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EXECUTIVE SUMMARY 
BACKGROUND 

Commercial plantations of introduced tree species provide most of the timber and fibre requirements of 

South Africa. However, not much is known about the spatial-temporal variations of water use in 

commercial forestry, how the water use varies among genera and regions, and how water used for 

commercial forestry compares with other competing land uses (e.g. agriculture) and the natural 

vegetation it often replaces.  

South Africa has a semi-arid climate (mean annual precipitation of 500 mm), which means that most 

areas cannot sustain forestry. To manage the conflict for a limited water resource, policy introduced in 

1972 initiated regulation of the commercial forestry industry. In 1998, new legislation declared the 

industry a streamflow reduction activity (SFRA), i.e. land use that may reduce the amount of water in 

rivers. Allocation is made for differences in consumptive water use between the principal commercial 

forestry genera (Pinus, Eucalyptus and Acacia) in the current SFRA water use licensing system. 

However, post-harvest changes from one genus to another (e.g. Pinus to Eucalyptus) constitute a 

change in water use and consequently imply a change in streamflow impacts. The question is whether 

any adjustment in plantation area (and hence adjustments to existing water use licences) is necessary 

to account for genus-specific consumptive water use differences.  

Previous work on water use of forests has typically focussed on selected individual sites, which is 

difficult to extrapolate over regions. Emerging trends in the use of remotely sensed or satellite-derived 

data to estimate and compare the actual evapotranspiration (ET) of diverse commercial forestry 

plantations merit further investigation. An Earth observation (EO) approach is well suited to compare 

both current and historic consumptive water use of existing commercial forestry plantations (e.g. 

adjacent Eucalyptus and Pinus plantations growing in similar environments). Consequently, this project 

investigated the benefits of using spatially explicit remotely sensed (satellite) data to quantify the 

consumptive water use of commercial forest plantations in South Africa. 

METHODOLOGY 

The first aim was to establish a geographical database of commercial forests in the main commercial 

forestry regions of South Africa. In this study, a large and rich dataset of forest compartments was 

sourced from several commercial companies. This dataset, along with monthly ET data from 2009 to 

2020 sourced from the FAO-funded WaPOR portal, was used to determine consumptive water use 

(actual ET) of commercial forestry by means of RS data, which was the second aim of this study. The 

third aim was to validate (ground truth) RS-based consumptive water use of commercial forestry 

plantations using historical field-based measurements. It  was challenging to achieve this aim, as few 

field-based measurements have been carried out in commercial forests, and, in recent years, much of 

the research has been concentrated in KZN, which limited tree species. Nevertheless, data from several 

studies were sourced and used to validate the RS-based ET estimates. The fourth and final aim was to 
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describe, analyse and interpret location-specific differences in water use between and within the primary 

commercial forestry tree genera at specific locations in South Africa. A series of analyses were carried 

out to compare the RS-based ET estimates of different genera, species and age groups grown under a 

range of environmental conditions.  

FINDINGS 

The median annual WaPOR ET data extracted and used in this study compared well with in situ 

measurements of previous studies. For instance, the ET estimates for Acacia (median ET = 1 096 

mm/year) and maximum annual ET estimates to 1 600 mm/year) are in line with those of previous 

studies. Similarly, our median annual ET (1 123 mm/year) estimates for Eucalyptus is on par with the 

mean annual ET of 1 116 mm/year reported in previous studies. The reported ranges of ET from 

previous studies (500-1800 mm/year) also correspond well with the ET range of 575 to 1 618 mm/year 

estimated in this study. The relatively lower median annual ET estimated for Pinus (1 038 mm/year) in 

this study and the higher frequency of lower annual ET values of less than 900 mm/year also agree 

with previous work, although our Pinus estimates are generally higher than those reported in the 

literature. 

Although the comparison of the WaPOR-based ET estimates of this study corresponds well with 

previous in situ measurements, some level of error (uncertainty) is inevitable. A comparison between 

different sources of ET data revealed substantial differences, particularly between the ET values of the 

WaPOR and MOD16 products. The WaPOR ET values corresponded relatively well with the WRC 

2014/15 dataset produced in a previous WRC project. The WRC 2014/15 dataset is considered to be 

the most accurate available dataset covering South Africa, given that it was calibrated using seasonal 

climatic data captured by 239 weather stations around the country (which is considerably more than 

what is used in MOD16 and WaPOR). Some differences between the WaPOR and the WRC 2014/15 

dataset were observed during winter months, which suggests that the WaPOR dataset is overestimating 

water use by about 10-30 mm per month during these months. However, this overestimation is unlikely 

to have a substantial effect on overall (e.g. annual) water use estimates, as most forests are located in 

the summer rainfall region. Also, the purpose of this project was not necessary to quantify the total 

water use of all forests, but rather to better understand how water use varies from one genus, species, 

age, region and type of site to another. The comparisons presented in this report are consequently 

valid, especially if one can assume that inaccuracies in the WaPOR data are consistent for different 

genera, species, age groups, regions, etc. 

Our results show that water use varies significantly among genera, with Eucalyptus species using 

considerably more water than Pinus and Acacia species, particularly during the first five years of 

planting. Although this observation agrees with in situ measurements carried out in previous research, 

it is difficult to determine whether the relatively high water use of Eucalyptus species is biophysical in 

nature or if it is a factor of site selection/quality (or a combination of these two factors), given that 

Eucalyptus species are commonly established in sites with higher quality (e.g. deep soils, high rainfall) 

compared to Pinus species. In all likelihood, the relatively high water use of Eucalyptus species is a 



 

v 
 

combination of these factors. 

The water use of Acacia species varied considerably and depended on age and environmental 

conditions, and, since limited cases (compartments) were planted, it was difficult to draw concrete 

conclusions. Based on the available data, the Acacia species use less water than Eucalyptus species, 

but the ET of Acacia compartments is generally higher than Pinus compartments.  

The biggest environmental drivers of ET variability are rainfall and slope gradient. This can be expected, 

given that these two factors determine (to a large extent) water availability. Precipitation is less likely to 

infiltrate soils on steep slopes (i.e. a larger proportion of rainfall will contribute to surface runoff on steep 

slopes), while on a level of moderately inclined terrain, a greater proportion of rainfall will permeate soils 

and become available for take-up by vegetation. Flatter areas are also typically associated with deeper 

soils and likely higher soil-water availability, which is conducive to tree growth. 

A noteworthy finding of this study is the marked difference between the ET of Eucalyptus and Pinus 

compartments on moderately inclined and steep slopes, with the former having 10% higher values (on 

average). Overall, Eucalyptus species consistently used more water than Pinus species on moderately 

inclined and steep slopes. This is supported by the finding that the ET values of Eucalyptus 

compartments planted in mountainous regions are much higher compared to those planted on plains/flat 

and hilly/undulated terrain, while the opposite is true for Acacia and Pinus compartments. Whether this 

observation is the result of site selection or biophysical factors does not really matter in the context of 

the aim of this study, namely to identify and describe such variations rather than to determine the cause. 

Nevertheless, more insight into the factors driving these observations would greatly enhance our 

understanding of water use in the forestry sector and warrants further research. 

INNOVATIONS AND CAPACTITY BUILDING 

This study contributed significantly to new knowledge. Specifically, the temporal water use profiles of 

plantation forest planted with different species/genera and in sites with varying environmental (e.g. 

climatic and terrain) conditions are novel. To our knowledge, the use of remote sensing to quantify water 

used in commercial forestry has not been done previously. In addition, the use of deep learning for 

extracting forest patches from very high resolution (25 cm) colour aerial photography and the use of 

machine learning and satellite imagery for differentiating tree genera at regional scales is innovative. 

These novel techniques were developed and evaluated by the two MSc students working on the project 

and demonstrates the significant human capacity that was built in this project.  

RECOMMENDATIONS 

The findings of this study may be of value for the ongoing discussions on the principles and processes 

for GE regulation within the commercial forestry industry (being the only declared SFRA). The variations 

in water use highlighted in this study should also be considered in forest rotation planning. This study 

showed that there are marked differences among the water use of commercial plantation forestry 
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genera and species/hybrids. For instance, exchanging Pinus species for Eucalyptus species may have 

a detrimental effect on stream flow if carried out over large areas within a catchment. The impact of 

environmental conditions on water use should also be taken into consideration. 

Ideally, the ET estimations produced in this study should be compared to actual rainfall per 

compartment to assess the relationship between water availability and use. Unfortunately, we did not 

have access to weather station data from costly sources such as the ARC and SA Weather Services 

(SAWS). It is recommended that more be done to establish a dense network of weather stations 

throughout South Africa and that such data be made freely available for research purposes to support 

water use and accounting research. Although TerraClim is a step in the right direction, it requires more 

(financial) support from the research community. 

This study made use of state-of-the-art remotely sensed satellite data and techniques to observe tree 

water use over an extensive area and period. Although it made a significant contribution to new 

knowledge, this research project took three years to complete. The South African forestry industry and 

regulators (e.g. government agencies) need such information to be updated on a regular basis. Ideally, 

operational solutions for calculating changes in water use associated with GE are required. These 

solutions should be based on scientifically sound techniques whereby GE regulations can be applied 

at the plantation stand/compartment level and across the country with the same statistical confidence. 

It is recommended that the techniques employed in this study are operationalised to produce water use 

estimations on an annual basis. This should be coupled with field-based measurements at strategic 

locations throughout South Africa to quantify the uncertainties in the resulting water use estimations. 

The South African EO community is dwindling in size, as many senior scientists in the field retire or 

emigrate. It is critical that we continue to invest in building EO capacity to assist the private and public 

sectors to optimally use scarce resources such as water and fertile land. This is particularly important 

within the context of climate change, as the projected increases in temperatures and reduction in rainfall 

will have dire consequences for the forestry and agricultural industries. The central role that the WRC 

has played (and is playing) in building EO capacity is commendable; several students and young 

scientists were involved in this project (they are also co-authors of this report) and were exposed to 

advanced EO techniques. However, many of the students trained through WRC projects opt to emigrate 

and apply their skills abroad. More needs to be done to ensure that newly-trained scientists remain in 

South Africa. The only way to build a strong EO community is to establish employment opportunities 

that suitably incentivise scientists to remain on South Africa. Greater emphasis on the 

commercialisation and technology transfer of EO research is recommended, as such activities are more 

likely to generate sustainable employment opportunities. In addition, the commercialisation (and 

operationalisation) of EO technologies will substantially increase the impact of WRC-funded research 

and will ultimately lead to much needed economic growth and sustainable use of South Africa’s limited 

water resources. 
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1 INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

Commercial plantations of introduced tree species provide most of the timber and fibre requirements of 

South Africa. However, not much is known about the spatial-temporal variations of water use in 

commercial forestry, how the water use varies among genera and regions, and how water used for 

commercial forestry compares with other competing land uses (e.g. agriculture) and the natural 

vegetation it often replaces. 

South Africa has a semi-arid climate (mean annual precipitation of 500 mm), which means that most 

areas cannot sustain forestry (Poynton 1971). The deep-rooted, tall, dense, evergreen physiology of 

tree plantations contrasts strongly with the typically short, seasonally dormant vegetation with shallow 

root systems (e.g. grassland/shrubs) that they typically replace. Differences in evapotranspiration rates 

and resultant impacts on water resources have been quantified through forest hydrology research using 

paired catchment experiments (Wicht 1948; Scott et al. 2000), in situ field measurements (Savage et 

al. 2010) and genus-specific modelling at a watershed scale (Van Wyk 1987), but very little is known 

about how much water is used for commercial forestry at regional and national scales. 

To manage the conflict for a limited water resource, policy introduced in 1972 initiated regulation of the 

commercial forestry industry (Van der Zel 1995). In 1998, new legislation declared the industry a 

streamflow reduction activity (SFRA), i.e. land use that may reduce the amount of water in rivers (Gush 

et al. 2002). Allocation is made for differences in consumptive water use between the principal 

commercial forestry genera (Pinus, Eucalyptus and Acacia) in the current SFRA water use licensing 

system. However, post-harvest changes from one genus to another (e.g. Pinus to Eucalyptus) constitute 

a change in water use and consequently imply a change in streamflow impacts. The question is whether 

any adjustment in plantation area (and hence adjustments to existing water use licences) is necessary 

to account for genus-specific consumptive water use differences. 

At present, the genus exchange (GE) regulation for SFRAs is being debated among government, 

private industry and academic/research institutes in South Africa. Discussions revolve around finalizing 

appropriate definitions, principles and processes for GE regulation within the commercial forestry 

industry (being the only declared SFRA). Consequently, there is a need for studies that explore 

differences between the water use of commercial plantation forestry genera vs species (even clones 

and hybrids where possible) using state-of-the-art approaches (e.g. remotely sensed satellite data) and 

observed tree water use data from field studies. Ideally, operational solutions for calculating changes 

in water use associated with GE are required. These solutions should be based on scientifically sound 

techniques whereby GE regulations can be applied at the plantation stand/compartment level to the 

extent that they can be applied across the country with the same level of statistical confidence. 

Contemporary forest hydrology research has focussed on improved understanding of the water use 

processes associated with introduced and indigenous tree species (Everson et al. 2011). While a 
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number of field studies on tree and plantation water use have taken place, streamflow reductions 

estimates associated with commercial forest plantations have relied on distributed modelling at 

quaternary and quinary scales across the entire country (Gush et al. 2002). These results are used to 

licence and regulate the commercial forestry industry. However, there are recognised shortcomings in 

the often-used ACRU-modelling approach (assumptions, generalisations, etc.). This approach 

assesses the water use differences between different plantations of commercial forestry genera growing 

under similar conditions (plantation age, spacing, soil type, tree health, etc.). However, specific growing 

conditions have an important bearing on the water use of a plantation of a particular genus and can 

thus not be ignored. Factors that need to be considered in terms of hydrological impacts include 

plantation age, species (clone/hybrid), stand densities, rotation lengths, stand management (weeding, 

pruning, thinning, etc.), canopy closure and changes in site/species preferences. The cost vs accuracy 

trade-off needs to be considered when obtaining these input parameters. Other model input 

considerations include deciding on the most representative tree age for rotation length water use of 

different genera and using appropriate model parameter values that most accurately represent that 

particular genus and tree age. The uncertainties inherent in measuring/obtaining these parameters – 

and in using them to model water use – are likely to be greater than species/clone/hybrid-specific 

differences, making efforts to differentiate water use very challenging. 

Emerging trends in the use of remotely sensed or satellite-derived data to estimate and compare the 

actual evapotranspiration (ET) of diverse commercial forestry plantations merit further investigation. A 

remote sensing (RS) methodology to quantify water use of irrigated crops was developed in the recently 

completed and published in WRC report TT 745/17 (AN EARTH OBSERVATION APPROACH 

TOWARDS MAPPING IRRIGATED AREA AND QUANTIFYING WATER USE BY IRRIGATED CROPS 

IN SOUTH AFRICA). A similar approach was used in a follow-up study to estimate water use of different 

land covers/users (WRC project K5/2520). An Earth observation (EO) approach is well suited to 

compare both current and historic consumptive water use of existing commercial forestry plantations 

(e.g. adjacent Eucalyptus and Pinus plantations growing in similar environments). It could also be used 

to compare the water use of riparian vs upland stands of trees, as well as "before and after" scenarios, 

such as the effects of thinning, pruning or weeding operations on overall stand water use. 

Consequently, this project investigated the benefits of using spatially explicit remotely sensed (satellite) 

data to quantify the consumptive water use of commercial forest plantations in South Africa. 

1.2 Aims……… 

The aims of this project (K5/2558//4) were to: 

1. produce a geographical database of commercial forests in the main commercial forestry regions 

of South Africa; 

2. determine consumptive water use (actual ET) of commercial forestry by means of RS data; 

3. validate (ground truth) RS-based consumptive water use of commercial forestry plantations 

using historical field-based measurements; and 
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4. describe, analyse and interpret location-specific differences in water use between and within the 

primary commercial forestry tree genera at specific locations in South Africa. 

1.3 Research and development activities and report structure 

First, this report overviews the research activities and main findings of the project. Second, it reviews 

existing knowledge (Section 2) relating to the water use of commercial plantation forests in South Africa. 

The review also covers the data and techniques that are most appropriate for quantifying water use at 

regional scales. This is followed by an account of the data and methods (Section 3) used in this project. 

Section 4 reports on fundamental EO research carried out as part of this project, including the 

development of methods for mapping forests, three genus and age. Section 5 overviews the plantation 

forest water use quantifications and analyses the factors that had the biggest impact on water use 

variations. The report concludes with a summary of the main findings and recommendations (Section 

6). 
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2 KNOWLEDGE REVIEW 

2.1 Land and water used for forestry in South Africa 

2.1.1 Forestry in South Africa 

A shortage of wood for construction was identified as a problem during the development of the Cape 

Colony under Dutch rule (Zahn and Neetling 1929; Bennett and Kruger 2014). The problem was 

alleviated to a degree by the discovery of more extensive forests further east at Swellendam and later 

in the George-Plettenberg area. By the middle of the 19th century, the British colonial government 

recognised that they were going to need to establish plantations of fast-growing trees to meet demand. 

This led to the established of the first plantations of Pinus radiata at Tokai and elsewhere on the Cape 

Peninsula from the late 1800s onwards. These soon were followed by plantations at selected sites 

around South Africa.  

Timber shortages during the 1st and 2nd World Wars fuelled the establishment of plantations in all the 

higher rainfall areas of the country (Beinart 1984; Bennett and Kruger 2014). There were also active 

campaigns aimed at stimulating private forestry, and most of the wattle (Acacia mearnsii) plantations 

were established by farmers and timber companies. Farmers and other land-owners soon began to 

raise concerns about the decreases in the volumes of water in streams and rivers in these afforested 

areas (Wicht 1948; Bennett and Kruger 2014, and many people were convinced that afforestation would 

increase the volume of water. These opposing views led to intensive discussions at the Empire Forestry 

Conference in 1930, which were resolved by the initiation of a programme of catchment experiments to 

determine whether or not the stream flows were decreased by afforestation.  

The first study was initiated in the Jonkershoek valley near Stellenbosch in 1935 and was followed by 

further catchment experiments in KwaZulu-Natal, Mpumalanga and Limpopo. In 1961, the 

Interdepartmental Committee on the Conservation of Mountain Catchments published guidelines on the 

protection of water resources in mountain catchments, including principles for sustainable land uses 

such as forestry and agriculture (Department of Agricultural Technical Services, 1961).  

The hydrological studies described in the next section demonstrated that plantations of introduced, fast-

growing tree species reduce streamflow. The findings were used in the afforestation permit system, 

which limited the area that could be afforested in different catchments based on the impacts on river 

flows and low flows (Nänni 1970; Van der Zel 1995; Scott and Smith 1997). The permit system was 

later replaced by licences which were issued under the streamflow reduction provisions of the National 

Water Act (Gush et al. 2002; Bennett and Kruger 2014). The area under commercial forest plantations 

increased steadily to about 1.50 million ha but subsequently declined to 1.21 million ha due to the 

phasing out of plantations in areas that were no longer considered commercially viable. 

2.1.2 Existing knowledge of water used for forestry 

The long-term, catchment-based studies of the impacts of afforestation on streamflow were among the 
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first of their kind of the world (Wicht 1948; Bennett and Kruger 2014). They generally followed a multiple 

catchment design, developed by and adapted by Dr Wicht to suit the circumstances at the various sites. 

At each site, a control catchment was maintained under natural vegetation as the baseline for estimating 

the reductions caused by afforestation. For the Jonkershoek catchments, the afforested catchments 

were progressively afforested, which allowed for the establishment of a pre-treatment rainfall-runoff 

relationship that could also be used to assess the impacts of afforestation. 

The catchment experiments, summarised in Table 2-1, showed that the reductions in streamflow do not 

commence immediately after afforestation. A lag before clear evidence of streamflow reduction was 

observed (Van Wyk 1987; Bosch and Von Gadow 1990; Scott et al. 2000). The duration of the lag 

period is determined by the growth rate of the trees, which depended on the growing conditions and 

also the tree genus (Le Maitre and Versfeld 1997; Scott and Smith 1997; Gush et al. 2002). Afforestation 

with Pinus results in a longer lag period compared with Eucalyptus, and the lag period is shorter where 

the growing conditions are optimal compared to where they are sub-optimal.
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Table 2-1 A summary of the findings of the long-term, multiple catchment studies of the effects of afforestation on streamflow. 

Region Site  Catchment Soils Species Area 
(ha) 

Mean annual 
rainfall 

(mm/year) 

Pre-planting 
streamflow 
(mm/year) 

Planted 
(%) 

Riparian 
zone planted 

Mean annual flow 
reduction when mature 

(mm/year) 

Evaporation 
(mm/year) 

Western Cape Jonkershoek Bosboukloof 
Deeply weathered 
granite, sandstone 

talus 

Pinus 
radiata 200.9 1449 527 57 No 172.9 1095 

Western Cape Jonkershoek Biesievlei 
Deeply weathered 
granite, sandstone 

talus 

Pinus 
radiata 27.2 1297 476 98 Yes 274.4 1095 

Western Cape Jonkershoek Lambrechtsbos 
A 

Deeply weathered 
granite, sandstone 

talus 

Pinus 
radiata 31.2 1477 433 84 No 207.2 1251 

Western Cape Jonkershoek Lambrechtsbos 
B 

Deeply weathered 
granite, sandstone 

talus 

Pinus 
radiata 65.5 1477 410 82 No 250.3 1317 

KZN 
Drakensberg 

Cathedral 
Peak II Deeply weathered 

basalt 
Pinus 
patula 190.7 1634 807 74 No 425.5 1253 

KZN 
Drakensberg 

Cathedral 
Peak III Deeply weathered 

basalt 
Pinus 
patula 142 1528 683 84 No 395.1 1240 

Mpumalanga 
Escarpment Mokobulaan  A (euc) Deeply weathered 

shales 
Eucalyptus 

grandis 26.2 1164 244 100 Yes 128.7 1049 

Mpumalanga 
Escarpment Mokobulaan  B Deeply weathered 

shales 
Pinus 
patula 34.6 1171 217 100 Yes 151.2 1105 

Limpopo 
Tzaneen Westfalia D (euc) Deeply weathered 

granite-gneiss 
Eucalyptus 

grandis 39.6 1477 190 83 Yes 267.6 1555 

KZN Midlands 
Mistley-
Canema 
Estate 

Two Streams Deeply weathered 
shales 

Acacia 
mearnsii 73 920 72 100 Yes# 50.3 898 

Source: Scott et al. (2000) with data for Two Streams from Clulow et al. (2011)
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2.2 Forest water use estimation methods 

Numerous methods are available to estimate forestry water use (consumption). These methods capture 

the processes of transpiration and evaporation (from the soil surface and water intercepted by the 

canopy), as reflected by evapotranspiration (ET). The methods, developed locally and internationally, 

estimate water use at plant, field or catchment level and involve measurements or modelling. 

2.2.1 Field-based methods 

Field-based methods for measuring or estimating ET have been reviewed in previous work (Savage et 

al. 2010). These methods include: 

• the soil water balance approach; 

• pan methods (e.g. class A pan); 

• the reference evaporation and crop factor approach; 

• lysimetry; 

• the eddy covariance method; and 

• a range of aerodynamic methods that estimate sensible heat from which evaporation is 

estimated as a residual, using the shortened energy balance equation (Jarmain et al. 2009b). 

The latter method includes the one sensor eddy covariance, Bowen ratio, surface renewal and 

scintillometry method. Some methods are used to estimate transpiration directly, e.g. the sapflow and 

heat pulse velocity methods (Jarmain et al. 2009b). Many of these methods have been used to estimate 

ET in SA as part of Water Research Commission (WRC) funded projects. See for example Bristow and 

De Jager (1981); Green and Clothier (1988); Dye et al. (1997); Savage et al. (1997); Everson et al. 

(1998); Everson (1999); Savage et al. (2004); Jarmain et al. (2009a); and Jarmain et al. (2014). The 

abovementioned methods are point- or field-based. As such, their ET estimates have a limited spatial 

“footprint”. 

Spatially explicit methods developed to estimate ET fill the need for geographical estimates of ET. 

Advances in remotely sensed data enable per-pixel assessments of ET at resolutions ranging from  1 

000 m to as small as 20 m. Such EO methods for estimating ET over large areas are discussed in 

Section 2.2.2. These methods have been applied to study forestry water use by Gush and Dye (2009), 

Dye et al. (2008b), Jarmain and Everson (2002), Everson et al. (2005), Dye et al. (2008a) and others. 

2.2.2 Earth observation methods 

The increased availability of spatially referenced geographical information system (GIS) and RS data 

enable crop water use or ET estimation at pixel level and at high resolutions (e.g. 20 to 1 000 m). Such 

data can be aggregated and employed at different spatial scales and used over large areas. Because 

satellite data are frequently collected, estimates can be made regularly, and temporal trends studied. 

Such spatial and temporal coverage can contribute greatly towards improved water management at 

national and/or regional level down to individual farms or fields. 
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Estimates of evapotranspiration (ET) from a surface, including water consumption by vegetation, relate 

to the vapourisation of water from the land surface into the lower part of the atmospheric boundary 

layer. ET consists of evaporation of water from the soil, evaporation of intercepted water and 

transpiration losses by plants, and the sum of all these losses is often referred to as consumptive water 

use. The water volumes lost through the processes encompassed in ET form part of the hydrological 

cycle where no water is truly lost but merely changing in form. 

Advances in the interpretation of RS information enable the spatial assessment of crop water use, 

biomass and yield production and associated WUE for each pixel of a satellite image, without having to 

rely on generalised crop coefficients. Different methods have been developed to provide information at 

a range of temporal and spatial scales and for various applications. A number of review papers describe 

methods used to spatially estimate ET, including Choudhury (1997), Courault et al. (2005), Kustas and 

Norman (1996), Verstraeten et al. (2005), Verstraeten et al. (2008) and Gibson et al. (2013). Numerous 

models have been developed for agricultural (field scale) applications. Examples include: surface 

energy balance algorithm for land (SEBAL); surface energy balance system (SEBS); mapping 

evapotranspiration with high resolution and internalised calibration (METRICtm); vegetation 

index/temperature trapezoid (VITT); two-source energy balance; the atmosphere-land exchange 

inverse (ALEXI); and normalised difference vegetation index diurnal surface temperature variation 

(NDVI-DSTV) triangle model. These methods either estimate ET as the residual of a shortened energy 

balance equation using land surface temperature (LST) estimates or use a WUE relationship to 

determine ET. Some of the models are used operationally for field scale agricultural water 

management 0F

1, but most are used primarily in research applications. A selection of the models (SEBAL, 

SEBS, VITT and METRICtm) was reviewed by Jarmain et al. (2009b). The review included an 

assessment of each model’s accuracy in estimating ET and their potential for operational applications 

in SA. It was found that some of the components of the energy balance (such as net radiation) were 

accurately simulated, but that the other energy balance components and ET were generally more 

complex. SEBAL and METRIC estimates of ET were generally lower than measured ET, while SEBS 

commonly overestimated ET. The VITT model yielded the least accurate evaporation estimates. 

Other RS-based models have been developed and provide ET estimates at lower spatial resolutions 

(often ~1 to 3 km) but higher temporal resolutions (30 min to daily). The lower spatial resolution of these 

models makes them less suited for agricultural applications where information at field scale is required. 

A number of these models use Meteosat Second Generation satellite data and provide ET data at 30-

minute intervals, at a resolution of 1-3 km1F

2. ET data from HYLARSMET 2F

3 and MODIS3F

4 are estimated 

daily for the entire globe at a 1 km resolution. The global water cycle monitor4F

5 from Princeton University 

also estimates ET at a daily time step, while the ALEXI model5F

6 can be used to estimate energy fluxes 

 
1 For instance, www.mijnakker.nl; fruitlook.co.za; www.idwr.idaho.gov/GeographicInfo/METRIC/et.htm 
2 http://landsaf.meteo.pt/ and http://www.ears.nl/ 
3 http://sahg.ukzn.ac.za/soil_moisture/et/ 
4 http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD_NUMBER=16 
5 http://hydrology.princeton.edu/~justin/research/project_global_monitor/ 
6 http://alfi.soils.wisc.edu/cgi-bin/anderson/alexi_server.pl?region=SMEX02MOD 
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and other parameters daily, e.g. at a 10 km spatial resolution. 

New approaches and models are continually being developed and tested. For instance, the ETLook 

model (Pelgrum et al. 2011) is used in the water productivity through open access of remotely sensed 

derived data (WaPOR)6F

7 initiative, which provides free access to satellite-based data on agricultural 

productivity in Africa and the Near East for the period 2009-2019. The purpose of the project is to allow 

for land and water productivity monitoring, using ET and biomass production data. Three levels of data 

products are available. Level 1 provides 250 m resolution data on a continental level. Level 2 provides 

100 m data for a number of selected countries, including Morocco, Tunisia, Kenya and Mozambique. 

Additionally, Level 2 includes the Jordan/Litani River basin, the Nile basin, the Awash basin and the 

Niger inner delta. Level 3 provides 30 m resolution data on irrigation scheme level. 

Van Niekerk et al. (2018) demonstrated how EO data can be employed to quantify water use of irrigated 

agriculture at national scale. A range of EO datasets was used to map irrigated fields, after which 250 

m ET data, derived from the ETLook algorithm, was used to quantify water use at field level. Water use 

was also differentiated for different crop types and in different regions throughout South Africa. The 

results were verified and validated through an extensive stakeholder engagement exercise and by 

comparing the water use estimates with those quantified in previous studies. 

2.3 Technologies and techniques beneficial to forestry land and water use 
estimation 

It is clear from the previous sections that water use estimations require reliable, accurate and up-to-

date data with good spatial coverage. This data are often needed for large areas, which necessitates 

the use of geospatial technologies such as GISs and satellite RS. This section provides an overview of 

the geospatial techniques and technologies that were used in project. The review starts with GIS and 

spatial modelling, as these are the fundamental technologies used to quantify water use. This is 

followed by an introductory overview of concepts such as optical, thermal and microwave RS. The 

section concludes with a short overview of image classification and object-based image analysis 

techniques. 

2.3.1 GIS and spatial modelling 

GIS is used to manage and analyse spatially referenced or geographical data and provides a unique 

platform capable of integrating large volumes of spatial data for analysis (Heywood et al. 2006). GIS 

offers a quick and easy way to monitor and manage resources, which is not possible with traditional 

(analogue) methods. Over the last 20 years, GIS has emerged as a mature technology with particular 

value in answering questions about spatial location, patterns, trends, conditions and their implications. 

Within a GIS, datasets of different formats at varying scales can be incorporated into a single database, 

which can be stored as vector and/or raster data. 

Spatial modelling involves using such data to construct models to predict spatial outcomes that simulate 

 
7 http://www.fao.org/in-action/remote-sensing-for-water-productivity/database/database-dissemination-wapor/en/ 
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the dynamics of natural processes (O’Sullivan and Unwin 2010). Spatial modelling in GIS embraces 

techniques and models that apply quantitative structures to systems in which the variables of interest 

vary across space. Spatiotemporal models simulate change over time using equations that represent 

real-world processes while taking spatial patterns and spatial interaction in the system into account 

(Karssenberg et al. 2008). Such spatial and temporal process models can be used for decision-making 

regarding spatial phenomena (also known as spatial decision support systems) but are also used to 

evaluate our understanding of complex spatial systems (Heywood et al. 2006). Models can be used to 

establish (a priori) theory or explore (a posteriori) theory (Hardisty et al. 1993). When modelling in GIS, 

the questions of validation and the roles of scale and accuracy need to be carefully considered 

(Goodchild 2005). 

There are numerous examples of where GIS have been used in forest management. Recent examples 

include Akumu et al. (2019), who developed a GIS-based modelling procedure to predict and map 

relative soil moisture classes in a forested landscape. They used rule-based GIS (also known as 

cartographic modelling) to develop a technique to predict soil moisture classes (dry, fresh, moist and 

wet). Soil textural classes were derived from quaternary geology maps and water receiving areas, which 

were in turn derived from topographic attributes generated from a digital elevation model. Their 

approach yielded a soil moisture map with an overall accuracy of about 65% relative to 54% generated 

from soil wetness index reclassification approach. 

2.3.2 Remote sensing and Earth observation 

RS, or EO, is the practice of deriving information about the earth’s surface using images acquired from 

an overhead perspective by sensing and recording electromagnetic (EM) radiation reflected or emitted 

from the features on the surface of the earth (Campbell 2007b). Due to its areal coverage of the earth’s 

surface at a variety of scales (and common availability in near real-time), EO data form the foundation 

for many environmental spatial datasets. Additionally, the availability of archived satellite imagery over 

the past ~40 years provides an invaluable comprehensive database for environmental monitoring and 

modelling. 

EO sensors detect and record incoming EM radiation in various regions of the EM spectrum using 

optical, thermal or microwave sensors (Figure 2-1). Optical sensors, also called multispectral sensors, 

measure energy reflected from the surface of the earth originally generated by an external source 

(usually the sun),and operate primarily in the visible and the infrared regions of the EM spectrum. The 

visible spectrum contains those wavelengths of radiation that can be perceived by human vision, i.e. 

from violet to red light. Wavelengths longer than those of the visible spectrum (but shorter than those 

of microwave radiation) are termed infrared, which can be further subdivided into near-, mid- and far-

infrared. The visible, near- and mid-infrared wavebands are collectively referred to as the optical bands 

(Campbell 2002; Mather 2004). Unlike optical RS, thermal RS detects energy in the far-infrared portion 

of the EM spectrum, which is energy absorbed by the earth’s surface and then emitted in the form of 

heat (or thermal radiation) (Campbell 2002; Mather 2004). 
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Figure 2-1 The electromagnetic spectrum and RS (not to scale) 

The longest wavelengths commonly used in RS fall in the microwave spectrum. Although the earth itself 

emits some microwave energy, solar irradiance in this spectrum is negligible and is therefore rarely 

measured in RS. Instead, most microwave sensors are active radar (radio detection and ranging) 

sensors, which use their own energy to irradiate the ground and then measure the portion of energy 

reflected back to them (Campbell 2002; Mather 2004). 

Optical, thermal and microwave RS techniques are overviewed in the following subsections. The aim 

of this overview is to provide a condensed account of the existing RS technologies and approaches that 

might be employed in this project. 

2.3.2.1 Optical sensors 

A large number of optical EO sensors are commercially or freely available. The choice of the appropriate 

sensor for a particular application is informed by factors relevant to the application. These include: 

• spatial resolution (also known as the pixel size), which is a measure of the level of detail that can 

be recognised using the imagery; 

• spectral resolution, referring to the number of spectral bands available; 

• temporal resolution (also known as revisit cycle), which denotes the time interval between image 

acquisitions for the same area; 

• swath width (also called image extent or scene footprint), which describes the square kilometre 

area covered by one scene; and 

• cost per image. 

Several optical satellite platforms were considered for use in this research. The low spatial resolutions 

of the freely available MODIS (250-1 000 m) and AVHRR (1 km) satellite imagery are unsuitable for 

detailed mapping exercises (e.g. mapping the boundaries of individual commercial forestry blocks). 

Conversely, although the sub-metre resolutions of very high resolution (VHR) sensors such as Ikonos, 

Quickbird, Worldview and GeoEye (in the panchromatic bands) are highly suitable for analysing the 

structural/spatial properties of commercial forestry, their use over large areas (e.g. at national scales) 

is limited as the sensors have small image footprints. This means that thousands of images will be 
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required for one national coverage, which would be prohibitively expensive. 

The imagery provided by high resolution (HR) optical sensors, such as those mounted on the Landsat, 

SPOT and Sentinel-2 satellites, are ideal for when very large mapping scales are not required. These 

images have large swaths, which means that not many images are required to cover a large area. The 

SPOT family of satellites have been recording HR satellite imagery for almost 30 years, with the latest 

addition being SPOT 7 launched on 30th June 2014. The South African National Space Agency 

(SANSA) and Airbus Defence, the owner of the SPOT satellite series, have in place a licence agreement 

which allows the use of SPOT imagery for government and research purposes. 

The Sentinel-2 programme, developed by the European Space Agency, forms part of the European 

Union’s comprehensive Copernicus EO programme aimed at performing terrestrial observations in 

support of services such as forest and agricultural monitoring, land cover change detection and natural 

disaster management. The platform is comprised of two identical HR multispectral satellites: Sentinel-

2A (launched on 23 June 2015) and Sentinel-2B (launched on 7 March 2017). The spatial and spectral 

characteristics of the Sentinel-2 sensors are provided in Table 2-2. 

Table 2-2 Sentinel-2 sensor characteristics 

Sentinel-2 Bands Central Wavelength (µm) Resolution (m) 
Band 1 - Coastal aerosol 0.443 60 
Band 2 - Blue 0.490 10 
Band 3 - Green 0.560 10 
Band 4 - Red 0.665 10 
Band 5 - Vegetation Red Edge 0.705 20 
Band 6 - Vegetation Red Edge 0.740 20 
Band 7 - Vegetation Red Edge 0.783 20 
Band 8 - NIR (near infrared) 0.842 10 
Band 8A - Vegetation Red Edge 0.865 20 
Band 9 - Water vapour 0.945 60 
Band 10 - SWIR - Cirrus 1.375 60 
Band 11 - SWIR 1.610 20 
Band 12 - SWIR 2.190 20 

The Landsat sensor is the most commonly used HR data, with Landsat satellites continuously capturing 

images of the earth’s surface since 1972. The Landsat Data Continuity Mission, run by the North 

American Space Agency and the United States Geological Survey, comprises ~40 years of imagery, all 

of which is freely available. To date, eight Landsat missions (Landsat 1-9) have been launched, with 

the latest being Landsat 9 (launched in September 2021). Landsat 9 is a twin of Landsat 8 and carries 

two instruments, the operational land imager (OLI) and thermal infrared (TIR) sensor. The OLI sensor 

detects seven multispectral bands at 30 m resolution and a panchromatic band at 15 m resolution. 

Landsat 5 TM was decommissioned in 2013, and the scan-line corrector of Landsat 7 ETM+ has been 

inoperative since 2003, resulting in large gaps in the imagery. However, the continuity and high spectral 

resolution among Landsat TM, ETM+ and OLI are highly beneficial for multitemporal analysis, which 

will be employed in this research. 
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2.3.2.2 Thermal remote sensing 

Thermal RS deals with the acquisition, processing and interpretation of data acquired primarily in the 

thermal infrared (TIR) region of the EM spectrum (3 to 35 µm). In thermal RS, the radiation 'emitted' 

from the surface of the earth is considered, as opposed to optical RS where the radiation is 'reflected'. 

A commonly studied aspect in the domain of thermal RS is LST. LST provides information on the 

temporal and spatial variations of the surface equilibrium state (Li et al. 2013) and is an important 

observation particularly in the estimation of land surface atmospheric fluxes. However, the strong 

heterogeneity of land surface characteristics such as vegetation, topography and soil leads to a rapidly 

changing LST in both space and time, resulting in RS satellite data offering the only possibility for 

measuring LST over the entire globe with sufficiently high temporal resolution (Kalma et al. 2008; Li et 

al. 2013). For example, when using an energy balance approach to estimate evapotranspiration 

(Section 2.2.2), LST is used in the estimation of net radiation and to estimate the sensible heat flux. 

Although there were early doubts as to whether satellite-based radiometric temperature could be used 

in the estimation of evapotranspiration (Kalma et al. 2008), it has since been established that, to 

estimate evapotranspiration with an accuracy of more than 10%, LST must be retrieved at an accuracy 

of 1 K or more (Li et al. 2013). This reinforces the need to obtain accurate LST for critical observations 

in hydrology (e.g. ET). 

2.3.2.3 Microwave remote sensing (RADAR) 

Microwave RS functions by detecting energy backscattered from the earth’s surface in the microwave 

region of the electromagnetic spectrum. This region ranges in frequency from 0.3 to 300 GHz, which 

corresponds to wavelengths of 3 mm to 30 cm. The long wavelengths of microwave radiation mean that 

it experiences very little atmospheric attenuation, making it possible for imaging radars to capture image 

scenes even in cloudy conditions. This makes radar imagery particularly powerful for obtaining 

unbroken time series of data, especially in tropical or cloudy regions. Most imaging radars are active 

sensors (in that they provide their own source of microwave illumination), which further means that they 

can capture imagery both day and night, thereby doubling the imaging capacity per orbit. 

Synthetic aperture radar (SAR) is a type of microwave sensor that provides a dramatically improved 

spatial resolution over conventional real aperture radar systems. Both types of radars are currently 

operational as space-borne systems and will be briefly described in the following subsections. 

Several radar satellites are currently in operation. Some of these satellites offer HR, fully-polarimetric 

(HH, HV, VH and VV) capabilities. Examples include RADARSAT-2, TerraSAR-X and COSMO-

Skymed. The most reliable and commonly used SAR sensors currently active are RADARSAT-2, 

TerraSAR/TanDEM-X, ALOS PALSAR-2, Cosmo-SkyMed and Sentinel-1A. These sensors provide a 

mixture of spatial resolutions (1-100 m), wavelengths (X, C and L bands) and revisit periods (11-24 

days). RADARSAT-2 is currently the only sensor that routinely provides reliable data in full polarisation, 

making it an important source of polarimetric data. However, TerraSAR-X and ALOS PALSAR-2 also 

have full polarimetric capacity. Sentinel-1 contains a dual-polarisation C-band SAR capturing data at 
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three different resolutions (10, 25, or 40) and four band polarisations (VV, HH, VV + VH, and HH + HV). 

Sentinel-1 has a temporal resolution of six days and the data is made available to the public within 24 

hours of observation. 

2.3.3 Cloud-based remote sensing platforms 

Hansen and Loveland (2012) speculated that the future of large-scale operational mapping lays with 

automated processing chains for multi-image classification, facilitated by the image standardisation of 

long-term, free satellite programmes such as Landsat (and more recently, Sentinel). This concept has 

been advanced by the recent development of open access data catalogues and cloud-based computing 

services for geospatial analysis, such as Google Earth Engine and Amazon Web Server (Koskinen et 

al. 2019; Mauya et al. 2019). These services, which are freely available for research purposes, provide 

access to decades of remotely sensed data, which can be queried, manipulated, analysed and 

visualised using a wide variety of RS toolboxes. As well as bypassing the need for data acquisition and 

on-site storage and processing, the architecture of these services allows for automated processing on 

a large scale in a scripting environment. 

2.3.4 Image classification approaches 

Digital image classification methodologies (image classifiers) involve a set of computer procedures that 

assign image pixels or objects to classes representing information categories relevant to the user, 

based on a diverse selection of inherent image features (Campbell 2007a). The development of image 

classifiers has been subject to ongoing research since the introduction of RS. A wide variety of classifier 

types and forms exists, each with its own strengths and weaknesses relative to applications to which 

they may be applied (Lawrence and Wright 2001; Mather 2004). When deciding on a classification 

method for an application, a user must weigh up the importance of several different factors. The efficacy 

of classification methods is usually assessed based on the accuracies of the final classification products 

using statistical metrics. However, the demand for human expertise, the time and expense of preparing 

and running the classifier, and the degree of automation required are aspects which must be taken into 

account (Pal and Mather 2003). It should also be noted that the accuracies of different classification 

methodologies are often specific to the application to which they are put (Lui et al. 2002). It is therefore 

important that the user is aware of the different types of available classifiers in order to judge which is 

better suited to the application at hand. 

Conventional methods of image classification consist of supervised and unsupervised procedures, 

which rely strongly on a variety of statistical algorithms employed in spectral feature space. Although 

widely used in operational applications, these more traditional classifiers are not without their limitations. 

The progression of digital image analysis techniques, combined with the advancement of computer 

hardware and software, has led to the development and increased implementation of more advanced 

classifiers which utilise a greater degree of data mining for image pattern recognition (Tseng et al. 

2008). This is done by incorporating techniques such as artificial intelligence, logical structures and 

expert knowledge into the classification procedures (Brown de Colstoun et al. 2003; Mather 2004). The 



 

15 
 

following sections focus on the common methods used for discriminating land cover in remotely sensed 

imagery. 

2.3.4.1 Unsupervised classification 

Unsupervised classification is the clustering of image pixels into groups based on spectral information. 

This classification technique mainly entails two distinct steps, namely 1) the automatic classification of 

pixels into a user-specified number of image classes according to their spectral properties; and 2) the 

manual assignment of the classes into information classes (Campbell 2007b). Although the automated 

nature of the spectral delineation renders this classification method less user-intensive, it cannot be 

completely considered truly unsupervised in nature. According to Mather (2004:203), it is rather an 

“exploratory” technique where repeated unsupervised area delineations with different parameters allow 

a user to ascertain which real-world classes are spectrally distinct and which are spectrally similar. This 

understanding of image features can inform the construction of the set of real-world classes to be used 

in the classification, rendering unsupervised classification extremely useful where a priori information 

regarding the study area or the classification structure is unavailable or not pre-determined. Conversely, 

where a real-world class structure is already established, it is rare that it will correspond with the 

automatically delineated spectral classes, resulting in the lowering of the accuracy of the outcome 

(Campbell 2007b). This is especially true for HR imagery where features of interest commonly comprise 

multiple spectral classes shared by more than one information class. This is the primary disadvantage 

of unsupervised classification, and, for this reason, it  often has limited use in operational applications. 

2.3.4.2 Supervised classification 

Supervised classification is defined by the application of a priori information of real-world classes to 

determine the identity of unknown image elements. Data for the real-world classes are acquired from 

an external source and entered into the classifier in the form of designated and labelled polygons called 

‘training areas’ or ‘training data’. These training areas contain statistical information regarding the 

spectral properties of each class, which is used by a classification algorithm to identify the class of 

unknown pixels (Mather 2004; Campbell 2007b). Classification algorithms varies but are all designed 

to compare the features of each of the classes with those of an unknown pixel in geometric space and 

assign a class based on the results of that comparison. Traditionally, the most widely used algorithm is 

the maximum likelihood classification (MaxL) algorithm due to its ready accessibility, robustness, strong 

theoretical foundation and high accuracies for a wide range of RS applications (Bolstad and Lillisand 

1991; Albert 2002; Brown de Colstoun et al. 2003; Pal and Mather 2003; Tseng et al. 2008). Because 

of these traits, a number of studies have used MaxL as the benchmark with which to compare newly 

developed classification methods (Gumbricht et al. 1996) (Hepner et al. 1990; Lui et al. 2002; Neusch 

and Grussenmeyer 2003; Pal and Mather 2003; Hagner and Reese 2007; Nangendo et al. 2007). 

Recent developments in image resolution (spatial and spectral), increases in data availability, as well 

as the integration of contextual and ancillary data have prompted the use of more powerful classifiers 

which incorporate elements of machine learning (ML) (Tseng et al. 2008). While more traditional 
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classifiers (such as MaxL) estimate parameters to a data distribution, ML classifiers are non-parametric 

and therefore do not make assumptions about the distribution of data (Jain et al. 2000; Hubert-Moy et 

al. 2001). This is especially advantageous when working with geospatial data, which, in most cases, 

are not normally distributed. Additionally, ML techniques can easily be automated, allow for 

combinations of categorical and continuous input variables and have the ability to capture hierarchical 

and non-linear relationships (Hladik and Alber 2014). Several ML algorithms are available in RS, namely 

k-nearest neighbour (kNN) (Franco-Lopez et al. 2001; Ying and Bo 2009; Falkowski et al. 2010), support 

vector machine (SVM) (Lizarazo 2008; Li et al. 2010; Petropoulos et al. 2012), decision tree (DT) (Punia 

et al. 2011; Gómez et al. 2012; Hladik and Alber 2014) and random forest (RF) (Gislason et al. 2006; 

Chang et al. 2008; Rodriguez-Galiano et al. 2012). Artificial neural networks (ANNs) were one of the 

first classifiers to draw on the field of ML in RS (Hepner et al. 1990; Skidmore et al. 1997) but were not 

widely employed due to their non-intuitive usability and black-box nature. However, neural networks 

(NN) have recently benefited from developments in deep learning (DL) technology, and RS is seeing 

the increased application of NNs, including convolutional NNs, multi-layer perceptron NNs, 

autoencoders and deep belief networks (Heydari and Mountrakis, 2019). 

kNN is a simple non-parametric, distance-based classifier that labels each unknown instance based on 

its k neighbouring known instances. A class is assigned to the unknown instance best represented by 

the training samples among the k neighbours (Cover and Hart 1967; Gibson and Power 2000). The 

kNN algorithm is effective in classifying data that are not normally distributed but has the disadvantage 

of assigning equal weight to all variables even though certain variables may have higher priority. This 

can result in incorrect class assignments and diffuse clusters (Cunningham and Delany 2007). To avoid 

this, only odd k-values (e.g. 1, 3 and 5) should be used, as suggested by Campbell (2007a). 

The efficiency of SVM classifiers for RS applications has been demonstrated by Lizarazo (2008) and 

Petropoulos et al. (2012). Myburgh and Van Niekerk (2013) showed that SVM produces more accurate 

results than kNN and MaxL for land cover mapping using SPOT-5 imagery. SVM determines the optimal 

separating hyperplane between classes (Novack et al. 2011) by focussing on the training samples close 

to the edge (support vector) of the class descriptors (Tzotsos and Argialas 2008). In cases where the 

relationship between classes and features are non-linear, the radial basis function kernel is often 

applied. See Vapnik (1995) and Huang et al. (2002) for a detailed mathematical formulation of SVM. 

A DT identifies relationships between a continuous response variable, known as the dependent 

variable, and multiple, continuous variables known as the independent variables. DTs hierarchically 

split a dataset into increasingly homogeneous subsets known as nodes (Lawrence and Wright 2001; 

Gómez et al. 2012). By recursively splitting the feature datasets, a leaf node is reached, with the class 

associated with the node assigned to the observation (Pal and Mather 2003). According to Novack et 

al. (2011), each node is limited to a split in feature space orthogonal to the axis of the selected feature. 

Each branch of the DT consists of divisions (or rules) of the most probable class. Applying these rules 

will assign the most likely class to an unknown instance (Lawrence and Wright 2001). 

There has been a notable increase in the use of the RF classifier for RS applications (Gislason et al. 
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2006; Lawrence 2006; Duro et al. 2012; Immitzer et al. 2012), and it has been shown to be effective for 

many classification tasks (Lawrence and Wright 2001; Rodriguez-Galiano et al. 2012). RF, an 

enhancement of DTs (Immitzer et al. 2012), generates each DT by using a random vector sampled 

independently from the input vector. A vote is cast by each of the generated DTs (Breiman 2001; Pal 

2005; Bosch et al. 2007). Each classifier contributes a single vote to the assignment of the most popular 

class of the input variable (Breiman 2001; Rodriguez-Galiano et al. 2012). RF makes use of bagging 

(Breiman 1996), a method which generates a training set for feature selection. This allows RF classifiers 

to have a low (even lower than DT classifiers) sensitivity to training set size (Rodriguez-Galiano et al. 

2012). Two parameters are required to be set, namely the number of trees and the number of active 

(predictive) variables. Rodriguez-Galiano et al. (2012) showed that stability in accuracy is achieved at 

100 trees and that a small number of split variables are optimal for reducing generalisation errors and 

correlations between trees. A more detailed discussion of the RF classifier can be found in Breiman 

(1996), Breiman (2001), Pal (2005) and Rodriguez-Galiano et al. (2012). 

ANNs are more complex than traditional statistical classifiers as they can model non-linear 

relationships. They contain three elements: an input layer, hidden layers and an output layer. The input 

layer contains the source data (imagery), hidden layers represent weights of association between 

classes and pixel values, and there can be many hidden layers. The output layer represents the classes 

for the desired output, which is defined by the training data during model building. The input data are 

passed through the network and weights are adjusted until the expected classification (defined by the 

training data) is achieved. Once the NN is established, the input data can be replaced with other data. 

The disadvantages of ANNs are that they are complex and prone to overfitting (Han al. 2018). DL occurs 

when a multi-layered NN is formed, creating a deeper network than conventional NNs (Devi 

Mahalakshmi and Geethanjali 2019). A convolutional NN (CNN) contains convolutional layers, max-

pooling layers and fully connected layers. Filters are applied to the convolutional layers, the 

dimensionality of the data is reduced in the max-pooling layers, and the fully connected layers ensure 

that all of the input data in one layer are connected to all of the units of the next layer (Devi Mahalakshmi 

and Geethanjali 2019). NNs are advantageous as they can accept various numerical data, even if the 

data does not have a statistical distribution, allowing them to process ancillary data to remotely sensed 

data (Mather 2004). A major disadvantage of NNs is that a large amount of training data and computing 

power are required (Han et al. 2018). 

2.3.4.3 Object-based image analysis 

The development of classification methodologies has been enhanced by the advent of geographical 

object-based analysis (GEOBIA). Traditional methods of image analysis consider each pixel as an 

individual unit, with little cognisance of its topological relations to its neighbours or the class structure it 

represents (Lira and Maletti 2002; Van Coillie et al. 2007). This individuality of pixels renders them 

susceptible to data noise, atmospheric effects and surface variation (Wicks et al. 2002) and limits the 

usability of spectral, textural and relational information (Rego and Koch 2003; Lennartz and Congalton 

2004; Oruc et al. 2004). Considering these factors, Blaschke et al. (2000) argue that no form of per-
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pixel classification can really yield reliable, robust and accurate results. In contrast, object-orientated 

imagery analysis operates on pre-defined areas of the image, derived either from an external source 

or, more commonly, an internal region-partitioning process known as segmentation (Blaschke et al. 

2000). The increased availability of fine spatial resolution satellite imagery has exposed further 

limitations of per-pixel techniques, as for many applications the pixels of these images are significantly 

smaller than the objects of interest. In such cases, pixels often show spatial autocorrelation – the 

concept that features nearby are more similar than features further away – and will, therefore, belong 

to the same classes as their neighbours (Blaschke et al. 2000; Lang 2008). The object-based nature of 

OBIA is inherently better suited to the analysis and classification of HR imagery. According to (Benz et 

al. 2004; Bock et al. 2005; Hay et al. 2005; Shiba and Itaya 2006), OBIA uniquely offers meaningful 

statistical calculation of spectral and textural qualities, availability of feature qualities such as shape and 

object topology, intuitive spatial relations between real-world objects and image objects, and the ease 

of integration between GIS and RS environments and flexibility among different software platforms. 

2.3.4.4 Image classification for forests 

The incorporation of satellite imagery in forest inventories has improved the cost efficiency, 

development speed, timeliness, accuracy and level of detail (McRoberts and Tomppo 2007). 

Consequently, there is a large body of research in this field. Nery et al. (2019) undertook a six-class 

land cover/land use (LCLU) classification in order to determine changes to natural and plantation 

eucalypt forests in Western Australia. An unsupervised ISODATA classification was undertaken to 

identify potential LCLU training data, which was then inputted with derived texture measures to 

classification and regression tree (CART), SVM and RF for seven dates of Landsat MSS, TM, ET+ and 

OLI imagery. SVM showed the highest overall accuracies for the six LCLU classes (>84%) and were 

also superior in differentiating between the spectrally similar native and plantation eucalypt forest 

classes. Ahammad et al. (2019) applied a MaxL supervised classification of composited Landsat 

imagery for 2003 and 2014 to analyse natural forest and plantation change over time. Accuracies of 

79% and 83% were achieved respectively, with the higher than expected classification error being 

attributed primarily to the small field sizes and the similarities between young teak plantations and non-

forested areas. ‘Audah et al. (2019) applied a MaxL supervised classification of three years of Landsat 

OLI and ETM+ imagery for nutmeg plantation mapping in Indonesia with accuracies of over 95% for all 

dates. Koskinen et al. (2019) undertook CART, SVM and RF classifications of Landsat OLI, ALOS 

PALSAR and Sentinel-1 imagery, as well as the 30 m SRTM elevation and slope data, in order to map 

forest plantations and plantation genera on a regional scale in Tanzania. Applied in a Google Earth 

Engine environment, they found RF to be the most accurate, with overall accuracies of 85% for 

plantation/non-plantation classification, and 65% for the further differentiation into Pines, 

Eucalyptus/Wattle, Natural Forest and Other classes. McMahon and Jackson (2019) also found RF 

classification of Landsat TM, ETM+ and OLI suitable for Eucalyptus plantation mapping in Minas Gerias 

state, Brazil, with accuracies of over 85%.  Lira Melo de Oliveira Santos et al. (2019) achieved plantation 

accuracies of over 85% when applying RF classification to composited Landsat ETM+ and OLI imagery 

for land cover mapping in Sao Paulo state, Brazil. In an application using DL, Wagner et al. (2019) 
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applied a U-net convolutional network on segmented Worldview-3 imagery to differentiate between 

natural forest and Eucalyptus plantations in Sao Paulo state, Brazil, with accuracies of over 95%. 

In addition to mapping the locations and extents of forest compartments, the structural characteristics 

of forests such as height, volume, and basal area (Parker 2020) have been successfully captured using 

RS technologies such as photogrammetry (Campbell and Wynne 2013), light detecting and ranging 

(LiDAR) (Holmgren and Thuresson 1998), and structure from motion (SfM) (Tang and Shao 2015). 

Parker (2020) used LiDAR RS measurements in an individual tree crown algorithm to estimate crown 

area and tree height. The accuracies obtained for tree height estimations were 97%, and crown area 

had a root mean square error (RMSE) of 8.8 cm. Hu and Hu (2020) used Landsat images in a RF model 

to classify forest cover yearly from 1998 to 2015 to subsequently use in a change detection analysis to 

determine damaged and recovered areas. They obtained an overall accuracy of 86% and showed an 

overall loss of 0.56 X 106 ha of forests in Primorky Krai, Russia. Genera, species and clone mapping 

have been done using RS and ML, which helps with biodiversity management. For example, Mngandi 

et al. (2019) used Sentinel 1 SAR with Sentinel 2 multispectral data in a linear discriminant analysis 

algorithm to classify forest plantation species and obtained an overall accuracy of 87%. Data captured 

through RS can also be transformed into vegetation indices (VIs) to determine the health status of trees. 

This is possible as the chlorophyll in plants absorbs red light and strongly reflects radiation in the near-

infrared (NIR) region of the electromagnetic spectrum (EMS). Researchers have successfully identified 

unhealthy trees  using this method, and the methodology has directed foresters to apply fertilisers to 

specific problem trees (Tang and Shao 2015). 

 

The next section details how some of the technologies overviewed in this knowledge review were 

employed in this project. 
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3 METHODS AND MATERIALS 

This project was carried out in two phases, namely: 

1. forest plantation mapping; and 

5. quantify and analyse consumptive water use (actual ET) of forest plantations. 

Figure 3-1 diagrammatically overviews these phases and the various activities within each phase. The 

methods used to complete these activities are detailed in the following subsections. 

 
Figure 3-1 Project phases and research activities 

3.1 Forest plantation geodatabase development 

The first activity of Phase 1 was to obtain and collate as much spatially explicit plantation data as 

possible, preferably in GIS format. Detailed information about each plantation stand, including age, 

density, genus and clone information was targeted. This data had two purposes: 1) to be used as 

sample plantations in water use quantifications; and 2) to build and validate EO models for a range of 

forestry-related applications. 

3.1.1 Data acquisition 

Despite numerous requests, commercial forestry companies were reluctant to supply proprietary GIS 

data due to concern about confidentiality and the nature of the research (i.e. quantifying water use of 

forest plantations), which they saw as potentially damaging to the industry. Reference group member 

Dr R Heath of Forestry South Africa volunteered to act as intermediary between the research team and 

the forestry industry, and an agreement was finalised in October 2020. With the assistance of Dr Heath, 

datasets from four of the primary commercial forestry companies (Cape Pine, MTO, Mondi and Sappi) 

were provided to the research team by the Institute for Commercial Forestry Research (ICFR). The 

datasets comprised GIS shapefiles, including spatial (position, shape) and attribute (genus, species, 

age, etc.) data for 39 219 plantation compartments throughout South Africa. This dataset is a 
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tremendous asset and is representative of much of the forestry activities in the country. 

3.1.2 The commercial forestry geodatabase 

The individual shapefiles from each commercial company were standardised to Albers Equal Area 

(25°E; -27°S and -31°S) projection and merged in one geodatabase (GDB). Each forestry company 

uses slightly different label formats for compartment attributes, of which the most important ones for 

this study were genus, species and planting date. Between the four companies, over 120 unique 

species codes were used to represent genus, species and hybrid, which were standardised with the 

assistance of Dr I Germishuizen of the ICFR (e.g. “Enit” = “Eucalyptus nitens”). Thirteen codes 

representing 226 compartments were not identifiable and were consequently disregarded. Dr 

Germishuizen also suggested that species with fewer than 20 compartments be discarded, as these 

were most likely planted for research purposes and were unlikely to be commercially active (a complete 

compartment species count is available in Appendix I). Additionally, for each compartment, the area in 

hectares was calculated using GIS, and the age in years was calculated using the planting date (not 

available for ~5% of cases). Other attribute labels e.g. plantation and compartment names, were also 

standardised as far as possible within the GDB. The final product was referred to as the commercial 

forestry database (CFDB), and the distribution of compartments according to genera can be seen in 

Figure 3-2 to Figure 3-5. 

 

 
Figure 3-2 Distribution of compartments in the commercial forestry database in South Africa (inset 
maps below) 
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Figure 3-3 Distribution of compartments in of the commercial forestry database in Mpumalanga 

 

 
Figure 3-4 Distribution of compartments in the commercial forestry database in KwaZulu-Natal 
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Figure 3-5 Distribution of the commercial forestry database in the Eastern and Western Cape 

3.2 Remote sensing data collection 

3.2.1 Optical imagery 

While optical imagery was not directly used in the water use calculations, it was used for the 

supplementary analyses, including calculating normalised difference vegetation index (NDVI) profiles 

(Appendix II), and the plantation forest mapping (Section 4.1), genus classification (Section 4.2) and 

compartment age estimation (Section 4.3) research. 

3.2.1.1 MODIS 

The National Aeronautics and Space Administration (NASA) offers readily available MODIS-based 

products through the Distributed Active Archive Centres (DAACs). These centres process, archive, 

document and distribute data from NASA’s past and current research satellites and field programmes. 

NDVI images are available as 250 m 16-day composites (MOD13Q1), generated using the two 8-day 

composite surface reflectance images from the MOD09A1 version 6 product in the 16-day period. For 

this project, the MOD13Q1 version 6 NDVI imagery from 2001 to 2020 for the whole of South Africa 

was sourced from the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) 

DAAC data portal7F

8. 

3.2.1.2 Sentinel-2 

The European Space Agency (ESA) offers freely available Sentinel-1, Sentinel-2, Sentinel-3 and 

Sentinel-5P user products through the Copernicus Open Access Hub8F

9. Sentinel-2 multispectral imagery 

was used for the forest and genus mapping research. The spatial resolution ranges from 10 m to 60 m, 

depending on which bands it contains (see Table 2-2). These bands can then be used as is, and, as 

 
8 https://lpdaac.usgs.gov/tools/appeears/ 
9 https://scihub.copernicus.eu/dhus/#/home 
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was the case for the mapping research, various vegetation indices can be derived from combining 

bands such as NDVI and enhanced vegetation index (EVI). The product package also includes the 

necessary metadata to do atmospheric corrections on the images, removing the effects of the 

atmosphere on the reflectance values of the images. 

3.2.2 Evapotranspiration 

The primary ET dataset used to calculate water use was the WaPOR actual ET data, although several 

other ET datasets were acquired for comparison purposes. Each are discussed in more detail in the 

following subsections. 

3.2.2.1 WaPOR data 

The Water Productivity Open-access Portal9F

10 (WaPOR), funded by the Food and Agricultural 

Organization of the United Nations (FAO), provides freely available water productivity data for Africa 

and the Middle East on an annual, monthly and decadal-scale. Included in these datasets are 250 m 

annual and monthly actual evapotranspiration and interception data (AETI; referred to as ’ET‘ in this 

study) dating back to 2009. Generated by a Dutch company, eLEAF, using the ETLook model, the 

dataset of 250 m ET data span over 11 years and covers the whole of South Africa. It is ideal for water 

use quantification studies. The monthly ET WaPOR rasters from January 2009 to October 2020 served 

as the primary data for water use calculations undertaken in this study. 

3.2.2.2 WRC 2014/15 ET dataset 

This dataset is similar to the WaPOR data, in that it was developed by Dutch company eLEAF using 

the SEBAL and ETLook models, though specifically for WRC Project TT 745/17 (Van Niekerk et al 

2018). The dataset consists of ET data at 250 m spatial resolution at monthly intervals (mm/month), 

from August 2014 to July 2015, and was continuously calibrated throughout the project to account for 

the highly diverse climatic regions of South Africa. Further details can be found in WRC report TT 745/17 

(Van Niekerk et al 2018). 

3.2.2.3 FruitLook 

FruitLook, an online RS analysis service funded by the Western Cape Department of Agriculture 

(WCDOA), assists farmers in agricultural decision-making at field level. A core component of this 

service is the provision of actual ET data. All FruitLook ET datasets are generated by eLEAF using the 

ETLook and METEOLOOK models (Bastiaanssen et al. 2012; Pelgrum et al. 2011) and satellite imagery 

from various platforms (Landsat 5, 7 and 8, MODIS, VIRRS, Deimos, UK-DMC-2, Sentinel 2). The 

satellite data and data processing are described in more detail by Goudriaan (2014) and Jarmain et al. 

(2011). 

FruitLook ET datasets are available as a series of 20 m spatial resolution images provided at weekly 

intervals on a seasonal basis since 2011. Unlike WaPOR, temporal coverage varies from season to 

 
10 https://wapor.apps.fao.org/home/WAPOR_2/1 
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season, with coverage from October to April in the 2011/12 to 2015/16 seasons, August to April in the 

2017/18 season, and August to July in the 2018/19 season. The spatial coverage of the images is also 

limited, covering only fruit and wine producing areas of the Western Cape (WC) in the 2011/12 to 

2015/16 seasons, but expanded to cover the majority of the WC from the 2017/18 season onwards. For 

comparison purposes, this dataset was converted to a monthly dataset (mm/month). 

3.2.2.4 MOD16 ET data 

The MODIS Global Evapotranspiration Project (MOD16), developed and funded by NASA and the 

United States Geological Survey (USGS), provides freely available ET data since 2000 through the 

AppEEARS DAAC data portal10F

11. This dataset is created using inputs of daily meteorological reanalysis 

data along with MODIS remotely sensed data products such as vegetation property dynamics, albedo 

and land cover (Running et al 2017). ET values are derived using an algorithm that is based on the 

logic of the Penman-Monteith equation (Running et al 2017) and is available at 500 m spatial resolution 

with 8-day cumulative ET values (mm/8-days). For comparison purposes, this dataset was converted 

to a monthly dataset (mm/month) for the months August 2014 to April 2015. This was done by reducing 

the 8-day composites to an ET value per day of the year and adding up the relevant daily values of 

each month. 

3.3 Quantifying water use per compartment 

The first step for the quantification of water use analysis was to extract the monthly WaPOR ET values 

for each plantation compartment. Statistically, the strongest results would be derived from analysing all 

39 219 compartments in the CFDB; however, two factors limited the total number of viable samples. 

First, samples were reduced by temporal limitations, summarised by the age of the compartment 

relative to the water use before and after maturity, and relative to the 10-year limitation of the ET data. 

Second, compartment size was often much smaller relative to the size of the WaPOR ET image pixels 

(250 x 250 m), leading to the likely influence of land covers surrounding these compartments on the 

water use calculations. A sensitivity analysis was conducted to determine the effects of this second 

factor. Data extraction, temporal limitations and the results of the sensitivity analysis are discussed in 

further detail in the following sections. 

3.3.1 Data extraction 

The monthly WaPOR ET data were extracted for all compartments in the CFDB using a GIS process 

called zonal statistics. Here, a chosen statistical value (e.g. average) is calculated from the pixels of a 

given raster (e.g. ET for January 2009) intersecting a series of given zones (e.g. compartment 

polygons). A visual example of the application of zonal statistics for one compartment is illustrated in 

Figure 3-6. 

 
11 https://lpdaac.usgs.gov/tools/appeears/ 
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Figure 3-6 Conceptual overview of using zonal statistics to calculate the average raster value for one 
compartment 

Zonal statistics were used to extract the WaPOR ET for every month of the year for the years 2009 to 

2019 for each of the 39 219 compartments. 

3.3.2 Temporal limitations 

It is known that forest age affects ET (i.e. young forests generally use less water), so the samples should 

preferably be representative of compartments ranging from planting and increasing in age to maturity. 

However, since water use calculations rely on the ET data and the WaPOR ET dataset only extends to 

2009, only ten years of compartment water use could be analysed over time. To remove the effects of 

seasonality (especially as areas of South Africa experienced drought over the last decade), only the 

compartments planted in 2009 were used in the analysis. This limited the number of viable 

compartments from 39 219 to 1 415 but ensured the water use calculations were applied to the first ten 

years of compartment growth (unaffected by the seasonal variation that would have been present with 

variable planting years). Figure 3-7 shows the ages of the compartments in the CFDB. 

 
Figure 3-7 Histogram of compartment (n = 39 216) age in the Commercial Forestry GDB 
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3.3.3 Sensitivity analysis 

The disparity between the average size of plantation compartments (12.6 ha) and ET pixels (6.3 ha), 

as well as the misalignment between compartments and pixel shape (Figure 3-8), raised concerns that 

the average ET values extracted per compartment would not be an accurate or ‘pure’ representation of 

ET in that compartment. This is especially detrimental where compartments are adjacent to water 

bodies, as was observed in Van Niekerk et al (2018). Consequently, a sensitivity analysis was 

undertaken prior to water use calculations to identify the compartments that are suitable for analysis. 

 
Figure 3-8 A comparison between compartments (green lines) and ET pixels (greyscale background) 

Ideally, the effects of mixed pixels during ET extraction should have a negligible effect on the water use 

calculations. A reference dataset of ‘pure pixels’ was required to determine this. 

3.3.3.1 Reference (pure pixel) ET dataset 

The first ET dataset developed was in line with the theory that pixels that were not mixed (i.e. ‘pure’) 

would contain the true ET values of that compartment. Subsequently, all compartments in the CFDB 

that contained entire pixels were identified and the ET of each pixel was extracted (Figure 3-9). Due to 

the smaller size and irregular shapes of the compartments compared to the pixels, this resulted in a 

‘pure pixel’ reference dataset of 3 035 out of the original 39 216 compartments. The majority of the 
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3 035 compartments contained only one entire pixel, but where there were more than one pixel, the ET 

values were averaged. In other words, no mixed pixels were considered in the extraction of ET values, 

resulting in a reference dataset of compartments of ‘rue’ ET values (called Sample A). 

 
Figure 3-9 Example of compartments containing pure (unmixed) pixels used to develop the reference 
dataset 

Only 82 compartments from the 3 035 out of 39 216 (7.7%) compartments containing pure pixels  were 

planted in 2009. This was judged far too few to conduct meaningful statistical analysis on the water use 

among genera, species, climate and terrain. However, this dataset (called Sample B) was deemed 

suitable as a ‘pure pixel’ reference dataset to determine the effects of different approaches selecting 

viable compartments. 

3.3.3.2 Rasterised ET dataset 

The least conservative approach to ET extraction would be to make use of all pixels that intersect the 

compartments, even if only by the smallest fraction. This would entail the selection of all 39 219 

compartments, which would also maximise the mixed pixel effect. Instead, a compromise between using 

all compartments and using only pure pixel compartments was attempted with the use of rasterisation. 

Rasterisation involves the conversion of vector data (compartments) to a raster (ET pixels). In this 

instance, compartment polygons were rasterised to exactly match the cell grid of the 250 m ET images 

(Figure 3-10). Pixels were included in compartment conversion only if the majority (>50%) of the pixel 
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fell within that compartment. The hypothesis of this approach was that the impact on ET by surrounding 

land covers would always be half or less than it would be if mixed pixels were included. The rasterisation 

of the 32 216 compartments resulted in 26 102 compartment polygons, with the reduction due to no 

pixel majority falling within a compartment (often very small or thin compartments). Of the 1 415 

compartments planted in 2009, 876 rasterised compartments were retained. This number of 

compartments was judged suitable for the water use analysis, provided the mixed pixel effect on the 

ET values per compartment was not significant. 

 
Figure 3-10 Example of rasterised compartments 

3.3.3.3 Statistical analysis 

The extracted ET values of the reference (pure pixel) and rasterised datasets were compared 

compartment-for-compartment using t-tests, time series graphs and histogram comparisons to quantify 

the impact of the mixed pixel effect during rastersiation. A t-test is a statistical hypothesis test used to 

determine whether two samples are significantly different from one another. The results of a t-test are 

returned as a probability value (p-value) that the means of the two datasets are significantly different, 

which is compared against a significance level specified by the tester. If the p-value is lower than the 

significance level, the null hypothesis is rejected and the difference is considered statistically significant. 

In this case, the null hypothesis was defined as: there is no significant difference between the reference 

(pure pixel) and rasterised datasets. A significance level of a conventional 5% (i.e. there was a 5% 

probability of rejecting the null hypothesis when it is true) was set. 
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Two t-tests were conducted. The first t-test compared the ET values of all 3 035 compartments of the 

reference dataset to that of the rasterised dataset (Sample A) on a month-by-month basis from 2009 to 

2019. For example, the 3 035 compartments for January 2009 in the reference dataset were compared 

to the same 3 035 compartments for January 2009 in the rasterised dataset. The resulting p-values per 

month are shown in Table 3-1. 

Table 3-1 P-values per month for reference vs rasterised dataset comparison (Sample A) 

 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

January 0.66 0.69 0.72 0.76 0.78 0.67 0.84 0.50 0.94 0.78 0.41 

February 0.85 0.91 0.83 0.58 0.74 0.57 0.62 0.31 0.85 0.94 0.64 

March 0.62 0.89 0.82 0.96 0.87 0.57 0.68 0.45 0.97 0.60 0.99 

April 0.84 0.82 0.91 0.91 0.59 0.74 0.65 0.64 0.85 0.57 0.65 

May 1.00 0.90 0.88 0.90 0.53 0.80 0.54 0.64 0.60 0.98 0.42 

June 0.69 0.65 0.77 0.89 0.82 0.68 0.52 0.69 0.55 0.82 0.50 

July 0.63 0.36 0.49 0.42 0.72 0.45 0.33 0.58 0.81 0.87 0.69 

August 0.23 0.12 0.14 0.07 0.27 0.25 0.09 0.22 0.42 0.33 0.07 

September 0.14 0.08 0.10 0.07 0.15 0.18 0.12 0.11 0.09 0.16 0.11 

October 0.18 0.11 0.13 0.13 0.13 0.18 0.24 0.16 0.23 0.20 0.08 

November 0.22 0.18 0.13 0.23 0.23 0.32 0.28 0.25 0.35 0.15 0.10 

December 0.52 0.36 0.22 0.69 0.64 0.49 0.26 0.62 0.51 0.11 0.20 

The p-values were greater than the specified 0.05 significance level for all months, indicating that all 

tests failed to reject the null hypothesis. In other words, there was no significant difference between the 

ET values in the 3 035 compartments in the reference and rasterised datasets in any of the 137 months 

analysed. 

To further confirm these findings, a second t-test was conducted specifically on the 82 pure pixel 

compartments planted in 2009 (Sample B). This sample consisted of 45 Eucalyptus, 36 Pinus, and one 

Acacia compartment. The two primary genera, Eucalyptus and Pinus, were compared separately to 

determine if genera affected the ET mixed pixel sensitivity (Acacia was discarded due to too few 

compartments). For all compartments in both datasets (Sample A and B), the ET values for each month 

from January 2009 to December 2009 were averaged. All 137 months of the reference datasets were 

then compared to the rasterised dataset in order to obtain a p-value for each genus. The p-values 

obtained for Eucalyptus and Pinus compartments were 0.56 and 0.91, respectively. In both cases the 

p-values were greater than the specified 0.05 significance level, indicating both tests failed to reject the 

null hypothesis. In other words, there was no significant difference between the pure pixel compartment 

ET values between reference and rasterised datasets for either Eucalyptus or Pinus. 

These results are supported by a graphical analysis of the two datasets. Figure 3-11 and Figure 3-12 

show the monthly time series of ET for the reference and rasterised datasets for Eucalyptus and Pinus, 

respectively. 
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Figure 3-11 ET time series reference vs rasterised comparison for Eucalyptus 

 

 
Figure 3-12 ET time series reference vs rasterised comparison for Pinus 

Visual assessment of the ET time series of the genera reveals very little difference between the 

reference and rasterised datasets. This is further supported when assessing the histograms of the data. 

Figure 3-13 and Figure 3-14 show a histogram comparison of the monthly ET values between the 

reference and rasterised datasets for all compartments for June and December 2019. 

As can be seen in Figure 3-13, the distribution of ET values between the two datasets matches fairly 

closely. The exception is of compartments with 20-30 mm/month actual ET, which were reduced during 

the rasterisation process. Despite this, overall actual ET averages between the two datasets during the 
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winter months are minimal, with 62.4 mm/month and 62.8 mm/month for the reference and rasterised, 

respectively. 

 
Figure 3-13 Actual ET histogram for June 2019 

As can be seen in Figure 3-14, the distribution of compartment ET values between the two datasets 

matches closely. A similar trend was seen in June, where compartments with more extreme ET values 

are slightly reduced during the rasterisation, while compartments closer to the mode are slightly 

increased. Again, the effect on the overall actual ET averages is negligible, with 101.5 mm/month and 

100.6 mm/month for the reference and rasterised datasets, respectively. 

 
Figure 3-14 Actual ET histogram for December 2019 

In conclusion, the sensitivity analysis definitively shows that the mixed pixel inclusion during the 

rasterisation of the compartments resulted in minor but statistically insignificant differences in the ET 
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values that were extracted in each compartment. Additionally, the constraint imposed by rasterisation 

retained enough (876) compartments planted in 2009 to provide a statistical representation of the ET, 

even when analysed by genera, age, terrain or climate. The rasterised compartment dataset was 

therefore used in all the water quantification calculations described in the following sections. 

3.3.4 ET dataset comparison 

The WaPOR ET dataset was selected for the water use calculations in this study due to its national 

coverage, more than 10-year timespan, recognised ET modelling approach (ETLook) and the fact that 

it is freely available. Other ET datasets covering South Africa are the WRC 2014/15 ET dataset 

developed for WRC Project TT 745/17 (Van Niekerk et al 2018) and the MODIS Global 

Evapotranspiration (MOD16) dataset. Each dataset uses different empirical models and ancillary data 

to derive ET values and are available for different spatial extents, timespans and frequencies, and at 

varying spatial resolutions (see Section 3.2.2 for more details). Although the WaPOR (250 m), WRC 

2014/15 (250 m) and MOD16 (500 m) data cover the entire South African territory, the analysis period 

was, however, limited by the WRC dataset, which is only available for one season. Using the 26 102 

rasterised compartments (Section 3.3.3), zonal statistics was used to extract the average ET values 

from all three datasets on a monthly timestep from August 2014 to July 2015. The ET values extracted 

from the MOD16 product were in some cases unrealistic due to some anomalies (inconsistent ‘nodata’ 

values). The data were consequently cleaned by removing all negative values and all values above 

200 mm/month. 

Figure 3-15 compares a time series of the mean ET per month for each dataset. The WRC 2014/15 ET 

dataset is likely the most accurate of the three, as it was calibrated using seasonal climatic data 

captured by 239 weather stations around the country. The WaPOR values are higher than those of the 

WRC 2014/15 dataset during autumn, winter and spring (especially September), but the two datasets 

correspond well during summer. The MOD16 ET values are much higher than those of the other two 

datasets during summer but corresponds well with the WRC 2014/15 dataset during the autumn and 

winter. It is noticeable that the monthly ET values are always higher than 40 mm/month, even though 

the period was very dry. This is because these values represent the mean of multiple stands. It is 

possible that some of the stands had very low, or even zero, ET during this period.  
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Figure 3-15 WaPOR compared to the WRC 2014/15 and MOD16 mean monthly ET 

The ET histograms for selective months of each season (October, January, April and July) are shown 

in Figure 3-16 to Figure 3-19. It is clear that the MOD16 ET estimates for summer (January) was much 

higher than those of the other two datasets, with more than 40% of the compartments having monthly 

ET values exceeding 150 mm/month. MOD16 estimates for spring (October) were also higher than 

those of the other datasets (up to 150 mm/month), while most of the WRC 2014/15 ET values range 

between 40 and 90 mm/month. 

 
Figure 3-16 WaPOR, WRC 2014/15 and MOD16 ET histogram comparison for October 2014 
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Figure 3-17 WaPOR, WRC 2014/15 and MOD16 ET histogram comparison for January 2015 

 

 
Figure 3-18 WaPOR, WRC 2014/15 and MOD16 ET histogram comparison for April 2015 

 

 
Figure 3-19 WaPOR, WRC 2014/15 and MOD16 ET histogram comparison for July 2015 
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The differences in ET between the three datasets are attributed to the different input datasets (weather, 

RS, vegetation, landcover) used in their modelling. However, the lower (500 m) resolution of the MOD16 

data is likely a contributing factor as the mixed pixel effect (Section 3.3.3) will be much higher compared 

to those of WaPOR and WRC 2014/15, which both have a resolution of 250 m. 

This comparison highlights the complexity of these models and the varying results generated for the 

same area and land use. Considering only central values (e.g. median) (Figure 3-15) hides the 

differences in the frequency distribution of ET values. The comparisons suggest that the WaPOR 

dataset overestimates ET from forests during winter by around 10-30 mm/month. However, given that 

the majority of the 26 102 rasterised compartments are located in the summer rainfall area (KwaZulu-

Natal and Mpumalanga), the impact of this overestimation is expected to be limited. 

3.4 Water use validation 

In this section, median monthly and annual evapotranspiration (ET) estimates are compared for Acacia, 

Eucalyptus and Pinus (Pine). These ET estimates were extracted from the CFDB using the rasterised 

compartments (see the previous section) for the first ten years of rotation growth and period 1 January 

2009 to 31 December 2019. These results are compared to published ET estimates from previous water 

use studies carried out in South Africa. 

3.4.1 Monthly and annual ET statistics 

Table 3-2 summarises the 10-year mean, median and standard deviation for monthly and annual ET 

estimates. The mean annual ET for Eucalyptus over the 10-year period is higher than that of Acacia 

and Pinus. Eucalyptus recorded a mean annual ET of 1 131±256 mm/year, followed by Pinus at 

1 035±260 mm/year (8% lower than Eucalyptus) and Acacia at 1 091±196 mm/year (2% lower than 

Eucalyptus). Median and mean ET estimates for the respective genera are similar (Table 3-2). Monthly 

median and mean ET estimates for the three genera did not vary much over the 10-year period. The 

winter monthly (July) median ET estimates for Pinus, Acacia and Eucalyptus were 52, 57 and 63 

mm/month respectively. Regarding summer monthly (January) median ET estimates, Pinus, Eucalyptus 

and Acacia respectively recorded 115, 120 and 122 mm/month. 
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Table 3-2 Summary statistics of evapotranspiration (ET) for selected Acacia, Eucalyptus and Pinus 
compartments extracted in this study, according to month and year, based on the period 
1 January 2009 to 31 December 2020 

 ACACIA EUCALYPTUS PINUS 
 MONTH  MEDIAN MEAN SD MEDIAN MEAN SD MEDIAN MEAN SD 

JAN 122 123 25 120 119 28  115 116 30  
FEB 109 111 23 109 110 26  104 104 26  
MAR 105 107 21 106 108 27  99 100 26  
APR 81 82 17 82 85 24  77 78 22  
MAY 74 74 17 76 78 24  68 69 21  
JUN 58 59 16 61 65 24  53 54 20  
JUL 57 59 18 63 66 26  52 54 22  
AUG 74 74 20 81 82 27  68 69 25  
SEP 87 88 23 93 95 32  82 84 30  
OCT 93 93 25 97 99 31  91 92 30  
NOV 103 103 25 104 105 31  101 101 30  
DEC 115 115 24 115 115  29 111 111 31  

ANNUAL 1096 1091 196 1123 1131 256 1038 1035 260 
Note: SD = Standard deviation; Units for all values are mm/month 
 

The annual ET for all three genera (Figure 3-20) shows a normal (frequency) distribution with values 

ranging from about 400 to more than 1 600 mm/year. It is clear from Figure 3-20 that Acacia shows a 

higher frequency of ET estimates close to the mean in comparison to the other two genera. While Pinus 

has a higher frequency of lower ET values (less than 900 mm/year), Eucalyptus has a higher frequency 

of ET values exceeding 1 400 mm/year. It should be noted that the different number of compartments 

(samples) used to generate these statistics (n=416 for Acacia, n=9178 for Pinus and n=16 444 for 

Eucalyptus) (Figure 3-20) would have an impact on the ET statistics. The standard deviations of annual 

ET (expressed as a % of the mean annual ET) for all the genera is high. The mean annual standard 

deviation for Eucalyptus, Pinus and Acacia is 25% (256 mm/year), 23% (260 mm/year) and 18% (196 

mm/year), respectively (Table 3-2). The mean annual standard deviation for Eucalyptus, Pinus and 

Acacia is 25% (256 mm/year), 23% (260 mm/year) and 18% (196 mm/year), respectively (Table 3-2). 

These large standard deviation values can be attributed to varying conditions, for example climate, age 

of plantations, soil depth and water availability. 
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Figure 3-20 Frequency distribution of the median annual ET (mm) for selected Acacia (A), Eucalyptus 
(E) and Pinus (P) compartments, for the period 1 January 2009 to 31 December 2019 

Frequency distributions of monthly median ET estimates are depicted in Figure 3-21 and Figure 3-22. 

Monthly summer median ET estimates occasionally exceed 200 mm/month (equivalent to 6.5 mm/day) 

and monthly winter median ET estimates exceed 150 mm (equivalent to 4.8 mm/day). ET estimates for 

the three genera seem to differ most in the winter months (June, July, August) when soil moisture 

availability is likely to differ and tree growth is slower (Table 3-2, Figure 3-21 and Figure 3-22). 
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Figure 3-21 Frequency distribution of the median monthly ET (mm/month), months January to June, for selected Acacia, 

Eucalyptus and Pinus compartments, summarised for the period 1 January 2009 to 31 December 2019 
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Figure 3-22 Frequency distribution of the median monthly ET (mm/month), months July to December, for selected Acacia, 

Eucalyptus and Pinus compartments, summarised for the period 1 January 2009 to 31 December 2019 
 

3.4.2 Comparison of ET statistics with data from previous studies 

Table 3-2 highlights the seasonality in the ET estimates of the different genera, from low median winter 

ET values to high summer median ET estimates for the period considered. 

Figure 3-23 is based on previous research conducted at the catchment scale, considering the water 

balance where streamflow and precipitation were measured (Dye 1996). Dye (1996) noted differences 

in ET from E. grandis and Pinus spp. following afforestation (Figure 3-23), with ET of E. grandis showing 

a dramatic increase in ET during initial growth and canopy closure, compared to a relatively slow early 

growth for Pinus spp. Dye (1996) further highlights that the ET after canopy closure (flattening lines) 
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varies substantially between the plantations illustrated in Figure 3-23 and attributes these variations to 

differences in mean annual precipitation. Nevertheless, the annual ET values shown in Figure 3-23 

compare well with those in Table 3-2, where the median of Eucalyptus compartments was quantified 

as being 1 123 mm/year, with a standard deviation of 256 mm/year, and Pinus compartments having a 

median annual ET of 1 038 mm/year. 

 

 
Figure 3-23 Trends in post afforestation ET recorded from seven paired catchments in South Africa, 
representing different forestry regions 

Clulow et al. (2011) captured the seasonality in ET for A. mearnsii. ET ranges between minimum 

monthly values in June of ~50 mm/month and maximum ET estimates in December/January of ~150 

mm/month were noted (Figure 3-24). These ET estimates compare well with statistics extracted for 

Acacia (Figure 3-20), where median ET values range between 57 and 122 mm/month and mean 

monthly ET estimates between 59 to 123 mm/month. 

 

Taken from (Dye, 1996) and based on 
original research from Bosch and 
Gadow, 1990; Smith and Scott, 1992 
and Versfeld, 1993) 
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Figure 3-24 Monthly ET (shown here as negative evaporation) in mm/month from an A. mearnsii stand 

Table 3-3 summarises ET and transpiration (T) estimates from nine publications containing annual ET 

(and T) estimates; in some cases, for the same forestry stand. The ET presented was estimated (mainly 

measured) using surface energy balance methods (e.g. scintillometry, Bowen Ratio), RS models (e.g. 

SEBAL) and the catchment water balance (WB). Data was available for the main forestry provinces and 

estimated for forestry compartments and alien invasive plant (AIP) stands of the same genera. 

The annual ET estimates summarised in Table 3-3 show a large range: from 575 mm/year (precipitation 

= 865 mm/year) for Eucalyptus (Meijninger and Jarmain 2014) to 1 618 mm/year (precipitation 860 

mm/year) also for Eucalyptus (Jarmain and Everson 2002) (Table 3-4). The latter was for a four- to five-

year-old fast-growing forestry stand. 

 

 

Source: Clulow et al., (2011) 
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Table 3-3 Summary of Evapotranspiration, ET (and Transpiration, T) data from three main forestry Genera: Acacia, Eucalyptus and Pinus 

Genus Species ET/T ET / T 
Mean* 

ET 
/ T 

SD* 

Province P 
Mean* 

P 
SD*  

Reference Plan 
/AIP 

Meas/ 
Mod 

Other 

A A. mearnsii ET 
  

KZN 
  

Clulow et al. 2011 Plan Meas ET (Dec/Jan) = 150 mm/month; 
ET (Jun) = ~50 mm/month 

A A. mearnsii ET  1240 
 

KZN 874 
 

Dye and Jarmain (2004) 
Jarmain and Everson (2002) 

Plan  Meas 
 

A A. mearnsii ET  1364 
 

KZN 616 
 

Dye and Jarmain (2004) 
Jarmain and Everson (2002) 

Plan  Meas 
 

A A. mearnsii ET  1239 
 

KZN 1016 
 

Dye and Jarmain (2004) 
Jarmain and Everson (2002) 

Plan  Meas 
 

A A. mearnsii ET  1048 
 

KZN 860 
 

Dye and Jarmain (2004) 
Jarmain and Everson (2002) 

Plan  Meas 
 

A A. mearnsii ET 951 
 

KZN 1071 
 

Everson et al. (2007) Plan Meas 
 

A A. mearnsii ET 793 
 

KZN 897 
 

Everson et al. (2007) Plan Meas 
 

A A. mearnsii ET 1121 
 

KZN 1170 
 

Everson et al. (2007) Plan Meas 
 

A A. mearnsii ET 705 
 

KZN 659 
 

Everson et al. (2007) Plan Meas 
 

A A. mearnsii ET 701 
 

KZN 727 
 

Everson et al. (2007) Plan Meas 
 

A A. mearnsii ET 1038 
 

KZN 1139 
 

Everson et al. (2007) Plan Meas 
 

A A. mearnsii ET 1242 
 

KZN 869 
 

Everson et al. (2014) Plan Meas ET (Jun): 52 mm/month; 
ET (Dec):136 mm/month; 

ETmax: 8.5 mm/day 
A A. mearnsii ET 1171 

 
KZN 914 

 
Everson et al. (2014) Plan Meas 

 

A A. mearnsii ET 1173 
 

KZN 765 
 

Everson et al. (2014) Plan Meas 
 

A A. mearnsii ET 1132 
 

KZN 587 
 

Everson et al. (2014) Plan Meas 
 

A A. mearnsii ET 1143 
 

KZN 856 
 

Everson et al. (2014) Plan Meas 
 

A A. mearnsii ET 1088 
 

KZN 846 
 

Everson et al. (2014) Plan Meas 
 

A A. mearnsii ET 1157 
 

KZN 862 
 

Everson et al. (2014) Plan Meas 
 

A A. mearnsii T 
     

Dye and Jarmain (2004) AIP T meas; ET mod Max:T 7 mm/day 
A A. mearnsii ET 1503 

 
WC  

 
Dye and Jarmain, (2004) AIP ET mod 

 

A A. mearnsii ET 1260 
 

KZN 
 

 Dye and Jarmain (2004) AIP ET mod 
 

A A. mearnsii ET 
  

WC  
 

Dye and Jarmain, (2004) AIP T meas Tmax: 5-6 mm/day; 
Tmin:3 mm/day 

A A. mearnsii ET 925 225 WC 650 140 Meijninger and Jarmain (2014) AIP RS mod 
A A. mearnsii ET 740 145 KZN 870 135 Meijninger and Jarmain (2014) AIP RS mod 
A A. mearnsii ET 615 140 KZN 900 125 Meijninger and Jarmain (2014) Plan RS mod 
E E. dunnii T 673 

 
MP 704 

 
Dye (2013) Plan Meas 

 

E E. grandis T 1231 
 

MP 1459 
 

Dye (2013) Plan Meas 
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Genus Species ET/T ET / T 
Mean* 

ET 
/ T 

SD* 

Province P 
Mean* 

P 
SD*  

Reference Plan 
/AIP 

Meas/ 
Mod 

Other 

E E. grandis ET 1063 
 

MP 1611 
 

Dye (1996) Plan WB meas 
E E. grandis ET 891 

 
MP 1135 

 
Dye (1996) Plan WB meas 

E E. dunii, E. macarthurii ET 1246 
 

KZN 874 
 

Jarmain and Everson (2002) Plan Meas 
 

E E. dunii, E. macarthurii ET 1588 
  

616 
 

Jarmain and Everson (2002) Plan Meas 
 

E E. dunii, E. macarthurii ET 1428 
 

KZN 1016 
 

Jarmain and Everson (2002) Plan Meas 
 

E E. dunii, E. macarthurii ET 1618 
  

860 
 

Jarmain and Everson (2002) Plan Meas 
 

E E. grandis T 1347 
 

MP 
  

Dye et al. (2008) Plan Meas Tmax (summer): 7 mm/day 
E E. grandis T 

  
MP 

  
Dye et al. (2008) Plan Meas T (winter): ~2.5 mm/day 

E Eucalyptus spp.  ET 945 230 WC 860 250 Meijninger and Jarmain (2014) AIP RS mod 
E Eucalyptus spp.  ET 575 195 KZN 865 65 Meijninger and Jarmain (2014) AIP RS mod 

E Eucalyptus spp.  ET 690 190 KZN 935 130 Meijninger and Jarmain (2014) Plan RS mod 
P P.patula ET 918 

 
MP 1135 

 
Dye (1996) Plan WB meas 

P P.patula ET 942 
 

WC 1473 
 

Dye (1996) Plan WB meas 
P P.patula ET 818 

 
KZN 1578 

 
Dye (1996) Plan WB meas 

P P.patula ET 703 
 

WC 1296 
 

Dye (1996) Plan WB meas 
P P.patula ET 764 

 
WC 1427 

 
Dye (1996) Plan WB meas 

P Pinus patula  944 
 

Swaziland 1357 
 

Dye et al. (2008) Plan Mod 
 

P Pinus spp.  ET 735 215 WC 790 205 Meijninger and Jarmain (2014) Plan RS mod 
P Pinus spp.  ET 650 155 KZN 935 130 Meijninger and Jarmain (2014) Plan RS mod 

NOTES: ET and T are shown in mm/year, with occasional daily or monthly datasets. KZN refers to KwaZulu-Natal, WC to Western Cape, MP to Mpumalanga and NP to Northern Province. Data is either measured (Meas) or 
modelled (Mod), where RS refers to remote sensing techniques and WC to the catchment water balance. Data are shown for stands of Alien Invasive plants (AIP) or plantations (Plan). A = Acacia; E = Eucalyptus; P = Pinus; * 
mm/year
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Considering Acacia only, a genus studied in detail over the past 20 years, the annual ET ranged 

between 615 mm/year (Meijninger and Jarmain 2014) (KZN) and 1 503 mm/year for an AIP stand in 

the WC (Dye and Jarmain 2004). This wide range in annual ET is due to differences in climatic 

conditions, the density of tree stands, and soil water availability (Table 3-3, Figure 3-25). Everson et al. 

(2007) and Everson et al. (2014) monitored the ET of an Acacia compartment for over a decade through 

different growth and management stages. They recorded annual ET estimates ranging between 701 

and 1 242 mm/year (Table 3-3). ET estimates statistics for Acacia in this study (median ET = 1 096 

mm/year, Table 3-2) and maximum annual ET estimates to 1 600 mm/year, Table 3-2) are in line with 

those from literature (Figure 3-25) and compare well to the ET statistics extracted for Acacia in this 

study (median ET = 1 096 mm/year, Table 3-2). 

For Eucalyptus, data from previous studies show annual ET estimates between 575 and 1 618 mm/year, 

with a mean annual ET of 1 116 mm/year (Table 3-3, Figure 3-25). Comparably, the transpiration 

estimates from literature for Eucalyptus ranged between 673 and 1 347 mm/year (Table 3-3). The 

median annual ET and ET range (1 123 mm; 500-1 800 mm) estimated for Eucalyptus as part of this 

study (using RS data from a 10-year period and considering multiple forestry compartments across 

South Africa) fall within this annual ET range from literature. 

For Pinus, data from past studies in SA considered here (Table 3-3) show a range in annual ET of 650 

to 944 mm/year, which is lower than that recorded for Acacia and Eucalyptus in other studies (Table 

3-3, Figure 3-25). These results from past studies are in agreement with the lower median annual ET 

estimate for Pinus found in this study (1 038 mm/year) (Table 3-2) and the higher frequency of lower 

annual ET values (Figure 3-25) of less than 900 mm/year, compared to Acacia and Eucalyptus. 

However, the results from the current study show higher ET estimates (Figure 3-20) for Pinus than 

reported in the literature (Table 3-3). 



 

46 
 

Acacia, Eucalyptus and Pinus 

 

Acacia 

 
ETmax mm/year 1503 

ETmin mm/year 615 

ETmean mm/year 1061 

ETstdev mm/year 232 

ETcount # 22 
 

Eucalyptus 

 
ETmax mm/year 1618 
ETmin mm/year 575 

ETmean mm/year 1116 
ETstdev mm/year 378 
ETcount # 9 

 

Pinus 

 
ETmax mm/year 942 
ETmin mm/year 650 

ETmean mm/year 790 
ETstdev mm/year 109 
ETcount # 7 

 

Figure 3-25 Frequency distribution of annual ET recorded from Acacia, Eucalyptus and Pinus in past 
studies and as summarised from a literature review (Table 3-3). Summary statistics are shown. ETmax, 
ETmn, ETmean, ETstdev and ETcount refer to maximum, minimum, mean standard deviation and number 
of ET samples respectively. 
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Rainfall data were not readily available for comparison to ET estimates. However, several South 

African studies compared annual ET or tree water use estimates together with annual rainfall and 

streamflow estimates. Dye and Bosch (2000) noted that the upper limit of ET is often set by rainfall, 

except where there is a significant storage of soil water from previous years (based on work by Scott 

and Lesch (1997)). Hence, where trees can access a soil water store, annual estimates of ET can 

exceed annual estimates of rainfall. The long-term catchment experiment at Two Streams, South 

Africa (Everson et al. 2014) shows the sustained impact of afforestation on streamflow in a catchment. 

Everson et al. (2014) recorded tree water use and ET estimates exceeding rainfall for sustained 

periods, ranging from an ET excess of 32% following planting of A. mearnsii trees to an ET excess of 

22% from a maturing A. mearnsii stand; prior to planting the ET excess was as high as 46%. They 

monitored soil water content in the upper 2.4 m soil profile and found a steady decline in soil water 

content, though it cannot account for the full ET excess. Everson et al. (2014) found A. mearnsii roots 

to a depth of >8 m, suggesting the trees had access to soil water stores beyond the depth monitored. 

 

It is important to note that the current study used average ET per compartment. The spatial variation 

within a compartment was not considered. Everson et al. (2014) confirmed data from a review on 

catchment streamflow by Scott and Lesch (1995). Both these publications show the impact of 

clearance of forest within and outside of the riparian zones and that streamflow was enhanced 

proportionately more following the removal of riparian trees than following removal of non-riparian 

trees. This is attributed to the greater rate of water use by riparian trees compared to higher lying 

trees. Everson et al. (2014) further showed that annual tree water use from south-facing slopes were 

lower than that from north-facing slopes due to differences in available solar and net radiation. 

3.5 Environmental factor mapping and extraction 

The per-compartment water use estimations were compared to a range of environmental (terrain and 

climatic) variables to determine whether these conditions impact water use. The variables and the data 

sources considered are listed Table 3-3. In many cases the original data were continuous, which 

required reclassification into meaningful categories. In some instances, the nominal classes were 

simplified. 
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Table 3-4 Environmental variables considered for explaining water use variations 

Type Variable Source Classification 

Terrain 

Slope gradient Van Niekerk (2015) 
Level/gently inclined (0-10%) 

Moderately inclined/steep (10-56%) 
Very steep (>56%) 

Slope aspect Van Niekerk (2015) 

North 
East 

South 
West 

Terrain morphology Schulze (2007) 
Plains/flat 

Hilly/undulated 
Mountainous 

Climate 

Rainfall seasonality Schulze (2007) 

All year 
Winter 

Early summer 
Mid summer 
Late summer 

Very late summer 

Climate zones 
(Köppen) Schulze (2007) 

Arid, hot and dry (BWh) 
Arid, cool and dry (BWk) 

Semi-arid, hot and dry (BSh) 
Semi-arid, cool and dry (BSk) 

Summers long dry and cool (Csb) 
Summers long, dry and hot (Csa) 

Wet all seasons, summers long and hot (Cfa) 
Wet all seasons, summers long and cool (Cfb) 

Winter long, dry and hot (Cwa) 
Winter long, dry and cool (Cwb) 

Tropical wet, dry and winter season (Aw) 

Annual rainfall Schulze (2007) 

Low (< 600 mm) 
Medium (600-800 mm) 
High (800-1 000 mm) 

Very high (> 1 000 mm) 

 

Slope gradient and aspect were sourced from the SUDEM and reclassified as indicated in Table 3-3. 

The climate variables (annual rainfall, rainfall seasonality, climate zones), as well as the morphological 

units, were sourced from the South African atlas of agrohydrology and -climatology (Schulze, 2007). 

The morphological units were reclassified (simplified) as indicated in Table 3-5 
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Table 3-5 Reclassified terrain morphology units 

Original units Simplified units 

Moderately undulating plains 
Plains Plains/flat 

Undulating hills and lowlands 
Undulating hills 

Irregular undulating lowlands and hills 
Strongly undulating irregular land 

Hilly/undulated 

Low mountains 
Highly dissected low undulating 

mountains 
Undulating mountains and lowlands 

Mountains and lowlands 
High mountains 

Mountainous 

The environmental conditions of each compartment were determined by extracting the dominant (mode) 

value from each of the variables listed in Table 3-3. These attributes were stored in the CFDB and used 

in the water use estimation analyses (Section 5). 
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4 PLANTATION FOREST MAPPING USING REMOTE SENSING 

This project made use of existing databases of forest compartments supplied by commercial companies 

(Section 3.1.1). The data were ideal for the purposes of this project, as it represent a large proportion 

of the commercial forests in South Africa – which was the focus of this study. However, the data do not 

represent smaller, independent growers and communal forests. Smaller companies are unlikely to keep 

plantation records (forest inventories), making it difficult to obtain in situ data of their forests. Currently, 

forests are monitored every three years according to national indicators and criteria such as the 

development and maintenance of forest resources, biological diversity in forests, the health and vitality 

of forests, the productive functions of forests, the protective and environmental functions of forests, and 

the social functions of forests (Government of South Africa 1998). Forestry data are collected through 

questionnaires that assess the use of forest resources on communal land and through licences. These 

methods do not provide a comprehensive and up-to-date overview of forestry activities in South Africa. 

Mapping plantation forests over large areas and extracting pertinent information per compartment, such 

as planting date and genus, would support national reporting and regulatory activities. It will also allow 

for the water use quantification methods described in the previous section to be applied to all forests in 

South Africa and even in other countries. A number of student (capacity building) projects were 

consequently initiated as part of this larger WRC project to investigate how RS technologies can be 

used to cost-effectively extract forest compartment information at regional scales. These projects 

focussed on mapping plantation forests (e.g. identifying the location and extent of compartments) and 

extracting compartment characteristics (e.g. age and genus). An overview of these activities is provided 

in the following subsections. 

4.1 Plantation forest mapping 

Although the operationalisation of forest plantation mapping is not one of the aims of this project, the 

lack of publicly available forest data to support land- and water use decisions highlights the need for 

developing EO techniques that can potentially be used to map forests, amongst other land covers, at 

regional and national scales. Also, while the data obtained from the forestry industry represent the 

current status, EO techniques can potentially be used to generate historical forest plantation maps that 

will be useful for identifying trends in forestry-related land use. If successful, such techniques could also 

be used to generate forest plantation maps at regular intervals (e.g. annually) going forward, which will 

allow for updated water use estimations and water accounting activities. A third motivation for 

developing EO forest plantation mapping techniques is that there is a critical scarcity in EO human 

capacity in South Africa. This situation is worsened by the recent emigration of several key EO 

researchers. Research on the use of advanced EO techniques (e.g. ML) for forest monitoring will 

therefore contribute to building much needed capacity in RS and hopefully inspire the young 

researchers working on the project to become the next generation of EO specialists in South Africa. 

Although the mapping of plantations was the primary goal, the EO methods tested often targeted more 

than just the ‘commercial forestry’ land cover class. Two approaches to land cover mapping were 

investigated: ML and DL, both in a GEOBIA environment. See Section 2.3.4 for more details on these 
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concepts. 

4.1.1 Machine learning 

The use of ML for classifying satellite imagery has received much attention lately. The main reason for 

this is that traditional satellite image classification techniques (e.g. statistical and knowledge-based 

classification) are unsuitable for classifying the enormous volumes of EO data that are currently being 

generated. This section briefly overviews some experiments undertaken to evaluate ML techniques for 

mapping forest plantations. 

Three 100x100 km areas (Sentinel-2 tiles), roughly corresponding to the Knysna, Pilgrims Rest and 

Richards Bay areas (Figure 4-1), were chosen for the initial experiments. 

 
Figure 4-1 Regions in which machine learning experiments were carried out: Knysna, Pilgrims Rest 
and Richards Bay 

Two cloud-free Sentinel-2 images of each area were acquired for April and October 2019, after which 

radiometric calibrations and atmospheric corrections were applied. The images were then 

topographically normalised to counter for variable incidence angles (shadow effects) and the effects of 

the bidirectional reflectance distribution function (BRDF). Several image transformations were applied 

to the normalised imagery, including NDVI, EVI, principal component analysis (PCA), a first principal 

component (PC1) on which was calculated Haralick GLDV entropy, and standard deviation texture 

measures. The 20 m Sentinel-2 bands were resampled to 10 m, and all the features were combined 

into a single analysis ready image stack. Additionally, the first principal component of the RGB (red, 

green, blue) bands of the National Geospatial Information (NGI) aerial photographs was used to 

calculate the same two texture measures as for the Sentinel-2 images. These three layers were also 

added to the stack along with two cross-polarised (VH) and the co-polarised (VV) Sentinel-1 SAR 

images. 

Using the CGA’s Rapid Object Collection and Analysis Tool (ROCAT) (Figure 4-2), GIS operators 



 

52 
 

classified more than 14 000 randomly-selected land cover sample objects falling within the three study 

areas. Initially, the classification scheme consisted of 18 classes, which were later reduced to 8. This 

was done due to the overlap in many of the classes that shared similar physical and spectral properties 

such as Grass and Grass crops as well as Woodland, Bushland and Orchards. 

 
Figure 4-2 The CGA rapid object collection and analysis tool (ROCAT) 

A series of 24 land cover mapping experiments were then performed using the samples to train RF and 

SVM classifiers. A variety of model adjustments were applied to the ML classifiers, including pre-

modelling classification rules (e.g. using an NDVI threshold to reclassify Plantation training objects to 

Soil/Rock where harvest has occurred between analysis dates), different input features (e.g. image 

bands, vegetation indices, image texture, multitemporal Sentinel-2 data and SAR data), classification 

scheme variations (e.g. simplification of Shrubs and Grass to Low vegetation), different weighting of 

input training and validation data (e.g. equally balanced between classes vs distributed according to 

land cover coverage), and the application of post-classification rules (e.g. NDVI thresholds for 

vegetation class fine-tuning). 

The results of the experiments were mixed, with the overall accuracy (calculated with a fairly distributed 

validation dataset) of the best experiment being 76% for an 8-class land cover classification. More 

pertinent to this study, however, was the persistent confusion between the Plantation class with both 

Tall vegetation and Low vegetation, with user accuracies for the Plantation class often being very low. 

This result was disappointing from a forest mapping perspective and explains why the South African 

National land cover (SANLC) products developed by Department of Forestry, Fisheries and the 

Environmental (DFFE) still make use of manually digitised masks for Plantation mapping. 

When the 8-classes were aggregated into Plantation and Non-plantation classes, the overall accuracy 

increased to 97%. While this seems high, it is largely due to the more accurate mapping of the Non-

plantation class, which was heavily weighted (>20 times more samples due to larger extent) compared 

to the Plantation class. A better indicator of accuracy is the kappa statistic (0.37) and the user’s and 
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producer’s accuracies of the Plantation class, which were 65% and 28% respectively. From Figure 4-3, 

it is evident that the model overestimates plantation forests in some areas (shown in orange), 

particularly at the edges of compartments and indigenous forests, while in other areas plantations are 

underestimated (shown in blue). 

 
Figure 4-3 Machine learning classification result of Plantations compared to the MTO boundaries 

From these results it was concluded that the spectral properties of forested land covers are too similar 

to accurately differentiate when using Sentinel-2 imagery. Even advanced ML algorithms such as RF 

and SVM, coupled with large quantities of training samples, were unable to produce acceptable (>80%) 

classifications. The main challenge is to differentiate between planted and indigenous forests. When 

the Sentinel-2 imagery was visually compared to VHR imagery (e.g. WorldView), it was clear that the 

structural differences/variations between planted and natural forests were lost at 10 m resolution. 

Although the incorporation of VHR aerial imagery and texture measures assisted the classifiers, this 

data were applied at object level (groupings of pixels), which diminished its impact. It was concluded 

that a computer vision approach – using DL – will likely produce better results. 

4.1.2 Deep learning 

DL and computer vision is routinely used in medicine, engineering and computer science. In principle, 

computer vision attempts to emulate human vision by developing procedures and techniques that can 

recognise patterns and colours in images. When RS operators interpret aerial imagery, they are often 
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able to differentiate planted forests from other land covers as they often have very distinct spatial 

(textural, shape and size), spectral (lightness and hue), and contextual characteristics. CNNs (Section 

2.3.4.2), a type of DL algorithms, attempt to identify and use these unique characteristics to label a 

particular image (or area within an image). In this project, MSc student Mr V Ndyafi carried out a range 

of DL experimentations, applied to VHR colour (RGB) aerial photography, to differentiate between 

indigenous and plantation forests (and other land covers). This subsection briefly overviews the 

approach used, as well as some preliminary results (the research is ongoing). 

One of the main impediments to using DL in RS is the lack of adequate samples to train the models. 

DL algorithms require thousands, preferably millions, of samples per class in order to build robust 

models. Such data are invariably not available for remotely sensed data because it is expensive to 

collect/generate. The development of an automated method for generating a large sample set to train 

a CNN was consequently the first step in this MSc research. The 2020 South Africa National Land 

Cover (SANLC 2020) was used to automatically identify training and validation (reference) sample 

points. First, the SANLC 2020 classes were generalised (reclassified) from 173 to three classes namely, 

Planted forest, Natural woody vegetation and Other. The resulting classified layer was used in a 

stratified random sampling scheme to produce 100 samples per class. Each sampled point was used 

to extract (subset) a 32x32 m patch from 50 cm resolution colour aerial photographs. To artificially 

increase the number of samples per class, each sample patch was rotated in four directions, resulting 

in 100 original plus 300 modified sample patches per class. The 400 sample patches per class were 

used to train the Google TensorFlow CNN algorithm, as implemented in eCognition Developer 10.1. 

The resulting CNN model was applied to a 1:50 000 (about 100x100 km area) tile of aerial imagery to 

produce class probability (membership) maps, also referred to as class heatmaps. The RGB image was 

subsequently segmented into homogenous objects, which were classified based on membership. 

Finally, the accuracy of the classification was assessed using a confusion matrix and derived metrics. 

Experiments are still being carried out, but preliminary results of this methodology are very encouraging. 

Figure 4-4 shows an example of where the model was applied to a large forested area in KwaZulu-

Natal, with an overall accuracy of 92% (Kappa = 0.87). This is remarkable given that only RGB imagery 

was used (i.e. imagery with a very limited spectral resolution) and considering that only 100 (unmodified) 

samples per class were used (compared to the thousands used in the ML – see Section 4.1.1). At closer 

inspection (Figure 4-5), it is clear that some misclassifications do occur. For instance, a number of clear-

felled plantations were incorrectly classified as a planted forest (as seen in the centre of Figure 4-5). This 

is likely due to temporal differences between the aerial photographs (2016) and the 2020 imagery used 

to produce the SANLC 2020. With only 100 samples, sample labelling errors (due to temporal 

differences) can have a significant effect on classification accuracies. 
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Figure 4-4 Convolutional neural network plantation and indigenous forest mapping results in Richards 
Bay, KwaZulu-Natal 

Water bodies are also often confused with (misclassified as) planted forests (as seen in the south of 

Figure 4-5), likely because they are relatively dark and homogenous, similar to plantation forests. 

However, we believe that these issues can be circumvented by producing a larger number of samples, 

visually inspecting the samples prior to classification, and dropping samples that are clearly incorrect. 

Adding a separate class for water bodies is also being investigated. Various experiments are being 

carried out to improve the DL methodology. The intention is to incorporate Sentinel-2 imagery during 

the object-based classification step to further improve the accuracies of the resulting maps. The models 

will also be applied to various regions within South Africa to test its transferability. 
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Figure 4-5 Detailed convolutional neural network plantation and indigenous forest mapping results in 
Richards Bay, KwaZulu-Natal 

4.2 Genus mapping 

Genus information is used in allometric equations for carbon stock estimates and changes (Maniatis et 

al. 2011) (to estimate the biomass and carbon stock levels) (Basuki et al. 2009) and in streamflow 

reduction models (Gush et al. 2002). Genus information is also used for planning, for land management, 

to maximise production by assessing the mean annual increments of growth rates, to assess water use, 

to monitor timber harvests and rotations, and to assist in forest management (Mati and Dawaki 2015). 

Mapping forest plantation genera using RS and ML algorithms is a viable approach to reduce the time 

and cost compared to in situ data collection. Medium resolution imagery used in ML algorithms to 

differentiate between spectrally similar forest plantation species produced low accuracies <63% 

(Franco-Lopez et al. 2001; Stabach et al. 2009). Higher accuracies have been achieved using VHR 

satellite imagery (Francois and Leckie 2006; Immitzer et al 2012; Ke et al.  Pu and Landry 2012), while 

unmanned aerial vehicle (UAV) data (Franklin, Ahmed and Williams 2017; Franklin and Ahmed 2018) 

and/or hyperspectral imagery (Buddenbaum et al.; Bujang and Baharum 2017; Fagan et al. 2015; 

Peerbhay et al. 2013; Voss and Sugumaran 2008) have also been used for this purpose. However, 

VHR, UAV and hyperspectral imagery are often too costly to acquire over large areas and require 

substantial computing power to process, making them less suitable for regional and/or national 

applications. The employment of high-resolution (10-60 m) imagery ― such as those generated by the 
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Sentinel-2 constellation as part of the Copernicus Programme ― is more viable, as it is freely available, 

frequently updated and can be cost-effectively processed on cloud computing platforms such as Google 

Earth Engine (GEE). Nomura and Mitchard (2018) used Sentinel-2 data with supervised classification 

to map seven commercial forest plantation species/genera in Myanmar. They achieved a 95% overall 

accuracy (OA) using an unbalanced training dataset. Mngadi et al. (2019) classified seven species in 

the Clan forest plantation (located in South Africa) using Sentinel-2 bands in a linear discriminative 

analysis (LDA) and achieved an 84% OA. When adding Sentinel-1 vertical-vertical (VV) and vertical-

horizontal (VH) features, the accuracies increased to 87%. 

Image classification is generally done by collecting training data in one image and applying the classifier 

to that same image scene (Knorn et al. 2009). This is problematic when classifying large areas that are 

covered by multiple image scenes, as the training data collection becomes time-consuming and costly. 

In ML modelling, signature extension or generalisation reduces the effort and cost of training data 

collection (Pax-Lenney et al. 2001). Signature extension is the process of training a model on one image 

scene and applying it to other image scenes (Laborte et al. 2010). However, many factors influence its 

effectiveness and it is not known whether signature extension is a viable strategy for mapping forest 

plantation genera over large regions. There is often a trade-off between extension distance and 

classification accuracy, while climatic variations can also negatively influence signature extension 

efficiency. These factors may outweigh the benefits of signature extension in complex regions such as 

South Africa, where forest plantations are sparsely distributed and where climate gradients are dramatic 

(range from subtropical summer rainfall to semi-arid winter rainfall). A further complicating factor is that 

genera are planted in unequal proportions throughout South Africa, with pine trees being favoured in 

the Western and Eastern Cape provinces, while most plantations in KwaZulu-Natal and Mpumalanga 

are planted with Eucalyptus trees. 

To date, no published research has attempted to specifically map Acacia, Eucalyptus, and Pinus genera 

using RS in a South African context. Furthermore, no published research has attempted to use 

signature extension to map forest plantation genera over a large extent in South Africa. An MSc study, 

carried out by Ms C Higgs, that formed part of this project aimed to evaluate RS and ML methodologies 

to map forest plantation genera on a national scale. Specifically, it aimed to assess the importance of 

different sampling strategies on ML accuracies and to investigate the potential of signature extension 

for reducing training sample collection costs. 
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Table 4-1 A summary table showing the overall accuracy, the standard deviation of the overall accuracy, kappa statistic, the standard deviation of the kappa 
statistic, consumer's and user's accuracy and the maximum OA and KS of the 100 iterations per sample size of experiments A to G conducted on Study 
Area 1 (WC) and Study Area 2 (KZN) 

 

Key: Low accuracies  High accuracies; Low Std  High Std; Overall accuracy (OA); Standard deviation (Std); Kappa statistic (KS); Maximum 
(Max); Important results (* Bold text) 
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The research set out two main experiments. The first experiment evaluated the impact of using an even, 

uneven or an area-proportionate training sample configuration and size in a RF ML model for classifying 

Acacia, Eucalyptus, and Pinus compartments. The model was built using Sentinel-2 bands, vegetation 

indices and textural measures (37 features in total). It was found that the study area that contained an 

uneven area planted with Acacia, Eucalyptus, and Pinus trees was classified more accurately, shown 

in Table 4-1, using a balanced training sample configuration (76%), compared to using an unbalanced 

(~ 55%) and area-proportionate training sample configuration (53%). It was also found that a saturation 

point exists where adding more training samples added little value to the OA. The saturation point was 

found to be ~ 57n, where n is the number of features used in the classification. 

The second set of experiments was set out to test the viability of training data signature extension for 

constructing RF ML models to differentiate between Acacia, Eucalyptus, and Pinus trees using Sentinel-

2 imagery as input. The study area was split into 19 Sentinel-2 tiles spanning the Mpumalanga, 

KwaZulu-Natal, Eastern Cape and WC provinces. Three separate RF models were built using training 

data collected in one tile located in Mpumalanga (Experiment 1), one tile located in KwaZulu-Natal 

(Experiment 2), and one tile located in the Eastern Cape (Experiment 3). A fourth model was built using 

training data from all three source tiles (Experiment 4). The four models were applied to all 19 Sentinel-

2 tiles to map forest plantation genera. The overall accuracies from the first three models were 

correlated against rainfall seasonality, extension distance (i.e. distance between the training data and 

the area being classified), and temperature seasonality. Figure 4-6 shows that the OAs decrease as 

extension distance increases, with a general decline of 3%, 6% and 2% per 100 km for Experiment 1, 

2 and 3 respectively. 

The OAs are frequently below 50% when the extension distance exceeded 500 km. The statistical 

relationship between OA and extension distance was strong (R2 = 0.723) in Experiment 2, but very weak 

(R2 = 0.18) in Experiment 3. In general, higher accuracies were obtained for tiles with a similar rainfall 

seasonality to the source tile. In Experiment 1, the statistical relationship between OA and rainfall 

seasonality was stronger (R2 = 0.5) than extension distance (R2 = 0.403), but weaker (R2 = 0.413) in 

Experiment 2. As with extension distance, the relationship with rainfall seasonality was weak (R2 = 

0.098) in Experiment 3. The relationship between OA and temperature is weak (R2 < 0.11) in all three 

experiments. 

In summary, the OAs have the strongest relationship with rainfall seasonality in Experiment 1, whereas 

extension distance was the strongest driver of OAs in Experiments 2 and 3. Temperature has the 

weakest effect on the OA for all experiments. 
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Figure 4-6 Overall accuracy vs distance from the source tile for exp 1 (Tile 4) (a). exp 2 (Tile 10) (b), and 
exp 3 (Tile 17) (c), overall accuracy vs rainfall seasonality index for exp 1 (d), exp 2 (e), and exp 3 (f), and 
overall accuracy vs temperature index for exp 1(g), exp 2 (h), exp 3 (i) 

This is in agreement with Olthof et al. (2005), who generated spectral signatures in a source scene and 

applied them to other scenes. The OAs were strongly affected by extension distance. Similar 

conclusions were drawn by Knorn et al. (2009), who found a 1.9% average decrease in OA as extension 

distance increased by one Landsat scene (i.e. ~ 1% per 100 km), while we observed a mean decrease 

of ~ 4% in OA per 100 km increase in extension distance. 

Our findings are also in agreement with Woodcock et al. (2001), who found that high accuracies can be 

achieved when the source and classified tiles are in the same climatic regions, but when the model is 

applied across different climatic regions, the accuracies decrease. They concluded that the accuracies 

are influenced by extension distance and climatic variation. Our findings show that lower accuracies 

are achieved when models are trained with data collected in areas with different rainfall seasonality to 

the area being mapped. 

The results show that a ~ 70% OA can be achieved if the training data is collected in areas with similar 

climates (rainfall seasonality) to the areas that are being mapped. In addition, it was found that signature 

extension distance (i.e. distance between the training data and the area being classified) should not 

exceed 500 km. 

The guidelines developed in this research can contribute towards regularly mapping forest plantation 

genera at regional scales and with minimal costs. This study purposefully used a composite image 

spanning a year to compare the results of each experiment. However, it is known that multitemporal 
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variables can improve the separability between genera as phonological characteristics can be 

represented (Fagan et al. 2015). Mngadi et al. (2019) also showed that fusing active satellite imagery 

with optical imagery can help ML algorithms to differentiate between forest plantation genera/species. 

It is consequently recommended that multitemporal variables and SAR imagery be considered in future 

studies. However, this will significantly increase the dimensionality of the dataset, and feature selection 

methods to filter out the ineffective bands will likely have to be implemented, which in theory should 

further reduce the number of samples needed to differentiate between forest plantation genera. 

4.3 Compartment age estimation 

Knowing the age of a plantation (planting date) is critical for forest management (rotation scheduling 

and yield estimation). Tree age furthermore has a significant impact on water use (see Section 5.2). 

Compartment age can also be used in land cover mapping to differentiate between indigenous and 

plantation forests, given these two classes often have very similar spectral characteristics, which causes 

substantial confusion during image classification (Section 4.1). The age of (indigenous and plantation) 

forests can be used as an additional discriminator (i.e. forests older than 40 years are unlikely to be 

planted). 

Using a time series of annual NDVI covering an area of 1 500 ha in southern Brazil, Le Maire et al. 

(2011) used MODIS imagery to estimate Eucalyptus plantation age, achieving a RMSE of 40 days. 

Chen et al. (2012) estimated the age of a rubber plantation in a multivariate regression analysis using 

normalised and ratio-based indices consisting of the red and NIR bands derived from Landsat imagery 

and achieved an RMSE of 5.96 years. Kou et al. (2015) achieved similar results by using NDVI, EVI 

and LSWI derived from Landsat imagery to identify the planting date of rubber plantations. McMahon 

and Jackson (2019) used Landsat images to derive a NIR vegetation index time series over a 2.2 million 

ha area in America to estimate the planting date of forest stands, and 86% of the stands were predicted 

to be within one year of its actual age. 

To date, no published research has attempted to estimate forest compartment age using RS in a South 

African context. The aim of this BSc Honours research project, carried out by Mr M Mdwayi, was to 

evaluate how multitemporal Landsat-8 imagery can be used to estimate the plantation age of 2 804 

compartments in the Richards Bay (KwaZulu-Natal) area. The study area was selected as it contained 

compartments of different ages and genera. Annual NDVI composites from 2013 to 2020 were 

generated using GEE. The resulting time series of annual NDVI values were then statistically analysed 

to determine the year when the NDVI values were lowest (i.e. minimum annual NDVI). The assumption 

was that the minimum annual NDVI would coincide with the planting date. The median ages (per pixel) 

were then extracted per compartment using zonal statistics (see Section 3.3.1) to estimate the 

compartment age. 
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The results (Table 4-2) showed that compartment age can be estimated to within one year of its actual 

age (MAE = 0.84, RMSE = 1.0 years). It was more difficult to estimate the age of Acacia (MAE = 1.36, 

RMSE = 1.31) compartments, compared to Pinus (MAE = 0.92, RMSE = 1.2) and Eucalyptus (MAE = 

0.85, RMSE = 0.99). 

Table 4-2 Forest compartment age estimation accuracies using multitemporal Landsat-8 imagery 

Genus Number of compartments Mean absolute error (MAE) Root mean square error 
(RMSE) 

All 2804 0.84 1.00 

Eucalyptus 2704 0.85 0.99 

Pinus 79 0.92 1.20 

Acacia 11 1.36 1.31 

Closer inspection revealed that the closed canopies of Eucalyptus, combined with their rapid growth 

subsequent to planting, reduced the influence of the background soil signal, which is known to 

negatively impact the ability of NDVI to capture vegetation vigour. Although the sampled area was 

relatively small and dominated by Eucalyptus stands, the results are encouraging and warrant further 

investigation. It is recommended that future studies investigate the use of other vegetation indices (e.g. 

soil-adjusted vegetation index, SAVI and EVI) and other sources of imagery (e.g. Landsat-5 and 

Sentinel-2). It is also recommended that the methodology be tested in other areas in South Africa (and 

beyond) to evaluate its robustness (transferability). 



 

63 
 

5 PLANTATION FOREST WATER USE 

Plantation water use is impacted by various factors including genus, species, tree age, litter and 

understorey vegetation; climatic conditions like rainfall, solar radiation and general climate zone; and 

site conditions like soil type, slope and terrain morphology. In the section below we describe the impact 

of selected factors on plantation water use for Acacia, Eucalyptus and Pinus grown in SA. 

5.1 Water use per genus 

The frequency distributions of the annual water use per genus were discussed in Section 3.4.1 and are 

not repeated here. Instead, Figure 5-1 shows the average annual ET per genus from 2009 to 2019, 

irrespective of plant date and rotations. The water use of Eucalyptus compartments is consistently 

higher than Pinus compartments throughout the 10-year period. The average water use of Acacia and 

Eucalyptus compartments was similar from 2009 to 2013, after which the mean ET of Acacia decreased 

substantially, reaching a low of 961 mm/year in 2017. It is clear from the graph that there is a downward 

trend in water use from 2013 to 2017, corresponding with the drought conditions in South Africa at the 

time. The water use of all three genera increased substantially from 2017 onwards, presumably as the 

rainfall increased. Unfortunately, this could not be confirmed due to lack of access to detailed climate 

data per compartment (see proposals for further research, Section 6.4). 

 
Figure 5-1 Average annual evapotranspiration per genus (mm/year), irrespective of plant date 
(compartment age) 

Figure 5-1 was produced from all the compartments in the database, irrespective of when they were 

planted. The number of compartments (cases) consequently vary from year to year, with the majority 

(63%) being planted with Eucalyptus species and only a fraction (1.6%) being planted with Acacia 

species. 

500

600

700

800

900

1000

1100

1200

1300

1400

1500

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

A
nn

ua
l e

va
po

tr
an

sp
ir

at
io

n 
(m

m
/y

ea
r)

Year

Eucalyptus (16444) Pinus (9178) Acacia (416)



 

64 
 

According to the literature (Section 3.4.2), there is a strong relationship between water use and stand 

age, with an exponential increase in ET during the first years after planting, whereafter ET rates reach 

a plateau. This trend is not visible in Figure 5-1 but the following subsections explore this relationship 

in more detail. 

5.2 Water use per species 

Selection of species for water use analysis was based on direction from the reference group, provided 

there was a significant number of compartments to return valid results. The species selected for further 

analysis were A. mearnsii (394), E. benthamii (782), E. badjensis (68), E. dunnii (6120), E. grandis 

(1421), E. grandis x E. nitens hybrid (2668), E. grandis x E. urophylla hybrid (3872), P. elliotii (3439), 

P. greggii (40), P. patula (3265), P. radiata (439) and P. taeda (523). A breakdown of all the species 

listed in the CFDB is available in Appendix I. 

The annual evapotranspiration per species according to age is given in Table 5-1 and Figure 5-2. 

Table 5-1 Mean annual evapotranspiration (mm/year) per species according to age 

AGE 0 1 2 3 4 5 6 7 8 9 10 

Acacia mearnsii 917 959 1059 1090 1091 1104 1099 1099 1127 1119 1119 

Eucalyptus benthamii 798 857 989 1042 1043 1039 1020 1039 1064 1067 1093 

Eucalyptus badjensis 762 825 997 1089 1038 983 985 1087 1154 - -  

Eucalyptus dunnii 924 1018 1115 1122 1116 1115 1114 1117 1134 1144 1145 

Eucalyptus grandis 1200 1267 1322 1318 1308 1285 1289 1287 1273 1271 1271 

Eucalyptus grandis x E. 
nitens hybrid 841 916 1061 1079 1081 1088 1092 1084 1075 1092 1149 

Eucalyptus grandis x E. 
urophylla hybrid 1025 1219 1280 1291 1315 1305 1336 1365 1386 1372 1343 

Pinus elliottii 808 806 851 898 954 1011 1057 1089 1117 1141 1161 

Pinus greggii 779 867 1019 1039 1166 1198 1218 1228 1307 1216 1250 

Pinus patula 724 739 807 893 968 1009 1033 1070 1076 1070 1078 

Pinus radiata 880 871 865 844 884 926 949 973 1014 1039 1086 

Pinus taeda 837 843 910 973 1033 1049 1068 1108 1131 1153 1181 
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Figure 5-2 Average annual evapotranspiration (mm/year) per species according to age 

Only one species of Acacia had enough compartments in the CFDB for the water use calculations: A. 

mearnsii (Figure 5-3). An increase in ET from planting to year 4 (917 to 1 090 mm/year) is noticeable, 

suggesting a high growth rate and subsequent ET at the time. Thereafter, the annual ET increased 

slightly from year 4 to 10 (1 090 to 1 119 mm/year), which suggests a reduced growth rate. This finding 

agrees with those of an unpublished field-based study carried out at the University of  KwaZulu-Natal 

in collaboration with the Institute for Commercial Forestry Research and Sappi Forests. Information on 

management activities (e.g. thinning) was not available, but it is likely that thinning will impact the ET 

estimates. 
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Figure 5-3 ET over time (mm/month) for A. mearnsii 

Five Eucalyptus species/hybrid species were considered for the water use comparisons: E. benthamii, 

E. dunnii, E. grandis, E. grandis x E. nitens hybrid and E. grandis x E. urophylla hybrid. The comparative 

annual ET according to age for each species is shown in Figure 5-4. 

 
Figure 5-4 Annual evapotranspiration (mm/year) according to age for all Eucalyptus species analysed 

There are marked differences in ET among compartments planted with different Eucalyptus species, 
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especially during the first year after planting (i.e. year 0-1 on the graph). ET ranged from 762 mm/year 

(E. badjensis) to more than 1 386 mm/year (E. grandis x E. urophylla hybrid). E. grandis x E. urophylla 

hybrid showed the largest increase in ET over year 1 (from 1 025 mm/year to 1 219 mm/year), indicating 

a combination of vigorous growth and high transpiration rates, or evaporation from the soil and canopy 

intercepted water. The ET increases of the other species during the first two years after planting were 

more gradual. The ET estimates for most species appear to plateau (flattening of curve) after year 2 or 

3. This appears to be on par with ET estimates of previous studies (Figure 3-23). 

At 10 years of age, the highest ET was recorded for E. grandis x E. urophylla hybrid (1 343 mm/year) 

species and the lowest for E. benthamii (1 093 mm/year). The decrease in ET for E. badjensis from age 

3-5 and the subsequent increase after year 6 suggest either drought conditions, water shortages, or 

some tree damage (possibly due to frost). It is not clear whether these differences are only attributed 

to species-specific differences in water use, as position in the landscape and environmental conditions 

would also have impacted ET values. 

More details on the seasonal ET of each of these Eucalyptus species are given in Appendix III. 

The Pinus species/hybrid considered for the water use comparisons were P. elliotii, P greggii, P. patula, 

P. radiata and P. taeda. The annual ET according to age for each species is shown Figure 5-5. 

P. radiata had the highest ET in year 1, although P. greggii showed the biggest (exponential) increase 

in ET in the first year after planting, exceeding all other species considered. This is followed by P. taeda. 

The high P. radiata ET after planting likely reflect a large component of soil evaporation and sufficient 

soil moisture (rainfall) to drive ET. The ET from P. radiata compartments remained similar for the first 

three years, whereafter it showed a steady increase in ET. However, over 10 years, this species had 

the lowest ET of those studied. In contrast to most of the Eucalyptus species, the slopes in ET of the 

Pinus species are gradual during the first few years and the flattening out is less pronounced, likely 

reflecting different tree growth curves. At 10 years of age, the annual ET for P. greggii exceeded that 

of P. radiata by more than 200 mm/year. 
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Figure 5-5 Annual evapotranspiration (mm/year) according to age for all Pinus species analysed 

More details on the seasonal ET of each of these Pinus species are given in Appendix III. 

5.3 Water use compared to tree age 

It is clear from Figure 5-7 that water use increases during the first years after planting, and then 

stabilises. However, the increase in water use after planting is more dramatic for Eucalyptus 

compartments, which increase from an average of 941 mm/year to 1 151 mm/year within two years of 

planting, after which the water consumption remains constant. In contrast, the increase in water use of 

Pinus compartments is much more gradual during the first few years, starting at a mean of 805 mm/year 

and gradually increasing to 1 117 mm/year after ten years of growth. These observations match those 

of Dye (1996) (Figure 3-23) who noted a dramatic increase in the annual ET of Eucalyptus species over 

the first number of years after planting, while the initial increase for Pinus species is much lower. The 

water use curve of Acacia species is like that of Eucalyptus species, although ET was consistently 

lower, starting at 917 mm/year and reaching 1 102 mm/year after five years of growth, whereafter it 

stabilises. 

It should be noted that the proportion of compartments planted with Acacia species is substantially 

(Appendix I) lower than those planted with Eucalyptus and Pinus and that the mean ET values of Acacia 

compartments may not be a good reflection of its true water use. 
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Figure 5-6 Average annual evapotranspiration (mm/year) per genus according to age 
 

Similar trends are shown when the monthly ET values of compartments planted in 2009 are plotted 

against time (Figure 5-7). Based on 13 compartments planted with Acacia in 2009, the water use of 

Acacia compartments is higher than that of Eucalyptus compartments during the first six years of 

growth, but when considering a larger (40) set of compartments planted with Acacia in 2014, this genus 

uses less water compared to Eucalyptus during the first few years of growth. However, these results 

should be interpreted within the context of the drought conditions experienced from 2014-2017, the 

impact of which is clearly noticeable in Figure 5-7, where ET values dropped considerably for 

Eucalyptus and Acacia compartments in 2015. Interestingly, no drop in ET was observed for Pinus 

compartments, suggesting that the genus is less sensitive to drought conditions, or the impact of the 

drought (reduction on rainfall and water availability) on the areas planted with Pinus was less 

pronounced. Likewise, the water use estimations of Acacia may have been influenced by the fact that 

a larger proportion (19%) of Acacia compartments were planted during this (drought) time. The water 

use estimates for Acacia compartments should be interpreted within the context of the relatively few 

cases. 
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Figure 5-7 Monthly water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus 

and Pinus 

The accumulated water use of each genus over a 10-year period is shown in Figure 5-8. The ET 

accumulation of Eucalyptus and Acacia during the initial years is much higher compared to Pinus. Ten 

years after planting, the accumulated ET is about 13 720 mm for Eucalyptus, compared to the less than 

12 000 mm of Pinus. This constitutes a difference of about 13%. 
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 b  

c  d  

Figure 5-8 Accumulative water use over the first ten years of growth (a) in combination, as well as for 
(b) Acacia (planted in 2009 and 2014), (c) Eucalyptus, and (d) Pinus compartments separately (one 
standard deviation shown in lighter shades) 

 

5.4 Water use compared to climatic conditions 

This section compares the water use estimations to three climatic variables, namely mean annual 

rainfall, rainfall seasonality and climatic zones. 

5.4.1 Mean annual rainfall 

Figure 5-9 shows the mean annual rainfall, categorised in to low (< 600 mm), medium (600-800 mm), 

high (800-1000 mm) and very high (> 1 000 mm) ranges. Given that one compartment was located in 

the low rainfall region, the focus of this section is on the medium, high and very high rainfall categories. 
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Figure 5-9  Mean annual rainfall 

Table 5-2 summarizes the median ET values per rainfall category and genus. ET generally increases 

as rainfall (available water) increases. This ET likely includes a substantial fraction of evaporation of 

canopy intercepted rainfall, which may be even more pronounced in the fine-leafed Acacia trees. In 

areas with very high (> 1 000 mm/year) rainfall, the differences in water use among genera is negligible, 

while the difference in ET among genera is more dramatic in lower (medium and high) rainfall regions. 

This pattern is supported by the graphs in Figure 5-10 to Figure 5-12. 

Table 5-2 Median annual water use (mm/year) per rainfall categrory and genus 

Rainfall category 
Evapotranspiration (mm/year) 

Acacia Eucalyptus Pinus 

Medium  
(600-800 mm/year) - 1031 (n = 29) 805 (n = 129) 

High  
(800-1000 mm/year) 1126 (n = 12) 1147 (n = 275) 993 (n = 277) 

Very high  
(> 1000 mm/year) 1303 (n = 1) 1282 (n = 95) 1291 (n = 57) 

 

Source: Schulze (2007) 
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Figure 5-10 Water use over time (mm/month) for Acacia (planted in 2014), Eucalyptus and Pinus 
occurring in medium annual rainfall regions 

 
Figure 5-11 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus occurring in high annual rainfall regions 
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Figure 5-12 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus occurring in very high annual rainfall regions 

5.4.2 Rainfall seasonality 

The climate of South Africa is highly diverse, ranging from subtropical conditions in the north-eastern 

parts to a Mediterranean climate in south-western parts of the country. These variations can impact the 

water use of forest plantations. The first experiment to investigate the impact of climate variation on 

forest plantation water use involved comparing the water use (ET) of Acacia, Eucalyptus and Pinus 

compartments to rainfall seasonality. 

Figure 5-13 maps the rainfall seasonality in terms of winter, all year and summer (early, mid, late and 

very late) summer rainfall. When this map is compared to Figure 3-2, one can see that most of the 

commercial forestry compartments occur in the summer rainfall regions and that the winter and all year 

regions mainly contain Pinus plantations. 
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Figure 5-13 Rainfall seasonality regions 

Figure 3-14 shows that, in the early summer rainfall regions, Eucalyptus compartments use on average 

more water than Pinus compartments. The differences in water use are larger for the first eight or so 

years, which seem to be linked to the abrupt increases in water use during the early growing stages of 

Eucalyptus compartments, in comparison with a more gradual increase in water use for Pinus in this 

rainfall region. 

Source: Schulze (2007) 
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Figure 5-14 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 

Pinus occurring in the early summer rainfall region 

In contrast to the early summer rainfall region, water use of Eucalyptus and Pinus compartments is 

similar in the late summer rainfall regions (Figure 5-15). However, the number of cases within this region 

was generally low (33 compartments in total), which might not be representative. 

The water use of compartments in the mid-summer region seems to mimic those of the early summer 

region (compare Figure 5-16), with Eucalyptus compartments using significantly more water than Pinus 

in the first seven years or so after planting, after which the difference in water use of the two genera 

appear insignificant. Although it is difficult to make a direct comparison between Acacia compartments 

and the other two genera, it seems that the water use of  Acacia is initially higher than Pinus 

compartments (but substantially lower than Eucalyptus compartments), but then it flattens out quite 

quickly to about 90 mm/month. 
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Figure 5-15 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus occurring in the late summer rainfall region 

 
Figure 5-16 Water user over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus occurring in the mid-summer rainfall region 

As indicated earlier, the all year rainfall region is planted with Pinus compartments only and the 
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difference in water use between newly planted Acacia compartments and those that have matured is 

less dramatic compared to the other rainfall regions (Figure 5-17). 

 
Figure 5-17 Water use over time (mm/month) for Pinus species in the all year rainfall region 

 

Table 5-3 Median water use values (mm/year) per rainfall region and genus 

Rainfall region 
Evapotranspiration (mm/year) 

Acacia Eucalyptus Pinus 

All year - - 909 mm/year (n = 185) 

Winter - - - 

Early summer - 1109 mm/year (n = 106) 875 mm/year (n = 84) 

Mid summer 1149 mm/year (n = 13) 1194 mm/year (n = 268) 1015 mm/year (n = 188) 

Late summer - 1013 mm/year (n = 25) 1021 mm/year (n = 7) 

 

5.4.3 Climate zones 

From the previous section, it seems that rainfall seasonality has an impact on genus water use, but that 

the differences are not dramatic. This section takes a closer look at how water use varies with climate. 

Specifically, the Köppen climatic zones (Figure 5-18) are used to disaggregate water use (ET) per 

genus. Köppen zones divide climates into five main climate groups, namely A (tropical), B (dry), C 

(temperate), D (continental), and E (polar), with each group being further divided based on seasonal 
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precipitation and temperature patterns, which are indicated by the lowercase second and third 

characters in the notation respectively. Of these, only Aw (Tropical savanna climate with dry-winter 

characteristics), Cfa (Humid subtropical climates), Cfb (Oceanic climate), Cwa (Dry-winter humid 

subtropical climate) and Cwb (Dry-winter subtropical highland climate) intersect with the compartments 

in the geodatabase. 

 
Figure 5-18 Köppen climate zones of South Africa 

Figure 5-19 shows the water use of compartments within the different Köppen climate zones. The 

number of compartments in the Aw climate zone (Figure 5-19) are limited (5) and the water use 

quantifications are likely not reliable. However, the relatively low water use of the Eucalyptus 

compartments from 2014 to 2017 is noteworthy and is attributed to the drought conditions that were 

experienced during this period11F

12. A similar albeit less dramatic trend for Eucalyptus compartments is 

noted in the neighbouring Cfa climate zone (Figure 5-20). In contrast, the effect of the drought is not 

noticeable for Pinus compartments. In fact, the water use of Pinus compartments peaked (at about 165 

mm/month) during this period. Although Eucalyptus compartments used more water than those planted 

with Pinus species in the first five years after planting, the difference is not as stark as in the other 

climatic zones (see later). The water use of mature Pinus compartments exceeded those planted with 

Eucalyptus trees, but this is likely due to the drought conditions. 

 
12 According to Ndlovo and Demlie (2020), 2015 was the driest year on record (1970-2017) for KwaZulu-Natal.  

Source: Schulze (2007) 
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Figure 5-19 Water use over time (mm/month) for Eucalyptus occurring in the Aw (Tropical savanna 
climate with dry-winter characteristics) climatic zone 

 
Figure 5-20 Water use over time (mm/month) for Eucalyptus and Pinus occurring in the Cfa (Humid 

subtropical climates) climatic zone 

In contrast to the Cfa zone, Eucalyptus compartments consistently used more water than Pinus 

compartments in the Cfb climatic zone (Figure 5-21). The difference is more pronounced during the first 
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seven years of planting, after which the water use of the two genera seem to converge. The number of 

Acacia compartments within this region is limited, with only nine planted in 2009, but based on the 

available data, it seems that the water use of Acacia compartments is dramatically higher than those 

planted with the other two genera, especially during the first four years. As in Cfa, it seems that Pinus 

compartments in Cfb were less affected by the drought conditions (2014-2017), while water use of 

Acacia and Eucalyptus plantations were significantly lower during this time. 

 
Figure 5-21 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 

Pinus occurring in the Cfb (Oceanic climate) climatic zone 

The patterns of water use by Pinus and Eucalyptus compartments in the Cwa zone (Figure 5-22) are 

similar to those in Cfb, although the differences in water use by these genera are larger. Unfortunately, 

no conclusions can be drawn from the water use of Acacia compartments in this region, as only one 

compartment was planted in 2009. 

Eucalyptus compartments in the Cwb zone used substantially more water than Pinus compartments 

from planting up to about seven years, after which the differences in water use become negligible 

(Figure 5-23). Based on the limited  number (3) of Acacia compartments in this zone, it seems that the 

water use of Acacia and Eucalyptus compartments are on par. 
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Figure 5-22 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus occurring in the Cwa (Dry-winter humid subtropical climate) climatic zone 

  

 

Figure 5-23 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus occurring in the Cwb (Dry-winter subtropical highland climate) climatic zone 

Based on the results of this section, it is clear that Eucalyptus compartments use significantly more 
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water than Pinus compartments for about seven years from planting. The difference in water use by 

these two genera narrows from seven years onwards, especially in the Cwb (Dry-winter subtropical 

highland climate) zone, which is characterized by lower rainfall. The narrowing of water use by 

Eucalyptus and Pinus seems to be linked to a drastic reduction of water use by Eucalyptus 

compartments seven years after planting. The increase in water use by Pinus during the first seven 

years of planting is gentle, as is the slight decrease from seven years onwards. In contrast, Eucalyptus 

compartments exhibit a drastic increase in water use in the initial period of planting followed by a 

substantial decrease in water use from seven years after planting onwards. 

Table 5-4 Median water use values (mm/year) per climate zone and genus 

Climate zone 
Evapotranspiration (mm/year) 

Acacia Eucalyptus Pinus 

Aw (Tropical savanna 
climate with dry-winter 

characteristics) 
- 992 (n = 5) - 

Cfa (Humid subtropical 
climates) - 1274 (n = 11) 1285 (n = 52) 

Cfb (Oceanic climate) 1147 (n = 9) 1096 (n = 58) 853 (n = 165) 

Cwa (Dry-winter humid 
subtropical climate) 1303 (n = 1) 1417 (n = 55) 1078 (n = 8) 

Cwb (Dry-winter 
subtropical highland 

climate) 
1119 (n = 3) 1135 (n = 270) 952 (n = 239) 

 

5.5 Water use compared to terrain characteristics 

5.5.1 Slope gradient 

The previous section showed that there are substantial ET variations among plantations, even for those 

planted with the same genus. This section explores the impact that slope gradient has on compartment 

water use. Figure 5-24 is a slope gradient map, classified into level/gently inclined (0-10%), moderately 

inclined/steep (10-56%) and very steep (>56%) slopes. 

Figure 5-25 reveals that there is relatively little difference among the water use of genera planted on 

level and gently inclined slopes. Eucalyptus compartments use more water initially (first three years 

after planting), but from six years onwards, Pinus plantations use more water. Thereafter they appear 

to converge. Due to the relatively small sample of Acacia (11 compartments), it is difficult to draw any 

conclusions about its water use on level and gently inclined slopes. 
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Figure 5-24 Slope gradient map of South Africa 

 

Source: Van Niekerk (2015) 
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Figure 5-25 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus on level/gently inclined slopes 
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In contrast to Figure 5-25, Figure 5-26 shows that there are substantial differences in the water use 

among genera on moderately inclined and steep slopes (Table 5-5). There is a marked difference 

between the ET of Eucalyptus and Pinus compartments, with the former having 10% higher values (on 

average) over the period being considered. Overall, Eucalyptus consistently uses more water than 

Pinus on moderately inclined and steep slopes. 

 
Figure 5-26 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus on moderately inclined/steep slopes 

A comparison between water use of compartments on very steep slopes was not carried out as no such 

cases exist in the compartment database. 

Table 5-5 Median ET values (mm/year) per slope gradient category 

Slope category 
Evapotranspiration (mm/year) 

Acacia Eucalyptus Pinus 

Level/gently inclined (0-10%) 1119 (n = 3) 1109 (n = 162) 1138 (n = 150) 

Moderately inclined/steep (10-56%) 
 1190 (n = 10) 1208 (n = 237) 952 (n = 314) 

Very steep slopes (>56%) - - - 

As slope increases, the water use of Pinus decreases, while the water use of Eucalyptus increases. 

Steeper slopes could result in increased runoff and subsequently lower soil water content, leading to 

lower ET. Conversely, steeper slopes (especially in high lying areas) could be associated with mist and 

hence rainfall/mist interception. Evaporation of this intercepted water can subsequently result in higher 

ET. An increased steepness, elevation and the likelihood of more mist will also result in less solar 

radiation to drive ET. However, these are theories and require verification. 
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5.5.2 Slope aspect 

From the previous section it is clear that slope gradient has a significant effect on water use among the 

primary genera planted in South Africa. Figure 5-27 shows slope aspect (i.e. direction of slope) at 

national scale, as generated from the Stellenbosch University Digital Elevation Model (SUDEM). Aspect 

ranges from 0 to 360 degrees (measured from north in a clockwise direction). For the sake of this 

analysis, aspect values were reclassified into four categories, namely north, east, south and west. 

 
Figure 5-27 Slope aspect for South Africa 
 

The water use of the genera per slope aspect category are shown in Figure 5-28 to Figure 5-31. Water 

use of Eucalyptus compartments is generally higher on northern slopes compared to southern slopes, 

which can be expected given compartments with northern aspects would receive more solar radiation. 

ET from southern slopes is lower than that from northern slopes due to increased periods of shade and 

hence lower solar radiation. Interestingly, the impact of slope was less on Pinus species. The water use 

profiles of Eucalyptus and Pinus compartments are relatively consistent among slope directions, while 

those for Acacia are erratic. The large differences among the Acacia water use profiles are attributed 

to the relatively few cases. 

Source: Van Niekerk (2015) 
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Figure 5-28 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 

Pinus occurring on North facing slopes 

 
Figure 5-29 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 

Pinus occurring on East facing slopes 
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Figure 5-30 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 

Pinus occurring on South facing slopes 

 
Figure 5-31 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 

Pinus occurring on West facing slopes 
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Table 5-6 Median ET values (mm/year) per slope aspect category 

Aspect category 
Evapotranspiration (mm/year) 

Acacia Eucalyptus Pinus 

North - 1240 (n = 9) 1006 (n = 4) 

East 1254 (n = 6) 1212 (n = 138) 982 (n = 114) 

South 990 (n = 3) 1152 (n = 154) 1005 (n = 245) 

West 1121 (n = 4) 1128 (n = 98) 959 (n = 101) 

 

5.5.3 Terrain morphology 

A set of analyses were carried out to determine whether other terrain characteristics, such as 

morphology, has an impact on water use. Figure 5-32 shows the 27 morphology units covering South 

Africa, taken from Schulze (2007). This map was simplified by grouping similar morphology regions, as 

overviewed in Table 3-5. Only regions that intersect plantation compartments were considered (others 

were renamed “other” in Figure 5-33). 

 
Figure 5-32 Terrain morphology units 
 

Source: Schulze (2007) 
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Figure 5-33 Simplified terrain morphology regions 

When Figure 5-34, Figure 5-35 and Figure 5-36 are compared, it is evident that terrain morphology has 

a significant impact on the ET values of compartments. The ET values of Eucalyptus compartments 

planted in mountainous regions are much higher (Figure 5-36) compared to plains/flat terrain (Figure 

5-34) and hilly/undulated terrain (Figure 5-35), while the opposite is true for Acacia and Pinus 

compartments. For instance, at a mature age of 5 years (Jan 2014), the average ET of Eucalyptus 

compartments in mountainous regions was 149.9 mm/month, compared to 135.5 mm/month for those 

occurring on plains/flat terrain – a difference of 14.4 mm/month (9.6%). In contrast, the mean ET of 

Pinus (in Jan 2014) was 120.2 mm/month in mountainous areas, while on plains/flat terrain it was 154.5 

mm/month at that time; amounting to a 34.3 mm/month (28.6%) difference. The impact of terrain 

morphology is less for mature (5-year-old) Acacia compartments. For instance, in Jan 2019, the average 

monthly ET for Acacia compartments on plains/flat terrain was 133.1 mm/month, while in mountains 

regions it was 114.5 mm/month (i.e. a 13.9% difference). In general, while Pinus uses more water than 

Eucalyptus on plain/flat terrain, Eucalyptus uses more water than Pinus in mountainous areas. On 

hilly/undulated areas, Eucalyptus uses more water than Pinus for the first six years after planting, after 

which Pinus uses slightly more water than Eucalyptus. 

Source: Schulze (2007) 
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Figure 5-34 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus on plains/flat terrain 
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Figure 5-35 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus on hilly/undulated terrain 

 
 

 
Figure 5-36 Water use over time (mm/month) for Acacia (planted in 2009 and 2014), Eucalyptus and 
Pinus on mountainous terrain 
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Table 5-7 Median ET values (mm/year) per morphological unit and genus 

Morphological unit 
Evapotranspiration (mm/year) 

Acacia Eucalyptus Pinus 

Plains/flat  1070 mm/year (n = 78) 1229 mm/year (n = 63) 

Hilly/undulated 1147 mm/year (n = 4) 1142 mm/year (n = 141) 1044 mm/year (n = 111) 

Mountainous 1149 mm/year (n = 9) 1253 mm/year (n = 180) 926 mm/year (n = 290) 
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6 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

Previous work on water use of forests has typically focussed on selected individual sites, which is 

difficult to extrapolate over regions. The purpose of this study was to improve our understanding of how 

water use (ET) varies at regional scales, focussing on commercial forestry. The first aim was to establish 

a geographical database of commercial forests in the main commercial forestry regions of South Africa. 

In this study, a large and rich dataset of forest compartments was sourced from several commercial 

companies. This dataset, along with monthly ET data from 2009 to 2020 sourced from the FAO-funded 

WaPOR portal, was used to determine consumptive water use (actual ET) of commercial forestry by 

means of RS data, which was the second aim of this study. The third aim was to validate (ground truth) 

RS-based consumptive water use of commercial forestry plantations using historical field-based 

measurements. It was challenging to achieve this aim, as few field-based measurements have been 

carried out in commercial forests, and in recent year much of the research has been concentrated in 

KZN and on limited tree species. Nevertheless, data from several studies were sourced and used to 

validate the RS-based ET estimates. The fourth and final aim was to describe, analyse and interpret 

location-specific differences in water use between and within the primary commercial forestry tree 

genera at specific locations in South Africa. A series of analyses were carried out to compare the RS-

based ET estimates of different genera, species and age groups, grown under a range of environmental 

conditions. The methods and results of these experiments were detailed in Sections 3 and 5 

respectively. Some of the main findings are summarised in the next subsection. The section concludes 

with proposals for future research, and a number of recommendations are made. 

6.1 Main findings 

The median WaPOR ET data extracted and used in this study compared well with in situ measurements 

of previous studies (Section 3.4.2). For instance, the ET estimates for Acacia (median ET = 1 096 

mm/year, Table 3-2) and maximum annual ET estimates (1 600 mm/year, Table 3-2) are in line with 

those of previous studies (Table 3-3, Figure 3-25). Similarly, our median annual ET (1 123 mm/year) 

estimates for Eucalyptus is on par with the mean annual ET of 1 116 mm/year reported in previous 

studies (Table 3-3, Figure 3-25). The reported ranges of ET from previous studies (500-1 800 mm/year) 

also correspond well with the ET range of 575 to 1 618 mm/year estimated in this study. The relatively 

lower median annual ET estimated for Pinus (1 038 mm/year) in this study (Table 3-2, Figure 3-25) and 

the higher frequency of lower annual ET values (Figure 3-25) of less than 900 mm/year also agree with 

previous work, although our Pinus estimates are generally higher (Figure 3-20) than those reported in 

the literature (Table 3-3). 

Although the comparison of the WaPOR-based ET estimates of this study corresponds well with 

previous in situ measurements, some level of error (uncertainty) is inevitable. A comparison between 

different sources of ET data (Section 3.3.4) revealed substantial differences, particularly between the 

ET values of the WaPOR and MOD16 products. The WaPOR ET values corresponded relatively well 

with the WRC 2014/15 dataset produced in a previous WRC project (Van Niekerk et al. 2018). The 

WRC 2014/15 dataset is considered to be the most accurate available dataset of South Africa, given 
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that it was calibrated using seasonal climatic data captured by 239 weather stations around the country 

(which is considerably more than what is used in MOD16 and WaPOR). Some deviations between the 

WaPOR and the WRC 2014/15 dataset were observed during winter months, which suggests that the 

WaPOR dataset is overestimating water use by about 10-30 mm per month during these months. 

However, this overestimation is unlikely to have a substantial effect on overall (e.g. annual) water use 

estimates, as most forests are located in the summer rainfall region (Table 5-3). Also, the purpose of 

this project was not necessary to quantify the total water use of all forests, but rather to better 

understand how water use varies from one genus, species, age, region and type of site to another. The 

comparisons presented in this report are consequently valid, especially if one can assume that 

inaccuracies in the WaPOR data are consistent for different genera, species, age groups, regions, etc. 

Our results showed that water use varies significantly among genera, with Eucalyptus species using 

considerably more water than Pinus and Acacia species, particularly during the first five years of 

planting (Figure 5-1). Although this observation agrees with in situ measurements carried out in previous 

research (Section 3.4.2), it is difficult to determine whether the relatively high water use of Eucalyptus 

species is biophysical in nature, or if it is a factor of site selection/quality (or a combination of these two 

factors) given that Eucalyptus species are commonly established in sites with higher quality (e.g. deep 

soils, high rainfall) compared to Pinus species. In all likelihood, the relatively high water use of 

Eucalyptus species is a combination of these factors. 

Due to limited cases (compartments) planted, the water use of Acacia species varied considerably 

according to age and environmental conditions, and it was difficult to draw concrete conclusions. Based 

on the available data, the Acacia species use less water than Eucalyptus species, but the ET of Acacia 

compartments is generally higher than Pinus compartments. 

The biggest environmental drivers of ET variability are rainfall and slope gradient. This can be expected, 

given that these two factors determine (to a large extent) water availability. Precipitation is less likely to 

infiltrate soils on steep slopes (i.e. a larger proportion of rainfall will contribute to surface runoff on steep 

slopes), while on level or moderately inclined terrain a greater proportion of rainfall will permeate soils 

and become available for take-up by vegetation. Flatter areas are also typically associated with deeper 

soils and likely higher soil water availability, which is conducive to tree growth. 

A noteworthy finding of this study is the marked difference between the ET of Eucalyptus and Pinus 

compartments on moderately inclined and steep slopes, with the former having 10% higher values (on 

average). Overall, Eucalyptus species consistently used more water than Pinus species on moderately 

inclined and steep slopes. This is supported by the finding that the ET values of Eucalyptus 

compartments planted in mountainous regions are much higher (Figure 5-36) compared to those 

planted on plains/flat (Figure 5-34) and hilly/undulated (Figure 5-35) terrain, while the opposite is true 

for Acacia and Pinus compartments. Whether this observation is the result of site selection instead of 

biophysical factors does not really matter in the context of this study, which sought to identify and 

describe such variations rather than to determine the cause. Nevertheless, a better understanding of 

the factors driving these observations would greatly enhance our understanding of water use in the 
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forestry sector and warrants further research. 

6.2 Innovations and capacity building 

This study contributed significantly to new knowledge. Specifically, the temporal water use profiles of 

plantation forest planted with different species/genera and in sites with varying environmental (e.g. 

climatic and terrain) conditions are novel. To our knowledge, the use of remote sensing to quantify water 

used in commercial forestry has not been done previously. The range of maps published in this report 

is also new. In addition, the use of deep learning for extracting forest patches from very high resolution 

(25 cm) colour aerial photography and the use of machine learning and satellite imagery for 

differentiating among tree genera at regional scales is innovative. These novel techniques were 

developed and evaluated by the two MSc students working on the project and demonstrates the 

significant human capacity that was built in this project.  

6.3 Recommendations 

The findings of this study may be of value to the ongoing discussions on the principles and processes 

for GE regulation within the commercial forestry industry (being the only declared SFRA). The variations 

in water use highlighted in this study should also be considered in forest rotation planning. This study 

showed that there are marked differences among the water use of commercial plantation forestry 

genera and species/hybrids. For instance, exchanging Pinus species for Eucalyptus species may have 

a detrimental effect on stream flow if carried out over large areas within a catchment. The impact of 

environmental conditions on water use should also be taken into consideration. 

Ideally, the ET estimations produced in this study should be compared to actual rainfall per 

compartment to assess the relationship between water availability and use. Unfortunately, we did not 

have access to (did not budget for) weather station data from (costly) sources such as the ARC and SA 

Weather Services (SAWS). It is recommended that more be done to establish a dense network of 

weather stations throughout South Africa and that such data be made freely available for research 

purposes to support water use and accounting research. Although TerraClim is a step in the right 

direction, it requires more (financial) support from the research community. 

This study made use of state-of-the-art remotely sensed satellite data and techniques to observe tree 

water use over an extensive area and period. Although this research project made a significant 

contribution to new knowledge, it took three years to complete. The South African forestry industry and 

regulators (e.g. government agencies) need such information to be updated on a regular basis. Ideally, 

operational solutions for calculating changes in water use associated with GE are required. These 

solutions should be based on scientifically sound techniques whereby GE regulations can be applied 

at the plantation stand/compartment level and across the country with the same statistical confidence. 

It is recommended that the techniques employed in this study be operationalised to produce water use 

estimations on an annual basis. This should be coupled with field-based measurements at strategic 

locations throughout South Africa to quantify the uncertainties in the resulting water use estimations. 
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The South African EO community is dwindling as many senior scientists in the field retire or emigrate. 

It is critical that we continue to invest in building EO capacity to assist the private and public sectors to 

optimally use scarce resources, such as water and fertile land. This is particularly important within the 

context of climate change, as the projected increases in temperatures and reduction in rainfall will have 

dire consequences for the forestry and agricultural industries. The central role that the WRC has played 

(and is playing) in building EO capacity is commendable; several students and young scientists were 

involved in this project (they are also co-authors to this report) and were exposed to advanced EO 

techniques. However, many of the students trained through WRC projects opt to emigrate and apply 

their skills abroad. More needs to be done to ensure that newly-trained scientists remain in South Africa. 

The only way to build a strong EO community is to establish employment opportunities that suitably 

incentivise scientists to remain in South Africa. Greater emphasis on the commercialisation and 

technology transfer of EO research is recommended, as such activities are more likely to generate 

sustainable employment opportunities. In addition, the commercialisation (and operationalisation) of EO 

technologies will substantially increase the impact of WRC-funded research and will ultimately lead to 

much needed economic growth and sustainable use of South Africa’s limited water resources. 

6.4 Proposals for future research 

The scope of this study was limited to commercial forests. Although this focus provided invaluable 

insights into water use variations within the forestry sector, relatively little is known about the water use 

of state-owned forests (e.g. SAFCOL), small private growers, communal forests and forestry species 

that have spread and established as invasive alien plants. Future work should thus consider including 

a wider range of forestry data. Although the methods used in this study can be employed in such studies, 

the (250 m resolution) WaPOR dataset is not suitable for application on compartments smaller than 300 

x 300 m (90 ha), which limits its use for estimating the water use in small stands. 

It is possible to extract RS-based ET at higher resolutions (e.g. 20 m provided by FruitLook) using higher 

resolution (commercial) satellite data, but the cost may be prohibitively expensive for regional (national) 

implementations. Techniques for improving the spatial and temporal resolution of ET products using 

freely available HR satellites imagery (e.g. Sentinel-2) are also available and should be investigated. 

Alternatively, a sample-based approach can be used whereby 250 m ET data can be used to extract 

water use in suitably large compartments, and these water use estimations can be extrapolated (per 

area unit) to surrounding, smaller compartments. This proposed sample-based approach can potentially 

be applied at a national scale to quantify the total water use by the forestry sector, similar to what was 

done for irrigated agriculture in a previous WRC project (Van Niekerk et al. 2018). Given that water use 

varies significantly per genus, it is recommended that a sample-based approach takes the genus of 

each compartment into consideration. The genus classification methodology developed in this study 

(Section 4.2) can be employed to classify each forest stand (even each pixel) into a genus category. 

However, a major challenge will be to accurately map each individual forest compartment (stand). 

Manual mapping approaches (e.g. visual interpretation of satellite/aerial imagery and on-screen 
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digitising) will likely be too time-consuming and costly. National land cover maps can be used as a 

sampling framework, as they contain the location and extent of planted forests and indigenous forests. 

Based on our assessments, the accuracy of such maps is high enough to be used at regional scales 

but are generally not detailed and accurate enough to be used at local or sub-catchment scales. Based 

on our assessments, small woodlots are often excluded or misclassified. At such sub-catchment scales, 

an alternative would be to develop and implement a mapping methodology that focuses on tree-based 

classes. 

As was demonstrated in this study (Section 4.1), automated forest mapping approaches are viable, but 

more work is needed to translate site-specific (case study) methods to regional and national scales. 

The biggest challenge is to accurately separate plantation forests from indigenous forests – particularly 

in areas where these two land uses are intermixed – because the spectral characteristics of these two 

land uses/covers are very similar. Based on preliminary findings, CNN applied to VHR (e.g. 25-50 cm) 

colour imagery seems to be effective for this purpose, but more work is required to assess the 

transferability of the technique. It is likely that the most effective and robust approach would be a 

combination of methods (e.g. CNN on VHR imagery, combined by multitemporal analyses of 

Landsat/Sentinel optical and SAR imagery to determine stand age, tree structure and phenology). If 

necessary, multitemporal image analyses can also be used to estimate the age (planting date) of each 

stand (Section 4.3). This data can be used to improve the land cover classifications (e.g. reclassify 

plantation forest stands older than 40 years to indigenous forest) and to refine the ET estimations. 

Extending the forestry water use results to forest water productivity and forest carbon sequestration of 

plantations by incorporating growth or production data and linking the water and carbon balances will 

be of great value to the industry. Such investigations will yield improved understating of the value of 

these products for improving water use estimations that transcend different land uses, including 

agriculture and rangelands. It is also critical to improve the local skills base and to build capacity in the 

use of EO methods and data for monitoring of water use. 

This study only considered the water use of one land use (commercial forestry). Future research should 

consider all land uses, preferably within a water accounting framework, to assess the true impact of 

different land uses on stream flow and determine whether current and future land uses are sustainable 

from a water availability perspective. 

Due to lack of data, this study did not investigate the impact of soil properties on water use. More work 

on the development of detailed soil maps for South Africa is needed. The initiative to develop a 30 m 

soil map for South Africa, started by a number of scientists from the Agricultural Research Council 

(ARC), Stellenbosch University and others, is a step in the right direction and requires (financial) support 

from the scientific community. 

The increased availability of products such as WaPOR has brought ET data into the mainstream and 

has opened up many avenues for research. Such data are increasingly being utilised in decision-

making, particularly in the agricultural sector. Currently, most of these products are being developed 
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abroad. As was demonstrated in this study, there are substantial differences in the ET estimations 

among products, likely due to inadequate calibration to local climatic conditions (due to lack of weather 

station data). However, high density weather station networks are being established through initiatives 

such as Climate Smart Agriculture (climatesmartagri.co.za) and used by TerraClim 

(www.terraclim.co.za) to produce highly detailed climate surfaces that can be utilised to develop highly 

accurate and detailed ET products. The timing is right to start investing in establishing an ET modelling 

capacity within South Africa and to investigate the influence of landforms and soil characteristics on 

plantation forest (and agricultural) water use.  

https://climatesmartagri.co.za/
http://www.terraclim.co.za/
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APPENDIX I: CFDB SPECIES DATA 

Species # Species # 
Acacia juncifolia 1 Pinus (mixed) 50 
Acacia mearnsii 394 Pinus (unknown) 4 
Acacia melanoxylan 20 Pinus elliottii 3439 
Corymbia henryi 35 Pinus elliottii + P. radiata 12 
Eucalyptus (mixed) 61 Pinus elliottii x P. caribaea hybrid 675 
Eucalyptus (other) 1 Pinus greggii 40 
Eucalyptus (unknown) 5 Pinus greggii northern population 1 
Eucalyptus badjensis 68 Pinus greggii southern population 30 
Eucalyptus benthamii 782 Pinus hybrids 3 
Eucalyptus camaldulensis 1 Pinus kesiya 3 
Eucalyptus cladocalyx 3 Pinus oocarpa 2 
Eucalyptus cloeziana 6 Pinus patula 3265 
Eucalyptus diversicolor 20 Pinus patula + P. elliotii 5 
Eucalyptus dorrigoensis 6 Pinus patula + P. greggii 2 
Eucalyptus dunnii 6120 Pinus patula + P. radiata 1 
Eucalyptus fastigata 3 Pinus patula x P. oocarpa hybrid 13 
Eucalyptus globulus 2 Pinus patula x P. taeda hybrid 19 
Eucalyptus grandis 1421 Pinus patula x P. tecunumanii hybrid 28 
Eucalyptus grandis x E. camaldulensis 
hybrid 

166 
Pinus patula x P. tecunumanii lower 
altitude variety 

458 

Eucalyptus grandis x E. macarthurii 
hybrid 

1 Pinus pinaster 109 

Eucalyptus grandis x E. nitens hybrid 2668 Pinus pseudostrobus 4 
Eucalyptus grandis x E. saligna hybrid 1 Pinus radiata 439 
Eucalyptus grandis x E. tereticornis 
hybrid 

2 Pinus radiata + P elliottii 9 

Eucalyptus grandis x E. urophylla hybrid 3872 Pinus radiata + P. patula 4 

Eucalyptus macarthurii 463 
Pinus radiata + P. patula x P. tecunimanii 
hybrid 

1 

Eucalyptus nitens 368 Pinus radiata + P. tecunumanii 2 
Eucalyptus paniculata 1 Pinus taeda 523 
Eucalyptus paniculata x E. grandis 
hybrid 

24 Pinus taeda + P. radiata 1 

Eucalyptus saligna 14 Pinus tecunumanii 6 
Eucalyptus saligna x E. urophylla hybrid 3     
Eucalyptus smithii 324     
Eucalyptus urophylla 3     
Eucalyptus viminalis 4     
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APPENDIX II: NDVI PROFILES 

Compared to Compartment Age 
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Compared to Slope Gradient 
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Compared to Terrain Morphology 
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Compared to Rainfall Seasonality 
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Compared to Climate Zones 
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Compared to Slope Aspect 
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Compared to Annual Solar Radiation 
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Compared to Mean Annual Rainfall 
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APPENDIX III: ADDITIONAL WATER USE PROFILES 
For the sake of brevity, some of the water use profiles generated in this project were excluded from the 

report and are provided here. 

 
Figure A-1 Monthly water use over time for Acacia planted in 2009 and in 2014 

 
Figure A-2 Monthly water use over time for Eucalyptus 
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Figure A-3 ET over time for A. mearnsii 

 

 
Figure A-4 Monthly water use over time for Pinus 
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Figure A-5 ET over time for E. benthamii 

 
Figure A-6 ET over time for E. dunnii 



 

132 
 

 
Figure A-7 ET over time for E. grandis 

 
Figure A-8 ET over time for E. grandis x E. nitens hybrid 
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Figure A-9 ET over time for E. grandis x E. urophylla 

 
Figure A-10 ET over time for P. elliottii 
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Figure A-11 ET over time for P. greggii 

 
Figure A-12 ET over time for P. patula 
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Figure A-13 ET over time for P. radiata 

 
Figure A-14 ET over time for P. taeda 
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APPENDIX IV: CAPACITY BUILDING 
 

The project made provision for two MSc students, namely Mr V Ndyafi and Miss C Higgs. Both students 

registered for MSc in Geoinformatics in February 2020. Mr Ndyafi’s research is on automated forest 

(plantation and indigenous) mapping, while Miss Higgs’ research is on the identification of plantation 

tree genus. Both studies made use of machine and/or deep learning techniques and were carried out 

within the context of regional (national) scale mapping. The following subsections provide brief 

overviews of the studies. 

CALEY HIGGS 

Miss Higgs, supervised by Prof Van Niekerk, completed her thesis in October 2021 and graduated in 

December 2021 with cum laude. Below is a summary of the thesis. 

Forest inventories are constructed on a compartmental level and contain information such as forest 

age, species/genus, location, and extent. An up-to-date forest inventory is critical for monitoring 

harvests, assessing the production of timber, planning, maximising production, assessing water use, 

and assessing timber quality. On a national scale, forest inventories are used for monitoring the impact 

forests have on the climate and stream flow, assessing the contribution forests have on alleviating 

poverty, monitoring forest trends, and supporting policy and trade decisions. Conventional methods for 

obtaining forest inventory information, such as plantation genus/species, is done in-field, which is time-

consuming and costly. Remote sensing is a more efficient way to capture forest genus information. Very 

high resolution, hyperspectral, and unmanned aerial vehicle (UAV) imagery have been shown to contain 

suitable spectral and spatial information for machine learning algorithms to differentiate between forest 

species. However, such data requires extensive processing and is expensive to acquire, making it 

unsuitable for mapping over larger areas. High-resolution imagery, such as Sentinel-2, combined with 

textural measures and vegetation indices as features in machine learning algorithms, have shown 

potential to differentiate between spectrally similar classes. However, it is not known what impact 

training sample scheme and size have on classification accuracies when classifying Acacia, Eucalyptus, 

and Pinus (pine) genera. It is also not known whether signature extension is a viable method for 

reducing the time and effort spent on obtaining in situ training data when mapping forest plantations 

over a large area. 

This research set out two main experiments. The first experiment evaluated the impact of using an 

even, uneven, or an area-proportionate training sample configuration and size in a random forest 

machine learning model for classifying acacia, eucalyptus and pine plantations. It was found that the 

study area that contained an uneven coverage of the three genera was classified more accurately using 

a balanced training sample configuration, compared to using an unbalanced and coverage-

proportionate training sample configuration. It was also found that a saturation point exists where adding 

more training samples adds little value to the OA. The saturation point was found to be ~ 57n, where n 
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is the number of features used in the classification. 

The second set of experiments was set out to test the viability of training data signature extension for 

constructing random forest machine learning models to differentiate between acacia, eucalyptus  and 

pine trees using Sentinel-2 imagery as input. The study area was split into 19 Sentinel-2 tiles spanning 

the Mpumalanga, KwaZulu-Natal, Eastern Cape and Western Cape provinces. Three separate random 

forest models were built using training data collected in one tile located in Mpumalanga, one tile located 

in KwaZulu-Natal, and one tile located in the Eastern Cape. A fourth model was built using training data 

from all three source tiles. The four models were applied to all 19 Sentinel-2 tiles to map forest genera. 

The results show that a ~70% OA can be achieved if the training data is collected in areas with similar 

climates (rainfall seasonality) to the areas that are being mapped. In addition, it was found that signature 

extension distance (i.e. distance between the training data and the area being classified) should not 

exceed 500 km. 

More details of the research are provided in Section 4.2 of this report. 

VINCE NDYAFI 

Mr Ndyafi, supervised by Prof Van Niekerk and Mr Stephenson, is studying part-time and was still busy 

with his thesis at the time of writing this report. His research is focussing on the use of deep learning 

and very high resolution colour (RGB) imagery to differentiate between indigenous and plantation 

forests. Some of the methods and preliminary findings were overviewed in Section 4.1 of this report. 
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APPENDIX V: PUBLICATIONS 
 

 

No publications have emanated from this project at the time of writing, but two articles are currently in 

preparation for submission to scientific journals. 

Title Authors 

Impact of training set configurations for differentiating between plantation forest genera with 
Sentinel-2 imagery and machine learning 

Higgs, C 
Van Niekerk, A 

Signature extension as a machine learning strategy for mapping plantation forest genera with 
Sentinel-2 imagery 

Higgs, C 
Van Niekerk, A 

 

Two other scientific articles relating to Mr Ndyafi’s MSc research on the use of convolutional neural 

networks and object-based image analysis for forest plantation mapping are being planned. Three 

popular articles in the Tip Mag, Forestry Focus and Water Wheel are planned.  

 

The WRC’s role in these publications will be suitably acknowledged. 
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APPENDIX VI: ACCESS TO DATA GENERATED THROUGH THIS 
PROJECT 

 

The commercial forestry data used in this study (see Section 3.1) were provided by a number of 

commercial forestry companies under strict conditions of confidentiality. The data are, as such, not 

available to any third party. 

The satellite imagery used this his study can be freely downloaded from the respective sources (see 

Section 3.2 for details). 

All of the data used in this project will be archived and stored for at least five years.  
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