI values (Wang et al., 2005; Alexandridis et al., 2019; Qiao et al., 2019; Ovakoglou et 
al., 2020). While several studies have successfully demonstrated how these VIs can be used to estimate LAI 
(Qiao et al., 2019), they typically use only one VI. Since both VIs are relatively easy to generate, we propose 
their combined application for LAI estimation in an attempt to maximize their respective strengths (Cohen 
et al., 2003; Middinti et al., 2017).  
 
Satellite-earth observation datasets were accessed and processed using the GEE platform. GEE is a freely 
available, cloud computing platform which enables access to high-performance computing power for 
planetary-scale geospatial analysis (Gorelick et al., 2017). GEE provides users with easy access to a multi-
petabyte curated catalogue of earth observation data sets, built-in algorithms for manipulating and 
analysing data, as well as a programming interface to create, customize and automatically run algorithms 
(Padarian et al., 2015; Gorelick et al., 2017; Sidhu et al., 2018). Additionally, users are able to ingest and 
process their own data using all of the aforementioned features available within the platform (Gorelick et 
al., 2017). 
 
Figure 5-10 provides a schematic representation of the methodological process to better understand how 
the proposed methodology was executed. In order to generate LAIMR estimates from coarse resolution 

-day temporal resolution) and Terra 
vegetation indices (MOD13A1 V6, 500 m spatial and 16-day temporal resolution) image collections were 
accessed and then filtered to select good quality images for each study site and for a particular date range 
(dependent on tree age within the period 2002-2021). Thereafter the mean LAI, NDVI and EVI for each 
image within the specified date range were then exported as a comma-separated values (CSV) file for 
further analysis.  
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Figure 5-10: A graphical representation of the procedure that was applied to generate LAIMR

calibrated top-of-atmosphere reflectance, 30 m spatial and 16-day temporal reso
Sentinel-2 (MultiSpectral Instrument, Level-1C, 10 m spatial and 5-day temporal resolution) collections 
were then respectively imported directly into GEE. A similar pre-processing process was followed, where 
NDVI and EVI was generated for both Landsat (7 and 8) and Sentinel-2 using the following equations:

 =
–

+

(5.3)

 = 2.5[
–

( + 6 7.5 + 1)
]

(5.4)

Where NIR (near-infrared) and Red and Blue are the atmospherically corrected surface reflectances. Figure 
5-11 provides a comparison of the spatial resolution characteristics of the VIs derived from the satellite 
datasets.
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Figure 5-11: An illustration of the spatial resolution characteristics of the VIs acquired over a 
commercial forestry compartment situated within the Pongola-uMzimkhulu WMA

Once all the necessary satellite-derived data had been acquired, the data needed to be cleaned and 
processed further prior to the development of machine learning-based models (MLBMs) which were used 
to estimate LAI from NDVI and EVI. 

For this purpose, R statistical software was used. The data was first checked to infill missing values with the 
mean value for a particular variable. Since there were differences in the temporal resolution of the variables 
within and between the MODIS, Landsat and Sentinel-2 datasets, they were summarized to create mean 
monthly values for each year within the collection period to allow for uniformity. Thereafter, the 
classification and regression training (Caret) (Kuhn, 2008) and caretEnsemble (Mayer, 2013) packages 
available as an add-in to R were used to develop and test the MLBMs. These machine learning packages 
facilitate the quick and efficient development and evaluation of machine learning algorithms, as it 
integrates all the tools necessary to perform both simple and complex machine learning tasks. The 
processed MODIS data was used within the machine learning packages to establish the relationship 
between LAI, NDVI and EVI and train the MLBMs to estimate LAI using NDVI and EVI estimates (Gao et al., 
2012; Ovakoglou et al., 2020). 

Prior to the training of the MLBMs, the EVI and NDVI were tested for the possibility of multicollinearity 
existing between them. A variable inflation score test was performed to establish how much the variance 
of a regression coefficient may be inflated due to multicollinearity in the MLA model. The results of this test 
indicated that multicollinearity between these variables was not an issue for 14 out of the 15 sites or for 
the combined dataset (values from all 15 sites). Following this test, the MODIS product data was split into 
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training (80%) and validation (20%) samples since we did not possess any long-term field-based 
measurements to validate or test the performance of the MLBMs against. Furthermore, by withholding 
some of the data from the MLBMs during the training phase, it was possible to get a better indication of 
how well these models will perform on unseen data.  
 
During the training phase, a mix of simple and complex machine learning algorithms were selected from 
Caret for application, these included i) generalized linear model (GLM), ii) decision tree (CART), iii) k nearest 
neighbour (kNN), iv) random forest (RF) and v) support vector machine (SVM). In addition to these 
algorithms, two new MLBMs were created to find the best possible predictive model. For this purpose, the 
aforementioned MLBMs were considered as the base algorithms for the development of model ensembles. 
In order to determine which base algorithms should be used to develop the ensemble models we evaluated 
the performance of each MLBM, as well as analysed the correlation between the MLBMs. The two ensemble 
models were developed by stacking selected base algorithms and combining their predictions using a GLM 
and RF approach, respectively.  
 
A 10-fold cross validation with 3 repeats was used to evaluate the performance of the original MLBMs and 
ensemble models based on the training data. The three best performing models were then selected and 
used for the validation phase. Estimations of LAI were made using NDVI and EVI values obtained from the 
validation dataset and these estimates were then evaluated against MODIS LAI product values. The best 
performing MLBM was then selected to estimate LAI using estimates of NDVI and EVI derived from Landsat 
and Sentinel-2 data. LAI was first estimated using the best performing MLBM with Landsat and Sentinel-2 
derived estimates of NDVI and EVI that were upscaled (Ke et al., 2016; Zhang et al., 2020) in GEE to the 
MODIS LAI spatial resolution. The rationale for upscaling Landsat and Sentinel-2 derived VIs prior to the 
estimation of LAI was so that the estimated LAI could be evaluated against MODIS LAI product values, as 
these were the only long-term records available.  
 
Following this process LAIMR was estimated using the NDVI and EVI estimates derived at the original Landsat 
and Sentinel-2 spatial resolutions, respectively. It should be noted that the methodological approach 
described herein was undertaken for each study site, as well as for a combined dataset (all sites), 
subsequently allowing for both unique and a generalized MLBM to be developed, validated and tested. 
Evaluation of the MLBM performance was assessed using commonly applied machine learning performance 
metrics such as the correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE) 
and the non-parametric Kruskal-Wallis test (95% confidence interval). Acceptable target ranges for the 
performance evaluation and subsequent descriptions of the results are contextualized with respect to the 
findings presented in Ovakoglou et al. (2020) and Zhang et al. (2020). 
 

5.4.3 Results 

5.4.3.1 Validation of machine learning-based models 

The results of the comparisons between the MODIS LAI product values and LAI estimates derived using 
MODIS VIs are presented in Table 5-1 and Figure 5-12 for each of the sites selected in the Cool Temperate 
Moist (CTM), Warm Temperate Dry (WTD) and Warm Temperate Moist (WTM) climatic zones. Correlation 
coefficients across all 15 sites were relatively high and ranged from 0.62 to 0.97, whereas the RMSE (0.13-
0.71) and MAE (0.11-0.60) were low-moderate. Furthermore, there were no significant differences found 
between the MODIS LAI and estimated LAI for all 15 sites. A similar level of performance was observed for 
the generalized LAI model with a moderately high correlation coefficient of 0.78 and no significant 
differences found between the MODIS LAI and estimated LAI. However, there were marginal increases in 
the RMSE and MAE.  
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Table 5-1: Performance statistics for the comparisons between the MODIS LAI reserved for validation 
and LAI estimated from MODIS VIs using the best performing MLBM,* denotes detection of 

multicollinearity

Site
Species, Clone or 

Hybrid
Model RMSE r MAE

Kruskal-Wallis 
p-value

All All Ensemble1 0.83 0.78 0.61 0.50
CTM 1 E. benthamii Ensemble1 0.25 0.85 0.19 0.50
CTM 2 E. grandis x E. nitens GLM 0.57 0.62 0.40 0.50
CTM 3 E. macathurii SVM 0.20 0.87 0.15 0.50
CTM 4* E. nitens GLM 0.17 0.91 0.13 0.50
CTM 5 P. patula Ensemble2 0.48 0.86 0.38 0.50
WTD1 E. grandis Ensemble1 0.26 0.86 0.20 0.40
WTD2 E. grandis x E. nitens kNN 0.59 0.95 0.40 0.40
WTD3 A. mearnsii Ensemble 1 0.28 0.92 0.24 0.50
WTD4 E. dunii RF 0.13 0.97 0.11 0.40
WTD5 P. Elliottii Ensemble1 0.30 0.89 0.26 0.50
WTM1 E. grandis GLM 0.50 0.83 0.41 0.50

WTM2
E. grandis x E. 
urophylla

GLM 0.45 0.86 0.34 0.50

WTM3 P. elliottii x P. caribaea Ensemble1 0.71 0.69 0.60 0.50
WTM4 P. patula kNN 0.27 0.87 0.20 0.40
WTM5 P. taeda Ensemble1 0.28 0.94 0.23 0.50

Figure 5-12: Box and whisker diagram comparing the distribution of MODIS LAI reserved for validation 
and LAI estimated from MODIS VIs using the best performing MLBM

5.4.3.2 Testing of machine learning-based models and deriving moderate spatial resolution LAI 
estimates using Landsat and Sentinel-2 data

The results of the comparisons between the MODIS LAI product values and estimated LAI demonstrated a 
satisfactory performance of the MLBMs that were driven by upscaled Landsat-derived VI inputs (Table 5-2
and Figure 5-13). In general, there were no significant differences between the MODIS LAI and estimated 
LAI. Correlation coefficients across all 15 sites remained moderate-high and ranged from 0.54 to 0.84. 
However, there was a noticeable increase in the range of RMSE (0.23-1.20) and MAE (0.17-1.07) relative to 
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the statistics obtained during the validation process. A similar level of performance was observed for the 
generalized LAI MLBM with a moderately high correlation coefficient of 0.68 and no significant differences 
found between the MODIS LAI and estimated LAI. In addition, both RMSE and MAE were relatively high.

Table 5-2: Performance statistics for the comparisons between the MODIS LAI and LAI estimated by the 
MLBMs using upscaled Landsat-derived VIs as inputs

Site RMSE r MAE
Kruskal-Wallis 

p-value
All 1.09 0.68 0.90 0.20
CTM 1 0.34 0.78 0.29 0.50
CTM 2 0.42 0.75 0.31 0.50
CTM 3 0.35 0.75 0.31 0.50
CTM 4 0.23 0.84 0.17 0.50
CTM 5 1.04 0.54 0.91 0.50
WTD1 0.36 0.74 0.30 0.00
WTD2 0.76 0.57 0.52 0.00
WTD3 0.61 0.68 0.49 0.60
WTD4 0.57 0.78 0.39 0.10
WTD5 0.45 0.70 0.36 0.50
WTM1 1.20 0.68 1.04 0.50
WTM2 0.81 0.55 0.64 0.50
WTM3 0.92 0.76 0.75 0.30
WTM4 0.37 0.68 0.28 0.00
WTM5 0.48 0.76 0.39 0.40

Figure 5-13: Box and whisker diagram comparing the distribution of MODIS LAI against Landsat-based 
LAI

A satisfactory performance was also observed for comparisons between the MODIS LAI and estimated LAI 
using upscaled Sentinel-derived VI inputs (Table 5-3 and Figure 5-14). In general, there were no significant 
differences between MODIS LAI and estimated LAI. Correlation coefficients ranged from 0.29-0.84, whereas 
the RMSE and MAE ranged from 0.25-1.20 and 0.19-1.06, respectively. 

The use of the generalized LAI MLBM showed a similar level of performance, producing a moderately high 
correlation coefficient of 0.68 and relatively high RMSE and MAE. 
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Table 5-3: Performance statistics for the comparisons between MODIS LAI and LAI estimated by the 
MLBMs using Sentinel-derived VIs as inputs

Site RMSE r MAE
Kruskal-Wallis 

p-value
All 1.07 0.68 0.79 0.20
CTM 1 0.25 0.79 0.19 0.50
CTM 2 0.52 0.76 0.39 0.50
CTM 3 0.36 0.63 0.30 0.40
CTM 4 0.31 0.58 0.25 0.50
CTM 5 0.64 0.71 0.55 0.40
WTD1 0.82 0.29 0.71 0.40
WTD2 0.77 0.78 0.55 0.00
WTD3 0.56 0.73 0.38 0.40
WTD4 0.64 0.77 0.43 0.50
WTD5 0.51 0.84 0.39 0.40
WTM1 1.20 0.70 1.06 0.40
WTM2 0.94 0.47 0.76 0.40
WTM3 0.57 0.84 0.49 0.40
WTM4 0.46 0.65 0.34 0.40
WTM5 0.75 0.66 0.58 0.40

Figure 5-14: Box and whisker diagram comparing the distribution of MODIS LAI against Sentinel-based 
LAI

Monthly averages of Landsat, as well as Sentinel-2 LAIMR estimates for each study site are presented in 
Figure 5-15. Monthly averages of Landsat LAIMR ranged from 0.87-4.92, whereas Sentinel-2 LAIMR ranged 
from 0.71-4.68. In general, the monthly averaged Landsat LAIMR estimates were marginally higher than the 
Sentinel-2 LAIMR estimates, however, the results of the Kruskal-Wallis test indicated that there were no 
significant differences between these data sets (p-value = 0.49). 
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Figure 5-15: A comparison of average monthly LAIMR estimates derived at the original a) Landsat (7 and 
8) and b) Sentinel-2 spatial resolutions

5.4.4 Discussion

Leaf Area Index (LAI) is a key parameter used to characterize vegetation biophysical properties and plays 
an important regulatory role in terrestrial-atmospheric exchanges. Despite the importance of LAI data for 
various environmental modelling applications, from a South African perspective, this data is often not 
available at spatio-temporal scales required to guide and inform management decisions for localised 
applications. In light of this situation, we proposed a methodology that can be implemented to acquire 
LAIMR estimates by making use of freely available satellite-earth observation data sets and data processing 
platforms. The rationale for this was to develop an approach that was both efficient and easily accessible 
to a wide range of users.



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES 
 

 
pg 94 

In general, the validation results demonstrated that LAI can be fairly accurately estimated by MLBMs that 
are driven by VIs and thus have the potential to enhance the spatial resolution of coarse resolution LAI 
products through the use of VIs derived from finer spatial resolution satellite datasets. This observation was 
reaffirmed by the performance of these models when driven by upscaled VIs derived from finer spatial 
resolution satellite datasets. The results of the comparisons from the validation and testing phases 
demonstrated satisfactory performance of the MLBMs, with no major bias being observed between MODIS 
LAI and estimated LAI across the different study sites and climate zones. The performance of the MLBMs 
driven by Landsat- and Sentinel-derived VIs were similar and satisfactory. According to Meyer et al. (2019) 
the similar performance of these MLBMs despite the use of VIs derived from data acquired from different 
sensors can be attributed to the compatibility of the bands between the sensors, as one of the key 
objectives of the Sentinel-2 mission was to provide data continuity for Landsat.  
 
Although, the MLBMs were shown to perform satisfactorily during the various phases of the study, it should 
be noted that a major disadvantage of the proposed methodology is that the accuracy of the moderate 
spatial resolution estimates will ultimately be influenced by the accuracy of the coarse spatial resolution 
product (Ke et al., 2016). In addition to the aforementioned limitation, we found that there was a general 
decrease in the performance of the MLBMs when upscaled Landsat- and Sentinel-derived VIs were used as 
inputs to estimate LAI. This may be indicative of further limitations associated with the proposed 
methodology.  
 
The poorer performance of the MLBMs when using upscaled Landsat- and Sentinel-derived VIs may be 
attributed to the combined effect of several factors (Ovakoglou et al., 2020). Due to the lack of long-term 
moderate-high spatial resolution LAI records, the LAI-VI relationship was developed using coarse spatial 
resolution data, assuming that these values were acquired from homogenous pixels (Zhang et al., 2020). 
However, there is a strong likelihood that this assumption did not always hold true and thus, the values 
associated with the Landsat- and Sentinel-derived VIs may have differed from the MODIS VIs used during 
the derivation of LAI-VI relationship at a particular site. This situation may have been compounded by 
missing data, as well as differences in the temporal resolution of the satellite-derived VIs. 
 
The frequent occurrences of cloud-contamination and striping issues (Landsat 7), resulted in numerous 
occasions where it was not possible to derive VIs at the Landsat or Sentinel-2 spatial resolution. In these 
instances, data was infilled using the respective mean VI values. The infilling of missing data coupled with 
the differences in the temporal resolution of VI datasets may have resulted in situations whereby the 
coarser and finer resolution VIs were not describing vegetation conditions during the same period 
(Ovakoglou et al., 2020). Furthermore, the upscaling of the Landsat- and Sentinel-derived VIs prior to their 
use for LAI estimation may have also contributed to the discrepancies observed between the estimated LAI 
and the MODIS LAI product values (Zhang et al., 2020). The saturation of VIs at high biomass densities have 
also been shown to impact the estimation of LAI using VIs (Fensholt et al., 2004; Middinti et al., 2017), 
particularly when using coarse spatial resolution data to derive the LAI-VI relationship. This can be 
attributed to the effects of mixed pixels containing background radiative contributions (Myneni et al., 2002) 
which are not captured at finer spatial resolutions.  
 
Notwithstanding the limitations of this study, the results presented herein are quite promising. Previous, 
studies have demonstrated the utility of adopting relatively simple regression and more advanced machine 
learning based approaches to acquire LAIMR estimates for various vegetation types using VIs derived at finer 
spatial resolutions (Houborg and McCabe 2017; Middinti et al., 2017; Dube et al., 2019; Meyer et al., 2019; 
Hirigoyen et al., 2021). These approaches have used and generally benefitted from the availability of in-situ 
LAI measurements or moderate-high spatial resolution satellite-based LAI estimates for training the MLBMs 
and to evaluate the accuracy of their outputs.  
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However, in many instances this data may not be readily available. Subsequently, in such circumstances, 
the approach adopted in this study can be an extremely useful alternative as it provides a pragmatic 
approach to acquire LAIMR estimates using freely available and easily accessible satellite datasets and data 
processing platforms.   
 

5.4.5 Conclusions 

The results of this study were encouraging and demonstrated that the proposed methodology can be a 
useful approach to enhance the spatial resolution of coarse spatial resolution LAI products through the use 
of VIs derived from finer spatial resolution satellite datasets. This in turn may aid in facilitating the 
acquisition of longer term spatially explicit estimates of LAI which are required for various applications but 
not always readily available. Although, it was shown that LAIMR could be estimated with reasonable accuracy 
when compared against the MODIS LAI product, further testing of this approach across a diverse set of 
vegetation types and geographic regions is recommended. For this purpose, LAI derived from Sentinel-2 
imagery processed in SNAP represents a promising source of data. Additionally, since this method is largely 
influenced by the accuracy of the coarse spatial resolution LAI product, caution should be exercised when 
applying this approach to derive LAIMR estimates for various applications without first establishing the 
accuracy of the coarse spatial resolution LAI product or the downscaled output, at the intended scale of 
application. Notwithstanding the limitations of the study, the proposed methodology is flexible and robust 
and can be easily adapted to include alternate or additional VIs, as well as other environmental and climatic 
variables to generate LAIMR for other vegetation types. While the focus of this study was centred around 
the estimation of LAI, the synergistic use of convenient machine learning packages as well as geospatial 
cloud computing platforms such as GEE provides users with powerful tools to make relatively quick and 
well-informed decisions which may facilitate improved water resources management in the future. 
 

5.5 Conclusion, recommendations, and way forward 

A method to determine moderate resolution LAI estimates from coarser spatial resolution satellite products 
was developed and shown to be reasonably accurate. However, as the method is influenced by the accuracy 
of the coarser spatial satellite products its use is cautioned. Therefore, the recommendation is for the 
MODIS LAI estimates to be primarily used further in this project. Similarly, MODIS LAI values were used for 
determining the vegetation water use parameters for the CWRR clusters (Toucher et al., 2020). The strong 
support in the literature for a relationship to exist between leaf area and tree water use, as well as the 
evident relationship between LAI and evapotranspiration of the Two Streams catchments case study 
despite conditions not being met, provides justification for the further investigation and use of LAI in 
estimating tree water use.  
 
Commercial afforestation licenses are assessed based on the impact that a plantation will have on the 
streamflow of a specific catchment, not the evapotranspiration over the plantation or the transpiration of 
the tree. Thus, any relationship between evapotranspiration and LAI would need to be incorporated into a 
hydrological model to be able to determine the composite impact on streamflow. The ACRU 
agrohydrological model is currently the supported and accepted model used to determine streamflow flow 
reductions. Thus, any relationship between evapotranspiration and LAI would need to be related to ACRU 
model input parameter/s. Within the ACRU model, crop coefficients are used to provide a means for 
estimating the land covers potential evapotranspiration rate, relative to the evapotranspiration from a 
reference crop. Therefore, the crop coefficient would need to be derived from the relationship between 
evapotranspiration and LAI.  
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CHAPTER 6. DETERMINING CROP COEFFICIENTS 
FOR COMMERCIAL TREE SPECIES 

S. Gokool1, N. Kaptein1, R.P. Kunz1, A. Clulow1, C. Everson1 and M.L. Toucher1,2 

 

1Centre for Water Resources Research, University of KwaZulu-Natal 
2South African Environmental Observation Network (SAEON) 

 

6.1 Introduction 

Within ACRU total evaporation is driven by maximum potential evaporation (Em) the forcing function of 
which is, in turn, a reference evaporation (Er). The estimations of total evaporation in ACRU allow for the 
computation of the water balance, estimation of water availability and water requirements (crop water 
requirements). The daily American Class A-Pan equivalent is used as the reference total evaporation in 
ACRU. The ACRU model contains a number of equations that can be used to estimate reference potential 
total evaporation, or total evaporation can be estimated from A-pan data, depending on the information 
available (Schulze,1995). The evaporation from the soil surface and plant tissue within ACRU is computed 
using a meteorologically derived reference evaporation and a crop coefficient which represent the 
vegetation water use. Crop coefficients provide a means for estimating the land covers potential 
evapotranspiration rate, relative to the evapotranspiration from a reference crop, expressed as  
 

=  
(6.1) 

 
Where, 
Kc  = the crop coefficient (dimensionless) 
ETc = crop (or vegetation) evapotranspiration (mm.d-1) 
ETo = reference crop evapotranspiration (mm.d-1) 
 
ETc refers to the crop evapotranspiration under non-stress conditions, where the crop is well managed and 
watered (referred to as standard conditions). ETo refers to the evapotranspiration from a reference surface, 
which is a short grass (0.12 m), under non-stress conditions. By using a reference crop evapotranspiration, 
the evaporative demand can be determined independent of crop development and management and can 
be compared across locations. A reference surface also provides a benchmark against which the ET from 
other surfaces can be compared (Allen et al., 1998). 
 
ETo is only affected by climatic parameters, thus it can be calculated from meteorological data. The accepted 
and recommended method for determining ETo is the FAO Penman-Monteith method (Allen et al., 1998). 
The reasons for this include, that the method closely approximates grass ETo at the location evaluated, is 
physically based, and explicitly incorporates both physiological and aerodynamic parameters. The crop 
evapotranspiration differs from the ETo, as the surface from which the evapotranspiration is occurring 
differs in terms of its ground cover, canopy properties and aerodynamic resistance. By using the Kc approach 
these differences between the reference surface and crop are accounted for. 
 
ETo, thus, represents the climatic demand, while Kc varies with vegetation characteristics and to a limited 
extent climate. This allows for the standard (those derived from non-stressed conditions) Kc values to be 
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transferable between locations (Liu and Luo, 2010; Kar et al., 2007). Kc can be considered a surrogate for 
the vegetation height, albedo, canopy resistance and the evaporation from the soil. 
 
The only long-term dataset of actual evapotranspiration available for commercial tree species in South 
Africa is the datasets from the Two Streams research catchment, covering only two tree species. The lack 
of available actual evapotranspiration implies that, for commercial tree species, an alternative method to 
deriving Kc needs to be considered. Given the relationship between leaf area and tree water use (Chapter 
5), deriving Kc from LAI was considered. 
 
It needs to be noted, that in the ACRU agrohydrological model the reference is A-pan equivalent potential 
evaporation. Thus, the crop coefficients used in the model need to be relative to A-pan potential 
evaporation rather than FAO Penman-Monteith reference evaporation, or a correction factor needs to be 
applied. 
 

6.2 Using leaf area index to derive a crop coefficient 

Several authors have suggested that crop coefficients can be calculated as a function of LAI. This was first 
proposed by Monteith (1965) where he showed a strong relationship between transpiration and LAI. 
Following this, Ritchie and Burnett (1971) demonstrated a relationship between evapotranspiration and LAI 
for dryland cotton and grain sorghum,  
 

= 0.21 + 0.70 .  
(6.2) 

 
Where 
ETc  = actual crop evapotranspiration 
ETo = reference potential evapotranspiration 
 
Ritchie (1972) further tested this relationship for grain sorghum and showed good correlation between the 
estimated evapotranspiration and the actual measured evapotranspiration. Providing additional evidence, 
Kristensen (1974) demonstrated a strong relationship between LAI and the ratio of actual to potential 
evapotranspiration for sugar beets, barley and rye grass. Using the data from Kristensen, Angus (1987) 
derived the following equation, 
 

=
ln( 1.0932)/ 0.7947

0.6513
 

(6.3) 

 
 
Where  
Kc is limited to values between 0.2 and 1.05.  
 
The equation derived by Angus (1987) has been coded into ACRU to offer the option to determine Kc from 
LAI, if available. To determine Kc for the CWRR clusters, Toucher et al. (2020) used available 
evapotranspiration data at four validation sites to develop a relationship between LAI and Kc. The LAI values 
used were those obtained from the MODIS LAI product for the period 2012-2018, and then averaged to 
monthly values for the representative Quinary catchment. Using the monthly means of the 8-day MODIS 
LAI values and the monthly means of daily FAO Single crop coefficient adjusted to be representative of A-
Pan equivalent reference evaporation, the following relationship was derived: 
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=
1.237

(1 + 3.173 . )
 

(6.4) 

 
 
The standard error of the derived equation was 0.1, the correlation coefficient 0.87 and the coefficient of 
determination (R2) 0.75. The R2 of 0.75 indicates that 75% of the variation in Kc will be explained using this 
equation together with the LAI. As more evapotranspiration data for natural vegetation becomes available, 
the equation can be improved in its robustness through the inclusion of the additional data.   
 
None of the studies demonstrating a relationship between LAI and Kc have tested the relationship for tall 
vegetation. However, Kristensen (1974) showed that the ratio of actual to potential evapotranspiration, or 
in other words Kc, approaches 1 when LAI approaches 3. While, according to USDA (2018), when the LAI is 
greater than 2.7, only atmospheric demand determines evapotranspiration, but when LAI is less than 2.7, 
atmospheric demand, LAI and the surface wetness of the soil determine evapotranspiration. Given this, an 
alternative approach using GEE and machine learning was developed.  
 

6.3 Quantifying crop coefficients for commercial forests using a 
combination of field-based evapotranspiration measurements and 
satellite earth observation data1F

2 

6.3.1 Introduction 

Commercial afforestation activities in South Africa have been shown to have a major impact on available 
water resources viz. streamflow and are thus highly regulated with water use licenses being required for 
their growth (Gush et al., 2002; Dye and Versfeld, 2007; Jewitt et al., 2009). The tool used to guide and 
inform the issuing of these licenses utilises outputs from the Agricultural Catchments Research Unit (ACRU) 
agrohydrological model which when configured is only able to represent the vegetation characteristics of 
three commercial plantation species i.e., Pinus patula, Eucalyptus grandis and Acacia mearnsii. However, 
with the forestry industry presently using a far larger number of species, clones and hybrids to meet existing 
timber demands there is a pressing need to update these decision support tools so that water use licenses 
are issued in accordance with the hydrological impacts of a particular commercial plantation species, clone 
or hybrid (Toucher and Everson, 2018).  
 
Evapotranspiration (ET) is a key input to hydrological models as it plays a prominent role in the hydrological 
cycle and energy balance. Subsequently, the accurate quantification of ET is crucial to effectively utilise 
these models to guide water resources management decisions (Allen et al., 2011; Zhao et al., 2013; Liu et 
al., 2016; Li et al., 2018; Li and Ma, 2019). Several field-based and remote sensing techniques exist which 
can potentially provide fairly accurate long-term estimates of ET. However, the Food and Agricultural 
Organization method (FAO-56) which is based on the reference evapotranspiration and crop coefficient (Kc) 
remains one of the most well established and extensively utilised approaches for the estimation of ET and 
is the method used in many hydrological models (Hunnik et al., 2017; Li et al., 2018; Pereira et al., 2021). 
This is due to the relative ease of application, strong physical conceptualization and universal applicability 
(Pereira et al., 2015).  
  
The reference evapotranspiration represents the ET of a hypothetical reference surface such as grass (ETo) 
or alfalfa (ETr) and is computed from meteorological data. The Kc which encompasses all the biophysical 

 
2 This sub-chapter is a paper that has been submitted to xxx. The paper is currently under review. The text as it stands here 
is the same as that submitted to the journal with the authors of Chapter 5 as the authors of the paper. 
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characteristics of a particular crop is used as a multiplying factor to relate the reference ET rate to the 
potential ET rate of a particular crop (Allen et al., 1998; Pereira et al., 2021). Kc values for agricultural crops 
are well-defined and an extensive list of these has been developed and provided by Allen et al. (1998). 
Although the FAO-56 method has been widely utilised to estimate ET of agricultural crops, there has been 
relatively limited application of this approach for non-agricultural and natural vegetation (Descheemaeker 
et al., 2011; Glenn et al., 2011; Corbari et al., 2017; Liu et al., 2017).  
 
This can be attributed to the lack of well-established Kc coefficients for these land-use land-cover classes 
(LULC) due to limited field-based measurements in these environments (Liu et al., 2017). While this does 
limit the utility of applying the FAO-56 method to estimate ET in non-agricultural and natural environments, 
Allen et al. (1998) outline procedures which can be implemented to derive Kc as a function of variables 
which directly influence it, such as fraction of ground cover, soil characteristics, plant height and leaf area 
index (Liu et al., 2017; Pereira et al., 2020). According to Beeri et al. (2017) the versatile nature of leaf area 
index (LAI) has contributed to a growing interest in its use with several studies demonstrating its potential 
in estimating Kc and vegetation water use (Feng et al., 2016; Liu et al., 2017; Park et al., 2017; Netzer et al., 
2019; Chen et al., 2020; Ohana-Levi et al., 2020; Fan et al., 2021). 
 
LAI is defined as the one-sided (green) leaf area per unit ground surface area (Myneni, 2002). Leaf area 
plays an important role in regulating the stomatal response to meteorological conditions, as the leaves 
provide a surface from which vegetation-atmospheric exchanges take place through processes such as 
photosynthesis, transpiration and respiration (Ohana-Levi et al., 2020; Shao et al., 2021). Since leaf area 
plays a major role in driving plant water consumption (Gao et al., 2008; Ohana-Levi et al., 2020), the ability 
to accurately quantify LAI across space and time can facilitate the improved estimation of water use in non-
agricultural and natural environments using the FAO-56 method. 
 
LAI data can be acquired through the use of optical in-situ instrumentation, direct sampling, Lidar 
technology and remote sensing (Fang et al., 2014; Clevers et al., 2017; Shao et al., 2021). However, the use 
of remote sensing methods is often preferred as it provides a pragmatic approach to acquire spatially and 
temporally explicit LAI data across large geographic extents (Alexandridis et al., 2019; Ovakoglou et al., 
2020). Over the past decade, numerous global satellite-derived LAI data products have been made available 
and several methods have been developed to process satellite earth observation (SEO) data to estimate LAI 
at various spatial and temporal resolutions (Alexandridis et al., 2019; Fang et al., 2019; Ovakoglou et al., 
2020). Furthermore, advances in geospatial cloud computing platforms such as Google Earth Engine (GEE) 
and the development of user-friendly machine learning programming packages have facilitated the 
seamless generation of long-term time-series data by providing a more powerful and efficient means of 
collecting, processing and storing SEO data (Gorelick et al., 2017; Ohana-Levi et al., 2020; Shao et al., 2021). 
 
Since ACRU and many other hydrological models adopt the reference ET-Kc approach for ET estimation, it 
is vital to have well-defined Kc values that adequately represent a particular LULC class so that vegetation 
water consumption can be more accurately estimated. Considering the potential of utilizing satellite-
derived estimates of LAI for the estimation of Kc in non-agricultural and natural environments, in this study 
we aimed to exploit the capabilities of GEE and machine learning techniques to derive Kc estimates for 
various commercial forest species, clones and hybrids in the eastern region of South Africa (SA). The specific 
objectives of this study were i) to derive Kc using a conventional and machine learning-based approach using 
satellite-derived estimates of LAI and ii) estimate ET using these Kc estimates and evaluate the accuracy of 
these ET estimates against in-situ measurements of ET. 
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6.3.2 Methodology 

6.3.2.1 Study Area 

The study area is situated within the Two Streams Research Catchment which is located approximately 70 
km north-east from the city of Pietermaritzburg within the KwaZulu-Natal province of SA. This catchment 
is among the most extensively studied forested catchments in SA and possesses more than two-decades 
worth of detailed hydro-meteorological observational data (Vather et al., 2020). The altitude across the 
catchment ranges from 1080-1125 m.a.s.l. The study area experiences a warm sub-tropical climate with 
hot, humid summers and cooler, dry winters. Mean annual precipitation ranges from 659-1139 mm, a 
majority of which is received as rainfall during the summer, however, heavy mist is also a significant 
contributor to precipitation within the catchment. Furthermore, the study area experiences moderate 
occurrences of hail, frost and drought (Ngubo et al., 2020; Vather et al., 2020). The Two Streams Catchment 
lies within the Pongola-uMzimkhulu water management area (WMA) which is a major contributor to water 
resources within KZN and SA. Water resources management within this WMA is fairly complex due to the 
high local demand for water resources and international obligations that need to be factored into 
management decisions to ensure the equitable and sustainable use and supply of this critical resource 
(DWA, 2012; 2013). With commercial forestry featuring quite prominently in this region due to the 
favourable growing conditions (Vather et al., 2020), the ability to accurately estimate water use and 
quantify the hydrological impacts of these forests forms a crucial component of effective water resources 
management in this region.  

6.3.2.2 Data collection and processing 

The estimation of Kc as a function of satellite-derived LAI estimates was dependent on first quantifying Kc 

through in-situ measurements of ET and ETo to account for vegetation characteristics and weather 
conditions (Pereira et al., 2015). Meteorological data such as solar radiation, ambient air temperature, 
relative humidity, rainfall, wind speed and direction were acquired from a Campbell Scientific automatic 
weather station located within the study site. This data was then used to determine the daily ETo using the 
FAO-56 method. Additional sensors were also installed at the site to measure i) the components of the 
shortened energy balance and ii) ET of Acacia mearnsii and Eucalyptus dunnii stands using the Scintillometry 
and Eddy Covariance (EC) method, respectively. Further details regarding the instrumentation setup are 
provided in Clulow et al. (2011) and Everson et al. (2018).  
 
A monthly time-series of Kc was derived using daily measurements of ET and ETo that were captured during 
the periods 2007-2013 for Acacia mearnsii and 2019-2021 for Eucalyptus dunnii. The daily ET and ETo were 
then scaled up to monthly totals and these values were used to create a monthly time series of Kc using 
Equation 6.5. During this process it was assumed that there was no limit on water availability and ET was 
occurring at potential rates:  
 

K =  
(6.5) 

 
Where,  
ET is the measured cumulative ET (mm month-1),  
ETo is the cumulative grass reference evapotranspiration (mm month-1), and  
KcObs is the monthly Kc derived from in-situ measurements.  
 
The satellite-based LAI estimates used in this study were acquired from the MODIS LAI product as it is 
among the most widely used and extensively validated freely available satellite-based LAI products 
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(Myneni, 2002; Gao et al., 2012; Yan et al., 2016). The GEE platform was utilised to access and process the 
MODIS LAI product image collection (MCD15A3H V6 level 4, 500 m spatial and 4-day temporal resolution). 
This image collection was filtered to select good quality images that corresponded with the in-situ 
measurement period and the mean value for each of these images within the region of interest was then 
determined. These values were then exported as a time-series of comma-separated values (CSV). The 4-
day MODIS LAI estimates were then summarized to create a time-series of average monthly values that was 
consistent with the KcObs dataset. 
 
In this study we adopted two approaches to estimate Kc as a function of LAI i.e., i) conventional and ii) 
machine learning-based approach. The conventional Kc estimation method described in Allen at al. (1998) 
was employed in this study and is given as: 
 

 = + ( + )*(1-e-0.7LAI) (6.6) 
 
Where, Kcmin and Kcmax were determined from the monthly KcObs time series for the Acacia mearnsii and 
Eucalyptus dunnii stands. However, it should be noted that in instances where KcObs exceeded 1.3, a value 
of 1.3 was used as Kcmax. According to Allen et al. (2011), KcObs values derived from using the grass reference 
surface should not exceed 1.2-1.3 in humid and sub-humid environments.  Once the lower and upper limits 
of Kc were determined, the long-term average monthly LAI was used as inputs to Equation 6.6 to derive the 
long-term average monthly Kc. 
 
For the estimation of Kc using a machine learning-based approach, the monthly KcObs and MODIS LAI time-
series were used to develop a Kc estimation model. For this purpose, we utilised the classification and 
regression training (Caret) (Kuhn, 2008) and caretEnsemble (Mayer, 2013) packages available as add-ins to 
R statistical software. Similar to the approach adopted in the Allen et al. (1998) method, monthly KcObs 

values exceeding 1.3 were given a value of 1.3. However, instead of developing a unique machine learning 
based model (MLBM) model for the Acacia mearnsii and Eucalyptus dunii stands, respectively, all the data 
was combined into a single dataset to develop a generic Kc-LAI model. 
 
The rationale for this was to maximize the use of the available data for the development of a model that 
could be used to estimate Kc for various forestry species, hybrids and clones in the region when only LAI 
data is available. Due to the relatively small size of the datasets (n = 94), the data was not randomly split 
into a training and validation subset. Instead, we used a k-fold cross validation approach similar to Hirigoyen 
et al. (2021) to train and validate the machine learning based models (MLBMs). Model performance was 
then ascertained using metrics such as the correlation coefficient (r), root mean square error (RMSE) and 
mean absolute error (MAE). The machine learning algorithms that were selected for application included 
the; i) generalized linear model (GLM), ii) decision tree (CART), iii) k nearest neighbour (kNN), iv) random 
forest (RF) and v) support vector machine (SVM). These algorithms were selected as they are among the 
most frequently utilised for various applications and represent an eclectic mix of both simple and complex 
machine learning based approaches. Additionally, these algorithms were then used as base algorithms to 
develop a model ensemble that combines the strengths of each of the aforementioned algorithms into a 
single model. The model ensemble was developed by stacking the base algorithms and combining their 
predictions using a RF approach. The best performing model was then selected to estimate the average 
monthly Kc using the average monthly LAI for a specific region of interest. 
 
Once the average monthly Kc was derived for each of the forestry stands using both the conventional and 
machine learning-based approaches, these values were used in conjunction with the daily ETo to estimate 
daily ET (assuming Kc remains constant within a given month). The daily ET estimates were then scaled up 
to monthly totals and these values along with the monthly Kc were then compared against the 
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corresponding values measured in-situ. The uncertainty in the Kc and ET estimates was then established 
using the aforementioned performance metrics and the Kruskal-Wallis significance test (95% confidence 
interval). 

6.3.3 Results

6.3.3.1 Validation of Kc and evapotranspiration estimates for Acacia mearnsii

Monthly KcObs ranged from 1.15 to 1.25, with an average value of 1.20 (± 0.03). Monthly Kc estimates derived 
using the conventional method ranged from 1.04 to 1.22, with an average value of 1.13 (± 0.07). The 
ensemble machine learning model (EMLM) performed the best of all the machine learning based 
approaches that were tested, producing RMSE, MAE and R2 values of 0.07, 0.04 and 0.77, respectively. 
Monthly Kc estimates derived using the EMLM ranged from 1.06 to 1.25, with an average value of 1.18 
(± 0.06). In general, both techniques were shown to perform fairly well with no significant differences found 
between the observed and estimated Kc values (p-value = 0.44). Both techniques, generally underestimated 
Kc when compared against KcObs. However, the degree of underestimation was marginally higher for the 
conventional method (RMSE = 0.09) as compared to the EMLM (RMSE = 0.06). Overall, the results of the 
comparisons between the KcObs and Kc estimated using the conventional and machine-learning based 
approaches showed that Kc could be fairly accurately estimated using satellite-derived estimates of LAI as 
shown in Figure 6-1. 

Figure 6-1: A comparison of the measured and estimated monthly Kc for Acacia mearnsii, where Sim1 
is the conventional and Sim 2 is the machine learning based approach

The results of the comparisons between the estimated ET and measured ET of Acacia mearnsii are 
presented in Figure 6-2 and Table 6-1. In general, ET estimates derived using the conventional and EMLM 
derived monthly Kc compared favourably against in-situ measurements and showed similar levels of 
performance. Both approaches, were shown to generally underestimate ET with the degree of 
underestimation being higher for ET estimates derived using the conventionally derived monthly Kc. 
However, no significant differences were found between the measured and estimated ET for both 
techniques.
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Figure 6-2: A comparison of the measured and estimated ET of Acacia mearnsii, where Sim1 and Sim 2 
represents ET estimated using conventionally and EMLM derived monthly Kc estimates, respectively

Table 6-1: A comparison of the performance metrics for ET estimates of Acacia mearnsii derived using 
monthly Kc estimates from the conventional (Sim1) and EMLM (Sim 2) approaches

Measured Sim 1 Sim 2
Total (mm) 7341.07 6835.49 7072.90
Average (mm month-1) 91.76 85.44 88.41
RMSE (mm month-1) 11.02 10.03
MAE (mm month-1) 8.11 6.51
Correlation (r) 0.94 0.94
p-value 0.48 0.48

6.3.3.2 Validation of Kc and evapotranspiration estimates for Eucalyptus dunnii

Monthly KcObs ranged from 0.68 to 1.30, with an average value of 1.08 (± 0.18). Monthly Kc estimates 
derived using the conventional method ranged from 1.04 to 1.20, with an average value of 1.12 (± 0.06). 
Monthly Kc estimates derived using the EMLM ranged from 1.09 to 1.24, with an average value of 1.19 (± 

0.04). Overall, both techniques were shown to perform satisfactorily with no significant differences found 
between the observed and estimated Kc values (p-value = 0.44). Both techniques, generally overestimated 

Kc when compared against KcObs. However, the degree of overestimation was marginally higher for the 
EMLM (RMSE = 0.20) as compared to the conventional method (RMSE = 0.15). Overall, the comparisons 

between the KcObs and Kc estimated using the conventional and machine-learning based approaches 
showed that Kc could be satisfactorily estimated using satellite-derived estimates of LAI as shown in 

Figure 6-3. 
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Figure 6-3: A comparison of the measured and estimated monthly Kc for Eucalyptus dunnii, where Sim1 
is the conventional and Sim 2 is the machine learning based approach

The results of the comparisons between the estimated ET and measured ET of Eucalyptus dunnii are 
presented in Figure 6-4 and Table 6-2. In general, ET estimates derived using the conventional and EMLM 
derived monthly Kc estimates compared satisfactorily against in-situ measurements. However, in this 
instance ET estimated using monthly Kc estimates generated using the conventional approach were in 
better agreement with measured ET, whereas ET was generally overestimated using EMLM derived monthly 
Kc. Despite the poorer estimation of ET using the EMLM derived monthly Kc, no significant differences were 
found between the measured and estimated ET for both techniques.
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Figure 6-4: A comparison of the measured and estimated ET of Eucalyptus dunnii, where Sim1 and Sim 
2 represents ET estimated using monthly Kc derived from the conventional and EMLM approaches 

respectively 

 
Table 6-2: A comparison of the performance metrics for water use estimates of Eucalyptus dunnii 

derived using monthly Kc estimates from the conventional (Sim1) and EMLM (Sim 2) approaches 
 Measured Sim 1 Sim 2 
Total (mm) 1937.72 1919.20 2029.69 
Average (mm month-1) 96.89 95.96 101.48 
RMSE (mm month-1)  1.11 18.97 
MAE (mm month-1)  0.92 14.65 
Correlation (r)  0.85 0.86 
p-value  0.46 0.46 

 

6.3.4 Discussion 

The results of our investigations demonstrated that Kc could be estimated relatively accurately using 
satellite-derived LAI estimates as inputs to both a conventional and machine-learning based estimation 
approach. The range of the estimated Kc-RMSE values (0.06-0.20) when compared against KcObs, are within 
the range of published values (0.04-0.30) highlighted in Beeri et al. (2020). It is also worth noting that both 
techniques were found to perform relatively well during the winter months (June-August) with the EMLM 
approach performing marginally better. During the drier periods forest species are likely to have greater 
impacts on available water resources, therefore, this is when it is particularly important to accurately 
estimate ET.  
 
In general, the evaluation of ET estimates against measured ET, revealed that the water use of Acacia 
mearnsii and Eucalyptus dunnii could be fairly accurately estimated using the aforementioned Kc estimates. 
However, the relative accuracy of these estimates was higher for Acacia mearnsii. This may potentially be 
as a result of the shorter observed ET record for Eucalyptus dunnii 
Subsequently, there may have been instances during which the estimated ET was being compared against 
a measured value that was higher or lower than what was actually taking place.  
 
Considering the performance of the two Kc estimation approaches, it was found that the use of Kc estimates 
derived using both approaches was able to produce reasonable estimates of ET for Acacia mearnsii with 
both approaches showing similar levels of performance. While this level of performance was relatively 
maintained when using conventionally derived Kc estimates to estimate the ET of Eucalyptus dunnii, there 
was a marginal but noticeable decrease in performance when using the EMLM derived Kc estimates for ET 
estimation. This occurrence can be largely attributed to the intrinsic characteristics of the EMLM that was 
developed to estimate Kc. The development of this model was meant to serve as a generic Kc-LAI model, 
which could be used to estimate Kc for various forestry species, hybrids and clones in the region when only 
LAI data was available. Subsequently, the Kc-LAI regression relationship was determined using a 
combination of all the Kc and LAI data that was available for the Acacia mearnsii and Eucalyptus dunnii sites.  
 
Since this combined dataset largely comprised of data for Acacia mearnsii 
the estimated Kc and subsequent ET estimates derived using these values would be more accurate for 
Acacia mearnsii. However, despite the shorter data record that was available to more adequately represent 
the Kc-LAI regression relationship for Eucalyptus dunnii, the results presented herein suggest that this 
generic Kc-LAI model can potentially provide relatively accurate estimates of Kc and subsequently ET for 
forestry species, hybrids and clones in the region where only LAI data is available. While the conventional 
Kc estimation approach may be favoured in most instances due to its relative simplicity, the advantages of 
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adopting machine learning-based approaches is that these techniques can allow for more complex 
relationships between target and explanatory variables to be more adequately accounted for and 
represented (Houborg and McCabe, 2017; Hirigoyen et al., 2017).   
Furthermore, the ability of these approaches to include additional explanatory variables can prove to be 
beneficial for the estimation of Kc for different vegetation types and in other environmental settings. For 
example, Park et al. (2017) showed that the inclusion of soil moisture data with vegetation indices resulted 
in the improved estimation of Kc as opposed to the use of vegetation indices alone, as in some instances 
soil water evaporation may be a large contributor to evapotranspiration.  
 
A major limitation of the methods employed in this study was the assumption that there was no limit on 
water availability and ET was occurring at potential rates. While it was difficult to ascertain whether this 
was the case from the comparisons between the measured and estimated ET, this assumption can prove to 
be problematic when using Kc estimates derived from these methods for hydrological modelling purposes. 
During water limited conditions hydrological models are often conceptualized to account for the effects of 
water stress through the inclusion of a stress coefficient which is used to reduce the potential ET. 
Subsequently, if the Kc estimates used in a hydrological model have been derived during water limited 
conditions, this may result in an underestimation of ET once water availability has been accounted for. A 
further limitation of the study was the reliance on in-situ measurements to estimate Kc as a function of 
satellite-based LAI estimates, as this may limit the feasibility of applying these methods in regions where 
this data is unavailable. In such instances the use of satellite-derived estimates of ET and ETo may represent 
the most pragmatic approach to acquire estimates of Kc for non-agricultural and natural vegetation.  
 
Notwithstanding the limitations of the methods presented in this study, the results presented herein have 
demonstrated the utility of using satellite-derived estimates of LAI for the estimation of Kc. Furthermore, 
the ability of machine learning based approaches to more adequately account for complex relationships 
between variables can be invaluable when attempting to estimate Kc by extrapolating Kc-LAI models to 
ungauged sites where only satellite-derived estimates of LAI can be acquired. 
 

6.3.5 Conclusion 

The general lack of Kc values for non-agricultural and natural vegetation hinders the application of the 
reference ET-Kc approach which many hydrological models utilise for the estimation of ET. To address this 
limitation in this study we explored the utility of utilizing satellite-derived LAI estimates to estimate Kc with 
a particular focus on forestry. The results of these investigations were quite promising and demonstrated 
that the use of geospatial cloud computing and machine-learning based approaches provides a robust and 
efficient means of handling large volumes of data and optimally utilizing this data. Furthermore, the 
development of a generic Kc-LAI model in this study can be quite useful for future hydrological modelling 
applications in the region pertaining to forestry as it will allow for the requisite Kc values to be seamlessly 
generated for the various commercial forest species, clones and hybrids using easily accessible and readily 
available satellite-based estimates of LAI. This in turn may allow for the improved understanding and 
estimation of the hydrological impacts of commercial forestry in the region, which is urgently required and 
necessary to improve the management and regulation of this activity.  
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6.4 Crop coefficients for various commercial tree species for use in The 
Acru agrohydrological model 

6.4.1 Introduction 

Previous studies (e.g. Gush et al., 2002) concerning the water use of commercial tree species only covered 
three species, namely Eucalyptus grandis, Pinus patula and Acacia mearnsii. Over time the number of 
species, clones and hybrids grown by the forestry industry has expanded and will continue to expand with 
improvements in tree breeding. During the initial phases of the project, an exercise was undertaken with 
the Institute for Commercial Forestry (ICFR) to look at which species were being grown and the extent of 
those species to assist in determining the crucial species that should be included. Only at the pulpwood 
stands were included.  
 
The dominant eucalypt species, in terms of current planted area across South Africa is E. dunnii. This species 
occupies the largest area across South Africa irrespective of genera. The next dominate eucalypts, 
occupying similar areas, are E. grandis and E. grandis x E. urophilla (Table 6-3) and these each occupy 
approximately half the area of E. dunnii. The dominant pine species, in terms of current planted area across 
South Africa, is P. patula with P. elliottii (Table 6-3) occupying approximately half the area that P. patula 
does. The next pine species in terms of area occupies a small fraction in comparison to P. patula and  
P. elliottii. Following from this, the growth of commercial tree species across the ICFR climate zones as 
defined by Smith et al. (2005) was considered. 
 
 

Table 6-3: Planted areas of eucalypt and pine for the large-scale growers (Source: ICFR, 2018) 

Eucalypt species Area (ha) Pine Species Area (ha) 

E. dunnii 125 659 P. patula 106 044 
E. grandis  67 428 P. elliottii 54 232 
E. grandis x E. urophilla 66 238 P. elliottii x P. caribaea 9 971 
E. grandis x E. nitens 32 717 P. patula x P. tecunumanii 7 541 
E. macarthurii 22 555 P. taeda 7 197 
E. nitens 18 720 P. greggii 2 111 
E. smithii 14 872 Other pines 1 149 
E. benthamii 11 360 Mixed stands 807 
E. grandis x E. camaldulensis 7 463 P. radiata 755 
Other eucalypts 3 220 P. caribaea 328 
Mixed stands 1 186 P. tecunumanii 177 
E. badjensis 1 077 

  

 
The distribution of commercial tree stands across the climate zones was first considered. Two climate zones, 
viz. the warm temperate dry (22%) and warm temperate moist (21%), account for 43% of the area planted 
to commercial forestry currently in South Africa (Table 6-4). Following from that the distribution of the 
species across the climate zones was determined. As noted above, E. dunnii is a dominant species based on 
area planted, the climate zones in which the species are predominantly planted are the warm temperate 
dry and warm temperate moist climate zones include (Table 6-5).  E. grandis x E. urophilla in the subtropical 
area appears to be quite dominant, this is dues to it being the one of the few species grown there whereas 
in other climate areas a broad range of species are grown. P. patula is the most dominant pine across the 
cool temperate and warm temperate climate zones regardless of the MAP division. P. elliottii in the warm 
temperate moist climate zone is the next most common, occupying 2.6% of the commercial forestry area 
(Table 6-5). The area of pines in the Sub-tropical zone were minor. 
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Table 6-4: Planted areas classified according to the ICFR defined climate zones (Source: ICFR, 2018) 

Climate Zone 
Area (ha) % 

Temperature Zone Rainfall Zone 
Warm temperate Dry 123 943 22 
Warm temperate Moist 117 574 21 
Cool temperate Moist 75 808 13 
Warm temperate Wet 74 542 13 
Cool temperate Dry 49 567 9 
Cool temperate Wet 42 139 7 
Sub-tropical Wet 34 266 6 
Sub-tropical Dry 29 812 5 
Sub-tropical Moist 15 157 3 

 
 

6.4.2 Methodology and Species included 

The MLBM as described in Section 6.3 was used to derive Kc values for the 15 sites that were used in the 
Section 5.4 (demonstrating obtaining moderate resolution LAI values from coarser spatial resolution 
products). With using an LAI based approach, the record of LAI obtained from the satellite imagery needs 
to be as long as possible. Furthermore, the site or in this case compartment had to be as large as possible. 
Together with ICFR, a compartment database that gave the compartment size, species and age, was used 
to select appropriate sites. Not all the forestry species could be included, as for some suitable 
compartments where the trees had been planted a few years back to give a long enough record of LAI could 
not be identified. However, sites to represent the dominant species were included.  
 
Further, to determine whether changes were evident between species grown in the different ICFR climate 
zones as defined by Smith et al. (2005), sites in two climate zones were chosen for three of the species. The 
species for which crop coefficients were determined and the ICFR zones in which the sites were located are 
provided in Table 6-6.  
 
For each of the sites, MODIS LAI (MCD15A3H V6 level 4, 500 m spatial and 4-day temporal resolution) image 
collections were accessed and then filtered to select good quality images for each study site and for a 
particular date range (dependent on tree age within the period 2002-2021). Similarly, Landsat 7 and 8 
(Collection 1 Tier 1 calibrated top-of-atmosphere reflectance, 30 m spatial and 16-day temporal resolution), 
as well as Sentinel-2 (MultiSpectral Instrument, Level-1C, 10 m spatial and 5-day temporal resolution) 
collections were then respectively imported directly into GEE where the NDVI and EVI for these was 
generated. The MLBM as described in Section 5.4 was then used to estimate LAI values from the Landsat 
and Sentinel-2 VI’s. Following which the MLBM was applied to estimate the Kc values for the 15 sites for the 
three LAI products. The Kc values were averaged monthly. 
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Table 6-5: Planted areas according to ICFR Climate zone and species only shown for those that account 
for more than 1% of the growth area (Source: ICFR, 2018) 

Climate Zone 
Species Area (ha) % 

Temperature Zone Rainfall Zone 
Warm Temperate Dry E. dunnii 42 811 7.6 
Warm Temperate Moist E. dunnii 36 783 6.5 
Sub-tropical Wet E. grandis x E. urophilla 29 826 5.3 
Warm Temperate Dry E. grandis  26 457 4.7 
Cool Temperate Moist P. patula 23 043 4.1 
Warm Temperate Wet E. dunnii 20 421 3.6 
Warm Temperate Moist P. patula 18 822 3.3 
Sub-tropical Dry E. grandis x E. urophilla 18 710 3.3 
Warm Temperate Moist P. elliottii 18 693 3.3 
Warm Temperate Dry P. patula 18 137 3.2 
Cool Temperate Dry P. patula 18 073 3.2 
Warm Temperate Moist E. grandis  17 099 3.0 
Warm Temperate Wet E. grandis  16 749 3.0 
Cool Temperate Wet P. patula 16 106 2.9 
Warm Temperate Dry P. elliottii 14 557 2.6 
Warm Temperate Wet P. patula 10 903 1.9 
Cool Temperate Moist E. grandis x E. nitens 10 020 1.8 
Cool Temperate Moist E. dunnii 9 560 1.7 
Sub-tropical Moist E. grandis x E. urophilla 8 114 1.4 
Cool Temperate Moist E. macarthurii 7 958 1.4 
Cool Temperate Moist P. elliottii 6 764 1.2 
Warm Temperate Moist E. grandis x E. nitens 6 629 1.2 
Warm Temperate Wet E. smithii 6 603 1.2 
Warm Temperate Wet P. elliottii 6 236 1.1 
Cool Temperate Dry E. macarthurii 6 168 1.1 
Warm Temperate Dry E. grandis x E. nitens 6 015 1.1 
Cool Temperate Moist E. benthamii 5 802 1.0 
Cool Temperate Wet E. nitens 5 802 1.0 
Cool Temperate Moist E. nitens 5 525 1.0 
Cool Temperate Dry E. nitens 5 381 1.0 

 
 

Table 6-6: The commercial forestry species and the ICFR climate zone of the sites for which crop 
coefficients were estimated 

Eucalypt species ICFR Climate Zone Pine species ICFR Climate Zone 

E. dunnii Warm Temperate Dry P. patula Warm Temperate Moist 
E. grandis  Warm Temperate Moist P. patula Cool Temperate Moist 
E. grandis  Warm Temperate Dry P. elliottii Warm Temperate Dry 
E. grandis x E. urophilla Warm Temperate Moist P. elliottii x P. caribaea Warm Temperate Moist 
E. grandis x E. nitens Cool Temperate Moist P. taeda Warm Temperate Moist 
E. grandis x E. nitens Warm Temperate Dry   
E. macarthurii Cool Temperate Moist Acacia Species ICFR Climate Zone 
E. nitens Cool Temperate Moist Acacia Mearnsii Warm Temperate Dry 
E. benthamii Cool Temperate Moist   
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6.4.3 Results and Discussion 

The long term, averaged monthly Kc vales derived using the MLBM and the MODIS LAI inputs for the 15 
sites are shown in Table 6-7, with the monthly averaged Kc estimates derived with the MLBM and Landsat 
and Sentinel-2 LAI estimates shown in Table 6-8 and Table 6-9, respectively. The Kc values are all above 1 
regardless of species and LAI product used. The Kc values vary only slightly through the year, dropping off 
slightly in the late winter and spring months. Figure 6-5 illustrates the variation in the Kc values estimated 
per species and between the LAI products used. The Kc estimating using the three LAI products are generally 
similar, and the variation between the maximum and minimum Kc values across all species and LAI products 
is 0.15. The greatest variation between the maximum and minimum Kc value for a species is for  
E. grandis x nitens in both a warm temperate dry (WTD) and cool temperate moist (CTM) climate zone, and 
when using the Landsat or Sentinel-2 LAI products. Overall, the variation between the minimum and 
maximum Kc values was less when using the MODIS LAI product. Negligible variation occurred between the 
minimum and maximum Kc values for E. grandis warm temperate moist (WTM), E. grandis x urophylla WTM 
and P. elliottii x caribaea WTM.  
 
Table 6-7: The monthly averaged Kc values derived using the MLBM and the MODIS LAI inputs for the 15 

sites 

Species Climate Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
A. mearnsii WTD 1.21 1.20 1.21 1.22 1.25 1.25 1.11 1.10 1.16 1.16 1.06 1.18 
E. benthamii CTM 1.20 1.20 1.20 1.15 1.25 1.09 1.14 1.16 1.15 1.11 1.24 1.20 
E. dunnii WTD 1.20 1.19 1.20 1.20 1.20 1.23 1.09 1.24 1.14 1.17 1.15 1.21 
E. grandis WTD 1.09 1.21 1.20 1.15 1.17 1.17 1.13 1.08 1.07 1.14 1.22 1.20 
E. grandis WTM 1.18 1.18 1.18 1.18 1.18 1.18 1.21 1.21 1.20 1.21 1.18 1.18 
E. grandis x E. nitens WTD 1.24 1.21 1.22 1.22 1.25 1.28 1.20 1.23 1.15 1.19 1.11 1.24 
E. grandis x E. nitens CTM 1.23 1.22 1.22 1.22 1.20 1.29 1.20 1.23 1.20 1.09 1.21 1.21 
E. grandis x E. urophylla WTM 1.20 1.18 1.18 1.18 1.18 1.18 1.20 1.23 1.23 1.23 1.23 1.23 
E. macathurii CTM 1.15 1.15 1.22 1.15 1.25 1.10 1.11 1.12 1.06 1.13 1.11 1.18 
E. nitens CTM 1.15 1.19 1.15 1.22 1.16 1.16 1.08 1.07 1.07 1.14 1.22 1.19 
P. Elliottii WTD 1.24 1.23 1.20 1.04 1.15 1.24 1.12 1.09 1.16 1.27 1.15 1.15 
P. elliottii x P. caribaea WTM 1.18 1.18 1.18 1.23 1.21 1.20 1.21 1.21 1.20 1.20 1.23 1.18 
P. patula WTM 1.21 1.21 1.20 1.24 1.19 1.08 1.13 1.13 1.15 1.17 1.14 1.15 
P. patula CTM 1.22 1.22 1.21 1.21 1.23 1.25 1.11 1.16 1.09 1.25 1.20 1.29 
P. taeda WTM 1.22 1.21 1.20 1.20 1.20 1.21 1.22 1.16 1.13 1.21 1.29 1.22 

 
Table 6-8: The monthly averaged Kc values derived using the MLBM and the Landsat LAI inputs for the 

15 sites 

Species Climate Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
A. mearnsii WTD 1.20 1.20 1.21 1.25 1.24 1.19 1.09 1.15 1.07 1.21 1.25 1.19 
E. benthamii CTM 1.19 1.19 1.20 1.21 1.21 1.24 1.20 1.14 1.09 1.20 1.22 1.19 
E. dunnii WTD 1.16 1.24 1.16 1.22 1.16 1.20 1.24 1.16 1.15 1.20 1.20 1.05 
E. grandis WTD 1.22 1.08 1.05 1.22 1.08 1.08 1.15 1.20 1.20 1.15 1.20 1.20 
E. grandis WTM 1.18 1.18 1.18 1.18 1.18 1.18 1.21 1.23 1.23 1.23 1.23 1.23 
E. grandis x E. nitens WTD 1.21 1.27 1.28 1.20 1.20 1.27 1.23 1.21 1.19 1.05 1.24 1.22 
E. grandis x E. nitens CTM 1.24 1.20 1.20 1.28 1.23 1.20 1.20 1.23 1.19 1.04 1.22 1.24 
E. grandis x E. urophylla WTM 1.21 1.21 1.20 1.20 1.19 1.20 1.23 1.20 1.23 1.20 1.21 1.23 
E. macathurii CTM 1.27 1.25 1.24 1.25 1.25 1.25 1.24 1.20 1.16 1.16 1.21 1.25 
E. nitens CTM 1.19 1.06 1.06 1.25 1.25 1.25 1.10 1.08 1.15 1.10 1.10 1.25 
P. Elliottii WTD 1.16 1.18 1.22 1.21 1.19 1.20 1.24 1.17 1.18 1.06 1.20 1.16 
P. elliottii x P. caribaea WTM 1.19 1.18 1.18 1.18 1.18 1.18 1.19 1.21 1.23 1.21 1.20 1.18 
P. patula WTM 1.11 1.15 1.22 1.15 1.21 1.17 1.10 1.14 1.13 1.15 1.11 1.10 
P. patula CTM 1.28 1.27 1.20 1.20 1.27 1.23 1.26 1.22 1.19 1.18 1.28 1.25 
P. taeda WTM 1.21 1.20 1.21 1.20 1.20 1.28 1.19 1.06 1.21 1.21 1.21 1.20 
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Table 6-9: The monthly averaged Kc values derived using the MLBM and the Sentinel-2 LAI inputs for 
the 15 sites

Species Climate Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
A. mearnsii WTD 1.19 1.21 1.21 1.21 1.21 1.19 1.09 1.27 1.16 1.10 1.21 1.22
E. benthamii CTM 1.19 1.05 1.08 1.19 1.20 1.14 1.19 1.19 1.14 1.09 1.19 1.15
E. dunnii WTD 1.14 1.16 1.23 1.11 1.18 1.24 1.22 1.15 1.15 1.20 1.21 1.18
E. grandis WTD 1.04 1.24 1.21 1.25 1.18 1.22 1.21 1.20 1.23 1.19 1.09 1.20
E. grandis WTM 1.21 1.19 1.18 1.18 1.20 1.19 1.21 1.23 1.20 1.23 1.20 1.20
E. grandis x E. nitens CTM 1.05 1.29 1.27 1.20 1.24 1.25 1.23 1.21 1.21 1.09 1.25 1.23
E. grandis x E. nitens WTD 1.25 1.21 1.25 1.20 1.20 1.22 1.29 1.20 1.23 1.18 1.15 1.04
E. grandis x E. urophylla WTM 1.23 1.23 1.20 1.20 1.19 1.21 1.20 1.23 1.22 1.23 1.22 1.21
E. macathurii CTM 1.21 1.09 1.17 1.18 1.17 1.27 1.27 1.22 1.16 1.11 1.22 1.22
E. nitens CTM 1.18 1.08 1.09 1.09 1.11 1.14 1.09 1.11 1.14 1.16 1.09 1.15
P. Elliottii WTD 1.08 1.24 1.21 1.25 1.21 1.24 1.15 1.19 1.19 1.15 1.23 1.20
P. elliottii x P. caribaea WTM 1.20 1.21 1.21 1.21 1.23 1.22 1.23 1.22 1.20 1.20 1.23 1.20
P. patula WTM 1.19 1.14 1.26 1.24 1.20 1.16 1.15 1.13 1.12 1.13 1.13 1.14
P. patula CTM 1.21 1.23 1.24 1.27 1.25 1.21 1.19 1.23 1.17 1.06 1.19 1.20
P. taeda WTM 1.20 1.20 1.21 1.22 1.27 1.21 1.23 1.22 1.22 1.24 1.28 1.24

Figure 6-5: Maximum (top of line), minimum (bottom of line) and average (marker) Kc values estimated 
with the MODIS LAI (black), Landsat LAI (grey) and Sentinel LAI (blue)

The Kc values estimated using MODIS LAI will be the primary set of Kc values used. It must be noted that 
these are FAO-reference potential related, non-standard Kc values. It cannot be assumed that the time 
series of LAI values captured non-water stressed conditions. LAI is correlated to rainfall, however, thus the 
average rainfall pattern over the period the LAI values span will affect them. The response of LAI to rainfall 
is relatively slow unlike ETc where there may be a more rapid increase following the vegetation receiving 
rainfall. 
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CHAPTER 7. OTHER ACRU INPUT PARAMETERS 

R.P. Kunz1, M.L. Toucher1,2 and S. Gokool1 

 
1 Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg 

2 South African Environmental Observation Network 
 

7.1 Introduction 

Since land cover and land use play a significant role in partitioning rainfall into the components of 
interception, plant and soil water evaporation, infiltration, runoff and recharge, variables relating to the 
vegetation and its water use are required for hydrological modelling applications. These land cover and land 
use processes can be grouped functionally into above-ground attributes, ground-surface attributes and 
below-ground attributes. 
 
The above-ground attributes include the biomass which is determined by the vegetation type and plant 
structure. Biomass, which varies seasonally and is dependent on climate related factors, primarily 
determines the maximum evapotranspiration rates (i.e. Kc as discussed in Chapter 6) and the canopy 
interception losses. The latter variable is either input as a monthly vegetation interception loss (VEGINT in 
mm.rainday-1) or is calculated using the monthly input leaf area indices (LAI). Plant structure also 
determines the shading of the soil surface by the vegetation. Water use of the vegetation layer is 
determined using a monthly crop coefficient (called CAY in ACRU) as explained in Chapter 6. 
 
The ground-surface attributes include (a) the infiltration properties of the soil, which in turn is a controlling 
factor of the initial abstraction of rainfall before the generation of stormflow (represented in the ACRU 
model through the coefficient of initial abstraction, COIAM); and (b) the presence and amount of litter 
and/or mulch (represented as percentage surface cover, PCSUCO), which has the potential to reduce and/or 
prevent soil erosion and soil water evaporation losses (Schulze, 2007). 
 
The below-ground related attributes include two root-specific attributes that both contribute to 
determining the patterns of soil water uptake by the vegetation, viz. the seasonal variation of the 1) fraction 
of active roots in the topsoil horizon (ROOTA), and 2) the degree of root colonisation in the subsoil (COLON) 
(Schulze, 2004). The onset of plant water stress is also considered to be a below-ground attribute related 
to vegetation. Within ACRU, the onset of water stress is considered to be the fraction of the soil’s plant 
available water (PAW) at which total evaporation is assumed to drop below maximum evaporation due to 
drying of the soil. This fraction of PAW is termed CONST in the model.  
 
Therefore, in addition to the monthly Kc (CAY) values, the following parameters were determined using 
remotely sensed or field-based data (where possible) via a clearly documented and repeatable 
methodology: VEGINT, ROOTA, COLON, CONST, COIAM and PCSUCO. The methodology used is described 
in the sections that follow. 
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7.2 Canopy Interception Loss 

Interception is a threshold process, meaning that a certain amount of water is required to fill the canopy 
storage deficit prior to successive processes such as throughfall, infiltration and runoff occurring (Bulcock 
and Jewitt, 2012). Thus, in hydrological modelling, it should be one of the first processes considered. 
However, it is often ignored (Gerrits et al., 2010, Bulcock, 2011) or lumped with total evaporation (Savenije, 
2004) as it considered a small component of total evaporation. Interception loss is particularly important in 
tall vegetation such as forests where evaporation rates of intercepted water are high due to low 
aerodynamic resistance and high surface roughness. Unlike short vegetation, evaporation rates from 
intercepted water from tall vegetation exceeds transpiration rates under identical conditions because there 
is no physiological control by the plants. Therefore, interception is a substantial net addition to actual 
evapotranspiration (Muzylo et al., 2009). 
 
Two methods of determining canopy interception loss values are described below, viz. 1) the simplistic Von 
Hoyningen-Huene Method and 2) the more complex “variable storage Gash model”. Importantly, LAI is a 
primary input to both methodologies. 
 

7.2.1 Methodology 

7.2.1.1 The Von Hoyningen-Huene Method  

As outlined in Schulze (1995), Von Hoyningen-Huene (1983) related the interception loss (mm.rainday-1) of 
a number of agricultural crops to gross rainfall (Pg), and LAI as: 
 

= 0.30 + 0.27 + 0.13 0.013  + 0.0285 · 0.007  (7.1) 

 
This is the method currently available as an option in the ACRU model, and is preferred over the alternative, 
which is fixed monthly “interception per rainday” values. The Von Hoyningen-Huene equation has been 
found to only be “stable” for gross daily rainfall amounts of less than 18 mm above which no further canopy 
interception is assumed to occur. When investigating canopy interception loss values for the CWRR clusters, 
Toucher et al. (2020) found no relationship between annual canopy interception losses derived using the 
Von Hoyningen-Huene method and annual precipitation, because annual canopy interception loss values 
were all less than 25 mm, due to gross rainfall being “capped” at 18 mm per day. For commercial tree 
species, the annual sum of monthly canopy interception loss values ranged from 22 mm (E. nitens in zone 
CTM) to 43 mm (E. grandis in zone WTM). Of the 15 tree species considered with MODIS LAI data, nine 
produced more than 25 mm of annual interception loss. Although the Von Hoyningen-Huene method is 
simplistic and ignores the evaporation loss during the rainfall event, Schulze et al. (1995) showed it 
adequately estimated the interception loss of a Pinus patula stand. 

7.2.1.2 The variable storage Gash model 

The variable storage Gash model was developed by Bulcock (2011) and is a modified version of the original 
(Gash, 1979) and revised (Gash et al., 1995) models. Bulcock (2011) used the variable storage Gash model 
to estimate monthly interception losses for eucalypts, pines and wattle. The model was also used to derive 
monthly interception loss values for the 121 CWRR natural vegetation clusters (Toucher et al., 2020), as 
well as for sorghum and soybean (Kunz et al., 2020). The reader is referred to Appendix M of the latter 
report for a detailed description of the Gash interception model.  
 
The maximum storage capacity (Sc

max) represents the rainfall amount required to wet the canopy with 
droplets of almost “zero” kinetic energy, which can occur when the rainfall intensity is less than  
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0.36 mm h-1 (Calder, 1996). This variable can be estimated from LAI as described by Van Dijk and Bruinzeel 
(2001a; 2001b). However, Toucher et al. (2020) obtained Sc

max using the WFlow_Sbm model (Arnal, 2014), 
which calculated representative values for the leafy and woody portions of each natural vegetation cluster. 
Bulcock (2011; refer to p79 and p108) derived Sc

max from the product of LAI and maximum elemental 
storage (ve

max), with the latter variable set to 0.24, 0.51 and 0.63 for eucalypts, pines and wattle, 
respectively. In this study, the method utilised by Bulcock (2011) was adopted. Bulcock (2011) set the light 
extinction coefficient (k; Equation 35 in Kunz et al., 2020) to 0.5 for each genus, whereas in this study, k was 
set to  
 

 0.5 for eucalypts (Gazarini et al., 1990; Bulcock 2011), 
 0.6 for pines (Sampson and Lee Allen, 1998; Vose et al., 1995), and 
 0.4 for wattle (Forrester et al., 2014). 

 

7.2.1.3 Estimation of VEGINT per quinary catchment 

For each quinary catchment, monthly estimates of interception loss were determined for each 50-year 
period (1950 to 1999) using the two above-mentioned methods that require daily climate and monthly LAI 
as input. From this, long-term monthly means were calculated, together with other useful statistical 
indicators such as coefficient of variation and the 10th, 50th and 90th percentiles. This was repeated for each 
set of monthly LAI values obtained from the three remote sensing platforms (MODIS, Landsat and Sentinel2) 
for each of the 15 forest species, hybrids and clones. 
 

7.2.2 Results and Discussion 

As noted by Toucher et al. (2020), the variable storage Gash model produces much higher monthly 
interception losses than the Von Hoyningen-Huene method across the majority of the 5838 quinaries. One 
of the main reasons for this is the “capping” of daily rainfall to 18 mm only for the Von Hoyningen-Huene 
method. The difference in mean monthly interception losses is illustrated for (a) E. grandis (WTD1), (b)  
P. patula (WTM4), and (c) A. mearnsii (WTD3) in the graphs below for both January (Figure 7.1) and July 
(Figure 7.2). Although the quinary averaged interception loss for January is 1.76 (VHH) vs 3.57 (VSG) 
mm.rainday-1, the highest values of 2.21 (VHH) vs 9.60 (VSG) mm.rainday-1 were obtained in quinaries 2370 
and 2880, respectively. In July, similar quinary averages of 1.30 (VHH) and 1.27 (VSG) mm.rainday-1 were 
estimated for E. grandis, with maximum values of 1.70 (VHH) and 2.86 (VSG) mm.rainday-1. Slightly higher 
interception losses were simulated for P. patula, with quinary averages of 1.83 (VHH) vs 3.98 (VSG) and 1.35 
(VHH) vs 1.53 (VSG) mm.rainday-1 for January and July, respectively. Similar higher interception losses were 
simulated for A. mearnsii, with quinary averages of 2.05 (VHH) vs 3.96 (VSG) and 1.41 (VHH) vs 1.46 (VSG) 
mm.rainday-1 for January and July, respectively.  
 

7.2.3 Conclusion 

Based on the graphs shown below, the decision was made to utilise the Von Hoyningen-Huene estimates, 
which matches the approach taken in the baseline project (Toucher et al., 2020). Hence, the same method 
was used to estimate VEGINT in ACRU for both natural vegetation and for the forest species, hybrids and 
clones, thus facilitating a fair comparison. 
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Figure 7-1: Mean monthly interception loss in January for (a) E. grandis, (b) P. patula and (c) A. 
mearnsii, derived using the Von Hoyningen-Huene (VHH) method and variable storage Gash (VSG) model

a

b

c 
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Figure 7-2: Mean monthly interception loss in July for (a) E. grandis, (b) P. patula and (c) A. mearnsii, 
derived using the Von Hoyningen-Huene (VHH) method and variable storage Gash (VSG) model

a

b

c
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7.3 Root specific below ground parameters  

Roots tend to grow as deep as is required to adequately anchor the plant/tree, as well as to provide 
sufficient resources, including both water and nutrients (Schenk and Jackson, 2002). Thus, roots essentially 
track the availability of water and nutrients across the soil profile (Cheng and Bledsoe, 2002). This is 
especially true for fine roots, which are primarily responsible for taking up most of the soil water (ACRU 
FDSS Workshop No3, 1995), and also for obtaining nutrients and oxygen (de Kroon and Visser, 2003; Raz-
Yaseef et al., 2013). In comparison, coarse roots are responsible for supporting and anchoring the 
vegetation, as well as supporting the fine root network (Fogel, 1983). The nature and distribution of the 
roots through the soil profile at any given time mirrors the transpiration of the vegetation which is governed 
by the vegetation structure and biomass as well as local site soil conditions including soil temperature, soil 
water content and nutrient availability (Das and Chaturvedi, 2008). Other factors affecting transpiration 
include dormancy, senescence, regrowth, growth rates and impeding soil layers. Therefore, changes in 
vegetation structure and biomass as well as changes in environmental factors, alter vegetation transpiration 
and result in corresponding changes in root distributions (Day et al., 1996). 
 
In hydrological modelling, the water uptake function of roots needs to be accounted for. Root water uptake 
by roots is affected by factors including root growth, distribution, colonisation, extension, the differences 
in the water potentials between plant and soil, the hydraulic conductivity of the soil and the availability of 
water in the soil. Given the numerous factors affecting root water uptake, it is not a simple matter to 
attempt to model water uptake. Thus, assumptions, simplifications and generalisations have been made in 
ACRU to simulate root water uptake. 
 
In ACRU, soil water extraction by roots is considered to occur simultaneously from both soil horizons in 
proportion to the determined active rooting mass distributions in each horizon, until a soil horizon becomes 
water limited. Following which plant water uptake is assumed to occur from the wetter soil horizon. Thus, 
the monthly fraction of active root mass in the A-horizon (ROOTA) is required as an input. This fraction is 
then used internally to compute the B-horizon root mass (ROOTB). The input ROOTA values need to account 
for the effect of genetic and environmental factors on transpiration, as well as other factors such as 
dormancy, senescence, regrowth, growth rates and impeding soil layers. It is important to note, that in the 
conceptualisation of ACRU, if the parameter describing the fraction of active roots in the A-horizon is 
ascribed to 1, this designates senescence or no active water uptake by roots from the A-horizon. This 
essentially means that no transpiration is occurring, only soil water evaporation (Schulze, 1995). The ACRU 
model also requires the effective rooting depth (EFRDEP) as input. The EFRDEP defines the soil depth to 
which the effective root system extends within the entire active soil profile (Schulze, 2004b), and is limited 
to the combined depth of the A and B soil horizons. The last root related input value required is monthly 
values of the root colonisation of the subsoil horizon (COLON) (ACRU FDSS Workshop No3, 1995), 
representing the percentage of the subsoil horizon that roots may access the available soil moisture 
(Summerton, 1995). 
 
Studies related to the roots of the commercial tree species grown in South Africa typically tend to focus on 
the depth of the tree roots, or the root distribution profile. To note, the studies found were predominantly 
international studies. Few studies considered the portion of fine active roots in the A-horizon, and those 
that did defined the fine active roots differently as well as using different methodologies. However, a 
common finding that emerged from the literature was that a significant portion of the active roots were 
found in the upper soil horizons. Fredericksen and Zedaker (1995) found that approximately 50% of live fine 
root biomass was located in the upper 10 cm of soil for young pine-hardwood stands. Similarly, Sudmeyer 
et al. (2004) concluded that the root density of P. pinaster, P. radiata and E. globulus was greatest in the 
top 0.5 m of the soil. For E. grandis, Laclau et al. (2013) found the majority of fine roots to be in the top  
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2 m of the soil profile (Figure 7-3).  For E. urophylla, Teixeira et al. (2002), found that 67% of fine roots were 
located in the upper 20 cm’s of the soil horizon. A further common finding across the studies was that the 
distribution of the root profile was heavily dependent and influenced by site characteristics (Colter Burkes 
et al., 2002). 

Figure 7-3: Cumulative distribution of (A) fine root intersects (diameter less than 1 mm) and (B) medium 
root intersects (diameter 1-3 mm) down to a depth of 10 m, from observations on 2-6 soil profiles at each 

E. grandis stand (Laclau et al., 2013).

The sensitivity study presented in Toucher et al. (2020) showed that simulated streamflow and baseflow 
were only slightly sensitive to changes in ROOTA, with a 50% change in ROOTA altering simulated 
streamflow by only 12% and baseflow by 7%. Only when ROOTA is 1 (i.e. no transpiration from the A-
horizon) is the influence of ROOTA on streamflow simulation significant. Using the literature available and 
given the limited information relating the fine root distribution, the site dependence of the rooting 
distribution and the low sensitivity of the ACRU model to the parameter, a monthly ROOTA value of 0.65 
across all tree species was selected.

In ACRU, the EFRDEP is limited to combined depth of the A and B soil horizons as determined from the Land 
Type maps. Setting EFRDEP to 0 defaults the EFRDEP to combined depth of the input soil horizons (i.e. the 
maximum depth permitted in the model). The combined soil depths of the A and B horizons extracted from 
the Land Type maps do not exceed 3 m. However, several studies provided evidence of active root depths 
for the commercial tree species grown in South Africa to depths of 8 m and deeper. Therefore, the EFRDEP 
for all the tree species was set to 0 to default to the maximum permitted effective root depth.

The last root related input required by ACRU is COLON, defined as the percentage of any given soil horizon 
to which roots may access the available soil moisture in that horizon (Summerton, 1995). A COLON value of 
100% for a given soil horizon implies that the roots in that horizon can access water from 100% of the 
horizon, provided water is available in the soil. Within the ACRU model, the root colonisation of the topsoil 
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A-horizon is assumed to be 100% and thus, monthly input values of COLON are only required for the B-
horizon (ACRU FDSS Workshop No3, 1995). In this study, COLON was assumed to be 100% for all tree 
species, hybrids and clones, meaning the tree roots can also access 100% of the soil water stored in the B-
horizon. This assumption is deemed valid considering the maximum soil depth is limited to 1.2 m. 
 

7.4 Fraction of plant available water at which plant stress occurs 

Within ACRU, onset of plant water stress is considered to be a fraction of plant available water (PAW) of 
the soil horizon at which total evaporation is assumed to drop below maximum evaporation. The ACRU 
input variable to represent this fraction of PAW is CONST. As a result of soil water uptake by vegetation, 
the water content in the root zone dries out. As the soil becomes progressively drier, the forces holding the 
remaining water to the soil particles becomes greater, lowering its potential energy and making it more 
difficult for the roots to extract the remaining water. Eventually a point is reached (defined as permanent 
wilting point or PWP), where the vegetation cannot extract anymore of the remaining water from each soil 
horizon. Prior to the PWP being reached, vegetation water use is drastically reduced due to the forces 
holding the remaining water to the soil particles. The threshold of available soil water at which vegetation 
water use is reduced and plant stress sets in, is dependent on the vegetation nature and type. As CONST 
approaches a maximum value of 0.9, it indicates the vegetation type is extremely sensitive to water stress 
and thus, is not drought tolerant. 
 
No field-based studies could be found that determined the fraction of available soil water at which the 
onset of plant water stress occurs in commercial tree species. A relevant study by Dye (1996) investigated 
the relation between transpiration rate and soil water availability at two Eucalyptus grandis sites. Plastic 
sheeting was placed over the soil surface at both sites to prevent soil water recharge, which allowed the 
tree roots to continuously deplete the soil water. Dye (1996) found that declining soil water contents did 
not cause severe stress in the trees at either site despite the study commencing at a time of severe drought 
(1991/1992). Given the lack of available information, the FAO 56’s (Allen et al., 1998) chapter on crop 
evapotranspiration under soil water stress was considered. 
 
Allen et al. (1998) provides average fractions of total available soil water content (called the depletion 
fraction or p) that can be depleted from the root zone before plant stress occurs for various crops and 
vegetation types. As CONST is the fraction of plant available water in a soil horizon when total evaporation 
is reduced, it can be defined as the inverse of p, i.e. CONST = 1 – p. According to Allan et al. (1998), p ranges 
from 0.1 to 0.8 and provided a value of 0.7 for conifer trees (CONST = 0.3), compared to 0.2 (CONST = 0.8) 
for drought sensitive vegetable crops.  
 
Using these values as limits for CONST values, as well as the findings by Dye (1996), the CONST values for 
the three commercial tree genera were set as 

- 0.2 for eucalypts, 
- 0.3 for pines, and 
- 0.4 for wattle. 

 

7.5 Coefficient of initial abstraction 

In the ACRU model, the coefficient of initial abstraction (COIAM) represents the initial abstractions before 
stormflow commences, which consist mainly of interception, infiltration and depression storages. The 
internationally used default value for COIAM is 0.2 (e.g. Hawkins et al., 2002). The relationship between the 
ratio of initial abstractions with soil surface infiltrability, soil type, antecedent moisture condition, rainfall 
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amount and intensity has been described extensively in literature (e.g. Hawkins et al., 2002; Mishra and 
Singh, 2002; Yuan et al., 2012; Kamuju, 2015). However, the uncertainty surrounding the parameterisation 
of this variable has similarly been extensively noted (e.g. Hawkins et al., 2002; Mishra and Singh, 2002; Yuan 
et al., 2012; Kamuju, 2015). Given this and the relative insensitivity of streamflow to this variable (as shown 
in the sensitivity study in Toucher et al. 2020), the working rules established by Schulze (2004) for COIAM 
linked to rainfall intensity and seasonality and work by Arnold (1981), Schulze (1984), Jewitt (1991) and 
Topping (1993) were adopted in this study. These working rules were also used to determine the COIAM 
parameters for the CWRR clusters.  
 
The working rule defined by Schulze (2004) that is relevant to commercial tree species is:  

- For dense forests COIAM = 0.35 throughout the year, because the deep litter layer enhances initial 
infiltration before stormflow commences. 

Thus, the COIAM value was set to 0.35 for all months across all tree species.  
 

7.6 Percentage surface cover 

Soil water evaporation losses are suppressed in the ACRU model by the variable defined as the percentage 
surface cover (PCSUCO). PCSUCO suppresses soil water evaporation losses in a linear relationship such that 
complete cover still allows for 20% soil water evaporation. This variable, which is expressed as a percentage, 
accounts for the surface cover which includes mulch, litter and stone/rock. Plant litter is recognised to play 
a major role in  

- protecting the soil surface; and  
- reducing the evaporation from the ground surface by covering the soil surface and having a high 

porosity which limits the capillary rise of liquid water from the soil underneath (Sakaguchi and 
Zeng, 2009). 

 
Schulze (2004) assumed that a greater above-ground biomass resulted in higher litter cover, and through 
consultation with the National Biodiversity Institute Schulze (2004) used a sigmoidal relationship between 
PCSUCO and maximum crop coefficient (Kc), simplified into the following: 

- For Kc between 0.20 and 0.40, PCSUCO = 100(Kc – 0.2) 
- For Kc between 0.40 and 0.85, PCSUCO = 20 + 177.8(Kc – 0.4) 
- For Kc greater than 0.85, PCSUCO = 100 

 
This rule was adopted in this study to estimate monthly PCSUCO values, as it was also used to determine 
monthly PCSUCO values for each Acocks (1988) Veld Type, as well as for each CWRR cluster (Toucher et al., 
2020). As the highest monthly Kc value for the various commercial tree species always exceeds 0.85, the 
PCSUCO value across all months for all tree species was set to 100%. Since PCSUCO was assumed to be 
constant over the year, it implies that litter decomposition is not considered. 
 

7.7 Streamflow response parameters 

In the ACRU model, streamflow response parameters are used to govern the portion of generated 
stormflow exiting a catchment on a particular day, as well as the portion of baseflow originating from the 
groundwater store, which contributes to streamflow. 
 
The soil moisture deficit depth (SMDDEP), also known as the critical stormflow generation depth, 
represents the soil depth that must be wetted before runoff can occur. This parameter accounts for the 
dominant runoff producing mechanisms that may vary in different climates, as well as with land use, litter 
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layer and soil conditions. Hence, streamflow generation is extremely sensitive to SMDDEP, particularly for 
sites with shallow soils and high rainfall intensities. For all hydrological simulations in this project, SMDDEP 
was set to the thickness of the topsoil, which is the suggested default value (Smithers and Schulze, 1995). 
Hence, the effective soil depth from which stormflow is generated is the topsoil depth. Schulze (2011) set 
SMDDEP to the thickness of the topsoil.  
 
The catchment’s stormflow response fraction (QFRESP) influences the timing of streamflow leaving the 
catchment, but not the magnitude (or volume) of generated runoff. The value is dependent on, inter alia, 
topography (i.e. catchments with steep slopes exhibit higher QFRESP values). Schulze (2011) recommends 
0.30 as being typical at the spatial scale of quinary catchments and is based on experimental evidence. 
 
The baseflow recession constant (COFRU) determines the fraction of daily groundwater store that is 
released as baseflow, which then contributes to streamflow. Hence, this parameter controls the rate of 
baseflow release from the groundwater store.  A typical value is 0.009 (or 0.9%) for the quinary catchments 
(Schulze, 2011). 
  
The above-mentioned parameter values, as suggested by Schulze (2011), were used in this project. These 
values were also used in Kunz et al. (2015), Kunz et al. (2020), Toucher et al. (2020) and Everson et al. (2021). 
 

7.8 Summary 

To summarise, the values used for each of the ACRU input variables are: 
 

CAY Monthly values derived from MODIS LAI input (refer to Chapter 6) 
VEGINT Mean monthly values determined for each quinary catchment using the Von 

Hoyningen-Huene, which requires daily rainfall and monthly MODIS LAI as input. 
ROOTA 0.65 across all commercial forest species and months. 
EFRDEP 0 (defaults to depth of A- and B-horizon) 
CONST 0.2 for eucalypts 
 0.3 for pines, and 
 0.4 for wattle 
COIAM 0.35 
PCSUCO 100% 
COLON 100% 
SMDDEP 0 (use thickness of the A-horizon) 
QFRESP 0.30 
COFRU 0.009 
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CHAPTER 8. MODEL DESCRIPTION AND INPUTS 

R.P. Kunz1 and M.J.C. Horan1 

 

1 Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg 
 
This Chapter describes the ACRU agrohydrological model used in this study. It also provides a brief 
description of the updated quinary catchment climate and soils database used as input for the ACRU model.  
 

8.1 The ACRU agrohydrological model 

Use of the ACRU agrohydrological model for assessment of potential SFRAs has been accepted by DWS 
(Gush et al., 2002; Jewitt et al., 2009). More recently the ACRU model has been used in other SFRA studies, 
to assess the potential impacts of biofuel crop cultivation on streamflow (Kunz et al., 2015; Kunz et al., 
2020), and the potential impact of bamboo production on streamflow (Everson et al., 2021).  The ACRU 
model was initially chosen and subsequently accepted because it has been intensively and extensively used 
and verified in South Africa and utilises a sound set of input databases available in the country. “The ACRU 
model has been developed and shown to be sensitive to land cover, land use and land management changes 
and has been used frequently in assessing this impact on runoff” (Schulze, 1995; AT2-10). ACRU is a physical-
conceptual model of intermediate complexity, physical in that processes are represented explicitly with 
initial and boundary conditions and conceptual in that it conceives of a system where important couplings 
and processes are idealised (Figure 8-1; Schulze, 1995). The ACRU model operates at a daily time step, 
therefore making optimal use of available climatic information, and making the model suitable in terms of 
flow regimes and sediment yield, which are highly correlated with individual rainfall events (Schulze, 1995).  
 

 
Figure 8-1: Structure of the ACRU agro-hydrological modelling system (Schulze, 1995) 
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The previous SFRA model output used in the SFRA Utility by Jewitt et al. (2009) were undertaken with ACRU 
Fortran version 3.31. Since then, significant updates to the ACRU model have taken place. Of significant 
benefit to this project is the improvements made by Kunz et al. (2020) to ACRU version 3.38 to optimise the 
speed at which the model runs, as well as significant changes made to the print and statistics utilities to 
optimise their computational performance and output format. The changes made to optimise ACRU have 
resulted in the model running 8x faster than the version used in by Jewitt et al. (2009). These improvements 
allowed for multiple ACRU runs to be undertaken to accommodate the different species. 
Since 2009, the ACRU model has been compiled into a Java version. Kunz et al. (2015) highlighted 
differences in streamflow generated by the Fortran version of ACRU when compared to that from the Java 
version. One of the reasons for the runoff differences is due to the way in which the two versions adjust 
the daily crop coefficient within the model. The Fortran version was programmed to reset the daily crop 
coefficient (Kc) value to that of the monthly input value at the beginning of every month. However, this 
monthly “resetting” procedure was removed in the Java version, thus allowing the daily Kc value to continue 
decreasing until recovery from stress begins when the soil water content rises above a threshold value. 
Kunz et al. (2015) concluded that the Fortran version of the model should be modified to mimic the Java 
version. 
 
Based on the above recommendation, changes were made to version 3.40 of ACRU to prevent the resetting 
of the daily Kc value at the beginning of each month. In ACRU, 12 monthly crop coefficients are converted 
to 366 daily values using Fourier analysis. At the beginning of the simulation (i.e. the first day of Year 1), Kc 
is set to the daily (i.e. Fourier) value and not the monthly value, which mimics the Java version of ACRU. In 
addition, daily adjustments made to Kc are limited to Fourier values and not monthly values, which again 
mimics the Java version. Kunz et al. (2020) investigated the implications of the change for 669 quinaries. In 
total, 169 quinaries reflected changes in monthly simulated runoff ranging from 0.01 to 5.84 mm. Changes 
in annual runoff ranged from 0 to 31.5 mm (or 0 to 48.5%). 
 
For WRC Project No. K5/2833 (Schütte et al., 2021), other significant improvements were made to optimise 
memory utilisation by the model. This removed the previous limitation were ACRU could only be run for a 
maximum of 6000 catchments. These improvements were incorporated into ACRU version 3.50, which runs 
even faster than version 3.38. Additional “tweaks” were made in versions 3.51 and 3.52 to further improve 
model performance. In summary, ACRU version 3.31 used by Jewitt et al. (2009) took approximately 8.5 
hours to complete a national run for all 5838 quinaries, whereas version 3.52 used in this study took 
approximately 23 minutes. 
 

8.2 Updated quinary catchment climate database 

The runoff simulated by the ACRU model is extremely sensitive to rainfall input, especially in high-intensity 
rainfall areas (Schulze, 1995), thus it cannot be over-emphasised that rainfall data used as input for ACRU 
must be as error-free as possible. Hence, Kunz et al. (2020) invested significant effort into improving the 
quinary catchments climate database. The full description of the improvements and error checking 
undertaken are provided in Kunz et al. (2020), with a summary provided below.  
 
In terms of rainfall,  

 The driver rainfall station for 11 quaternary catchments (three quinary catchments represent a 
subdivision of a quaternary) was changed to improve the representation of the rainfall in those 
catchments.  

 The SAWS ID numbers of each of the driver rainfall stations was checked, and 317 SAWS ID numbers 
were corrected. The ID numbers were used to re-extract the rainfall data from the Lynch (2004) 
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database. For very few occurrences where the daily value had not been patched by Lynch (2004), 
these were simply set to 0 mm.  

 A total of 13 extreme rainfall events (> 400 mm) were found in the quinary rainfall database. Of 
these, four values were appropriately corrected when compared to neighbouring gauges. 

 
In terms of temperature, 

 The daily temperature dataset deemed representative of each quinary catchment was revised by 
Kunz et al. (2020) and is now based on observed data, which replaced values derived from the 1’x1’ 
gridded temperature database developed by Schulze and Maharaj (2004). 

 A temperature station was selected for the driver rain gauge used for each quinary catchment. The 
method used to select the temperature station is described in detail in Kunz et al. (2020).  

 Following this, a lapse rate adjustment of the temperature data was undertaken. The altitude 
difference between the temperature station and the average value for each quinary catchment 
was used to calculate representative temperature values for each catchment. This was achieved 
using the adiabatic lapse rates corresponding to the region in which the temperature station was 
located.  

 
Following the revisions to the rainfall and temperature datasets, daily reference evapotranspiration (ETo in 

mm) were calculated using the FAO56 version of the Penman-Monteith equation (Allen et al., 1998). The 
required inputs of daily solar radiation, as well as relative humidity (maximum and minimum) values, were 
generated from the revised temperature values using the method described by Schulze et al. (2011) and 
the wind speed was set to a daily default value of 2 m s-1. As ACRU requires A-pan equivalent reference 
evaporation, FAO-based reference evaporation was adjusted using the method developed by Kunz et al. 
(2015). This adjustment was based on a modified version of the PenPan equation, which was successfully 
applied in Australia to estimate A-pan equivalent evaporation. The adjustments suggest that A-pan 
equivalent evaporation exceeds FAO56 evaporation by a factor ranging from 16 (for summer) to 51% (for 
winter) for southern Africa. The reader is referred to Kunz et al. (2015) for more detail on the PenPan 
method. 
 
Using the updated list of rainfall driver stations, a new climate file in ACRU-composite format. Was 
generated for each quinary catchment by combining daily rainfall (and its quality code) with the lapse rate-
adjusted temperatures (and quality codes). The ETO data was added to the climate files, which are called 
obstmp_xxxx.txt, where xxxx represents the unique quinary catchment identifier (SUB_CAT) that ranges 
from 0001 to 5838. 
 

8.3 Rainfall adjustment 

To improve the representativeness of the point rainfall data (observed at a rainfall recording station), 
monthly rainfall adjustment factors (called CORPPT in ACRU) were applied to the point data. The CORPPT 
factors used in this study were derived by Kunz et al. (2020) from the revised quinary catchment database 
and range from 0.50 to 2.00. The values were identical to those developed by Schulze et al. (2011), except 
for quinary catchments 4175-4177, where slight changes occurred due to the corrections made to extreme 
rainfall events. 
 

8.4 Adjusting to the crop coefficients to a-pan reference potential  

ACRU requires monthly Kc values calculated using the A-pan as the reference evaporation (EPAN). Since the 
Kc Forest values are based on FAO56 reference evaporation (EREF), the monthly values were adjusted using 
a pan coefficient value. Monthly pan coefficients were calculated for each quinary as EPAN/EREF where EPAN 
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is estimated monthly A-pan equivalent evaporation and EREF is ETo (i.e. short grass evaporation). Pan 
coefficients are always greater than 1 as EPAN > EREF. Hence, the crop coefficients for the commercial tree 
species were multiplied by the inverse of the monthly pan coefficients for each quinary to determine pan 
adjusted crop coefficients as follows: 
 

KC_PAN = KC_REF * EREF/EPAN = ETFOR/EREF * EREF/EPAN = ETFOR/EPAN (8.1) 
 
 
Further details on the methodology used can be found in Kunz et al. (2015). 
 

8.5 Improved soils input 

For the A- and B-horizons, the Terrain Unit Database (TUDB) described in Chapter 2 contains soil water 
retention parameters and soil depths for up to five terrain units within each of the 7082 land types across 
South Africa. This database of 27473 polygons was used to provide improved soils information for each of 
the 5838 quinaries. This was done using a GIS, where each soil parameter value was first multiplied by a 
constant to convert into integer format, then the TU polygons were converted from vector (polygon) to 
raster (grid) format. The quinary catchment boundaries were also converted to raster format and used as 
a zonal mask to obtain various statistics for each land type and its TUs within each of the 5838 zones. From 
this, area-weighted soil parameter values were derived for each quinary catchment. The improved soil 
parameters for South Africa were then merged with previous values that were derived for Lesotho and 
Eswatini using other soil databases, since land type data does not exist for these two countries. Hence, 
improved values for PWP, FC and PO were obtained for both soil horizons, as well as depth. Two other ACRU 
parameters, viz. ABRESP and BFRESP, were also derived for each quinary. These represent the fraction of 
"saturated" soil water that is redistributed each day from the topsoil into the subsoil horizon, and from the 
subsoil horizon into the intermediate/ groundwater store. 
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CHAPTER 9. HYDROLOGICAL IMPACTS OF 
COMMERCIAL AFFORESTATION 

R.P. Kunz1 and S. Gokool1 

 
1 Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg 

 

9.1 Introduction 

Section 36 of the National Water Act (1998) declares land that is used for commercial afforestation a Stream 
Flow Reduction Activity (SFRA). The declaration was informed and underpinned by the research that has 
taken place over numerous years starting in 1935 with the establishment of the first forestry research 
catchment in Jonkershoek, Western Cape. The magnitude of the reduction has been assessed using 
different tools over time, starting with tools developed from the data from forestry research catchments 
the Nänni curves (Nänni, 1970), later the Van der Zel Curves (Van der Zel, 1990) which were followed by 
the CSIR curves (Scott and Smith, 1997). Following the declaration under the NWA of 1998, development 
of the tools to support the implementation of the declaration continued with Gush et al. (2002) who 
undertook a verification and modelling exercise using the ACRU agrohydrological model and data from the 
forestry research catchments. From this work, a set of look-up tables were developed at quaternary 
catchment scale that express reductions in streamflow (total flow and low flow) caused by the principal 
commercial forestry genera grown in South Africa (eucalypts, pine and wattle), relative to a baseline flow 
under indigenous vegetation (considered Acocks Veld Types). Jewitt et al. (2009) developed the SFRA utility 
and improved the spatial scale of the hydrological modelling from quaternary catchment scale to quinary 
catchment scale, making use of the quinary catchments database of varying soils and climate. However, 
only the three commercial forestry genera were represented.  
 
Further to the SFRA Utility, Jewitt et al. (2009) provided a framework for the declaration of a potential 
candidate SFRA and a framework for the regulation of declared SFRA’s. In the framework for the declaration 
of a potential candidate SFRA, Jewitt et al. (2009) suggested that a 10% reduction in mean annual runoff 
(MAR) by a land use can be considered a significant reduction or that a 25% reduction of low flows can be 
considered significant. Low flows are defined as the lowest 25% of the flow regime, or the flow in the driest 
3 months of the year.  
 
This project aimed at further improving the SFRA Utility and the data included therein, by broadening the 
number of species included and making use of the revised climate and soils databases available, as well as 
undertaking the assessment against the recently developed hydrological baseline, viz. the CWRR clusters. 
Given the vast changes to the inputs to the ACRU agrohydrological model, this chapter presents the results 
as simply the quinary catchments where the change in MAR, under the species considered, would be 

 
 

9.2 Methodology 

The ACRU model was used to simulate mean monthly and annual runoff response for: 
 baseline conditions (MARBASE), i.e., the runoff produced from a land cover of natural vegetation 

(the CWRR clusters), and 
 each of the forestry scenarios (MARFOR), assuming a 100% change in land cover. 
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This was done using the updated quinary climate database and improved quinary soils database as 
described in Sections 8.1 and 8.2, respectively. The only variables that were altered between the model 
runs under the various tree species and the baseline were the vegetation related parameters. The 
parameter values for the baseline are described in Chapter 4 and those for the forestry runs are given in 
Chapters 6 and 7. It is important to note that for both baseline conditions and for each forestry scenario, 
the following was constant (the same): 

 version of the ACRU model (version 3.52); 
 spatial scale at which the simulations were undertaken (quinary catchment level); 
 length of the simulation (1950 to 1999); 
 climate files used as input; 
 soil parameters used as input; and 
 streamflow response variables. 

 
The model was run at the national scale for all 5838 quinaries, regardless of whether commercial forestry 
could be successfully grown in the quinary. The main reason for running the model for all quinaries was to 
avoid the scenario where additional model runs may be required for quinaries not previously highlighted 
as being suitable for forestry production. As tree breeding improves the water use and drought tolerance 
of species, areas deemed suitable for commercial afforestation may expand and thus, no restrictions were 
placed for the model runs. Furthermore, due to the significant improvements made to ACRU’s performance 
(cf. Section 8.1 The ACRU agrohydrological model), there is no longer the need to run the model for selected 
quinaries to minimise computational expense, as was the case in 2009, when the original SFRA model runs 
were undertaken for approximately 3000 of the 5838 quinaries. Each national run took approximately 23 
minutes on a core i9 PC and generated over 8 GB of compressed model output and statistics. 
 

9.3 Results: Quinaries where a more than 10% reduction in MAR occurs  

For each quinary, the difference between mean annual runoff generated by the forestry species (MARFOR) 
and that for natural vegetation (MARBASE) was calculated. This difference in annual runoff (MARBASE – 
MARFOR) was then expressed as a percentage of the baseline streamflow (MARBASE). If the difference was 
above 10%, the quinary was flagged as a potential SFRA candidate. A further change from Jewitt et al. (2009) 
is that the ACRU modelling was undertaken for all 5838 quinary catchments, not only those deemed 
climatically suitable for forestry growth. The results shown here are the stream flows produced using 
vegetation parameters derived from the MODIS LAI values. Maps of the quinary catchments where the 

tion in MAR) for the four Pinus species are shown in 
Figure 9-1.  
 
In the KwaZulu-Natal, Mpumalanga and Limpopo provinces where the Pinus species are predominately 
grown, the indication is that all Pinus species reduce the MAR by more than 10%. The quinaries where a 
greater than 10% reduction do not occur correspond with the Savanna cluster 7 or the Indian Ocean Coastal 
Belt biome. ACRU input parameters (e.g. CAY or Kc, VEGINT and PCSUCO) for Pinus patula were derived for 
both a CTM and WTM site. When using these parameters across all quinaries, a difference is evident in the 
potential SFRA impact. For P. patula, the CTM and WTM parameters resulted in 63.9% and 58.6% of all 
quinaries experiencing a MAR reduction exceeding 10%, respectively. The Pinus species which showed the 

 
Pinus elliottii x caribaea. The LAI values for the P. exc site, which correspond to the WTM climate zone, 
varied little and thus, the Kc values showed little variation (Figure 6-5). 
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Figure 9-1: Quinary catchments where the change in MAR under Pinus species may be deemed a SFRA 
( 10% reduction in MAR)
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MAR) for the seven Eucalyptus species are shown in Figure 9-2. In the KwaZulu-Natal, Mpumalanga and 
Limpopo provinces where the Eucalyptus species are predominately grown, the indication is that all 
Eucalyptus species reduce the MAR by more than 10%. As with the Pinus species, the quinaries where a 
greater than 10% reduction do not occur correspond with the Indian Ocean Coastal Belt biome (Savanna 
cluster 7). 

LAI and Kc values for Eucalyptus grandis were derived for both a WTD and WTM site, whilst for 
Eucalyptus grandis x nitens, values were developed for a CTM and WTD site. No difference is evident 
between the CTM and WTD Eucalyptus grandis x nitens parameters (Figure 9-2). However, a difference is 
evident between the WTD and WTM E. grandis
reduction of MAR (relative to the baseline) in 83.6% of all quinaries. Across all the species considered, this 
represented the highest number of quinaries to fall into the SFRA category. Since the WTM site is wetter 
than the WTD site, the variation in LAI values was minimal, and subsequently the variation in Kc values was 
also minimal (Figure 6-5). Using the WTD parameters for E. grandis
reduction of MAR relative to the baseline. Using the parameters for E. gxu, 81.9% of quinaries exhibit a 
SFRA impact, i.e. the second largest impact following E. grandis (WTM zone). Similarly, the LAI values and 
subsequent Kc values for E. gxu showed little variation, as the site also fell within the WTM climate zone.
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Figure 9-2: Quinary catchments where the change in MAR under Eucalyptus species may be deemed a 
SFRA ( 10% reduction in MAR)
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in MAR) for Acacia mearnsii is shown in Figure 9-3. Of all the commercial forestry species considered, using 
the parameters for Acacia mearnsii resulted in the lowest proportion of quinaries to be affected by 
commercial afforestation. The average Kc value for Acacia mearnsii and the range of values did not differ 
significantly from the other commercial forestry species. The CONST value (fraction of plant available water 
at which stress occurs) for Acacia mearnsii was set at 0.4 which is the same value used across all the baseline 
vegetation clusters.

Figure 9-3: Quinary catchments where the change in MAR under Acacia mearnsii may be deemed a 
SFRA ( 10% reduction in MAR)

9.4 Results: influence of the different LAI products 

The above results were produced using the Kc parameters derived using the MODIS LAI values. As shown in 
Figure 6-5, Kc derived from Landsat and Sentinel-2 LAI values appear similar. However, the influence 
through the model to the streamflow output was considered, given the known sensitivity of the model to 
changes in Kc

reduction in MAR relative to baseline vegetation. For this comparison, two species and one hybrid were 
chosen, as they exhibited the largest differences in MODIS and Landsat LAI values, viz. E. grandis (WTD 
climate zone), P. patula (CTM climate zone) and P. exc (WTM climate zone). The latter had a narrow range 
of Kc values, whereas P. patula showed a larger variation in the range of Kc values (Figure 6-5). 

For E. grandis, MODIS and Landsat Kc values resulted in 65.3% and 67.4% of all quinaries exhibiting a 
significant SFR, respectively. For P. exc, a similar result was obtained (73.4 and 75.8%) and the small 
differences in percentages were deemed negligible. The largest percentage difference was found for 
P. patula (63.9% vs 66.8% for MODIS and Landsat Kc values). The MODIS range of Kc values was smaller than 
that of the Landsat Kc values for P. patula. 

For the primary basins in which commercial trees are primarily grown, negligible differences were also 

vegetation under the two different sets of Kc values (Figure 9-4). Slight differences in percentages were 
noted for P. patula, with the greatest difference in primary U of 3.2%, which equates to six quinaries. 
Overall, the influence of the LAI product used can be considered negligible.
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Figure 9-4: Percentage of quinary catchments per primary basin where the change in MAR estimated 
using Kc values derived with either MODIS or Landsat under P. patula, P. exc and E. grandis may be 

deemed a SFRA ( 10% reduction in MAR)
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CHAPTER 10. SFRA UTILITY 

S.L.C. Thorton-Dibb1 

 

1 Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg 
 

10.1 Background and introduction 

An initial version of the SFRA Utility was developed in 2009 as part of the SFRA project (Jewitt et al., 2009. 
The first version consisted of a Microsoft Access database as the backend and a frontend written in the 
Microsoft C# programming language. The utility was compressed and packaged onto a CD for distribution. 
The backend required the conversion of output generated by the ACRU model runs into the format and 
structure required by MS Access. This was identified as an unnecessary step that required considerable time 
and computing resources. Hence, the second version of the SFRA Utility that was distributed to the DWS 
consisted of a smaller Microsoft Access database, which was utilised for the configuration of the utility and 
the modelled time series data. 
 
Kunz et al. (2015) made numerous modifications to the SFRA Utility to improve its performance and to 
facilitate the dissemination of ACRU output related to the water use of selected biofuel crops. They noted 
that use of the Microsoft Access database caused installation problems on certain PCs and thus, replaced 
the configuration database with an XML file to avoid the known installation problems. Additional ACRU 
output variables were made available to the user of the utility when compared to the original, which 
defaulted to only the unit streamflow from a catchment (called SIMSQ in ACRU). The addition of additional 
variables added more storage space requirements and complexity to the utility, as well as issues with units 
and aggregation of data from daily to monthly level. More options were also added to the statistical 
calculations done by the utility, i.e. user-selected start of the hydrological year. 
 

10.2 Recent updates to the SFRA Utility 

For this project, further improvements were made to the version of the SFRA Utility developed by Kunz et 
al. (2015). Core to the utility is the data simulated by the ACRU model. As these datasets grow through the 
addition of more land cover scenarios, the decision was made to store the monthly time series data 
produced by ACRU’s post-processing software, as opposed to the raw daily time series files outputted by 
ACRU. This required a complete restructuring of the data reading and aggregation processes within the 
utility. Further development has also been focused on restructuring and updating the code base from the 
original .NET Framework 2.0 technology, since it is becoming increasingly difficult to deploy software 
requiring these older technologies onto newer computing systems. The original map interface was 
dependant on this older framework and thus, was removed from the utility as it would only hamper the 
installation and was not deemed necessary to correctly use SFRA Utility. 
 

10.3 Recommendations 

Further work on decupling the various components of the software utility is recommended. A more robust 
API backend is required that would facilitate the development of the utility frontend on a Web based 
platform. This web-based frontend would access a central backend database, thus making it much easier 
to update the database and to roll out improvements to the frontend.   
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CHAPTER 11. GENUS ASSESSMENT UTILITY USER 
MANUAL (VERSION 2.0.0.2) 

11.1 Introduction 

The Genus Assessment Utility is a product of WRC Project No. K5/2791, which was completed in 2022. The 
utility is a software tool that was created to allow a user to view, extract and make comparisons of different 
ACRU model simulations. 
 

11.1.1 Installation 

The Genus Assessment Utility is a software tool designed to run on a PC/laptop running the Microsoft 
Windows operating system. 
 
Minimum PC/laptop requirements: 

 PC running Microsoft Windows 7/8/10/11 (32- or 64-bit). 
 Please check the Microsoft Web site for updates/patches for the Dot Net Framework. 
 10.6 GB of free disk space. 

 
The Genus Assessment Utility is made up of two parts: 

a) The software utility (application). 
 

b) The hydroclimatic datasets which contains time series data (i.e. ACRU monthly output files) per 
land use. 

 
Download the installation file called 01_Setup_Genus_Assessment_Utility.msi from the URL provided. 
Then download the 16 *_db.exe files from the URL provided. Each db.exe file is ~187 MB in size and thus, 
a total of 2.92 GB of disk space is required to temporarily store these files. 
 
To install the software utility (i.e. part a above): 
 

1) Double click on 01_Setup_Genus_Assessment_Utility.msi to install the software utility. 
 

2) Click the Next button to begin the installation. 
 

3) Select the “I accept the terms in the License Agreement” option, then click the Next button. 
 

4) Click the Typical button. 
 

5) Click the Install button to begin the installation. 
 

6) This will install the software in the following default folder: 
"C:\Program Files (x86)\CWRR\Genus Assessment Utility\" 

 
7) Untick the option Launch Genus Assessment Utility, then click the Finish button. 

 
8) The installation folder should contain the following 6 files (7.61 MB): 
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To install the hydroclimatic datasets (i.e. part b above): 
 

1) Make sure there is sufficient hard disk space to extract the time series data for all required land 
uses. Each extracted dataset contains 5838 files requiring ~684 MB of disk space. Al l16 datasets 
will occupy 10.6 GB of disk space. 

 
2) To install the baseline (natural vegetation) dataset, double click on the 

02_obstmp_nat_veg_db.exe file that was previously downloaded. 
  

3) Unpack all 5838 s*.csv files to the following folder: 
C:\ProgramData\CWRR\Genus Assessment Utility\Data\ 

 
If needed, copy and paste this link into the window called “Destination folder”. 

 

 
 
Alternatively, click the Browse… button and navigate to the above folder. 
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If the C:\ProgramData folder is hidden in Windows File Explorer, click on search  icon on the taskbar and 
type C:\ProgramData\CWRR, then press the Enter key: 
 

 
 
 Alternatively, type C:\ProgramData\CWRR into Windows File Explorer, followed by the Enter key: 
 

 
 
It is also possible to search the Internet on how to permanently unhide the C:\ProgramData folder. 
 

4) Double click on 03_obstmp_m4a_mea_db.exe and follow the instructions above. 
 

5) It is recommended that the user then checks if the utility runs correctly by double clicking on the 
Genus_assessment_utility.exe icon created on the user’s desktop. 

 
6) If the following error message appears, it indicates the baseline (natural vegetation) dataset was 

not installed correctly, i.e. the following folder contains no s*.csv files: 
 

C:\ProgramData\CWRR\Genus Assessment Utility\Data\obstmp_nat_veg\05_mth 
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7) A similar error message may appear if the Acacia mearnsii dataset was not installed correctly, i.e. 
the following folder contains no s*.csv files: 

 
C:\ProgramData\CWRR\Genus Assessment Utility\Data\ obstmp_m4a_mea\05_mth 

 
8) If no issues were found and the utility runs, the 14 remaining dataset files (one for each land use) 

can then be installed. 
 

 
 

9) Once the baseline dataset (natural vegetation) and each of the 15 land use data files have been 
successfully installed, the *_db.exe files can be deleted to save disk space. 

 
10) The data folder should contain the following 16 sub-folders (93 408 files; 10.6 GB): 
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Advanced options 
 

The following should only be attempted if necessary. 
It is strongly recommended that the user is assisted by 
an IT professional. 

 
If storage space is an issue on the PC/laptop’s C: drive, it is possible to change the location of the database 
folder, which by default is: 
C:\ProgramData\CWRR\Genus Assessment Utility\Data\ 
 
This can be achieved in one of two ways, both of which require Administrator privileges. The first method 
is preferred and is easier to implement. 
 

a) Method 1: Move the file called utility_db.xml from the installation folder (e.g. C:\Program Files 
(x86)\CWRR\Genus Assessment Utility) to the user’s desktop. 
 
Create a backup copy of this file called utility_db_bak.xml. 
 
Edit the utility_db.xml file with an XML editor (e.g. XML Notepad 2007) or a standard text editor 
(e.g. Notepad), search for the tag called “<DataPath>” and manually change the path of the 
database folder. 
 
The utility will work with both a local (e.g. D:\CWRR\GeX_Utility\Data\) and UNC path name (e.g. 
\\<fileserver_name>\<path>\Data\). 
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Move utility_db.xml back to the installation folder. 
 
Run the utility to make sure it functions properly, i.e. an error message titled “Could Not Locate 
Time Series Data…” does not occur [see point 6) and 7) above]. 
 

b) Method 2: Copy the Data folder in C:\ProgramData\CWRR\Genus Assessment Utility to the desired 
location, e.g. D:\CWRR\GeX_Utility. This can be achieved using the following DOS commands: 
cd “C:\ProgramData\CWRR\Genus Assessment Utility” 
xcopy /I Data “D:\CWRR\GeX_Utility\Data” 
 
Rename the Data folder in C:\ProgramData\CWRR\Genus Assessment Utility to Data_bak. This can 
be achieved using the following DOS commands: 
cd “C:\ProgramData\CWRR\Genus Assessment Utility” 
rename Data Data_bak 
 
Create a symbolic link from the default folder to the desired physical location of the database. This 
can be achieved using the following DOS commands: 
cd “C:\ProgramData\CWRR\Genus Assessment Utility” 
mklink /J Data “D:\CWRR\GeX_Utility\Data” 
 
Run the utility to make sure it functions properly. If so, the Data_bak folder can be deleted. 

 
It is also possible to move the database folder to a network drive. For this option, the Systems Administrator 
of the fileserver needs to provide the necessary assistance. The Systems Administrator needs to create a 
read-only folder called Data on the fileserver where the database can be stored, e.g. 
\\<fileserver_name>\<path>\Data 
 
The Data folder on the fileserver must then be populated with data by extracting the 16 *.db.exe files to 
this folder. 
 
Then, a symbolic link must be created from the default folder to the network folder. This can be achieved 
using the following DOS commands: 
cd “C:\ProgramData\CWRR\Genus Assessment Utility” 
mklink /D Data “\\<fileserver_name>\<path>\Data” 
 
If an error occurs when creating the symbolic link, the following DOS command can be used to assess if the 
user has permission to create “Local to remote symbolic links”, i.e. this option should be enabled: 
fsutil behavior query SymlinkEvaluation 
 
To enable “Local to remote symbolic links”, the following DOS command can be used: 
fsutil behavior set SymlinkEvaluation L2R:1 
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11.2 Using the Genus Assessment Utility 

The Genus_Assessment_Utility.exe is run by: 
 selecting the shortcut from Start…Programs…CWRR (Windows 7), 

 selecting the shortcut from Start  and looking under G (Windows 10), 

 clicking on search  and typing genus, or 
 double-clicking the shortcut on the user’s Desktop. 

 
The User Interface (UI) is shown in Figure 11-1 and requires the user to provide the following 5 inputs to indicate the: 

 ‘current’ land use (default is natural vegetation to represent baseline conditions), 
 proposed land use (forestry species or hybrid), 
 hydrological variable of interest (default is simulated runoff; called SIMSQ in ACRU), 
 quinary sub-catchment to be assessed (e.g. A10A1 or sub-catchment number 0001), 
 start month of the hydrological year (for statistical calculations). 

 
The main UI comprises of: 

 User Selection Controls as displayed in Figure 11-2 and described in Table 11-1, and 
 Display Option Tabs as shown in Figure 11-3 and described in Table 11-2. 

 
In this manual, the User Selection Controls (e.g. drop-down lists and buttons) are highlighted in bold, whereas the Display Option Tabs are highlighted in italics. 
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Figure 11-1: Genus Assessment Utility's User Interface 

 

 
Figure 11-2: Genus Assessment Utility's User Selection Controls 

  



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES 
 

 
pg 142 

Table 11-1: Description of each User Selection Control 

User Selection Control Description 
‘Current’ Land Use Baseline land use to be compared against 
Proposed Land Use Proposed land use to be analysed 

Variable Output variable to be analysed (as listed in Table 11.3) 
Sub-Catchment The particular quinary sub-catchment to be analysed 

Stats Start month for the hydrological year (October is the default) 
 
 

 
Figure 11-3: Assessment Utility's Display Option Tabs 

 
Table 11-2:  Description of each Display Option Tab 

Display Option Tab Description 
Time Series Tables of the baseline land use, proposed land use and differences 

Time Series Graphs Graphs of the baseline and proposed land use 
Stats Tables Calculated statistics displayed as a table 
Stats Graphs Calculated statistics displayed as a graph 
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11.2.1 User Selection Controls 

This section is a brief overview of how to use the User Selection Controls. First, select from the ‘Current’ Land Use options (Figure 11-4a). Next, populate the Proposed 
Land Use with the desired option as shown in the example given in Figure 11-4b. 
 

  
(a) (b) 

Figure 11-4: Genus Assessment Utility's (a) ‘Current’ Land Use, and (b) Proposed Land Use selectin options under User Selection Control 

 
Thereafter, select the desired output variable (see Table 11-3) from the User Selection Control called Variable as shown in Figure 11-5. The output variable selected 
by default is the runoff (stormflow + baseflow) simulated by ACRU (called SIMSQ). It is the estimated runoff generated in the selected quinary sub-catchment only 
and thus, excludes all contributions from upstream sub-catchments. 
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Figure 11-5: Genus Assessment Utility's variable selection from User Selection Control  

 
Table 11-3: Description (and units) of each output variable 

Variable Description Aggregation Units 

AET 
Total evaporation (i.e. actual evapotranspiration) 
AET = AET 1 + AET2 

Sum mm 

AET1 
Total evaporation (actual evapotranspiration) from A-
horizon 

Sum mm 

AET2 
Total evaporation (actual evapotranspiration) from B-
horizon 

Sum mm 

SIMSQ 
Simulated runoff (stormflow + baseflow) from the sub-
catchment, excluding upstream contributions 

Sum mm 

 
 
Finally, select the specific Sub-Catchment to be analysed from the User Selection Control as shown in Figure 11-6a below. Alternatively, you can start inputting a 
particular sub-catchment name and the list will be filtered according to provided search characters (Figure 11-6b). 
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(a) (b) 

 
Figure 11-6: Sub-Catchment (a) User Selection Control, and (b) search feature 

 
The utility then loads the monthly time series data for both selected scenarios (‘Current’ Land Use and Proposed Land Use). This enables the data comparison for the 
selected Sub-Catchment and the statistical analysis to be performed. The utility also calculates the change (i.e. Proposed Land Use – ‘Current’ Land Use), which is 
expressed as either an absolute difference (in mm) or as a percentage change relative to ‘Current’ Land Use (c.f. Section 11.2.2.1 below for more information). 
  



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES 
 

 
pg 146 

 

11.2.2 Display Option Tabs 

The display option tabs enable simple navigation between the simulated time series (data & graphs) and statistics (data & graphs). 

11.2.2.1 Time series 

The Time Series tab displays the monthly time series data for the selected sub-catchment’s ‘Current’ Land Use and Proposed Land Use in tabular format (Figure 11-7), 
as well as the calculated difference (i.e. Proposed Land Use – ‘Current’ Land Use). These tables can be exported to comma delimited files (.CSV) by selecting the 
corresponding Save To Text File button. 
 

 
Figure 11-7: Genus Assessment Utility's Time Series tab (data for illustration purposes only) 

  



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES 
 

 
pg 147 

11.2.2.2 Time series graphs 

The Time Series Graphs tab displays the time series for the selected sub-catchment’s ‘Current’ Land Use and Proposed Land Use in graphical format (Figure 11-8). 

The graphical view option has various buttons ( ) to enable closer inspection of the time series. 
 
The time series graph can also be navigated by various left and right mouse clicks: 
Reset graph  - Double click on the graph, or press the Reset button 
Pan graph  - Right click, hold and drag mouse 
Zoom graph  - Left click, hold and drag mouse or press the Zoom button 
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Figure 11-8: Genus Assessment Utility's Time Series Graphs tab (data for illustration purposes only)  

 

11.2.2.3 Stats tables 

Statistics are calculated on the monthly data. The start month for the calculation of annual statistics can be selected from the Stats drop-down option. These statistics 
can also be exported as comma separated (CSV) files by clicking the Save to Text File button.  
 
The Stats Tables tab displays the calculated statistics in tabular format for the selected sub-catchment’s: 
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 ‘Current’ Land Use (Figure 11-9), or 
 Proposed Land Use (Figure 11-10), or 
 absolute difference in mm (i.e. ‘Current’ Land Use – Proposed Land Use in Figure 11-11), or  
 percentage change relative to the current land use (i.e. ‘Current’ Land Use – Proposed Land Use as% in Figure 11-12). 

 
‘Current’ Land Use – Proposed Land Use (as %) is calculated by first determining the absolute difference in monthly and annual mean values (i.e. ‘Current’ Land Use 
– Proposed Land Use, which is then divided by the ‘Current’ Land Use means and multiplied by 100 to obtain the percentage change values. Differences expressed 
in relative terms are only available for the mean values, i.e. they cannot be calculated for the percentiles. 
 

  
Figure 11-9: Stats Tables tab (‘Current’ Land Use, data for illustration purposes only) 
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Figure 11-10: Stats Tables tab (Proposed Land Use, data for illustration purposes only) 
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Figure 11-11: Stats Tables tab (‘Current’ Land Use – Proposed Land Use, data for illustration purposes only) 
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Figure 11-12: Stats Tables tab (‘Current’ Land Use – Proposed Land Use (as %), data for illustration purposes only) 

 

11.2.2.4 Stats graphs 

The Stats Graphs tab displays the probability of exceedance values in graphical format. The Graph Options (All: Jan: … Dec:) enables annual and/or monthly curves 
to be switched on/off in the display. The graphs corresponding to the selection made on the Stats Tables tab are plotted on this tab, with the exception of ‘Current’ 
Land Use – Proposed Land Use (as %), since relative changes cannot be calculated for percentile values. An Example of a ‘Current’ Land Use graph in displayed in 
Figure 11-13. 
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Figure 11-13: Stats Graphs tab (‘Current’ Land Use, data for illustration purposes only) 

 

11.2.3 Interpreting of results 

11.2.3.1 Calculating annual reductions in stream flow 

To determine if a particular land use is a potential stream flow reduction activity (SFRA): 
 Select Natural vegetation as the ‘Current’ Land Use. 
 Then select the Proposed and Use, e.g. Acacia mearnsii. 
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 Thereafter, select the Stats Tables tab and the ‘Current’ Land Use – Proposed Land Use as % option. 
 The reduction in mean annual runoff (MAR), expressed as a percentage relative to the current land use, is given in the row called Mean = and the column 

headed ANNUAL. 
 In the example shown in Figure 11-12 above, the relative annual reduction is 11.75%. According to Jewitt et al. (2009), relative reductions in MAR of 10% or 

greater may be declared as a SFRA. 
 This value is calculated as the difference in MAR (22.43 mm; Under the Stats Tables tab, select the ’Current’ Land Use – Proposed Land Use option), expressed 

as a percentage relative to the current land use (190.91 mm; select the ’Current’ Land Use option), i.e. MARREDN = 100· (MARCURR – MARPROP)/MARCURR = 
100·22.43/190.91 = 11.75%. 

 Hence, the MAR decreased by 22.43 mm from 190.91 mm (MARCURR) to 168.48 mm (MARPROP), i.e. less runoff due to a proposed change in land use from 
natural vegetation to A. mearnsii. 

 

11.2.3.2 Calculating monthly reductions for low flow period 

To determine the potential impact during the low flow period: 
 Select the Stats Tables tab and the ‘Current’ Land Use option, then click the Save to Text File button. 
 This creates a .CSV file called “Stats Monthly SIMSQ (mm) A10A1 (0001) Natural Vegetation (CWRR clusters).csv”. 
 Similarly, select the Stats Tables tab and the Proposed Land Use option, then click the Save to Text File button. 
 This creates a .CSV file called “Stats Monthly SIMSQ (mm) A10A1 (0001) Acacia mearnsii.csv”. 
 Double click on the “Stats Monthly SIMSQ (mm) A10A1 (0001) Natural Vegetation (CWRR clusters).csv” file to open it in MS Excel. 
 Delete the ANNUAL column, then copy the JAN and FEB columns and paste them directly after the DEC column. 
 Create a new row with the heading Low Flow Total (LFT), which sums the mean monthly runoff (MMR) over three months, i.e. LFTJAN = MMRJAN + MMRFEB + 

MMRMAR. Copy and paste this formula to generate the totals for FEB to ANNUAL. 
 Identify the start of the low flow quartile as the smallest LFT value, i.e. June’s value of 11.66 mm (LFTJUN = MMRJUN + MMRJUL + MMRAUG = 4.55 + 4.61 + 2.50 

= 11.61 mm). 
 Double click on the “Stats Monthly SIMSQ (mm) A10A1 (0001) Acacia mearnsii.csv” file and calculate the LFT value for the same month (June), i.e. LFTJUN = 

14.50 mm for A. mearnsii. 
 Finally calculate the difference in LFT (11.66 – 14.50 = -2.84 mm), expressed as a percentage relative to the current land use LFT (11.66 mm), i.e. LFTREDN = 

100·(LFTCURR – LFTPROP)/LFTCURR = 100·(11.66 – 14.50)/11.66 = -24.36%. 
 According to Jewitt et al. (2009), relative reductions in LFT of 25% or greater may be declared as a SFRA. For this example, there is no impact on the low flow 

quartile. 
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Figure 11-14: Calculation of the relative reduction in low flow totals of monthly runoff for quinary A10A1 (0001) for a proposed land use change from natural 
vegetation to A. mearnsii 

 

11.2.3.3 Percentile values and flow duration curve 

Under the Stats Tables tab, the percentiles represent the probability that a runoff value will not be exceeded in any given year. For example, the 10th percentile annual 
runoff for natural vegetation in quinary A10A1 (0001) is 59 mm (Figure 11-9). This means that 10% of all annual runoff values will be less than 59 mm and represents 
the driest year that can be expected to occur only once in a 10-year period. In other words, in 10% of the years on record, the annual rainfall total will not exceed  
59 mm. Hence, 90% of all runoff values will higher than 59 mm, which represents the probability that a runoff value is exceeded. Under the Stats Graphs tab, the flow 
duration curve (FDC) shows the probability of exceedance and thus, 90% of all annual runoff values will exceed 59 mm (Figure 11-13). In other words, the probability 
of exceedance = 100 – nth percentile (probability of non-exceedance). 
 
Similarly, the 90th percentile annual runoff is 386 mm and represents the wettest year in 10 (Figure 11-9). This means that 90% of annual runoffs will be less than this 
value, i.e. the annual rainfall total will not exceed 386 mm in 10% of the years on record. Hence, 10% of all runoff values will exceed 386 mm, as shown on the FDC 
(Figure 11-13). 
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The 5th and 95th percentiles can only be calculated if there are more than 50 years of data. If January is selected as the start month of the hydrological year, then the 
number of annual observations is 50 since the climate record spans the period 1950 to 1999. If October is selected as the start of the hydrological year, the number 
of annual values becomes 49. Hence, the 5th and 95th percentiles cannot be calculated. 
 

11.2.3.4 Understanding differences 

Under the Stats Tables tab, the ’Current’ Land Use – Proposed Land Use options (in mm or %) can show both positive and/or negative values. For simulated runoff 
(SIMSQ variable in ACRU), positive values indicate a reduction in runoff (MARPROP < MARCURR) that may result from the current to proposed land use change, i.e. less 
runoff may be generated due to the change in land use. On the other hand, negative values indicate that more runoff may be generated by the land use change 
(MARPROP > MARCURR). 
 
For the simulated total evaporation variable (AET variable in ACRU), negative values indicate higher evaporative losses from the proposed land use, compared to the 
current land use, i.e. (AETPROP > AETCURR). Higher evaporation from the vegetation and soil layers means less runoff may occur. On the other hand, positive values 
indicate that the land use change may result in lower evaporative losses (i.e. AETPROP < AETCURR) and potentially, more runoff generation. 
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CHAPTER 12. CONCLUSIONS & 
RECOMMENDATIONS 

12.1 Conclusions 

The improvements and revisions to ACRU that were made over the past 10 years, as well as the 
improvements and revisions to the quinary catchments climate database that is used as input to ACRU, 
have been incorporated into the model runs undertaken to simulate the streamflow response under 
commercial tree species and under baseline vegetation. This alone was a needed step forward to bring the 
simulations under commercial tree species into alignment with other national scale simulations for the 
impacts of biofuel crops (Kunz et al., 2020), climate change impacts (Schütte et al., 2021), bamboo impacts 
(Everson et al., 2021) and those that will be used in the ongoing WRC project titled “Development of 
Datasets for Multi-Scale Water Resource Assessments towards a Water Secure South Africa”.  
 
A significant advancement in this project was the improvements made to the quinary soils database used 
as input to the ACRU model. Soils play a critical role in the regulation and generation of catchment 
hydrological responses; thus, detailed catchment scale soils data is required as input to generate 
satisfactory results. In previous studies where the streamflows under commercial trees have been 
simulated, area-averaged land type information was used.  A South African soils terrain unit database was 
developed which provided the key soil physical attributes required as ACRU model input. There was 
substantial gain in spatial resolution made by using the TU level information compared with the use of only 
land type information.  
 
A recent WRC project (No. K5/2437) provided a revised hydrological reference baseline, together with the 
associated vegetation water use parameters required as input by ACRU. The baseline vegetation, termed 
the CWRR clusters, was a hydrological grouping of the SANBI (2012) vegetation units. The approach to 
develop the vegetation water use parameters was to use field based or remotely sensed data where 
possible, and to use a repeatable methodology. The crop coefficients were ultimately derived from 
remotely sensed LAI values. During that project, only a preliminary assessment was undertaken to 
determine the impacts of commercial trees on streamflow under this revised baseline, compared to the 
previous baseline based on Acocks Veld Types. The SANBI vegetation map has become the accepted natural 
vegetation map for South Africa by other disciplines, and the biome concept as well as the typical vegetation 
structures within those, have become commonly understood and referred to. Therefore, the move to the 
CWRR clusters derived from the SANBI vegetation map is a necessary step forward. Further to that, the 
documented and repeatable method used to derive the vegetation water use parameters allows for 
alignment across water use parameters for other land cover and land use types. 
 
A significant component of this project focused on field-based studies to improve the understanding of the 
water use of commercial tree species. The methods and findings of these field-based water use studies are 
contained in Deliverable 8 of this project, which accompanied this final report. From the literature and the 
experiences gained in the field-based component of this project, the influence of site characteristics on the 
growth, rooting patterns and the water use of commercial tree species was illustrated. Sites with shallow 
soils or those in rain shadows will have different growth characteristics to those on wetter slopes or more 
favourable soils. Further, the growth patterns may even vary across a compartment due to variations in 
slope and soils. For determining the impacts of commercial tree species on streamflow generation, a broad 
picture, representative of large portions of the area under that commercial tree species, is needed. Thus, 
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field-based studies to understand water use and determine LAI pose significant challenges. The field-based 
studies, dependent on the methodology used, range from being representative of a compartment, to a 
small set of trees within the compartment. For example, use of an eddy covariance system to estimate 
evapotranspiration over a stand of trees will provide an estimate of the water use of the compartment, 
whereas the use of sap flow methodology (e.g. heat pulse velocity method) will provide estimates of 
transpiration for the trees instrumented, which then need to be scaled up to the compartment scale. Often 
the method chosen is based more on costs and on logistics when measuring trees than other factors. The 
logistics of measuring in tree compartments are complex given the height of the trees and risks associated 
with fire, theft and vandalism. When combined with the need to find an ideal site, the complexity is 
compounded. Added to this is the significant cost of field-based measurements, regardless of site, which 
also limits the number of sites that can be instrumented. 
 
Based on the above, a method for developing a LAI database and determining Kc values that were more 
broadly representative of trees within a large compartment was investigated and developed. Several 
different paths were considered, however, the method chosen took advantage of the recent advancements 
in geospatial cloud-based computing platforms, most notably Google Earth Engine and machine learning. 
Since the methodology used to derive vegetation water use parameters for the CWRR clusters used 
remotely sensed LAI values, and literature supported a relationship between tree water use and leaf area, 
an approach that used LAI to determine the Kc values for commercial tree species was considered. This 
project also considered that the spatial resolution of the MODIS LAI product may be too coarse. Thus, a 
method to derive moderate resolution LAI values from coarser spatial resolution products was investigated. 
Although this method proved promising, the MODIS LAI product was preferred over the additional 
uncertainty introduced in deriving a moderate resolution LAI. The Kc values estimated from MODIS LAI using 
machine learning showed good correlation to Kc values calculated from observed data. However, similar to 
the challenges experienced in the baseline project, very few datasets of total evaporation were available 
over commercial trees to develop and validate the model for determining Kc from LAI. Data for only two 
species grown at the same site was available. However, like the baseline project, the method is 
documented, repeatable and is consistent across species. As more data becomes available, the water use 
parameters can be refined. The data is not necessarily only total evaporation data, since greater access to 
the commercial forestry industry’s compartment database, to expand the sites for which LAI records are 
obtained, could help refine the parameters. 
 
Through the project, the required ACRU input vegetation parameters for seven Eucalyptus, four Pinus and 
Acacia mearnsii were derived. All of the estimated monthly Kc values were above 1, and both the month-
by-month variation in Kc values for a specific species and between species was low. Generally, the Kc values 
for sites in the WTM climate zone had the smallest variation in the monthly values. ACRU model simulations 
were undertaken with version 3.52 (enhanced performance), the updated South African TU database, 
revised quinary catchments climate database, using the derived vegetation water use parameters for the 
11 species, hybrids and clones, as well as the vegetation water use parameters for the CWRR clusters. All 
model inputs were held constant between the runs, except for the vegetation water use parameters. A 
comparison to the ACRU output in the previous SFRA utility developed in 2009 were not undertaken due to 
the extent of the changes made to the 1) ACRU model, 2) climate and soils databases used as input, 3) 
changes in the reference land cover, and 4) methodology used to derive water use parameters. Further, 
these database updates and the use of a consistent and repeatable methodology to determine the 
vegetation water use parameters across both the land use of impact and the reference, represent a step 
forward in the science that can be used to support the implementation of the declaration of land used for 
commercial afforestation as a SFRA. 
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12.2 Recommendations 

The various approaches developed and implemented in this study are by no means considered 
“exhaustive”. Although much effort was spent on producing simulated output that is considered reliable 
and error-free, the following suggestions would further improve the accuracy of modelled results: 
 

 The root zone storage concept showed potential and therefore warrants further investigation, with 
the aim of using it within the ACRU modelling framework to further improve root water uptake, as 
well as to overcome the paucity of available rooting information. 

 More process-based research is needed to improve ACRU’s ability to simulate deep-rooted 
vegetation. This problem is further compounded by the land type soils data, which is limited to a 
standard auger depth of only 1.2 m. 

 The ACRU model should be modified to replace the A-pan as its reference evaporation standard, 
and rather use FAO56 (i.e. Penman-Monteith) reference evapotranspiration. This would negate the 
need to adjust FAO56-derived Kc values to A-pan equivalent values. 

 It is clear that additional and reliable measurements of tree water use are required to further 
improve the derivation of crop coefficients from LAI. Additional data would strengthen the machine 
learning algorithms developed in this project. 

 Further investigation is needed to determine why the variable storage Gash model produces 
significantly higher vegetation interception losses when compared to the Von Hoyningen-Huene 
method. This will require additional field-based measurements of interception from forest 
canopies, which can then be used to validate simulated results. Of particular importance is the 
need to estimate the element storage volume of each tree species. 

 In 2019, the WRC funded a project to extend the quinary subcatchment climate database beyond 
1999 and up to 2019 (i.e. by an additional 20 years). Once this work has been completed, the 
simulation modelling undertaken in this project should be revised. 

 
Reflecting on the project as a whole, the following recommendations are made: 

 There is a need for agreement on the best measure of forestry water use. Should the measurement 
be of just the water use of the trees (i.e. green water) or of the water productivity which includes 
soil water evaporation and intercepted water? Jewitt et al. (2009) suggested that changes in green 
water flows be used in the declaration of a land use as a SFRA but that the impact on blue water 
flows be used in regulation. The measurement approaches that would be used for each aspect 
differ considerably, with the first a transpiration measurement while the latter requires 
measurements that consider all components of the water balance, specifically those relevant to 
the modification of the land cover by the SFRA or candidate SFRA activity.  

 Agreement on scale also needs to be reached. The field-based components of the project provided 
further evidence of the site-specific nature of tree water use. Measurement the scale of a tree (or 
cluster of trees) is valuable in terms of tree level water use and process understanding. However, 
these site-specific findings that are possibly broadly not applicable are difficult and probably not 
applicable to be incorporated into modelling that is undertaken at a broader quinary catchment 
scale with supporting databases of that resolution. What is a practical and realistic scale at which 
field based measurements can be made that can be captured in the modelling? Measurements at 
a valley scale using methods that capture evapotranspiration at that scale as well as monitoring of 
the components of the water balance may be the way forward. At this scale there would be 
averaging out of the “extreme” site variations. Finding a valley site with one commercial forestry 
species dominating would be challenging and the measurement design costly. 
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 Across both this project and the baseline project, the paucity of evapotranspiration data was noted. 
For natural vegetation, the number of datasets available has increased as these will continue to 
increase with the Expanded Freshwater and Terrestrial Observation network program establishing 
monitoring infrastructure in selected landscapes. This investment focused on instrumentation 
platforms by the Department of Science and Technology to under the impacts of global change on 
our environments shows a recognition of the need for long term field-based data for process 
understanding and development of an evidence base to support decisions. By utilising the data 
from these infrastructure platforms, the process level understanding of vegetation water use and 
the parameterisation for use in models can be improved. Allowing for an improved simulation of 
the baseline of reference conditions to be made. Opportunities to ensure aligned improvements in 
tree water use understanding need to be explored.  

 Given the repeatable method derived in this project, it is suggested that 5-year updates that utilise 
any additionally available field-based datasets, additional LAI sites and any quinary database or 
model updates be undertaken, and this be aligned with similar updates to the baseline.  
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APPENDIX A:  Data storage 
 
This research project has generated over 160 GB of compressed data in WinRAR format of input and output 
files pertaining to the ACRU agrohydrological model. This represents a wealth of simulated data generated 
from national model runs performed for each of the 5838 quinary catchments (or altitude zones). All 
simulated datasets described below are stored and archived on a fileserver located in the ICS Server Room 
on the University of KwaZulu-Natal’s main campus in Pietermaritzburg. The contact person is Richard Kunz 
(kunzr@ukzn.ac.za). 
 
A.1 ACRU input files 
 
The following model input files were generated to meet the project's objectives: 
 

a) ACRU climate (.txt) files for each of the 5838 quinaries (altitude zones) based on observed 
(historical) climate data from 1950-1999 (5838 files: 12.1 GB). This dataset was originally developed 
by WRC Project No. K5/2491 (Kunz et al., 2020). 

 
b) Updated ACRU soils information for each of the 5838 altitude zones, which was generated from 

soil parameters for each land type and terrain unit (.csv file format: 457 KB). 
 

c) For each of the 15 forestry species/hybrids/clones, unique monthly values were generated for each 
quinary (altitude zone) for the following parameters: crop coefficients (CAY; 15 files, each 382 KB) 
and interception loss (VEGINT; 15 files, each 377 KB). 

 
d) For each of the 15 forestry species/hybrids/clones, unique monthly values were generated the 

following parameters: leaf area index or LAI (ELAIM; 15 files, each 1 KB). 
 

e) Unique values were generated for each genus (eucalypts, pines and wattle) for the following 
parameters: fraction of plant available water at which water stress occurs (CONST; 3 files, each 1 
KB). 

 
f) Generic values (i.e., same values used for each species/hybrid/clone) were generated for the 

following parameters: coefficient of initial abstraction (COIAM), root colonisation of the B-horizon 
(COLON), enhanced wet canopy evaporation (FOREST), percentage of surface cover (PCSUCO) and 
rooting distribution in the A-horizon (ROOTA). 

 
g) For natural vegetation, the above parameters were developed in WRC Project No. K5/2437 

(Toucher et al., 2019). 
 

h) The above-mentioned parameters were used to create ACRU’s main input parameter file called 
menu (16 files, each 59.4 MB) and ACRU’s supplementary input parameter file called suppmenu 
(16 files, each 2.74 MB). 

 
A.2 ACRU output files 
 
The following model output files were generated for both natural vegetation, as well as for each of the 15 
forestry species/hybrids/clones and for each of the 5838 quinaries (altitude zones): 
 



VOLUME 2: WATER USE ESTIMATION OF SFRA SPECIES 
 

 
pg 177 

a) Monthly and annual statistics for the following climate variables (1 file; 58.3 MB): 
i. Raw rainfall (mm; with no adjustment) 

ii. Adjusted rainfall (mm; with CORPPT adjustment0 
iii. Daily maximum temperature (°C) 
iv. Daily minimum temperature (°C) 
v. Mean temperature (°C) 

vi. FAO56 reference evapotranspiration (mm; short grass) 
vii. ASCE reference evapotranspiration (mm; tall grass) 

viii. A-pan equivalent evaporation (mm; FAO56 * CORPAN) 
ix. Solar radiation (MJ m2 day-1) 
x. Maximum relative humidity (%) 
xi. Minimum relative humidity (%) 

xii. Mean relative humidity (%) 
xiii. Windrun (km day-1) 
xiv. No. of rain days > 0 mm 

 
b) Binary (.BIN) files of daily values for 28 output variables in mm (21 files; 8.12 GB), e.g. 

i. AET (actual evapotranspiration) 
ii. ERFL (effective rainfall) 

iii. QUICKF (quick flow) 
iv. RUN (base flow) 
v. SIMSQ (storm flow, i.e. runoff for each individual catchment) 

vi. CELRUN (stream flow, including all upstream contributions) 
 

c) Monthly output for each variable from 1950-1999 (21 files; 206 MB) 
 

d) Annual output for each variable 1950-1999 (21 files; 30.1 MB) 
 

e) 17 monthly and annual statistics for each variable (21 files; 108 MB) as follows: 
i. mean 

ii. variance, standard deviation, coefficient of variation (CV), skewness, kurtosis  
iii. minimum, maximum, sum 
iv. number of observations 
v. percentile values (10, 20, 33, 50, 67, 80, 90) 

 
f) Extracted statistics (mean, 10th, 50th and 90th percentiles) for each of the 28 variables at a 

i. monthly level (28 files; 24.7 MB) 
ii. annual level (28 files; 3.69 MB) 

 
g)  GIS-ready files to assist with analysis mapping (i.e., extracted values for all 5828 quinaries) for the 

following: 
i. 14 climate and 38 ACRU variables 

ii. statistics (mean, 10th, 50th and 90th percentiles) 
49 seasons (1 file: 0.4 MB) 
29 seasons (1 file: 0.4 MB) 

iii. monthly (1 file; 4.51 MB) and annual (1 file; 33.9 MB level 
 

h) SFRA analysis highlighting the impact of land use change on simulated runoff relative to the 
baseline, i.e. natural vegetation (7 files; 2.33 MB)  
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APPENDIX B:  New knowledge creation report 
 
Motivation: This to evaluate if the project is on course to deliver on its promises or mandates. If not, what 
are the challenges and how is the team dealing with the challenges.   
 

WRC Project Number K5/2791 
Project title The Expansion of Knowledge on Evapotranspiration and Stream Flow 

Reduction of Different Clones/Hybrids to Improve the Water Use Estimation of 
SFRA Species (i.e. Pinus, Eucalyptus, and Wattle Species) 

Project Leader Prof A Clulow 
Institution/Contractor University of KwaZulu-Natal 
Financial Year 2021/2022 
  
ITEMS ORIGINAL DESCRIPTION 

(As reported in the first meeting) 
AGREED CHANGES regarding the 
creation of new knowledge 
(the WRC should formally 
authorize any changes) 

1. (a) What is the new 
knowledge created by this 
project? 

Additional water use of some commercial 
forestry species and improved streamflow 
estimates 

There have been no changes 

(b) What/which gap(s) will 
be filled by the new 
knowledge? 

To provide best possible SFRA estimates 
including changes between genus and 
species 

There have been no changes 

2. What product(s) will 
be/has been produced? 

A methodology for determining leaf area and 
crop coefficients using Google Earth engine 
and machine learning. 
ACRU – improved streamflow reduction 
estimates through improved soils, canopy 
interception, natural vegetation coverage 
and crop co-efficient inputs.  
SFRA Utility has been updated to include the 
new ACRU outputs. 

There have been no changes 

3. How innovative is the new 
product(s) in no 2 above? 

The products make use of the most up-to-
date information and technology available to 
improve SFRA estimates 

There have been no changes 

4. Who are the users and 
beneficiaries of the 
product(s)/output(s)? 

DWS and the forestry industry. There have been no changes 

5. How do you know that the 
users need the product(s) 
of this project? 

There have been increasing calls from 
landowners requesting crop changes that 
could not be accommodated with existing 
tools. 

There have been no changes 

 
Research Manager Recommendation 
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Executive Manager Approval 

 
Signature 
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APPENDIX C:  Capacity building report 
 

 
 
 




