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EXECUTIVE SUMMARY 

Neglected and underutilised crop species (NUS) have not been previously classified 

as major crops, are under-researched, occupy low utilisation levels, and are mainly 

confined to smallholder farming areas. They can tolerate adverse conditions and 

represent an important component of South Africa’s agro-biodiversity with the potential 

to contribute to meaningful socio-economic development and transformation in poor 

rural areas. However, their importance in food systems and information describing 

their suitability across diverse agricultural landscapes remains limited. Over the years, 

the Water Research Commission (WRC) of South Africa has invested in developing 

knowledge in this critical area. Previous research showed that several underutilised 

indigenous crops were drought-tolerant, had good heat stress tolerance, and adapted 

to low water use levels. However, a lack of information describing their agronomy, 

water use, lack of production guidelines, and land suitability maps have previously 

been cited as the bottlenecks to their promotion.  

This study builds on previous WRC-funded research on drought tolerance, water use, 

agronomy and modelling underutilised crops for South Africa. Specifically, the project 

builds on the crop modelling base and applies the existing knowledge to map and 

identify suitable areas for rainfed production of underutilised crops in South Africa. The 

specific objectives of the project were: 

i. To conduct a state-of-the-art literature review focussing on identifying available 

information on the production, agronomy and water use of underutilised crops 

in South Africa. The review will focus on identifying locally available and 

international models that have been applied for modelling yield, water use and 

water productivity of underutilised crops and that can be adapted for South 

African conditions; 

ii. To parameterise/calibrate and test/validate available crop models for selected 

underutilised crops under rainfed conditions in South Africa;  

iii. To use available crop models to identify and map bio-climatic regions suitable 

for the rainfed production of selected underutilised crops in South Africa; 
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iv. To use available crop models and climate change data to map climate change 

impacts on yield, water use and water productivity of the selected underutilised 

crops for rainfed production under South African conditions; and 

v. To use available crop models to develop production guidelines for selected 

underutilised crops based on best management recommendations for 

maximising yield, water use and water productivity under South African 

conditions. 

State-of-the-art literature review focussing on identifying available information 
on modelling underutilised crops in South Africa 

The literature review (cf Chapter 2) provided the basis for selecting suitable crop 

models. It was noted that not all crop models had been calibrated and validated for 

underutilised crops. Water-driven models were shown to require fewer input 

parameters and were considered more robust and less complex to apply compared to 

radiation-driven models. Of the models reviewed, three (APSIM, AquaCrop and 

DSSAT) were mostly used for underutilised crops. However, AquaCrop has been used 

most extensively in South Africa for modelling underutilised crops. The APSIM and 

AquaCrop models were recommended for modelling the water use and yield of 

selected underutilised crops. To a limited extent, DSSAT was also considered together 

with emerging new crop models such as SIMPLE. However, AquaCrop was selected 

as the primary crop model used for the project based on its extensive application in 

South Africa and the availability of calibrated and validated crop files.  

To calibrate and validate available crop models for selected underutilised crops  

Model selection was followed by crop selection (see Volume 2 of the report). The 

selection of underutilised crops for the study was based on outputs of WRC Project 

Number K5/2603//4 “Developing an agenda for promoting underutilised crops in South 

Africa”. The project proposed a list of 13 priority underutilised crops based on drought 

and heat stress tolerance and nutritional value. These were identified based on 

existing knowledge in the literature regarding drought and heat stress tolerance and 

nutritional value and categorised into four food groups (cereals, legumes, root and 

tuber, and leafy vegetable crops). Since there was no fieldwork budget for the current 
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project, the project focused primarily on those crops that had already been modelled 

in South Africa and for which information already existed. Based on this criteria, four 

crops, sorghum (cereal), bambara groundnut (legume), taro (tuber) and amaranth 

(leafy vegetable), were selected from the priority list. These crops had all been 

calibrated and validated in previous WRC-funded research projects, and the crop files 

were available to the project team. 

Mapping bio-climatic regions suitable for the rainfed production of selected 
underutilised crops  

Introducing NUS into moderately to highly suitable regions could increase the crop 

choices available and contribute to biodiversity (cf Chapter 3). This could be viewed 

as a climate change adaptation strategy and sustainable intensification of smallholder 

farming systems. Introducing NUS in the mapped zones could contribute to food and 

nutrition security, poverty alleviation and human health and wellbeing. However, the 

lack of consideration of key socio-economic indicators in current methods of 

developing suitability maps fails to consider the systemic nature and complexity of 

food systems. Holistic land suitability maps, which consider several socio-economic 

indices, could guide policymakers and decision-makers. Therefore, future studies 

should identify innovative ways to derive maximum value from integrating GIS and 

remote sensing with block-chain, big data, and Internet of Things (IoT) technologies 

to develop integrated factors for land suitability mapping. 

Parameterisation and validation of crop models for selected underutilised crops 

AquaCrop, DSSAT and SIMPLE were successfully applied to simulate yields, 

biomass, and WU for the selected crops under climate change and varying agricultural 

water management typologies (cf. Chapter 4-7). This highlighted the suitability of 

these models for modelling underutilised crops under a range of conditions. With 

relatively comparable results (i.e. yields disagreement and yield variability) to DSSAT 

and SIMPLE model, AquaCrop was confirmed as the best-suited model for simulating 

yield, biomass and WU under climate change impacts and irrigation management. 

This may be attributed to the crop files used in this study being previously well 

calibrated and validated for AquaCrop in previous studies.  
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Crop models to develop production guidelines for selected underutilised crops 

Developing guidelines for the production of NUS is important for optimising water 

productivity. There is a need for whole systems approaches that optimise water, soil 

nutrients and management for varying weather conditions. Results of the project 

reinforce the potential and promise of crop models for this purpose. The project was 

the first to model a range of African Leafy Vegetables in APSIM (cf. Chapter 5). The 

observed model outcomes are somewhat consistent with results on land suitability 

mapping (cf. Chapter 4). It was observed that the general wide suitability of amaranth 

was associated with the crop’s growth requirements that allow for its production even 

under extremely marginal conditions.  

Conclusions and Recommendations  

Underutilised crops can be grown on marginal land, and they can complement major 

crops and contribute to cropping systems diversity hence climate change adaptation 

and sustainable intensification. Mapping NUS production potential zones is key to 

promoting their production by providing evidence to inform decision- and policymakers 

on crop choice. The results are useful to inform the Climate-Smart Agriculture 

Strategy, National Policy on Comprehensive Producer Development Support and 

Draft Indigenous Food Crops Strategy. The suitability maps are also helpful in 

informing decisions on climate change adaptation and sustainable intensification 

under climate change. Simple crop models (i.e. with fewer input requirements) can 

perform equally as complex models if well calibrated and validated. This is significant 

for underutilised crops whose modelling has been stifled by the lack of extensive data 

sets needed to parameterise complex models.  

Innovation 

The project developed new land suitability maps for four priority NUS. The maps can 

promote the selected NUS as alternative crop choices and inform site-specific crop 

diversification recommendations as part of climate-smart agriculture and sustainable 

intensification within smallholder farming systems. In planning for future sustainable 

crop production the interactions of biophysical and social-economic factors are critical 
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for detecting areas threatened in terms of the NUS and zones with the potential to 

support the NUS. 

Recommendations 

There is a need for future studies to identify innovative ways to derive maximum value 

from the possible integration of GIS with block-chain, big data, and IoT technologies 

to mine updated data, especially on climatic data and social-economic factors.  
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1 INTRODUCTION 

The increasingly low and variable rainfall patterns in South Africa threaten the viability 

and sustainability of food production in rural areas, threatening food security in poor 

rural households. The potential of underutilised indigenous crops to contribute under 

such conditions has been highlighted in several publications (Modi and Mabhaudhi, 

2013; Chivenge et al., 2015; Mabhaudhi et al., 2016a; Mabhaudhi et al., 2016b). For 

South Africa, Modi and Mabhaudhi (2013) defined underutilised indigenous crops as 

either indigenous or have been “indigenised” in South Africa, still occupy low utilisation 

levels and are confined to their ecological niches. These crops were also characterised 

by low levels of research (Azam-Ali, 2010). Therefore, lack of information describing 

their agronomy, water use, lack of production guidelines, and land suitability maps 

have previously been cited as the bottlenecks to their promotion. 

Underutilised indigenous crops represent an essential component of South Africa’s 

agro-biodiversity with the potential to contribute to meaningful socio-economic 

development and transformation in poor rural areas. Most of these underutilised 

indigenous crops possess attributes that make them ideal for production under low 

input agricultural systems and in marginal production areas, which typify South Africa’s 

rural landscape. Reports by Modi and Mabhaudhi (2013) showed that several 

underutilised indigenous crops were drought tolerant, had good heat stress tolerance, 

and adapted to low water use levels. These unique attributes suggest that 

underutilised indigenous crops would be ideal for promotion during periods of drought, 

such as the 2015/16 drought experienced across South Africa. 

Over the years, the Water Research Commission of South Africa has invested in 

developing knowledge in this critical area. These efforts included screening for drought 

tolerance in several underutilised indigenous crops (Spreeth et al., 2004), describing 

the agronomy and determining drought tolerance and water use of selected 

underutilised indigenous crops (Modi and Mabhaudhi, 2013). Currently, there are other 

on-going projects focussing on determining water of indigenous cereal and legume 

food crops (WRC, 2014) and determining nutritional water productivity of underutilised 

crops (WRC, 2014; WRC, 2016). These efforts, coupled with others by the Department 

of Science and Technology (DST) and through other external partnerships, have led 
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to an increase in the amount of information available on underutilised indigenous 

crops. There has also been progress in developing crop models for several of these 

crops such as amaranth (Walker et al., 2013), bambara groundnut (Mabhaudhi et al., 

2014a), cowpea (Chimonyo et al., 2016), pearl millet (Modi and Mabhaudhi, 2013), 

sorghum (Hadebe, 2016), sweet potato (Beletse et al., 2009) and taro (Mabhaudhi et 

al., 2014b). Intercrops of featured underutilised crops (sorghum, cowpea and bottle 

gourd) have also been modelled (Chimonyo et al., 2016). Notably, most of the crop 

models that have been developed and are currently under development for 

underutilised crops have been done using the FAO’s AquaCrop model. Most of this 

generated information is still current and highlights the progress that has been made 

on underutilised indigenous crops research. While the progress achieved to date is 

laudable, more still needs to be done if these crops are to feature more prominently in 

cropping systems. For instance, most of the studies to date have been in specific bio-

climatic zones with limited extrapolation to other rainfed agro-ecologies. The use of 

developed models coupled with GIS could address this knowledge gap.  

Whilst taking note of the existing gaps, there is a need to consolidate on gains already 

made and the momentum that has been built within the underutilised crops research 

community and articulate a way forward for underutilised crops in South Africa. In this 

regard, the WRC is already leading the way, having recently commissioned new 

research on “Developing a research agenda for underutilised crops in South Africa”. 

This will go some way in guiding future investments in underutilised crops research. 

In addition, there is now a need to apply the information that has already been 

generated and make it useable. Here, available agronomic and water use information 

as well as crop models could be used to develop production guidelines as well as 

mapping suitable areas in South Africa for underutilised crop production. This would 

allow for the translation of existing research outputs into materials that can be 

disseminated to a wider audience and used practically to promote the inclusion of 

underutilised crops in cropping systems in South Africa.  

In this regard, priority should be made to develop guidelines for rainfed agricultural 

systems since the majority of farmers (> 95%) still rely on rainfed production. In 

developing these guidelines, consideration should also be given to climate change. 

Current predictions suggest that South Africa will experience decreasing rainfall in 
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some areas, increased rainfall variability and frequency of extremes such as drought 

and floods. This will have an effect on current production areas as there may be shifts 

in agro-ecological boundaries. Therefore, a study focussing on developing guidelines 

for underutilised indigenous crops for rainfed production in South Africa, which also 

accounts for climate change, would go a long way in promoting the sustainable 

inclusion and production of underutilised indigenous crops in rainfed rural cropping 

systems. To this end, the application of available crop models would aid in identifying 

suitable bio-climatic regions for rainfed production of underutilised indigenous crops in 

South Africa. 

1.1 Objectives 

The contractually specified objectives of the project were: 

1.1.1 General Objective 

To develop guidelines for rainfed production of underutilised indigenous crops and 

estimate water use of indigenous crops based on available models within selected bio-

climatic regions of South Africa 

1.1.2 Specific objective 

i.To conduct a state-of-the-art literature review focussing on identifying available 

information on the production, agronomy and water use of underutilised crops 

in South Africa. The review will focus on identifying locally available and 

international models that have been applied for modelling yield, water use and 

water productivity of underutilised crops and that can be adopted for South 

African conditions 

ii.To parameterise/calibrate and test/validate available crop models for selected 

underutilised crops under rainfed conditions in South Africa 

iii.To use available crop models to identify and map bio-climatic regions suitable 

for the rainfed production of selected underutilised crops in South Africa 
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iv.To use available crop models and climate change data to map climate change 

impacts on yield, water use and water productivity of the selected underutilised 

crops for rainfed production under South African conditions 

v.To use available crop models to develop production guidelines for selected 

underutilised crops based on best management recommendations for 

maximising yield, water use and water productivity under South African 

conditions 

1.2 Crop selection 

The selection of underutilised crops for the study was based on outputs of the recently 

completed WRC Project Number K5/2603//4 “Developing an agenda for promoting 

underutilised crops in South Africa”. The project proposed a list of 13 priority 

underutilised crops based on drought and heat stress tolerance as well as nutritional 

value (Table 1.1) 

Table 1.1: List of thirteen (13) priority drought tolerant and nutrient-dense underutilised 

crops for South Africa 

 Common name Scientific Name 

Cereals Sorghum Sorghum bicolor 

Tef Eragrostis tef 

Legumes Bambara groundnut Vigna subterranea (L.) 

Lablab Lablab purpureus (L.) Sweet 

Cowpea Vigna unguiculata (L.) Walp 

Marama bean Tylosema esculentum 

Root and tubers Taro Colocasia esculenta 

Sweet potato Ipomoea batatas 

Leafy vegetables Jews mallow Corchorus olitorius 

Spider plant Cleome gynandra 

Amaranth Amaranthus sp. 

Nightshade Solanum nigrum 

Wild watermelon Citrullus Lanatus L. 
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The priority underutilised crops were identified based on existing knowledge in the 

literature with regards to drought and heat stress tolerance, and nutritional value, and 

further categorised into four food groups (cereals, legumes, root and tuber as well as 

leafy vegetable crops). Table 1 details the 13 crops that were identified. For the current 

project, since there was no budget for fieldwork, the project focused primarily on those 

crops that have already been modelled in South Africa and for which information 

already exists. These include sorghum, taro, amaranth, sweet potato and bambara 

groundnut. Other crops may also be considered in the future. 

1.3 Scope of the report 

The report is written in a series of self-contained chapters, with different authors. Each 

Chapter addresses at least one of the specific objectives of the project, as set out in 

the terms of reference. Due to the paper format that has been used, the report does 

not have a general methodology section; each Chapter has its own specific 

methodology. In some cases, this may have inadvertently created cases of minor 

repetition, especially in the methodology section. 

The report is structured to address the project objectives of the study in a logical 

framework. Chapters 1 and 2 address the first objective related to conducting literature 

reviews. Chapters 3-7 report on the calibration and use of available crop models to 

develop production guidelines for selected underutilised crops based on best 

management recommendations for maximising yield, water use and water productivity 

under South African conditions.  

A general overview of the report is provided below 

Chapter 1: provides a general introduction, background and conceptualisation of the 

entire study. It provides a motivation for the broad study as set out in the terms of 

reference. It also sets out the project’s aims and specific objects as defined in the 

contract. 

Chapter 2: assessed progress, opportunities, and challenges for modelling NUS using 

a systematic review. The chapter reviews the usefulness of several models that have 

been calibrated for a range of NUS. The chapter addresses specific objective 1 of the 
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project. It also addresses specific objectives 2, 4 and 5 related model calibration, 

validation and application. 

Chapter 3: used a non-parametric machine learning algorithm to delineate bioclimatic 

regions with high rainfall variability for water-scarce environments. More specifically, 

Vegetation Drought Response Index (VegDRI), a hybrid drought index that integrates 

the Standardised Precipitation Index (SPI), Temperature Condition Index (TCI), and 

the Vegetation Condition Index (VCI) to delineate bioclimatic zones with both high 

rainfall variability and water scarcity for South Africa. This chapter was related to 

specific objectives 2 and 3. 

Chapter 4: was aimed at developing land suitability maps for selected NUS [sorghum, 

(Sorghum bicolor), cowpea (Vigna unguiculata), amaranth and taro (Colocasia 

esculenta)] using Analytic Hierarchy Process (AHP) in ArcGIS. This chapter was also 

related to specific objectives 2 and 3. 

Chapter 5: assessed the growth, productivity and water productivity of selected ALVs 

(amaranth (Amaranth spp), cowpea (Vigna unguiculata), sweet potato (Ipomoea 

batatas) and wild mustard (Sinapis arvensis)) under different management practices 

and addresses specific objective 4 and 5. 

Chapter 6: compares the performance of three crop simulation models, namely, 

AquaCrop, DSSAT, and the SIMPLE model, in predicting yield, biomass, and water 

use of neglected and underutilized cereal crops and addresses specific objectives 4 

and 5. 

Chapter 7: reports on results of modelling yield and water use for the range of crops 

identified and addresses specific objective 4 and 5 of the study related to modelling 

yield and water use of the range of identified crops. 

Chapter 8: provides a holistic discussion of the entire project and links all the separate 

studies to achieving the project objectives. The chapter also provides the conclusion 

and recommendations for future studies. 
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2 MODELING NEGLECTED AND UNDERUTILISED CROPS: A SYSTEMATIC 
REVIEW OF PROGRESS, CHALLENGES, AND OPPORTUNITIES 

Mabhaudhi, T, Chimonyo, V.G.P., Chibarabada, T.P., Kunz, R.P., Walker, S., 

Massawe F and Modi, A.T. 

Abstract 

Developing and promoting neglected and underutilised crops (NUS) is essential to 

building resilience and strengthening food systems. The lack of robust, reliable and 

scalable evidence currently impedes their mainstreaming into policies and strategies 

to improve food and nutrition security. Well calibrated and validated crop models can 

be useful in closing the gap by generating evidence at multiple spatial and temporal 

scales needed to inform policy and practice. We, therefore, assessed progress, 

opportunities, and challenges for modelling NUS using a systematic review. While 

several models have been calibrated for a range of NUS, a few have been applied to 

evaluate growth, yield, and resource use efficiencies. The low progress in modelling 

NUS is due, in part, to the vast diversity found within NUS that available models cannot 

adequately capture. This is compounded by a general lack of research focus on 

modelling NUS, and more importantly, the lack of robust and reliable eco-physiological 

data needed to parameterise crop models. The use of Functional-structural plant 

models (FSPM) to generate eco-morphological and eco-physiological data for NUS 

can address this gap. There are also opportunities for advancing crop model 

databases and knowledge by tapping into big data and machine learning.  

Keywords: Crop Simulation modelling; Climate resilience; Eco-physiology; 

Sustainability; NUS
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2.1 Introduction 

Dansi et al. (2012) defined (NUS) as plant species that are part of more substantial 

biodiversity, were once popular (in and out of their centres of diversity) are neglected 

by users and research but remain relevant in the regions of their diversity. Despite 

their status, NUS have gained attention as potential food and nutrition security crops 

(Malik and Chaudhary, 2019) poverty reduction (Chivenge et al., 2015) and climate 

change adaptation (Mabhaudhi et al., 2019b). Their adaptability, nutritional attributes 

and socio-economic potential make them suitable crops for promotion in marginal 

production areas where food and nutrition insecurity, poverty and unemployment are 

high (Chivenge et al., 2015). While NUS can contribute to transformative agriculture, 

their role in mainstay agriculture remains obscure (Massawe et al., 2015). Many 

proponents of modern agriculture highlight that they are low yielding, and there is 

insufficient spatial and temporal data detailing their response to different agro-

ecologies and management options (Chivenge et al., 2015; Mabhaudhi et al., 2017a, 

2019a). Additionally, information about their genomics, breeding, production, 

management, and performance in the broader agro ecosystem remain anecdotal and 

in poorly documented indigenous knowledge systems. By contrast, major crops are 

well-endowed with a coherent knowledge (scientific and indigenous) system, and this 

has contributed to their dominance and high yielding potentials (Mabhaudhi et al., 

2017a). For NUS to fully partake in transformative agricultural and rural development, 

there is a need to consolidate and strengthen existing knowledge systems. Data to 

inform and design a knowledge base that is at par with their major crops’ counterparts 

may need innovative tools to generate relevant data. It is in this regard that we suggest 

crop growth simulation models as useful tools in bridging the existing knowledge gap.  

Crop growth simulation models (‘crop models’ hereafter) have proven to be useful 

tools for generating data to support decision making for sustainable resource 

management (Sinclair and Seligman, 1996; Singels et al., 2010; Liu et al., 2011; Dias 

et al., 2016). Crop models have been used widely in optimising management of major 

crops and in predicting the impact of environmental changes on crop eco-physiology 

and productivity. They have been used in ideotype-based plant breeding (e.g. 

Ramirez-Villegas et al. (2015) for wheat), to link physiology, genetics and phenomics 
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(Muller and Martre, 2019) and in assessing impacts of innovations on transformative 

adaptation to climate change (Carter et al., 2018; Larkin et al., 2019). However, most 

attention has been to further the understanding of major crops and in part, expand 

their dominance. At the same time, some progress has been made for NUS. For 

instance, quinoa (Chenopodium quinoa) (Pulvento et al., 2013), amaranth 

(Amaranthus spp.) (Nyathi et al., 2018), bambara groundnut (Vigna subterranea) 

(Karunaratne et al., 2010; Mabhaudhi et al., 2014), sorghum (Sorghum bicolor) 

(Hadebe et al., 2017; MacCarthy et al., 2017), cowpea (Vigna unguiculata) (Chimonyo 

et al., 2016a; Kanda et al., 2020), pearl millet (Pennisetum glaucum) (Bello and 

Walker, 2016), sweet potato (Ipomoea batatas) (Beletse et al., 2009) and taro 

(Colocasia esculenta) (Mabhaudhi et al., 2014b). However, these efforts are not nearly 

the same as those made for major crops.  

The current study aimed to assess the current progress, gaps, and opportunities for 

modelling NUS. The scope of the study does not include the fundamentals of NUS 

and other well-established concepts on orphan and marginalised crops. These have 

been covered extensively (see Adhikari et al. (2017); Chivenge et al. (2015); Dansi et 

al. (2012); Gaisberger et al. (2016); Mabhaudhi et al., (2019a and 2019b) and Mayes 

et al. (2012)). The study also proposes solutions to addressing identified challenges 

in efforts to stimulate NUS modelling.  

2.2 Methodology 

The study was structured into two phases: (i) establishing progress on modelling NUS 

and identifying research gaps, and (ii) outlining challenges and opportunities for 

modelling NUS.  

Phase 1 Progress: Literature search 

A systematic review of the literature was conducted to determine the current progress 

in modelling NUS. Two databases (Scopus and Web of Science) were used to search 

for published peer-reviewed literature for the period 1996-2019. We framed the search 

according to the PRISMA statement (Liberati et al., 2009) (Table 1). To focus the 

review and provide an in-depth assessment of work on modelling NUS; we restricted 

the search on articles done on priority NUS for Africa identified by Williams and Haq 
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(2002). Williams and Haq (2002) defined 20 underutilised crops as a priority based on 

socio-economic and bio-physical importance, germplasm diversity and availability, 

and if sufficient innovation can be derived from them. Mabhaudhi et al. (2017) later 

amended this list of priority crops to give a total of 29 crops. As such, the terms 

included in the search string were “Sorghum” or “Finger Millet” or “Tef” or “Barnyard 

grass” or “Bambara groundnut” or “Lablab” or “Pigeon pea” or “Pigeon pea” or “Sword 

bean” or “Cowpea” or “Velvet bean” or “Marama bean” or “Taro” or “Sweet potato” or 

“Cassava” or “African yam bean” or “Cocoyam” or “Bottle gourd” or “Blackjack” or 

“African Eggplant” or “Jews Mallow” or “Roselle” or “Spider plant” or “Amaranth” or 

“Nightshade” or “Chinese Cabbage” or “Sunberry” or “Wild mustard” or “Wild Water 

Melon” AND “crop simulation model*” or “crop model*” or “crop growth model*”. Also, 

a second search was conducted on modelling initiatives on maize. The second search 

served to benchmark the type of advancements in crop modelling that has happened. 

Maize was used as it is considered a commercially important crop species. Like the 

NUS search string for maize we used “maize” or “corn” AND “crop simulation model*” 

or “crop model*” or “crop growth model*”.  

The initial search retrieved a total of 595 and 2 911 articles for NUS and maize, 

respectively (Table 2.1). Thereafter, articles were screened for duplicates, and 386 

and 1829 articles remained, respectively. For the NUS database, studies written in 

English were considered, and titles and abstracts from the remaining articles were 

examined to check whether studies mentioned the use of a crop simulation models to 

predict resource use, growth and productivity of the priority NUS. Following the 

screening, 145 abstracts remained, and research study details including crop 

simulation model used, model development (calibration, validation, and testing), 

application and improvements were extracted from the abstracts and if needed, full-

length articles. We developed an excel spreadsheet to enter and later quantitatively 

assess the extracted data. The database for maize was not subjected to the same 

assessment since it only served to identify themes that show the advancements that 

have been made in crop simulation modelling.  
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Table 2.1: Search scope for NUS and maize database used in this study 

Search scope NUS Database 

Web of 

science 

Scopus 

NUS – Title, abstract, keywords 

“Sorghum” OR “Finger Millet” OR “Tef” OR “Barnyard 

grass” OR “Bambara groundnut” OR “Lablab” OR 

“Pigeon pea” OR “Sword bean” OR “Cowpea” OR 

“Velvet bean” OR “Marama bean” OR “Taro” OR 

“Sweet potato” OR “Cassava” OR “African yam bean” 

OR “Cocoyam” OR “Bottle gourd” OR “Blackjack” OR 

“African Eggplant” OR “Jews Mallow” OR “Roselle” OR 

“Spider plant” OR “Amaranth” OR “Nightshade” OR 

“Chinese Cabbage” OR “Sunberry” OR “Wild mustard” 

OR “Wild Water Melon” 

105 233 80 855 

Maize – Title, abstract, keywords 

“Maize” OR “Corn 
187 876 200 915 

Crop simulation modelling – Title, abstract, keywords 

"crop simulation model*" OR "crop model*" OR "crop 

growth model" 

5 266 5 572 

Combined search NUS Modelling (#1 AND #3) 364 231 

Combined search for maize Modelling (#2 AND #3) 1 701 1 211 

Retained after removing duplicates in the combined 

search for NUS Modelling 

386 

Retained after removing duplicates in the combined 

search for Maize Modelling 

1829 

*Further screening of search by reading through titles, 

abstract, keywords for NUS Modelling 

145 

Retained and available for final review NUS Modelling 145 
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Phase 2 Research gaps and opportunities 

The outcomes of the first phase were used to articulate existing research gaps in NUS 

modelling, and challenges and possible opportunities. We analysed the trends of key 

terms in NUS and maize modelling using bibliometric analysis. Bibliometric analysis is 

a quantitative method to assess published papers and has become helpful to evaluate 

peer-reviewed studies in a specific field of research (Rey-Martí et al., 2016; Small, 

1973). The bibliometric analysis examines secondary data acquired on a digital 

database from a quantitative and objective perspective (Albort-Morant and Ribeiro-

Soriano, 2016). Also, such analysis can help to structure the evolution of a focal 

research area (Cobo et al., 2011; Klavans and Boyack, 2006). In this study, we used 

VOSviewer software as a tool to perform the key term analysis and network 

visualisation of relevant literature for articles relating to the modelling of NUS and 

maize crops. We used titles and abstracts from145 and 1 807 articles from the Web 

of Science databases retained after screening exercise to do the analysis.  

In addition to the information captured by the systematic review, this phase also used 

literature known and found relevant by the co-authors but not captured by the searches 

and covered both grey and academic literature. Therefore, this phase of the 

methodology also served as a sanity check of the outputs of the systematic review. 

Such a synthesis allowed the inclusion of other literature not picked up by the search. 

The identification of literature was made on the basis that authors are experts in both 

NUS eco-physiology and have contributed significantly to modelling NUS. 

To adequately address the research objectives, we presented the review as two 

sections. The first section of the review explores the progress in modelling NUS and 

highlights gaps and opportunities in model initiatives. The objective of this section was 

to showcase the key attributes of models for NUS, which also best exemplify their 

potential to deliver on creating data to expand the current knowledge base. We also 

detailed the challenges and drawbacks in crop model development and simulation. 

The second section discusses possible opportunities and considerations that exist to 

advance crop modelling and knowledge creation for NUS.  
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2.3 Results and Discussion 

2.3.1  Literature characteristics  

Overall, when comparing the current body of knowledge on modelling NUS with that 

of maize, the results of the search showed that it was considerably small (Table 2.2). 

Articles on modelling maize (a single crop specie) constituted 0.7% of published maize 

articles while those for NUS (an ensemble of several crop species) represented 0.3% 

of published articles on NUS. The ensemble of NUS identified by the literature search 

covered a wide range of crop types, including cereals (sorghum, teff and millet), 

legumes (pigeon pea, bambara groundnut, cowpea, velvet bean and lablab), root and 

tuber crops (sweet potato, cassava, yam and taro) and African leafy vegetables 

(amaranth). These crop species represent 13 out of the 29 priority crops outlined by 

Mabhaudhi et al. (2017). Sorghum and millet had the largest share (44 and 20%, 

respectively) of articles on modelling. The geographical spread for the modelled NUS 

comprised 24 countries, most (14) of which were in Africa (South Africa and Ethiopia) 

(Table 2). Two studies presented multi-county experiences (Akinseye et al., 2017; B 

Sultan et al., 2019). The prominence of modelling work emerging out of South Africa 

and Ethiopia confirms reported efforts by these countries with regards to incorporating 

NUS into their agricultural strategies.  

Results of literature search also showed that most of the modelling initiatives were 

done using generic crop models with well-established sub-models (Table 2.2). These 

sub-models consider the interdependency of physiological processes and responses 

to a range of management levers and growth factors. These generic crop models have 

evolved from a few landmark models such as CERES, EPIC and SUCROS (Muller 

and Martre, 2019). AquaCrop was the most versatile crop model as it has been used 

for most crop types (cereals, legumes, root and tuber, and leafy vegetables) (Table 
2.2). ASPIM and CERES have also been used widely (20% of the identified articles) 

but mainly on a handful of underutilised cereals (sorghum and millet) and legumes 

(pigeon pea, cowpea and lablab). It is also worth noting that among the modelled NUS, 

sorghum has received the most attention having been calibrated and applied for 

models such as ALMANAC, APSIM, AquaCrop, CROPSYST, DSSAT, EPIC, 
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SORKAM and STICS. The reviewed articles show that specific simulation models 

have been developed for crops such as sorghum (SORKAM), bambara groundnut 

(BamGRO).  

From the survey of 232 papers published on modelling NUS, researchers considered 

a wide range of issues (Figure 2.1). These included the effects of planting date 

(Ahmad et al., 2016), water-use efficiency (Chimonyo et al., 2016b, 2016c; Steduto 

and Albrizio, 2005), nitrogen-use efficiency (Amouzou et al., 2019), phosphorus-

uptake (Adam et al., 2018), solar radiation (Albrizio and Steduto, 2005; Mithra et al., 

2013), yield gaps (Steinbuch et al., 2016; Van Loon et al., 2018; Visses et al., 2018) 

planting densities (Karunaratne et al., 2010; Knezevic et al., 1999; Mauget et al., 

2020), soil carbon dynamics (De Vries et al., 2012; Meki et al., 2013; Srinivas et al., 

2020), growing crops in marginal environments (El-Sharkawy et al., 2014; Mabhaudhi 

et al., 2014; Nanaiah and Rakshit, 2020; Perkins et al., 2011), cultivar responses 

(Akinseye et al., 2019; Alagarswamy et al., 1998; El-Sharkawy et al., 2014; Rankine 

et al., 2015) and impacts of and adaptation to climate change (Nuttall et al. 2012; 

Phelan et al. 2014). Sorghum had most of the themes identified, followed by millet and 

cowpea (Figure 2.1). The observed large number of themes is consistent with the 

number of articles on modelling sorghum. The geographic importance of sorghum 

makes it underutilised as it has a high economic value in northern and western Africa 

but remains a minor crop in central and southern Africa (Leff et al., 2004). Also, the 

advancements in sorghum modelling are attributed to its inclusion in global research 

initiatives as an alternative biofuel and fodder crop for maize, especially under climate 

risk (Sinnathamby et al., 2017). Sorghum is also one of ICRISAT’s mandate crops 

(Upadhyaya et al., 2017b, 2017a).  
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Figure 2.1: Overview of model application across the identified neglected and 
underutilised crop species. The size of the bubble corresponds with the number of 
articles identified. VPD = vapour pressure deficit; GEI = genotype-environment 
interactions. 

2.3.2 Progress in modelling NUS: challenges and opportunities 

Out of the 75 crop and plant growth models identified by Di Paola et al. (2016), we 

identified 25 crop models that have been calibrated and/or validated for NUS (Table 

2). This number is low considering that the spread is across 13 crop species, and when 

compared with major crops, e.g. maize (Kogo et al., 2019), potato (Raymundo et al., 

2014) and soybean (Di Paola et al., 2016), that have more than 20 crop models each 

that simulate growth, resource use and yield. The limited number of NUS models 

restricts the applicability of the models for spatial and temporal impact assessment 

studies. For instance, Asseng et al. (2015) noted that simulated climate change 

impacts vary across models owing to differences in model structures and parameter 

values. The authors concluded that the uncertainties in impact modelling could be 

better quantified and minimised using multi-model ensembles. This notion was also 

supported by Hao et al. (2020) who stated that combined predictions from an 

ensemble of models can produce a more reliable mean forecast and reduces the risk 

of reporting a false-negative finding (Type II error). The limited number of capable 

models for NUS reflects a limited investment in NUS R&D more generally and 

specifically apathy towards their model.  
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Di Paola et al. (2016) and Raymundo et al. (2014) showed how crop model and module 

improvements have often resulted in the development of new models. For models 

used for NUS, the number of publications on improvements is relatively small. For 

instance, a canopy algorithm improvement of the MADHURAM model for sweet potato 

has led to the SPOTCOMS model (Somasundaram and Mithra, 2008). For bambara 

groundnut, the PARCH (Predicting Arable Resource Capture in Hostile Environment) 

model (Bradley and Crout, 1993) initiated the concepts of modelling bambara 

groundnut from an adaptation of CROPGRO and BAMnut (Bannayan, 2001) and 

BAMFOOD project models (Cornelissen, 2005). Consequently, many sorghum 

models share a similar structure with some changes (Table 2.2). In some cases, 

researchers modified the code to create versions of crop models. Still, such efforts are 

often complicated by the design of the models themselves and the lack of adequate 

documentation in some cases.  

According to Jones et al. (2017), model development and use, after that, has been 

driven or motivated by the need to increase scientific understanding and to support or 

inform decision/policy formulation. Model development to advance scientific 

knowledge often occurs to address research questions regarding the quality, quantity, 

magnitude, and interactions. Such endeavours are evident in Figure 2.2 where 

themes within maize modelling speak to an array of research areas of interest such as 

scale (spatial and temporal), resource use (water, nitrogen, phosphorus and solar 

radiation) and use efficiencies (water use efficiency), system optimisation, climate 

change impacts, scenario analysis, data and model performance, and decision 

making. Then again, the focus across NUS modelling articles (Figure 3) is limited to a 

few key research themes that are mostly related to agronomy. What seems to be 

lacking are thematic areas relating to environment and policy dimensions, and ‘big 

picture issues’ such as crop system optimisation, spatial and temporal assessments 

on climate impacts, and genotype by environment by management interactions. The 

limited research scope confirms previous reports that identify the lack of an articulated 

research agenda (Mabhaudhi et al., 2017a) and low research incentives (Mayes et al., 

2012) possibly emanating from misalignments with international, regional and national 

policies. Conversely, models are useful in generating data for evidence-based policy 
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formulation. If model development is motivated primarily by academic and research 

outcomes, crop models might remain only loosely connected to user needs.  

 

 

Figure 2.2: Visualization of thematic areas assessed across 1829 research articles 
on modelling activities for maize (Zea mays L.) using VOSviewer. The network map 
designated NUS modelling studies into three thematic areas namely climate change 
impact modelling (green), model development (red), model performance (blue), model 
optimisation and hybridisation (yellow). 

Beyond the efforts highlighted in Table 2.2, there is little evidence of uptake and 

application of models for NUS. An example is AquaCrop, where the calibration of 

several NUS has occurred, but there has been limited follow-up research on the 

application of the calibrated models. In the case of bambara groundnut, Mabhaudhi et 

al. (2018) applied a previously calibrated and validated AquaCrop model to evaluate 

the impacts of climate change on yield and water productivity. The lack of follow-

through is also evident in that the model still does not include NUS crop files in its data 

folder. This could be due to inadequate knowledge sharing amongst crop model 

developers, modellers and policymakers. When we say policymakers, we are not just 

referring to government agencies but a broader network of actors that formulate a 

course or principle of action for agriculture innovation. Another bottleneck to modelling 
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NUS may be related to the lack of validated empirical information and data sets for 

NUS (Chivenge et al., 2015). For most of the major crops, modellers have been able 

to tap into existing global databases from spatial and temporal trials (Figure 2.3). 

Experimentation on NUS continues to be descriptive and not nomothetic, limiting the 

ability of crop modellers to develop well calibrated models (Chivenge et al., 2015).  

 

Figure 2.3: Visualization of thematic areas assessed across 231 research articles on 
modelling activities for neglected and underutilised crop species (NUS) using 
VOSviewer. The network map designated NUS modelling studies into three thematic 
areas, namely climate change (green), model development (red) and model 
performance (blue).  
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Table 2.2: Overview of selected neglected and underutilised crop species, models used to simulate crop growth and productivity, 

level of application, and the region where the simulations were performed. 

Crop Model Level Country/region Reference 

Sorghum ALMANAC Application USA (Xie et al., 2003a) 

(Xie et al., 2003b) 

APSIM Calibration and application India (Dimes and Revanuru, 2004) 

Application Zimbabwe (Ncube et al., 2009) 

Application USA (Truong et al., 2017) 

Calibration and application South Africa (Chimonyo et al., 2016a) 

Application Ghana (McCarthy and Vlek, 2012) 

AquaCrop Calibration - Steduto and Raes, 2012 

Calibration South Africa (Hadebe et al., 2017) 

Calibration USA Araya et al., 2016 

Calibration USA (Kahsay et al., 2018) 

CROPSYST Calibration and application Kenya (Muli, 2015) 

SORKAM Calibration Cameroon (Tingem and Rivington, 2009) 

EPIC Calibration and application USA (Niu et al., 2009) 

STICS Calibration and application France (Constantin et al., 2015) 

DSSAT Application Italy (Castrignanò et al., 1997) 
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Calibration and application Mali and Burkina 

Faso 

(Akinseye et al., 2017) 

Calibration USA Lopez et al. 2017 

Calibration and application Benin (Amouzou et al., 2019) 

Calibration and application Brazil (Amaral et al., 2014) 

Tef AquaCrop Calibration Ethiopia (Van Gaelen et al., 2015) 

Calibration Ethiopia (Tsegay et al., 2015) 

Calibration Ethiopia (Araya et al., 2010) 

DSSAT Calibration and Application Ethiopia (Paff and Asseng, 2019a, 2019b) 

Pearl Millet AquaCrop Calibration South Africa (Bello and Walker, 2016) 

APSIM Application Sahel (Akponikpè et al., 2010; Boubou 

Diallo et al., 2019) 

DSSAT-CERES Application Pakistan (S Ahmad et al., 2016; Santos et 

al., 2017; Ullah et al., 2019) 

SARRA-H Calibration and application Senegal, Mali, 

Burkina Faso and 

Niger 

(Guan et al., 2015; Sultan et al., 

2019) 

EPIC Calibration and application Nigeria (Adejuwon, 2006) 

CYGMA Calibration and application West Africa (Sultan et al., 2019) 

Pigeon pea APSIM Application Zimbabwe (Ncube et al., 2009) 
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Calibration and Application Malawi (Smith et al., 2016) 

Bambara 

groundnut 

AquaCrop Calibration UK (Karunaratne et al., 2010) 

 Calibration South Africa (Mabhaudhi et al., 2018) 

BAMGRO Calibration UK (Karunaratne et al., 2010) 

CROPSYST Application Cameroon (Tingem et al., 2008) 

Cowpea APSIM Calibration and application South Africa (Chimonyo, 2016) 

DSSAT – 

CROPGRO 

Calibration and application Malawi (Ngwira et al., 2014) 

Calibration Brazil (Lima Filho et al., 2013) 

AquaCrop Calibration and application - (Nunes et al., 2019) 

INTERCOM Calibration - (Wang et al., 2007) 

Velvet bean DSSAT – 

CROPGRO 

Parameterization Mexico (Hartkamp et al., 2002) 

Lablab APSIM Calibration and application Australia (Hill et al., 2006) 

Taro AquaCrop Parameterization South Africa (Mabhaudhi et al., 2014a) 

AquaCrop Calibration and application South Africa (Walker et al., 2013) 

Sweet potato AquaCrop Parameterization Caribbean (Rankine et al., 2015) 

Calibration and application South Africa (Beletse et al., 2012) 

MADHURAM Calibration  (Somasundaram and Mithra, 2008) 

STOPCOMS   (Somasundaram and Mithra, 2008) 

Amaranthus AquaCrop Calibration and application South Africa (Bello and Walker, 2017) 



22 

 

Calibration and application South Africa (Nyathi et al., 2018) 

SALTMED Calibration and application Italy (Pulvento et al., 2015) 

LINTUL Calibration and application Austria (Gimplinger and Kaul, 2012) 

Cassava EPIC Application Cambodia (Le et al., 2018) 

Calibration Nigeria (Adejuwon, 2006) 

CROPSIM Cassava Calibration and Application Thailand (Kumsueb and Jintrawet, 2020) 

DSSAT CROPSIM 

Cassava 

Calibration and Application Thailand (Kumsueb and Jintrawet, 2020) 

SIMCAS Calibration and Application Indonesia (Masithoh and Yuliyanda, 2019) 

Calibration and Application Brazil (Araujo et al., 2018) 

 

DSSAT-MANIHOT Application Colombia (Moreno-Cadena et al., 2020) 

LINTUL Calibration and Application Togo (Ezui et al., 2018) 

Yam CROPSYSTVBYam Application United States of 

America 

(Raymundo et al., 2014) 

Calibration and Application France (Marcos et al., 2011) 

EPIC-Yam Calibration and Application Germany (Srivastava et al., 2012, 2016; 

Srivastava and Gaiser, 2010) 
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2.4  Way forward 

Current food systems have contributed to observed environmental and socio-

economic challenges, especially in marginalized communities (Rosegrant et al., 

2014). The emphasis on a few economically important crop species has resulted in 

increased risk from climate variability and change, and economic volatility (Bedoussac 

et al., 2015) as well as an increase in vulnerability of marginalised communities. 

According to Jones et al. (2017) and the Royal Society (2014), policy shifts and 

operationalisation of research agendas on NUS (e.g. Mabhaudhi et al., 2017a) can 

only occur after a need presents itself. In the wake of the challenges mentioned above, 

the current need to transform agricultural systems has created a window of opportunity 

for advancing NUS modelling. Thus, there is a need to tap into available tools to 

promote the development of models with the capability to simulate growth, yield and 

resource use for a broader range of NUS. Numerous crop models have been 

developed, with different levels of detail, sophistication, scale and representativeness. 

Crop modelling requires reliable experimental data to describe plant processes 

accurately. For most of the major crops, crop modellers have been able to tap into 

existing global data sets from long term trials. Hence, another bottleneck to modelling 

NUS may be related to the lack of empirical information and available long-term data 

sets for NUS hence limiting the ability of crop modellers to develop well calibrated 

models for NUS. Furthermore, in most cases, there are no bred varieties of NUS, but 

rather a wide range of landraces with different characteristics, which presence a 

challenge when developing conservative crop coefficients needed to drive crop 

models. The incomplete and scattered nature of information on NUS has been cited 

as an obstacle to their modelling (Modi and Mabhaudhi, 2017).  

The history of model development indicates that many existing models are a result of 

questions formulated based on scenarios and then adapted to address user needs. 

As reiterated by Jones et al. (2017), having one “perfect” model cannot capture the 

level of diversity within the full suite of crops used in agriculture. Instead, the aim 

should be to develop component/modular models that can be used alone or in tandem 

to answer specific questions (such as when to apply a climate change response or 

management option). The fundamental structure of models – climate, soil and 
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management modular structures – are easily transferable; however, the integration of 

biophysical and economic models (i.e. bioeconomic models) is required to address 

socio-economic issues.  

2.4.1 Closing the gap in NUS modelling 

Cropping systems are characterised by complexity and variability (Keating and 

Thorburn, 2018; Thornton et al., 2018). This complexity comes from the inherent 

multifaceted processes that drive the interactions within the plant, soil and atmosphere 

continuum (Keating et al., 2010). The combined interactions produce an infinite set of 

outcomes that are inherently dynamic in both space and time (Keating and Thorburn, 

2018). This complexity tends to be more pronounced in NUS, as most of them exhibit 

wide within-species genetic variability compared to well-developed major crops 

(Mabhaudhi et al., 2016).  

Crop models often require a significant amount of input data (Adam et al., 2011; Brown 

et al., 2014; Wang et al., 2013). Besides the management levers, which vary based 

on the model objectives, crop models require soil and weather data to drive phasic 

development. Modellers need these input parameters in a range of temporal (hourly, 

daily, weekly or monthly) and spatial (point, field, catchment, regional) scales. In 

addition to biophysical data, models also require information on crop physiology and 

morphology. The number of parameters and rigour used to obtain data for 

parameterisation often limits model usefulness for research. The biggest challenge 

met by many researchers working on NUS has been the absence of detailed 

description of these interactions and hypotheses such that it has been challenging to 

adapt the current suite of crops in existing many crop models. This gap in 

understanding is due to the lack of data to construct the biophysical processes 

governing the plants within the models. According to Jones et al. (2017), most crop 

models have been established using relatively narrow ranges of data. The limited data 

could be because most modellers, in the absence of crop physiologist and ecologists, 

have collected their own data sets to develop a model. To address the challenges of 

data availability and quality for NUS, the subsections below describe several 

opportunities to improve data availability. 



25 

 

2.4.2 Mapping NUS genomics 

The advances in genomics, phenomics (phenotyping), and computational 

technologies within the last century have allowed plant scientist to understand the 

constructs of a given crop phenotype (Blancon et al., 2019). These insights have seen 

the unpacking of complex interactions among crop types, crop varieties, biophysical 

environment, and management (Cooper et al., 2014). Genomic studies of many NUS 

are still in their infancy with a limited number of known improved cultivars. The lack of 

data has resulted in gaps in the knowledge base regarding eco-physiology, resource 

use and yield potential of NUS. Then again, Washburn et al. (2020) suggested that 

the integration of molecular phenotypes, machine learning, and physiological crop 

models could enable accelerated progress in predictive breeding for maize. Chapman 

(2008) used crop models to understand genotype by environment expressions for 

drought in real-world and simulated maize breeding trials. Also, Chenu et al. (2009) 

applied a gene-to-phenotype modelling approach to understand yield Impacts of 

organ-level quantitative trait loci associated with drought response in maize. In this 

regard, crop models may well offer a solution to consolidating available information on 

NUS genomics and addressing some of the knowledge gaps. Then again, genetics 

and genomics offer avenues to reduce model uncertainty by improving descriptions of 

cultivar differences and of individual plant processes (White, 2009). As such, some 

information of NUS genetics and genomics is required to advance their modelling. 

There are two schools of thought about advancing information on NUS genomics for 

modelling. One side of the discussion suggests it is instructive to look back at historic 

genomic studies of related crops and use these as a framework to construct crop 

modules in generic models (see for example Chivenge et al., 2015 and Mabhaudhi et 

al., 2017b). On the other hand, some researchers believe there is a need to promote 

genetic studies of NUS to understand better gene expression and responses. The 

latter has been met with a considerable amount of resistance from researchers owing 

to the wide genetic diversity within a single collection or population of most NUS 

species. Then again, during the last 30 years, the progress in mapping genomes of 

major crops has been impressive. Taking maize as an example, Washburn et al. 

(2020) noted that since 1998 the U.S.A. National Science Foundation's Plant Genome 
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Research Program has invested sequence the maize genome. The results of these 

investments culminated in the development and use of a novel clone-by-clone 

approach to sequence the genome of the maize inbred B73 (Washburn et al., 2020). 

Such technological advances in performing genomic analyses on plants have also led 

to rapid and inexpensive genotyping that resulted in significant changes in breeding 

and understanding the underlying response of specific genes to crop physiology and 

morphological responses to the environments. The potential value of this molecular 

genetics information includes the enhancement of the ability of crop model to predict 

the performance of crop varieties under specific climate and management conditions.  

2.4.3 Mapping the underlying eco-physiology in NUS 

The principles of system dynamics have been around for decades, and the empirical 

nature of most crop models represent this. Building on the experience in designing the 

model GECROS, Yin et al. (2010) suggested that model developers could make 

models less empirical if they employed existing physiological understanding and 

mathematical tools. This rhetoric is continuing from research that believes that the 

genetic fundamentals of NUS genomics can be studied with greater ease by using 

existing examples. On the other hand, to address gaps in knowledge on function-

ecophysiology, resource use and crop responses to climate extremes for NUS the use 

of Functional-structural plant models (FSPM), or virtual plant models can be employed 

(Liu et al., 2017). Functional-structural plant models are models that explicitly describe 

the development of the 3D structure of plants over time as influenced by physiological 

processes (Sievänen et al., 2014). As such, it allows for a hierarchical and systematic 

representation of a plant in response to environmental factors (Cartenì et al., 2014; 

Chelle, 2005; Sievänen et al., 2014)). Therefore, FSPM framework considers that plant 

response to the environment is a function of eco-physiological adaptation (e.g. 

photosynthesis, transpiration, N allocation) but often also their structure (e.g. breaking 

buds or keeping buds dormant, shape and orientation of organs), which, in turn, 

modifies the condition (e.g. light) in which functions operate (Sievänen et al., 2014). 

Thus, feedbacks within and between components are expressed at the level of an 

individual organ (the ‘local level’), and the functioning of the plant or plant stand as a 

whole (the ‘global level’) (Cartenì et al., 2014). Therefore, FSPM explicitly allows the 
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feedbacks between the structure and function of complex NUS species to be captured 

with much ease.  

2.4.4 NUS phenology  

There is considerable pressure to increase the yield potential of NUS because the 

current yields in farmers’ fields are far below that of their counterparts, which are 

already approaching the ceiling of existing cultivars (Cassman, 1999; Fischer, 2007). 

In the face of water scarcity and pressure to reduce environmental pollution arising 

from extensive homogenous production systems, improving use efficiencies of various 

resources through sustainable intensification has been receiving attention in 

agriculture (see for example Lipper et al. (2014)). There is a need to assess relevant 

traits within NUS that are related to agricultural production. However, many of these 

traits are quantitative and complex. For instance, phenotypes at the crop level, 

irrespective of yield per se or resource use efficiencies, are regulated by multiplicative 

interactions of genes and final expression is often dependent on environmental 

conditions, stress factors and stage of development. Also, multiple intermediate 

component processes and coordinated feedback mechanisms and intra- and 

interplant competition affect the outcome. Because of this interaction, a change of one 

component may result in an often-unexpected consequence on other parts and finally 

yield of a crop. As for cereal yield, crop physiologists and agronomists have used the 

simple equation that considers yield components to analyse limitations to yield 

formation (Van Ittersum et al., 2016). Similar equations were derived for other crops 

and traits; however, in the case of NUS, applying such a simple equation might be 

difficult because of the broad diversity present within and across crop species. Also, 

the equation assumes that the series of interactions and feedbacks occur along a crop 

developmental cascade. Because NUS generally have a poorly developed research 

agenda, breeding out of indeterminacy has not yet happened meaning many of them 

may have several phenological processes occurring at a given time. It thus follows 

that; a significant increase of one component may not necessarily increase crop yield 

ha-1. The results of Yin et al. (2000a) indicate that analysing genotype-phenotype 

relationships requires more robust crop models than make conventional agricultural 

applications. 
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2.4.5 The role of Information and Computer Technologies and data management 

The history of crop science shows that when different disciplines join forces, significant 

advances can occur. For instance, when crop modelling and remote sensing scientists 

collaborated to create models for predicting global wheat yield in the 1970s 

(Kasampalis et al., 2018) or to advance sustainable intensification through precision 

agriculture (Kasampalis et al., 2018). There is a need to broaden and strengthen the 

collaboration among biophysical modellers, engineers and agricultural practitioners 

and policymakers to come up with dynamic strategies to modelling NUS. Many of the 

collaborative initiatives such as the Agricultural Model Intercomparison and 

Improvement Project (AgMIP), the CGIAR Platform for Big Data in Agriculture 

(launched in 2017), as well as other initiatives for dataset standardization have 

emerged from the need to address global challenges. Such initiatives understand the 

need to increase agrobiodiversity for sustainable food systems. Researchers working 

on modelling NUS can leverage on these collaborative initiatives; however, additional 

investments are needed to improve the collection of open access, easy to use data for 

NUS modelling purposes. 

How agriculture is contributing to rural development is undergoing a new and rapid 

change due to the need for transformative technologies, awareness of globalization 

and advancements in ICT. Information and Computer Technology can address the 

challenge of generating new and relevant data on NUS for crop modelling. Techniques 

such as the Internet of Things, Cloud Computing and large-scale phenotyping 

methods such as using remote sensing with drones (unmanned aerial vehicles), 

nanosatellites and planned satellite missions), can leverage this development and 

introduce artificial intelligence in NUS data value chain (Basse et al., 2014). The main 

advantages from incorporating remote sensing data into crop models are the 

representation of the missing spatial information of the latter and the more accurate 

description of the crop’s actual condition along various stages of the growing season 

(Kasampalis et al., 2018). This, while being moderated by Big Data, can ensure that 

massive volumes of data with a wide variety are captured analysed and used to build 

and simulate NUS in existing or new crop models.  
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Crop models require parameters that contribute to mechanistic and functional 

components within the framework. While these parameters may differ based on the 

needs of the model and modeller, there are generic parameters that speak to the 

technical attributes of most models. Several databases have been generated, and 

these are somewhat accessible for use. In many cases, direct access of yield data for 

many commercially important crops is available through national statistics bureaus 

websites, FAO/IFPRI/SAGRE agro-maps (FAO/IFPRI/SAGRE, 2006; 

http://kids.fao.org/agromaps/) or retrieved by agronomists from their local statistical 

bureaus or institutions. Unfortunately, yield data for most NUS is available in grey 

literature and is not readily accessible. This gives a false sense of confidence about 

data quality, especially for many developing countries where reporting of yields, in 

general, is not well developed. There is a need to create and harmonise standards 

and protocols for data collection for NUS. This harmonisation ensures there is access 

and use from the same sources of data “in the cloud” from multiple sources and to 

operate various models, knowledge products, and decision support systems. It is 

essential to have different models and approaches, but we need to develop standards 

and protocols to gain the benefits from these developments fully.  

2.5 Considerations for informing the modelling of NUS  

There are several crop models in existence, and these differ in the level of complexity 

which ranges from relatively simple empirical relationships (i.e. rule-based yield 

equations using climate and soils data) to complex mechanistic models. Several 

reviews have summarised crop model capabilities and use. For instance, Jones et al. 

(2017) and Antle et al. (2017) discussed a possible option for designing next-

generation by assessing capabilities and limitations of existing models relative to “Use 

Cases”. Chimonyo et al. (2015) and Gaudio et al. (2019) reviewed opportunities for 

modelling annual crop mixtures. Holzworth et al. (2015) discussed status and 

prospects in software capabilities, and applications of crop models for overtime to 

inform climate change adaptation and mitigation. Jin et al. (2019) provided a detailed 

overview of the latest developments and applications of crop models, and data 

assimilation remote sensing techniques. While these reviews and others have offered 

sufficient critic on capabilities and uses, very few have provided an in-depth 
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assessment of the considerations made during model selection. Such information is 

essential if this is to guide the use of current models on NUS. Although many factors 

have motivated the development of crop models, three characteristics stand out 

among them: 1) intended use of models, 2) approaches taken to develop the models, 

and 3) their target scales. In this section, we provide a systematic overview of factors 

to consider when selecting a crop simulation model. To overcome the challenges 

established by the literature review, Table 2.3 provides an overview of considerations 

that need to be made to increase the use of models for NUS.  

2.6 Conclusion 

The use of crop models for understanding growth, productivity and resource use in 

NUS is still in its infancy with a limited number of articles published. There is an urgent 

need for more significant investments in NUS research and development to increase 

their knowledge base. This should also be accompanied by the development and or 

improvement of crop models capable of modelling NUS. This calls for a paradigm shift 

with regards to how research is currently prioritised and funded, a system that has 

favoured the major crops that are aligned to industrial agriculture. As such, 

policymakers need to transform policy-making processes that support research and 

promotes more collaborations across different fields in crop modelling. This ensures 

that modelling research on NUS can also inform policy and that there are co-creation 

and co-development of crop models for NUS.  

The review highlighted significant challenges to advancing modelling NUS, and this 

included data availability and accessibility. Other challenges included the large 

agrobiodiversity present within NUS. The limited data availability and the large 

ensemble of NUS make it challenging to develop conservative crop coefficients 

needed to parameterise crop models as well as, to an extent, misalignment in research 

priorities. To bridge the gaps in data availability and accessibility, the use of pre-

existing crop databases, the use of Functional-structural plant type models, data value 

chains and ICT, and promoting research collaborations should be used for NUS. Also, 

GIS and remote sensing can be integrated into crop models to collate high-resolution 

data.  
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Table 2.3: Considerations for crop model selection 

Consideration Description Key feature/requirements Comment 

Modelling and 

model goals 

The first criterion when choosing a 

crop model should be the main 

purpose of applying it. 

Simulate plant growth and 

development, biophysical 

processes, resource use and 

management, inter-plant 

competition and climate change 

impacts 

For NUS, one of the primary research 

objectives is to develop production 

guidelines for mainstreaming them into 

the existing cropping system. Hence, 

the selected crop model should be able 

to simulate various management levers 

and more importantly, climate variability 

and change scenarios to address some 

of the existing knowledge gaps on NUS 

A model’s goal should inform on 

what function the model is to 

perform and what degree of 

accuracy is required in the model 

outputs 

Simulate plant growth and 

development, biophysical 

processes, resource use and 

management, inter-plant 

competition and climate change 

impacts 

For NUS, crop models should consider 

the multiple aspects of climate change 

drivers (including rainfall, atmospheric 

CO2, temperature and ozone) while 

capturing the main crop physiological 

processes as well as biophysical 

aspects of the crop-soil-atmosphere 
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systems to address production and 

natural resource management issues. 

Model 

availability 

The essential aspect to consider is 

whether the selected model is 

freely available for use. Not all 

crop models are freely available. 

Based on 70 models reviewed by 

Di Paola et al. (2016), only 29 are 

freely available 

Most established models can be 

downloaded free of charge 

The use of generic crop models can 

allow for several NUS to be calibrated 

for specific cultivars under specific 

environments 

Mode type The complexity, degree of detail, 

level of comprehensiveness and 

the scale of application (specific 

cultivar, field, catchment, region) 

of crop models differ. 

Models can be described as 

either simple empirical type or 

complex mechanistic models. 

Mechanistic crop models exhibit 

increased robustness 

Most models are “source-driven”, 

thus assume growth is limited by 

factors that drive the production 

and partitioning of assimilates 

Growth engine can be either 

carbon-driven (WOFOST), solar 

radiation-driven (APSIM) and 

water-driven (AquaCrop) 

Across sub-Saharan Africa, current 

projections of climate change indicate 

an increase in atmospheric CO2 

concentration and weather extremes 

such as heatwaves, droughts and 

floods. It is in this context of expected 
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climate change impacts and climate 

change adaptation that carbon-, solar 

radiation and water-driven models 

should be considered 

System 

boundaries 

Predictive capabilities are 

generally most robust within the 

boundaries of the data used to 

develop a model 

To rely on a model’s output for 

decision-making purposes, it is 

vital to use a model that is not 

“built on oversimplified and 

unrealistic assumptions about 

natural processes.” 

 

Model input Model complexity increases with 

the number of input parameters 

required by the model 

A model’s descriptive or 

predictive ability depends on the 

quality of the data used to 

populate it. 

As shown by Asseng et al. (2013), the 

number of cultivar-specific parameters 

ranged from 2 (e.g. AquaCrop) to 22 

(GLAM) 

 

Spatialisation The Impacts of climate variability 

and change on the agricultural 

system are interrelated, with 

cascading and interchanging 

biophysical layers of air, water, 

To run the models non-stop and 

at a regional and national level 

NUS have been produced and studied 

in a few agro-ecologies, where the 

temporal drivers for their growth and 

production operate at much smaller 
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soil and crops at spatial and 

temporal scales 

resolutions than courser scale at which 

most crop models are presented 

Model output Outputs generated by the model 

allow the user to fully answer and 

analyse the questions or 

objectives of the modelling 

exercise 

  

Intersectionality Intersectionality refers to how 

different processes within the 

model interact to create a distinct 

outcome based on different 

management levers 

The model needs to include the 

representation of several 

physiological processes to 

describe or predict outcomes 
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There are several crop models in existence; however, not all of them can be used to 

advance the knowledge base for NUS. Several factors must be considered, notably, 

the model and modelling objectives, model input and outs, and spatialization. The use 

of current crop models requires an understanding of their strengths and weaknesses 

and knowing when to apply them for maximum benefit. Therefore, future progress in 

modelling NUS should be achieved by consulting experts and key stakeholders for 

developing and improving more robust and versatile models. 
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3 THE APPLICATION OF A NON-PARAMETRIC MACHINE LEARNING 
ALGORITHM TO DELINEATE BIOCLIMATIC REGIONS WITH HIGH 
RAINFALL VARIABILITY FOR WATER-SCARCE ENVIRONMENTS 

Mugiyo, H., Chimonyo, V. G. P., Masemola, C. R., Sibanda, M., Kunz, R.P., Nhamo, 

L., Modi, A. T., and Mabhaudhi, T. 

Abstract 

Mapping high-risk agricultural drought areas are critical for informing policy and 

decision-making to formulate drought adaptation strategies. This study used the 

Vegetation Drought Response Index (VegDRI), a hybrid drought index that integrates 

the Standardised Precipitation Index (SPI), Temperature Condition Index (TCI), and 

the Vegetation Condition Index (VCI) to delineate bioclimatic zones with both high 

rainfall variability and water scarcity for South Africa. Historical satellite climate data 

(1981-2019) was used with land use/cover maps to generate five scales ranging from 

very severe to no drought. A machine learning algorithm, the Classification and 

Regression Tree (CART) in R statistic and ArcGIS, was used for analysis and map 

graphics. Average sorghum yields obtained at the district level were used to validate 

results obtained from the mapping exercise. The VegDRI (74.1%), VCI (71.8%), TCI 

(66.2%), and SPI (59%) showed higher performance in explaining sorghum yield, 

respectively. Most of South Africa’s arable land is prone to drought, with 16% 

experiencing very severe drought, 34% – severe drought, 38% – moderate drought, 

11% slight drought, and 1% no drought conditions. The predictive accuracy of drought 

risk maps is computed from the cell-by-cell comparison. However, high Kappa values 

of VegDRI with VCI (0.80-0.98) and TCI (0.72-0.90) do not necessarily indicate an 

accurate mapping of drought risk maps. VegDRI is a useful index in designing climate-

smart practices for improved food and nutrition security under increasing water 

scarcity.  

Keywords: Adaptation; Climate variability; Food security; Underutilised crops; Water 

scarcity   
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3.1 Introduction 

Drought is one of the most complex natural hazards, and it has a substantial impact 

on water, food, and nutrition security (Mishra and Singh, 2011). Severe dry episodes 

in sub-Saharan Africa (SSA) have often been linked with the effects of El Niño-

Southern Oscillation (ENSO), which often leads to precipitation and temperature 

anomalies around the globe (Timmermann et al., 2018). Since 1900, 80% of the most 

severe droughts experienced in the region have been linked to mature El Niño events 

(Malherbe et al., 2016). The 2015/16 ENSO induced drought, one of the strongest 

events in recorded history, has had unforgettable effects on agriculture, water, food, 

and nutrition security across SSA (Heino et al., 2018; Nhamo et al., 2019b). Evidence 

suggests that climate change has increased the frequency and severity of droughts, 

regardless of the ENSO (AGRA, 2014; Miralles et al., 2014). It is, therefore, necessary 

to understand drought and, more importantly, assess where it is expected to be 

severe. Only then can appropriate risk control and mitigation measures can be taken 

(IPCC, 2015). 

Drought can exist in different forms: meteorological, agricultural, hydrological, and 

socio-economic drought (Kogan and Sullivan, 1993; Mishra and Singh, 2010). There 

is no single technical definition of drought because of the substantial variability in water 

supply and demand worldwide (Mishra and Singh, 2010). Monitoring the hazard in 

terms of progression and possible impact is important across various industries, 

especially agriculture, central to livelihoods and human well-being (Zargar et al.,). At 

present, there are more than 150 drought indices (Zargar et al.,), and these reflect 

different types and conditions, including intensity and severity (Mishra and Singh, 

2011). For example, the rainfall anomaly index (RAI) addresses drought that affects 

agriculture and water resources (Kosgei, 2009; Foufou et al., 2017), the Palmer 

Drought Severity Index (PDSI), which is based on water demand (evapotranspiration) 

and losses (runoff) (Ebrahimpour et al., 2015) and the commonly used Standardised 

Precipitation Index (SPI), which is a precipitation-based index (McKee, 1993). 

However, traditional indices methods primarily require multiple observations to 

determine weights to map drought risk zones. Several data mining methods can be 

used to overcome this limitation. However, common data mining methods also have 
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limitations when handling large amounts of data. These problems may be solved using 

machine learning-related algorithms (Shen et al., 2019a).  

Across the region, climate-based drought indices using point-based meteorological 

observations have been used to help quantify drought impacts on crop production 

(Botai et al., 2017; Adisa et al., 2019). Given the three physical forms of drought, there 

is no single unifying approach to quantify drought severity (Algorithm, 1999; Wang et 

al., 2016). Even within an individual category, the supremacy of a specific index is not 

immediately clear (Halwatura et al., 2017). However, for any selected drought index, 

Wang et al. (2016) indicated that the drought index should have certain qualities such 

as robustness, tractability, transparency, sophistication, extendibility, and 

dimensionality to improve drought classification bioclimatic zones under water stress. 

Bioclimatic zones are areas with similar climates, vegetation, and soils, where 

agricultural activities are closely related to the conditions of each zone (Rivas-Martínez 

et al., 2011). In the characterisation of bioclimatic zones, consideration should be 

given to the use of long term historical climatic data. Therefore, to capture the 

complexity of drought in a bioclimatic zone, a hybrid method that integrates historical 

climate data, satellite-based earth observations and biophysical information is 

required (Tadesse and Wilhite, 2011). In characterising bioclimatic zones, 

consideration should also be given to the use of long term historic near real-time 

climatic data from earth observed (EO) data (Brown et al., 2008). Remote sensing is 

essential for assessing climate change and the impact on agricultural production over 

time, which are necessary for developing context-based adaptation strategies. 

Remote sensing data offers a synoptic vision covering bioclimatic zones instantly and 

high repetitiveness adapted to drought monitoring over time (Park et al., 2016).  

The purpose of combining different indices from three physical forms of drought is 

hypothesised to detect agricultural drought more accurately and to be more useful for 

informing drought management strategies (Mubiru et al., 2018). The Vegetation 

Drought Response Index (VegDRI) is a hybrid drought index that integrates traditional 

climate-based drought indicators and satellite-derived vegetation index metrics with 

other biophysical information (e.g. land use land cover (LULC) type, soils, elevation, 

and ecological setting). The resultant map produced has a resolution of 5 km showing 

historical water-stressed zones (Brown et al., 2014). The VegDRI was developed by 
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the National Drought Mitigation Centre (NDMC) and the U.S. Geological Survey 

(USGS) Earth Resources Observation and Science (EROS) Centre as an operational 

tool to monitor drought-induced vegetation stress (Brown et al., 2008). It provides 

drought-specific information that addresses challenges faced by traditional climate 

and satellite-based indices (Quiring and Ganesh, 2010). However, it cannot be used 

as an indicator of hydrological drought or low flow conditions in streams or rivers (Nam 

et al., 2018). The VegDRI has been used to monitor vegetation drought stress in South 

Korea (Brown et al., 2008). The VegDRI portray vegetation conditions as plants 

respond to solar energy, soil moisture. The VegDRI has not be used under South 

African conditions, where drought is a major factor affecting agriculture. Therefore, it 

offers new insights into assessing the impacts of drought from local to regional scales 

(Otkin et al., 2016; Nam et al., 2018). 

Agricultural drought involves complex processes such as soil water stress, vegetation 

growth status and meteorological precipitation loss (Dai, 2011, 2012). In the 

construction of comprehensive drought models, machine learning algorithms can 

extract more useful features from many drought factors beyond the reach of other 

traditional indices (Park et al., 2016; Shen et al., 2019a). The rise of machine learning 

has introduced non-linear empirical models such as classification and regression tree 

(CART) algorithm to analyse the non-linear relationship between predictor variables 

and the response variable (Nam et al., 2018).  However, few studies on drought 

monitoring use machine learning algorithms in SSA (Tadesse et al., 2008; Rojas et 

al., 2011; Pulwarty and Sivakumar, 2014). Therefore, this study used machine learning 

methods to construct models by considering several various hazard factors and 

explored the use of multiple remote sensing data sources for regional, remote sensing 

comprehensive drought delineation.  

Previous studies on bioclimatic zoning indicated no single index could describe all 

aspects of droughts (Unganai and Kogan, 1998; Climate and Dei, 2009; Botai et al., 

2019). There is a need to explore meteorological and agricultural factors in tandem to 

capture the complexity of drought (Hao et al., 2017; Shen et al., 2019b). As such, a 

multi-index approach is needed for operational drought risk identification. Therefore, 

using a non-parametric machine learning-related algorithm can explore the 

relationships between meteorological and agricultural factors to delineate drought risk 
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zones. In South Africa, there is no prior delineation of drought-based bioclimatic zones 

using machine-related learning algorithms. The methodological approach adopted is 

to propose an improvement of the VCI, TCI and SPI through the VegDRI to better 

detect the agricultural drought risk zones without knowledge of the causal mechanisms 

of these factors. This study provides a detailed, spatially explicit understanding of the 

drought risk zone using machine learning algorithms in South Africa, focusing on 

developing a customized version of the VegDRI, including VCI, TCI, and SPI. The 

approach provides a high spatial resolution for agricultural drought-prone areas and 

delineates bioclimatic zones with high rainfall variability and water scarcity. Secondary 

to this, a correlation test between the VegDRI and normalised crop yield data for 

sorghum was used to test and validate the applicability and usefulness of the VegDRI 

index.   

3.2 Methodology  

3.2.1 The Geography of South Africa 

South Africa is located on the southernmost tip of Africa between 22°S and 35°S, 

covering a land area of 1 219 912 km2. The country is characterised by a mild, 

temperate climate (Aliber and Cousins, 2013), where a small proportion of land 

(10.3%) is considered arable for agriculture. South Africa is a water-scarce country 

(Ziervogel et al., 2014), and about 61% of the country receives less than 500 mm of 

rainfall annually (Figure 3.1). The amount of rainfall received is considered the 

minimum for successful dryland farming (Smithers and Schulze, 2000). Where rainfall 

exceeds 500 mm, major crops including maize (Zea mays), soybean (Glycine max), 

tobacco (Nicotiana tabacum), sugar cane (Saccharum officinarum), and other high-

value horticultural crops are produced. Drought is a significant threat to crop 

production, water resources and, more importantly, food and nutrition security in South 

Africa (Malherbe et al., 2016).  

3.2.2 Vegetation drought response index model generation using a CART model 

The development of the VegDRI model involved the assembling of a training database 

of the satellite and climate-based variables for a total of 38 years from 1981 to 2019. 
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The VegDRI models for each month (from 1981 to 2019) were generated using the 

CART algorithm, which Breiman, (2001) originally developed. 

 

Figure 3.1: Seasonal average rainfall distribution from 1981-2019 rainfall data for 
South Africa (CHIRPS datasets)  

The CART is a supervised learning algorithm that creates a training model to predict 

the class or value of the target variable using decision simple decision rules inferred 

from training data. During training, the CART algorithm performs repeated binary 

recursive partitioning that subdivides the training data until the partitioning process is 

terminated by user-defined criteria (Brown et al., 2013). 

For the development of VegDRI, 80% of the dataset was used for training and 20% 

for validation of the training model. The dataset was randomly sampled and split into 

calibration and validation datasets. This procedure was implemented 100 times to 

evaluate the stability of model. The VegDRI map contains five categories of varying 

levels of drought-induced vegetation stress, based on the PDSI drought classification 

scheme (Palmer, 1965). The methodology utilised in the present study is illustrated in 

Figure 3.2. The details of some of the processing and analysis methods are given in 

the subsequent sub-sections.
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Figure 3.2: Flow chart of generating vegetation drought index (Nam et al., 2018). 
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3.2.2.1 VegDRI model implementation  

The input data used in VegDRI consists of three major variable categories: satellite, 

climate, and biophysical data (Table 3.1; Brown et al., 2014). A 38-year historical 

record (1981-2019) of climate-based drought indices and satellite-derived vegetation 

condition index (VCI) observations were included in the input database. The 

vegetation indices such as the Normalised Difference Vegetation Index (NDVI) and 

the Enhanced Vegetation Index (EVI) were mined from a big data software called 

Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS) 

(AppEEARS Team, 2019). AρρEEARS enables users to subset geospatial datasets 

using spatial, temporal, and band/layer parameters. The NDVI and VCI are readily 

available, and pre-processing stages such as geometric correction, radiometric 

correction, and image enhancement have already been undertaken (Crespi and De 

Vendictis, 2009; Richter and Schläpfer, 2011). Amongst the biophysical variables, 

elevation was unchanged in the VegDRI trend analysis, and land use /land cover for 

2016 was used to mask agricultural land. A long-term seasonal average of satellite 

and climate indices defined bioclimatic zones (Table 3.2). The datasets were 

resampled to 5 km resolutions by the bilinear interpolation method (Du et al., 2013). 

The analysis was done in R package 3.5.1 (R Core Team, 2014) and map presentation 

in ArcGIS 4.6 environment.   

The VegDRI model uses the classification and regression tree (CART) algorithm to 

generate bioclimatic zones from satellite, climate, and biophysical datasets (Nam et 

al., 2018). The CART algorithm analyses the non-linear relationship between predictor 

variables and the response variable (Nam et al., 2018). Rule-based linear regression 

models were applied to the geospatial data to produce a 5 km resolution grid-based 

VegDRI map by calculating the VegDRI values for each pixel. According to Lemma 

(1996), the probability of drought occurrence in a given area can be classified into 

high, moderate, and low drought probability zones when drought occurs in >50%,  

30-50%, and < 30% of the years, respectively. Based on this criterion, the frequency 

maps of each drought class were reclassified into five categories based on the 

frequency of drought occurrence in study periods: 2> classified as no drought;  
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-0.99-1 classified as slight drought; -2.99-(-1) classified as moderate drought; -3 

classified as severe drought; 4< classified as very severe drought (Table 3.2).  

Table 3.1: Data input variables for the VegDRI model 

Data type Data set name Format Resolutio
n 

Source 

Satellite 
data 

Standardised 
seasonal 
greenness using 
MODIS 
Terra/Vegetation 
condition index 

Raster 5 km https://lpdaacsvc.cr.usgs
.gov 
 

     

 Temperature 
Condition Index 
(TCI) 

Raster 5 km https://lpdaacsvc.cr.usgs
.gov 
 

Climate 
data 

Precipitation 
Gridded 
precipitation 

Point 
Raster 

 
5 km 

https://sasri.sasa.org.za/
pls/sasri 
https://climateserv.servir
global.net 

 Standardised 
precipitation index 

Raster 5 km https://climateserv.servir
global.net 

Biophysi
cal data 

Digital elevation 
model 

Raster 0.25 Km http://www.cgiar-csi.org 
 

 Land use land 
cover of 2018 

Raster 0.016 Km https://egis.environment.
gov.za/gis_data_downlo
ads 
 

 

  

https://lpdaacsvc.cr.usgs.gov/
https://lpdaacsvc.cr.usgs.gov/
https://lpdaacsvc.cr.usgs.gov/
https://lpdaacsvc.cr.usgs.gov/
https://sasri.sasa.org.za/pls/sasri
https://sasri.sasa.org.za/pls/sasri
https://climateserv.servirglobal.net/
https://climateserv.servirglobal.net/
https://climateserv.servirglobal.net/
https://climateserv.servirglobal.net/
http://www.cgiar-csi.org/
https://egis.environment.gov.za/gis_data_downloads
https://egis.environment.gov.za/gis_data_downloads
https://egis.environment.gov.za/gis_data_downloads
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Table 3.2: The Vegetation drought index classification (Brown et al., 2014) 

Value range Bioclimatic class Reclassification* 

Greater than 4.00 Extremely wet No Drought 

3.00-3.99 Severely wet 

2.00-2.99 Moderately wet 

1.00-1.99 Slightly wet Slight Drought 

0.99 to (-0.99) Near normal 

-1.99 to (-1.00) Mild dry Moderate Drought 

-2.99 to (-2.00) Moderately dry 

-3 to (-3.00) Severely dry Severe Drought 

Less than (-4.00) Extremely dry Very Severe Drought 

* Indicate that the colour corresponds with the drought classification on the map 

3.2.3 Climate and Satellite data inputs for VegDRI 

3.2.3.1 Climate data 

Long-term rainfall data is essential in climate analyses and applications. Rainfall data 

from station observations are sometimes patchy and unavailable in many parts of the 

world due to sparse or lack of weather station networks and limited reporting of gauge 

observations (Malherbe et al., 2016). To address this limitation, rainfall estimates from 

satellites have been used as an alternative or a supplement to station observations 

(Funk et al., 2015). Gridded climate data (rainfall, air temperature, and ET) was 

obtained from https://climateserv.servirglobal.net over 38 years from 1981 to 2019. A 

detailed description of the Climate Hazards Group Infrared Precipitation (CHIRPS) 

products have been provided in Funk et al. (2015). The purpose of the CHIRPS 

dataset was to provide high-resolution data for areas where climate data is not readily 

available. The CHIRPS data were compared with recorded data across SA from four 

automatic weather stations (AWS), namely Wartburg-Byruns Hill, Ulakazi, 

KwaDukuza, and Tugela Mouth, which were selected based on data available from 

the South African Sugarcane Research Institute (SASRI) 

(https://sasri.sasa.org.za/pls/sasri). The coefficient of determination (R2), bias, and 
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efficiency was applied to evaluate any difference between seasonal climatic data from 

the automatic weather station and CHIRPS precipitation (Table 3.3). The comparison 

process performed in R-Instat software assumed that both AWS data and CHIRPS 

datasets have similar distributions (Willmott, 1981; Eum et al., 2012) (Table 3.3). 

 

Table 3.3: Descriptions of validation statistics used in the article 

Statistics Formula  Range Best 
value 

Bias 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝛴𝛴𝛴𝛴
𝛴𝛴𝛴𝛴

 Equation 3.1 0 to ∞ 1 

Efficiency 
𝐸𝐸𝐸𝐸𝐸𝐸 =

1 𝛴𝛴(𝑆𝑆 − 𝐺𝐺)2

𝛴𝛴(𝑆𝑆 − 𝐺̅𝐺)2
 

Equation 3.2 ∞ to1 1 

Correlation 
coefficient 

CC= (𝐺𝐺1−𝐺̅𝐺)(𝑆𝑆1−𝑆̅𝑆)

�(𝐺𝐺1−𝐺𝐺)����2�����������(𝑆𝑆1−𝑆𝑆)���2����������
 Equation 3.3 −1 to 1 -1 or 1 

Note. G=gauge rainfall measurements; 𝐺̅𝐺=average of the gauge measurements; S 

=satellite rainfall estimate; N =number of data pairs 

3.2.4 Standardised Precipitation Index (SPI) 

The Standardised Precipitation Index (SPI) is designed to quantify the precipitation 

anomaly for a specified time for a location based on the long-term precipitation record 

over that specific time interval (McKee, 2012). The SPI quantifies the degree of 

wetness/dryness by comparing accumulated rainfall over different periods with the 

historical rainfall period (McKee, 1993). SPI is highly related to drought conditions 

because it reflects energy and water exchanges among vegetation, soil, and 

atmosphere and considers soil moisture characteristics (Mishra and Singh, 2010). The 

positive and negative SPI values represent more and less precipitation than the 

historical mean rainfall (McKee, 1993). The SPI is useful for distinguishing dry from 

wet years or deficit from surplus years. The SPI uses a probability distribution function, 

such as gamma, to transform precipitation data into a normal distribution (McKee et 

al., 1993). It can be calculated for any period of interest, and different timescales are 

appropriate for monitoring various types of drought (Adisa et al., 2019; Botai et al., 
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2019). The magnitude of drought classified as very severe dry (<-2), severe dry (-1.5 

to -1.99), moderate dry (-1.0 to -1.49), light drought (-0.99 to 0.99), and no drought 

(>1+) (McKee, 2012). The index was recommended as a standard worldwide 

meteorological drought index by the World Meteorological Organization (WMO, 2012). 

However, it is point-based and limited in covering vast areas to show the spatial 

distribution of drought (McKee, 2012). It requires spatial interpolation, which often 

produces high uncertainty in interpolated regions (Peters et al., 2002).  

3.2.5 Vegetation Condition Index (VCI) 

Vegetation Condition Index (VCI) from MOD13Q1 is calculated from remote sensing 

data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

optical satellite imagery (Solano et al., 2010). The index is used to assess drought 

severity in areas where episodes are localised and ill-defined (Quiring and Ganesh, 

2010). This is achieved by comparing the current state of the vegetation as measured 

by NDVI to the range of values observed over the same period in previous years in 

the R environment (UNOOSA, 2019). The VCI is calculated as: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = VI𝑖𝑖𝑖𝑖𝑖𝑖−𝑉𝑉𝐼𝐼𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑉𝑉𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚−𝑉𝑉𝑉𝑉𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
∗ 100      Equation 3.4 

where VCIijk is the VCI value for the pixel i during week/month/DOYj for year k, VIijk is 

the weekly/monthly/DOYs VI value for pixel i in week/month/DOY j for year k whereby 

both the NDVI or EVI can be used as VI, VIi, min and VIi,max is the multi-year minimum 

and maximum VI, respectively, for pixel i. The state of drought presented as a 

percentage, Lower and higher values indicate bad and good vegetation state 

conditions, respectively (Table 3.4). 

3.2.6 Temperature Condition Index (TCI) 

The Temperature Condition Index determines stress on vegetation caused by 

temperature and excessive wetness (Villamarín et al., 2013). The degree of hotness 

or coldness of an environment determines the suitability of crop species (García-León 

et al., 2019). Temperature affects biochemical reactions such as photosynthesis, 

respiration, and ultimately the entire crop production (Lobell, 2007). 
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Table 3.4: Vegetation drought severity index 

Value (%) Category Reclassification* 

90-100 No Drought No Drought (80-100%) 

80-90 No drought 

70-80 No drought Slight Drought (70-80%) 

50-60 No drought Moderate Drought (40-50%) 

40-50 No drought 

30-40 Light drought Very Severe Drought 

20-30 Moderate drought (20-40%) 

0-10 Extreme drought Very Severe Drought (0-10%) 

* Indicate that the colour corresponds with the drought classification on the map 

Conditions are estimated relative to the maximum and minimum temperatures and 

modified to reflect different vegetation responses to temperature at a specified time 

and location (Kogan, 1995). The TCI is a practical approach for monitoring drought 

occurrence after the crops turn green; as a result, the index can be used to indicate 

zones under water stress and high rainfall variability (Villamarín et al., 2013). 

Temperature Condition Index values vary from zero, for extremely unfavourable 

conditions, to 100, for optimal conditions. The temperature condition index is given by 

Equation 3.5. 

𝑇𝑇𝑇𝑇𝑇𝑇 100 ∗ 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚−𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚−𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚

         Equation 3.5 

While Bio-temperature (BT), BTmax, and BTmin are the smoothed ten-day radiant 

temperature, it is multi-year maximum; it is multi-year minimum respectively, for each 

pixel, in a given area. 

3.2.7 Drought indices evaluation 

This study evaluates the performance of drought indices based on correlations 

between drought indices and historical sorghum yield in South Africa. Historical 

sorghum yields were sourced from the Department of Agriculture, Forestry, and 

Fisheries (DAFF). This approach makes assumptions about the nature of the 

relationship between agricultural drought and average Nkangala district sorghum 
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yields from Mpumalanga province in South Africa. The study assumed that water 

requirements, the depth of water needed to meet the water consumed through 

evapotranspiration (ETo) by a disease-free sorghum crop, growing in large fields 

under non-restricting soil conditions including soil water and fertility, and achieving full 

production potential under the given growing environment (Assefa et al., 2014). The 

average district indices (pixel) were masked only from crop production land use 

(https://egis.environment.gov.za/gis_data_downloads). The correlations test between 

the VegDRI, VCI, TCI, and SPI against drought-tolerant crop yield data were to test 

and validate the possible use of the VegDRI index. 

To assess the relative importance of each drought index, we performed pixel-to-pixel 

comparisons between VegDRI with VCI, TCI, and SPI and calculated the mean 

difference in pixel scores. The mean differences were calculated for the period 

between 2000-2019. In addition, a two-sample Student's t-test was used to examine 

whether the mean difference in corresponding pixel scores from VegDRI map to either 

VCI, TCI or SPI was greater than would be expected by chance alone. The comparison 

assumed a null hypothesis that both maps were identical to each other regardless of 

which input parameters were used (Van Vliet et al., 2011). The coefficient of 

determination (R2) was used to evaluate model performance by comparing it with 

sorghum yield. Then we utilized weighted kappa statistics to compare the relative 

difference of each map. Kappa statistics were to evaluate inter-rater reliability when 

judging a common stimulus. The 'raters' were the drought indices being compared. At 

the same time, the stimulus was the data provided by the variables (each map being 

compared), and the agreement objective was the pixel score generated by each 

drought index. A kappa value of 1 indicates perfect agreement between raters, and 0 

indicates no more agreement than that expected by chance (Hernandez, 2012; Merow 

et al., 2013; Pecchi et al., 2019).  

3.3 Results 

3.3.1 Precipitation evaluation 

The performance of CHIRPS and in-situ or observed precipitation products were 

assessed based on the empirical distribution function (ECDF) of daily scale 
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precipitation at two thresholds (2.5 and 4.95 mm/day) at four weather stations (Table 
3.5). CHIRPS precipitation data was highly correlated with observed weather data 

across all weather stations used in South Africa. Based on the results, CHIRPS 

datasets are safe to use in agricultural drought analysis. 

Table 3.5: Validation statistics for seasonal daily rainfall products over KwaZulu-
Natal using point-to-pixel comparisons 

Location Coordinates CHIRPS 
(mm)* 

Correlation 
coefficient 

Efficiency Bias 

Wartburg 

Bruyns Hill 

290 55 0” S, 

31 46 0 E 

2.5 0.68 0.66 0.78 

4.95 0.78 0.70 0.88 

Umlakazi 28 55 0 S 

31 46 0 E 

2.5 0.62 0.64 0.72 

4.95 0.76 0.69 0.85 

KwaDukuza 29 29 0 S 

31 12 0 E 

2.5 0.60 0.63 0.70 

4.95 0.78 0.70 0.88 

Tugela Mouth 29 14 0 S 

31 8 45 E 

2.5 0.68 0.66 0.78 

4.95 0.79 0.73 0.89 

*2.5 mm represent meteorological rainfall per day, 4.95 mm represent rainfall which 

influences crop production per day  

3.3.2 Temperature condition index map 

Figure 3.3 presents the TCI for South Africa based on the long-term averages (1981-

2019) data. The spatial degree of hotness varied across the country, and this 

translates to different drought severity. The results indicated that about 10% of the 

arable land is classified as very severe drought, 44% severe drought, 22% moderate 

drought, 22% slight drought, and 2% no drought for South Africa. Very high to severe 

drought conditions were indicated in the Northern Cape and Eastern Cape provinces 

(Figure 3.3). There is a spatial variation of moderate to slight drought in central 

provinces, northeast, and south-eastern provinces of South Africa (Figure 3.3).  



64 

 

3.3.3 Vegetation condition index 

The level of drought severity based on the VCI ranged from very severe drought 26%, 

severe drought 31%, moderate drought 14%, slight drought 23%, and no drought 6% 

of arable land for South Africa. The distribution of VCI was consistent with TCI. The 

extent of very severe to severe drought covered the northwest to south-west provinces 

of South Africa. The central to eastern provinces were characterised by moderate and 

no drought conditions (Figure 3.4). 

 

Figure 3.3: Average temperature condition index (TCI) based on temperature data 
from 1981-2019 for South Africa 

3.3.4 Standard precipitation index in South Africa 

The intensity of precipitation anomaly varies across South Africa, with 25% very 

severe dry zones, 29% severe drought, 18% moderate drought, 21% slight drought, 

and 7% experiencing no drought zones (Figure 3.5). The spatial aridity was high in 

south-eastern and central provinces of the country. The precipitation anomaly was 

classified as very severe to severe is high in western provinces and part of eastern 

Limpopo province. 
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Figure 3.4: Long term average standard precipitation index (SPI) for 6 months from 
1981-2019 from CHIRPS 

3.3.5 Vegetation Drought Response Index (VegDRI) 

Figure 3.6 shows the long-term seasonal time series of the VegDRI for South Africa. 

The VegDRI-South Africa map shows a variation of very severe drought 16%, severe 

drought 34%, moderate drought 38%, slight drought 11%, and no drought conditions 

1% detected over South Africa. Over the Northern Cape and Eastern Cape provinces, 

drought was very severe to severe, indicating acute water scarcity. Moderate to no 

drought conditions are reported from the central province to the eastern provinces of 

South Africa. 
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Figure 3.5. Average seasonal Vegetation Drought Response Index 

3.3.6 Drought indices evaluation 

The performance of each drought index was evaluated using the coefficient of 

determination (r2), measuring the fitness between actual sorghum yield and predicted 

values (drought indices). Amongst the four indices, VegDRI (74.1%) performed the 

best in predicting sorghum average yields for the period 2010 to 2019, followed by VCI 

(71.8%), TCI (66.2%), and SPI (59%) (Figure 3.7). All indices responded to low rainfall 

in the 2015/16 agricultural season and recorded the lowest sorghum yield (Figure 3.7). 

The three indices (VegDRI, VCI, and TCI) performed systematically better than the 

precipitation-based SPI in explaining sorghum yield. 
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Figure 3.6: Correlation between district sorghum yields and drought indices (a) 
VegDRI vs Sorghum yields, (b) standard precipitation index vs sorghum yields, (c) 
Temperature condition index (TCI) vs sorghum yields, (d) Vegetation condition index 
(VCI) vs sorghum yields respectively for the period between 2010 to 2019. 
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Figure 3.7: Kappa statistic, comparison of VegDRI vs (VCI, TCI and SPI) from 2000-
2019. Error bars indicate 95% confidence intervals. 

The highest Kappa coefficients were observed between VegDRI vs VCI, followed by 

TCI, and the lowest inter-rater reliability or agreement was on SPI with a value of 0.70. 

The highest Kappa coefficients were observed in agricultural season 2015, VCI (0.98), 

TCI (0.90) and SPI (0.87).  

3.4 Discussion 

The identification of bioclimatic zones characterised as water-stressed and with high 

rainfall variability is a pre-requisite to spatial and temporal variation analysis that can 

inform crop management strategies to improve food security in marginal lands of 

South Africa (Masih et al., 2014; Shiferaw et al., 2014; Baudoin et al., 2017). The 

identified water-stressed bioclimatic zones or agricultural risk zones produced by 

integrating VCI, TCI, and SPI drought indices indicate that South Africa can be 

classified into slight, moderate, and severe agricultural drought risk zones, 

respectively (Brown et al., 2013; Nam et al., 2018). The indices evaluated in this study 

provide options for identifying the severity and location but do not show the duration, 

onset, and cessation of drought conditions. The combination of VCI, TCI, and SPI 

allow us to detect drought in the agricultural areas of South Africa, and VegDRI was 
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found to be more effective compared to other indices (Brown et al., 2014). Based on 

the results from the hybrid index, VegDRI can be used for various applications such 

as agricultural drought detection, drought duration, crop yields, and crop production 

during the growing season (Brown et al., 2013; Nam et al., 2018)  

The relationships between SPI, TCI, VCI, and VegDRI against sorghum yield data 

were used to evaluate bioclimatic zones under water stress and high rainfall variability. 

Under rainfed conditions, crop production is a function of rainfall; crop failure is most 

often associated with water deficit or agricultural drought (Consoli and Vanella, 2014). 

Thus, regression analysis between VegDRI and average sorghum grain yield anomaly 

is indispensable for validation (Singh Choudhary et al., 2012; Jiao et al., 2019b; 

Möllmann et al., 2019). The overall fit of VegDRI (74.1%), VCI (71.8%), and TCI 

(66.2%) were slightly better than those obtained from SPI (59%) (Figure 7). The results 

were consistent with Estes et al. (2013), where maize yield was predicted using 

MODIS TCI and NDVI in South Africa. The results were also consistent with Johnson 

(2014), where maize and soybean yields were predicted using MODIS TCI and NDVI. 

The area that experiences no drought is very limited in South Africa’s agro-ecosystems 

(Strydom et al., 2020).  

Precipitation and water-related indices are closely related to meteorological drought, 

while vegetation-related indices, TCI, and SPI are more related to agricultural drought 

(Tadesse et al., 2017). The cultivated sorghum in South Africa is grown in the northern 

provinces' drier areas, which concur with mapped zones, especially in moderate to 

slight drought classes of generated indices (Van der Merwe et al., 2016; Malobane et 

al., 2018). The Free State produces about 50% of South Africa’s sorghum with an 

average production yield of 2 tonnes ha-1. Sorghum is produced on a wide range of 

soils in different farming systems and under fluctuating rainfall conditions of 

approximately 400 mm in the drier western parts of the country to about 800 mm in 

the wetter eastern parts of South Africa (Chimonyo et al., 2016). Therefore, VegDRI 

based agricultural drought assessment can better capture agricultural drought 

conditions or areas under water stress. There was a relationship between sorghum 

yields and TCI, and this implies that the index determines the stress on vegetation 

caused by temperatures and excessive wetness. The conditions from TCI are 

estimated relative to the maximum and minimum temperatures and modified to reflect 
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different vegetation responses to heat. The correlation between TCI and sorghum 

district yields is lower than VegDRI and VCI because TCI has the potential for cloud 

contamination, especially in mid-January to April, which might reduce the surrogate of 

the index and sorghum (Suryabhagavan, 2017). Based on the results, the operational 

drought index for forecasting crop yields should be based on drought indicators at a 

higher frequency and less contamination by clouds (Park et al., 2016). The TCI and 

VCI indices have a high correlation compared to SPI because VCI is provided at a 

maximum of 8-day frequency, whereas accumulated SPI is only available monthly, 

making it less surrogate to sorghum yields (Kogan, 1995; Tsiros et al., 2004). The VCI 

and TCI related to vegetation health give a better picture of characterising bioclimatic 

zone under water scarcity and rainfall variability than drought index that only rely on 

rainfall SPI, mainly because vegetation related indices inherently use the water 

balance to measure crop performance (Jiao et al., 2019a). 

The SPI scored the least correlation with sorghum yield because SPI is normalised. 

Therefore, drier and wetter climates can be represented in the same way; thus, wet 

periods can also be monitored using the SPI (Adisa et al., 2019). SPI is a measure of 

water supply only and a widely used index to characterise meteorological drought on 

a range of timescales. Still, it does not account for evapotranspiration and crop water 

requirement (Mishra and Singh, 2011). This limits its ability to capture the effect of 

increased temperatures associated with climate change on water demand and 

availability on crops. Alternative indices that deal with evapotranspiration, such as the 

Standardised Precipitation-Evapotranspiration Index (SPEI), can be used to delineate 

the bioclimatic zones under water stress (Mishra and Singh, 2011). It must be stressed 

that the SPI is not suitable for climate change analysis because the temperature is not 

an input parameter (UNOOSA, 2019). Kappa values presented in figure 8 for VegDRI 

and VCI are very close to 1 compared to TCI and SPI. This indicates a very high 

agreement between the VegDRI and VCI. Weighted kappa values between 0.8 and 1 

are generally accepted as having an excellent agreement between the raters; values 

falling below 0.8 may be considered less statistically significant (Van Vliet et al., 2011; 

Pecchi et al., 2019). However, this high agreement between VegDRI vs VCI and 

VegDRI vs TCI does not necessarily indicate an accurate delineation of drought in 

South Africa (Moeletsi et al., 2013; Botai et al., 2019). The Kappa coefficient of 
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agreement is a statistic for discrete multivariate analysis (Van Vliet et al., 2011). It 

expresses the agreement between two categorical datasets corrected for the 

agreement as expected by chance, depending on the distribution of class sizes in both 

datasets only. Therefore, the drought indices produced, especially the VegDRI, need 

to be ground-truthed.  

The mapped bioclimatic zones with moderate to severe drought are the most water-

stressed zones in South Africa (Aliber and Cousins, 2013). In these zones, 

compounding factors such as poverty and inappropriate land use increase vulnerability 

to drought. Also, smallholder farmers located in these bioclimatic zones lack irrigation 

facilities to mitigate water stress effects (Cai et al., 2017). Each drought event's spatial 

and temporal variability makes it difficult to prepare and respond effectively. In South 

Africa, agriculture is the most vulnerable and sensitive sector to climate variability and 

change, which mostly manifests through rainfall variability and recurrent droughts 

(Nhamo et al., 2019a). Using satellite data as an input parameter for drought indices, 

spatial-temporal variation of seasonal agricultural drought patterns and severity can 

be detected and mapped with the help of remote sensing and GIS (Park et al., 2016).  

The study used a machine-learning algorithm to analyse and mine higher spatial 

resolution climatic datasets to fill the gaps where climatic data was unavailable. 

Comparisons of CHIRPS data with available climatic records were used as a 

benchmark to determine the strengths and limitations of remotely sensed products. A 

non-parametric Kolmogorov-Smirnov (K-S) significance test with a 95% confidence 

level was applied to precipitation between in-situ/observed data, assuming both in-situ 

and CHIRPS data have similar distributions (Funk et al., 2015; Dinku et al., 2018). The 

in-situ data recorded through traditional rain gauges represent point-scale 

observations, which are not truly representative of the area-averaged precipitation 

(Table 5). Precipitation from infrared and microwave-based algorithms also have 

limitations due to terrain and wet and dry regional climates (Dinku et al., 2018). The 

analysis of climatic data depends on its distribution pattern, especially in marginal 

areas. Schwarz et al. (2020) higher spatial resolution datasets must be considered to 

generate drought-related risks maps in agriculture in agriculture. The choice of a 

rainfall product can significantly influence the performance of such applications(Le Coz 

and Van de Giesen, 2020). However, the study used CHIRPS datasets to evaluate or 
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compare rainfall products over different parts of South Africa. In SA, rainfall products 

from the gauge-only, satellite-based, and radar are recommended. In addition, the use 

of global rainfall products such as the African Rainfall Climatology version 2 (ARC2), 

the Rainfall Estimate version 2 (RFE2), and the Tropical Applications of Meteorology 

Using Satellite Data and Ground-Based Observations (TAMSAT) African Rainfall 

Climatology and Time Series (TARCAT) need to be compared with CHIRPS datasets 

(Le Coz and Van de Giesen, 2020). 

The results show that VegDRI can delineate bioclimatic zones classified as under 

stress and high rainfall variability (Brown et al., 2014). The South Africa VegDRI map 

can be used with traditional drought indicators (VCI, TCI, and SPI) to inform various 

management decisions, such as crop selection within bioclimatic zones, justifying 

disaster management actions, identifying potential zones for livestock production, and 

assessing fire risk zones. However, the interpretation of our results relative to climate 

change is limited because we used a historical data set (1981-2019). As such, future 

studies should focus on using data from global circulation models (GCMs) to inform 

climate change scenarios more specifically. However, the current maps remain useful 

for informing the areas currently classified as water-stressed and with high rainfall 

variability for sustainable intensification management strategies. To validate and 

operationalise the results, it is essential to ground-truth the mapped bioclimatic zones. 

It is important to note that the impacts of drought can be as varied as its causes. 

Results from this study highlight the potential for the use of a hybrid index, the VegDRI, 

in agricultural decision support systems such as drought risk maps for agricultural 

drought early warning systems, crop yield forecasting models, and water resource 

management tools  

3.5 Limitations 

Our methodology focused on assessing bioclimatic zones under water stress and with 

high rainfall variability using mainly biophysical factors. Such impacts depend on the 

socio-economic context in which drought occurs, in terms of who or what is exposed 

to the drought and the specific vulnerabilities of the detected entities. Therefore, there 

is a need to identify innovative ways to derive maximum value from the possible 
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integration of GIS with block-chain and the Internet of Things (IoT) technologies to 

integrate socio-economic factors. Using machine learning and deep learning 

algorithms can predict and forecast complex local drought conditions. Features of both 

nonlinearity and unstableness usually characterize drought time series; there is a need 

to evaluate different deep learning algorithms in mapping drought risk zones in the 

SSA region. In addition, the drought indices were evaluated only against the district 

sorghum average yields instead of other drought tolerance crops. Input data for 

calculating the VegDRI and statistics from the sorghum crop are independent and from 

different sources. However, that did not prevent us from obtaining strong correlations 

between VegDRI. This makes it possible to say that the VegDRI a good indicator of 

agricultural drought and can, therefore, be used to detect drought-prone zones in 

South Africa. 

3.6 Implications of the drought risk maps for crop production 

The agricultural drought risk maps generated are useful to guide decision-making on 

drought mitigation and adaptation using the integrated climate risk management 

approach (risk reduction); insurance (risk transfer); livelihoods diversification and 

microcredit (prudent risk-taking); and savings (risk reserves) (Andersson-Sköld et al., 

2015; Gopichandran et al., 2016). Through its innovative nature, R4 enables 

vulnerable farmers to adapt to climate risks by adopting appropriate sustainable 

intensification and climate-smart strategies. The generated maps are useful to 

farmers, agronomists in extension, researchers, non-governmental organisations 

(NGOs), the private sector such as insurance companies and banks to develop 

drought resilience strategies (Table 3.6). Additionally, the generated maps can help to 

increase the value and relevance of information available to decision-makers, thereby 

enhancing and supporting drought response and mitigation activities. The information 

generated from drought indices in the form of accessible formats such as maps 

generated and trend analysis increases the value and relevancy of drought to support 

drought response and mitigation activities in marginal areas (Park et al., 2016). 

Drought risk mapping is a key element of drought management. It helps identify the 

areas that are most prone to droughts, allowing policy-makers and agriculturists to 
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plan and give guided recommendations to improve agriculture production in a 

sustainable manner (Shiferaw et al., 2014).



 

 

Table 3.6: Resilience strategies and usefulness of maps generated in crop production 

Strategy Key findings Specific use Proposed adaptation and 
mitigation strategies 

Recommendations 

1. Risk 
reduction 

Identified drought-

prone areas and areas 

with low risk 

• To indicate 

where drought-

tolerant crops such 

as NUS can be 

promoted as 

alternative crop 

choices 

• To 

understand the 

regions within South 

Africa which are at 

greater risk of 

drought hazard 

 

• To inform site-specific 

crop diversification 

recommendations as a 

sustainable intensification 

strategy 

• Investing in climate risk 

assets such as the construction 

of dams and irrigation facilities 

• Mainstreaming weather 

information into agricultural 

extension support using 

bulletins to guide preparedness 

efforts 

• Crop diversification at a 

spatial and temporal scale 

• Ex- and in-situ rainwater 

• A higher spatial 

resolution VegDRI would be 

more applicable for local-scale 

monitoring and decision 

• Climate scenarios 

should be included to allow for 

more proactive agricultural 

planning 

• Researchers need to 

consider the inclusion of socio-

economic parameters in 

delineating drought risk zones 
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harvesting and conservation 

techniques 

• Early warning 

action 

• Maps can be used as a 

base for monitoring, assessing, 

forecasting likelihoods of 

drought and wet spells in high-

risk areas 

 

• Gridded climatic need to 

be validated with locally 

generated datasets (South 

Africa Weather Service) 

Promoting green 

zones for climate 

action in agriculture 

• Promote tolerance crops 

such as NUS in dry regions to 

gain agro-ecosystem services 

and improve food security in 

marginal lands 

 

2. Risk 
Transfer 

Refined maps of where 

the risk of drought is 

low or high 

• Weather 

index insurance 

• Area yield 

index insurance 

• Insuring smallholder 

farmers from drought 

• Maps work as a base 

map for drought monitoring and 

initiate weather index claims for 

insurance companies like 

Africa Risk Capacity (ARC), 

3. Risk • Sustainable • Livelihood diversification • Diversification of crop-
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Prudence and 
Reserves 

transformation of 

existing farming 

systems 

such as livestock production 

• Access to microcredit to 

promote alternative productions 

that are less vulnerable 

• Saving and lending 

groups to caution hazards and 

puerile 

livestock systems to spread the 

risk (intercropping, rearing 

small livestock, market 

gardening, and promotion of 

NUS to complement major 

crops to improve food and 

nutrition in marginal lands 

4. Policy 
and funding 
context 

The arable land of SA 

constitutes 16% of 

extreme/very severe, 

34%-severe, 38%-

moderate, 11%-slight, 

and 1%-no drought 

conditions 

• Evidence-

based policy 

formulation 

• To generate policies that 

support good agricultural 

practices 

 

• Harmonisation of 

existing policies and institutes 

that speak to land, 

environment, agriculture, and 

health 
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3.7 Conclusions 

This study used CART, a machine learning algorithm. We established drought indices, 

SPI, TCI, and VCI, to generate a hybrid drought index – VegDRI to characterise 

bioclimatic zones with high rainfall variability and water scarcity for South Africa. 

VegDRI was able to characterise water-stressed bioclimatic zones with high rainfall 

variability better than the established drought indices. The VegDRI approach can be 

adapted for other regions in sub-Saharan Africa using available climate, satellite, and 

biophysical data. It can be applied to any vegetated area where remote sensing data 

are accessible even with limited in situ data availability. Future research can 

incorporate hydrology, soil water, evapotranspiration, and socio-economic factors to 

delineate bioclimatic zones with high rainfall variability and water scarcity to improve 

drought management. The predictive accuracy of drought risk maps is computed from 

the cell-by-cell comparison. However, the absolute value of the Kappa coefficient 

depends on input data used to delineate drought indices. However, the high 

agreement of VegDRI with VCI and TCI does not necessarily indicate an accurate 

mapping of drought risk maps. Ground truthing is recommended to validate the new 

VegDRI map in South Africa. The adjusted maps can show homogenous areas with 

similar water requirements for crop production in marginal areas of South Africa. The 

results from this study highlight the potential for the use of a hybrid index, the VegDRI, 

in agricultural decision support systems such as drought risk maps for agricultural 

drought early warning systems, crop yield forecasting models, or water resource 

management tools. 
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4 MULTI-CRITERIA SUITABILITY ANALYSIS FOR NEGLECTED AND 
UNDERUTILISED CROP SPECIES IN SOUTH AFRICA 

Mugiyo, H., Chimonyo, V.G.P., Sibanda, M., Kunz, R.P., Nhamo, L., Masemola, C.R., 
Dalin, C., Modi, A.T. and Mabhaudhi, T.0F

1 

Abstract  

Several neglected and underutilised species (NUS) provide solutions to climate 
change and creating a Zero Hunger world, the Sustainable Development Goal 2. 
Several NUS are drought and heat stress-tolerant, making them ideal for improving 
marginalised cropping systems in drought-prone areas. However, owing to their status 
as NUS, current crop suitability maps do not include them as part of the crop choices. 
This study aimed to develop land suitability maps for selected NUS [sorghum, 
(Sorghum bicolor), cowpea (Vigna unguiculata), amaranth and taro (Colocasia 
esculenta)] using Analytic Hierarchy Process (AHP) in ArcGIS. Multidisciplinary 
factors from climatic, soil and landscape, socio-economic and technical indicators 
overlaid using Weighted Overlay Analysis. Validation was done through field visits, 
and area under the curve (AUC) was used to measure AHP model performance. The 
results indicated that sorghum was highly suitable (S1) = 2%, moderately suitable (S2) 
= 61%, marginally suitable (S3) = 33%, and unsuitable (N1) = 4%, cowpea S1= 3%, 
S2 = 56%, S3 = 39%, N1 = 2%, amaranth S1 = 8%, S2 = 81%, S3 = 11%, and taro 
S1 = 0.4%, S2 = 28%, S3 = 64%, N1 = 7%, of calculated arable land of SA (12 655 
859 ha). Overall, the validation showed that the mapping exercises exhibited a high 
degree of accuracies (i.e. sorghum AUC = 0.87, cowpea AUC = 0.88, amaranth AUC 
= 0.95 and taro AUC = 0.82). Rainfall was the most critical variable and criteria with 
the highest impact on land suitability of the NUS.  Results of this study suggest that 
South Africa has a huge potential for NUS production. The maps developed can 
contribute to evidence-based and site-specific recommendations for NUS and their 
mainstreaming. Also, the maps can be used to design appropriate production 
guidelines and to support existing policy frameworks which advocate for sustainable 
intensification of marginalised cropping systems through increased crop diversity and 
the use of stress-tolerant food crops.  

Keywords: AHP, Food and nutrition security GIS; Land suitability analysis; Marginal 

areas 

 
1 Published in PLOS ONE, https://doi.org/10.1371/journal.pone.0244734 
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4.1  Introduction  

The world is challenged by the need to feed a growing population with healthy food 

while minimising the negative impacts on the environment and adapting to changing 

climate (De la Hey and Beinart, 2017). Despite the importance of smallholder 

agriculture to global food production and poverty reduction (Garrity et al., 2010), there 

has been a decline in the level of agricultural production in the Sub Saharan Africa 

(SSA) region (Hardy et al., 2011). More so in South Africa (SA), the contribution of 

agriculture to household food consumption among smallholder farmers continues to 

fall (De la Hey and Beinart, 2017). It is understood that inherent water scarcity, 

exacerbated by climate variability and changes in land use, has contributed to reduced 

land available for agricultural expansion for the production of major crops especially in 

resource-poor farming systems (The World Bank and Statistics SA, 2018). 

Considering these challenges, agriculture requires innovative approaches that seek to 

address, not only issues of food and nutrition security but also environmental 

degradation, adapt to climate variability and land use planning. Sustainable 

intensification of smallholder food production systems is considered essential to 

meeting the United Nations Sustainable Development Goal 1 (poverty eradication) and 

2 (zero hunger) (Shumsky et al., 2014). There is a need to introduce and promote 

practices that fit “into” or “with” current smallholder production systems while 

complementing existing efforts to improve resilience to climate variability and change 

as well as intensifying productivity for sustainable food and nutrition security 

(Mabhaudhi et al., 2019b).  

Neglected and underutilised crop species are an option for redressing food and 

nutrition challenges faced in marginalised communities (Baldermann et al., 2016). 

These crops are native to specific areas in geological time (Raihana et al., 2015) and 

are known to be suitable in marginal areas characterised by severe dry spells and 

flash floods (Massawe et al., 2016). Across the world, several research initiatives 

examined the mechanisms that allow for stress adaptation within a range of NUS (10, 

11, and 12). For instance, in SA Chibarabada et al (Chibarabada et al., 2020) modelled 

productivity of ground nuts under water deficit conditions, in Malaysia Peter et al. 

(Gregory et al., 2019) examined the adoption of underutilised crops, while Ebert 



88 

 

(Ebert, 2014) from Taiwan, assessed the potential of underutilized traditional 

vegetables and legume crops in contributing to food and nutritional security. These 

studies illustrate that, while NUS may be well adapted to multiple stress conditions, 

they are grown in geographical pockets that are often far from where they could 

provide the most positive contribution to food and nutrition security (Massawe et al., 

2016). The lack of scientific evidence has resulted in the slow promotion of NUS into 

existing food systems, be it formal or informal (Mabhaudhi et al., 2019a). As such, 

policy frameworks on agriculture, health and environment continue to remain silent on 

the potential use of NUS in contributing towards increasing adaptation of marginalised 

agricultural systems to climate risks. In addition, little mentioned about their 

contribution towards good health as well as nutrition and rehabilitation of degraded 

agricultural lands. As such, information detailing the suitability of NUS is essential if 

they are to be recognised as a sustainable and plausible option for contributing 

towards the sustainable development and improved resilience of marginalised farming 

communities (Boatemaa et al., 2019). 

Land suitability analysis assesses the appropriateness of crops to a specific practice 

or land use (Ziadat, 2007). Specifically, land suitability evaluates land capability as 

well as other factors such as land quality, land ownership, customers demand, 

economic values and proximity to different accesses (Malczewski, 2006). Multi-criteria 

decision making (MCDM), also referred to as, Multi-criteria decision analysis (MCDA) 

can be used to define land potential to solve complex problems of land-use and land-

use changes (Nguyen et al., 2015; Rabia et al., 2013; Zabel et al., 2014). Multi-criteria 

decision-analysis methodologies can overcome problems related to vagueness in 

definition and other uncertainties, especially in the context of NUS suitability analysis 

(Ranjitkar et al., 2016). Land suitability analysis can be done by using geographic 

information system based MCDM to identify suitable areas for cultivating NUS. To 

improve the interpretations of MCDA, Saaty (1980) introduced the Analytic Hierarchy 

Process (AHP) as a method to capture aspects of a decision in both a subjective and 

objective manner to reduce confounding (Romano et al., 2015; Singha and Swain, 

2016). The AHP methodology provides scope for combining expert opinions with 

numerical predictions from biophysical models to provide an integrated approach to 

resource management (Chen and Paydar, 2012; Saaty, 2016). Similar techniques 
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have been used in agriculture to identify land suitable for: agricultural land reform 

(Musakwa, 2018); rain fed wheat (Kazemi and Akinci, 2018); citrus  (Zabihi et al., 

2015); rice in Kenya (Kihoro et al., 2013); wheat and rye-grass production (Benke and 

Pelizaro, 2010).  

Currently, the delineation of South Africa’s rainfed agricultural land use is for few major 

cash crops such as maize, sugar cane, and soybean. The few crops reflect the current 

lack of agro-biodiversity, which culminates in increased sensitivity of agriculture to 

climate risks (Kepe and Tessaro, 2014). An example is the 2015/16 ENSO drought 

that caused South Africa to import more than 30% of its annual cereal grain 

requirements due to poor harvests. In general, NUS are hypothesised to be suitable 

for marginal agro-ecologies (Mabhaudhi et al., 2019b) and can help increase the 

resilience of rainfed cropping systems in the wake of climate variability and change. In 

this regard, NUS can offer ecologically viable options for increasing agriculture 

productivity, especially in marginal areas, as they are locally adapted and would not 

strain the environment further (Chivenge et al., 2015). Therefore, the promotion of 

indigenous crops such as sorghum-Sorghum bicolor, cowpea-Vigna unguiculata and 

taro-Colocasia esculenta is integral to ensuring that households consume more 

diverse diets (Thow et al., 2018). Mapping NUS production potential zones in SA, will 

help inform decision on where NUS can be promoted as part of the crop choice, assist 

decision-makers in formulating policies with a sustainable intensification concept and 

then the creation of markets for NUS, which will enhance food and nutrition security. 

Therefore, the main objective of the research is to identify potential areas suitable for 

sorghum-, cowpea, taro, and amaranth – using a GIS-based MCDA-AHP.  

4.2 Methodology 

4.2.1 Multi-criteria decision analysis (MCDA) approach  

Crop suitability is a function of crop requirements and land characteristics, therefore 

matching the land characteristics with the crop requirements gives the suitability (Han 

and Chen, 2018). Suitability analysis has to be carried out in such a way that farming 

systems and local needs are reflected well in the final decisions (Reshmidevi et al., 

2009). The MCDA combines qualitative and quantitative criteria while specifying the 
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degree and nature of the relationships between those criteria to support spatial 

decision-making (Malczewski, 2004). 

The process of evaluating the suitability of land for a specific purpose requires a 

comprehensive analysis of natural factors and the socio-economic factors which 

influence the land (Mendoza and Martins, 2006; Raza et al., 2018). The elements used 

can be divided into high and lower factors based on experts’ opinion weights (Zabihi 

et al., 2015). High-level factors in crop suitability analysis are natural or biophysical 

factors that directly affect the growth of crops, for example, rainfall, and temperature 

and soil fertility. The lower level factors are social and economic factors which 

indirectly affect crop growth, but influence land use degree of appropriateness to a 

purpose (Yi and Wang, 2013). The interactions, dependencies and feedback between 

higher and lower-level elements form a multi-criteria land evaluation approach for a 

sustainable NUS production. Figure 4.1 presents a conceptual framework for 

developing NUS Cropland suitability maps using GIS. 
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Figure 4.1: Framework used in computing suitability indices for neglected and 
underutilised crop species in South Africa (Developed by the authors).  

The general land use suitability model is:  

𝑆𝑆 (𝑎𝑎1. . . ,𝑎𝑎𝑎𝑎) = ∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑛𝑛
𝑗𝑗=1                                                                                             Equation 4.1 

where S (a1..., an) is suitability measure, and bj is the jth largest of the a1  factors affecting 

the suitability of the sites (Jeong et al., 2014; Romano et al., 2015). A weighted 

average is an average where each observation in the data set is multiplied by a 

predetermined weight before calculation equation 4.1 (Nzeyimana et al., 2014). The 

ordered weighted averaging (OWA) operator is a non-linear operator as a result of the 

process of determining the bj, and this was achieved by choosing different weights to 

implement different aggregation operators’ equation 4.1. 
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4.2.1.1 Data sources  

For this study, data were obtained from the South African Quaternary Catchments 

database (Table 4.1). The multidisciplinary data was grouped into climatic, soil and 

landscape attributes, social-economic and technical indicators. Nine parameters were 

used, and these included five climatic, three soil, and one social parameter (Table 
4.1). High-resolution climatic parameters were derived from 1950 to 2000, a 50-year 

time series of continuous daily data from selected 1 946 stations Quaternary 

Catchments covering South Africa (Schulze, 2002). The datasets were developed by 

the Water Research Commission funded in a project titled “Mapping the Mean Annual 

Precipitation and Other Rainfall Statistics” (Smithers and Schulze, 2000). The spatial 

resolution of climatic data was one arc minute; this implies that one grid is represented 

as 1.7 x 1.7 km. Lynch (2004) calculated monthly precipitation by using a 

geographically weighted regression method, and monthly means of daily average 

temperatures were derived from (Lynch, 2004). Abrams (2018) indicated that over 

70% of South African food production is rainfed. In South Africa only 1,5% of the land 

is under irrigation, producing approximately 30% of the country’s crops. Therefore, all 

climatic parameters were calculated using seasonal and not annual data. Wet periods 

can be calculated from daily precipitation events like the start of the season, dry spells, 

end of the season. In SA, precipitation is undoubtedly the dominating factor 

determining crop production, especially in marginal areas where irrigation facilities are 

limited for smallholder farmers (Tibesigwa et al., 2017).  

All thematic variables used in this study were converted to raster layers. Before the 

analysis, all thematic layers were resampled into the World Geodetic System 1984 

(WGS84) geo-referencing system (Macomber, 1984). The resolution of finer grid 

layers was resampled to 1.7 km resolution of climatic factors. All the transformations 

of the GIS layers were done in ArcGIS.  

4.2.2 Analytic Hierarchy Process (AHP) 

The analytic hierarchy process (AHP) is the most widely accepted method and is 

considered by many as the most robust of MCDA (Kaim et al., 2018). The AHP helps 

to capture both subjective and objective aspects of a decision by reducing complex 
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decisions to a series of pairwise comparisons and then synthesising the results 

(Nguyen et al., 2015). Since AHP considers a set of evaluation criteria and a set of 

alternative options among which the best decision is to be made, a 9-point scale 

measurement was used in this study (Table 4.2). In this study, the AHP calculator was 

used to calculate weights (Nasrollahi et al., 2017). The assignments of weights were 

based on information from literature, as well as the team’s local knowledge and expert 

consultation (soil scientist, GIS and remote sensing specialists from the University of 

KwaZulu-Natal) (Table 4.3).  

 

Table 4.1: Factors used to delineate land suitability maps for neglected and 

underutilised crop species 

Factors Source 
Climate-related factors 

Precipitation (mm) 1.7 km resolution South African Quaternary Catchments 
database – Water Research Commission 

Temperature 1.7 km resolution South African Quaternary Catchments 
database – Water Research Commission 

Reference crop evapotranspiration 
(ETo) millimetres (mm) or (lm-2) 1.7 km 
resolution 

South African Quaternary Catchments 
database – Water Research Commission 

Length of growing period (LGP) 1.7 km 
resolution 

South African Quaternary Catchments 
database – Water Research Commission 

Water Requirement Satisfaction Index 
(WRSI)-at 10 km resolution 

Fewsnet 
https://earlywarning.usgs.gov/fews 

Soil and landscape attributes used to delineate land suitability maps for 
neglected and underutilised crop species 

Soil depth at 250 m resolution South African Quaternary Catchments 
database – Water Research Commission 

Elevation (mm) 30 m resolution http://earthexplorer.usgs.gov 
Slope South African Quaternary Catchments 

database – Water Research Commission 
Social and economic factors used to delineate land suitability maps for NUS. 

Distance from road/accessibility South African Quaternary Catchments 
database – Water Research Commission 
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Table 4.2: The fundamentals for pairwise comparison (Saaty, 1990) 

Intensity of 
importance 

Definition Explanation 

1 equal importance Two activities contribute equally 
to the objective 

3 moderate importance of 
one over another 

Experience and judgment 
slightly favour one activity over 
another 

5 the strong or essential 
importance 

Experience and judgment 
strongly favour one activity over 
another 

7 very strong or 
demonstrated importance 

Activity is strongly favoured, 
and its dominance showed in 
practice 

9 extreme importance The evidence favouring one 
activity over another is of the 
highest possible order of 
affirmation 

2,4,6 and 8 Even numbers represent 
intermediate values 
between the two adjacent 
judgements 

When compromise is needed 

 

Factor weights were calculated by comparing two factors together at a time. The AHP 
weights were calculated using Microsoft Excel. Table 3 shows a pairwise comparison 
matrix for the research 

The pairwise comparisons in the AHP were determined according to the scale 

introduced by Saaty (Saaty, 1980), with values from 9 to 1/9. A rating of 9 indicates 

that concerning the column factor, the row factor is more important. On the other hand, 

a rating of 1/9 indicates that relative to the column factor, the row factor is less 

important. In cases where the column and row factors are equally important, they have 

a rating value of 1. Through the pairwise comparison matrix, the AHP calculates the 

weighting for each criterion by taking the Eigenvector corresponding to the largest 

Eigenvalue of the matrix and then normalising the sum of the components to unity 

(Chandio et al., 2013).
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Table 4.3: Pairwise comparison matrix 

Factors Rainfall Temp ETo LGP Elevation Slope LULC Soil Depth Distance to Road Weight 

Rainfall 1 2 2 2 5 5 3 2 9 0.24 

Temp 1/2 1 2 3 3 3 3 2 8 0.18 

ETo 1/2 1/2 1 1/3 5 3 3 2 5 0.13 

LGP 1/2 1/3 3 1 5 3 3 3 5 0.17 

Elevation 1/5 1/3 1/5 1/5 1 2 1/2 1/2 2 0.04 

Slope 1/5 1/3 1/3 1/3 2 1 2 2 5 0.08 

LULC 1/3 1/3 1/3 1/3 2 1/2 1 1/2 3 0.06 

Soil Depth 1/2 1/2 1/2 1/3 2 1/2 2 1 5 0.08 

Distance from road 1/9 1/8 1/5 1/5 1/2 1/5 1/3 1/5 1 0.02 

Maximum eigenvalue (λmax) = 9.6082, n=9, Consistency index (CI) =  (λmax − n)/(n − 1)=0.07602, Random index (RI) = 1.45, 

Consistency Ratio (CR) = CI/RI=0.052428



96 

 

The ratio scales were derived from the principal Eigenvectors, and the consistency 

index was derived from the principal Eigenvalue. An eigenvalue is a number, which 

explains how much variance is spread out (Ceballos-Silva and López-Blanco, 2003). 

According to Brandt et al. (Brandt et al., 2017) and Feng et al. (Feng et al., 2017), the 

AHP has a limitation of coming up with weights; it is subjective. The inconsistency can 

be improved by:  

• Deriving pairwise matrix based on a scientific objective in non-scare data situation 

(Alexander and Benjamin, 2012) (Table 4.3), 

• Estimating the relative importance of factors individually and based more on 

scientists' opinion through informal interviews with key informants like a ministry of 

Agriculture (Akinci et al., 2013) and 

• Giving attention to an upper limit, the upper limit is a consistency ratio (CR) that 

must be less than 0.1 for a pairwise matrix judgment to be accepted (Milad Aburas 

et al., 2015).  

To minimise the interrelationship among various factors included in the AHP approach, 

data reduction method such as Ordered Weighted Averaging (OWA) was used 

(Jelokhani-Niaraki and Malczewski, 2015). The weighted linear combination allows the 

variability of continuous and discrete factors to be retained and standardised to a 

standard numeric range (Romano et al., 2015). 

4.2.3 Fitting neglected and underutilised crop species in ecophysiology based on 

drought-tolerance characteristics 

Agro-climatic indices were calculated to estimate phenological phases of crops to fit 

NUS in an environment (Table 4.4). The dynamic consideration of crop phenology 

allows assessing effects of agro-climate-factors to phenological development of NUS. 

The overall suitability was estimated based on Liebig's law of the minimum (Mesgaran 

et al., 2017). The Liebig’s law of the minimum to provide a flexible framework to assess 

climate suitability of crops in a situation where the crop suitability is subjected to 

imprecision and vagueness, or the pairwise comparisons are subjective especially 

when fuzzy AHP was used to classify NUS (Kazemi and Akinci, 2018; Ugbaje et al., 
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2019). It is based on three types of mathematical functions; the equations transform 

each variable to a suitability value varying from 1 (unsuitable) to 1 (optimum or highly 

suitable). Liebig’s law of the minimum is the outcome of AHP using the minimum t-

norm between variables (Kim et al., 2018). The mathematical expression for this type 

of relationship was formulated as follows. 

𝑆𝑆(𝑉𝑉) =
0

{𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉}
{𝑉𝑉𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉}

1
𝑖𝑖𝑖𝑖 𝑉𝑉 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉;  𝑖𝑖𝑓𝑓 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 < 𝑉𝑉 < 𝑉𝑉𝑉𝑉𝑉𝑉;  𝑖𝑖𝑖𝑖 𝑉𝑉 ≥ 𝑉𝑉𝑉𝑉𝑉𝑉               Equation 4.2 

where S (V) is the suitability index as a function of the individual variable; V is the 

parameter; Vmin indicates the minimum value of V required for crop growth; Vol is the 

lowest optimum value of V at or beyond which the highest suitability can be obtainedIn 

general, an increase in precipitation increases the suitability of crop in semi-arid 

regions. Based on the water use of a crop, the lower limit of precipitation was used to 

delineate area suitable for a crop, for example, 111 mm per year was used for 

amaranth (Table 4.4). According to FAO, a minimum of 500 mm rainfall per year is 

required to achieve reasonable economic yields, therefore, we used 500 mm as the 

upper threshold in our stepwise function (Steduto et al., 2012). Some variable like the 

terrain is inversely correlated with growth suitability (Table 4.4); following criterion was 

used to mark the suitability of NUS. 

𝑆𝑆(𝑉𝑉) =
1

{𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉−𝑉𝑉}
{𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉}

0
𝑖𝑖𝑖𝑖 𝑉𝑉 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉;  𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉 < 𝑉𝑉 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉;  𝑖𝑖𝑖𝑖 𝑉𝑉 ≥ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉        Equation 4.3 

where Vmax is the maximum value of variable V beyond which no cropping is possible; 

Vou is the uppermost optimum value of V for cropping. In all areas with 0 to 5% slope 

has no limitation about the steepness and above 5% optimal upper bound (Vou) field 

tends to have challenges in using have machines. 
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Table 4.4: Characteristics of sorghum (Chimonyo et al., 2016), cowpea (Chimonyo et 

al., 2016), taro (Mabhaudhi et al., 2014a) and amaranth (Nyathi et al., 2018) 

 

Sorghum 

(Sorghum 

bicolor) 

Cowpea 

(Vigna 

unguiculata) 

Taro 

(Colocasia 

esculenta) 

Amaranth-

(Amaranthus) 

Water use (mm) 261-415 133-265 800-1 288 111-448 

Precipitation per 

season (mm) 
450-800 400-700 800-2000 400-650 

Time to maturity 

(Days) 
100-120 90-150 240-300 20-45 

Temperature 

range (°C) 
26-30 25-30 25-32 18-30 

Yield (kg ha-1) 2802-4304 776-1120 3830-17 330 3400-5200 

 

4.2.4 Qualitative land suitability classification 

In this study, five different classes from FAO land suitability framework were used to 

quantify the magnitude of suitability for NUS within South Africa (Table 4.5). It 

classified the land into four suitability classes: land suitability orders, land suitability 

classes, land suitability sub-classes and land suitability units (Cools et al., 2003). In 

FAO, orders indicate lands suitable for crops (S) or not suitable for crops (N) while 

classes show the degree of land suitability, such as (S1) highly suitable, (S2) 

moderately suitable, (S3) marginally not suitable, (N1) currently not suitable and (N2) 

permanently not suitable, and then subclass explains limitations. The classification 

designates a single index of use as best on each land unit (Fontes et al., 2009). 
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Table 4.5: Suitability indices for the different suitability classes (FAO, 2007). 

Suitability 

Class 

Suitability index (SI) Description Class 

S1 Highly suitable (>80) Land having no limitations for a given use, or 

constraints that do not reduce the productivity and 

benefits appreciably, with no need for a high level of 

input 

S2 Moderately suitable 

(60-80) 

Land having minor limitations that could reduce 

productivity or benefits, additive inputs are required 

to reach the same yield as that of class S1 

S3 Marginally suitable 

(45-59) 

Land having moderate limitations for a particular 

use, in which the amount of surplus input is only 

marginally justified 

N1 Currently unsuitable 

(30-44) 

Land with severe limitations for land use under 

consideration. Every sustainable use is precluded, 

and the costs for correction are unacceptable with 

the existing condition. Only new technologies could 

improve land productivity 

N2 Permanently 

unsuitable (<30) 

Land-use type under analysis is not acceptable at all 

for the land. 

 

4.2.5 Validation of cropland suitability 

The validation data was gathered through field surveys in one KwaZulu-Natal location 

conducted between 1st of October to 21st of November 2019. A total of 60 GPS 

locations of taro, amaranth, sorghum and cowpea were randomly collected during the 

survey. The GPS locations were measured at the centre of an identified field. The GPS 

locations were captured in excel and GPS locations were converted to a point map in 

a GIS. The crop presence was captured as one of the attribute tables. A total of 600 

points were randomly generated in a GIS across South Africa. These points were used 

to represent the absence (value 0) of the crops. We used a ratio of 1:10 between 
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known present points to pseudo-absence; hence, 600 pseudo absence points were 

generated (Tshabalala et al., 2019). These two-point maps were merged into one 

layer, which was then overlaid with the MCDM/AHP derived suitability maps. A new 

table containing the presence and absence as well as the crop suitability information 

was produced and exported as an excel spreadsheet. This data was then used to 

measure the magnitude of agreement between the generated NUS suitability maps, 

and the field measured locations of crops using the receiver operating characteristic 

(ROC), and the area under the curve (AUC) derived based on the logistic regression. 

Each crops accuracy assessment using the logistic regression analysis was carried 

out in the statistical package R version 3.6.1 (R Core Team 2019, 2019) using the 

‘RATTLE’ library (Williams, 2011). The ROC plot has an x-axis indicating the false-

positive error rate, which signifies a wrong prediction by the model. The y-axis shows 

the positive rate, indicating a correct prediction by the model (Williams, 2011). An AUC 

value that is less than or equal to 0.5 indicates a random prediction, while AUC values 

higher than 0.5 and closer to 1 indicates a better prediction by the model (Jiménez-

Valverde, 2012; Senay and Worner, 2019). The composite operator helps illustrate 

how well two layers or maps agree in terms of how the categories are clustered 

spatially.   

We further checked the magnitude of dryness of classes of a correlation analysis 

between the general NUS land suitability index and the mean average of Water 

Requirement Satisfaction Index (WRSI) from 1981 to 2017 from Famine Early Warning 

Systems Network (FEWSNET) was used to compare the results. Water Requirement 

Satisfaction Index was developed by the FAO and mostly used by FEWSNET to 

monitor and investigate crop production in agricultural drought-prone parts of the 

world. The WRSI is an indicator of crop performance based on the availability of water 

to the crop during a growing season (Singh Rawat et al., 2019). The classes of WRSI 

are crop failure – less 49%, Poor – 50-79%, average – 80-94, and good – 95-100%. 
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4.3 Results  

4.3.1 Sorghum land suitability map 

Figure 4.2 presents the results of the analysis of the suitability of sorghum-based on 

MCDA-AHP and OWA operators. These results show the existing distribution of the 

land suitability classes, excluding areas where present land use is nature 

conservation, plantation, urban and water. Results indicated that there is about 2% of 

land that is highly suitable (S1) for the production of sorghum. Moderately suitable (S2) 

land constitutes the most substantial proportion (61%) of the calculated arable land of 

South Africa (12 655 859 ha) while marginally suitable (S3) and unsuitable (N1) 

constitutes 33% and 4%, respectively of calculated arable land (Figure 4.2). Large 

areas suitable (S1 and S2) land was concentrated in eastern provinces and suitability 

intensity decrease towards western provinces (Figure 4.2). A total of 60 GPS location 

was used to confirm the presence of sorghum within selected locations in KwaZulu-

Natal province.  

 

Figure 4.2: Suitability map for sorghum production in South Africa computed using 
MCDA-AHP and OWA operators [Source, South African Quaternary Catchments 
database, (https://doi.org/10.6084/m9.figshare.13179881), in ArcGIS 10.5] 

https://doi.org/10.6084/m9.figshare.13179881
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4.3.2 Cowpea land suitability map 

Cowpea suitability varies across the country. The results indicated that there is about 

3% of the land is highly suitable (S1) for the production of cowpea. Moderately suitable 

(S2) land constitutes the most substantial proportion with 56% of the calculated arable 

land of South Africa (12 655 859 ha) while marginally suitable (S3) and unsuitable (N1) 

constitutes 39% and 2%, respectively of calculated arable land (Figure 4.3). The 

spatial suitability is high in south-eastern provinces and central provinces of South 

Africa. The intensity of suitability decreases from the central part of the country to the 

western regions of the country (Figure 4.3). Similar to sorghum, the distribution of 

suitability was consistent, but not in the order with rainfall, slope, soil depth and ETO 

distribution.  

 

Figure 4.3: Suitability map for cowpea production in South Africa computed using 
MCDA-AHP and OWA operators [Source, South African Quaternary Catchments 
database, ( https://doi.org/10.6084/m9.figshare.13179881), in ArcGIS 10.5] 

https://doi.org/10.6084/m9.figshare.13179881
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4.3.3 Taro land suitability map 

Figure 4.4 presents the spatial distribution of the suitability scores for taro-based on 

MCDA-AHP method. The results indicated that there is about 0.4% of the land that is 

highly suitable (S1) for the production of taro. Moderately suitable (S2) land constitutes 

28% of the calculated arable land of South Africa (12 655 859 ha) while marginally 

suitable (S3) constitutes the most substantial proportion 64% and (N1) 7% of 

calculated arable land. Taro suitability is high in KwaZulu-Natal and Mpumalanga 

provinces. Limpopo, North West, Northern Cape and Western Cape are marginally 

suitable for taro (Figure 4.4). The distribution of taro suitability was consistent 

maximum temperature and length of the growing season and rainfall distribution.  

 

Figure 4.4: Suitability map for taro production in South Africa computed using MCDA-
AHP and OWA operators. [Source, South African Quaternary Catchments database, 
( https://doi.org/10.6084/m9.figshare.13179881), in ArcGIS 10.5] 

https://doi.org/10.6084/m9.figshare.13179881
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4.3.4 Amaranth Suitability 

The land suitability analyses indicated that amaranth is highly suitable across South 

Africa (Figure 4.5) The results indicated that there is about 8% of the land that is highly 

suitable (S1) for the production of amaranth. Moderately suitable (S2) land constitutes 

the most substantial proportion with 81% of the calculated arable land of South Africa 

(12 655 859 ha) while marginally suitable (S3) constitutes 11% of calculated arable 

land (Figure 4.5). Amaranth is high suitable across South Africa in most cropping 

areas, even in the Western Cape, where the investigated crops had low suitability 

(Figure 4.5). The observed suitability could be associated with the growth 

requirements of the crops that allow for its production even under marginal conditions. 

From field visits, farmers confirmed that amaranth is suitable and grow naturally in 

KwaZulu-Natal environments. 

 

Figure 4.5: Suitability map for amaranth production in South Africa computed using 
MCDA-AHP and OWA operators. [Source, South African Quaternary Catchments 
database, (https://doi.org/10.6084/m9.figshare.13179881), in ArcGIS 10.5] 

https://doi.org/10.6084/m9.figshare.13179881
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4.3.5 Water requirement satisfactory indices for a period of 1981 to 2017 

The Water Requirement Satisfaction Index classification in driest areas of the country, 

which a mainly the Northern provinces were not applicable. In the Western Cape 

Province, there was no start of the season, and this is consistent with the low rainfall 

received and high ET0 characteristic of this region Figure 4.6.  

 

Figure 4.6: Average water requirement satisfactory indices for a period of 1981 to 
2017 in cropping lands in South Africa. [Source, Famine Early Warning Systems 
Network,( https://earlywarning.usgs.gov/fews, and from USGS Earth Explorer 
(http://earthexplorer.usgs.gov). and from USGS Earth Explorer 
(http://earthexplorer.usgs.gov).), in ArcGIS 10.5] 

 

4.3.6 Multi-criteria model accuracy validation 

The area under curve (AUC) of sorghum (0.87) cowpea (0.88), amaranth (0.95) and 

taro (0.82) values were greater than 0.5 Figure 4.7. Considering that the AUCs of all 

https://earlywarning.usgs.gov/fews
http://earthexplorer.usgs.gov)./
http://earthexplorer.usgs.gov)./
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the crops were above 0.8, this indicates that all the models were in this study were 

accurate in estimating the NUS suitability. 

 

Figure 4.7: The Receiver Operating Characteristic (ROC), used to generate the Area 
Under the curve (AUC) which is used for model validation of the logistic regression 
model for spatial prediction of (a) sorghum, (b) cowpea, (c) amaranth and (d) taro. 

4.4 Discussion 

In this study, we assessed the land suitability of NUS using climatic, soil-landscape, 

as well as socio-economic factors. Use of AHP provides scope for combining expert 

opinion with measurements in making pairwise comparisons between criteria at each 

level of the hierarchy to come up with relative weights. According to the local experts’ 

judgment, rainfall was the most critical variable, followed by temperature, while soil 

depth and distance from the road were least important. The ranking of the variables is 

somewhat consistent with what was reported as important crop limiting factors for 

South Africa (75). Malczewski (36) noted that the relationship between the objectives 

and attributes has a hierarchical structure. The consistency ratio was calculated as 

0.05 and is considered as acceptable (24,76). 
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To reduce the risk associated with over-fitting or noise modelling, nine thematic input 

layers were used by employing matrix pairwise comparison. The matrix pairwise 

comparison was obtained from different expects, and factor weights were calculated 

using a pairwise comparison matrix. The accuracy of weights used is subjective as it 

depends on expert opinion; however, the results of the relative weights were used in 

land suitability evaluation because the Consistency Ratios were within the established 

acceptable limits (0.1) (Saaty and Saaty, 1980). The challenge of a deterministic 

MCDA-AHP method is that assigning weights may be subjective, and the setting of 

weights represent imprecise point estimates, and the process does not indicate error 

or confidence (Benke and Pelizaro, 2010). However, the use of AHP methodology 

provides scope for combining expert opinion with measurements (Bagherzadeh and 

Gholizadeh, 2016; Mendoza and Martins, 2006; Mustafa et al., 2011). Expert opinion 

weighted distance from the road with the lowest weight, because the social-economic 

factor does not affect crop growth directly, but it influences the adoption of NUCS by 

farmers. Accessibility to markets is highly influenced by road network because it 

affects markets. There are other socio-economic factors (availability of extension 

services, access to markets and credit, etc.), which can be included in MCDA to 

develop cropland suitability mapping (Akpoti et al., 2019). 

Based on the analyses, there are potential environmental benefits to growing NUS in 

SA. The introduction of NUS into regions classified as moderately suitable (S3) to 

highly suitable (S1) could increase the crop choices available, and also contribute to 

biodiversity (SDG 15). The low environmental impacts and increased biodiversity 

brought about by the introduction of NUS can be viewed as a climate change 

adaptation strategy (SDG 13) for increasing farmer resilience (Drimie and Pereira, 

2016). More so, for marginalised farming communities that have limited access to 

improved technologies such as hybrid seed and fertilisers (Modi, 2003). In this regard, 

the introduction of NUS into existing cropping systems can be viewed as a sustainable 

intensification approach (Harvey, 2010). Also, promoting NUS in marginal lands can 

contribute to food and nutrition security (SDG 2), poverty alleviation (SDG 1) through 

creating new value chains and human health and wellbeing (SDG 3). 

The area under the curve (AUC) of sorghum, cowpea, amaranth and taro was above 

0.8 indicating that the land classification based on the logistic regression were highly 
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accurate. These high accuracies could be explained by the robustness, holistic nature 

and optimal performance of the GIS based MCDA and AHP modelling which was able 

to characterise land that is optimal for the NUS production in this study. Sun et al., 

(Sun et al., 2017) provide an essential guarantee of the AHP model as a decision-

support tool for improving the efficiency of water use. Amongst the four crops, taro had 

the lowest AUC because the crop generally has a high water requirement compared 

to the other crops (Mabhaudhi et al., 2014a, 2014b).  

The results of total area suitable for the production of sorghum, taro, and cowpea were 

consistent with what has been reported to be available arable land (approximately 

10.3%) in South Africa (Shackleton et al., 2014). About 70% of South Africa’s land is 

categorised as unsuitable for rainfed crop production due to a combination of poor 

rainfall distribution and soils with low fertility, yet NUS are naturally suitable in marginal 

areas. However, there were variations in the magnitude of suitability for each of the 

NUS crops investigated. The results indicated that sorghum and cowpea were suited 

for drought and heat stress-prone areas such as KwaZulu-Natal, Eastern Cape and 

Limpopo provinces where the majority of agricultural households reside (Chivenge et 

al., 2015). Based on AHP analysis, these crop species are, therefore, well adapted to 

high climate risk and can be produced under water-limited and extremely hot (33-

38oC) conditions. Amaranth was highly suitable across most cropping lands in South 

Africa, and this is because the crop has a short growing period and low water 

requirement (Nyathi et al., 2018).  

The suitability of taro in KwaZulu-Natal, Mpumalanga and Gauteng provinces is 

consistent with the observed length of the growing period, Specifically, taro takes up 

to 300 days to mature and it has high water use rate (651-1701 mm) (Mabhaudhi et 

al., 2013). In this regard, the areas suitable for taro production in South Africa were 

low and mostly confined to areas receiving high rainfall. The high water requirements 

would suggest that the crop may be more suited for areas prone to flash flooding as it 

is also tolerant to aeration stress (Mabhaudhi et al., 2013). Therefore, our results can 

be used to indicate areas where the investigated crops can be introduced as part of 

sustainable intensification approaches for climate change adaption (Schiefer et al., 

2016). The results are vital in increasing the options for crop choice for marginalised 

farmers throughout South Africa. However, the information on suitability needs to be 
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complemented with information on "better bet" agronomic management to realise the 

full potential of the crops in question (Massawe et al., 2016). Cowpea, sorghum, and 

amaranths are highly suitable in areas which receive more than 500 mm per season 

and most of these areas are highly urbanised (i.e. Gauteng province). Therefore, the 

opportunity cost of promoting NUS near urban areas might be affected by the land 

value near urban areas, then high valued horticultural crops and dairy production with 

higher market demands are more preferred by peri-urban farmers (Massawe et al., 

2016).  

Our methodology focused on assessing crop suitability using mainly physical factors 

and a single socio-economic factor. Neglected and underutilised crop species are 

important within smallholder farming systems and address several socio-economic 

indicators such as widening food value chains, increase food and nutrition security 

and reducing gender inequality (Akinola et al., 2020). Promoting or introducing NUS 

in mapped zones can be an essential part of the solution towards addressing food 

insecurity, specifically malnutrition, reducing vulnerability to climate variability and 

change, environmental degradation, and gender inequality. It is argued that holistic 

land suitability maps, which take into consideration several socio-economic indices, 

could be more useful to policy-makers and enhancing the participation of marginalised 

farmers in the food system (Mabhaudhi et al., 2019b). The exclusion of key socio-

economic indicators in developing suitability maps might affect uptake and adoption 

of these crop species in areas where they are found to be biophysically suitable. 

Therefore, to generate information of socio-economic indicators, there is need for 

future studies to identify innovative ways to derive maximum value from the possible 

integration of GIS with block-chain, big data, and Internet of Things (IoT) technologies 

to mine updated data, especially on climatic data and social-economic factors (Sharma 

et al., 2018; Wolfert et al., 2017). To achieve this, farmers, private sector and the 

government will need to support further research on NUS value chains. 

The results show that NUS are suitable in a wide range of agro-ecological zones, 

especially in areas observed to have high ecological risks. Therefore, mainstreaming 

them into existing systems as alternative crop species to commercially important crops 

might be a sound adaptation strategy to climate variability and change. However, the 

interpretation of our results relative to climate change is limited by the fact that we 



110 

 

used a historical data set (1950-2000). While this spans across half a decade, most of 

the extreme climate hazards have been observed in the last 30 years (1990-present) 

(IPCC, 2018). As such, future studies should focus on using data from global 

circulation models (GCMs) to inform climate change scenarios more specifically. 

However, the current maps remain useful in identifying areas that are currently suitable 

for NUS production for the first time in South Africa. 

High coefficient of determination between MCDA-AHP and WRSI indicated that the 

climatic parameters used were sufficient to delineate marginal areas within South 

Africa. Water Requirement Satisfaction Index was developed by the FAO and mostly 

used by FEWSNET to monitor and investigate crop production in agricultural drought-

prone parts of the world (Consoli and Vanella, 2014). It is used to monitor crop 

performance during the growing season and based upon how much water is available 

for the crop by calculating a ratio of actual to potential evapotranspiration (Consoli and 

Vanella, 2014). These ratios are crop-specific and are based upon crop development 

and known relationships between yields and drought stress (Consoli and Vanella, 

2014). Short duration crops such as amaranth and crops that have a low water 

requirement fit well in all environments of South Africa. While the WRSI uses climate-

related stress factors other than soil available water, the relationship between two 

independent classifications showed that this study’s NUS land suitability was 

satisfactory. The negative coefficient of determination (R=-0.15) observed for taro 

suitability, and WRSI might be due to crop water requirements and length of the growth 

period, which overlaps into the dry season. 

Taro is predominantly a wetland crop; however, upland varieties exist and these have 

been shown to have lower levels of water use and also to possess drought tolerance 

through avoidance and escape mechanisms (Mabhaudhi et al., 2013). However, 

escape mechanisms (i.e. phenological plasticity) make taro suitability to be negatively 

correlated with WRSI. One of the significant limitations of WRSI index is that it uses 

satellite-based rainfall estimates which are influenced by cold-cloud-duration (CCD) 

especially in February to March because of overcasting clouds in subtropics. 

Therefore, there is a degree of error that could influence WRSI classification, 

especially on the balance of evapotranspiration in a lean season in South Africa 

(Duchemin et al., 2006; Liu et al., 2010). To overcome these challenges, future studies 
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could employ unarmed aerial vehicles derived data with very-high-spatial resolution 

images and LiDAR (Light Detection and Ranging) technology, which can provide 3D 

models of farmland (Gago et al., 2015). LiDAR technology could provide accurate 

maps of natural resources and farmlands for sustainable production of NUS in South 

Africa (Lin, 2015; Rosell and Sanz, 2012).  

Sorghum, cowpea and amaranth have characteristics that allow them to grow under 

water-stressed environments compared to major crops which  is in agreement with 

WRSI classification (Consoli and Vanella, 2014). This means selected NUS could 

make use of land that is unsuitable for growing cash crops, offering a complement 

crop production scenario rather than a substitution production scenario (Mabhaudhi et 

al., 2019). This study is a first step towards the reclassification of land in South Africa 

in acknowledgement of NUS in national cropping systems.  

4.5 Recommendations 

The land suitability maps generated in this study can be used to indicate where NUS 

can be promoted as alternative crop choices or to complement the current range of 

crops grown within marginalised cropping systems. As such, the maps can be used to 

inform site-specific crop diversification recommendations as a sustainable 

intensification strategy (Schiefer et al., 2016). To mainstream NUS into cropping 

systems found in the delineated regions of suitability maps developed in this study, a 

transdisciplinary approach is required. Moreover, there is a need to create a conducive 

environment for all participating stakeholders. This can be achieved if there is a 

harmonisation of existing policies that speak to land, environment, agriculture and 

health, and new policies on land use are co-designed based on evidence. Policies 

such as the National Environmental Management: Biodiversity Act of 2004, National 

Food and Nutrition Security Policy (Department of Agriculture, 2013) and Draft Policy 

on Preservation and development of Agricultural Land Bill 2015 could foster co-

development of NUS technologies and aid in addressing challenges in the land, 

environment, agriculture and health domains. 

We identified several challenges in defining the suitability of NUS. Key among these 

included urbanisations and increase in food and nutrition insecurity, bush 
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encroachment, as well as the competition between agriculture and protected natural 

habitats. In this regard, agronomists, climatologists, ecologists and economists need 

to collaborate in co-designing the suitability indices to inform policy and practice. Such 

collaborations will ensure that suitability maps for NUS are holistic and relevant in 

addressing crosscutting challenges. To make current land suitability maps more 

relevant to addressing global grand challenges, researchers need to consider the 

inclusion of socio-economic parameters. The AHP is one of the most relied on 

methods in MCDM; however, the consistency is difficult to achieve where there are 

more than nine criteria/indicators under consideration (Saaty, 2016). Nevertheless, its 

ability to measure consistency is one of the factors that gives this method an edge 

over others. Therefore, parameters considered in MCDA should be context-specific 

and informed by an outcomes-based approach. 

While our results remain applicable for use, future research should consider using data 

with a finer resolution to improve the accuracy of mapping. This will aid in improving 

delineation of land suitability in marginalised agricultural communities that are known 

to be highly heterogeneous. The application of unarmed aerial vehicles could be used 

to validate satellite-derived data and to capture high-resolution images. One such 

sensor is LiDAR (Light Detection and Ranging) technology, which can provide 3D 

models of farmland (Gago et al., 2015). LiDAR technology can provide accurate maps 

of natural resources and farmlands for sustainable production of NUS in South Africa 

(Lin, 2015; Rosell and Sanz, 2012). The use of high-resolution images in developing 

land suitability of NUS is of utmost importance in solving land use challenges. 

However, the process is often difficult, labour intensive and costly. The return on 

investment (ROI) of LiDAR in delineating areas suitable for NUS may be low as NUS 

still lacks developed markets and value chains (Escolà et al., 2017). Overall, the cost 

benefit of using LiDAR for smallholder farmer settings needs to be evaluated to 

determine the feasibility of such investments (Escolà et al., 2017). 

Climate change is projected to shift current agro-ecological zones and land-use 

patterns (Mabhaudhi et al., 2013). We recommend that land suitability analysis should 

include climate scenarios in their simulation. The inclusion of climate scenarios in land 

suitability analysis will allow for more proactive agricultural planning by informing 

policies such as the National Climate Change and Health Adaptation Plan on the 
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projected suitability of agricultural land to produce diverse crops in the short-, medium- 

and long term. 

Future studies should focus on using new predictive tools in forecasting. It is observed 

that the majority of the studies in resource allocation utilised primitive GIS techniques. 

Future studies should focus on combining the Environmental Policy Integrated Climate 

(EPIC) models with other methods for assessing the spatial distribution and stimulating 

the production of crops. The EPIC model is used for predicting crop production levels 

incorporating the near-real-time changes in crop environment can be integrated with 

other techniques for improved decision making. 

4.6 Conclusion 

We investigated the potential spatial suitability distribution for sorghum, cowpea, 

amaranth and taro in South Africa. This study used the AHP model in GIS to integrate 

nine multidisciplinary thematic factors from climatic indicators from 1950 to 2000 

(seasonal rainfall, seasonal maximum and minimum temperature), soil and landscape 

attributes (soil depth, slope, elevation), social-economic (road) and technical 

indicators (LULC). Rainfall was the most critical variable and criteria with the highest 

impact on land suitability of the NUS in this study. Neglected and underutilised crop 

species can be grown on marginal land. They can complement major crops and create 

greater diversity in cropping systems for building resilient cropping systems. The 

analysis indicated that sorghum, cowpea, and amaranth can be grown in marginal 

areas in S3 zones where land has moderate limitations for agricultural use. The 

suitability for sorghum, cowpea, and amaranth concurred with the water requirement 

satisfactory index (WRSI). Matching crop requirements with available resources 

through land suitability analysis is essential to sustainable agriculture. 

Mapping NUS production potential zones in SA is key to promoting NUS production 

by providing evidence to assist decision- and policy-makers on crop choice. 

Specifically, the results help inform the Climate Smart Agriculture Strategy, National 

Policy on Comprehensive Producer Development Support and Indigenous Food 

Crops Strategy currently under development in South Africa. The suitability maps are 

also helpful in informing decisions on climate change adaptation (climate-smart 
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agriculture) and sustainable agriculture practices, as well as informing decisions on 

the creation of markets for NUS.  

The findings are useful in informing land-use classification, especially in marginal 

environments. The method used can be adopted to other SSA countries and other 

regions that share a similar context with regards to promoting cultivation of NUS. 

Promoting NUS within marginal production areas has the potential to create new and 

sustainable economic pathways and improve availability and access to nutrient-dense 

foods. The importance of smallholder farmers to sustainable food systems, and their 

participation in local food systems, must be emphasised. Finally, policies such as the 

National Food and Nutrition Security Policy and National Developmental Plan of South 

Africa (National Planning Commission, 2012) need to give a clear road map for NUS 

production, especially by explicitly mentioning NUS and targeting them for production 

on marginal lands that are currently not suitable commercial crops production as a 

strategy to improve food and nutrition security within these areas.   
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5 AGRONOMIC MANAGEMENT OF SELECTED AFRICAN LEAFY 
VEGETABLES FOR IMPROVED YIELD, WATER USE AND WATER 
PRODUCTIVITY 

Kunene, T., Chimonyo, V.G.P., Mabhaudhi, T, and Modi, A.T. 

Abstract 

Crop modelling can generate information about the crop's growth, development, water, 

and nutritional needs. The primary objectives of this study were (i) to assess the growth 

and productivity of selected ALVs (amaranth (Amaranth spp), cowpea (Vigna 

unguiculata), sweet potato (Ipomoea batatas) and wild mustard (Sinapis arvensis)) 

under different management practices, and (ii) assess water productivity (WP) and 

nutritional water productivity (NWP) of the selected ALVs. Desktop-based research 

was conducted to achieve the mentioned objectives. Here, information on the studied 

crops' agronomy secondary data was gathered through a careful literature search. 

This secondary information was then used to model growth and productivity and 

quantify nutritional water productivity at different management practices. The 

Agricultural Production systems SImulator (APSIM) was used to simulate growth and 

productivities under different management scenarios of planting date, plant density, 

fertiliser application and irrigation. We used the soil, and climatic data from the 

University of KwaZulu-Natal's research farm (Ukulinga Research Farm) situated in 

Pietermaritzburg, South Africa (29°37′S; 30°16′E; 775 m a.s.l.) calibrate the model. All 

data analysis was done using descriptive statistical analysis (R software). All mean 

values were subjected to a t-test set at p<0.05 significance. The results showed that 

depending on crop species different management practices can be relevant to achieve 

optimum growth and productivity for various purposes. 

 

5.1 Introduction 

Food and nutrient security remain a challenge in South Africa. At a national level, the 

country is regarded as food secure, but people still experience some constraints to 

safe, sufficient, and nutritious food at the household level. Contributing to this 

challenge of food and nutrient insecurities is the lack of land and resources to produce 
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food. Often, the people that have less to access to food come from a poor community, 

and as much as they may have access to land for farming, they still lack resources 

such as water and fertilizer (Van Jaarsveld et al., 2014). On the other hand, some of 

those who have access to food might still fail to access nutritious foods. 

South Africa is known as one of the world's driest countries (Water, 2011; Donnenfeld 

et al., 2018). More than 80% (98 million ha) of South African land surface is defined 

as arid or semi-arid, and out of that 80%, only 17% (16.8 million ha) is arable (Hardy 

et al., 2011). Out of the 22% of land classified as having high potential for cultivation, 

less than 10% is irrigated, and the rest is rainfed. Only 2.5 million ha of the arable land 

is rainfed agriculture; the rest of the land is abandoned (Hardy et al., 2011). The limited 

amount of arable land and variable rainfall contributes largely to low crop production, 

thus failing to meet millions of households' food requirements. Therefore, it is crucial 

to implement a sustainable agricultural system given these unfavourable and water 

limiting conditions. One of the coping strategies for this is using African leafy 

vegetables (ALVs) (Hardy et al., 2011).  

African leafy vegetables are best known for their high nutrition potential. Their 

management requires low water and fertiliser inputs (Senyolo et al., 2018).  They can 

thrive under limiting conditions and are regarded as potential crops to contribute to 

food and nutrient security (Mavengahama et al., 2013). However, just like any other 

crop, they eventually give in to unfavourable conditions such as water stress 

(Mabhaudhi et al., 2018). To encourage their growth, one would have to understand 

what best management practices these ALVs require. However, based on the 

available literature on the agronomy of these ALVs, it is difficult to draw conclusions 

and recommend best management practices for enhanced yields, water use, and 

water productivity of ALVs. As part of the solution, besides long field experiments, crop 

modelling provides an accurate, easy, and less time-consuming solution to assess the 

full potential of ALVS for their best agronomic management practices for better growth 

and productivity. In this chapter, APSIM was used to determine best management 

practices for improved yields, water use, and water productivity of selected ALVs 

(amaranth, cowpea, sweet potato, and wild mustard). This model singled out because 

of its ability of "Plug in" to specify any logical or required modules and "Plug out" to 

define any modules that are no longer needed. This was very advantageous for the 
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studied ALVs as they have never been calibrated for specific cultivar and under 

different environments. 

5.2 Materials and methods 

The Agricultural Production Systems Simulator (APSIM) model was calibrated using 

data from Ukulinga Research Farm is the University of KwaZulu-Natal’s research farm 

situated in Pietermaritzburg, South Africa (29°37′S; 30°16′E; 775 m a.s.l.). Ukulinga 

research farm has a mean annual rainfall of about 790 mm, received between October 

to April. During the summer, the average temperature goes up to 26.5 °C (Chimonyo 

et al., 2016a). According to the profile pit description, the Research Farm soils are 

dominantly clay-loam textures having 0.6 adequate rooting depth. Using the FAO soil 

classification system, Ukulinga soils can be further categorised as chromic luvisols. 

These are shallow brown acidic soils having low to moderate fertility.  

The soil water movement and availability are affected by the soil physical properties 

(Chimonyo et al., 2016b; c). The initial C: N ratio calculated from the results of the soil 

chemical properties. On these results, carbon (%) for the top 0.2 m layer was 2.3%, 

while N was 0.3%. Four African Leafy Vegetables were simulated for growth and 

productivity. These included amaranth, cowpea, sweet potato, and wild mustard. Each 

crop had 15 samples for each treatment modelled for each growing season in a year 

(from 2014-2019). Yield (fresh biomass) and evapotranspiration observed as variables 

from the outputs of the simulation were then used to calculate water productivity for 

each crop. The growth of crops was also studied for different planting date, planting 

density, fertiliser application and irrigation scenarios. 

5.2.1 Brief description of APSIM model 

 The Agricultural Production SIMulator (APSIM) is a point scale and daily time-step 

model that allows modules (sub-models) to be associated with simulating agricultural 

systems over a single homogenous field over a certain period (Ahmed and Fayyaz-Ul-

Hassana, 2011; Chimonyo et al., 2016a). Numerous modules grouped as soil, plant, 

environment, and management are included in the APSIM. This model mimics the 

mechanistic growth of the crops, a series of management options with regards to 
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cropping systems (e.g. mono-cropping, intercropping, and rotation), and soil 

processes (additions, losses, transformations (changes), and translocation or 

movement (Ahmed and Fayyaz-Ul-Hassana, 2011). The APSIM model simulates the 

growth and development of crops in a daily time-step on an area basis, per square 

meter, not a single plant (Robertson and Lilley, 2016). The inputs required by the 

APSIM module include weather, soil, crop data and management options (Ojeda et 

al., 2017). 

The growth and development of this module respond to soil water supply, soil nitrogen, 

and climate. It then returns the information on the uptake of nitrogen and soil water to 

its SoilN and SoilWat modules each day for these systems' reset (Keating et al., 2003). 

Evaporation and runoff rate were calculated using the information on the soil cover 

provided to the SoilWat module (Ahmed and Fayyaz-Ul-Hassana, 2011). The plant 

modules simulate a crops' vital physiological processes with a diverse range of 

produce from early to focus crops such as sorghum to various crop modules available 

for plants such as canola, cowpea, peanut, etc. The crop species on the APSIM 

module currently uses the same physiological principles to capture and use growth 

and development resources. The main difference is the shapes and thresholds of their 

response functions. The SoilWater is a daily time-step cascading water balance 

module derived from CERES and PERFECT and is a module. The dynamics of both 

carbon and nitrogen in the soil are described in the SoilN module (Gaydon et al., 2017). 

APSIM Met provides daily weather information to all modules within the APSIM 

simulation (Keating et al., 2003).  

5.2.2 Simulation  

5.2.2.1 Soil file 

The APSIM model soil modules are classified based on the international and African 

format, and they include generic soil profiles for Africa. The soil properties required in 

this module have texture, bulk density (BD), total porosity, the drained upper limit 

(DUL), saturation (SAT), plant available water capacity (PAWC), pH, and crop lower 

limit (LL), (Table 5.1) for the simulation of soil water-related processes and yields. The 
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following table describes the shallow layers of the farm according to their physical 

characteristics.  

Table 5.1: Soil physical characteristics (Chimonyo et al., 2016a) 

Depth 
(cm) 

Texture BD1 
(g cm-
3) 

Airdry2 
(mmmm-1) 

LL153 
(mm 
mm-1) 

DUL4 

(mm 
mm-1) 

SAT5 
(mm 
mm-1) 

KS6 
(mm 
day-1) 

0-10 Clay 
loam 

1.20 0.20 0.21 0.39 0.44 20.90 

10-30 clay 
loam 

1.20 0.23 0.23 0.41 0.467 18.18 

30-60 clay 1.20 0.26 0.26 0.415 0.467 13.92 
1BD – Bulk density; 2Airdry – Hydroscopic water content; 3LL15 – Permanent wilting 
point; 4DUL – Field capacity; 5SAT – Saturation; 6KS – Hydraulic conductivity 

The maximum reduction curve number due to cover for the current study cover for 

maximum curve reduction, slope, discharge width, catchment area, and the maximum 

pond will be left on default (Table 5.2). Each soil depth, soil water condition (SWCON) 

was given as a fraction at planting. The portion of water that moves to the next layer 

(above DUL) was set as 0.3 (Table 5.2) 

Table 5.2: The soil water module description 

Parameter Value 
Summer Cona 3.5 

Summer U 5 
Summer date 1 Nov 
Winter Cona 2 

Winter U 2 
Winter date 1 April 

Diffusivity constant 40 
Diffusivity slope 16 

Soil albedo 0.12 
Bare soil runoff curve number 73 
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5.2.2.2 Soil organic matter 

The soil chemical and physical parameters were obtained from the Ukulinga soil 

results published by (Chimonyo et al., 2016a). After analysing the soil, Soil organic 

matter was inputted into the model as a percentage of carbon, C and nitrogen, N, 

which was then used to calculate the C: N ratio.  The root C: N ratio was set to 40, root 

mass as 1000 kg/ha and the soil C: N ratio as 12. The initial nitrogen was measured 

as 56 kg/ha for both NO3 and NH4 before planting. The initial water was also 

measured and set before the beginning of the simulation. Where absent, it was 

interpolated by running the model for two seasons before the actual planting date.  

5.2.2.3 MET file  

The daily weather data to create the Met file was obtained from the Automatic Weather 

Station (AWS) situated less than 1 km within Ukulinga Research Farm. The AWS is a 

division of the Agricultural Research Council − Institute for Soil, Climate and Water 

(ARC-ISCW) network of automatic weather stations. For the MET file, daily weather 

data comprising maximum (Tmax), minimum (Tmin) air temperature (°C), solar radiation 

(Rad, MJ m−2), rainfall (mm) was used. The same data was used by Chimonyo et al. 

(2016a) was extracted from the period between 27 January 2004 and appended to 20 

October 2019. It was then converted to XML format. The values of average ambient 

temperature (TAV) and the annual amplitude in monthly temperature (AMP) were 

calculated and input into the MET files via “tav amp”. 

5.2.2.4 Crop file  

The crop files found in APSIM do not include leafy vegetable crops except cowpea. 

Therefore, The APSIM model was adapted for canola, cowpea, and potato varieties. 

For amaranth and wild mustard, the canola file was used. The potato was adjusted for 

sweet potato, and the brown mix variety of cowpea was used since it is the most 

drought-tolerant variety. To achieve this step, describing the growth phenology of 

these crops using growth degree days (GDD °C) and time of growth (days) is essential 

(Table 5.3-5.6).
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Table 5.3: The phenological growth stages of amaranth (Amaranthus spp)  

APSIM stage name 
(code) – Canola 

Amaranth 
Phenological growth 
stages 

Days GDD °C 

Sowing (1) - - - 

Germination (2) Germination1,3 
3-41,3 13-162,3 

Emergence (3) Germination1,3 

End_of_juveline (4) 
Opening of 

cotyledons1,3 
4-51,3 16-202,3 

End_of_juveline (4) True leaves (2 leaves) 3 8-101,3 26-243 

- 5-6 Leaves3 21-321,3 63-1153 

Floral_initiation (5) Apical inflorescence3 40-571,3 130-2183 

Flowering (6) 
Anthesis and axillary 

inflorescence1,3 
69-791,3 299-3773 

Start_grain_fill (7) 
Seed development and 

ripening1,3 
85-1131-3 410-6442,3 

End_grain_fill (8) - - - 

Maturity (9) Ripening1,3 120-531,3 709-7313 

Harvest_ripe (10) 
Ripening – 

Senescence1,3 
- - 

End_crop (11) - - - 
1Bello (2013),  2VeggieHarvest. (2019), 3Martínez-Núñez et al. (2019) 
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Table 5.4: The phenological growth stages of cowpea (Vigna unguiculata)   

APSIM stage name 
(code) 

Phenological growth 
stages 

Days GDD °C 

Sowing (1) - - - 

Germination (2) - - - 

Emergence (3) Emergence2,3 161,2,4 2423,4 

End_of_juveline (4) 
End of the juvenile 

stage2,3 
331,4 5143,4 

Floral_initiation (5) Floral initiation2,3 521,2,4 7873,4 

Flowering (6) Flowering2,3 641,2,4 9333,4 

Start_grain_fill (7) Start of grain filling2,3 831,2,4 11903,4 

End_grain_fill (8) End of grain filling2,3 1071,2,4 14533,4 

Maturity (9) Maturity2,3 1251,2,4 16603,4 

Harvest_ripe (10) Harvest2,3 1251,2,4 16603,4 

End_crop (11) Senescence2,3 - - 
1Shiringani (2007), 2Ntombela (2012), 3International Institute of Tropical Agriculture 
(2012), 4Schwartz (2010) 
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Table 5.5: The phenological growth stages of sweet potato (Ipomoea batatas)    

APSIM stage name (code) 
– Potato 

Sweet potato phenological 
growth stages Days 

Sowing (1) - - 

Germination (2) Initial phase1,3 
282,3 

Emergence (3) Initial phase1,3 

Floral (4) Intermediate phase1,3 492,3 

Tuberin (5) Intermediate phase1,3 - 

Flowering (6) Final phase1,3 

- Full senescence (7) Final phase1,3 

Maturity (8) Final phase1,3 
1Van de Fliert, E. and Braun (1999), 2Francesco (2005), 3Kharzhevska (2019)  

5.2.2.5 Manager Folder  

The APSIM manager module is used to request any action available to any other 

module. Here this module was used for the following steps: the resetting of individual 

modules, sowing, application of fertilisers, irrigation or tilling of the soil, harvesting, or 

killing off crops, calculating of additional variables, to track the system state, and for 

the reporting of the system in response to events. The sowing variable rules were 

adjusted as shown (Table 5.7).  

5.2.3 Scenario analysis  

The major factors affecting plant growth, planting date, plant density, fertilizer 

application rate and irrigation were used to develop scenarios for modelling the best 

management practice of the studied ALVs. These growth factors were chosen 

because of the vital role they play in the growth and productivity. since they are major 

growth factors in APSIM 
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Table 5.6: The Phenological growth stages of wild mustard (Brassica juncea L.)   

APSIM stage name 
(code) – Canola 

Wild mustard 
phenological Growth 

stages 

Days GDD °C 

Sowing (1) - - - 

Germination (2) Germination1,2 0-352 3-42 

Emergence (3) Emergence1,2 108-1362 

End_of_juveline (4) Leaf stages – two leaf 
unfolded1,2 

30-902 214-2512 

Four leaves unfolded1,2 320-3652 

Floral_initiation (5) Flowering – at least 
one open floret on 
50% or more plants1,2 

90-1002 506-5672 

Flowering (6) Flowering – flowering 
50% complete1,2 

95-1252 679-7472 

Start_grain_fill (7) Seed fill – seed filling 
begins. 10% of seed 
have reached a final 
size1,2 

120-1502 886-9622 

End_grain_fill (8) Maturity – Seeds 
begins to mature. 
10p% of the seeds has 
changed the colour1,2 

1232-13222 

Maturity (9) Maturity -70% of the 
seeds on the main 
stem has changed the 
colour12 

145-1502 1440-15382 

Harvest_ripe (10) Maturity complete – 
90% of seeds has 
changed colour (ripe) 

1,2 

1509-16102 

End_crop (11) Senescence1,2 
1Kullabas (2019), 2Canola Council of Canada (2017)  

5.2.3.1 Planting dates 

The selected African leafy vegetables (amaranth, cowpea, sweet potato, and wild 

mustard) are known as warm-season crops. Therefore, the selection of planting date 
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began in spring until the end of summer. That is from 1-Septemeber, 1-October,  

1-November, 1-December, 1-January, 1-February, 1-March (Table 5.8). 

5.2.3.2 Plant density 

Simulations were performed at less or more than 50% of the recommended plant 

population to determine the optimum plant density (or plant population) for each leafy 

vegetable crop. For amaranth, an optimum plant density of 17.4 plants m2 was used. 

For cowpea, 17.4 plants m2, for sweet potato five plants m2, and wild mustard, 27 

plants m2. Simulations were done by maintaining the recommended plant population 

of one component and changing the other, resulting in 8 simulations (Table 5.8). 

5.2.3.3 Fertiliser application rate  

Amaranth requires a minimum of 100 kg ha-1 N to produce 40 tons ha-1 of leaves and 

1 ton ha-1 of grain (Sullivan and Specialist, 2003). Cowpea requires 40 kg ha-1 N to 

make 1 ton ha-1 of seed and ton ha-1 of hay (DAFF, 2013). Sweet potato 100 kg ha-1 

N (Gupta, 2011), and wild mustards requires 90 kg ha-1 N to produce 112 tons ha-1 

(Government of Saskatchewan, 2017) (Table 5.8). Accurate fertiliser 

recommendations can help farmers correctly apply fertilisers for better yields that meet 

or exceed food demands. Therefore, improving yields by addressing fertiliser 

application as one of the limiting factors is desirable.  

To model this scenario analysis based on the recommendations made by Sullivan and 

Specialist (2003), DAFF (2013), Gupta (2011) and  Government of Saskatchewan 

(2017) for amaranth, cowpea, sweet potato and wild mustard, respectively, were used 

with fertiliser representatives of 0%, 25%, and 50% of the recommended rates (Table 
5.8). This range represents a scenario whereby the farmer does not have access to 

fertiliser (0%), somewhat have access (25%) and (50%) only have access to half the 

fertiliser of the recommended rate (Table 5.8). 

5.2.3.4 Irrigation  

Depending on texture and structure, different soils may differ in water-holding capacity. 

As one of the management options to improve growth and yield gaps, irrigation can 
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be introduced to growing plants. Irrigation is defined as applying controlled amounts 

of water to plants at set intervals (Hirota and Satoh, 1988; Zotarelli et al., 2010). 

However, to be more precise about irrigation and intervals, farmers often develop a 

schedule using the irrigation calendar based on the crop's previous seasons’ water 

requirements. This is irrigation scheduling, which is merely applying water at the right 

time and at the correct time (Zotarelli et al., 2010). Irrigation is affected by numerous 

factors such as root distribution, and soil characteristics and evaporative plant 

demand. Thus, to establish proper irrigation, these are essential factors to look into. 

In the present experiment, a drip irrigation method was used to simulate the growth 

and yields of amaranth, cowpea, sweet potato, and wild mustard at three different Field 

Capacity (FC) water levels (Table 5.8). Here, the idea is to use the irrigation 

scheduling with crop water requirement by considering the most critical growth stages 

where the plant requires water and use guidelines for irrigation. 

The manager folder was modified for each leafy vegetable, and the sowing variable 

was set. The above table does not show variables where default settings were used. 

5.2.4 Data analysis and visualisation 

The simulation output obtained on growth and productivity were subjected to 

descriptive statistics, t-test analysis and generalized linear mixed analysis (GLMM) on 

R statistical software (version 1.3.959). The generalized linear mixed and t-test 

analysis was used at a confidence interval level of 95%. For the output analysis, 

descriptive values such as means, standard deviations, box and whiskers plots, and 

graphs were used. The box and whiskers plot were used to show the general trend 

and steadiness of data. In contrast, the t-test was used to determine any difference 

among the means of leaf number, leaf mass, leaf area index and water productivity.  
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Table 5.7: Sowing using the variable rule 

Description Value  
Crop properties  

 
   

Name of crop Canola  Cowpea Potato  Canola  

Enter cultivar Mustard  banjo Sweet potato Wild mustard  

Method of cropping Sole  Sole  Sole  Sole  

Exclude from rotation sequence no no no no 

Sowing criteria     

Enter sowing window START date (dd-mm) 1-Sep  1-Sep 1-Sep  1-Sep 

Enter sowing window END (dd-mm) 1-Apr 1-Apr 1-Apr 1-Apr 

Must sow Yes  Yes  Yes  Yes  

Enter amount of cumulative rainfall (mm) 20 20 20 20 

Enter number of days to acumulate rainfall 

(days) 

5  5 5  5 

Enter amount of soil water (mm) 100 100 200 100 

Enter opportunity number to sow on 2 2 2 2 

Enter upper limit of soil water in top layer (0-

2) (mm esw/mm soil) 

2 2 2 2 
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Enter upper limit of soil water in top layer  

(0-2) (mm esw/mm soil) 

0 0 0 0 

Sowing parameter      

Enter name of crop to sow canola  cowpea potato canola 

Enter sowing density (plant/m2) 174 25 1.87 27 

Enter sowing depth (mm) 20 20 300 15 

Enter cultivar Amaranth  banjo russet Wild_mustard  

Enter crop growth class Plant  plant plant  plant  

Enter row spacing (mm) 300 300 900 100 

Harvesting rule      

Harvesting rule     

Enter the name of crop ti harvest when ripe  canola cowpea potato canola 

Fertiliser at sowing     

Amount of starter fertiliser at sowing (kg/ha) 72.5  44 100 101 

Sowing fertiliser type  urea_N urea_N  urea_N urea_N  

Fertiliser on days after sowing – top-up     

Aount of N required in top 3 layers (kg/ha) 200 100 0 200 

Fertiliser application details      

The module used to apply fertiliser  Fertiliser  Fertiliser  Fertiliser  Fertiliser  

Fertiliser type  NO3_N NO3_N broadcast_p urea_N 



137 

 

Table 5.8: A scenario analysis of selected African leafy vegetables 

Scenarios Amaranth Cowpea Sweet 
potato 

Wild 
mustard 

1. Nitrogen fertiliser 
application (kg/ha) 
(0, 50, 100% of 
recommended) 

72.50 44.00 100.00 73.00 

2. Irrigation (mm) 
0, 45, 90 of PAW 

1000.00 1150.00 1395.00 1000.00 

3. Planting dates (trigger 
season climate 
method, modelling 
and fixed date 
approaches) 

For all crops, the planting dates for the sowing of 
crops began from 1-Septemeber, 1-October, 1-
November, 1-December, 1-January, 1-February, 1-
March, 1-April 

4. Planting density 
(plants/m2) high  
(-50%) or low (+50%) 
of the recommended 

17.40 18.50 1.85 27.00 

 

5.3 Results  

5.3.1 Amaranth  

5.3.1.1 Planting date 

Different planting date resulted in different responses to leaf number, leaf mass, leaf 

area index (LAI) and water productivity (WP) (Figure 5.1). Early planting 01-

September (1) favoured a high number of leaves (123). Contrary to this, late plantings 

(01-March) resulted in a low leaf number (89). Results for leaf mass, LAI and WP 

showed an inverse relationship with leaf mass. The general observation was that late 

planting date gave the highest leaf mass, LAI and WP compared to early planting 

dates. Planting date 01-March (7) and 01-December (4) gave the highest (1 324 g 

plant-1) and lowest (1 089 g plant-1) leaf mass, respectively. Planting in March resulted 

in the highest LAI (2.53) and WP (0.41 g m-3) and while November planting had the 

lowest simulated values (1.90, 0.21 g m-3, respectively).  
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Figure 5.1: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area 
index and water productivity (g m-3) on growth and development of amaranth. Planting 
date 1 through 7 correspond to the 1st of September (1), October (2), November (3), 
December (4), January (5), February (6) and March (7) respectively. 

5.3.1.2 Plant density 

There was a significant difference (P<0.05) in leaf number and LAI of the amaranth 

plants (Figure 5.2). However, plant density did not affect (P>0.05) leaf mass and WP. 

Overall, the leaf mass, LAI and WP were all optimum under medium plant density, 

17.4 plants m2. On the other hand, leaf number decreased with an increase in plant 

density. Leaf mass was the highest (1193 kg ha-1) at medium plant density (17.4 plants 

m2) and the lowest (1165 g plant-1) at low (8.7 plants m2) plant density. At plant density, 

26.1 plants m2, the mean leaf mass was 1173 g plant-1.  The leaf area index was 2.32, 

2.21, and 1.87 at 26.1, 17.4 and 8.7 plants m2. There were no significant differences 

for WP across the simulated plant density. There was no significant difference in WP 

across the different plant densities. Overall, WP was 0.29 g m-3 with a standard 
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deviation of 0.13. There were more outliers for the simulated WP under high plant 

density than under low plant density (Figure 3.2). 

 

Figure 5.2: The effect of plant density (plants m2) on leaf number, leaf mass (g  
plant-1), leaf area index and water productivity (g m-3) on growth and development of 
amaranth 

5.3.1.3 Fertiliser application  

In terms of leaf number and leaf mass, the simulated results at different fertiliser 

applications showed no significant differences. The simulated leaf number was the 

same (106) at different fertiliser rates, respectively (Figure 5.3). An average leaf mass 

of 1188, 1173 and 1170 g plant-1 was obtained at 71, 35.5, and 0 kg ha-1 of fertiliser 

application. The plants simulated with 71 kg ha-1 fertiliser had the highest (2.17) LAI, 

and the ones simulated with 0 and 35.5 kg ha-1 gave the lowest (2.14). Water 

productivity also showed a similar trend with LAI. The highest WP means value (0.29 

g m-3) was at 71 kg ha-1 and 0 and 35.5 kg ha-1 fertiliser application giving the lowest 
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(0.28 g m-3). Several outliers were observed across the measure variables, and this 

could have been attributed to different climatic conditions observed.  

 

Figure 5.3: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (g plant-1), leaf 
area index and water productivity (g m-3) on growth and development of amaranth 

5.3.1.4 Irrigation  

The different irrigation levels resulted in significant differences (P<0.05) in leaf 

number, leaf mass, LAI, and WP. Increasing water availability through irrigation 

increased simulated leaf mass (Figure 5.4). There were no irrigation, leaf number, leaf 

mass, LAI, and WP values. Adding 40 mm of water resulted in an increase in leaf 

number, leaf mass, LAI, and WP by 4.8, 119.2, 89.3, and 85.0%, respectively. 
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Figure 5.4: The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), 
leaf area index and water productivity (g m-3) on growth and development of amaranth 

5.3.1.5 Management practice combinations 

The best management combination for high leaf number (130) was no fertiliser, 17.4 

plants m2, 40 mm mm-1, planting date 1 (01-September). Leaf mass was the highest 

(2130 g plant-1) at the combination 71 kg ha-1, 17.4 plants m2, 40 mm mm-1, 01-

October. The planting date 01-March (7), high irrigation (40 mm) and fertilization (71 

kg ha-1), and plant density (26.1 plants m2) resulted in a high leaf area (3.84). Lastly, 

WP was the highest at the combination of high fertilization (71 kg ha-1) and irrigation 

(40 mm), plant density (17.4 plants m2) and when amaranth was sown in March (7). 

Different management strategies can be applied to promote growth and productivity 

depending on the overall production objective.  
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5.3.2 Cowpea 

5.3.2.1 Planting date  

The effect of planting dates on leaf number, leaf mass, LAI and WP were observed to 

be pronouncedly different (P<0.05) for each planting date scenario (Figure 3.5). They 

were planting early increased in leaf number, leaf mass, and LAI, while late planting 

resulted in a decrease in these variables. To add, simulated growth and productivity 

decreased on plants simulated in 01-March. 01-October (2) had the highest (53) and 

01-March (7) the lowest (24) leaf number. The leaf mass also differed according to 

planting dates. Observed simulated results showed that plants sown on 01-October 

(2) had the highest leaf mass (2309 g plant-1), compared to those planted on 01-March 

(7), which had the lowest mean leaf mass of 998.32 kg ha-1.  The LAI was the highest 

(6.05), and the lowest (2.91) for the planting dates 01-October and 01-March. There 

was a slight increase in WP from early to late planting. Plants simulated in 01-March, 

which had the lowest (0.52 g m-3) WP while 01-February (2) had the highest (0.64 g 

m-3) mean WP (Figure 5.5).  

 

Figure 5.5: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area 
index and water productivity (g m-3) on growth and development of cowpea. Planting 
date 1 through to 7 correspond to the 1st of September (1), October (2), November 
(3), December (4), January (5), February (6) and March (7), respectively. 
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5.3.2.2 Plant density  

Different plant densities resulted in significantly different (P<0.05 leaf number, leaf 

mass, LAI and WP. While other growth parameters increased with an increase in plant 

density, leaf number decreased (Figure 5.6), which may have been due to the high 

competition of resources such as sunlight and nutrients that resulted from the in-

between spaces being too small. The mean number was 62 at low plant density (8.7 

plants m2), 40, and 31 at 17.4 plants m2, the mean number of leaves was 40, and it 

was lowest (31) at 26.1 plants m2. Leaf mass, LAI, and WP increased with an increase 

in plant density.   

 

Figure 5.6: The effect of planting density (plants m2) on leaf mass (g plant-1), leaf area 
index and water productivity (g m-3) on growth, development, and productivity of 
cowpea 

These were the highest at 26.1 plants m2, (2163 g plant-1, 5.75, and 0.66 g m-3), 

moderate at medium plant density, 17.4 plants m2, (1993 g plant-1, 5.32, and  

0.62 g m-3) and lower at low plant density, 8.7 plants m2 (1673 g plant-1, 4.47, and  
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0.54 g m-3) respectively. Moreover, the plant leaf mass data was fairy legally 

distributed away around the mean (Figure 5.6). 

5.3.2.3 Fertiliser application  

There was a significant difference (P<0.05) in leaf number across different fertiliser 

application rates. However, the simulated results showed no change in the cowpea 

plant's growth and productivity (Figure 5.7). The mean leaf number was 44 across 

different fertiliser applications (0, 30, 60 kg ha-1). Leaf mass, LAI and WP were also 

the same across all fertiliser application rates (0, 30, and 60 kg ha-1). These were 1948 

g plant-1, 5.19, and 0.61 g m3, respectively (Figure 5.7). These findings were not 

expected as fertiliser is generally known to affect the growth and development, thus 

productivity of plants. The cause of cowpea not responding to the applied fertiliser 

maybe that cowpea can fix its nitrogen and supply it to the soil, thus leaving the 

inputted fertiliser with no role to play as the soils were already sufficient in nitrogen for 

the growth of the cowpea plants. The type of fertiliser used on these plants and the 

time of application may also cause these similarities. 

 

Figure 5.7: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (g plant1), leaf 
area index and water productivity (g m3) on growth, development, and productivity of 
cowpea  
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5.3.2.4 Irrigation  

There was no significant difference in leaf number upon different irrigation levels 

results. (0, 20 and 40 mm) (Figure 3.8). Across all water application levels, the leaf 

number was 44. Leaf mass was higher (1963, g plant-1) where no there was no 

irrigation (0 mm) and lower (1922 g plant-1) at 20 mm. At high water application (40 

mm), leaf mass was moderate (1960 g plant-1). LAI was higher (5.23) at no water 

application and lower (5.13) at 20 mm. High irrigation 40 mm resulted in a moderate 

(5.22) leaf area index. On the other hand, WP was (0.61 g m-3) at both 0- and 40-mm 

and lower (0.60 g m-3) at medium irrigation 20 mm mm-1 (Figure 5.8). 

 

Figure 5.8: The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), 
leaf area index and water productivity (g m-3) on growth and development of cowpea 

5.3.2.5 Management practice combinations  

The interaction of plant density and planting date was significantly different (P<0.05) 

in leaf number. Leaf number was the highest (74) for plants sown on the 1st of  
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October (2) at 8.7 plants m2 for all fertiliser levels (0, 30, 60 kg ha-1) with high (40 mm) 

or no (0 mm mm-1) water application. The combination (0 mm, 26.1 plant m-2 across 

all fertiliser application levels and planting date 2 (01-October) resulted in high leaf 

mass, 2587 g plant-1. These results were the same for LAI, which was 6.78. A high 

mean WP of 0.69 g m-3 was observed when there was no water applied on cowpea 

plants, at a plant density of 26.1 plant m-2, in all fertiliser application rates (0, 30, and 

60 kg ha-1) on plants simulated on planting date 5 (01-January). 

5.3.3 Sweet potato 

5.3.3.1 Planting date 

Different planting date resulted in varied responses to leaf number, leaf mass, LAI, 

and WP for sweet potato. The LAI, leaf mass and WP were significantly (P<0.05) 

affected by planting date. Simulated leaf number differed slightly across different 

planting dates (Figure 5.9). Overall, the leaf number was 43 regardless of the planting 

date. The planting date 01-November (3) and 01-March (7) had the highest (931 g 

plant-1) and lowest (767 g plant-1) leaf mass, respectively. There was a general 

increase in LAI and WP with later planting. Interestingly, planting February (6) and 

December (4) gave the highest (0.04) and the lowest (0.03) LAI.  



147 

 

 

Figure 5.9: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area 
index and water productivity (g m-3) of sweet potato. Planting date 1 through to 7 
correspond to the 1st of September (1), October (2), November (3), December (4), 
January (5), February (6) and March (7), respectively. 

Growing in March (7) gave the highest (0.35 g m-3), and planting in October (2) gave 

the lowest (0.21 g m-3) WP, respectively, (Figure 5.9). Results suggest that late 

planting gives optimum results in leaf number, leaf mass, LAI, and WP. 

5.3.3.2 Plant density 

There was no change in leaf number of sweet potato plants observed across different 

plant density.  However, a significant (P<0.05) increases in leaf mass, LAI, and WP, 

with an increase in plant density (Figure 5.10). At high plant density (2.5 plants m2), 

leaf mass was 491 g plant-1, at 5.0 plants m2, 907 g plant-1, and at a high planting date 

of 7.5 plants m2, leaf mass was the highest (1234 g plant-1). LAI and WP were high 

(0.04 and 0.36 g m-3) at high plant density (7.5 plants m2), medium plant density (0.32 

and 0.28 g m-3) and at low plant density (2.5 plants m2) was (0.20 and 0.17 g m-3), 

respectively.  



148 

 

 

Figure 5.10: The effect of plant density (plants m2) on leaf number, leaf mass (g  
plant-1), leaf area index and water productivity (g m-3) on growth and development of 
sweet potato 

The simulated LAI results showed a wider distribution around the mean for sweet 

potato planted at higher plant density. The reasoning behind this might be that LAI is 

less stable under tall plant density owing to increased competition for resources such 

as light and other growth factors. 

5.3.3.3 Fertiliser application  

Fertiliser application rate did not affect leaf number. However, a pronounced effect on 

leaf mass, LAI and WP was observed. There was a significant increase (P<0.05) in 

leaf mass, LAI, and WP, increasing fertiliser rates. At high fertiliser application, 60 kg 

ha-1, the average leaf mass was 933 g plant-1 and medium fertiliser application (30 kg 

ha-1), 901 g plant-1 at no fertiliser application, 797 g plant-1.  The LAI was 0.04, 0.03, 

and 0.02 at high, medium and no fertiliser application, respectively. Lastly, at high 

fertiliser application, the average WP was 0.27 g m-3 (Figure 5.11). Generally, adding 

fertiliser improves growth. However, as observed from the simulated results, this was 
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not the case for leaf number. To add, although these results varied (outliers), fertiliser 

application at a higher (60 kg ha-1) rate resulted in optimum growth and development 

of sweet potato.  

 

Figure 5.11: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (kg ha-1), leaf 
area index and water productivity (g m-3) on growth and development of sweet potato 

5.3.3.4 Irrigation  

There was no significant difference (P>0.05) across different leaf number, leaf mass, 

LAI and WP simulated mean results. No change in leaf number observed upon 

changing the amount of water applied to the sweet potato plants (Figure 5.12). 

However, a slight change was observed for leaf mass, LAI, and WP. Leaf mass was 

875 g plant-1 at no water application, 882 g plant-1 at 40 mm, and 874 g plant-1 and 60 

mm of irrigation. Overall, the mean LAI was 0.03, and WP was 0.27 g m-3 regardless 

of water applied. It was interesting to note that the simulated results varied widely 

across the mean. There were outliers in the results for water productivity (Figure 5.12). 
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Figure 5.12: The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), 
leaf area index and water productivity (g m-3) on growth and development of sweet 
potato 

5.3.3.5 Management practice combinations 

The interaction of plant density, fertiliser and planting date was found to be significantly 

different on leaf mass. The WP results were also significantly different (P<0.05) under 

plant density and fertiliser interaction. The interaction of fertiliser and planting date was 

also considerably different in terms of leaf mass. A significant difference was observed 

on LAI where plant density, fertiliser and planting date interacted. In terms of leaf 

number, there was no significant difference. All combinations of management 

practices resulted in an average of 43 leaves. 

The planting date 4 (01-December) was found to ideal for different plant densities, 

fertiliser application and irrigation levels. Across all different management practice 

combinations, leaf number was the same, 43. On the other hand, leaf mass, LAI and 

WP showed a substantial difference when subjected to different managerial practices 

changes. The best management practice for leaf mass (1458 g plant-1) was at planting 
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date 4 (01-December), high plant density (7.5 plants m2), 60 kg ha-1 of fertiliser and 

20 mm water application. Planting in March, at high density, 30 kg ha-1 fertiliser 

application and high irrigation of 40 mm were the best management practice 

combination to give a high LAI of 0.06. Lastly, WP was the highest (0.47) in plants 

sown on 01-March, at 7.5 plants m2, 30 kg ha-1 fertiliser application and irrigation of 

40 mm.  

5.3.4 Wild mustard  

5.3.4.1 Planting date 

Different planting dates gave varied results in leaf number, leaf mass, LAI, and WP, 

and these simulated results were significantly different (P<0.05). A general decrease 

in leaf number, leaf mass, and LAI was observed to progress from early to late planting 

(Figure 5.13). However, planting in 01-November (3) gave more leaves (39) per plant. 

The mean leaf number was lower (23) on plants sown 01-March (3). Leaf mass, on 

the other hand, was high (1491 g plant-1) and low (903 g plant-1) on wild mustard sown 

on (01-October) and 7 (01-March). Interestingly, LAI was higher, 3.84 and more down, 

2.35, on plants sown in 01-October (2) and 01-March (7), respectively. Early planting 

(01-September) resulted in high (0.33 g m-3) WP and low WP (0.29 g m-3) on wild 

mustard sown in 01-March (7) (Figure 5.13). Given the results, they were planting 

early resulted in higher yields compared to planting late.  
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Figure 5.13: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf 
area index and water productivity (g m-3) on growth and development of wild mustard. 
Planting date 1 through to 7 correspond to the 1st of September (1), October (2), 
November (3), December (4), January (5), February (6) and March (7), respectively. 

5.3.4.2 Plant density 

Different planting densities did not affect leaf number. Leaf mass, LAI and WP 

increased with an increase in plant, P<0.05 (Figure 5.14). At high plant density (30.5 

plants m2) leaf mass, LAI and WP were (1443 g plant-1, 3.67, 0.34 g m-3), at medium 

plant density (27 plants m2) it was (1395 g plant-1, 3.58, and 0.33 g m-3) and at low 

planting (13.5 plants m2) density it was (1056 g plant-1, 2.72, 0,25 g m-3), respectively. 

It suggested that planting in high densities is ideal for the growth and development of 

wild mustard. However, as observed from the simulated results (Figure 5.14), the 

growth parameters' responses were highly distributed and had outliers. This could 

mean that plants' growth was not even, and resources are more likely to be received 

by some plants and not others. 
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Figure 5.14: The effect of plant density (plants m2) on leaf mass (g plant-1), leaf area 
index and water productivity (g m-3) on growth and development of wild mustard  

5.3.4.3 Fertiliser application  

Different fertiliser applications did not affect leaf number. The leaf mass results, LAI 

and WP, were significantly different (P<0.05) (Figure 5.15). Across all fertiliser 

application rates (0, 35.5, 71 kg ha-1), the mean number of leaves was 33. The leaf 

mass and LAI were higher 1319 g plant-1 and 3.38 at medium fertiliser application (35.5 

kg ha-1) and lower (1287 g plant-1) at 71 kg ha-1 fertiliser application.  At no fertiliser 

application, leaf mass was 1288 g plant-1, and LAI was 3.32, respectively. On the other, 

WP did not follow this trend. It increased with an increase in fertiliser application. The 

crops were more productive (0.33 g m-3) where there 0.30 g m-3, respectively (Figure 
5.15).  
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Figure 5.15: The effect of Fertiliser (kg ha-1) on leaf number, leaf mass (g plant-1), leaf 
area index and water productivity (g m3) on growth and development of wild mustard  

5.3.4.4 Irrigation 

The simulates results on leaf number, leaf mass, LAI and WP were significantly 

different (P<0.05) across different irrigation treatments. However, there was no 

change in leaf number across different irrigation levels 0,40,60 mm, (Figure 5.16). The 

mean number of leaves was 33. On the other hand, leaf mass, LAI and WP had varied 

results upon increasing water application to crops. At different irrigation levels 0, 40,60 

mm, leaf mass and LAI was 1263, 1299 and 1331 g plant-1, and 3.21, 3.33, and 3.34, 

respectively. Water productivity was 0.30 g m-3 at 0 mm, and for both levels 40, 60 

mm, it was 0.31 g m-3 which was a small difference between different irrigation levels 

(Figure 5.16). The simulated growth and productivity response values were observed 

to be fairly distributed around the mean and LAI, and WP had outliers.  
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Figure 5.16: The effect of irrigation (mm mm-1) on leaf number, leaf mass (g plant-1), 
leaf area index and water productivity (g m-1) on growth and development of wild 
mustard 

5.3.4.5 Management practice combinations  

Planting date 3 (01-November) at all fertiliser applications, irrigation, and plant density 

combinations for high leaf number (39) was the best management practice. A high 

mean leaf mass of 1724 g plant-1 was obtained under best management practice 

combinations of 35.5 kg ha-1 of fertiliser, irrigation at 40 mm, increased plant density 

(30.5 plants m2), and plants' sown planting date (01-October). This was the same for 

the LAI, which was 4.51. However, for high WP (0.39 g m-3), the ideal management 

combinations were no fertiliser application, plant density at 30.5 plants m2, 40 mm-1 of 

water and at planting date 01-January (5). 
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5.4 Discussion  

5.4.1 Planting date effect on growth and productivity of ALVs 

The optimum planting date gives the highest yields and shows less variation over time 

(Kucharik, 2008). Overall, and across all the studied crop species, planting late 

(December to February) results in high leaf mass, LAI, and water productivity. Except 

for cowpea, planting late resulted in an improvement in growth and productivity for 

simulated crops. The simulated trend could be because, during February and March, 

it is assumed that soil has increased water content that supports the early 

establishment of crops. Also, air temperatures are high, creating a conducive 

environment for successful establishment. The simulated crops are sub-tropical and 

thrive in warm-cool climates (Chivenge et al., 2015). With late planting, the vegetative 

pick period occurs during colder months. Less water was lost through evaporation, 

meaning more was available for crop uptake and use.  

The low temperatures experienced during the vegetative phase also allows for the 

slow accumulation of heat units, extending the growth duration and time spent 

accumulating assimilates (Evans and Sadler, 2008). Simulations at the beginning of 

the summer season may have resulted in less low leaf mass, resulting in low LAI and 

WP because plants grow more rapidly due to higher temperatures. This also 

corresponds to higher evaporative demand and overall evapotranspiration resulting in 

lower WP. Water productivity can be defined as the obtained yield per given water unit 

(Morison et al., 2008). Therefore, any strategy aimed at improving yield while using 

the same amount of water or decreasing the amount of water with the same or 

increasing yield will improve water productivity (Molden et al., 2010).  

5.4.2 Plant density effect on growth and productivity of ALVs 

Overall, the increase in plant density resulted in leaf number reduction for all simulated 

crops. However, simulated results showed that increasing plant density resulted in a 

general rise in leaf mass, LAI, and WP for the crops under investigation. These results 

are contrary to many studies that have observed a decrease in plant growth and 

productivity, increasing plant density. For instance, Walp et al. (2010) observed that 



157 

 

increasing plant density decreased LAI in cowpea plants. When plant density 

increases, resource competition among plants arises, resulting in uneven growth or 

death of some plants (Maseko et al., 2015). With each additional plant, a reduction in 

individual plants' mass was offset by an increase in plant density.   

Another reason may be the development of fewer branches per plant at a high density, 

leading to high leaf mass (Maseko et al., 2015). To add, an increase in LAI resulted in 

a reduction in evaporation, which improved water availability, leading to increased 

transpiration, thus increasing leaf mass. Overall, this was the same amount of water 

received by the system, but there was an increase in leaf mass, increasing water 

productivity. A note must be taken that increasing plant density above a certain 

threshold can result in yield penalties. It was observed on these results that more 

plants per square metre can still be sown above-recommended planting density, and 

this may be at the expense of other growth parameters. Different growth variables 

favoured by different plant densities across all crops. For optimal leaf number, plants 

must be sown under low plant density and at high plant density for ideal leaf area 

index. Leaf mass and water productivity differed depending on a crop species type, 

and these were higher under high or medium plant densities. Therefore, no matter 

what plant density is used, one or more growth aspects may be compromised.  

5.4.3 Fertiliser application effect on growth and productivity of ALVs  

Crop growth nutrients are essential for crops as it improves the photosynthetic 

capacity of crops by enhancing carbon dioxide assimilation and improving enzymic 

function (Deng et al., 2006). Depending on a crop species, increasing fertiliser 

application either showed some or no effect on growth and productivity for selected 

ALVs. Amaranth and cowpea did not respond to the application of fertiliser at different 

levels. Also, cowpea can fix nitrogen, producing nitrogen that can be useful for its 

growth and development, suggesting no need for fertiliser addition (DAFF, 2013). 

Results also suggest that the Ukulinga farm soils are sufficiently fertile to provide 

optimum growth for these crops. However, sweet potato followed a different trend as 

the increase in fertiliser application resulted in an improved leaf canopy, thus leaf area 

index (LAI) and consequently water productivity. These results suggest that sweet 
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potato is a heavy N feeder and requires relatively high N fertiliser amounts. According 

to Kuzhivilayil et al. (2016), tuber crops that grow under warm to hot summers and 

cool to mild winters are high nutrient demanding, and proper integrated management 

helps achieve yield potential. Leaf mass, LAI, and WP decreased with more fertiliser 

application. Under different fertiliser application rates, no change in leaf number was 

observed across all crop species.  

5.4.4 Irrigation effect on growth and productivity of ALVs 

Increasing water application increased the WP of these selected leafy vegetables. 

Irrigation had no effect on leaf number across all plants. The Ukulinga soils are clay-

loam and therefore are suitable for irrigation since they can retain water for more 

extended periods, attributed to their excellent water-holding, aeration and drainage 

properties (Chimonyo et al., 2016a). Generally, under semi-arid conditions, irrigation 

often improves crops' growth by enhancing water availability for transpiration. 

Depending on the crop's growth stage, one of these processes is more vital than the 

other. For example, in the early stages of growth, evaporation is more important than 

transpiration (Brouwer and Heibloem1986). Therefore, it is imperative that irrigation 

increases during critical growth stages and where water is limited to improve WP. 

Water productivity increment is achieved where most transpiration result in yield gain 

(Rockström and Barron, 2007). However, for all crops except amaranth, there was no 

change in leaf mass upon increasing irrigation. This might have been because the soil 

in the system already had water from the rainfall, which was above a certain threshold 

where irrigation could not be initiated.  

5.4.5 Effect of factor/treatment combinations on growth and productivity of ALVs  

The different treatment combinations resulting in optimum yields for each leafy 

vegetable was evidence that these crops can be grown under other conditions on 

different management strategies. It was also evident that multiple planting can is 

possible when these optimal management practices are observed. The growth in 

terms of leaf number being not affected for some crops such as amaranth may have 

been since conditions were already favourable. Thus, changing any managerial 
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practice could not be effective. This was not expected as it disagrees with Kanda et 

al. (2020), who found irrigation to significantly affect the cowpea plant's growth and 

development. Different crops species with different architecture require different 

management practices. Therefore, they utilize and share resources differently. 

5.5 Conclusion  

ALVs are generally grown under dry environments where they experience water 

stress, so correct management of these crops may improve productivity. The studied 

leafy vegetables establish in a short period (4-5 weeks) and are mostly favoured by 

early planting. Nonetheless, this may compromise their water productivity. As noticed, 

plant density plays a vital role in the growth and productivity of ALVs; increasing it to 

a certain threshold may result in growth, yield and productivity are compromised. The 

unresponsiveness of fertiliser to leaf number was not expected as fertiliser application 

is thought to improve vegetative growth. In this study, irrigation was shown to have 

disagreed with some of the previous studies. Therefore, it might be of interest that 

future studies revisit these sections for validation and correction. 
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6 CALIBRATION OF AQUACROP, DSSAT AND THE SIMPLE MODEL  

Nzimande, TNM., Chimonyo, V.G.P., Mabhaudhi, T, and Modi, A.T. 

Abstract 

The AquaCrop, DSSAT and SIMPLE model were used as a research tool to estimate 

climatically driven yield, biomass, and water use for selected NUS in different irrigation 

scheduling conditions for the Ukulinga Research Farm. Applying a higher amount of 

irrigation and irrigating more frequently resulted in higher yield, biomass and water use 

for maize, millet and yield generated by AquaCrop, DSSAT and the SIMPLE model. 

Thus, the hypothesis is accepted, and it can be concluded that the AquaCrop, DSSAT 

and SIMPLE model can be a useful decision support system to assist farmers in 

irrigation scheduling and applying an optimum amount of irrigation water. This can 

eventually help increase WP and make efficient use of variable rainfalls in South 

Africa. AquaCrop generated high yields for maize and millet, and the SIMPLE model 

for sorghum when irrigated and implies that these models are better suited for 

modelling the effects of irrigation management for the selected species.  

6.1  Introduction 

Neglected and underutilised species (NUS) play a crucial role in food security and 

nutrition. Furthermore, NUS also plays a major role in income generation for the rural 

resource-poor households, and sustainable production in marginal environments 

(Magbagbeola et al., 2010; Mal, 2007). However, due to the lack of data on growth 

and yield responses to the environment and different management strategies, current 

efforts for mainstreaming NUS have not matched those for commercially important 

crops. To bridge the gap in NUS research, numerous computer-based tools such as 

crop simulation models (CSMs) are presently being used in generating the much-

needed data in crop research (Ewert et al., 2011). These tools are effective since they 

minimize the need for expensive and time-consuming field experiments. While crop 

simulation models as decision support tools offer users and policymakers data for best 

management practices, their uptake and use are low. One major reason for this is that 

there are huge uncertainties related to model structure and parameters (Palosuo et 

al., 2011), such as various models requiring large data input and complexity. Further 
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to this, it is uncertain whether the current ensemble of models is suited for modelling 

NUS. Due to the lack of data on NUS to parameterize and calibrate, many researchers 

have been calling for the development and use of simpler but equally robust models 

(Babel et al., 2019; Mabhaudhi et al., 2014a, 2019; Roberts et al., 2017; Zhao et al., 

2019).  

Currently, the most common crop models implemented in NUS studies are DSSAT 

(Jones et al., 2003) and AquaCrop (Steduto et al., 2009), which differ in their degree 

of complexity. In comparison to AquaCrop, DSSAT is regarded as a more complex 

model due to its relative input requirement of more site-specific and crop variety-

associated data (Babel et al., 2019). There are simpler models, such as the SIMPLE 

Model (Zhao et al., 2019). Although the SIMPLE model has been described as simple 

by several researchers (Manschadi et al., 2021; Soltani et al., 2020; Zhao et al., 2019), 

no published studies on predicting the growth, yield and resource use of any NUS.  

However, there is an ongoing debate on whether a model’s simplicity may be 

appropriate to depict crop responses under observed climate and management 

options (Palosuo et al., 2011; Zhao et al., 2019). Now the argument is between using 

simple models to simulate crop growth and yield or focusing on the use of complex 

models that require a high level of expertise and data. This is important with the current 

drive for sustainable intensification in the wake of climate change using neglected and 

underutilised crops. As such, there is a need to assess the appropriateness of using 

models with varying degree of complexity. Thus, this study compares the performance 

of three crop simulation models, namely, AquaCrop, DSSAT, and the SIMPLE model, 

in predicting yield, biomass, and water use of neglected and underutilized cereal 

crops. It is hypothesised that there is no significant difference in the performance of 

AquaCrop, DSSAT and the SIMPLE model in estimating/predicting yield, biomass and 

water use of neglected and underutilized cereal crops regardless of model complexity. 

It was hypothesised that by AquaCrop, DSSAT and the SIMPLE model would predict 

the impacts of climate change and irrigation on yield, biomass and water use of 

selected cereal NUS. 



176 

 

6.2  Materials and methods   

6.2.1 Overview of the AquaCrop, DSSAT and the SIMPLE model  

6.2.1.1 AquaCrop Model 

AquaCrop is defined as an engineering type, a canopy-level model that (Raes et al., 

2009; Steduto et al., 2009) simulates crop yield as a function of water consumption 

under conditions of being rainfed and irrigated (Mabhaudhi et al., 2014b). Also, the 

model is an adopted framework of Doorenbos & Kassam's (1979) initiative, which was 

published in the FAO’s Irrigation and Drainage Paper No.33. Crops grow in a soil-crop-

atmosphere environment, usually described by the relatively trivial input data (Greaves 

& Wang, 2016). The AquaCrop model requires 29 input parameters. Similarly to other 

models, the AquaCrop’s model component structure consists of a plantation, 

atmosphere, and soil (soil water balance) (Steduto et al., 2009). Furthermore, the 

similarity of the AquaCrop model is most prevalent in the constituents of the 

atmosphere and soil. Thus, the difference of the AquaCrop model, compared to other 

cereal crop development models, exists based on soil and plant components 

(Mabhaudhi et al., 2014c). Essentially, when the AquaCrop executes the simulation 

functionality, four files are used. These files are namely soil, crop, climate and 

management file. According to  Farahani et al. (2009) and Geerts et al. (2009), it is 

recommended that the AquaCrop retains an accepted and consistent equilibrium 

between its accuracy and robustness.  

6.2.1.2 DSSAT model 

The Decision Support System for Agrotechnology Transfer (DSSAT) is a software 

application program of crop simulation models for over 42 crops as of Version 4.7. 

DSSAT is a cropping system simulation model that has been continuously improved 

over the years (Corbeels et al., 2016). The DSSAT is a crop model that helps decision-

makers by reducing the time and human resources required for analysing complex 

alternative decisions (Tsuji et al., 1998). DSSAT model simulates crop yield under 

different management strategies, optimizing resource use, yield trend simulation 

under different soil and climate scenarios, and crop risk analysis (Jeffrey et al., 2010; 
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Jones et al., 2003; Sarkar, 2009). Thus, DSSAT is said to be useful for estimating 

short-, medium- and long-term impacts of specific land management practices on crop 

yield, soil water storage, nitrate-N leaching losses, etc. (Boote et al., 2010). The 

DSSAT primary modules include weather, soil, plant (cultivar/genotype coefficients), 

soil-plant-atmosphere interface, and management components. DSSAT was first 

released (v2.1) in 1989 and has been utilised by more than 16,500 researchers, 

educators, consultants, extension agents, growers, and policy and decision-makers in 

over 174 countries all over the globe (DSSAT, 2021).  

6.2.1.3 SIMPLE model 

The SIMPLE model can be defined as simulating crop growth, development, and yield 

utilising a daily time step, with equations that consider the impact of daily temperature, 

heat stress, rainfall, and atmospheric CO2 concentration. The SIMPLE model 

incorporates nine species parameters for the specification of crop types and four 

cultivar parameters characterizing cultivar differences (Zhao et al., 2019). In order to 

run the SIMPLE model, input variables required include weather, atmospheric CO2 

concentration, sowing/harvesting date, irrigation, initial variables (biomass/ cumulative 

temperature/fraction of solar radiation interception if different from zero), and four 

variables characterizing the soil, including fraction of plant-available water-holding 

capacity, runoff curve number, deep drainage coefficient, and root zone depth (Zhao 

et al., 2019). 

These models required inputs of climate data, crop characteristics, soil characteristics, 

and description of management practices to run simulations. Data was sourced from 

the Ukulinga Research Farm. Maize was used as a base crop since it is a commercially 

important crop compared to millet and sorghum, which are identified as generally 

underutilised.  

6.2.2 Study site 

This study was conducted using climate and soil data from the Ukulinga Research 

Farm to create input data files for AquaCrop, DSSAT and SIMPLE model. Ukulinga 

Research Farm is situated in Pietermaritzburg in the subtropical hinterland of 
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KwaZulu-Natal Province, South Africa (Figure 6.1) and represents a semi-arid 

environment. The farm is mainly used for training and research by the University of 

KwaZulu-Natal (UKZN) (Everson et al., 2012). The farm lies 29°37′ S, 30°16′ E with 

an elevation of approximately 775 m above sea level. Ukulinga is located within 

quaternary catchment U30D and quinary sub-catchment 4718. Briefly, a quaternary is 

a fourth level division of a primary catchment. Each quaternary catchment is then 

further subdivided into three quinary sub-catchments based on altitude. For detailed 

explanations, the reader is referred to Schulze et al. (2011). Rain falls mostly in 

summer, between September and April. Rainfall distribution varies during the growing 

season (Swemmer et al., 2007), with the bulk of the rain falling in November, 

December, early January, and March (Figure 3.2). Occasionally light to moderate frost 

occurs in winter (May-July). Chibarabada et al. (2020) reported that Ukulinga receives 

an average annual rainfall of 694 mm, mainly during the summer months (mid-October 

to mid-February). During the summer months, average maximum temperatures are 

between 26 °C and 28 °C while minimum temperatures can be as low as 10 °C. The 

landform at Ukulinga is colluvial fan, and soils are derived from marine shales.  

 

Figure 6.1: Geographical view of Ukulinga Research Farm (Everson et al., 2012) 
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6.2.3 Climate description  

The daily climate data were obtained from an automatic weather station (AWS) located 

at the Ukulinga Research farm. The AWS is part of the Agricultural Research Council-

Institute for Soil, Climate and Water (ARC-ISCW) network of automatic weather 

stations. The climate data for all models comprised of rainfall (mm), minimum and 

maximum air temperature (oC), solar radiation (MJ day-1) and reference 

evapotranspiration (ET0) (Figure 6.3. ET0 was based on the FAO Penman-Monteith 

equation from full daily weather datasets described by (Allen et al., 1998). ET0 was 

calculated using FAO’s ET0 calculator (Raes, 2009) using air temperature, solar 

radiation, wind speed and relative humidity from the meteo-station. For DSSAT and 

the SIMPLE model, ET0 was calculated by using the Priestley & Taylor (1972) 

approach. This approach was used because it is simple and requires less data. For 

AquaCrop, a default file of the mean annual CO2 concentration of 369.41 ppm as a 

reference in 2000 and 390 ppm in 2020, measured at the Mauna Loa Observatory in 

Hawaii, was used. DSSAT and the SIMPLE model also used this atmospheric CO2 

concentration as input data for simulations. To calculate growing degree days (GDD), 

AquaCrop used daily minimum and maximum temperature. Temperature is equally 

important in both DSSAT and the SIMPLE model for phenological development and 

crop growth.  

 

Figure 6.2: Long-term climate data for Ukulinga Research Farm from 2004-2019 
obtained from a nearby weather station  
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6.2.4 Soil description 

According to Chimonyo et al. (2016), the dominant soils at Ukulinga are chromic 

luvisols (FAO soil classification), and these are generally characterised as shallow 

brown acidic soils with low to moderate fertility. The soil textural class of the Ukulinga 

Research farm soil profile was classified as clay to clay-loam (USDA Taxonomic 

System) with an effective rooting depth of 0.6 m and three horizons (Table 6.1). In the 

creation of the soil file, there were no stresses (water, soil fertility, and soil salinity) 

being considered. The Soil file (.SOL) for AquaCrop and SIMPLE model was created 

using Ukulinga Research farm soil data. In DSSAT, the clay loam soil file embedded 

in the model was selected to best resemble the Ukulinga soils. Details of the actual 

soil parameters used in each model were presented in Table 6.1 and Table 6.2. 

 

Table 6.1: Soil water properties from the experimental site at Ukulinga Research Farm 

(Mabhaudhi, 2012) 

Depth 
(m) 

Bulk 
density 
(g cm-3) 

Permanent 
wilting 

point (mm 
mm-1) 

Field 
capacity 

(mm 
mm-1) 

Total 
available 

water 
(mm 

 mm-1) 
Saturation 
(mm mm-1) 

Saturated 
hydraulic 

conductivity 
(mm day-1) 

0.60 1.20 283.00 406.00 123.00 481.00 25 

The soil physical characteristics such as the soil texture, bulk density and porosity are 
considered. 
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Table 6.2: The soil file from Ukulinga Research Farm  

Parameters Units Values AquaCrop DSSAT SIMPLE 
Upper horizon depth cm 30 X X  

Lower horizon depth cm 10 X X  

Number of soil horizons - 3 X   

Sand content % 33 X X  

Silt content % 33 X X  

Clay content % 34 X X  

Bulk density 

g/ 

cm3 1.20 

X X  

Organic carbon % 2.90  X  

Organic nitrogen % 0.24  X  

pH - 4.51  X  

Saturated water content % 46.73 X X  

Field capacity mm 46.32 X X  

Wilting point mm 23.03 X X  

Plant available water-holding capacity mmǂ 
 

233 X  X 

Runoff-curve number - 75 X X X 

Deep drainage - 0.27 X X X 

Total pore space mm 36 X X  

Saturated hydraulic conductivity cm/h* 25 X X  

Maximum rooting depth mm 1 X X X 

X denotes that the input was used in the model; *For AquaCrop, units are mm/d; ǂ For 
SIMPLE, units are mm/m  
 
The creation of crop files entailed matching phenology (GDD) and yield potential on 

pre-existing cultivars across the models. The study used cultivars described by 

Akumaga et al. (2017), Hadebe et al. (2017) and Bello & Walker (2016) for maize, 

sorghum and pearl millet, respectively (Table 6.3). The cultivars' characteristics are 

described below (Table 6.3) and in the sections below. 
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Table 6.3: Provincial potential, observed and mean simulated yield for maize, millet, 
and sorghum  

Crops  
Crop type 
(maturity) 

Provincial potential yield 
(t/ha) 

Observed yield 
(t/ha) 

Maize early to medium 18-11 (9.50) 45.51 
Sorghum medium to late 24 55.31 
Pearl 
millet early to medium 34.3-5.6 (4.95) 66.83 

1 Arathoon & Mtumtum (2013) 2 GAIN Report (2019) 3 GRAINSA (2021) 4 Akumaga et 
al. (2017) 5 Hadebe et al. (2017) 6 Bello & Walker (2016) 

6.2.5 Crop file description 

6.2.5.1 AquaCrop model crop file  

The AquaCrop model comprises two types of crop parameters: conservative and non-

conservative (cultivar specific) parameters (Raes et al., 2009). Conservative 

parameters were used as presented in the model because they do not change 

substantially with time, management practices, geographic location or climate (Raes 

et al., 2009). Additionally, conservative parameters are assumed not to change with 

cultivars unless shown otherwise. In this study, the tuning of non-conservative 

parameters was not required because maize, sorghum, and pearl millet were 

calibrated in the AquaCrop model. Hence, crop parameters used in this study are 

similar to those used to calibrate the crops in the selected studies where they were 

obtained (Table 6.4). 

6.2.5.2 DSSAT model crop file 

In the DSSAT model, the coefficients for a specific crop species are stored in three 

different files, namely cultivar (.CUL), ecotype (.ECO) and species (.SPE). Cultivar 

coefficients are for a single cultivar (traits differ among cultivars), ecotype coefficients 

are common to a group of cultivars and species coefficients are common to all cultivars 

(crop specific traits) (Jones et al., 2003). Hence, maize, sorghum and millet cultivars 

were selected in DSSAT. Cultivars chosen for maize, sorghum and millet were 2500-

2600 GDD, PIONEER 8333 and BJ104, respectively (Table 6.5), as they best 

described the cultivars used by (Akumaga et al., 2017), (Hadebe et al., 2017) and 
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(Bello & Walker, 2016). The cultivars were selected based on their similarity with the 

GDD of crops used in the AquaCrop model.  

6.2.5.3 SIMPLE model crop file 

The SIMPLE model included nine species parameters to specify crop types and four 

cultivar parameters characterizing cultivar differences. Species parameters were 

derived from accepted values in the literature (Zhao et al., 2019). Only cultivar 

parameters were calibrated within a reasonable range, but cultivar parameters are 

kept constant for the same cultivar when grown in different years or locations. The 

SIMPLE model calibrated only maize; however, it is not the cultivar used in this study 

(Table 6.6). 
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Table 6.4: Crop parameters of maize, sorghum, and pearl millet for AquaCrop model 

Crop parameters Pearl 
millet Sorghum Maize 

Base temperature (°C) below which crop development does not progress 8 8 8 
    
Upper temperature (°C) above which crop development no longer increases with an increase in 
temperature 32 30 30 

Soil water depletion factor for canopy expansion (p-exp) – Upper threshold 0.30 0.15 0.14 
Soil water depletion factor for canopy expansion (p-exp) – Lower threshold 0.65 0.70 0.72 
Shape factor for water stress coefficient for canopy expansion (0.0 = straight line) 3 3 2.9 

Soil water depletion fraction for stomatal control (p – sto) – Upper threshold 0.70 0.70 0.69 
Shape factor for water stress coefficient for stomatal control (0.0 = straight line) 3 6 6 
Soil water depletion factor for canopy senescence (p – sen) – Upper threshold 0.75 0.70 0.69 
Shape factor for water stress coefficient for canopy senescence (0.0 = straight line) 3 3 2.70 
Sum (ETo) during stress period to be exceeded before senescence is triggered 0 0 0 
Soil water depletion factor for pollination (p – pol) – Upper threshold 0.92 0.80 0.80 
Vol% for Anaerobiotic point (* (SAT – [vol%]) at which deficient aeration occurs *) 10 5 5 
Soil fertility stress at calibration (%) 50 50 50 
Crop coefficient when canopy is complete but prior to senescence (Kcb,x) 1.10 1.07 1.03 
Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc. 0.15 0.30 0.30 
Minimum effective rooting depth (m) 0.30 0.30 0.30 
Maximum effective rooting depth (m) 1.75 0.60 1 
Shape factor describing root zone expansion 18 13 13 
Maximum root water extraction (m3 water/m3 soil.day) in top quarter of root zone 0.05 0.03 0.08 
Maximum root water extraction (m3 water/m3 soil.day) in bottom quarter of root zone 0.01 0.01 0.02 
Effect of canopy cover in reducing soil evaporation in late season stage 60 50 50 
Soil surface covered by an individual seedling at 90% emergence (cm2) 5 3 6.50 
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Crop parameters Pearl 
millet Sorghum Maize 

Number of plants per hectare 55556 44444 53333 
Canopy growth coefficient (CGC): Increase in canopy cover (fraction soil cover per day) 0.24 0.13 1.30 

Maximum canopy cover (CCx) in fraction soil cover 0.95 0.89 0.96 
Canopy decline coefficient (CDC): Decrease in canopy cover (in fraction per day) 0.10 1.70 1.06 

Calendar Days: from sowing to emergence 4 14 7 
Calendar Days: from sowing to maximum rooting depth 45 97 65 

Calendar Days: from sowing to start senescence 80 98 91 
Calendar Days: from sowing to maturity (length of crop cycle) 120 140 120 

Calendar Days: from sowing to flowering 39 70 67 
Length of the flowering stage (days) 20 77 30 

Crop determinancy linked with flowering 1 1 1 
Excess of potential fruits (%) 50 50 50 

Building up of Harvest Index starting at flowering (days) 50 70 56 
Water Productivity normalized for ETo and CO2 (WP*) (gram/m2) 32 33.70 33.70 

Water Productivity normalized for ETo and CO2 during yield formation (as% WP*) 100 100 100 
Reference Harvest Index (HIo) (%) 30 45 40 

Possible increase (%) of HI due to water stress before flowering 10 4 0 
Coefficient describing positive impact on HI of restricted vegetative growth during yield formation 10 1 7 

Coefficient describing negative impact on HI of stomatal closure during yield formation 8 3 3 
Allowable maximum increase (%) of specified HI 15 25 15 
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 Table 6.5: Cultivar coefficients of maize, sorghum, and millet for the DSSAT model 

Cultivar coefficients 
Maize 
(2500-
2600 
GDD) 

Sorghu
m 

(PIONEE
R 8333) 

Millet 
(BJ104) 

P1 
Thermal time from seedling emergence to the end of the juvenile phase (expressed in 
degree days above a base temperature of 8øC) during which the plant is not 
responsive to changes in photoperiod. 

160.00 325.00 120.00 

P2 
Extent to which development (expressed as days) is delayed for each hour increase in 
photoperiod above the longest photoperiod at which development proceeds at a 
maximum rate (which is considered to be 12.5 hours). 

0.75   

P2O Critical photoperiod or the longest day length (in hours) at which development occurs 
at a maximum rate. At values greater than P2O, the rate of development is reduced. 

 15.50 13.40 

P2R Extent to which phasic development leading to panicle initiation (expressed in degree 
days) is delayed for each hour increase in photoperiod above P2O. 

 30.00 145.09 

PANTH Thermal time from the end of tassel initiation to anthesis (degree days above TBASE)    

P3 Thermal time from to end of flag leaf expansion to anthesis (degree days above 
TBASE) 

 152.50  

P4 Thermal time from anthesis to beginning grain filling (degree days above TBASE)  81.50  

P5 Thermal time (degree days above a base temperature of 8øC) from beginning of grain 
filling (3-4 days after flowering) to physiological maturity. 780.00 540.00 340.00 

G1 Scaler for relative leaf size.  11.00 0.60 
G2 Maximum possible number of kernels per plant. 750.00 6.00  

G3 Kernel filling rate during the linear grain filling stage and under optimum conditions 
(mg/day). 8.50   

G4 Scaler for partitioning of assimilates to the panicle (head).   1.00 
PHINT Phylochron interval; the interval in thermal time (degree days) between successive leaf 

tip appearances. 49.00 49.00 43.00  
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Cultivar 
coefficie
nts 

Maize (2500-2600 GDD) 

Sorghu
m 

(PIONE
ER 

8333) 

Millet 
(BJ104)  

GT Tillering coefficient, equivalent to G1, but on tillers    
G5 Potential grain size, mg    
AX Leaf surface area (cm2/leaf) of largest leaf.    
ALL Leaf longevity (degree days) of the most longevous leaf.    

Table 6.6: Crop parameters of maize, sorghum, and pearl millet for SIMPLE model  

 Crop parameters Maize Sorghum Millet 
Tsum Cumulative temperature requirement from sowing to maturity (°C d) 1419 1648 1337 
HI Potential harvest index. 0.40 0.45 0.30 

I50A Cumulative temperature requirement for leaf area development to intercept 50% of 
radiation (°C d) 402 420 234 

I50B Cumulative temperature till maturity to reach 50% radiation interception due to leaf 
senescence (°C d) 546 588 480 

Tbase Base temperature for phenology development and growth (oC) 8 8 8 
Topt Optimal temperature for biomass growth (oC) 30 30 32 
RUE Radiation use efficiency (above ground only and without respiration) (g MJ−1 m-2). 4.20 3.20 4 
I50maxH The maximum daily reduction in I50B due to heat stress (°C d) 100 100 100 
I50maxW The maximum daily reduction in I50B due to drought stress (°C d) 12 12 12 
MaxT Threshold temperature to start accelerating senescence from heat stress (oC) 44 44 48 
ExtremeT The extreme temperature threshold when RUE becomes 0 due to heat stress (oC) 50 50 50 
CO2_RUE Relative increase in RUE per ppm elevated CO2 above 350 ppm. 0.01 0.01 0.01 
S_Water Sensitivity of RUE (or harvest index) to drought stress (ARID index). 1.50 1.50 1.50 
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Maize is one of the crops used in this study, and it is a cereal crop like sorghum and 

millet. Thus, calibrated maize values for species parameters (CO2_RUE and 

S_Water) were used to simulate results for maize, millet, and sorghum. I50A and I50B 

were not readily available for cultivar parameters; hence, these were calculated as 

I50A (thermal time for flowering*50%) and I50B (thermal time for the start of 

senescence*50%) 

6.2.6 Management file  

In AquaCrop, DSSAT and SIMPLE model, the three crops were sown as a direct 

planting method. The planting period for simulation in all three models ranged from 

10/2004-04/2019, and the planting dates chosen were 25 October for maize, 15 

October for sorghum and 01 October for pearl millet. These dates represented the 

recommended planting dates for KZN for the different cereal crops. However, 

AquaCrop started simulation one day after planting. The optimal planting date was 

based on Department of Agriculture, Forestry and Fisheries (DAFF) recommendations 

and historical weather data at Ukulinga. The plant population for maize, sorghum and 

pearl millet were 53333, 44444 and 55556 plants ha-1, respectively, in all the models. 

Management practices undertaken were made similar for AquaCrop, DSSAT and 

SIMPLE model. Due to the SIMPLE model having only irrigation as a management 

variable, all three models are considered irrigation solely as a management practice, 

which is investigated in chapter five. The assumption made was that all the models 

were weed and stress (water, soil fertility, and soil salinity) free.  

6.2.7 Climate scenarios 

A quaternary catchment represents a fourth-level division of a primary drainage basin. 

There are 1946 quaternary catchments in southern Africa, originally delineated by the 

former Department of Water Affairs and Forestry (DWAF). Each quaternary catchment 

has then been subdivided into three quinary sub-catchments according to altitude 

criteria (Schulze et al., 2010; Schulze & Horan, 2007), which produced a total of 5838 

quinaries. Hence, each quaternary was sub-delineated into an upper, middle, and 
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lower quinary of unequal area (but of similar topography) using "natural breaks" in 

altitude by applying the Jenks' optimisation procedure (Schulze & Horan, 2007, 2010).  

The Ukulinga climate files for AquaCrop, DSSAT and SIMPLE were developed using 

the historical quinary climate database for South Africa (Schulze et al., 2011). Ukulinga 

research farm is located within quinary sub-catchment 4697 of quaternary catchment 

U30J (Schulze et al., 2011). In addition to historical data, the study also used 

downscaled future climate projections for the Ukulinga quinary. The climate 

projections were developed by the Council for Scientific and Industrial Research 

(CSIR) (Table 6.7) using output from six global climate models (GCMs) from the 

CMIP5 archive that was forced by Representative Concentration Pathway 8.5 (RCP 

8.5). The climates produced under RCP 8.5 were used as they represent the most 

extreme scenarios. The selection of these six GCMs was based on their ability to 

provide a reasonable representation of the El Nino-Southern Oscillation (ENSO) 

phenomenon for the region.  

Table 6.7: Global climate models used in this study (Chimonyo et al., 2020) 

Abbreviation Earth System 
Models 

Institute Horizontal 
resolution 

ACC ACCESS1-0 Commonwealth Scientific and 
Industrial Research 
Organisation, Australia 
(CSIRO), and Bureau of 
Meteorology, Australia (BOM) 

1.250 × 1.875° 

CCS CCSM4 National Centre for 
Atmospheric Research 
(NCAR), USA 

0.9424 × 1.250° 

CNR CNRM-CM5 Centre National de 
Recherches Meteorologiques, 
Meteo-France, France 

1.4005 × 1.4065° 

NOR NorESM1-M NorESM (Norwegian Earth 
System) 

1.250 × 0.940° 

GFD GFDL-CM3 Geophysical Fluid Dynamics 
Laboratory, USA 

2.000 × 2.500° 

MPI MPI-ESM-LR Max Planck Institute for 
Meteorology, Germany 

1.8653 × 1.875° 
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Various downscaling approaches can be applied, and dynamical downscaling was 

applied in this study. The climate projections were dynamically downscaled to improve 

spatial resolution to 0.5° (~50 km) using the CCAM regional climate model developed 

by the Commonwealth Scientific and Industrial Research Organisation, CSIRO  

(McGregor, 2005; McGregor & Dix, 2001, 2008). After that, a multiple-nudging strategy 

was followed to obtain a downscaling to 0.1° (~10 km) resolution using CCAM in 

stretched-grid mode over South Africa (see Mabhaudhi et al., 2018a). Climate 

scenarios were then extracted for the gridded pixel that overlapped quinary sub-

catchment 4697. For application in crop modelling at a local scale, it is necessary to 

correct systematic and localised biases in rainfall and temperature projections 

produced by the climate models. Compared to observed rainfall data from the 

historical quinary climate database for sub-catchment 4697, the downscaled climate 

projections were found to have a substantially larger number of rain days, with many 

rain days having minimal rainfall depths (i.e. < 0.10 mm). Therefore, as described and 

assessed by Cannon et al. (2015), a quantile delta mapping method was applied to 

bias correct the climate scenarios using a multiplicative factor for rainfall and an 

additive factor for temperature. 

The bias-corrected climate data provide daily rainfall and temperature scenarios for a 

continuous period from 1961 to 2100. Daily reference crop evaporation (ETo) 

estimates were then computed as described for the historical data set (Schulze et al., 

2011). Solar radiation for each GCM for Ukulinga was then calculated as described by 

Schulze and Chapman (2007). The climate database, therefore, satisfied climate file 

input requirements for AquaCrop, DSSAT and the SIMPLE model and was used to 

develop projections (as climate files – CLI) for the past (1961-1991), present (1995-

2025), mid-century (2030-2060) and late-century (2065-2095) periods. Throughout the 

analysis, the 'present' timescale was regarded as the baseline.  

6.2.7.1 Climate trends  

Based on results from Chimonyo et al. (2020), Ukulinga is projected to have a warmer 

future (mid-and late-century) with the mean maximum temperature increasing by 

4.5°C relatives to the baseline maximum temperature of 24 °C (Figure 6.3). The six 

GCMs project an increase in mean minimum temperatures in the future (mid-and late-
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century) that ranges from 2.0-4.8°C from a minimum baseline temperature of 13°C 

(Figure 4.1). In general, all GCMs showed that the mean annual precipitation (MAP) 

across the periods was fairly constant relative to the baseline. Variations were, 

however, observed across the simulated periods (Figure 6.3). For the late-century 

period, data showed that ACC and CCS predict a 10.6 and 8.3% increase in MAP, 

respectively, while slight reductions of 3.5 and 2.5% are predicted by CNR and NOR, 

respectively. However, the more extended box and whisper plots for ACC predict an 

increase in the inter-annual variability of mean rainfall (750 mm) (Figure 6.4). In all 

instances, projected ETo was observed to be higher (35%) than projected rainfall and 

is set to increase in the future (mid and late century) (Figure 6.4). In this regard, the 

rainfall: ETo ratio is projected to decrease in the near future. 

 

Figure 6.3: Distribution of average monthly minimum (a) and maximum (b) 
temperature data for the different timescales (past, present, mid-and late-century) from 
the combined six GCMs (ACC, CCS, CNR, GFD, NOR and MPI) used in this study 
(Chimonyo et al., 2020) 
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Figure 6.4: Rainfall data represents four different timescales (past, present, mid-and 
late-century) as simulated by the six GCMs (ACC, CCS, CNR, GFD, NOR and MPI) 
used in the study. The mean annual rainfall represents the average yearly rainfall 
calculated from observed rainfall data between 2004 and 2019 (Chimonyo et al., 2020) 

6.2.8 Irrigation scenario 

Firstly, crops were grown under rainfed conditions, then under irrigation as a 

management practice. AquaCrop, DSSAT and the SIMPLE model takes into 

consideration the aspect of irrigation.  

The SIMPLE model only requires the irrigation date and amount to simulate crop 

response to irrigation as a management practice (Zhao et al., 2019). Meanwhile, in 

DSSAT, irrigation can be applied on specific dates with specified irrigation amounts 

and methods or controlled by the plant’s available water (Jones et al., 2003). 

AquaCrop can run simulations in different irrigation modes. The default mode is 

‘rainfed cropping’, in which irrigation is not considered. In the other modes, (i) the 

irrigation water requirement can be determined, (ii) an existing irrigation schedule can 

be assessed, or (iii) an irrigation schedule can be automatically generated (FAO, 

2017a). The methods chosen for use was irrigation scheduling in AquaCrop and the 

one in which irrigation can be applied on specific dates with specified irrigation amount 

and methods in DSSAT. These methods made it possible to have similar irrigation 

inputs used across the three models; hence, they were chosen for this study. In 
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AquaCrop, when generating irrigation schedules, the irrigation method needs to be 

specified since it affects the simulation of the soil water balance (FAO, 2017a). Thus, 

a sprinkler was selected as an irrigation method. It was not a requirement to select the 

irrigation method in DSSAT, and the SIMPLE model does not have the irrigation 

method as a parameter under its inputs. Irrigation amounts of 10 and 20 mm were 

frequented every 7 and 14 days until maturity in AquaCrop, DSSAT and the SIMPLE 

model for maize, millet, and sorghum.   

6.2.9 Model evaluation statistics   

The methods of assessing and comparing the performance of models have been 

discussed widely (Bellocchi & Rivington, 2009; Kobayashi & Salam, 2000; Wallach et 

al., 2006; Willmott, 1981). There is provision for an indication of uncertainties in model 

simulations attributable to using various crop models (representing different 

complexity) and model user groups (representing different application skills) by 

showing outcomes from the three individual models. Comparing observed data (from 

the individual studies) with those of model outputs aids in evaluating the reliability and 

accuracy of simulations. As such, we extracted data for observed yield from the 

articles used for model calibration. Arathoon & Mtumtum, (2013), GAIN Report (2019) 

and GRAINSA (2021) were also used for the provision of provincial potential yield for 

the three crops. The provincial data was used to benchmark the yield potentials for 

each crop and each model's performance. The calibrated parameters were used to 

simulate outputs of the three models, including grain yield, aboveground biomass, and 

evapotranspiration (water use). Since AquaCrop, DSSAT, and the SIMPLE model 

does not calculate WP directly, simulated outputs of water use (WU in mm) and yield 

(Y in kg ha-1) were used to determine water productivity (WP in kg mm-1 ha-1) as 

follows:  

 𝑊𝑊𝑊𝑊𝑠𝑠 =  𝑌𝑌  (𝑘𝑘𝑘𝑘/ℎ𝑎𝑎)
𝑊𝑊𝑊𝑊 (𝑚𝑚𝑚𝑚)

                                                           Equation 6.1 

(Molden, 1997) defined water productivity as ‘crop production’ per unit ‘amount of 

water used’. Various statistical indicators used in assessing and comparing the 

performance of models were used in this study. Descriptive statistics such as means, 

standard deviations, line graphs, and box and whisker plots were used to analyse 
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outputs. Box and whisker plot can show stability and general distribution of the sets of 

data. A Mann-Kendall trend test was also used to test whether there was statistically 

significant decreasing or increasing data trends. A P-value < 0.05 indicates a trend, 

and if τ is +ve, increasing trend, and if τ is -ve, decreasing trend. Additionally, other 

statistical indicators used were root mean square error (RMSE; Eq. 6.2), normalized 

root mean square error (NRMSE; Eq. 6.3), coefficient of determination (R2; Eq. 6.4), 

mean bias error (MBE; Eq. 6.5), and index of agreement (IA; Eq. 6.6) developed by 

Willmott (1981). The RMSE was taken to measure the relative average difference 

between the model estimates and measurements: it describes the average absolute 

deviations between the simulated and observed values.   

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑃𝑃𝑃𝑃 − 𝑂𝑂𝑂𝑂)(1)2𝑁𝑁
𝑖𝑖=1                                    Equation 6.2 

where N is the number of estimate-observation pairs, Pi is the model prediction and Oi 

is the observed value of the model i.   

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
Ō

                                                   Equation 6.3 

where Obar is the average of observation value 

𝑟𝑟 =  𝑛𝑛(∑𝑥𝑥𝑥𝑥)−(∑𝑥𝑥)(∑𝑦𝑦)
�[𝑛𝑛∑𝑥𝑥2−(∑𝑥𝑥)2][𝑛𝑛∑𝑦𝑦2−(∑𝑦𝑦)2]      

                            Equation 6.4 

MBE was taken as an indicator of under- or over-estimation, i.e. the direction and 

magnitude of bias.   

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑁𝑁−1 ∑ (𝑃𝑃𝑃𝑃 − 𝑂𝑂𝑂𝑂)𝑁𝑁
𝑖𝑖=1                                     Equation 6.5 

IA was used as a more general indicator of model efficiency.  

𝐼𝐼𝐼𝐼 = 1 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑃𝑃𝑃𝑃

                                                           Equation 6.6 

Where 𝑃𝑃𝑃𝑃 = ∑ (|Ṗ| + |Ȯ|𝑁𝑁
𝑖𝑖=1 )(12) and where Ṗ= Pi-Ō and Ȯ = Oi-Ōi and Ō is the mean 

of the observed variable. The main objective of the study was to evaluate model 

performance. Also were there was a limited number of data points to run all statistic 

tests; hence statistical analysis was not done for the individual crops but considered 

maize, millet and sorghum as sub-factors. However, in this study, all the three models 
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were compared against each other (i.e. AquaCrop vs DSSAT, SIMPLE vs DSSAT and 

AquaCrop vs SIMPLE) because observed data was not available.  

The six GCMs were used as climate input data by the three models in simulating the 

impacts of climate change on selected NUS. Simulation outputs for yield, biomass, 

WU and WP [yield (kg) per water evapotranspired (m3)] were then subjected to t-test 

analysis using the R software (version 4.0.2). The t-test analysis was used to 

determine if there is a significant difference in outputs for maize, millet and sorghum 

across models, GCMs, timescale. Descriptive statistics such as means, standard 

deviations, and box and whisker plots were used to evaluate climate change impacts 

on yield, biomass, WU and WP for maize, sorghum, and millet. Box and whisker plots, 

coupled with standard deviations, can show stability and general distribution of data 

sets. A wider box indicates more variations across the median value of the dataset. 

Additionally, a Mann-Kendall trend test was used to perceive statistically significant 

decreasing or increasing trend in data. A P-value < 0.05 indicates a trend, and if τ is 

+ve, increasing trend, and if τ is -ve decreasing trend. The present (1995-2025) was 

used to describe the baseline to compare climate change impacts. The performance 

of individual GCMs was also evaluated using a similar statistical approach 

6.3 Results  

6.3.1 Model performance  

Provincial potential observed and mean simulated yield were compared (Table 6.8) 

using statistical indicators. Based on MBE, AquaCrop underestimated the yield by 0.22 

t/ha, whereas in the case of DSSAT, the underestimation is observed to be 0.24 t/ha 

and 0.69 t/ha for SIMPLE when comparing the observed yield and simulated yield. 

Moreover, higher coefficient of determination (R2) is observed in AquaCrop (0.99) 

compared to DSSAT (0.92) and the SIMPLE (0.51) model (Table 6.8). Taking into 

consideration the provincial potential yield as a comparative factor, the three models 

underestimated yield. The statistical comparison of observed and provincial potential 

yield showed that the provincial potential yield overestimated yield by 0.27 (Table 6.8).  
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Table 6.8: Provincial potential, observed and mean simulated yield for maize, millet, 

and sorghum 

 
Crops 

Crop type 
(maturity) 

Provincial 
potential yield 

(t/ha) 

Observed 
yield (t/ha) 

Simulated yield 
(t ha-1) 

Aqua
Crop 

DSSAT SIMPLE 

Maize early to 

medium 

18-11 (9.50) 45.51 6.55 

(1.49) 

5.75 

(0.70) 

5.52 

(1.24) 

Sorgh

um 

medium to 

late 

24 55.31 7.47 

(0.57) 

6.45 

(1.21) 

4.33 

(1.16) 

Pearl 

millet 

early to 

medium 

34.3-5.6 (4.95) 66.83 2.97 

(1.47) 

4.72 

(0.77) 

5.74 

(1.59) 
1 Arathoon & Mtumtum (2013) 2 GAIN Report (2019) 3 GRAINSA (2021) 4 Akumaga et 

al. (2017) 5 Hadebe et al. (2017) 6 Bello & Walker (2016) 

Table 6.9: Statistical comparison of the observed, provincial potential and simulated 

yield for AquaCrop, DSSAT and the SIMPLE model   

Model performance R2 D-index RMSE NRMSE MBE 
Observed vs AquaCrop 0.99 -3.15 2.62 0.45 -0.22 

Observed vs DSSAT 0.92 -18.13 1.39 0.24 -0.24 

Observed vs SIMPLE 0.51 0.62 0.85 0.14 -0.69 

Potential vs AquaCrop 0.03 0.27 2.87 0.47 -0.49 

Potential vs DSSAT 0.003 -0.06 2.59 0.42 -0.51 

Potential vs SIMPLE 0.27 0.36 2.35 0.38 -0.95 

Observed vs Potential 0.06 -0.28 2.66 0.45 0.27 

 

Except for NRMSE and according to the rest of the statistical indicators for yield, 

results suggested that there was a satisfactory agreement between AquaCrop-DSSAT 

and DSSAT-SIMPLE. There was a positive correlation for all the three models being 

compared against each other. The correlations (R2) between AquaCrop-DSSAT, 

AquaCrop-SIMPLE and DSSAT-SIMPLE were 0.95, 0.58 and 0.78, respectively. 
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There were slight differences in model agreement across the different statistical 

indicators. For instance, good agreement was observed for yield simulated by 

AquaCrop-DSSAT (R2 = 0.77). RMSE and NRMSE of 2.48 t/ha and 0.44 t/ha, 

respectively, for the comparison of AquaCrop and SIMPLE showed a higher deviation 

in this combination when compared with other comparisons in this study (Table 6.9).   

There was a positive correlation in biomass for all the three models compared against 

each other. The comparison between AquaCrop and the SIMPLE model showed the 

highest R2 of 0.98 and the comparison between DSSAT and SIMPLE had the lowest 

R2 of 0.07. Biomass was simulated well in agreement of 0.42 for AquaCrop-DSSAT, 

0.31 for AquaCrop-SIMPLE and 0.22 for DSSAT-SIMPLE. However, due to the high 

value of AI for AquaCrop and DSSAT, it was evident that this comparison was in more 

agreement of simulating biomass. Biomass was overestimated in AquaCrop 

comparison to SIMPLE by 1.03 t/ha, similarly with the comparison between DSSAT 

and SIMPLE by 0.80 t/ha. Meanwhile, AquaCrop underestimated biomass in 

comparison to DSSAT by 0.80 t/ha. RMSE and NRMSE of 6.14 t/ha and 0.37 t/ha, 

respectively, for the comparison of AquaCrop and SIMPLE, showed that there was a 

higher deviation in this combination when compared with other comparisons in this 

study (Table 6.9).   

The results showed that there was a perfect coefficient (R2 = 1) in water use simulated 

by AquaCrop-SIMPLE. The same positive relationship of R2 = 0.99 was observed for 

the comparison of AquaCrop-DSSAT and DSSAT-SIMPLE. AI as a statistical indicator 

showed that there was agreement for water use simulated by AquaCrop-DSSAT 

(0.27), AquaCrop-SIMPLE (0.14) and DSSAT-SIMPLE (0.54). There was an 

underestimation of water use for AquaCrop-DSSAT (-96.61 t/ha), AquaCrop-SIMPLE 

(-132.87 t/ha) and DSSAT-SIMPLE (-36.26 t/ha).  RMSE and NRMSE of 146.59 t/ha 

and 0.26 t/ha, respectively, for the comparison of AquaCrop and SIMPLE, showed that 

there was a higher deviation in this combination when compared with other 

comparisons in this study. The least deviations (RMSE = 40.95 and NRMSE = 0.09) 

for water use were observed for the DSSAT-SIMPLE comparison (Table 6.9). 
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6.3.2 Yield 

The highest mean yield was simulated by the AquaCrop model for maize (6.55 t/ha) 

and millet (7.47 t/ha). Meanwhile, for sorghum, SIMPLE simulated the highest mean 

yield of 5.74 t/ha. Yield simulations in AquaCrop had wider box plots for maize and 

sorghum, suggesting more yield variability. This was in line with the large standard 

deviation (±1.48 t/ha) observed for maize under AquaCrop. DSSAT had the shorter 

box plots suggesting less yield variability for both these crops. Contrary to this, for 

millet, greater yield variability was observed under DSSAT while the least variability 

was observed under the SIMPLE model (Figure 6.5). The DSSAT yield simulation for 

millet showed the most deviation from the mean by ±1.21 t/ha than other models. For 

sorghum yield simulated by the SIMPLE model, the highest standard deviation was 

±1.59 t/ha (Figure 6.6). Across the simulation years, the Mann-Kendall trend analysis 

showed a significant (P<0.05) and positive trend (0.30) in yield for sorghum and a 

negative trend (-0.40 and -0.63) for maize and millet, respectively. 

Coupled with AquaCrop 6.1, DSSAT 4.7.5 and SIMPLE 1.1, dynamically downscaled 

and bias-corrected climate projections for six GCMs forced by RCP 8.5 were used to 

simulate maize, millet and sorghum yields over the past, present, mid-, and late-

centuries. The aim was to evaluate AquaCrop, DSSAT and SIMPLE's performance in 

simulating the impacts of climate change on yield, biomass, WU and WP of maize, 

millet, and sorghum.  
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Figure 6.5: Yield for maize, millet and sorghum simulated by AquaCrop, DSSAT and SIMPLE  

 

 

Figure 6.6: Yield for maize, millet and sorghum simulated by AquaCrop, DSSAT and SIMPLE from 2004-2018
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Across models, there were highly significant (P<0.05) differences for maize, millet, and 

sorghum yield. Yield simulations across all the crops under the SIMPLE model had 

wider box plots suggesting more yield variability. Contrary to this, DSSAT had the 

shorter box plots suggesting less yield variability, however only for millet and sorghum. 

Maize yield was less variable in AquaCrop (Figure 6.7). AquaCrop showed the highest 

simulated mean yield for maize (8.34 t/ha), millet (6.86 t/ha) and sorghum (5.28 t/ha) 

(Figure 4.3). SIMPLE simulated the lowest mean yield for maize (4.50 t/ha). 

Meanwhile, DSSAT simulated the lowest mean yield for millet (2.68 t/ha) and sorghum 

(3.84 t/ha). Across all the time scales, it was observed that AquaCrop simulated the 

highest yield, the SIMPLE model and DSSAT simulated the lowest yield across the 

GCMs, which were inconsistent. This highest value of 8.88 t/ha was observed in the 

late-century period for ACC in maize, and the lowest value of 2.45 t/ha was observed 

in the present-century period for GFD in millet.   

The results showed no significant (P>0.05) differences across the GCMs for maize 

yield; an average of 6.04 t/ha with a standard deviation of 2.33 t/ha was observed. 

Highly significant differences (P˂0.05) across GCMs were observed for millet (4.52 ± 

2.12 t/ha) and sorghum (4.59 ± 1.82 t/ha). Across the time scale, there were significant 

differences (P<0.05) in maize and sorghum yield and no significant (P>0.05) 

differences in millet yield. The observed trend for simulated maize yield was past (5.76 

± 2.25) ˂ present (6.02 ± 2.37) ˂ late (6.17 ± 2.33) ˂ mid-century (6.21 ± 2.35 t/ha). 

The observed trend for simulated millet yield was past (4.37 ± 2) ˂ present (4.55 ± 

2.08) ˂ mid (4.56 ± 2.22) ˂ late-century  (4.60 ± 2.29 t/ha). The observed trend for 

simulated sorghum yield was past (4.38 ± 1.82) ˂ late (4.62 ± 1.80 ) ˂ present (4.69 ± 

1.85) ˂ mid-century (4.70 ± 1.88 t/ha). Across the past, present, mid-, and late-century 

period, the Mann-Kendall trend analysis showed a significant (P<0.05) and positive (τ 

= 0.05)  trend in yield for maize. On the other hand, no trend was detected in millet 

and sorghum yield.  
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Figure 6.7: Simulated yield (t ha−1) by AquaCrop, DSSAT and SIMPLE for maize, millet, and sorghum during four different time 
scales (past (P), present (Pr), mid-century (M) and late-century (L)) obtained from the six GCMs (ACC, CSS, CNR, GFD, NOR and 
MPI)
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Across models, there were highly significant (P<0.05) differences for maize, millet, and 

sorghum yield (results not presented). Regardless of the irrigation intervals, yield 

simulations across all the crops under the SIMPLE model had wider box plots 

suggesting more yield variability. Contrary to this, DSSAT had the shorter box plots 

suggesting less yield variability, however only for millet and sorghum. Maize yield was 

less variable in AquaCrop (Figure 6.7). AquaCrop showed the highest simulated mean 

yield for maize (8.57 t/ha) and millet (6.10 t/ha). Meanwhile, the SIMPLE model 

simulated the highest mean yield for sorghum (7.15 t/ha). Across time, there were no 

significant (P˃0.05) differences in millet yield. On the contrary, significant (P˂0.05) 

differences in maize and sorghum yield were observed (results not presented). 

Throughout the 2030-2060 period, the Mann-Kendall trend analysis did not detect a 

maize and millet yield trend. However, a significant (P<0.05) and positive (τ = 0.04) 

trend was observed for sorghum. The results showed no significant (P>0.05) 

differences across the GCMs for maize and millet yield (results not presented). For 

sorghum yield, a significant difference was observed across GCMs (results not 

presented).  

When compared with the rainfed simulations, the results showed an increase in yield 

for all the crops due to irrigation. Further increases in yield were observed because of 

an increase in irrigation amount from 10 to 20 mm. It was observed that yield for maize 

was 6.21, 7.07 and 7.63 t/ha for rainfed, 10 mm and 20 mm of irrigation, respectively. 

Yield for millet was observed as 4.56, 4.91, and 4.93 t/ha for rainfed, 10 mm and 20 

mm of irrigation, respectively. Yield for sorghum was observed as 4.70, 5.62, and 6.20 

t/ha for rainfed, 10 mm and 20 mm of irrigation, respectively. Overall, there was a 

reduction in crop yield for all species when irrigation frequency was changed from 7 to 

14 days. The highest reduction was observed for sorghum [0.61 t/ha (10.9%)] followed 

by maize [0.58 t/ha (8.21%)] and then millet [0.02 t/ha (4.07%)]. Figure 6.8 depicts 

that the greatest improvements in maize and sorghum yield were observed under the 

SIMPLE model when an irrigation amount of 20 mm was applied every seven days. 

Indifferent to maize and sorghum, the highest yield was observed under AquaCrop 

when millet was rainfed.  
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Figure 6.8: Yield for maize, millet and sorghum simulated by AquaCrop, DSSAT and 
the SIMPLE model under rainfed and irrigation (10 and 20 mm) 

6.3.3 Biomass 

The calculated mean for biomass showed that AquaCrop simulations attained the 

highest value for maize (16.78 t/ha) and millet (24.08 t/ha) and DSSAT for sorghum 

(14.69 t/ha). In Figure 3.5 the wider box plots shown by the AquaCrop model across 

maize and sorghum indicated that there was more variation in biomass. For millet, the 

variation in biomass was similar across the three models. Compared to other models, 

DSSAT showed less variability in biomass for maize and sorghum, as shown by 

thinner box plots. Analysing simulated biomass results showed large standard 

deviations for maize (3.11) and millet in SIMPLE (3.87) and for sorghum (4.03) in 

AquaCrop (Figure 3.5). Overall, the Mann-Kendall trend analysis did not detect a trend 

in biomass for sorghum. Overall significant (P<0.05) and negative trend was observed 

in simulated biomass for maize (τ = -0.66) and millet (τ = -0.37). For maize, the 

AquaCrop model depicted a negative trend for biomass from the year 2007-2011, 

while no clear trend was observed with biomass simulated with DSSAT and SIMPLE 

(Figure 6.9).
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Figure 6.9: Biomass for maize, millet and sorghum simulated by AquaCrop, DSSAT and SIMPLE     

 

Figure 6.10: Biomass for maize, millet and sorghum simulated by AquaCrop, DSSAT and SIMPLE from 2004-2018Across models, 
there were highly significant (P<0.05) differences for maize, millet and sorghum biomass (Figure 4.4). 
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In Figure 6.10, the wider box plots shown by the SIMPLE model across maize, millet 

and sorghum deduced more variation in biomass. Compared to other models, DSSAT 

showed less variability in biomass for millet and sorghum as shown by thinner box 

plots. Meanwhile, less variations in maize biomass were observed in simulations by 

AquaCrop. AquaCrop showed the highest simulated mean biomass for maize (20.84 

t/ha), millet (21.68 t/ha) and sorghum (16.04 t/ha). SIMPLE simulated the lowest mean 

biomass for sorghum (10.38 t/ha). Meanwhile, DSSAT simulated the lowest mean 

biomass for millet (12.63 t/ha) and maize (10.67 t/ha). Across the GCMs and time 

scales. it was observed that AquaCrop simulated the highest yield, the SIMPLE model 

and mostly DSSAT  simulated the lowest yield for maize, millet and sorghum. The 

highest value of 24.83 t/ha was observed in the late-century period for GFD in millet, 

and the lowest value of 8.46 t/ha was observed in the mid-century period for CNR in 

sorghum.   

There were no significant (P>0.05) differences across the GCMs for maize biomass. 

However, highly significant (P˂0.05) differences were observed for millet and sorghum 

biomass. Across the GCMs, biomass trends for maize showed a gradual increase 

towards the late century when compared to the baseline. The observed trend for 

simulated maize biomass was late (14.72) ˃ mid (14.53) ˃ present (14.10) ˃ past-

century (13.66 t/ha). The observed trend for simulated millet biomass was mid-century 

(16.16) ˃ late (16.11) ˃ present (15.97) ˃ past-century (15.35 t/ha). The observed 

trend for simulated sorghum biomass was mid (13.80) ˃ present (13.73) ˃ late (13.52) 

˃ past-century (12.86 t/ha). The observed trend was consistent with the observed 

increase in future yield. The Mann-Kendall trend analysis did not detect a trend in 

biomass for millet and sorghum. A significant (P<0.05) and positive (τ = 0.05) trend 

was observed in biomass for maize. 
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Figure 6.11: Simulated biomass (t ha−1) by AquaCrop, DSSAT and SIMPLE for maize, 
millet, and sorghum during four different time scales (past (P), present (Pr), mid-
century (M) and late-century (L)) obtained from the six GCMs (ACC, CSS, CNR, GFD, 
NOR and MPI)   

Highly significant (P<0.05) differences were observed for maize, millet, and sorghum 

biomass across the models (results not presented). In Figure 6.11, the wider box plots 

shown by the SIMPLE model across maize, millet and sorghum shows that there was 

more variation in biomass. Compared to other models, DSSAT showed less variability 

in biomass for millet and sorghum, as shown by thinner box plots. Meanwhile, fewer 

variations in maize biomass were observed in simulations based on AquaCrop. The 

results showed no significant (P>0.05) differences across the GCMs for maize and 

significant differences for millet and sorghum biomass (results not presented). The 

average biomass for the GCMs ranged from 16.12-16.88 t/ha for maize with ACC 

yielding the highest results, 16.61-17.50 t/ha for millet with NOR yielding the highest 

results and 15.81-16.83 t/ha for sorghum with NOR yielding the highest results. Across 

time, there were no significant differences (P˃0.05) in maize and millet biomass. 

Contrary to this, highly significant (P˂0.05) differences in sorghum biomass over time 

were observed (results not presented).  Across the 2030-2060 period, Mann Kendall 

trend analysis showed a significant (P<0.05) and positive trend for millet (τ = 0.02) and 

sorghum (τ = 0.04) biomass. Then, for maize, no trend in biomass was detected. 



 

207 

 

Similar to yield results, there were inconsistencies observed in biomass across time 

for all the crops.  

An increase in biomass for all the species is observed due to irrigation (). Further 

increases in maize, millet and sorghum yield were observed because of an increase 

in irrigation amount from 10 to 20 mm. The biomass for maize was observed to be 

14.53, 16.49 and 17.78 t/ha for rainfed, 10 and 20 mm in irrigation, respectively. The 

most significant increase of 9% in biomass was with sorghum, and the least significant 

increase of 0.63% was with millet for 10 and 20 mm, respectively. A reduction in 

biomass across all crop species for irrigation frequency increased from 7 to 14 days. 

Results showed that the reductions were, 8.33% (1.37 t/ha) in maize, 0.87% (0.15 

t/ha) in millet and 9.26% (1.5 t/ha) in sorghum. Figure 5.2 depicts that the SIMPLE 

model biomass output showed the highest maize (21.88 t/ha), millet (22 t/ha) and 

sorghum (21.71 t/ha) for the irrigation amount of 20 mm frequented every after 7 days. 

Nonetheless, results further showed that high millet biomass was attained when the 

crop was rainfed (no irrigation) in AquaCrop.  

 

Figure 6.12: Biomass for maize, millet and sorghum simulated by AquaCrop, DSSAT 
and the SIMPLE model under rainfed and irrigation (10 and 20 mm) 
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6.3.4 Water productivity 

The calculated mean for WPWP showed that SIMPLE simulations attained the highest 

value for maize (13.77 t/ha) and sorghum (12.89 t/ha) and DSSAT for millet (14.78 

t/ha) (Figure 6.13). This observation was not consistent to the yield trends where the 

AquaCrop model simulated higher yield for maize and millet while, for sorghum, 

SIMPLE simulated the highest mean yield. The wider box plots shown by the 

AquaCrop model across maize and sorghum suggested that there was more variability 

in WPWP. Whereas for millet, more variability in WPWP was observed under DSSAT. 

Compared to other models, DSSAT depicted thinner box plots suggesting less 

variability in WP for maize and sorghum. This is consistent with the observed low 

variability in yield (Figure 6.13). The standard deviation calculated for WP infers that 

there was a high degree of standard deviation for millet (3.21) and sorghum (2.65) 

under the SIMPLE model, and for maize (3.16) under AquaCrop. The WP trend across 

all three models was consistent for maize from 2004-2018. The Mann-Kendall trend 

analysis showed a significant (P<0.05) and negative trend in WP of τ=-0.45 for millet 

and a positive trend in WP of τ=0.42 for sorghum.
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WU for maize, millet and sorghum simulated by AquaCrop, DSSAT and SIMPLE  

 

Figure 6.13: WU for maize, millet and sorghum simulated by AquaCrop, DSSAT and SIMPLE from 2004-2018 
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GFD simulated by AquaCrop showed a wider box plot in the late century for sorghum. 

The wider box plots shown by the SIMPLE model across maize, millet and sorghum 

suggested more variability in WP. Compared to other models, DSSAT depicted thinner 

box plots suggesting less variability in WP for millet and sorghum. While in WP for 

maize, less variations were observed in AquaCrop (Figure 6.15). Inconsistent results 

were observed in WP and WU for maize, millet, and sorghum across GCMs and 

models. It was depicted that the highest WP was observed under DSSAT for maize 

(24 kg/ha/mm) and the lowest under DSSAT for millet (5.89 kg/ha/mm). It was 

observed that the highest WP for GCMs was under NOR (18.04 kg/ha/mm) for maize 

and the lowest under CNR (8.49 kg/ha/mm) for millet. ACC predicted the highest water 

use (440.88 and 499.30 mm) for maize and sorghum, respectively, and CNR predicted 

the highest water use (445.78 mm) for millet. Meanwhile, the lowest water use 

predicted was under GFD (403.59 and 459.71 mm) for millet and sorghum, 

respectively, and NOR (354.53 mm) for maize.  

There were no significant (P˃0.05) differences in WU for maize and sorghum, while 

significant (P˂0.05) differences were observed for millet across the time scale. 

Contrary to WU, it was observed that there were no significant (P˃0.05) differences in 

WP for millet and maize, while sorghum was significantly (P˂0.05) different. The 

Mann-Kendall trend analysis showed a significant (P<0.05) and positive (τ = 0.03) 

trend in WU of 0.03 for sorghum. Meanwhile, in WP a significant (P<0.05) and positive 

(τ = 0.03) trend was observed for maize. Additionally, the trend analysis did not detect 

a trend in WU for maize and millet, in WP for millet and sorghum.
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Figure 6.14: Simulated water use (mm) by AquaCrop, DSSAT and SIMPLE for maize, millet, and sorghum during four different time 
scales (past (P), present (Pr), mid-century (M) and late-century (L)) obtained from the six GCMs (ACC, CSS, CNR, GFD, NOR and 
MPI) 
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The Mann-Kendall trend analysis did not detect a trend in WU for maize and in WP for 

maize and millet. A significant (P<0.05) and a positive trend was observed in WU for 

millet (τ = 0.04) and sorghum (τ = 0.05). In WP, a significant (P<0.05) and positive (τ 

= 0.04) trend was also observed but only for sorghum. The wider box plots shown by 

the SIMPLE model across maize, millet and sorghum suggested more variability in 

WP. Compared to other models, DSSAT depicted thinner box plots suggesting less 

variability in WP for millet and sorghum. While in WP for maize, less variations were 

observed in AquaCrop (Figure 6.15).  

ACC predicted the highest water use (475.67 and 536.53 mm) for maize and sorghum, 

respectively, and CNR predicted the highest water use (453.79 mm) for millet. 

Meanwhile, the lowest water use predicted was under GFD (442.47 and 523.66 mm) 

for millet and sorghum, respectively, and NOR (458.13 mm) for maize. The highest 

WP for GCMs was observed under ACC (15.90 kg/ha/mm) for maize and the lowest 

under CNR (10.43 kg/ha/mm) for sorghum. Inconsistencies of WU and WP were 

observed for maize, millet, and sorghum across GCMs and models. It was observed 

that the highest WU was observed under DSSAT for maize (530.73 mm), millet 

(487.90 mm) and sorghum (586.36 mm) (Figure 5.3). It was also observed that WU 

generated by AquaCrop remained constant for different irrigation amounts and days.  

It was depicted that the highest WP was observed under AquaCrop for maize (21 

kg/ha/mm) and millet (15.10 kg/ha/mm), the SIMPLE model for sorghum (13.37 

kg/ha/mm). 

WP increased due to irrigation and an increase in irrigation amount, consistent with 

yield and WU. The results showed an increase in WP for maize and sorghum due to 

an increase in irrigation amount of 10 to 20 mm (Figure 6.16). Contrarily, there was a 

reduction in WP for millet due to an increase in irrigation amount. There was a 

reduction in WP for maize and sorghum, resulting from an increase in irrigation 

frequency of 7 to 14 days. Contrary, there was an increase in WP for millet resulting 

from an increase in irrigation frequency. Figure 5.4 depicts that the highest WP for 

maize (21.26 kg/ha/mm) was observed for AquaCrop than other models, irrigating with 

10 mm every after seven days. Then, the highest WP for millet (16.85 kg/ha/mm) was 

observed for AquaCrop irrigating with 10 mm every after 14 days. However, compared 

to irrigation, rainfed millet showed the highest WP of 17.13 kg/ha/mm simulated by 
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AquaCrop. Lastly, the SIMPLE model output showed the highest sorghum (17.24 

kg/ha/mm) WP for the irrigation amount of 20 mm frequented every after 7 days 

(Figure 6.16).  

 

Figure 6.15: WU for maize, millet and sorghum simulated by AquaCrop, DSSAT and 
the SIMPLE model under no irrigation (0 mm) and irrigation (10 and 20 mm) 

 

Figure 6.16: WP for maize, millet and sorghum simulated by AquaCrop, DSSAT and 
the SIMPLE model under rainfed and irrigation (10 and 20 mm)  
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6.4 Discussion  

AquaCrop, DSSAT and SIMPLE were able to simulate yield, biomass and water use 

for selected NUS. However, the performance of the three models was observed to be 

statistically different across the simulated years and for the different crop species. The 

statistical indicators (R2 and MBE) for observed yield compared with simulated yield 

suggest that yield, biomass, and WU simulated by AquaCrop across the selected NUS 

was more satisfactory than when DSSAT and the SIMPLE model did simulations. High 

yield and biomass variability simulated for maize and sorghum under AquaCrop and 

millet under DSSAT could suggest that both these models were more sensitive to input 

parameters, and this sensitivity was crop-specific. Moreover, in line with statement by 

Manschadi et al. (2021), different simulated results in this study could be attributed to 

secondary data, different types of parameters, number of parameters, model types 

and algorithms. Similar to a study conducted by Timsina et al. (2008), the crop, soil, 

and climate inputs in this study have a degree of uncertainty associated with them due 

to random errors, bias in their measurement and calibration. Also, the three models 

used in the study were calibrated using secondary data that came from different 

sources; hence the simulated and observed results are different. The disadvantage of 

using secondary data is that there is a high likelihood that not all parameters were 

captured that were used in calibrating the models. Hence, when interpreting and 

extrapolating the model results, due consideration should be given to uncertainties 

arising from model structure, model parameters and inputs, and the experimental data 

used for model calibration, validation, and application (Timsina et al., 2008).  

On the other hand, AquaCrop and the SIMPLE model was calibrated, and this means 

that the confidence in results for these models was improved, as the need to use 

default input values was minimised. The SIMPLE model used maize values embedded 

in the model for species parameters (CO2_RUE and S_Water) of the three crops; 

DSSAT used default files for the soil and crop data, suggesting that the confidence in 

results was low compared to AquaCrop and the SIMPLE model. Nevertheless, 

scientific processes and coefficients in AquaCrop, DSSAT and the SIMPLE model can 

never be complete, leading to uncertainties in model predictions (Timsina et al., 2008). 
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This is the case as perfect modelling can never be attained for real systems because 

models abstract reality.  

The results indicate that AquaCrop, with a water-driven growth engine, is better than 

DSSAT and the SIMPLE model, with a solar energy-driven growth engine for biomass 

and yield simulation. DSSAT and the SIMPLE model differs from AquaCrop by 

calculating biomass accumulation based on RUE rather than normalized water 

productivity (WP*). (Albrizio & Steduto, 2005) showed high variability in RUE values 

but failed to normalize RUE by vapour pressure deficit to reduce climate variability. 

The conclusion made was that the robustness of RUE to simulate biomass in crop 

models was constrained. The follow-up studies also indicated that calculating biomass 

through WP* was more robust than RUE (Albrizio & Steduto, 2005; Steduto et al., 

2009; Steduto et al., 2007) which agrees with the findings of this study.  

In this study, AquaCrop was the only model previously calibrated for sorghum using 

soil and climate data for Ukulinga Research Farm. For DSSAT and the SIMPLE model, 

current simulations are done for climatic and soil conditions that might have been 

similar in agro-ecological classification but differed based on the year that the studies 

were performed. According to Asseng et al. (2013), conducting both model calibration 

and validation before their comparison provides more robust and reliable results. 

Furthermore, it is essential that there are good quality data sets to which researchers 

have full confidence for calibration and validation. Furthermore, previous model 

comparisons have shown that minimal calibration of crop models can lead to a high 

degree of uncertainty of yield estimates (Asseng et al., 2013; Palosuo et al., 2011; 

Rötter et al., 2012). Also, providing more detailed data for model calibration did not 

necessarily result in high model performance when applied to new situations.  

Large number of input parameters resulted in large and confounding impacts on 

overall outputs. According to Babel et al. (2019), the performance of a model in any 

specific site depends on the fine-tuning of the parameters and sound validation under 

a range of conditions. This study confirms that DSSAT requires relatively more site-

specific and crop variety-associated data, in which default files were used to 

accommodate for the unavailability of data. In contrast, AquaCrop is a simpler model 

with lesser soil and crop management data required as an input. Meanwhile, SIMPLE 
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is a model which requires fewer input requirements in comparison to AquaCrop and 

DSSAT. There is limited data availability for NUS to parameterize complex models 

fully. The similarity in the performance of simpler models (i.e. SIMPLE and AquaCrop) 

and complex models (DSSAT) suggests that going forward, less complex models can 

be adopted to advance modelling of neglected and underutilized cereal crop 

productivity. Nonetheless, even with the use of simpler models, there is still a need for 

some input parameters to use in modelling NUS. Thus, standards and protocols for 

data collection must be formulated to attain the required quantity and quality of data.  

Observing the past to late century, the median value of climate change projections for 

minimum and maximum temperatures for Ukulinga showed a consistent warming 

trend across all months. This suggests an increased probability of hot nights and 

longer and more frequent heatwaves, especially for maize. Furthermore, this may 

result in a faster accumulation of heat units and a reduction in growth duration and 

accumulation of photosynthesis and increased night-time respiration, resulting in 

reduced crop yield  (Schlenker & Roberts, 2009). The warming trend across the 

selected timescales is consistent with projected trends for South Africa (Mangani et 

al., 2018).  

AquaCrop, DSSAT and the SIMPLE model with varying complexity simulated yield, 

biomass and WU for maize, millet, and sorghum under changes in climate overtime. 

There is limited data availability for selected NUS to fully parameterize complex 

models. Thus, simpler models can be adopted to advance modelling on NUS as a 

similar performance is observed between simpler and complex models, Millet is 

generally sensitive to low temperatures at the seedling stage and flowering. High 

daytime temperatures are needed for the grain to mature. It germinates well at soil 

temperatures of 23 to 30 °C (DAFF, 2011). Maize is a warm-weather crop and is not 

grown in areas where the mean daily temperature is less than 19 ºC or where the 

mean of the summer months is less than 23 ºC. The critical temperature detrimentally 

affecting yield for maize is approximately 32 ºC (du Plessis, 2003). Sorghum is a warm-

weather crop requiring a temperature of 27 to 30 ºC for optimum growth and 

development. However, the temperature can be as low as 21 ºC, without a dramatic 

effect on growth and yield (DAFF, 2010). Compared to maize, millet and sorghum are 
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better adapted to high temperatures (DAFF, 2011), and thus, may be more resilient to 

projected increases in temperature (Choudhary et al., 2019).   

The increase and reduction in MAP observed suggests an increase in the probability 

of extreme weather events such as drought and floods. The trend showed a reduction 

in rainfall across timescales in all GCMs. This indicates a reduction in future rainfall 

for the site relative to the baseline. Water availability for crop production will, therefore, 

be negatively affected. This suggests that it is imperative to identify crops with low 

levels of water use that could be introduced into the environment. The increase in ETo 

is consistent with the projected increase in minimum and maximum temperature and 

suggests increased crop water stress (Zhao et al., 2017). Differences in simulated WU 

across the GCMs could be that each climate model has been developed based on its 

assumptions and unique mathematical representations of physical climate system 

processes, providing different climate projections (Confalonieri et al., 2016).  

Similar to work done by Roberts et al. (2017), this study presented a framework for 

comparing crop models that can improve prediction, clarify differences between 

models, and ultimately improve assumptions used in crop modelling and ascertain 

potential impacts of climate change. AquaCrop, DSSAT and the SIMPLE model 

responded differently to changes in climate change. AquaCrop showed the least 

variation in yield and biomass for maize, millet, and sorghum; this suggests that 

AquaCrop was not as sensitive to pick up changes in weather variables as compared 

to DSSAT. The results across the time scales, GCMs and models, verify that the 

climate change effect is substantial and may be difficult to capture entirely using simple 

process-based models (Roberts et al., 2017). The assessments of possible effects of 

climate changes are based on estimations. This is the case since crop models are not 

universal; they must choose the most appropriate model according to their objectives. 

Additionally, crop models cannot give accurate projections because of an inadequate 

understanding of natural processes and computer power limitation (Rauff & Bello, 

2015).  

There are differences in output components reported, and this may be due to yearly 

differences in climatic conditions of the Ukulinga Research Farm. To improve the 

predictive capacity of the models under a wide range of environmental conditions, 



 

218 

 

there is a need for a better understanding and description of the fundamental 

processes in the various crop-soil-atmosphere sub-systems (i.e. associated modules 

or routines). This was illustrated in the current study for modelling yield and WU under 

different temperatures and rainfalls. The results simulated by AquaCrop, DSSAT and 

the SIMPLE model showed high yield for maize and sorghum under the mid-century 

period and millet under the late-century period. This suggests that under the 

continuous variability in climate, these crops will be better suited for production in 

periods in which the greatest improvement in yield is attained. Although the yield for 

sorghum was greater in the present century than in the late century, it was still evident 

that the trend results for maize, millet and sorghum were consistent with the increased 

probability of extreme weather events as drought and floods (Schulze, 2011). High 

yield and biomass variability were observed under the SIMPLE model, suggesting that 

it is more sensitive to climate variability.  

AquaCrop, DSSAT and the SIMPLE model produced different crop performance 

predictions under a future climate, reflecting different biological or physical 

mechanisms at work within the model structures. These models cannot be correct and 

taking the mean of an ensemble of models may or may not improve the accuracy of 

predictions. The argument for ensemble modelling approaches has more traction in 

modelling global and regional weather systems. There is more fundamentally chaotic 

nature of global circulation models (Tebaldi & Knutti, 2007) but Keating (2020) was 

unconvinced that the same case applied in farming systems simulation. Keating 

(2020), then suggested that directing energy into understanding why differences in 

model performance under climate change are arising and then gathering data and 

evolving model structures or calibration would be a more useful way forward. 

Modelling the impacts of climate change and adaptation and mitigation options are 

essential. However, there are many limitations in the models' capabilities and 

understanding of these impacts and options. There is a need to address these 

uncertainties explicitly (Keating, 2020).   

Overall results show that AquaCrop, DSSAT and the SIMPLE model was sensitive 

enough to simulate changes in yield due to added irrigation. Results imply that these 

models are suited for modelling the effects of irrigation management for the selected 

species. Numerous studies report that models become sensitive to a certain crop more 
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than other crops. Thus, this further suggests that the SIMPLE model, DSSAT and 

AquaCrop could be used to predict biomass and yield with a high degree of reliability 

under various irrigation management strategies and specific to selected crops. Hence, 

these models are valuable tools to aid in decision-making for effective irrigation 

management strategies. The inconsistencies in yield and biomass across the mid-

century period are attributed to changes in climate over time. Applying a higher amount 

of irrigation resulted in higher yield, biomass, and water use simulated by the three 

models. Additionally, irrigating more frequently resulted in higher yield, biomass, and 

water use. Hence, the simulation of different water management scenarios indicated 

that optimal irrigation management significantly improved the irrigation water use by 

adjusting the irrigation water applied. Nonetheless, AquaCrop is particularly well suited 

to simulating yield, biomass, and water use for selected NUS in different irrigation 

scheduling conditions.  

There were reductions in yield by reducing irrigation frequency, suggesting that there 

were dry periods, and this implies that a shorter irrigation interval is more appropriate 

than a longer irrigation interval. WP with maize and millet is inconsistent with the 

relationship between these crops with yield and biomass. The reduction observed in 

WP for maize and millet is attributed to high amounts of water lost through 

unproductive means; Chimonyo & Mabhaudhi (2019) also reported this matter. 

Improvement in yield is more related to transpiration, and more water allows for carbon 

dioxide to be absorbed and oxygen to be transpired; hence improved yield is 

associated with improved water use, which is evident in this study. Water productivity 

(WP), which is the net benefits accrued per unit of water consumed (D. Molden et al., 

2003), offers greater spatial and temporal stability and is a true efficacy parameter of 

the crop production process (Halsema & Vincent, 2012). The soil factors mainly drive 

the irrigation module, but each model interprets these factors and how the algorithm 

within the soil factors influences the soil water balance. Furthermore, the soil profile 

differs even if it is in the same area. The crop models consider only one point 

measured; hence, the models need more developments to accommodate this 

limitation.  

For irrigation conditions in this study, the accuracy of DSSAT and the SIMPLE model 

with the Priestley-Taylor/Ritchie method for ET simulation was acceptable and close 
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to AquaCrop. This suggests that the absence of relative humidity and wind speed 

among the model inputs does not limit the performance of DSSAT and the SIMPLE 

model under non-water stress conditions. Precise estimation of evapotranspiration 

(ET) constitutes the main basis for irrigation management (Qiu et al., 2019; Ran et al., 

2017). In addition, better ET algorithms should demonstrate better performance in 

multiple aspects of the crop model simulation, not just in the ET simulation itself 

(Dejonge & Thorp, 2017; Thorp et al., 2019). A study conducted by Toumi et al. (2016) 

to validate AquaCrop showed that the precision rate for daily ET simulation was 

reliable overall.  

The findings of this study are not in agreement with (Rogers & Alam, 1998), who 

verified that sorghum needs about 450-550 mm of water per growing season. Although 

the presented results support the potential of the AquaCrop, DSSAT and the SIMPLE 

model to incentivize farmers to enhance their irrigation practices, the soil proprieties 

must still be considered to ensure production while improving environmental 

sustainability (Malik & Dechmi, 2019). Overall, the three models can be used as a tool 

to develop the best irrigation management options for increased yield and WP for 

maize, millet, and sorghum under variability in rainfall and temperatures. There is a 

limited data availability for NUS to fully parameterize complex models. Simpler models 

(i.e. requiring lesser inputs) performed equally as well as the complex models in this 

study, suggesting that going forward, the less complex models can be adopted to 

advance modelling on NUS.  

 

6.5 Conclusion  

Three crop simulation models – AquaCrop (v 6.1), DSSAT (v 4.7.1) and SIMPLE (v 

1.1) – were evaluated for their comparative performance for maize, millet and sorghum 

at Ukulinga Research Farm in Pietermaritzburg, South Africa. AquaCrop, DSSAT and 

the SIMPLE model simulated yield, biomass and water use for selected NUS. The 

presented results are based on several assumptions, and the predictions by the three 

models may be affected by a degree of uncertainty.  These assumptions may have 

affected results and bias conclusions regarding estimates for yield, biomass, water 
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use and WP. Further, the interactions between weather, soil characteristics, plant 

growth dynamics, and management alternatives may have affected simulation results. 

Despite the potential limitations, the AquaCrop, DSSAT and SIMPLE model can be 

used as decision support tools to assist farmers in producing NUS. However, based 

on the statistical differences, AquaCrop was observed as the better suitable model for 

simulating yield, biomass and water use for selected NUS. Further, the model can be 

used, and the results of this study extrapolated to other areas with similar climatic and 

soil environments in South Africa where crop, soil, weather, and management data 

are available. Even though the AquaCrop, DSSAT and SIMPLE model simulation 

results for sorghum showed a higher increase in yield for the present century 

compared to the late century, it can still be concluded that the yield and biomass of 

maize, millet and sorghum will increase in response to projected climate change as 

yield improvements were observed to be great in the mid-century for all the species. 

Additionally, projected climate change is expected to increase WP for maize, millet, 

and sorghum across the three models. AquaCrop, DSSAT and the SIMPLE model 

responded differently to changes in climate change; thus, the hypothesis is accepted. 

However, the dissimilar responsiveness of the three models suggests that AquaCrop 

is the better suitable model for simulating the impacts of climate change on selected 

NUS. 
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7 OPTIMIZING TRADITIONAL CROPPING SYSTEMS UNDER CLIMATE 
CHANGE: A CASE OF MAIZE LANDRACES AND BAMBARA GROUNDNUT  

Chimonyo V. G. P., Wimalasiri E. M., Kunz R.P., Modi A.T., and Mabhaudhi T. 

Abstract 

Traditional crop species are reported to be drought-tolerant and nutrient-dense with 
potential to contribute to sustainable food and nutrition security within marginal 
production systems under climate change. We hypothesized that intercropping maize 
landraces (Zea mays L.) with bambara groundnut (Vigna subterranea (L.) Verdc.), 
together with optimum management strategies, can improve productivity and water 
use efficiency (WUE) under climate change. Using an ex-ante approach, we assessed 
climate change impacts and agronomic management options, such as plant ratios, 
and plant sequences, on yield and WUE of intercropped maize landrace and bambara 
groundnut. The Agricultural Production Systems sIMulator (APSIM) model was 
applied over four time periods; namely past (1961-1991), present (1995-2025), mid-
century (2030-2060) and late-century (2065-2095), obtained from six GCMs. Across 
timescales, there were no significant differences with mean annual rainfall, but late 
century projections of mean annual temperature and reference crop evaporation (ET₀) 
showed average increases of 3.5°C and 155 mm, respectively. By late century and 
relative to the present, the projected changes in yield and WUE were -10 and -15% 
and 5 and 7% for intercropped bambara groundnut and maize landrace, respectively. 
Regardless of timescale, increasing plant population improved yield and WUE of 
intercropped bambara groundnut. Asynchronous planting increased yield and WUE 
for both maize landrace (5 and 14%) and bambara groundnut (35 and 47%, 
respectively). Most significant improvements were observed when either crop was 
planted two to three months apart. To reduce yield gaps in intercrop systems, low-cost 
management options like changing plant populations and sequential cropping can 
increase yield and WUE under projected climate change. To further increase 
sustainability, there is a need to expand the research to consider other management 
strategies such as use of other traditional crop species, fertilization, rainwater 
harvesting and soil conservation techniques. 

 

Keywords: Climate change adaptation; Food and nutrition security; Multicropping; 
Neglected and underutilized crops; Resilience; Water use; Climate change impacts 
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7.1 Introduction 

Sub-Saharan Africa has a dualistic food system with the formal system taking a more 

national focus, and also focused on a few strategic crops while the informal system 

supports local food systems, which support household food and nutrition security 

(Mabhaudhi et al., 2019a; Tcoli, 2016). While several nations are food secure at a 

national level, household food insecurity remains problematic with an estimated 821 

million people currently food insecure and malnourished (Abegaz, 2018; Gashu et al., 

2019; Xie et al., 2019). Most of these people rely on agriculture as their mainstay; thus, 

the importance of agriculture within these communities provides an opportunity to 

improve food and nutrition security, reduce poverty, and enhance rural economic 

development (NEPAD, 2014). However, current crop yields are low and challenged by 

worsening land degradation, especially declining soil fertility (Badu-Apraku et al., 

2017; Rippke et al., 2016; Ukeje, 2010), and low water use efficiency (WUE) 

(Mabhaudhi et al., 2018b; Nouri et al., 2019; O'Leary et al., 2018). Furthermore, 

climate variability and change are adversely affecting productivity through increased 

incidences and intensity of droughts (Mpandeli et al., 2018; Nhamo et al., 2019; 

O'Leary et al., 2018). There is consensus that rural agricultural systems must increase 

resource use efficiencies and adopt strategies to adapt to climate risk (Isaacs et al., 

2016; Matthews and McCartney, 2018).  

A considerable amount of literature depicts the adoption of improved technologies 

such as the use of high yielding, improved crop varieties (Hammer et al., 2014; 

Mabhaudhi et al., 2019a; Ran et al., 2017). However, marginalized farmers have 

experienced several challenges when trying to adopt conventional farming practices. 

Chief among these include inadequate access to agrochemicals, loss in agro-

biodiversity and an increase in the vulnerability of the system to climate risk 

(Mabhaudhi et al., 2019b; Malik and Chaudhary, 2019). The low adoption and 

consequent challenges have partly contributed to the widening gaps in food and 

nutrition security (Midega et al., 2015; Mrema et al., 2018). Within the context of 

marginal systems, agriculture needs to sustainably contribute to food and nutrition 

security and rural economic development, while reducing negative impacts on the 

environment or improving the environment (Van Ittersum et al., 2016). Demand for 
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more sustainable agriculture, which is less dependent on external inputs and better 

suited to marginal environments, has revived interest in traditional systems (Govender 

et al., 2016; Keatinge et al., 2015; Saharan et al., 2018). In line with this, there is a 

renewed focus on the inclusion of neglected and underutilised crops (NUS) as 

alternative crop choices in marginal cropping systems (Mabhaudhi et al., 2019a). 

Neglected and underutilised crops, also referred to as underutilised indigenous and 

traditional crops, are defined as 'plant species that are part of more substantial 

biodiversity, were once popular (in and out of their centres of diversity), and are 

neglected by users and research but remain relevant in the regions of their diversity' 

(Dansi et al., 2012). They are associated with high nutritional value, adaptation to 

marginal soils, and tolerant of drought and heat stresses (Chibarabada et al., 2015; 

Chimonyo et al., 2016a; Hadebe et al., 2017; Mabhaudhi et al., 2017; Slabbert et al., 

2004). They often require fewer inputs such as fertiliser and agrochemicals, as they 

are also tolerant of several pests and diseases (Mabhaudhi et al., 2019a). Their 

nutritional attributes and adaptability make them suitable crops for promotion in 

marginal areas where poverty and food and nutrition insecurity remain high; however, 

their contribution to mainstay agriculture remains low (Massawe et al., 2016). As is 

reflected by their name, the potential of underutilised crops has not yet been fully 

harnessed, but most of them contribute to diversification and resilience of 

agroecosystems. Therefore, they have the potential for future agriculture under 

adverse agro-climatic conditions (Padulosi et al., 2011). Many proponents of modern 

agriculture and the Green Revolution have discouraged their continued production, 

highlighting low productivity and resource use efficiencies (Missio et al., 2018; 

Tokatlidis and Vlachostergios, 2016). For example, water use efficiency of bambara 

groundnut was reported to be 0.45 kg ha-1 mm-1 compared to 0.89 kg ha-1 mm-1 for 

groundnut (Chibarabada et al., 2017), while landrace sorghum varieties had 20% less 

WUE relative to hybrid varieties (Hadebe et al., 2019). However, the argument is to 

not promote them as replacement crops for high yielding major crops, but as 

complementary crops (Mabhaudhi et al., 2019a), especially in marginal areas where 

the major crops may not perform well (Massawe et al., 2016). Within these areas, NUS 

have potential to contribute to improving rural livelihoods and maybe 'better bet' 

technologies; however, this potential remains largely untapped due to limited 
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information detailing their genetic, eco-physiological and agronomic performance 

(Chivenge et al., 2015). It is against this backdrop we hypothesize that, by optimizing 

resource use, yields of NUS can be sustainably increased. Intercropping involves 

growing of two or more crops simultaneously or overlapped on the same piece of land, 

which can sustainably increase WUE (Martin-Guay et al., 2018). 

In this study, we hypothesize that intercropping a maize landrace (Zea mays L.) with 

bambara groundnut (Vigna subterranea (L.) Verdc.) is beneficial because the latter's 

smaller canopy offers little competition to the cereal crop (Saxena et al., 2018). As a 

legume, bambara groundnut also fixes atmospheric nitrogen. It contributes to soil 

fertility (Sprent et al., 2010), and the low cost of bambara groundnut seed makes it an 

exemplar crop for enhancing food and nutrition security within cereal producing 

households (Mayes et al., 2019; Muhammad et al., 2016). While traditional cropping 

systems featured multicrops (Muzari et al., 2012), intercropping maize with bambara 

groundnut is no longer a common practice. Little information is known about crop 

interaction and the impacts of climate variability and change on productivity and water 

productivity. While intercropping, in general, could be considered positive in terms of 

yield (Martin-Guay et al., 2018), the performance of each crop in an intercrop system 

is determined by the interaction between different crops and the availability of 

resources. With the impacts of climate variability and change, adapting agronomic 

management in response to changing resources can allow for sustainable 

intensification of the traditional cropping systems through improved resource use 

efficiency. Using an ex-ante approach in APSIM, the current study assessed the 

productivity and water use of a maize landrace-bambara groundnut intercrop under 

changing climate and in response to different management options. APSIM has been 

used widely to study impacts of climate change on crop growth and productivity across 

Africa (Beveridge et al., 2018; Duku et al., 2018; Xiao et al., 2020). However, its 

application for studying intercrop systems remains scanty, with no known research on 

its application for climate change studies. 
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7.2 Materials and methods 

7.2.1 Study area 

The study area was the University of KwaZulu-Natal's Ukulinga Research Farm (29° 

40'S; 30° 24'E; 809 m a.s.l.). Ukulinga Research Farm is classified as semi-arid with 

77% of the mean annual rainfall of 750 mm received mostly between October and 

April. The summer months are warm to hot, with an average temperature of 26.5°C 

(Kunz et al., 2015). Soil textures are characterized as predominantly clay to clay loam 

and are moderately shallow, ranging from 0.6 to 0.8 m (Chimonyo et al., 2016a).  

7.2.2 APSIM maize-bambara groundnut intercrop model 

7.2.2.1 Brief description of the APSIM model 

The APSIM version 7.10 is a daily time step, field-scale multi-year, a multi-crop model 

that provides an analytical tool for assessing the impacts of climate, soil factors and 

farming management on cropping system production (Holzworth et al. 2014). The 

model is driven by daily temperature, precipitation, and solar radiation and is capable 

of simulating soil carbon (C), soil water, phosphorus (P), and nitrogen (N) dynamics 

and their interaction (Keating et al., 2003). Management practices include sowing date, 

variety selection, irrigation water management, fertilizer application, crop residue 

management, crop rotations and conservation tillage; this makes the model ideal for 

assessing the impacts of various management options on resource use. APSIM also 

allows users to set up atmospheric CO2 concentration (Jones et al., 2001), which is 

ideal for assessing climate change impacts. Furthermore, through the CANOPY 

module, the model can simulate resource use within intercrop systems. For detailed 

information on the technical workings of the APSIM model, refer to Dimes and 

Revanuru (2004), Holzworth et al. (2006; 2014), and McCown et al. (1996). 

The CANOPY module determines resources intercepted by each component of the 

intercrop using leaf area index (LAI), extinction coefficient and height for each crop. 

Arbitration for water and nitrogen uptake is done based on the module changing the 

order each day (on a rotational basis) in which the competing species are allowed to 
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capture soil resources. Through the CANOPY module, the model accounts for the 

vertical profiles of LAI in different species in a mixture (Keating and Carberry, 1993), 

and assumes a horizontally homogeneous canopy for each species (Gou et al., 

2017a). The CANOPY module has been published and successfully applied by Smith 

et al. (2016) and Snapp et al. (2018) for maize and pigeon pea; Carberry et al. (1996) 

for maize and bean; Chimonyo et al. (2016a) for sorghum and cowpea; and Hoffmann 

et al. (2020) for various maize intercrop systems.  Although Nelson et al. (1998a 

and1998b) used APSIM to simulate a maize and Desmanthus virgatus intercrop 

system, the two crops were grown as monocultures and did use the CANOPY module. 

It was not clear whether Amarasingha et al. (2017) used the CANOPY module when 

maize and mung bean intercrop systems were simulated in APSIM. In contrast, 

Knörzer et al. (2011) found that APSIM was unable to simulate wheat-pea and maize-

pea intercropping systems in Germany because it strongly underestimates the 

competitive ability of the species that was planted the first relative to the one that was 

planted last. In this study, we used the CANOPY module to simulate the effects of 

climate change on a maize landrace and bambara groundnut intercrop system. The 

current study, therefore, adds to the existing body of knowledge on the use of ASIM in 

simulating intercrop systems. It goes further to simulate different management options 

under different climate change impacts on the intercrop system 

7.2.2.2 Model calibration, testing and application 

The calibration and testing of the APSIM were carried out using observed data 

obtained from field experiments conducted during the 2015/16 growing season for a 

maize landrace-bambara groundnut intercrop established at the University of 

KwaZulu-Natal's Ukulinga Research Farm. Sub-plots comprised intercrop 

combinations, that is, sole maize landrace, sole bambara groundnut and maize 

landrace-bambara groundnut intercrop. The irrigated treatments were used for 

calibration, while the rainfed treatments were used to validate the model. For a detailed 

description of the experiment, refer to Supplementary information 1. The simulation 

files were, therefore, created using observed data collected from the rainfed and 

irrigated treatment.  
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Met file  

For model calibration and testing, a ten year (2009-2019) weather data file that 

contained daily estimates of rainfall, minimum and maximum temperatures, solar 

radiation and reference evapotranspiration was sourced from SASRI weather site 

(http://sasex.sasa.org.za/irricane/tables/Ash_tables_AR.pl) using the nearest station 

to the location except for Ukulinga where there is a weather station on-site. With the 

5-year climate file, we were able to back-calculate and estimate the initial soil water 

and initial soil nitrogen at planting. APSIM require an average ambient temperature 

(TAV) and the annual amplitude in monthly temperature (AMP). These values are 

calculated using long-term daily minimum and maximum temperatures by software 

program named "tav_amp". 

Soil file  

The soil file was generated using soil details at Ukulinga research farm. Soils at the 

research farm have been described as being shallow clayey to clayey loam with 

medium fertility (Mabhaudhi et al., 2013). The soil file selected to represent this 

description best was Clay_Shallow_MF_101 mm. The soil module was created using 

information obtained from Chimonyo et al. (2016) (Table 7.1), and this was matched 

to a pre-existing soil file available in APSIM soil module – Africa (Generic).  

Table 7.1: Soil water properties at different depths for soil at the experimental site.  

Texture BD1 HC2 PWP3 FC4 TAW5 SAT6 KSAT7 

 gm-3 --------------------------mm m-1------------------------ mm h-1 

Clay 1.35 0.33 294 416 152 489 19,70 

1 Bulk density; 2 Hygroscopic moisture content; 3 Permanent wilting point; 4 Field 

capacity; 5 Total available water; 6 Saturation; 7 Hydraulic conductivity. 

 

Crop files  

Within maize APSIM crop file, we used the maize cultivar “mwi_local” as it best 

described the maize landrace used in terms of days to maturity and yield potential of 
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3 t ha-1. However, slight iterations to genetic coefficients were done using an iterative 

approach until simulated values were within 9-20% of observed values (Table 7.2). 

Since APSIM does not have a bambara groundnut crop file, the groundnut cultivar 

“kangwana” was modified as it closely resembled bambara groundnut in terms of 

physiology, growth habit and phenology (Table 7.2). The groundnut crop module was 

iterated by first adjusting the reproductive parameters within the crop life cycle 

(phenology, e.g. time to emergence, first leaf, reproductive stages, and maturity) to 

resemble what was observed from the monocropped treatment during the field 

experiment. After that, where simulations disagreed with observations, parameters in 

the groundnut module were modified in a sequential approach following the order 

proposed by Boote et al. (2002). The steps were: (1) leaf appearance rate, canopy 

height, and width, (2) specific leaf area, leaf area index, and partitioning among 

vegetative organs, including the rate of total biomass accumulation and lastly, (3) 

onset, rate, and duration of pod addition and seed growth. Besides modifications 

based on comparisons with the observed data, some parameter modifications were 

made based on a literature review.  

Management file  

The management file considered planting date, plant densities, fertiliser rate, irrigation 

and harvest rules. The plant populations used to calibrate and test the model were 2 

0 and 2.2 (plants m-2) of the maize landrace and bambara groundnut, respectively. 

The plant population used represented the densities observed in the field experiment 

and were less than the recommended densities for dryland maize (2.6 plants m-2) and 

bambara groundnut (4.4 plants m-2) production (Jensen et al., 2003). Since the field 

experiment used to calibrate and test the model was conducted in one season, we 

used the irrigated treatments for calibration and the rainfed treatments to test model. 

The module "irrigate on the date" was used to apply irrigation on dates corresponding 

to actual irrigation dates. Observed irrigation applied per event for the field experiment 

was calculated to be, on average, 15 mm, which was applied thrice during the 

experiment. Nitrogen fertiliser was applied automatically within 50 cm depth in the soil 

at a rate of 50 kg ha−1 to avoid any nitrogen stress. 
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Table 7.2: Modification of groundnut crop coefficients based on experimental data and 

data obtained from the literature 

Parameter Description Default Peanut 
crop file (cv 
kangwana) 

New Bambara 
groundnut crop 
file 

temp units temperature table 

for thermal time 

9.0  29.0  39.0 8.5  28.0  38.0 

leaf_dm_init Initial leaf dry 

matter 

0.045 0.0352 

ratio_root_shoot ratio_root_shoot 0      0    1.0   1.0   

0.33  0.33   0.087  

0     0     0      0 

0      0    1.0   0.671   

0.33  0.33   0.087  

0     0     0      0 

frac_leaf units fraction of 

remaining dry 

matter allocated to 

leaves 

0      0    0.58  0.58  

0.58  0.45   0.45   

0     0     0      0 

0      0    0.602  

0.602  0.602  

0.552   0.552   0     

0     0      0 

frac_pod units fraction of dry 

matter allocated to 

pod or multiplier of 

grain dry matter to 

account for pod 

dry matter 

0      0    0     0     0     

0.18   0.25   0     0     

0      0 

0      0    0     0     0     

0.302   0.452   0     

0     0      0 

leaf_size leaf_size 2000 4000 4000  

4000  4000 

4800 4800 4800  

4800  48002 

sla_max description maximum specific 

leaf area for delta 

LAI 

35000 30000  

25000 20000 

20000  20000 

20000    

45000 45000  

40000 40000 

38000  34000 

30000    

hi_incr rate of HI increase 0.0056 0.0024 

hi_max_pot maximum harvest 

index potential 

0.45 0.351,3 
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Floral initiation (°Cd)  680 2201 

Flowering (°Cd) Time from 

flowering to start 

grain fill 

300 3401 

Start_grain_fill Duration of grain 

filling  

440 5501 

End_grain_fill Duration of seed 

maturation 

10 851 

Height (mm) Plant height 700 4001 

  Default maize 
crop file (cv 
mwi_local) 

Iterated maize 
crop file 

tt_flower_to_maturity 
description (°Cd) 

Time from 

flowering to 

maturity 

780 750 

potKernelWt (g 100 
kernels-1) 

Potential kernel 

weight 

260 160 

1Field observation; 2model iteration; 3Karunaratne et al. (2010) 

7.2.3 Climate scenarios 

Ukulinga research farm is located within quinary sub-catchment 4697 of quaternary 

catchment U30J (Schulze et al., 2011). In addition to historical data, the study also 

used downscaled future climate projections for the Ukulinga quinary. The climate 

projections were developed by the Council for Scientific and Industrial Research 

(CSIR) (Table 7.3) using output from six global climate models (GCMs) from the 

CMIP5 archive that was forced by Representative Concentration Pathway 8.5 (RCP 

8.5). The climates produced under RCP 8.5 were used as they represent the most 

extreme scenarios. The selection of these six GCMs was based on their ability to 

provide a reasonable representation of the El Nino-Southern Oscillation (ENSO) 

phenomenon for the region. 
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The climate projections were dynamically downscaled to improve spatial resolution to 

0.5° (~50 km) using the CCAM regional climate model developed by the 

Commonwealth Scientific and Industrial Research Organisation, CSIRO  (McGregor, 

2005; McGregor and Dix, 2001; 2008). After that, a multiple-nudging strategy was 

followed to obtain a downscaling to 0.1° (~10 km) resolution using CCAM in stretched-

grid mode over South Africa (see Mabhaudhi et al., 2018a). Climate scenarios were 

then extracted for the gridded pixel that overlapped quinary sub-catchment 4697. For 

application in crop modelling at a local scale, it is necessary to correct for systematic 

and localised biases in rainfall and temperature projections produced by the climate 

models.  

Table 7.3: Global climate models used in this study 

Abbreviation Model name Model centre Horizontal 
resolution 

ACC ACCESS1-0 Commonwealth Scientific and 
Industrial Research 
Organisation, Australia 
(CSIRO), and Bureau of 
Meteorology, Australia (BOM) 

1.250 × 1.875° 

CCS CCSM4 National Center for 
Atmospheric Research 
(NCAR), USA 

0.9424 × 1.250° 

CNR CNRM-CM5 Centre National de Recherches 
Meteorologiques, Meteo-
France, France 

1.4005 × 1.4065° 

NOR NorESM1-M NorESM (Norwegian Earth 
System) 

1.250 × 0.940° 

GFD GFDL-CM3 Geophysical Fluid Dynamics 
Laboratory, USA 

2.000 × 2.500° 

MPI MPI-ESM-LR Max Planck Institute for 
Meteorology, Hamburg 
Germany 

1.8653 × 1.875° 

 

When compared to observed rainfall data from the historical quinary climate database 

for sub-catchment 4697, the downscaled climate projections were found to have a 

substantially larger number of rain days, with many rain days having minimal rainfall 

depths (i.e. < 0.1 mm). Therefore, a quantile delta mapping method, as described and 
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assessed by Cannon et al. (2015), was applied to bias correct the climate scenarios 

using a multiplicative factor for rainfall and an additive factor for temperature. The bias-

corrected climate data provide daily rainfall and temperature scenarios for a 

continuous period from 1961 to 2100. Daily reference crop evaporation (ETo) 

estimates were then computed as described for the historical data set (see Schulze et 

al., 2011). Solar radiation for each GCM for Ukulinga was then calculated as described 

by Schulze and Chapman (2007). The climate database, therefore, satisfied APSIM's 

climate file input requirements and was used to develop projections for the past (1961-

1991), present (1995-2025), mid-century (2030-2060) and late-century (2065-2095) 

periods. Throughout the analysis, the 'present' timescale was regarded as the 

baseline.  

7.2.4 Management and agronomic scenarios 

Two management scenarios were used to develop recommendations for best 
management practises. The scenarios were as follows: 

Scenario 1: Planting dates 

Maize production guidelines published by the Department of Agriculture, Forestry and 

Fisheries suggest that maize should be planted between October 1 and mid-

December throughout South Africa (DAFF, 2003). As it is, South Africa exhibits a wide 

variation of agro-ecologies, both at the micro and macro level. Due to climate variability 

and change, this variation has increased, and there is an observed increase in the 

land area occupied by semi-arid arid agro-ecologies since 2000 (Cairns et al., 2013). 

Conversely, there is a continual need to redefine planting dates. In this study, we 

adopted five fixed dates between September 15 to January 15 as this approach is 

much easier for farmers to use. These dates were assumed to represent early to late 

planting. However, a significant weakness of this approach is the need to redefine the 

dates because of continuous shifting in agro-ecologies.  

Scenario 2: Plant populations 

Model simulations were performed using plant populations that were 50% less to 50% 

more than the recommended values. Simulations were carried out by maintaining the 

recommended plant population of one component and changing the other. The total 
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number of simulations was a 3 by 3 factorial with maize populations of 13 000, 26 000, 

and 39 000 plants ha-1 and bambara groundnut populations of 6 500, 13 000 and 19 

500 plants ha-1. The lower populations would reduce resource competition and 

improve productivity for either component crop, while higher populations assumed that 

there was a need to minimize unproductive resource use from the system and improve 

their productive use. From this, optimum plant populations were determined for both 

landraces. 

7.2.4.1 Model runs 

For model calibration and testing, the APSIM intercrop model was ran for ten 

consecutive years from 2009 to 2019. The ten year ran allowed for soil conditions to 

stabilize around what was observed in the actual experiment. During the scenario 

analysis management options were run independently from each other across the six 

climate projections to minimize the interactive effects of the scenarios. The RCPs were 

ran continuously from 1961-2095 periods.  

7.2.5 Data analyses  

Since APSIM does not calculate WUE directly, simulated outputs of water use (WU in 

mm) and yield (Y in kg ha-1) or biomass (B in kg ha-1) were used to determine water 

use efficiency (WUE in kg mm-1 ha-1) over the growing season (sowing to harvest) as 

follows:  

𝑊𝑊𝑊𝑊𝑊𝑊 =  𝑌𝑌/𝐵𝐵  
𝑊𝑊𝑊𝑊

      Equation 7. 1 

Within the model, WU was determined as crop water uptake from the soil profile by 

either maize landrace or bambara groundnut crop, i.e. maize Ep and bambara Ep and 

soil evaporation Es (Ep (for either maize landrace or bambara groundnut +Es).  

For model calibration and validation crop simulation models was evaluated by 

comparing simulated versus observed values for phenology, leaf area index, WU, 

WUEB, grain yield and biomass. The crop models were evaluated using correlation of 

determination (R2) root mean square error (RMSE) and normalised RMSE (nRMSE). 

Values of R2 range between 0 and 1 with high values indicating less error variance. 
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Since the interpretation of R2 is independent, low values are only acceptable if n is 

huge. Then again, R2 values are sensitive to outliers and insensitive to additive and 

proportional differences between S and O. The simulation was considered excellent 

when nRMSE < 10%, good if 10%-20%, acceptable or fair if 20%-30%, and poor if 

>30% of the observed mean (Granderson and Price, 2014; Jamieson et al., 1991). 

Simulation outputs for yield and water use were subjected to descriptive statistics, t-

test analysis and generalized linear mixed analysis (GLMM) using R statistical 

software (version 3.6.0). Descriptive statistics such as means, standard deviations, 

bubble charts and box and whisker plots were used to analyse outputs. Box and 

whisker plot can show stability and general distribution of the sets of data. The GLMM 

was used to identify significant factors influencing maize landrace and bambara 

groundnut yield.  

7.2.6 Developing guidelines 

The Food and Agriculture Organisation (FAO) suggested a list of guiding questions to 

review transformative elements within an intervention (Carter et al., 2018). These 

questions are meant to provide clarity on the adaptation planning process; but in this 

study, we adopted selected questions to assess the implications of the research, 

provide actionable recommendations and provide a way forward. Key findings were 

summarised in a Table 5 and implications outlined. 

7.3 Results and discussion 

7.3.1 Model performance 

Comparisons of simulated and observed values for maize landrace and bambara 

groundnut phenology and LAI, and biomass, yield and water use (WU) and water use 

efficiency (WUE) are given in Figure 7.1and Table 7.4, respectively. For phenology, 

the close alignment of the points to the 1:1 line indicates that the model was able to 

simulate the maize landrace and bambara groundnut phenology correctly. The model 

could explain more than 90% of the variation of either crop in phenological stages 

(Figure 1). During the calibration, the nRMSE for the system LAI was less than 10% 
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of the observed LAI for the maize landrace and bambara groundnut intercrop system. 

The nRMSE for the system LAI during model validation increased slightly to 14%; this 

implied good simulation for the intercrop system grown under rainfed conditions. 

Reasonable simulations of crop water use (WU) by the model during calibration, were 

also observed (RMSE = 41 mm); however, during model validation, WU was over-

estimated by 48%. The output suggests that the APSIM model might not be sensitive 

to water. A closer look at model outputs for maize landrace and bambara groundnut 

simulated under irrigated (used for calibration) and rainfed (used for validation) 

conditions showed that transpiration was mostly unaffected by the reduction in water 

availability. In nature, the low availability of water results in a reduction in transpiration 

due to the reduction in stomatal conductivity. Field results showed no significant 

differences between the irrigated and rainfed treatments. In this case, the model 

appropriately captured maize landrace and bambara groundnut physiology.  

For biomass and grain yield, the model tended to overestimate the outputs for maize 

landrace and bambara groundnut. During model calibration, simulated yield and 

biomass for maize landrace as 11 and 16% higher than observed, and this implied 

reasonable simulation. Model simulation of maize landrace yield and biomass under 

rainfed conditions were satisfactory (RSME = 49 and 267 kg ha-1) However, simulated 

yield and biomass for bambara groundnut were 32% and 55% higher than those for 

observed yields. The performance of APSIM would suggest that, for improved model 

simulations, additional parameterisation may be required to adequately simulate 

bambara groundnut. The WUE calculated based on model simulated biomass (WUEB) 

of both the maize landrace and bambara groundnut showed a good fit (1 and 4 kg 

mm−1 ha−1, respectively) for simulated and observed results (Table 7.4). Then again, 

the bambara cultivar used to calibrate the crop file was a landrace selection. It could 

be that performance under low water availability had adverse effects on its 

productivity, and this response was not captured by model. Considering that the model 

was still able to simulate low yields for the maize landrace and bambara groundnut 

and possible errors in the observation data (e.g. iterated cultivar parameters), the 

APSIM model performance was considered to be acceptable for the simulation of the 

intercrop system. 
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Figure 7.1 Comparison of observed and simulated values for maize landrace and bambara groundnut phenology and leaf area index 
(LAI) during model calibration and validation. Figure 1 a) represents maize landrace and bambara groundnut phenology and statistical 
output for its evaluation. Red triangles represent bambara groundnut, and associated numbers 1, 2 and 3 represent phenological 
stages emergence, the onset of flowering and Start of grain filling, respectively. Blue triangles represent maize landrace, and 
associated numbers 1, 2, 3, 4 and 5 represent phenological stages emergence, floral initiation, flag leaf formation, the onset of 
flowering and Start of grain filling, respectively.
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Table 7.4: Calibration and validation results for observed and simulated outputs for 

maize landrace and bambara groundnut intercrop system for final biomass (kg ha-1), 

yield (kg ha-1) and intercrop system water use (mm). 

Model calibration (Irrigated treatment) Observed Simulated RSME 

Maize landrace (kg ha-1) Yield 820 918 98 

 Biomass 2370 2741 371 

Bambara groundnut (kg ha-1) Yield 230 244 14 

 Biomass 1060 1375 315 

Intercrop WU (mm)  291 332 41 

Intercrop WUEb (kg mm-1 ha-1)  11 12 1 

Model validation (Rainfed treatment)    

Maize landrace (kg ha-1) Yield 870 919 49 

 Biomass 2470 2737 267 

Bambara groundnut (kg ha-1) Yield 150 213 63 

 Biomass 950 1248 398 

Intercrop WU (mm)  179 266 87 

Intercrop WUEb (kg mm-1 ha-1)  19 15 4 

 

7.3.2 Change in climate during the growing season 

Dynamically downscaled and bias-corrected climate projections for six GCMs forced 

by RCP 8.5, together with an impact model APSIM 7.7, were used to simulate bambara 

groundnut and maize landrace yields over the past, present, mid-, and late-centuries. 

The primary aim was to assess how climate change may impact yield, WU and WUE 

of a maize landrace and bambara groundnut intercrop. Secondary to that, we 

assessed the impacts of various management options on mitigating the impacts of 
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climate change. The median value of climate change projections for minimum and 

maximum temperatures for Ukulinga showed a consistent warming trend across all 

months from past to late century. Figure 7.2 indicates a warmer future (mid- and late-

century) with mean maximum temperature increasing by 4.5°C relative to the baseline 

maximum temperature of 24°C. This suggests an increased probability of heat stress, 

especially for maize landrace. This warming trend across the selected timescales is 

consistent with projected trends for South Africa (Mangani et al., 2018). 

Figure 7.2 Distribution of average monthly minimum (a) and maximum (b) temperature 
data for the different timescales (past, present, mid- and late-century) as simulated by 
the six GCMs (ACC, CSS, CNR, GFD, NOR and MPI) used in this study. 

The six GCMs project an increase in mean minimum temperatures in the future (mid- 

and late-century) that ranges from 2.0-4.8°C from a minimum baseline temperature of 

13°C. The projected increases suggest an increased probability of hot nights and 

longer and more frequent heatwaves. The warmer temperatures may result in a faster 
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accumulation of heat units and a reduction in growth duration and accumulation of 

photosynthesis and increase in night-time respiration, all resulting in reduced crop 

yield (Schlenker and Roberts, 2009). Unlike bambara groundnut (C3 plant), maize (C4 

plant) generally originates from warmer climates (Jia et al., 2016; Leff et al., 2004) and 

thus, may be more resilient to projected increases of temperature (Choudhary et al., 

2019). Then again, for bambara groundnut, optimum temperatures range between 28 

and 35°C and the lethal temperature has been reported to be 50°C (Soni et al., 2015). 

The wide temperature adaptation makes the crop ideally suited for building resilience 

to cropping systems located in areas where temperature increases have been 

projected. 

Results across the GCMs show that mean annual rainfall (MAP) for the future is 

projected to remain somewhat unchanged (Figure 7.3). for the late-century period, 

data showed that ACC and CCS predict a 10.6 and 8.3% increase in MAP respectively, 

while slight reductions of 3.5 and 2.5% are predicted by CNR and NOR respectively. 

However, the more extended box and whisper plots for ACC predict an increase in the 

inter-annual variability of mean rainfall (750 mm) (Figure 7.3). This suggests an 

increase in the probability of extreme weather events such as drought and floods. In 

all instances, projected ETo was observed to be higher (35%) than projected rainfall 

and is set to increase in the future (mid and late century) (Figure 7.3). In this regard, 

the rainfall: ETo ratio is projected to decrease in the near future. The increase in ETo 

is consistent with the projected increase in minimum and maximum temperature and 

suggests an increase in crop water stress (Zhao et al., 2017). Then again, intercrop 

systems with cereals and legumes are advantageous as the cereal over-storey can 

lower canopy temperature and minimize evaporative losses (Biriah et al., 2018; 

Eskandari, 2011). The modification of microclimate within intercrop systems makes it 

an ideal system to mitigate against projected temperature and ET₀ increases. Our 

results suggest that, while the tolerances of traditional crops to high temperatures may 

vary, intercropping crop species with different physiological and morphological traits 

can be a strategy to increase the resilience of marginalized production systems to 

projected temperature ET₀ increases.  
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Figure 7.3 Rainfall and reference evapotranspiration data representative of four 
different timescales (past, present, mid- and late-century) as simulated by the six 
GCMs (ACC, CSS, CNR, GFD, NOR and MPI) used in the study. The mean annual 
rainfall represents average yearly rainfall calculated from observed rainfall data 
received between 2004 and 2019 

7.3.3 Yield, Water Use and Water Use Efficiency 

Across the GCMs, yield trends for intercropped bambara groundnut showed a gradual 

reduction towards the late century by 24% when compared to the baseline yield of 365 

kg ha-1. The observed trend for simulated bambara groundnut yield was late-century 

(285 ± 57) < mid-century (323 ± 62) < present (365 ± 67) < past (450 ± 65 kg ha−1) 

(Figure 4). Across the GCMs, the magnitude of change in simulated bambara 

groundnut yield during the mid- and late-century periods was consistent with 

corresponding projected increases in ETo and temperature. On the other hand, the 

mean yield trends for intercropped maize landrace across the GCMs and time scales 

were inconsistent with projected increases in ETo and temperature. The observed 

trend for simulated maize landrace yield was past (845) < late-century (855) < present 

(923) < mid-century (967 kg ha−1). For mid-century, although the model predicted a 

slight increase in maize landrace yield, results also showed larger yield variations 

relative to past and present. Standard deviations for the intercropped maize landrace 

yield were past (288) < present (363) < mid-century (351) < late-century (436 kg ha-1) 

(Figure 7.4). These results are in line with the increased probability of extreme 

weather events such as drought and floods (Schulze, 2011). Although bambara 

groundnut yield decreased across the time scales, the magnitude of yield variations 
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within each timescale and GCM was somewhat consistent with an average standard 

deviation of 63 kg ha-1. Within each timescale, our results would suggest that yields of 

bambara groundnut are more stable to climate fluctuation; however, it could be more 

sensitive to significant climate changes.  

 

Figure 7.4 Simulated yield (kg ha−1) for maize landrace and bambara groundnut 
during four different timescales (Past, Present, Mid-century and Late-century) under 
rainfed conditions obtained from the six GCMs (ACC, CSS, CNR, GFD, NOR and MPI) 
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Figure 7.5 Calculated water use (mm) of maize landrace and bambara groundnuts 
from soil evaporation (Es), crop water use (Ep) as simulated by APSIM across the six 
GCMs (ACC, CSS, CNR, GFD, NOR and MPI) for each timescale (Past, Present, Mid-
century and Late-century 

The trend for water use in the intercropped maize landrace and bambara groundnut 

was inconsistent across the GCM and timescales. Overall, CCS predicted the highest 

water use (265 and 253 mm), while the lowest was under NOR (242 and 235 mm) for 

maize landrace and bambara groundnut, respectively (Figure 7.5). Differences in 

simulated WU across the GCMs could be that each climate model has been developed 

based on its assumptions and unique mathematical representations of physical 

climate system processes, providing different climate projections (Confalonieri et al., 

2016). There were slight reductions in WU across the timescale; however, based on 

the pairwise t-test analysis, the reductions were not significant (P > 0.05). On the other 

hand, simulated results for crop water use efficiency (WUE) for intercropped bambara 

groundnut showed a reduction across time scales. The trend was such that past (1.78 

± 0.45) > present (1.52 ± 0.41) > mid-century (1.37 ± 0.38) > late century (1.16 ± 0.42 

kg ha-1 mm 1) (Figure 7.6). The observed trend was consistent with the observed 
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reduction in future yield. Large inconsistencies were observed for maize landrace 

WUE across GCMs and time scales. For example, CNR predicted the highest water 

use (4.01 ± 1.98 kg ha-1 mm-1), while the lowest was under NOR (3.25 ± 1.05 kg ha-1 

mm-1). The trend for maize landrace WUE across the timescale was such that present 

(3.58 ± 1.25) < past (3.62 ± 0.81) < late century (4.37 ± 1.38) < mid-century (4.56 ± 

1.82 kg ha-1 mm-1) (Figure 7.6). The observed trend was consistent with the simulated 

improvements of maize yield.  

 

Figure 7.6: Calculated water use efficiency (kg ha-1 mm-1) for maize landrace and 
bambara groundnut across the six GCMs (ACC, CSS, CNR, GFD, NOR and MPI) for 
each timescale (Past, Present, Mid-century and Late-century) 
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Figure 7.7: Simulated maize landrace and bambara groundnut yields (kg ha−1) across 
different timescales from six GCM (ACC, CSS, CNR, GFD, NOR and MPI). Maize 
landrace F-statistic: 2.122 on 3 and 896 DF, p-value: 0.1 and bambara groundnut F-
statistic: 5.031 on 3 and 896 DF, P-value: 0.001. 

7.3.4 Optimizing the performance of bambara groundnut in intercrop systems 

7.3.4.1 Impacts of planting density on yield and water use efficiency of a maize 

landrace and bambara groundnut intercrop system 

Simulation results of yield and WU for intercropped maize landrace and bambara 

groundnut across the six GCM were not significantly (P > 0.05) different; therefore, the 

results presented in this section are average values across the six GCMs. Across 

timescales, the trend for maize landrace yield was past (850 ± 288) < late-century (853 

± 443) < present (893 ± 359) < mid-century (959 ± 362 kg ha-1) (Figure 7.7). Increasing 

maize landrace plant population resulted in a significant increase in mean yield but did 

not affect WUE (Figure 7.8). Regardless of bambara groundnut plant population, 

increasing maize landrace plant population resulted in a 12% reduction in its mean 

yield while reducing the population resulted in an 8% improvement in its mean yield 

(Figure 8). On the other hand, simulated yield and WUE for intercropped bambara 
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groundnut was significantly (P<0.05) affected by timescales and by the interaction 

between maize landrace and bambara groundnut planting date.  

Across timescales, the trend for bambara groundnut yield was past (806 ± 406) > 

present (760 ± 404) > mid-century (717 ± 359) > late-century (674 ± 332 kg ha-1) 

(Figure 7). Likewise, the trend for bambara groundnut WUE was past (2.54 ±1.10) > 

present (2.37 ± 1.23) > mid-century (2.33 ± 0.98) > late-century (2.17 ± 0.89 kg ha-1 

mm-1) (Figure 7.8). Although the observed WUE for bambara groundnut in the late 

century represented an 87% improvement relative to the baseline (1.16 ± 0.42 kg  

ha-1 mm-1) for the same period, there was a 52% increase in its variability. Increasing 

bambara groundnut plant population increased simulated yield by 43% at the highest 

plant population, but also increased yield variability (standard deviation). The 

simulated mean yields (in kg ha-1) and corresponding standard deviations were 520 ± 

247 < 777 ± 353 < 921 ± 406 for intercropped bambara groundnut simulated at 2.2, 

4.4 and 6.6 plants m-2, respectively (Figure 7.9). A similar trend was observed for the 

calculated WUE (in kg ha-1 mm-1), which was 1.61 ± 0.60 < 2.41 ± 0.94 < 2.98 ± 1.07 

for intercropped bambara groundnut at 2.2, 4.4 and 6.6 plants m-2 (Figure 7.9). This 

would suggest that the currently recommended plant populations of 4.4 plants m2 

might be low for optimum use of resources such as water. 

There was a reduction in simulated mean yield for bambara groundnut with the 

increase in maize landrace plant population. The trend for bambara groundnut yield 

was 841 ± 305 > 720 ± 379 > 657 ± 422 (kg ha-1) when intercropped with maize 

landrace at plant populations of 1.3, 2.6 and 3.9 plants m-2, respectively (Figure 7.7). 

Similar to the simulated yield trend of intercropped bambara, increasing maize plant 

population resulted in a reduction of calculated bambara WUE and an increase in its 

variability (standard deviation) (Figure 7.8). The reduction of simulated yield and WUE 

maxima and minima for bambara groundnut and the increase in yield variability under 

high maize landrace plant populations could be attributed to increased competition for 

resources with the maize landrace. Peake et al. (2008) observed that increasing maize 

plant populations beyond a specific limit could increase the risk of crop failure due to 

an increase in competition for water and solar radiation. In cases were both yields of 

the maize landrace and bambara groundnut are desired by a farmer, it might be 

worthwhile to reduce maize landrace plant populations to maximize yield for bambara 
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groundnut. Alternatively, there is a need to improve water availability through rainwater 

harvesting and conservation techniques to reduce competition for water within the 

intercrop. 

 

Figure 7.8: Simulated yield response of maize landrace and bambara groundnut to 
plant population (plant m-2) for climate scenarios obtained from six GCM (ACC, CSS, 
CNR, GFD, NOR and MPI). The x-axis represents the maize landrace plant density 
(plant m-2) and the coloured boxplots represent the bambara groundnut plant density 
(plant m-2). The effect of the interaction between maize landrace plant density and 
bambara groundnut plant density on maize landrace grain yield – F-statistic: 62.47 on 
8 and 891 DF, P-value=0.000. The effect of the interaction between maize landrace 
plant density and bambara groundnut plant density on bambara groundnut grain yield 
– F-statistic: 38.93 on 24 and 875 DF, P-value=0.000. 
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Figure 7.9: Calculated water use efficiency maize landrace and bambara groundnut 
to plant population (plant m-2) for climate scenarios obtained from six GCM (ACC, 
CSS, CNR, GFD, NOR and MPI). The x-axis represents the maize landrace plant 
density (plant m-2) and the coloured boxplots represent the bambara groundnut plant 
density (plant m-2). The effect of maize landrace plant density on maize landrace WUE 
– F-statistic: 6.78 on 2 and 891 DF, P-value=0.001. The effect of the interaction 
between maize landrace plant density and bambara groundnut plant density on 
bambara groundnut WUE – F-statistic: 38.93 on 24 and 875 DF, P-value=0.000. 

 

7.3.4.2 Impacts of planting dates on yield and water use efficiency of maize landrace 

and bambara groundnut intercrop system 

Simulation results for yield and WU for maize landrace and bambara groundnut across 

the six GCM were also not significantly different (P > 0.05); therefore, the results 

presented in this section were average values across the six GCMs. Simulated yield 

for maize landrace and bambara groundnut was significantly (P < 0.05) affected by 

the interaction of their planting dates (Figure 7.10 andFigure 7.11). Overall, early 

planting (September) of maize landrace or bambara groundnut resulted in higher 

simulated yields relative to late planting (January). Across the planting dates, mean 

yield trends for intercropped bambara groundnut was September (992 ± 296) > 
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October (889 ± 357) > November (681 ± 383) > December (548 ± 301) >January (486 

± 283 kg ha-1). On the other hand, calculated WUE trend for intercropped bambara 

groundnut was September (2.81 ± 0.78) > October (2.53 ± 0.96) > November (2.46 ± 

1.15) > January (1.99 ± 1.12) > December (1.94 ± 1.01 kg mm-1). For maize landrace, 

mean yield trends was September (1052 ± 116) > October (902 ± 197) > November 

(835 ± 213) > December (648 ± 261) >January (596 ± 283 kg ha-1). On the other hand, 

calculated WUE trends for intercropped bambara groundnut was September (3.01 ± 

0.88) > October (2.73 ± 0.76) > November (2.33 ± 0.95) > January (2.09 ± 1.00) > 

December (1.84 ± 0.66 kg mm-1). The calculated WUE was lower (24-107%) than the 

calculated WUE baseline of 4.12 kg mm 1. This could be attributed to a reduction in 

the lower quartile values (Figure 7.10) which would suggest an increase in maize 

landrace yield gap with later planting. According to several research outputs, climate 

change is expected to reduce the length of the growing season and increase the 

occurrence of dry spells (Ajetomobi, 2016; Mitchell et al., 2015; Paff and Asseng, 

2018). Despite the loss of growing days, our result suggests that, when planting on 

the same day, early planting (September) may ensure stable yields and WUE are 

obtained. Rezvani Moghaddam et al. (2014) found that early planting could be used 

as an adaptation strategy for maize under future climate in arid regions of Iran. Hussain 

et al. (2018) also highlight that, regardless of planting date, yield responses are highly 

dependent on resource availability and distribution, in this case, rainfall. 
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Figure 7.10: Simulated yield for maize and bambara groundnut across different 
planting date combinations under rainfed conditions obtained from six GCMs (ACC, 
CSS, CNR, GFD, NOR and MPI). The x-axis represents the maize landrace planting 
dates and the coloured boxplots represent the planting date for bambara groundnut. 
The effect of the interaction between maize landrace planting date and bambara 
groundnut planting date on maize landrace grain yield – F-statistic: 49.93 on 24 and 
875 DF, P-value=0.000; The effect of the interaction between maize landrace planting 
date and bambara groundnut planting date on bambara groundnut grain yield – F-
statistic: 75.37 on 24 and 875 DF,  P-value=0.000 
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Figure 7.11: Calculated water use efficiency (kg ha-1 mm-1) for maize and bambara 
groundnut across different planting date combinations under rainfed conditions 
obtained from six GCMs (ACC, CSS, CNR, GFD, NOR and MPI). The x-axis 
represents the maize landrace planting dates, and the coloured boxplots represent the 
planting date for bambara groundnut. The effect of the interaction between maize 
landrace planting date and bambara groundnut planting date on maize landrace WUE 
– F-statistic: 38.93 on 24 and 875 DF, P-value=0.000 and The effect of the interaction 
between maize landrace planting date and bambara groundnut planting date on maize 
landrace WUE – F-statistic: 35.16 on 24 and 875 DF, P-value=0.000 

Intercropping bambara ground at different planting dates to maize landrace improved 

the mean yield (Figure 7.10), and WUE (Figure 7.11) provided it was done before 

November 15. Planting bambara groundnut a month earlier than maize landrace – for 

instance, planting in the former September and maize landrace in October, resulted in 

a 176% and 57% increase in its mean yield and WUE, respectively, relative to the 

baselines. Planting bambara groundnut two and three months earlier than maize 

landrace resulted in a 184% increase in yield (Figure 7.10) and improved WUE by 

61% increase in WUE (Figure 7.11). Planting maize landrace a month earlier than 

bambara groundnut – for instance, planting in September and bambara groundnut in 

October, resulted in the most significant mean yield increase (56%) relative to the 
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baseline (Figure 7.11). The asynchronous or sequential planting did not result in the 

overlap in critical phenological stages for both the maize landrace and bambara 

groundnut. This minimized the competition for water and other resources and 

maximized resource use through extending canopy duration, therefore improving yield 

and WUE for maize landrace and bambara groundnut within the intercrop. When 

critical periods overlap, Yu et al., (2016)suggested that the competitive balance in 

cereal-legume intercrops can be maintained by planting the legumes earlier than the 

cereals. This can be viewed as a strategy to minimize the risk of yield loss in the event 

of intermittent dry spells within the season. However, sequential cropping in rainfed 

systems is constrained by the length of growing period (Duku et al., 2018; Inthavong 

et al., 2011; Kotir, 2011; Minda et al., 2018; Vadez et al., 2012). In this study, we did 

not assess the impacts of climate change on changes in the length and shifts of the 

growing season, nor the probability of dry spell occurrence and duration.  

7.4 Way forward and recommendations 

Overall, crop simulation models (CSM) and climate scenarios provided a monitoring 

and surveillance system to identify climate trends and associated impacts on 

intercropped maize landrace and bambara groundnut yield and WUE. In this regard, 

the use of a CSM driven by climate projections from six GCMs provided an opportunity 

to assess the suitability and sustainability of intercropping traditional crops as a 

potential climate adaptation strategy under low input-low output production systems. 

Our study demonstrated that the availability of a range of GCM outputs provided useful 

indications of the potential magnitude of yield and WUE changes and the temporal 

variation that could occur for the intercrop system. This type of analysis was, therefore, 

helpful in improving our understanding of the type of climate risk on the maize landrace 

and bambara groundnut intercrop system (Table 7.5). We recommend that the use of 

a CSM with GCM output should be considered when assessing the applicability of 

agricultural adaptation strategy.  

Our results further showed that, at present, functional crop diversity could enhance 

crop productivity, stability, and thus food security, through efficient water utilisation. 

Also, the adoption of asynchronous or sequential planting and moderating plant 
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populations of either maize landrace or bambara groundnut can be viewed as a low-

cost option to improve productivity and WUE under increasing temperature. This 

allows for the identification of short, medium and long-term strategies to aid in 

mitigating the impacts of climate change on the productivity and WUE of maize 

landrace and bambara groundnut intercrop system (Table 7.5). However, these 

approaches do not represent the diversity and breadth of adaptation strategies that 

can be adopted by marginal farmers.  

To better represent adaptation, there is a need to expand the research to consider 

other management strategies (e.g. other traditional crop species, different cropping 

sequences, fertilization, rainwater harvesting and soil conservation techniques) 

(Seyoum et al., 2017). In addition, more system (agroecosystem) and place-based 

approaches that can represent local context, knowledge and aspects of food and 

nutrition security other than availability (e.g. nutrition, access, utilization and stability) 

may be required (Beveridge et al., 2018). To increase the contribution of agriculture to 

improving food and nutrition security, poverty reduction, and enhance rural economic 

development, climate impact modelling studies should be coupled with social, 

economic and environmental system models. This will ensure that traditional crops 

and associated cropping systems are assessed in a holistic manner that informs their 

sustainable integration into existing cropping systems. However, the adoption of 

traditional crops and intercropping should not be viewed as a panacea to solve all 

climate adaptation challenges, nor is it the only adaptation strategy. The inclusion of 

traditional crops into cropping systems should be considered as a complementary 

strategy to increasing climate resilience in marginal cropping systems. 

A gap between the potential and practical realisation of adaptation exists, and the 

evidence from our study supports the view that adaptation strategies need to be both 

climate-informed and context-specific to be viable (Beveridge et al., 2018; Carter et 

al., 2018). The cultivation of traditional crops has been done for millennia; however, to 

our knowledge, no study has quantified the yield and WUE responses in an intercrop 

system and under the impacts of climate change. Further to this, the FAO guidelines 

and key questions provided a useful framework to contextualise the observed results 

in an informative manner (Table 7.5) and less prescriptive. With the impacts of climate 

variability and change, our results provide evidence that adapting agronomic 
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management could allow for sustainable intensification of the traditional systems 

through improved resource use efficiencies. However, we acknowledge that this type 

of study should be repeated across other agro-ecologies different from that of 

Ukulinga, allowing for more robust crop management practices and adaptation 

strategies to be identified. 

In this study, data to calibrate and validate the model was obtained from the same 

experimental plot and in the same growing season. Although characterised by the 

same probability distribution, the dataset to validate models should be independent of 

the calibration dataset. In the stricter sense of crop model evaluation, the data sets 

used for model calibration and validation were not independent. A major limitation to 

working with underutilised crops such as landrace varieties of maize and bambara 

groundnut is the unavailability of data. The calibration and validation process 

concerning the APSIM maize landrace and bambara groundnut intercrop study was 

the first attempt to evaluate the impacts of climate change on growth and water use. 

Furthermore, the study was designed as an ex-ante assessment with a secondary 

objective to have a better understanding of the models' capabilities of simulating 

underutilised crops, and pinpointing the strengths and weaknesses and showing areas 

for improvement. However, we acknowledge that this type of study should be repeated 

across other agro-ecologies and time scales different from that of the calibration data, 

allowing for better evaluation of model performance. 
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Table 7.5: FAO guidelines and key questions for assessing the impacts of adaptation strategy 

FAO Guideline 
Question 

Key Findings Comments Implication 

How can CSMs and 

climate scenarios 

assist in articulating 

decision windows? 

They provided a monitoring and 

surveillance system to identify short-, 

medium- and long-term climate 

trends and associated impacts on 

intercropped maize landrace and 

bambara groundnut yield and WUE 

Data and trends on climate indicators 

allowed for the identification of 

possible responses to increasing 

system resilience 

 

By late century, there will be an 

increase in temperature and ET₀, 

while rainfall remains somewhat 

unchanged 

Maize landrace yield responses 

are in line with rainfall trends 

Bambara groundnut yield and 

WUE will be negatively impacted 

by increasing temperature 

Adopting "better bet" 

management options in bambara 

can mitigate the projected 

impacts of climate change and 

improve the overall performance 

of the intercrop system 

Useful for improving 

understanding of climate risk 

and impacts 

Useful in building the 

resilience of smallholder 

farming systems to possible 

impacts of climate change 

For low input-low output 

systems, the adoption of 

traditional crops has the 

potential to support positive 

transformative adaptation to 

climate change 
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What are the likely 

short-, medium-, 

and long-term 

climate change 

impacts and risks 

for agriculture? How 

does risk shift 

further into the 

future? 

Short-term: an increase in yield 

variability resulting in increases in 

yield gaps 

Medium-term: increases in climate 

risk will increase competition for 

resources within the intercrop system 

Long-term: reduction in water 

availability through increases in 

temperature and evaporative demand 

Short-term: Use of adaptable 

crop species and cropping 

systems can reduce yield minima 

in marginal systems 

Medium-term: reducing 

competition of resources within 

intercrop through enhanced niche 

differentiation  

Long-term: There is a need to 

reduce the unproductive loss of 

water 

Short-term: intercropping 

maize landrace and bambara 

groundnut under 

recommended guidelines will 

improve overall system 

productivity and WUE relative 

to corresponding monocrop 

systems 

Medium-term: adopt 

asynchronous or sequential 

planting to reduce competition 

within the intercrop systems 

Long-term: adopt rainwater 

harvesting and soil water 

conservation strategies to 

enhance soil water capture, 

storage and minimize 

unproductive loss of soil water  

Which of these 

interventions are 

Intercropping maize landrace at low 

plant population and bambara 

Manipulating planting densities 

and dates can aid in maintaining 

Sequential cropping in rainfed 

systems may be constrained 
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likely to stand the 

test of time rather 

than becoming 

obsolete? 

groundnut at high population can 

sustainably improve yield and WUE 

of the system under projected climate 

change 

Early planting improves yield and 

WUE of maize landrace and bambara 

groundnut intercrop system under 

projected climate change 

Planting bambara groundnut two 

months earlier than maize landrace 

can minimize resource competition 

and enhance productivity 

the competitive balance within an 

intercrop system  

by the length of the growing 

period 

Good agronomy can result in 

high yield and WUE 
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7.5 Conclusions 

There is a high probability that yield and WUE for intercropped bambara groundnut 

will decrease in the near to far future if current management options are maintained. 

Assuming future rainfall remains mostly unchanged, the primary limitations to 

intercropped bambara groundnut yield and WUE will be temperature and ETo under 

minimal rainfall changes. However, projected changes in temperature and ETo will 

increase yield and WUE variability for a maize landrace and bambara groundnut 

intercrop system. Improving WU, through increased plant population or asynchronous 

planting of maize landrace and bambara groundnut mitigated the negative impacts of 

changing climate on yield and WUE. In this regard, optimum plant management can 

optimise traditional production systems. Thus, intercrop systems of maize landrace 

and bambara groundnut should be promoted as a potential future system for climate 

change adaptations in rainfed production systems.  

While the results of these simulations are limited to one agro-ecology and a single 

intercrop system, the findings confirm the views that traditional crops are drought 

tolerant and thus, are suitable for cultivation in marginal agricultural production areas. 

Furthermore, intercropping them can increase system resilience under changing 

climate. The concept of WUE, among other parameters, has been suggested in 

selecting management options that can sustainably increase productivity under 

changing climate regimes, heat and water stress, and interactions among them. 

Intercropping maize landraces and bambara groundnut with the appropriate 

management options can be used as an adaptation strategy in environments that are 

projected to face increasing water scarcity. Reduced land and water demand from 

intercropping maize landraces and bambara groundnut and improved water use 

efficiencies mitigate the risks associated with increasing climate variability and 

extreme events such as drought. For resource-poor farmers that are inherently risk-

averse, the production of traditional crops such as maize landraces and bambara 

groundnut, and their optimisation through inexpensive management strategies present 

an opportunity to build resilience in their cropping systems. Our results have important 

implications on how traditional crops and cropping systems should be viewed, in that 
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their incorporation into marginal production systems can be an alternative adaptation 

strategy that may lead to sustainable intensification outcomes under increasing 

climate risk. 
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8 GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

8.1 General discussion 

8.1.1 Mapping bio-climatic regions suitable for the rainfed production of selected 

underutilised crops in South Africa 

Neglected and underutilised crop species are crops that have not been previously 

classified as major crops, are under-researched, occupy low utilisation levels, and are 

mainly confined to smallholder farming areas. They are well known for tolerating 

adverse conditions such as climate variability, climate change and marginal land. 

Despite this, the importance of NUS in rural food systems and information regarding 

their suitability across diverse agricultural landscapes remains mainly anecdotal, with 

limited information detailing "where" they can grow and "why" they grow. Such 

information is essential if NUS are to be incorporated into existing cropping systems, 

increase the productivity of marginal landscapes, and reclaim degraded agricultural 

land. Further improvements in NUS production can improve food security globally, 

especially in marginal land where most smallholder farmers reside. 

The introduction of NUS into regions classified as moderately suitable (S3) to highly 

suitable (S1) could increase the crop choices available and also contribute to 

biodiversity (SDG 15) (cf Chapter 3). The low environmental impacts and increased 

biodiversity brought about by the introduction of NUS can be viewed as a climate 

change adaptation strategy (SDG 13) for increasing farmer resilience. This is 

especially true for marginalised farming communities with limited access to improved 

technologies such as hybrid seed and fertiliser. In this regard, the introduction of NUS 

into existing cropping systems can be viewed as a sustainable intensification approach 

(Harvey, 2010). Also, promoting NUS in marginal lands can contribute to food and 

nutrition security (SDG 2), poverty alleviation (SDG 1) through creating new value 

chains and human health and wellbeing (SDG 3). 

Promoting or introducing NUS in mapped zones can be essential for addressing food 

insecurity, specifically malnutrition, reducing vulnerability to climate variability and 

change, environmental degradation, and gender inequality. It is argued that holistic 
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land suitability maps, which consider several socio-economic indices, could be more 

helpful to policymakers and enhance the participation of marginalised farmers in the 

food system. The exclusion of key socio-economic indicators in developing suitability 

maps might affect the uptake and adoption of these crop species in areas where they 

are biophysically suitable. Therefore, to generate information of socio-economic 

indicators, there is a need for future studies to identify innovative ways to derive 

maximum value from the possible integration of GIS with block-chain, big data, and 

Internet of Things (IoT) technologies to mine updated data, especially on climatic data 

and social-economic factors. 

8.1.2 Parameterisation and validation of crop models for selected underutilised 

crops 

Process-based crop simulation models (CSMs) are dynamic computational tools that 

simulate the development and growth of a crop in relation to environmental conditions 

(e.g. air temperature, soil water, evaporative demand, and atmospheric CO2 

concentration) and management practices (e.g. sowing date, N fertilizer application, 

and crop residue). Crop models can be used to quantify the relationship between crop 

growth and its environment by simulating physiological processes. The determination 

of the initial conditions, model parameters, and driving variables (meteorological data, 

soil properties, field management, etc.) is important to successfully simulate crop 

growth at various spatial scales. The usefulness of any model can only be understood 

by evaluating how useful it is for giving an answer to a specific practical or research 

problem. Moreover, proper calibration of the models will decrease the error in 

simulation so that the model output fits closer to observations of dependent variables. 

The development of parameters for new cultivars for use in crop models requires 

extensive information about the crop and crop processes in response to growth 

factors. The uncertainties in modelling underutilised crops are derived not only from 

the model input dataset but also from the chosen modelling approach (Mirschel et al., 

2004) (cf. Chapter 5-7). Thus, finding the right balance between input data quality and 

quantity, with an ideal modelling approach to address the modelling objective is key in 

their applications. Hence, there is no perfect model that can be applied. 
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The fact that AquaCrop, DSSAT and SIMPLE are successfully used to simulate yields, 

biomass, and WU for a range of cereal crops under climate change and varying 

irrigation regimes may imply that the use of these models can be widely applicable. 

With relatively comparable results (i.e. yield disagreement and yield variability) to the 

DSSAT and SIMPLE models, AquaCrop was observed as the more suitable model for 

simulating yield, biomass and WU under climate change impacts and irrigation 

management. This may be attributed to the crop or cultivar, soil and climate inputs 

used in this study being previously used in AquaCrop calibration studies.  

8.1.3 Crop models to develop production guidelines for selected underutilised crops 

Optimization of management of NUS is extremely important for maximizing return from 

the declining water allocation to this sector as it competes with various other pressing 

needs of the burgeoning human population. With increasing complexities of modern 

agriculture consequent to environmental concerns and more frequent droughts, there 

is need for a whole system quantitative approach to optimize the use of limited water, 

as well as N and other inputs, for varying weather conditions. Well calibrated and 

validated crop models that quantify the various physical, chemical, and biological 

processes in the soil-plant-atmosphere system, and their dynamics and management 

effects that contribute to crop growth and development, are being widely recognized 

as promising tools for decision support in this direction. Results of the study reinforce 

the high potential and promise of crop simulation models for the above purpose. They 

also enable faster and cheaper transfer of agrotechnology developed at the 

experimental stations to the farmer's fields or other locations. 

Smallholder farmers in SSA have limited options for investment (seed, insurance, 

fertilisers, pesticides, machines) and irrigation to adapt to climate-related risks. The 

study was the first to model a range of ALVs (amaranth, cowpea, sweet potato, and 

wild mustard) in APSIM (cf. Chapter 5). There was a significant effect on growth and 

productivity observed in ALVs upon changing agronomic management practices, with 

irrigation as the exception. The observed model outcomes are somewhat consistent 

with results on suitability (cf. Chapter 4). It was observed that the general wide 

suitability of amaranth was associated with the growth requirements of the crop that 
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allow for its production even under extremely marginal conditions. As such, simulating 

the addition of any amount of water resulted in no change in terms of growth and 

development of this crop and other ALVs.  

 

8.2 Conclusions 

We investigated potential land suitability for sorghum, cowpea, amaranth and taro in 

South Africa. Rainfall was the most critical variable and criterion with the highest 

impact on land suitability of NUS. Nevertheless, it was observed that NUS could still 

be grown on marginal land, and they can complement major crops and create greater 

diversity in cropping systems for building resilient cropping systems. The analysis 

indicated that sorghum, cowpea, and amaranth could be grown in marginal areas in 

S3 zones where land has moderate limitations for agricultural use. Mapping NUS 

production potential in SA is key to promoting their production by providing evidence 

to assist decision- and policymakers on crop choice. Specifically, the results help 

inform the Climate Smart Agriculture Strategy, National Policy on Comprehensive 

Producer Development Support and Indigenous Food Crops Strategy currently under 

development in South Africa. The land suitability maps are also helpful in informing 

decisions on climate change adaptation (climate-smart agriculture) and sustainable 

agriculture practices, as well as informing decisions on creating markets for NUS.  

However, more research should focus on modelling indigenous crops. To achieve this, 

researchers must develop a better understanding of these crops' agronomy. Simpler 

models (i.e. with fewer input requirements) performed equally as well as more complex 

models, suggesting that going forward, less complex models can be adopted to 

advance modelling on NUS. Following Jones et al. (2016; 2017), this study has shown 

that some analyses can be performed which are needed to advise a farmer, but the 

availability of input data for agricultural systems models remains a major limitation. It 

is important to formulate necessary steps in collecting data inputs for crop simulation 

models. Worth noting is that the ease with which such data can be obtained will 

depend on the user’s expertise and familiarity with the proposed data collection 

methods. Methods of data collection involve qualitative and quantitative approaches, 
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using both primary and secondary data sources. The methods used as input data 

sources range from grey literature review, field trials, controlled environment 

(greenhouse) experiments, remote sensing, models, software, and geographic 

information systems.  

ALVs are generally grown under dry environments where they experience water 

stress, so correct management of these crops may improve productivity. The ALVs 

considered in this study establish in a short period (4-5 weeks) and mostly favour by 

early planting. Nonetheless, this may compromise their water productivity. As noticed, 

plant density plays a vital role in the growth and productivity of ALVs; increasing it to 

a certain threshold may result in growth, yield and productivity being compromised. 

The unresponsiveness of fertiliser to leaf number was not expected as fertiliser 

application is thought to improve vegetative growth. In this study, the use of irrigation 

was shown to contradict findings of certain previous studies. Therefore, it might be of 

interest that future studies revisit these sections for validation and correction. 

 

8.3 Recommendations 

• The suitability maps generated in this study indicate where NUS can be 

promoted as alternative crop choices or to complement the current range of 

crops grown within marginalised cropping systems. As such, the maps can be 

used to inform site-specific crop diversification recommendations as a 

sustainable intensification strategy. 

• When planning for future sustainable crop production, the interactions of 

biophysical and social-economic factors are critical for identifying areas with the 

potential to support NUS. 

• To generate information of socio-economic indicators, there is a need for future 

studies to identify innovative ways to derive maximum value from the possible 

integration of GIS with block-chain, big data, and IoT technologies to mine 

updated data, especially on climatic data and social-economic factors. 

• There must be convergence on how to model biophysical processes for which 

the basic understanding has been in place for decades. 
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• More research should focus on modelling indigenous crops and to achieve this, 

researchers must develop a better understanding of these crops' agronomy. 

•  While model development always demands sagacity to integrate principles and 

empirical knowledge, the space requiring the most work is likely the root-soil 

interaction to determine root exploration and water uptake as well as nutrient 

acquisition. Maximum rooting depth or root distributions are sometimes 

imposed without empirical support. Yet, being able to predict rather than impose 

how roots explore the soil (or how much water is accessible) is of critical 

importance for practical applications.  

• Uncertainty in prediction is another challenge in decision-making when using 

crop models for determining proper management practices. Hence, there is a 

need to quantify such uncertainties so that the decisions and associated risk 

can be handled for adjusting required crop management measures.  

• Models cannot become even more difficult to use and therefore, setup, 

calibration, and application should be seamlessly integrated, otherwise the user 

may have more influence on the output than the model. 

• Crops require different management strategies. The study has shown that: 

o Early plantings of ALVs (September) favoured a higher number of 

leaves. Contrary to this, late plantings (March) resulted in a low leaf 

number. However, planting in March resulted in the highest LAI when 

compared to a November planting, which had the lowest simulated 

values. 

o Applying irrigation can result in higher yield, biomass, and WUE 

simulated for millet and sorghum, but does not always result in improved 

WUE of other ALVs (e.g. amaranth).  

o Since the use of irrigation was shown to contradict findings of certain 

previous studies, it is suggested that future studies should revisit 

Chapter 5 for validation and correction. 

o Intercropping maize and bambara groundnut under recommended 

guidelines will improve overall system productivity and WUE relative to 

corresponding monocrop systems. The adoption of asynchronous or 
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sequential planting can be used to reduce competition within the 

intercrop systems. 

o Intercropping maize at low plant population and bambara groundnut at 

high population can sustainably improve yield and WUE of the system 

under projected climate change. 



 

304 
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10 APPENDIX II: CAPACITY BUILDING 

Provision was made in the budget to fund three full-time students over the project’s 

five-year period. A summary of capacity building to date is presented in sections that 

follow.  

10.1 Post-graduate capacity building 

The project has exceeded the original capacity development targets. The contractual 

obligation was to train three MSc students. To date, the project has enrolled the 

following postgraduate students: 

• 2 Honours: Ms Thembelihle Nzimande and Ms Zinhle; 

• 3 MSc students: Ms Thembelihle Nzimande, Ms Thobeka Kunene and 

 Mr Thalente Ndebele;  

• 2 PhD students: Mr Hillary Mugiyo and Miss Mendy Ndlovu;  

• 2 postdocs: Dr VGP Chimonyo and Dr Zolo (Serge) Kiala. 

Both Honours students completed their studies. Ms T. Kunene graduated in 2021 with 

a distinction. Ms Nzimande graduated cum laude in November 2021. Mr Mugiyo 

submitted his thesis for examination and is currently doing revisions from the 

examination. He is expected to graduate in April 2022. Miss Ndlovu is expected to 

complete during 2022. An additional MSc student, Mr Thalente Ndebele was recruited 

in 2021 and is expected to complete in 2022. 

10.1.1 Student Abstracts 

Hillary Mugiyo (2022)  

Title: Crop suitability mapping for underutilized crops in South Africa.  

Degree: PhD (Crop science) 

Abstract: Several neglected and underutilized species (NUS) provide solutions to 

climate change and creating a Zero Hunger world, the Sustainable Development Goal 

2. However, limited information describing their agronomy, water use, and evaluation 

of potential growing zones to improve sustainable production has previously been 
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cited as the bottlenecks to their promotion in South Africa's (SA) marginal areas. 

Therefore, the thesis outlines a series of assessments aimed at fitting NUS into 

dryland farming systems of SA. Initially, the study conducted a scoping review of land 

suitability methods. After that, South African bioclimatic zones with high rainfall 

variability and water scarcity were mapped. Using the analytic hierarchy process 

(AHP), the suitability for selected NUS sorghum (Sorghum bicolor), cowpea (Vigna 

unguiculata), amaranth and taro (Colocasia esculenta) was mapped. The future 

growing zones for NUS was assessed using the MaxEnt model. This was only done 

for KwaZulu Natal. Lastly, the study assessed management strategies such as 

optimum planting date, plant density, row spacing, and fertilizer inputs for sorghum. 

The review classified LSA methods reported in articles as traditional (26.6%) and 

modern (63.4%). Modern approaches, including multi-criteria decision-making 

(MCDM) methods such as AHP (14.9%) and fuzzy methods (12.9%); crop simulation 

models (9.9%) and machine-learning related methods (25.7%), are gaining popularity 

over traditional methods. Mapping high-risk agricultural drought areas were achieved 

by using the Vegetation Drought Response Index (VegDRI), a hybrid drought index 

that integrates the Standardized Precipitation Index (SPI), Temperature Condition 

Index (TCI), and the Vegetation Condition Index (VCI). The VegDRI indicated that SA 

arable land is prone to drought, with 16% experiencing severe drought, 34% – severe 

drought, 38% – moderate drought, 11% slight drought, and 1% no drought conditions. 

In NUS production, land use and land classification address questions such as 

“where”, “why”, and “when” a particular crop is grown within particular agroecology. 

The results indicated that sorghum was highly suitable (S1) = 2%, moderately suitable 

(S2) = 61%, marginally suitable (S3) = 33%, and unsuitable (N1) = 4%, cowpea S1= 

3%, S2 = 56%, S3 = 39%, N1 = 2%, amaranth S1 = 8%, S2 = 81%, S3 = 11%, and 

taro S1 = 0.4%, S2 = 28%, S3 = 64%, N1 = 7%, of calculated arable land of SA (12 

655 859 ha). The future distribution of NUS were modelled based on three 

representative concentration pathways (RCPs 2.6, 4.5 and 8.5) for the years between 

2030 to 2070 using the maximum entropy (MaxEnt) model. The study identified 

seasonal precipitation, length of growing period (LGP), maximum-minimum 

temperature and isothermality variables that made relatively higher contributions in the 

model. The analysis showed a 4.2-25% increase under S1-S3 for sorghum, cowpea, 
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and amaranth growing areas from 2030 to 2070. Across all RCPs, taro is predicted to 

decrease by 0.3-18% under S3 from 2050 to 2070 for all three RCPs. Best sorghum 

management practices were identified using the Sensitivity Analysis and generalized 

likelihood uncertainty estimation (GLUE) tools in DSSAT. Planting criteria (25 mm in 

5 days – Department of Agriculture, Forestry and Fisheries-DAFF and 40 mm in 4 

days-DEPTH criterion) was calculated in R-INSTAT. The developed maps are 

important for designing appropriate production guidelines aligned to climate-smart 

technologies. The best sorghum management is identified by an optimization 

procedure that selects the optimum sowing time, planting density-targeting 51,100, 

68,200, 102,500, 205,000 and 300 000 plants ha-1 and fertilizer application rate (75 

and 100 kg ha-1) with maximum long-term mean yield. The best combination of 

management was within the DAFF planting criterion; usually, the second week of 

November, planting density 68,200 plants ha-1 and 100 kg of ammonium nitrate 

applied under as basal 50% and then 50% on the 28th day after sowing. The NUS are 

suitable for drought-prone areas, making them ideal for marginalised farming systems 

to enhance food and nutrition security. 

Thobeka Kunene (2021)  

Title: Assessing Nutritional Water Productivity of Selected African Leafy Vegetables 

Using The Agricultural Production Systems Simulator Model.  

Degree: MSc (Crop science)  

Abstract: Food and nutrition insecurity are regarded as one of the main challenges in 

the Sub-Saharan region. While substantial progress has been made to address food 

and nutrition challenges, this progress has varied across the region and over time in 

response to climate change hazards. Agriculture has been used as the main driver to 

improve food and nutrition security; however, productivity in these marginalised 

communities remains low. African leafy vegetables (ALVs) provide an unprecedented 

opportunity to ensure food security, lessen poverty and diversify farming systems while 

improving human health and increasing income. Crop modelling can contribute to 

generating information or data about growth, development and, water and nutritional 

needs of the crop. The primary objectives of this study were (i) to assess growth and 

productivity of selected ALVs (amaranth (Amaranth spp), cowpea (Vigna unguiculata), 
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sweet potato (Ipomoea batatas) and wild mustard (Sinapis arvensis)) under different 

management practices, and (ii) assess water productivity (WP) and nutritional water 

productivity (NWP) of the selected ALVs. The Agricultural Production systems 

SImulator (APSIM) was used to simulate growth and productivities under different 

management scenarios of planting date, plant density, fertiliser application and 

irrigation. The soil and climatic data from the University of KwaZulu-Natal's research 

farm (Ukulinga Research Farm) situated in Pietermaritzburg, South Africa (29°37′S; 

30°16′E; 775 m a.s.l.) was used to calibrate the model. To achieve these objectives, 

desktop-based research was conducted. Secondary literature was used to gather the 

information on the agronomy of the studied crops was obtained through careful 

literature search and selection. This was used to determine the nutrient content of the 

investigated ALVs. Relevant agronomic information was then used to model growth 

and productivity for the quantification of nutritional water productivity at different 

management practices. All data analysis was done using descriptive statistical 

analysis (R software). All mean values were subjected to a t-test set at p<0.05 

significance. The results showed that depending on crop species, different 

management practices can be relevant to achieve optimum growth and productivity 

for different purposes. The investigated ALVs were found to have high nutrient content. 

Compared to one another, amaranth was more nutrient-dense and wild mustard the 

least dense crop compared to the others. On the other hand, NWP was comparatively 

high on both amaranth and cowpea. 

 

Thembelihle Nzimande (2021)  

Title: Application and evaluation of AQUACROP, DSSAT and SIMPLE model in 

simulating NUS production.  

Degree: MSc (Crop Science) 

Abstract: The study compared yield, biomass, and water use (WU) for maize, 

sorghum, and millet simulated using three crop models of varying complexity: 

AquaCrop, DSSAT and the SIMPLE model. The hypothesis was that less complex 

models with low input requirements perform similarly with complex models with more 
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input requirements. A standard set of crop parameters was used to develop crop files 

for all the three models. Similar soil, climate and management descriptions attained 

from the Ukulinga Research Farm were used across the models. Six general 

circulation models (GCMs) were used as climate input data to model past, present, 

mid-, and late-century climate change impacts on cereal crops. The effect of irrigation 

(as a management practice) on yield and water use was assessed using the mid-

century projections. The performance of the three models was observed to be 

statistically different. Based on the mean bias error, all models overestimated yield, 

but the lowest overestimation was with AquaCrop (0.22 t/ha) followed by DSSAT 

(0.243 t/ha) and the SIMPLE model (0.687 t/ha). Other statistical indicators, viz., 

RMSE and R2, illustrate that the simulation of yield and WUE in AquaCrop was more 

satisfactory than DSSAT and the SIMPLE model. Across all the time scales, it was 

observed that AquaCrop simulated the highest yield and biomass, and the SIMPLE 

model simulated the lowest yield across the GCMs, which were inconsistent. Applying 

a higher amount of irrigation at more frequent intervals resulted in higher yield, 

biomass and WUE. AquaCrop showed the highest simulated mean yield for maize 

(8.34 t/ha), millet (6.86 t/ha) and sorghum (5.28 t/ha). Highest WUE was observed 

under AquaCrop for maize (21 kg/ha/mm) and millet (15.10 kg/ha/mm), the SIMPLE 

model for sorghum (13.37 kg/ha/mm). The study confirms that DSSAT requires 

relatively more input data but does not always perform more satisfactorily. The 

SIMPLE model requires fewer input requirements than AquaCrop and DSSAT; 

however, it is less sensitive to management changes. AquaCrop had relatively 

incomparable results to DSSAT and the SIMPLE model and was observed as the most 

suitable model for simulating yield, biomass, and WU of the selected cereal NUS under 

climate change and irrigation management scenarios. It is essential to calibrate crop 

growth parameters for local conditions or use parameters from local field studies when 

applying complex crop models such as DSSAT specifically for marginal environments, 

such as South Africa, before their application. On the other hand, AquaCrop performed 

reasonably well with minimal input requirement, confirming its reliability for application 

in data-limited and marginal environments. However, it is recommended that there 

must be calibration for all the models using inputs specific to locations.   
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10.2 Institutional capacity building 

The Project Leader, Prof Mabhaudhi, attended a training workshop on the DSSAT 

Model that was conducted at University of Georgia, USA from the 15-20 May 2017. 

Mr Hilary Mugiyo also attended a similar DSSAT training workshop at the end of 

September 2019 in Pretoria. Both trainings have been helpful and enabled the Project 

Team and Mr Mugiyo to be able to supervise and mentor postgraduate students who 

are using DSSAT in the current project as well as in other projects. Already, Prof 

Mabhaudhi has assisted Ms Zoleka Ncoyini, a developmental lecturer in 

Agrometeorology, on how to use DSSAT. In 2018, the Project Team successfully 

hosted a R statistic training workshop for 20 UKZN students, including students on the 

project. The DSSAT and R statistics training has contributed to institutional capacity 

development at UKZN. 
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11 APPENDIX III: PRODUCTION GUIDELINES 

 

1.1 Sorghum 

1.1.1 Crop morphology and physiology  

Sorghum has a primary and secondary root system. The primary roots are those which 

appear first from the germinating seed. The primary roots provide the seedling with 

water and nutrients from the soil. Primary roots have limited growth, and the secondary 

roots soon take over their functions. Secondary roots develop from nodes below the 

soil surface. The permanent root system branches freely, both laterally and 

downwards, into the soil. If no soil impediments occur, roots can reach a lateral 

distribution of 1 m and a depth of up to 2 m early in the plant's life. The roots are finer 

and branch approximately twice as much as roots from maize plants. 

Sorghum leaves are typically green, glasslike, and flat and have a smaller leaf area 

than maize. The leaf blade is long, narrow and pointed. Young leaves have upright 

leaf blades; however, the blades tend to bend downwards as the leaves mature. A 

unique feature of sorghum leaves is the rows of motor cells along the midrib on the 

upper surface of the leaf. These cells can roll up leaves rapidly during soil moisture 

deficit. Leaves are covered by a thin wax layer and develop opposite one another on 

either side of the stem. Number of leaves vary from eight to 22 leaves depending on 

environmental conditions. 

Stems are solid, dry, succulent and sweet. Under favorable conditions more 

internodes develop, together with leaves, producing a longer stem. The stem consists 

of internodes and nodes. Stem diameter varies between 5 mm and 30 mm. The 

internodes are covered by a thick waxy layer, giving it a blue white colour. The waxy 

layer reduces transpiration and increases the drought tolerance of the plants. The root 

band of nodes below or just above the soil surface develops prop roots. The growth 

bud develops lateral shoots. Sometimes the growth buds higher up the stem may also 

develop lateral shoots. 

The inflorescence of sorghum is a compact panicle. The shape and colour of the 

panicle varies between cultivars. Heads are carried on a main stem or peduncle with 
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primary and secondary branches on which the florets are borne. The peduncle is 

usually straight and its length varies from 75 to 500 mm. Each panicle contains from 

800 to 3 000 kernels, which are usually partly enclosed by glumes. Glume colour may 

be black, red, brown or tan. The flowers of sorghum open during the night or early 

morning. Those at the top of the panicle open first and it takes approximately 6 to 9 

days for the entire panicle to flower. Seed are oval to round and the colour may be 

red, white, yellow, brown or shades. They are partially enclosed by glumes, which are 

removed during threshing and/or harvesting. The sorghum grain consists of the testa, 

embryo and endosperm. 

1.1.2 Agroecology  

Figure 2 presents the results of the analysis of sorghum suitability based on MCDA-

AHP and OWA operators. These results show the existing distribution of the land 

suitability classes, excluding areas where present land use is nature conservation, 

plantation, urban and water. Results indicated that about 2% of the land is highly 

suitable (S1) for the production of sorghum. Moderately suitable (S2) land constitutes 

the most substantial proportion (61%) of the calculated arable land of South Africa (12 

655 859 ha) while marginally suitable (S3) and unsuitable (N1) constitutes 33% and 

4%, respectively of calculated arable land (Figure 12). Large areas suitable (S1 and 

S2) land was concentrated in eastern provinces, and suitability intensity decreased 

towards western provinces (Figure 12). A total of 60 GPS location was used to confirm 

the presence of sorghum within selected locations in KwaZulu Natal province.  

Sorghum yields are expected to decline for most growing areas along the eastern 

seaboard of the country, with the highest yield losses (> 50%) predicted for the 

Limpopo and eastern Mpumalanga provinces. Yield increases may occur in the central 

parts of the Eastern Cape and western regions of the Free State (Figure 13). In 

contrast, taro yields should improve for most growing areas in Limpopo, North West 

and KwaZulu-Natal (except in the north-east and along the coast) provinces. However, 

taro is not suited to the central and western parts of Mpumalanga, central and southern 

regions of the Free State, south-western KZN and northern areas of the Eastern Cape 

province.  The review by Franke (2021) showed that changes in sorghum yield across 

southern Africa are highly variable and exhibit inconsistent patterns. 
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A comparison of Figure 13 with for Figure 14 sorghum revealed that certain areas have 

changed from a yield decrease to a yield increase. Examples can be found in the 

north-eastern regions of Limpopo and Mpumalanga, northern and eastern regions of 

Free State and north-eastern KZN. Overall, areas where more than a 50% decrease 

in yield have reduced in spatial extent, particularly in the North West, Limpopo and 

Mpumalanga provinces. For sorghum, no noticeable expansion in suitable growing 

areas was simulated by the model from present to near future, except in the higher 

altitude zones in Lesotho. 

 

 

Figure 12. Suitability map for sorghum production in South Africa computed using 
MCDA-AHP and OWA operators [Source, South African Quaternary Catchments 
database, (https://doi.org/10.6084/m9.figshare.13179881), in ArcGIS 10.5] 

https://doi.org/10.6084/m9.figshare.13179881
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Figure 13: Change in mean dry yield (as %) from present to near future for sorghum 

 

 

Figure 14: Change in mean dry yield (as %) near to distant future for sorghum 
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1.1.3 Drought tolerance  

Sorghum can respond to drought stress using 3 drought resistance mechanisms: 

1. Drought Avoidance: which is defined as the ability of plants to conserve water at the 

whole plant level through decreasing water loss from the shoots or by more efficiently 

extracting water from the soil. Most sorghum genotypes have a thick waxy cuticle that 

limits water loss during drought stress period. Sorghum plants have the ability to 

change their root length as an avoidance mechanism to drought stress. Sorghum has 

an exceptionally well developed and finely branched deep root system which is very 

efficient in the absorption of water. The deep root system enables the plant to extract 

water from deeper soil areas. The cell architecture of mesophyll tissue of C4 plants 

allow them to accumulate CO2 in the bundle sheath cells, reducing photorespiration, 

reducing stomatal conductance to preserve water without decreasing carbon fixation 

rates. Leaf abscission, dormancy, and any other mechanisms that reduce water loss 

by transpiration are considered drought avoidance mechanisms. Stomatal 

conductance and leaf rolling have also been found to be reliable physiological 

indicators of drought resistance in sorghum plants. The rolling of leaves usually occurs 

following the reduction in leaf water potential. Leaf rolling has positive effects on 

reducing leaf temperature and loss of water by decreasing the incident irradiation. 

2. Drought escape: is defined as a mechanism by which plants grow and complete 

their life cycle before severe drought stress occurs for example some plants are able 

to produce flowers with a minimum vegetative growth before the onset of water stress, 

which enables them to produce grains with a limited water supply. Some early 

maturing sorghum genotypes adopt this strategy to avoid water deficit periods that 

could occur during the growing season in some regions. 

3. Drought tolerance: defined as the ability of plants to withstand water deficit while 

maintaining appropriate physiological activities to stabilize and protect cellular and 

metabolic integrity at tissue and cellular level. In order to lower the osmotic potential 

and maintain turgor, drought tolerant plants can accumulate compatible solutes 

including sugars, organic acids, amino acids, sugar alcohols or ions. Osmotic 

adjustment is important in the drought tolerance of many C4 species growing in arid 



 

318 

 

environments and allows the growth of sorghum when leaf water potential is low. 

Sorghum bicolor accumulates glycine betaine and proline in response to water deficit. 

1.1.4 Crop management  

Based on results from Ukulinga, as part of another WRC project (Modi and Mabhaudhi, 

2017) and other literature, the following best management practices for grain sorghum 

are recommended: 

For smallholder farmers, suggested and affordable strategies to help reduce runoff 

through improved infiltration capacity and soil transmission characteristics are low-

cost mulching and low-tillage practices. 

Contour farming, ridge and mound tillage, strip farming and terrace farming are options 

that are suggested to reduce runoff loss, particularly when farming sorghum outside 

optimal planting dates, as recommended next. 

Early- and mid-season plantings are recommended for rainfed sorghum cultivation in 

agro-ecologies like Ukulinga. 

Late-season planting exposes the crop to frequent intermittent stress episodes and is 

thus recommended in areas where farmers have access to irrigation to supplement 

rainfall. 

Low-cost mulching (e.g. dry grass) should be explored by smallholder farmers. In 

regions that experience high wind speeds, the growing of windbreaks (and effective 

weed control) should be explored as a long-term strategy to help reduce evaporation 

loss. 

A recommended long-term strategy for water capture is rainwater harvesting for the 

supplementary irrigation of sorghum during dry spells and for the late planting of 

sorghum.  

1.1.4.1 Cultivars 

Cultivar selection aims to reduce risks by avoiding drought periods during the most 

critical growing stages of the plant growth, such as flowering and seed set (ARC, 2003; 

Du Plessis, 2008), as well as cold temperatures during the flowering stage (PANNAR, 
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2013b). Factors that should be considered when selecting a suitable cultivar include 

low-tannin cultivars, seed availability, growing season length, cold tolerance and 

drought tolerance. 

Low-tannin cultivars  

According to the South African list of cultivars (DAFF, 2018e), there are currently 23 

registered grain sorghum hybrids and four open pollinated varieties. Seven of the 23 

hybrids are sold by PANNAR. There are two types of sorghum: bitter and sweet 

sorghum. Bitter sorghum (high tannin) is planted in areas where birds are a major 

problem. 

Kotze (2012) reported that PAN8625 is a tannin sorghum used mainly for malting and 

is not suitable for ethanol production. However, PANNAR supplies three grain 

sorghum hybrids suitable for ethanol production: 

PAN8816, a tannin-free sorghum currently used by 85% of the market for malting and 

milling 

PAN8906, a new hard-seed hybrid suitable for milling and ethanol  

PAN8909, which is similar to PAN8906 (Kotze, 2012) 

Both PAN8816 and PAN8906 are bronze-grained, medium- to late-maturing, and low-

tannin sorghum hybrids. Flowering occurs at approximately 80 days after planting (  
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Table 6). The hybrids are well known for good leaf disease and head smut resistance. 

PAN8816 is used by 85% of the market for malting and milling, with yields ranging 

between 2-5 t ha-1 under optimum conditions. PAN894 is another zero-tannin cultivar 

and suitable for ethanol production (classified as genetically modified (GM), which 

indicates tannin-free, and good for malting and milling). This cultivar has a shorter 

growing season than PAN8816. 
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Table 6 Agronomic characteristics of grain sorghum hybrids available from PANNAR 

(PANNAR, 2018) 

General characteristics PAN8944 PAN8816 PAN8906 PAN8625 

Growing season 
Medium-

early 
Medium-late Late 

± days to 50% flowering 60-65 79-81 78-81 82-85 

± days to harvest 120-130 135-142 135-142 140-145 

Plant height (cm) 105-110 112-117 110-115 120-130 

Uniformity (1 = excellent; 9 = 

poor) 

 
2 1 3 

Standability (1 = excellent; 9 = 

poor) 

 
2 2 2 

Threshability (1 = excellent; 9 = 

poor) 

 
2 2 4 

Head smut (1 = excellent; 9 = 

poor) 

 
2 2 3 

Plant colour  Purple Purple Purple 

Grading GM GM GL GH 

Seed colour Red Red Red Brown 

 

Macia was developed by the International Crop Research Institute for the Semi-arid 

Tropics (ICRISAT). Macia is a low-tannin, open-pollinated variety. It is an early- to 

medium-maturing (60-65 days to heading and 115-120 days to maturity), semi-dwarf 

(1.3-1.5 m tall with thick stem) variety. However, Hadebe et al. (2017a) concluded that 

Macia is a late-maturing genotype with a consistently longer growing cycle compared 

to PAN8816. Macia has a wide growing rainfall range (250-750 mm) during the 

growing season, with stay green characteristics extending beyond harvest. However, 

the extractable starch content of Macia is much lower than that of PAN8816 and 

PAN8906, which is less desirable for ethanol production. 

Based on results from the Swayimane trial, the following best management practices 

for grain sorghum are recommended: 
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PAN8906 outperformed PAN8816 and Macia in terms of final yield and is thus highly 

recommended for biofuel production. 

The late (i.e. January) planting at Ukulinga resulted in cold and water stress and is 

thus not recommended in similar agroecologies. 

Grain yield is an important factor influencing biofuel production. PAN8906 produced 

more theoretical biofuel due to its higher yield. 

Macia produced a relatively high proportion of biomass to grain and may thus not be 

a suitable feedstock for biofuel production. 

1.1.4.1 Seed availability 

In order to meet the projected demand for ethanol production from sorghum, 60,000 

to 70,000 bags of 25 kg seed will need to be supplied to the market, which is about 

five times that supplied in the 2012/13 season (Kotze, 2012). Due to various issues, 

including seed availability, South African farmers will not be able to realistically expand 

(“ramp up”) sorghum production to meet the immediate demand created by biofuel 

manufacturers. Therefore, Lemmer and Schoeman (2011) noted that sorghum will 

initially be imported for a number of years to meet the increased demand. Over time, 

imports of sorghum are predicted to drop as local production increases. 

1.1.4.2 Planting date 

Under rainfed conditions, rainfall variability is an important determinant of crop yield. 

Thus, planting date selection is critical to ensure that critical growth stages do not 

coincide with dry spells. Based on an analysis of 50 years of rainfall and temperature 

data for each quinary sub-catchment, the first planting date: 

could not be determined for 26.2% of the quinary sub-catchments, thus indicating their 

unsuitability for crop production; 

occurs in either November or December for most quinary sub-catchments; and 

occurs in October and January in a few quinary sub-catchments. 

Maps showing the spatial variability in planting date are presented in this report. 

However, weather is known to vary between growing years, affecting the selection of 
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planting dates. Hence, it is acknowledged that planting dates should be determined 

using climate forecasts, rather than using historical data. Access to seasonal weather 

forecasts is recommended to aid farmers’ management practices, planning and the 

selection of planting dates.  

Short-season cultivars take 90 to 110 days to mature and are best suited to areas 

where daily average temperatures exceed 20 °C. When the average daily temperature 

drops below 20 °C, the growth period is lengthened by 10 to 20 days for each 0.5 °C 

fall in temperature (Steduto et al., 2012; WMO, 2012). Medium-duration cultivars take 

110 to 140 days to mature. At an average temperature of 15 °C, grain sorghum takes 

250 to 300 days to mature. In cool climates, sorghum is grown mostly as a forage crop 

(Steduto et al., 2012). 

Based on the results from a scenario analysis reported by Modi and Mabhaudhi (2017) 

for two sorghum genotypes (PAN8816 and Ujiba) across 10 different planting dates 

and three agroecologies (Deepdale, Richards Bay and Ukulinga), the following best 

management practices for grain sorghum are recommended: 

Sorghum farmers in Richards Bay would benefit most from strategies that maximise 

transpiration (i.e. rainwater harvesting for supplemental irrigation).  

Sorghum farmers in Deepdale and Ukulinga can explore increasing planting 

populations, together with appropriate soil fertilization mechanisms. 

Intercropping sorghum with a legume could be recommended to effectively use 

evaporated water in all three agroecologies. Ideally, the legume of choice should have 

low water requirements and a short growing season (≈90 days). 

1.1.4.3 Intercropping  

Based on scenario analyses conducted with the Agricultural Production Systems 

sIMulator (APSIM) and AquaCrop models, Modi and Mabhaudhi (2017) suggested the 

following best management practices for sorghum in a sorghum-cowpea intercrop 

system: 
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To achieve high water use efficiency (WUE), early planting (15 September) and late 

planting (15 January) in low-rainfall and high-rainfall areas, respectively, is 

recommended. 

The ideal plant population of sorghum should be 39,000 plants∙ha-1 in combination 

with 13,000 plants∙ha-1 of cowpea.  

When yields of both crop species are desired, increasing the cowpea plant population 

to 19,500 plants∙ha-1 is recommended. 

1.1.4.4 Plant spacing 

Seeds should be planted to a depth of 1.5 to 5 cm (DAFF, 2009b). A planting depth of 

5 cm is recommended for drier or sandy soils, compared to 2.5 cm for clayey soils 

(ARC, 2003; Du Plessis, 2008; DAFF, 2010b). The DAFF (2009b; 2010b) also 

recommends that when planting in dry soils, soil compaction may be necessary to 

ensure moisture absorption by the seed. After germination, thinning is required to 

establish an in-row spacing of 15 to 20 cm before tilling begins (usually four weeks 

after emergence). However, gap filling may be required if the seed does not germinate 

or seedlings are affected by disease. 

1.1.4.5 Fertilizer 

The nutrient requirements of grain sorghum are similar to those of maize, i.e. similar 

quantities of nitrogen, phosphorus and potassium are removed from the soil by these 

two crops. To maintain phosphorus and potassium levels in the soil, approximately 15 

kg nitrogen, 3 kg phosphorus and 4 kg potassium should be added to the soil per ton 

of harvested crop (PANNAR, 2013b; Steduto et al., 2012). However, SEEDCO (2018) 

stated that 7 kg of phosphorus is removed from the soil per ton of grain produced (). 

Table 7: Nutrient removal and uptake per ton of harvested sorghum grain (SEEDCO, 

2018) 

Nutrient Removal Uptake 

Nitrogen 18 kg 30 kg 

Phosphorus 7.2 kg 10 kg 

Potassium 5.4 kg 30 kg 
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For the growth and development of sorghum, nitrogen is considered critical (Ruthrof 

et al., 2018). Soils with a low nitrogen content result in delayed crop development, thus 

increasing the risk of drought exposure and subsequent yield loss prior to physiological 

maturity (Buah et al., 2012). Recommendations for nitrogen application are usually 

based on the target yield, with more fertilizer required for sandy soils and for crops 

grown in the wetter (eastern) growing regions, when compared to the drier (western) 

regions. Buah et al. (2012) determined the response of grain sorghum to applications 

of nitrogen and found that an application of 40 kg nitrogen ha-1 resulted in yield 

increases of 47% relative to no nitrogen. Nitrogen increases early seedling vigour, LAI, 

chlorophyll concentration and plant height. In addition, nitrogen catalyses the 

conversion of carbohydrates into protein and protoplasm, resulting in increased 

biomass and grain yield (Buah et al., 2012). 

In general, sorghum is sensitive to low phosphorus and potassium levels in the soil, 

which should thus be corrected with fertilizer application (DAFF, 2010b). Phosphorus 

is also usually applied in the band, except where the required quantity exceeds the 

amount applied in the fertilizer mixture. The optimal phosphorus concentration under 

conditions where 5-11 kg of phosphorus ha-1 is applied in the band at planting was 

determined as approximately 17 mg of phosphorus kg-1 for most regions. In order to 

raise the “phosphorus requirement” or soil phosphorus concentration by 1 mg 

phosphorus kg-1 (Bray 1 test), 5, 7 and 9 kg of phosphorus ha-1 should be applied on 

soils with clay contents less than 10%, 10-20% and 21-35%, respectively (PANNAR, 

2013b). 

For potassium, analyses should be undertaken to determine the status of the soil. The 

optimum concentration is at least 80 mg of potassium kg-1 of soil. If the topsoil 

potassium concentration is low (less than ~40 mg of potassium kg-1), then 12-50 kg of 

potassium ha-1 is recommended. If the soil is sandy (less than 10% clay) and the 

topsoil potassium concentration is low, the subsoil potassium concentration should 

also be determined. Potassium is normally placed in the band using fertilizer mixtures.  

However, high, mixed applications of potassium and nitrogen in the band should be 

avoided and should thus not exceed 70, 50 and 30 kg ha-1 for row widths of 0.9, 1.5 
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and 2.1, respectively. If potassium requirements are too high to place in the band, a 

portion can be spread before planting (PANNAR, 2013b). 

Rotation with leguminous crops (e.g. soybean) may provide low-cost nitrogen addition 

and fertility build-up. Low grain protein can result when nitrogen deficiency occurs 

between anthesis and maturity. The crop thus responds well to nitrogen application 

(DAFF, 2009b; WMO, 2012). If fertilizer is applied in the band at planting, levels should 

not exceed the following (PANNAR, 2013b): 

40 kg nitrogen ha-1 for 0.9 m row widths 

30 kg nitrogen ha-1 for 1.5 m row widths 

20 kg nitrogen ha-1 for 2.1 m row widths 

Overall, sorghum responds well to a low application (100 to 300 kg ha-1) of basal 

fertilizer, followed with a top dressing of 100 to 200 kg ha-1 of 28 to 34% nitrogen 

fertilizer. Before planting, the basal fertilizer is broadcast, then incorporated into the 

soil by disking (SEEDCO, 2018). 

1.1.4.6 Pest and disease  

Insect pests: Cutworms, several species may attack sorghum. They remain in the 

soil and feed at night where they cut off seedling plants at or near ground level. Plants 

cut above the main growing point may regrow. Heavy infestations usually kill the main 

stem or completely destroy plants. Risk of cutworm damage is greater in reduced 

tillage systems. Control: Control weeds several weeks before planting. Cutworms can 

be controlled preventively using at planting soil insecticides or by pre-plant or post at-

planting or postemergence foliar sprays. Maize Stalk Borer and Grain Sorghum 
Stalk Borer:  the larvae of the grain sorghum stalk borer differ from those of the maize 

stalk borer in that they are slightly smaller, pale white in colour, with pigmented spots. 

The stem borers tunnel into the stem of the plant feeding on the internal tissues and 

causing the plant to weaken.  Control: Cultural approaches: Plant early to avoid a 

serious infestation of stem borers. Applying nitrogen, either a commercial product or 

manure or compost, enhances the crops tolerance to an attack. Intercropping with 

non-host plants, such as cowpeas or cassava, will also reduce the damage. Adult 

moths will lay eggs on the non-host plants, but the larvae are unable to feed on them 
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and will die. Chemical approaches: Chemical control should only be used when the 

infestation is severe. Spraying a pesticide early over the plants might be more 

effective; however, once the larvae have bored into the stem of the plant, pesticides 

are no longer effective. Aphids: Grain sorghum is affected by three types of aphids, 

the most important of which is the honeydew aphid.  The other two are known as the 

“wheat aphid” and the “maize aphid”. The aphid feeds mainly on the underside of the 

leaves and lives off the sap of the plant.  They absorb mainly the protein and nitrogen 

particles of the sap and excrete excess sugars known as “honeydew”, a sticky, gummy 

secretion which appears on the leaves.  A fungus grows on this honeydew, giving 

infected plants a typical black colour. Control: application of an insecticide is able to 

control aphid infestation. Black Maize Beetle: The beetles feed on young plants near 

the soil surface, resulting in the death of the plant or damage to its growth point.  

Damaged plants that recover produce ears mainly on suckers. Sorghum Midge: This 

pest feeds on the developing florets and results in poor seed development. Control: 
plant resistant hybrids, apply insecticide, following helps to reduce the build op of 

midge in the field. Spotted Maize Beetle: This yellow and black beetle sometimes 

attacks sorghum and feeds on the ears while the grain is still in the milk stage. Control: 
Spraying with a registered chemical is recommended as soon as the number of 

beetles reaches serous proportions. Fall Armyworm: Small larvae will feed on leaves 

causing windowpane type feeding before moving into the leaf whorl. There they will 

feed until full size when they leave the whorl and pupate in the soil. Feeding can cause 

large irregular holes in leaves as they unroll from the whorl. Sometimes the main vein 

is cut causing the entire leaf tip to die. Fall armyworm populations increase as the 

season progresses. This is why late planted or double cropped sorghum is at greater 

risk of defoliation than early-planted sorghum. Control: application of registered 

insecticide is recommended to control FAW populations.  

Birds: Isolated or small areas of sorghum are prone to bird damage (ARC, 2003). The 

African Centre for Crop Improvement (ACCI, 2018) states that “birds love sorghum 

and are very problematic because they can decimate a field”. Kunz et al. (2015a) also 

noted that small stands of zero-tannin cultivars of grain sorghum are cause for concern 

due to possible bird damage. Grain sorghum trials conducted at Ukulinga and Hatfield 

in the 2012/13 season and at Ukulinga in the 2013/14 season were severely affected 
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by feeding birds at both establishment and grain filling. Modi and Mabhaudhi (2017) 

stated that short genotypes (e.g. PAN8816) were susceptible to panicle destruction by 

large birds (e.g. guinea fowls) as the panicle was within reach. Rethman et al. (2007) 

also reported that sorghum grain was consumed by birds during the 1999/2000 season 

at Hatfield.  

Possible damage from red-billed queleas (Quelea quelea) is a serious threat to grain 

crops in South Africa (Oschadleus and Underhill, 2006). Hence, queleas were 

declared pests in the Agricultural Pests Act, Act No. 36 of 1983. Steyn (2011) reported 

that queleas can eat around 10 g of grain per day, which means an average quelea 

flock can rapidly decrease sorghum yields from 5 to 1 t ha-1. The birds have recently 

expanded into regions where previous sightings were uncommon. For example, 

Oschadleus (2015) recorded the first breeding of quelea in the Western Cape near 

Worcester. Coleman (2017) reported that all grain producers are urgently required to 

report quelea breeding and roosting spots to the Department of Agriculture, Land 

Reform and Rural Development. 

Fungal diseases: Seedling blights are often referred to as "damping off diseases." 

Seedling diseases may be caused by soil-borne pathogens. The primary seedling 

disease pathogens are: Pythium, Fusarium, Aspergillus, and Rhizoctonia. These 

pathogens may occur independently or in combinations to cause seedling disease 

problems. Symptoms: first symptom of seedling blight is failure of the seed to 

germinate which results in rotted seed. In other cases, necrotic tissue may be present, 

seeds may germinate, or the young roots or leaves may have a water-soaked 

appearance. In other cases, seedlings may emerge and then begin to die. Control: 
Using high quality seed and use of appropriate seed treatments will minimize seedling 

disease concerns. Sorghum leaf blight is a foliar disease caused by Exserohilum 

turcicum. Symptoms: infected seedlings develop small reddish or tan spots on the 

leaves. As the disease progresses, these spots enlarge, the leaves wilt and turn 

purplish grey, and the seedling ultimately may die. In more mature plants, long elliptical 

lesions develop on older leaves and may be reddish-purple or yellowish tan. These 

lesions vary in colour and size according to varying levels of resistance. Most of the 

lesions occur on older leaves, and then progress to younger leaves. Lesions on older 

plants have yellowish to grey centres and reddish margins. Control: Sorghum leaf 
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blight can be controlled by rotation to non-susceptible crops and foliar applications of 

labelled fungicides. Planting resistant hybrids is the most effective management 

strategy for sorghum leaf blight. Head smut is caused by the soil borne fungus 

Sporisorium reilianum. Symptoms: pores will actively invade the sorghum plant in the 

nodal region of the shoot apex. The disease will continue to grow in the plant, actively 

destroying the reproductive tissues. A black mass of spores replaces some or all of 

the sorghum head. When infected, some hybrids are dwarfed and will tiller profusely. 

Control: Crop rotation and fungicides cannot control this disease. Head smut can only 

be effectively managed genetically by planting resistant varieties. Sorghum ergot is 

a fungal disease formerly confined to the African and Asian continents. It is caused by 

a fungus Claviceps Africana. Symptoms: fungus infects the ovaries of sorghum 

flowers and often converts them into a white, fungal mass. The most obvious external 

symptom of infection is the abundant exudation from infected flowers of an amber-

coloured, sticky fluid, or “honeydew,” which often drips onto the leaves and soil. 

Spores of the fungus are contained within the honeydew, and when these germinate, 

they produce secondary spores on the surface of the honeydew, giving it a white-scum 

to powdery appearance. Control: chemical control measures that have been used 

successfully in sorghum seed production consist of a 5-7 day interval of 3-4 

applications of a triazole fungicide such as propiconazole. Seed treatment fungicides 

can disinfect seeds that have some ergot residue on the seed coat. Conventional 

topical treatments such as captan and fludioxonil will control the spores present on 

ergot-encrusted seeds.  

There are many other fungal diseases on sorghum including: Leaf rust and grey leaf 

spot which can be economically damaging in sorghum, especially in moist 

environments. These foliar diseases are often associated with late planting and ratoon 

sorghum. Sorghum downy mildew caused by the fungal pathogen Peronosclerospora 

sorgi. Downy mildew spores germinate and invade the roots of sorghum seedlings. 

This type of infection is systemic, in that most of the plant will eventually be infected. 

Infected seedlings may become chlorotic and die. 

Bacterial diseases: Bacterial Leaf Spot caused by Pseudomonas syringae pv. 

Syringae. Symptoms: Spots first appear on lower leaves with infection moving up the 

plants as they approach maturity. Spots are circular to elliptical and 1-10 mm in 
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diameter. Initially spots are dark green and water soaked but soon become tan with a 

red border. Small lesions may be entirely red with somewhat sunken centres. 

Sometimes spots are so numerous that they coalesce to form large diseased areas, 

resulting in the death of the whole leaf. Lesions may also occur on leaf sheaths and 

seeds. Control: Plant healthy seed that has been treated with a seed-protectant 

fungicide. Rotate sorghum with nonsusceptible crops. Plow under infected residue 

where soil erosion is not a problem.  Bacterial Leaf Streak caused by Xanthomonas 

campestris pv. Holcicola. Symptoms:  Streaks occur on leaves of plants of all ages 

as water soaked and translucent, about 3 mm wide and 25-150 mm long. Initially only 

light-yellow drops of bacterial exudate are present on the translucent streaks. This will 

eventually dry to thin white or cream-colored scales. Later, red-brown blotches appear 

that eventually enlarge and become red throughout the streak, causing the water-

soaked and translucent areas to disappear. Portions of the streaks may broaden into 

elongated oval spots with tan centres and narrow red margins. Numerous streaks may 

join to form long, irregular areas that cover a large area of the leaf with necrotic tissue 

bordered by dark narrow margins between the red-brown streaks. Control: Rotate 

sorghum with other crops. Plow under infected residue where erosion is not a problem. 

Plant healthy seed that has been treated with a fungicide. Bacterial stripe caused by 

Pseudomonas andropogoni. Symptoms: Initial symptoms are small (1 cm long), 

linear, interveinal lesions. Lesions on leaves and sheaths are purple, red, yellow or 

tan, depending on the host reaction. Under favourable conditions, lesions may exceed 

20 cm in length and they usually coalesce along the width of the leaf. Water soaking 

of tissue adjacent to a lesion is usually not observed under field conditions. Bacterial 

exudates are usually observed from infected portions of the leaf under microscopic 

observation. Lesions may also occur on the kernel, peduncle, and rachis, and in the 

pith of the stalk. Control: No suitable treatment is available for eradication of this 

bacteria. 

Viral diseases: The two primary viruses infecting sorghum are maize dwarf mosaic 

virus (MDMV) and sugarcane mosaic virus. Aphids transmit both diseases after 

feeding on plant reservoirs containing the virus. Control: control of insect vectors and 

alternate hosts of the diseases will provide some suppression. Genetic resistance 

offers the best control of these diseases. 
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1.1.4.7 Weed control 

Weed control: Weed control during the first 6-8 weeks after planting is crucial, as 

weeds compete vigorously with the crop for nutrients and water during this period. The 

root parasite Striga asiatia (L.) Kuntze or witchweed (rooiblom) can damage the crop 

and mainly occurs under low-input farming conditions. The parasitic plants are single 

stemmed with bright red flowers. Most of the damage is done before the parasite 

emerges from the soil. The symptoms include leaf wilt, leaf roll, and leaf scorch, even 

though the soil may have sufficient water. The tiny seeds are disseminated by wind, 

water and animals, and remain viable in the soil for 15-20 years. Rotation with cotton, 

groundnut, cowpea and pigeon pea will reduce the incidence of Striga. Hand pulling 

the plants before flowering could be used. Weeds can be removed mechanically, using 

manual labour or implements. Ploughing during winter or early spring is an effective 

method of controlling weeds. Chemicals formulated as liquids, granules or gasses can 

be applied to kill germinating, growing weeds or seeds. Control of nut-grass with pre-

emergence herbicides is not effective when applied after emergence. It is important to 

cultivate fields before applying herbicides. Wild sorghum in sorghum fields can only 

be controlled mechanically or by hand hoeing. 

1.1.4.8 Harvesting 

When seeds reach the milk to dough stage, sorghum can be harvested manually 

(cutting by hand) or mechanically (with a combine harvester). Panicles are dried in 

heaps on the ground or threshing floor for 10 to 14 days. Sorghum grain can only be 

threshed when seed moisture is below 20 to 25%, even though the seed is 

physiologically mature at higher moisture levels of 30 to 35% (Steduto et al., 2012). 

Once the seed moisture content is 12 to 13% (or less), permanent storage in silos is 

recommended (DAFF, 2009b; DAFF, 2010b). 

For seed drying, the absolute maximum air temperature is 40 °C. However, in order to 

reduce the risk of heat damage to the seeds, drying temperatures should be lower 

than 40 °C. If seed moisture is more than 18%, maximum drying temperature should 

be 32 °C, and if lower than 18%, 40 °C is the recommended temperature for drying 

(Reddy et al., 2008). 
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Sorghum’s harvest index is more variable than that of maize, mainly because of 

variable tilling in sorghum. Generally, reported harvest index values are low (0.3 to 

0.4), but higher harvest index values (more than 0.5) have been observed and may be 

the result of vegetative (tiller) growth, which is affected by cultivar-specific water stress 

(Steduto et al., 2012). 

1.1.5 Nutritional Value 

The sorghum bran is low in protein and ash and rich in fibre components. The germ 

fraction in sorghum is rich in ash, protein and oil but very poor in starch. Over 68% of 

the total mineral matter and 75% of the oil of the whole kernel is located in the germ 

fraction. Its contribution to the kernel protein is only 15%ew2. Sorghum germ is also 

rich in B-complex vitamins. The endosperm, the largest part of the kernel, is relatively 

poor in mineral matter, ash and oil content. It is, however, a major contributor to the 

kernel's protein (80%), starch (94%) and B-complex vitamins (50-75%). Sorghum also 

supplies a lot of minerals – one cupful contains 55% of the recommended daily 

allowance (RDA) of phosphorus, 47% of iron, 19% of potassium, 5% of calcium and 

even some magnesium and zinc. A cup of sorghum contains -30% for thiamine, 28% 

for niacin and 16% for riboflavin. Sorghum is low in sodium and saturated fat and 

completely cholesterol free. 

1.1.6 Food preparation – Sorghum Parfait (serves 1) 

Ingredients 

1/4 cup uncooked coarse grain sorghum 

½ cup milk 

½ cup water 

A pinch of salt to taste (optional) 

1 Tbsp. sugar  

A pinch of cinnamon  

4 Tbsp. yogurt (optional) 

½ cup chopped strawberries (fresh or frozen)  
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Method 

In a cup, mix the sorghum, salt, and a dash of liquid (water and milk) and stir to a 

paste. 

In a heavy saucepan, boil the liquid of choice (water or milk), and add the sorghum 

paste. 

Lower the heat to simmer, and stir the pot to prevent boiling over or bottom sticking, 

for 10-20 minutes, until the liquid is absorbed. 

Remove from the heat, and stir in the sugar and cinnamon. 

In a serving bowl or mason jar add ½ of the sorghum and spread across bottom.  

Add 2 tablespoons yogurt, then strawberries, and repeat the layering of sorghum, 

yogurt and strawberries. 

Nutritional Value per serving 

Energy: 234 calories 

Total Carbohydrates: 37.2 g 

Total protein: 8.9 g 

Total fat: 8.4 g 

Fibre: 6.5 g 

 

1.2 Bambara groundnut 

1.2.1 Crop physiology and morphology 

Bambara groundnut is an annual herbaceous plant bearing bunched leaves arising 

from creeping stems that grow close to the ground. The growth habit of the crop may 

be bunched (erect), semi-bunched or spreading. It is naturally self-pollinated. The 

leaves are trifoliate, forming a cluster arising from branched stems that are either 

purple or green in colour and are borne on a long, erect and glabrous petiole, thickened 

at the base. Stem branching begins early, about one week after germination. Up to 20 
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or more branches may be borne on a single plant, depending on the genotype. Stem 

colour may be pigmented green, or partial or wholly red. Flowers are normally carried 

in pairs on short peduncles by a pedicle which arises from the axis formed by the 

petioles and the stem. Flowers produced on the same peduncle do not open 

synchronously, although they will open within a 24-hour intervals. Delayed flower 

opening may be caused by low temperatures and cloudy skies. After fertilization, the 

flower stem elongates. During this time, the peduncle elongates to bring the ovaries 

to the soil level and the pedicels penetrate the soil surface after fertilization to form the 

pods The sepal enlarges and the fruit develops above or just below the soil surface. 

Pod development lasts up to 30 days after fertilization and the seed develops over a 

further 10 days. The pod is small, round or slightly oval shaped and wrinkled. Generally 

a single seed is produced in the pod, although two seeds per pod have been reported. 

The unripe pod is yellowish green, while the mature pods may be yellowish green or 

purple. Seeds are mature when the parenchymatous layers surrounding the embryo 

have disappeared and the pods become a light brown. The seeds are round, smooth 

and very hard when dried, with highly variable testa colours, including cream, brown, 

red and blotched. The plant has a well-developed tap root with abundant lateral roots 

of around 20 cm long on the lower part that grow geotropically. The roots form nodules 

for nitrogen fixation, in association with suitable Rhizobium bacteria, which makes 

them useful for crop rotation and intercropping. 

1.2.2 Agroecology 

Under historical climatic conditions (represented by the 50 year period 1950-1999) the 

AquaCrop model used shows relatively few areas (in red) that are climatically totally 

unsuitable for Bambara groundnut production, but that over 80% of South Africa the 

yields of < 1 t/ha/yr imply that the crop is neither economically, nor from a livelihoods 

perspective, viable there. It is only really in KwaZulu-Natal, the north-eastern parts of 

the Eastern Cape, and parts of Mpumalanga and Limpopo, plus parts of Swaziland 

and Lesotho, that yields increase up to 3 t/ha/yr (Figure 15).  

For bambara groundnut (Figure 16), there is a marked increase in areas deemed 

suitable for crop production, especially in Mpumalanga and Free State. Most of these 

“new” areas show a doubling of yield (> 100%) from the near to distant future (dark 
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green). Furthermore, there is large reduction in areas where the yield is expected to 

decline by 50% or more (red). Hence, this crop is expected to benefit from climate 

change. 

 

Figure 15: Mean annual Bambara groundnut yields (t/ha/yr) over South Africa under 
historical climatic conditions 
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Figure 16: Change in mean dry yield (as %) present to near future for bambara 
groundnut 

 

Figure 17: Change in mean dry yield (as %) near to distant future for bambara 
groundnut 



 

337 

 

For bambara groundnut (Figure 17), yield declines exceeding 50% are expected 

across the majority of Limpopo and eastern Mpumalanga, as well as the north-eastern 

parts of KwaZulu-Natal and North West provinces. However, the central and western 

parts of Mpumalanga and Free State can expect yields to more than double (> 100% 

change), as well as certain parts of KwaZulu-Natal and Eastern Cape. A review by 

Franke (2021) of 20 climate change studies over southern Africa cited the work of 

Mabhaudhi et al. (2018) that showed yields of bambara groundnut (including potato 

and sugarcane) are expected to increase. The bambara groundnut study was 

undertaken using AquaCrop for only one location in KwaZulu-Natal with climate 

scenarios from five CMIP3 GCMs (A2 CO2 trajectory). Hence, this work is superseded 

by that presented here. 

For bambara groundnut (Figure 17), there is a marked increase in areas deemed 

suitable for crop production, especially in Mpumalanga and Free State. Most of these 

“new” areas show a doubling of yield (> 100%) from the near to distant future (dark 

green). Furthermore, there is large reduction in areas where the yield is expected to 

decline by 50% or more (red). Hence, this crop is expected to benefit from climate 

change. 

 

1.2.3 Drought tolerance 

Bambara groundnut is an underutilised crop grown by subsistence farmers in Africa 

and is considered to be drought resistant. It is known to be more drought tolerant than 

other legume crops. Bambara groundnut has shown to adopt drought-escape 

mechanisms, including a reduced vegetative growth period, early flowering, a reduced 

duration of the reproductive stage, and early maturity under dehydration stress. Such 

responses are likely to be employed where the initial plant growth is based on stored 

soil water, but further rain is unlikely. Bambara groundnut responds to water stress by 

partitioning more assimilate into the root, relative to the shoots, so that a greater soil 

volume can be exploited. The plant commits a greater supply of assimilates to root 

growth, irrespective of the soil moisture status. This strategy may have clear 

advantages when water becomes limited, however, this could compromise on yield. 

Other drought-avoidance traits such as stomatal regulation of water loss, osmotic 
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adjustment and a reduction in leaf area to maintain plant water status during periods 

of drought have been reported in Bambara groundnut.  

1.2.4 Crop management 

1.2.4.1 Cultivars 

Bambara groundnut is primarily grown using landraces or farmers’ varieties. Farmers 

grow local landraces from previous harvests, or buy from local markets, because there 

are no available improved varieties of the crop for small- or large-scale production. 

Initial collections and evaluations of Bambara groundnut landraces were carried out 

by the International Institute of Tropical Agriculture (>2000), Ibadan, Nigeria. In South 

Africa, there are approximately 300 accessions kept at the Agricultural Research 

Council – Grain Crops Institute, Institute for Veld and Forage Utilisation and 

Department of Agriculture. The large collections are found at the IRD (Institut de 

Recherche pour le Développement), Montpellier, France (about 1200 cultivated and 

60 wild accessions from Cameroon, of which 50 were morphologically characterized), 

the University of Zambia, Lusaka, Zambia (460 accessions), the Plant Genetic 

Resources Centre, Accra, Ghana (170 accessions). In many African countries smaller 

collections are maintained. In studies of genetic diversity in cultivated bambara 

groundnut with RAPD and AFLP markers, considerable genetic variation was found, 

with accessions clustering mainly according to their geographical origin. Sometimes, 

e.g. in Swaziland, farmers sow a mixture of landraces as a buffer to biotic and abiotic 

stresses, thus helping to maintain the diversity of the crop. 

Bambara groundnut breeding has mainly been confined to selection between and 

within populations for yield, disease resistance (Fusarium wilt and Cercospora leaf 

spot) and drought tolerance. From the IITA germplasm collection genotypes have 

been identified with a longer and denser root system, which may be useful in breeding 

for drought tolerance. Breeding of genotypes with a shorter growth period also seems 

useful for drier regions. Selection of the most effective combinations of genotypes and 

rhizobial strains seems promising to improve nitrogen fixation and increase crop 

yields. Artificial hybrids between cultivated genotypes and between cultivated and wild 

accessions have been made in the United Kingdom and Swaziland, but success rates 

are generally low. A genetic linkage map of bambara groundnut using AFLP markers 
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is being developed in the United Kingdom as well. Micropropagation of bambara 

groundnut is possible using stem nodal cuttings or embryo axes. 

The ARC recognizes 5 distinct accessions namely 

Black: Early maturing, usually small to medium-sized kernels. Mainly one-seeded 

Red: Late maturing. Kernels are large. A good yielder, however, it is prone to rotting 

onsite 

Cream/black eye: A large kernel and a good yielder 

Cream/brown eye: A moderate kernel and a good yielder 

Cream/no eye: Very small pods and kernels. It mainly produces one seed and yields 

are lower. 

Mabhaudhi and Modi (2013) segregated three accessions (cream, red and brown) in 

the landrace Jozini. Other popular landraces include Diphiri cream and Uniswa red. 

1.2.4.2 Planting date 

For optimum yield, cowpea should be planted late November to early December in the 

lower rainfall areas of South Africa. However, in areas with rainfall above an annual 

mean of 700 mm, planting dates can extend into January, but this produces low yields. 

The seed should be planted at 3 to 4 cm deep. The early-sown crops tend to have 

elongated internodes, are less erect, more vegetative and lower yielding than those 

sown at the optimum time. Planting date manipulation is utilised by farmers for various 

reasons. The reasons include escape from periods of high pest load or planting 

bambara at such a time that harvesting of the crop would coincide with the period of 

dry weather. 

1.2.4.3 Intercropping  

Simultaneous intercropping of taro and Bambara groundnut has been shown to be 

more productive compared to sole crops of either crop (Mabhaudhi, 2012). Especially 

the 1:1 (taro: Bambara groundnut) intercrop has indicated huge advantages to 

intercropping. In addition, intercropping taro and Bambara groundnut at a ratio of 1:1 

had no negative effect on growth of either taro or Bambara groundnut landraces. 
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Intercropping taro with Bambara groundnut was shown to be highly productive, in 

terms of additional output per unit area of land accrued from Bambara groundnut. 

Intercropping taro with Bambara groundnut also showed no significant negative effect 

on yield of taro as the main crop. Inclusion of Bambara groundnut (a legume) in taro 

cropping systems may be complementary in that it improves the overall water use of 

the farming system through greater capture of water in the horizon. Furthermore, the 

fact that taro and Bambara groundnut roots extract water from different depths of the 

soil profile would imply reduced drainage losses. Therefore, intercropping taro with 

bambara groundnut is productive, sustainable and beneficial in that it has potential to 

improve farmers’ nutritional productivity per unit area, bolster food security and 

enhance resilience of farmer’s cropping systems 

1.2.4.4 Plant spacing 

The recommended spacing is 50 to 75 cm between rows and 20 to 40 cm between 

plants for spreading varieties and 50 cm between rows and 10 to 25 cm for erect and 

semi-erect varieties 

1.2.4.5 Fertilizer 

Chemical fertilisers are not usually applied on the land. Because the nitrogen 

requirement is met by natural N2 fixation, seed should be inoculated. When nitrogen 

content is high in the soil, bambara groundnut usually produces mostly only a few pods 

and seeds on the top surface. It is always advisable to conduct soil tests and apply 

fertiliser according to the recommended rates. Fertiliser usage may be linked to the 

development of certain diseases. 

1.2.4.6 Pest and disease  

Insect pests: Leafhoppers, Hilda patruelis and the larvae of Diacrisia aculosa and 

Lamprosema indicata. In storage, bruchids (Callosobruchus maculatus) are the most 

important pest attacking the seeds of the crop. When the crop is stored whilst damp, 

mould sets in and weevils are able to attack the seeds. Most of the cultivars are 

resistant to weevil attack. 
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Fungal diseases: The most important fungal diseases are cercospora leaf spot 

(Cercospora spp.), powdery mildew (Erysiple polygoni) and Fusaruim wilt (Fusarium 

oxysporum). 

Nematode diseases: Meloidogyne incognita and Meloidogyne javanica are the most 

parasitic nematodes on bambara groundnut. The symptoms of nematode infestation 

include stunted growth, leaf chlorosis and yield losses. About 10 weeks after planting, 

the leaves turn yellow and the plants become stunted and die.  

Virus diseases: Peanut Clump Virus (PCV) which persists in soil even for several 

years as its fungal vector, Polymyxa graminis, is capable of producing highly resistant 

resting spores. PCV can be transmitted by planting seeds. The crop is susceptible to 

viruses such as cowpea mottle virus, cowpea mild mottle virus, Voandzeia necrotic 

mosaic virus and white clover mosaic virus 

1.2.4.7 Weed control 

Weed control: Weed control is done mechanically or by hand. Care should be taken 

when weeding around the plant, especially at flowering as the flower stalks are fragile 

and may break with rough handling. There are no registered herbicides for bambara 

now, but those registered for cowpea could be used for bambara groundnut. 

Annual grasses and some broadleaf weeds can be controlled by a pre-sowing 

application of herbicide. Row crop cultivation may be necessary with cowpeas, 

depending on the weed pressure, soil conditions, and rainfall. Preplant tillage can 

assist greatly in reducing early weed pressure, and the use of cover crops. Striga 

gesnerioides and Alectra spp. are the principal parasitic weeds attacking cowpeas, 

particularly in the semiarid regions. The following three are the most common Striga 

species that are a pest to cowpea: S. hermonthica, S. asiatica and S. gesnerioides.  

Control of Striga is difficult and time consuming. At present, chemical control is not 

recommended, as the chemicals are expensive, handling them is very difficult and no 

research results are available to support chemical treatment. Farmers are advised to 

improve soil fertility where this weed is a problem. Soil fertility has an effect on Striga 

infestation; more fertile soils are less infested with Striga. Use of manure and/or small 

quantities of fertiliser may reduce the infestation, when combined with weeding of 
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plants before seed setting. Hand weeding of the infested areas before Striga sets 

seeds is the most important control method at present. Striga should be weeded out 

as soon as any flowering is observed, as the development of seeds takes only a few 

weeks. It may be necessary to weed the area twice in a season.  

1.2.4.8 Harvesting 

A growth period of 110 to 150 days is required for the crop to develop fully. However, 

it can be ensured by checking the plant and seed appearance. Seeds are mature when 

the parenchymatous layer sur-rounding the embryo has disappeared and brown 

patches appear on the outside of the pod. Plants are harvested as the plants turn 

yellow or die, or when about 80% of the pods have matured. Pods can also be 

harvested while they are still green before they reach maturity as they are more 

palatable at this stage. Pods are removed as they mature to restrict losses by rotting 

and premature germination. Harvest bambara groundnut by hand lifting and pulling 

the plant or the taproot can be cut, using a groundnut harvester or ploughed out or 

hoed out. The nuts are then pulled off the plant, dried and stored or eaten raw. 

Harvesting small plots is often done over a period of time. Bambara pods can break 

off very easily and up to half of the pods can remain in the soil, requiring collection by 

hand. 

1.2.5 Nutritional Value  

Bambara groundnut seeds are highly nutritious containing protein (19%), 

carbohydrate (63%) and fat (6.5%) for a nutritionally balanced diet. Mineral content 

was also estimated for 100g seed, giving; iron 59 mg, potassium 1240 mg, phosphorus 

296 mg, sodium 3.7 mg and calcium 78 mg. In addition it has high protein quality with 

a good balance of essential amino acids, compared to most of other grain legumes, 

with relatively high lysine (6.8%) and methionine (1.3%). which are often only available 

at low levels in legumes. 

1.2.6 Food preparation – Bambara groundnut curry (Serves 2) 

Ingredients 

½ cup dry bambara soaked for 8 hours or overnight (yields 1 ½ cup-soaked bambara) 
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3 Tbsp. cooking oil 

1 ½ Tsp, salt 

1 Tsp. mustard seeds (optional) 

½ Tsp. turmeric 

½ Tsp. cumin (optional) 

1 Tsp. ginger, smashed 

1 Tsp garlic, smashed 

5 curry leaves (optional) 

1 medium onion chopped 

1 medium tomato chopped 

1 cup water 

½ Tsp. chilli powder 

Coriander or parsley to garnish (optional) 

Method 

In a pot, bring the soaked bambara to a boil, add ½ teaspoon salt, and simmer for 15-

20 minutes until al dente. 

In a saucepan, heat oil on a low flame, adding ½ teaspoon each of turmeric and cumin, 

and 1 teaspoon each of mustard seeds, ginger, garlic, and the curry leaves. 

Add the chopped onion and tomato, increase the heat to high, and fry for 5 minutes, 

stirring continuously. 

As the spice, onion, and tomato mixture starts to sweat, add the boiled bambara, 1 

teaspoon of salt, and ½ teaspoon of chilli powder. 

Add water (boiling or room temperature) to adjust curry consistency to your preference 

and lower the heat to simmer for 10 minutes. 

Serve garnished with coriander or parsley, with rice, roti, or bread, or by itself. 
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Nutritional Value per serving 

Energy:  276 calories 

Total Carbohydrates: 12 g 

Total protein: 2.7 g 

Total fat: 23.6 g 

Fibre: 3.5 g 

1.3 Taro 

1.3.1 Crop physiology and morphology 

Taro is herbaceous perennial herb which grows to a height of 1-2 m. The main stem 

is an edible starch-rich underground structure. It is called the corm, from which leaves 

grow upwards, roots grow downwards while cormels, daughter corms and runners 

grow laterally. The root system is fibrous and confined mainly to the top layer of the 

soil.  Corms in the dasheen type of taro are cylindrical and large, they are up to 30 cm 

long and 15 cm in diameter and constitute the main edible part of the plant. In the 

eddboe types, the corm is small, globoid and surrounded my several cormels and 

daughter corms. The cormels and the daughter corms constitute a significant portion 

of the edible harvest of eddboe taro.  The shoots consist of mainly of the leaves which 

arise in a whorl from the apex of the corm. The terminal bud remains close to this 

apex. Each Leaf is made up on an erect petiole and a large lamina which is 20-50 cm 

long. The lamina is large, thick, entire (not serrated) and globous. Three main veins 

radiate from the point of attachment of the petiole, one going to the apex, and one to 

each of the two basal lamina lobes. The petiole is 0.5-2 m long and flared out at the 

base where it is attached to the corms. It is thickest at the base and thinner towards 

its attachment to the lamina. Internally, it is spongy in texture and has numerous air 

spaces which facilitate gaseous exchange when the plant is grown in swampy or 

flooded conditions. The overall leaf venation is reticulate however, there are some 

prominent veins that arise from the three main veins. The leaves are the most 

prominent aerial organ of the plant. Plant height is determined by the height of the 

leaves. 
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Flowering is sporadic but when it does occur, the flowers appear shortly after planting, 

sometimes before any of the leaves have expanded. The inflorescence arises from 

the leaf axil or the centre of the cluster of the unexpanded leaves. A plant may bear 

two or more inflorescences. The peduncle is stout and relatively short. The 

inflorescence consists of a cylindrical spadix of flowers enclosed in a spathe. The 

flowers are unisexual with the female flowers located at the base of the spadix and the 

male flowers at the top. Sterile flowers are located in between the pistillate and 

staminate flowers.  

The inflorescence is protogamous and pistillate flowers are normally receptive 2-4 

days before pollen is shed. The spadices are seldom fertile and produce few viable 

seed. Flowers are fragrant, and pollination is probably by insects, especially flies. Fruit 

and seed setting are even more uncommon than flowering. Many inflorescences 

wither without setting any seed. The fruits are clustered at the basal portion of the 

spadix. Each fruit is a berry about 3-5 mm in diameter. The seed is hard and contains 

endosperm and germinates with extreme difficulty. 

1.3.2 Agroecology 

Fig 4 presents the spatial distribution of the suitability scores for taro-based on MCDA-

AHP method. The results indicated that there is about 0.4% of the land that is highly 

suitable (S1) for the production of taro. Moderately suitable (S2) land constitutes 28% 

of the calculated arable land of South Africa (12 655 859 ha) while marginally suitable 

(S3) constitutes the most substantial proportion 64% and (N1) 7% of calculated arable 

land. Taro suitability is high in KwaZulu Natal and Mpumalanga provinces. Limpopo, 

Northwest, Northern Cape and Western Cape are marginally suitable for taro (Figure 

18). The distribution of taro suitability was consistent maximum temperature and 

length of the growing season and rainfall distribution. 

The results presented in this study for taro also supersede those developed by 

Mabhaudhi et al. (2016a), who showed more than a doubling of yield for production 

areas along the eastern seaboard of South Africa (Figure 19). However, in this study, 

lower yield increases of 50% or less were simulated for the same areas, as well as 

significant increases in areas deemed suitable for taro production, particularly in the 

Limpopo and Northwest provinces. In the near to distant future there is a marked 
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increase in areas deemed suitable for taro production, especially in the Mpumalanga, 

Free State and Eastern Cape provinces. Yields are expected to more than double in 

these “new” areas located in Mpumalanga and the Free State. However, in the western 

regions of the Eastern Cape and Northwest provinces, substantial reductions in yields 

were simulated, i.e. from increases to decreases in taro yield. Taro could benefit the 

most, with a large expansion in areas deemed suitable for crop production in the 

Mpumalanga and Free State provinces (Figure 20). These areas are likely too cold for 

crop production up to 2044, especially in the higher altitude zones. Of the four 

neglected and underutilised species, taro seems to benefit the most from climate 

change, particularly towards the distant future. 

 

 

Figure 18: Suitability map for taro production in South Africa computed using MCDA-
AHP and OWA operators.[Source, South African Quaternary Catchments database,( 
https://doi.org/10.6084/m9.figshare.13179881), in ArcGIS 10.5] 

https://doi.org/10.6084/m9.figshare.13179881
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Figure 19: Change in mean dry yield (as %) from present to near future for taro 

 

 

Figure 20: Change in mean dry yield (as %) near to distant future for taro 
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1.3.3 Drought tolerance 

Taro is a wetland crop associated with high levels of water-use. Its production in South 

Africa is rain-fed and occurs inland under water-limited conditions. It has been 

suggested that, over the years, through natural and farmer selection and often under 

harsh conditions, local taro landraces may have “acquired” drought tolerance. 

However, information on the effect of drought on growth, development and yield of 

diverse taro landraces is lacking and research on drought tolerance is limited.  

Earlier studies by Snyder and Lugo (1980) revealed that drought tolerance existed in 

some wild relatives of taro, suggesting it was possible to develop drought tolerant 

hybrids. In India, Sahoo et al. (2006) evaluated a taro hybrid, along with its parents, 

for water stress tolerance. They reported significant variations for taro growth 

parameters (height, leaf number and leaf area), leaf relative water content, chlorophyll 

stability index and injury by desiccation in response to osmotic stress. The hybrid was 

observed to show tolerance to osmotic stress with minimum yield reduction. They 

concluded that the development of drought tolerant cultivars of taro was a possibility. 

Local eddoe landraces have also been observed to be drought tolerant through a 

combination of drought avoidance and escape mechanisms. The observations also 

showed that the eddoe type landraces could be promoted further inland due to their 

adaptation to low levels of water use. Observed drought avoidance was achieved 

through stomatal regulation, energy dissipation and canopy size adjustment. Drought 

escape was demonstrated through phenological plasticity. 

Taro is a drought-tolerant crop through a combination of drought avoidance and 

escape mechanisms, and it is somewhat adapted to low levels of water use. Drought 

avoidance is achieved through stomatal regulation, energy dissipation and smaller 

canopy size, resulting in lower crop water losses to transpiration. Drought escape is 

demonstrated through phenological flexibility, whereby under water-limited conditions 

taro matures earlier (Mabhaudhi, 2012) resulting in low yield. Yields are, however, 

relatively low when compared with those of central African countries, primarily in 

response to limited water availability. 
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1.3.4 Crop management 

1.3.4.1 Cultivars 

There are no commercial cultivar for taro and farmers growth and maintain local 

landraces. Lewu et al. (2017) assessed six accessions (Amadumbe 2914, Amadumbe 

3053, Amadumbe 43, Amadumbe 56, Amadumbe Amzam 3553/5118 and Amadumbe 

2919) of Colocasia esculenta (taro) were compared in the Western Cape Province of 

South Africa. These were obtained from the germplasm collection of the ARC-VOPI. 

Gerrano et al. (2019) identified 29 taro accessions from major taro producing areas in 

South Africa. 

1.3.4.2 Planting date 

The best planting time is between December and April, but plantings can be made any 

time during the year if moisture is adequate. 

1.3.4.3 Intercropping 

Simultaneous intercropping of taro and Bambara groundnut has been shown to be 

more productive compared to sole crops of either crop (Mabhaudhi, 2012). Especially 

the 1:1 (taro : Bambara groundnut) intercrop has indicated huge advantages to 

intercropping. In addition, intercropping taro and Bambara groundnut at a ratio of 1:1 

had no negative effect on growth of either taro or Bambara groundnut landraces. 

Intercropping taro with Bambara groundnut was shown to be highly productive, in 

terms of additional output per unit area of land accrued from Bambara groundnut. 

Intercropping taro with Bambara groundnut also showed no significant negative effect 

on yield of taro as the main crop. Inclusion of Bambara groundnut (a legume) in taro 

cropping systems may be complementary in that it improves the overall water use of 

the farming system through greater capture of water in the horizon. Furthermore, the 

fact that taro and Bambara groundnut roots extract water from different depths of the 

soil profile would imply reduced drainage losses. Therefore, intercropping taro with 

bambara groundnut is productive, sustainable and beneficial in that it has potential to 

improve farmers’ nutritional productivity per unit area, bolster food security and 

enhance resilience of farmer’s cropping systems. 
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Intercropping taro with bambara groundnut  in a 1 : 1 ratio has been shown in field 

experiments (Mabhaudhi, 2012) to be highly productive in terms of additional output 

per unit area of land accrued from Bambara groundnut. Intercropping taro with 

bambara groundnut also showed no significant negative effect on yield of taro as the 

main crop. Inclusion of bambara groundnut (a legume) in taro cropping systems may 

be complementary in that it improves the overall water use of the farming system 

through greater capture of water in the soil horizon. Furthermore, the fact that taro and 

bambara groundnut roots extract water from different depths of the soil profile would 

imply reduced drainage losses. Therefore, intercropping taro with bambara groundnut 

is productive, sustainable and beneficial in that it has potential to improve farmers’ 

nutritional productivity per unit area, bolster food security and enhance resilience of 

farmer’s cropping systems. 

 

1.3.4.4 Plant spacing 

The planting distance in commercial cultivation is 1,3 m between rows and 40 cm to 

50 cm between plants. In small plantations, planting can be done in mounds spaced 

at 1 m x 1 m or 1,3 m x 1,3 m. Plant on the crest of the heaps or ridges at 1 m apart 

on rows. Planting is either done by hand labour or from a tractor-pulled planter. Plant 

15 cm to 20 cm deep. The cut surface of the set should face upwards in a slanting 

position. Plant population is about 15 000 plants per hectare. The tubers have a large 

sink capacity and continue to grow and store food reserves throughout the year as 

long as conditions remain favourable. It is a fast-growing plant with a tendency to 

spread if conditions are favourable. 

1.3.4.5 Fertilizer 

Fertile soil may not need any fertiliser, but fertiliser may be needed if the soil has been 

depleted. Apply N.P.K. 15:15:15 at 5 to 6 Coke bottle capfuls in a ring about 10 cm 

around the plant. The applications are made at 2, 5 and 7 months after planting. The 

initial fertiliser application should include 1,5% Mg, 1% Mn, and 0,1% Zn. 
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1.3.4.6 Pest and disease  

Pests and diseases of taro for local South African landraces have not been the focus 

of any studies. Studies to date have focussed on the agronomy, drought tolerance and 

water use as well as nutritional value of taro landraces. Although it is not well 

documented, Phytophthora leaf blight and corm rot have been observed. Aphids have 

been observed to be a major pest of taro with plant hoppers also observed, although 

the latter could be regarded a minor pest in South Africa. 

Virus diseases: Numerous viral diseases are known to attack taro species. They are 

most serious viral pathogens with some infections resulting in severe yield reductions 

and even plant death. The most common world-wide is the Dasheen mosaic virus 

(DsMV). Taro Dasheen mosaic virus is caused by a stylet-borne, flexuous, rod-shaped 

virus that is spread by aphids. It is characterized by chlorotic and feathery mosaic 

patterns on the leaf, distortion of leaves, and stunted plant growth. The disease is not 

lethal, but yield is depressed. Taro bacilliform virus (TaBV) is a virus transmitted by 

the plant hopper, Colocasia bobone disease virus (CBDV) is a cytorhabdovirus 

1.3.4.7 Weed control 

Weeds should be controlled for the first three months after planting. Soil is moved up 

around the plant to control weeds and to enhance underground storage organ size. 

Weed at least three times per season. Weeding is done by cultivation with tractors and 

by hand. During the first four months of growth weeds are a particular problem. Weed 

competition during this period may reduce yields by as much as 43%. 

1.3.4.8 Harvesting 

Harvesting is done by uprooting when the leaves have turned yellow and are beginning 

to dry. The crop can be harvested by hand or by a semi-mechanised method. In small 

plantations, harvesting of the cormels begins four to six months after planting and is 

done without uprooting the plant. In the latter case, the tractor has an iron plate as 

wide as itself attached to it and has a central point which digs into the row of plants. It 

turns them over, and leaves the central stem and cormels free, which are subsequently 

collected by hand. Cormels that remain in the soil are dug out. Before harvest the 

foliage is cut with a rotary mower, and disc cultivation brakes down 



 

352 

 

the furrow. A modified potato harvester is then used to lift the corms and cormels from 

the soil. The one-row potato digger brings the cormels to the surface where they are 

selected, cleaned and packed into 22,5 kg wooden boxes, all without the aid of 

machinery. The boxes are later hauled to the packing shed. The planting material is 

selected by hand and cut with a machete. It is then thrown into a box or piled for curing 

until the cut surface has suberised. 

1.3.5 Nutritional Value 

Taro corm has been reported to have 70-80% (dry weight basis) starch with small 

granules. Taro contains about 11% protein on a dry weight basis. In general, the fat 

contents of taro root range from 0.3-0.6%. Taro is a good source of minerals including 

iron (8.66-10.8 mg/100 g), calcium (31-132 mg/100 g), sodium (82-1521.34 mg/100 

g), magnesium (118-415.07 mg/100 g), phosphorus (72.21-340 mg/100 g), zinc (2.63 

mg/100 g), copper (1.04 mg/100 g) and an excellent source of potassium (2271-

4276.06 mg/100 g). High potassium to sodium ratio food recommended for patient 

with high blood pressure. Vitamin C and vitamin B complex (niacin, riboflavin and 

thiamine) which are important constituents of human diet, are present in appreciable 

quantity in corms and leaves of taro. 

1.3.6 Food preparation – Taro spicy fry (Serves 4) 

Ingredients 

12 medium sized Taro root 

1 Tsp. turmeric powder 

2 Tsp. chilli powder  

1 Tsp. Kashmiri chilli powder  

1 Tsp. black pepper  

2 Tbsp. cooking oil 

1 Tbsp. minced garlic  

5 to 6 curry leaves 
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Method 

In a pot, bring the washed Taro root to a boil. Boil for 1o minutes. 

Let the boiled Taro root cool and then peel. Cut into small cubes. 

Add turmeric powder, chilli powder, Kashmiri chilli powder and black pepper and mix 

well. 

In a saucepan, heat 2 tablespoons of cooking oil and add minced garlic.  

Add in the mixed Taro root and stir. 

Add 5 to 6 curry leaves. 

Stir and let it fry for 5 minutes. 

Stir well and let it fry for a further 5 minutes.  

Serve.   

Nutritional Value per serving 

Energy:  469.8 calories 

Total Carbohydrates: 50 g 

Total protein: 4.6 g 

Total fat: 29.6 g 

Fibre: 8.7 g 
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1.4 Amaranth 

1.4.1 Crop physiology and morphology 

Amaranth species are erect or spreading annuals with a rough appearance. 

Depending on the species, growth habitat and environment, height of the plant varies 

between 30 cm and 2 m. The species differ in flower, leaf and stem colour, with maroon 

and crimson being the most common plant colours. Flowers range from green to 

golden in colour. Deep crimson varieties tend to be very outstanding when in full 

bloom. Stems are usually longitudinally grooved. Grain amaranth plants are dicots 

plants with thick, tough stems similar to those of sunflowers. The leaves thin stalks 

and differ in size and colour. These are alternate, usually simple, with entire margins 

and diverse markings. Small green flowers are borne in dense, elongated clusters, 

usually on the branch tips. They are borne in spikes or plumes and are white, green, 

pink or purplish in colour. Seeds are very small and up to 3000 seeds weigh one gram. 

They are shiny black, dark red or cream in colour. 

1.4.2 Agroecology 

The land suitability analyses indicated that amaranth is highly suitable across South 

Africa. The results indicated that there is about 8% of the land that is highly suitable 

(S1) for the production of amaranth. Moderately suitable (S2) land constitutes the most 

substantial proportion with 81% of the calculated arable land of South Africa (12 655 

859 ha) while marginally suitable (S3) constitutes 11% of calculated arable land 

(Figure 21). Amaranth is high suitable across South Africa in most cropping areas, 

even in the Western Cape, where the investigated crops had low suitability (Figure 

21). The observed suitability could be associated with the growth requirements of the 

crops that allow for its production even under marginal conditions. From field visits, 

farmers confirmed that amaranth is suitable and grow naturally in KwaZulu-Natal 

environments.  

In response to the projected warmer and drier climate conditions in the near future, 

amaranth yields are expected to decline by up to 10% across most of the Limpopo, 

Mpumalanga, Gauteng and Northwest provinces, including the northern regions of 

KwaZulu-Natal and Free State (Figure 22). In addition, yield declines of up to 30% 
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may occur in certain parts of the Limpopo and Northwest provinces. For the majority 

of KwaZulu-Natal and Eastern Cape, yield increases up to 10% were simulated, with 

larger improvements up to 30% in the western parts of the Free State and Eastern 

Cape provinces (Figure 23). 

 

 

Figure 21: Suitability map for amaranth production in South Africa computed using 
MCDA-AHP and OWA operators. [Source, South African Quaternary Catchments 
database, ( https://doi.org/10.6084/m9.figshare.13179881), in ArcGIS 10.5] 

 

https://doi.org/10.6084/m9.figshare.13179881
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Figure 22: Change in mean dry yield (as %) from present to near future for amaranth 

 

 

Figure 23: Change in mean dry yield (as %) near to distant future for amaranth 
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1.4.3 Drought tolerance 

Amaranth is reported to be one of the most drought-tolerant vegetable crops. It is a 

C4 plant and it is capable of using solar radiation and nutrients at high temperatures 

similar to sorghum and millets One trait that helps it in extremely dry conditions is an 

ability to wilt temporarily and then revive after rainfall occurs. The exposure of the plant 

to severe drought induces early flowering and stops the production of leaves. The 

physiological basis of drought-tolerance in amaranth reveals a high capacity of 

osmotic adjustment which guarantees that the plant can continue to function under 

severe drought stress conditions.  

1.4.4 Crop management 

1.4.5.1 Cultivars 

Amaranthus cruentus, A. hybridus, A. spinosus, A. caudatus and A. thunbergii, which 

are all indigenous to the country.   

 

1.4.5.2 Planting date 

Planting is done in September and October when the soil temperature is at least 18 

°C and after early weed growth has been controlled by tillage or a contact herbicide. 

When planted early, amaranth will start flowering after it has accumulated enough 

growth and heat units; when planted later, flowering is triggered by photoperiod (day 

length). 

Based on scenario analysis different planting date resulted in different responses to 

leaf number, leaf mass, leaf area index (LAI) and water productivity (WP) (Figure 24).  

• Early planting 01-September (1) favoured a high number of leaves (123). 

Contrary to this, late plantings (01-March) resulted in a low leaf number (89). 

• Results for leaf mass, LAI and WP showed an inverse relationship with leaf 

mass. The general observation was that late planting date gave the highest leaf 

mass, LAI and WP compared to early planting dates.  

• Planting date 01-March (7) and 01-December (4) gave the highest (1 324 g 

plant-1) and lowest (1 089 g plant-1) leaf mass, respectively. Planting in March 
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resulted in the highest LAI (2.53) and WP (0.41 g m-3) and while November 

planting had the lowest simulated values (1.90, 0.21 g m-3, respectively).  

 

Figure 24: The effect of planting dates on leaf number, leaf mass (g plant-1), leaf area 
index and water productivity (g m-3) on growth and development of amaranth. Planting 
date 1 through 7 correspond to the 1st of September (1), October (2), November (3), 
December (4), January (5), February (6) and March (7), respectively. 

1.4.5.3 Plant populations 

The ideal plant population depends on environment, cultivar and management, 

According to Maboko and Du Plooy plant population of either 16 or 25 plants/m2, 

harvested by cutting, increased production of amaranth, as a result of a reduced 

number of inflorescences and increased leaf area.  

Using a modelling approach, Kunene (2021) observed  

• a significant increase (P<0.05) in leaf number and LAI with increase in plant 

population. However, plant density did not affect leaf mass and water 

productivity. 
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• Optimum the leaf mass, LAI and WP were observed under medium plant 

density, 17.4 plants m2 

• Leaf mass was the highest (1193 kg ha-1) at medium plant density (17.4 plants 

m2) and the lowest (1165 g plant-1) at low (8.7 plants m2) plant density. At plant 

density, 26.1 plants m2, the mean leaf mass was 1173 g plant-1 

 

 

Figure 25: The effect of plant density (plants m2) on leaf number, leaf mass  
(g plant-1), leaf area index and water productivity (g m-3) on growth and development 
of amaranth 
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1.4.5.4 Fertilizer 

One of the essential elements, and one which participates directly as an indispensable 

requirement for normal plant growth, is nitrogen. High levels of nitrogen are essential 

for the regrowth of leaves after harvesting. To promote better regrowth, a top dressing 

of LAN (limestone ammonium nitrate, 28 kg) can be given at monthly intervals. 

Nitrogen will be the most limiting nutrient in most environments. Nitrogen requirements 

may vary from 50 to 200 kg N/ha and the requirement also differs, depending on the 

species. Plants can be fertilised by using cow manure at 6 t/ha as well as commercial 

fertilisers with a high nitrogen content. Higher yields are also obtained from plots 

fertilised with composted chicken manure, which has considerable quantities of 

nitrogen, a mineral that plays a key role in the development of the plant (especially 

leaf growth). A side dressing of compost is sometimes applied during active growth, 

especially if plants are allowed to go to seed. If nitrogen is used, around 18 to 36 

kg/acre, with the lower figure used after soya-beans or other legumes in a crop rotation 

system, the growth of vegetable amaranth is adversely affected by a soil pH of 5,3 and 

4,7. A soil with a pH of 6, 4 could produce high yields and if the plants are treated 

correctly it should be possible to harvest leaves every two weeks. Phosphorus and 

potassium can be applied at soil-test-recommended levels. 

1.4.5.5 Pest and disease  

Insect pests: There is a wide range of insects that attack amaranth in South Africa; 

various snout beetles, moth larvae, fleas, stinkbugs, aphids and blowflies. Tarnished 

plant bug and amaranth weevil are regarded as potentially significant insect pests of 

amaranth. The insect most likely to affect yields is the tarnished plant bug, a sucking 

insect which often reaches high populations in the seed head during the critical seed-

fill stage. Flea beetles damage the young leaf tissue. The adult amaranth weevil feeds 

on leaves, but the larval stage is more damaging because they bore into the central 

tissue of roots and occasionally stems, causing rotting and potential lodging. There 

are no synthetic insecticides labelled for amaranth, but various organic insecticides 

can be used, including certain pyrethrum and BT products.  

Fungal diseases: the most common disease infecting Amaranthus spp. are: 

Anthracnose caused by Colletritrichum gloesporiiodes. Symtoms: Necrotic lesions 
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on leaves; dieback of leaves and branches. Control: Avoid damaging plants and 

creating wounds for pathogen to enter; plant resistant varieties. Damping-off caused 

by Rhizoctonia spp. And Pythium spp. Symptoms: Poor germination; seedling 

collapse; brown-black lesions girdling stem close to soil line; seedling fail to emerge 

from soil. Control: Avoid planting seeds too deeply; do not plant seeds too thickly to 

promote air circulation around seedlings; do not over-water plants. Wet rot caused by 

Choanephora cucurbitarum. Symptoms: Water-soaked lesions on stems; lesions 

have hairy appearance due to presence of fungal spores; may cause loss of leaves. 

Control: Plant varieties resistant to disease; only use certified seed; do not plant crop 

densely. There are no fungicides labelled for amaranth. 

Nematode diseases: Amaranth is considered nematode tolerant and is thus 

recommended as a rotational crop to reduce nematode population for subsequent 

crops 

Virus diseases: Curly top virus disease, which is transmitted by the beet 

leafhoppers (Circulifer femellus). 

1.4.5.6 Weed control 

Despite amaranth being often categorised as a weed, it is affected by other weeds 

such as lambsquarter, redroot pigweed, kochia, cheatgrass during growth. Early 

weeds are controlled by tillage or a contact herbicide prior to planting the amaranth. 

Amaranth grows slowly during the first several weeks, so three or four cultivations may 

be needed during this period to control weeds (no selective herbicides are labelled for 

use with amaranth). Once amaranth gets to be 15 cm tall, it will begin growing rapidly, 

and its shade can outperform late emerging weeds.  

1.4.5.7 Harvesting 

Most amaranth cultivars grow rapidly and may be harvested from 30 to 55 days from 

sowing, when they reach a height of 0,6 m. Timing of harvest is not as straightforward 

as with the commodity crops. Management during harvest is a most critical stage in 

grain amaranth production. Without careful harvest techniques it is possible to lose 

most of the seed. Before harvesting can begin a killing frost must occur, followed by a 
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week of good drying weather to make the crop drier for harvest (there are no approved 

desiccants for amaranth). 

The plants are harvested by hand only. Young plants can be pulled up or cut six to 

eight weeks after sowing when they are about 20 cm tall. This is done in cases where 

seeds were broadcasted. Plants may be cut back to 15 cm to encourage lateral growth 

for successive harvesting. When the plants are harvested at regular intervals, start 

picking the leaves eight weeks after sowing or four weeks after transplanting. Small 

quantities of leaves can be harvested on a daily basis. In the case of large quantities, 

intervals of two weeks are recommended. Leaf production can be sustained by the 

removal of flowers. 

Leaves can be harvested in two ways: 

• Picking of individual leaves when these are the size of the palm of your hand. 

• Breaking off the leaves around the terminal growth tips of the stems. This is done by 

pulling one hand up towards the growth tip and breaking off the leaves with the other 

hand. Though amaranth can be harvested by hand, combine harvesters are also 

commonly used. A regular combine can be used if fitted with appropriately sized 

separator screens. When reel heads are used it may be helpful to remove several reel 

bats or raise the height of the reel. Row headers perform better at harvesting amaranth 

than reel heads do for combining amaranth. During harvest, if the stems and leaves 

are too wet, the seeds become sticky and adhere to the inside of the combine as well 

as the straw discharge. Shattering during the cutting process can also cause losses, 

so adjustment should be made to minimise shattering of the hands. Care should also 

be taken to balance against getting it combined before pre-harvest losses from lodging 

or seed shatter from wind occurrence. 

Grain harvesting 

Harvesting amaranth seeds is a basic process. Cut the seed heads just before these 

become dry and brittle. Lay the seed heads on a cloth or place them inside paper or 

cloth bags with the heads down and leave in the shade to finish drying. When the seed 

heads are dry, the seeds can be removed in several ways: 

• by rubbing gently with your hands (wearing gloves is recommended); 
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• by enclosing the seed heads between two cloths and treading on them without 

shoes on. 

• by beating the seed heads off a bag; or by beating them together over cloth. 

 

1.4.5 Nutritional Value 

Both the seeds and leaves of A. tricolor are known to contain protein of unusual high 

quality and are richer in vitamins and minerals than cereals. Amaranth leaves have 

protein content of 17-19% and have the advantage of having a more balanced 

composition of essential amino acids. Approximately 100 g of amaranth vegetable 

leaves cooked in the absence of oil makes up 45% of the daily vitamin A requirement. 

Amaranth has three times more vitamin C, niacin and calcium compared to other leafy 

vegetables like spinach. 

1.4.6 Food preparation – Amaranth breakfast cup (Serves 1) 

Ingredients 

½ cup amaranth seeds 

1 cup water  

A pinch of salt to taste (optional) 

1 Tbsp. sugar 

1 Tbsp. chopped mixed nuts 

½ cup chopped fruit 

Method 

1. In a heavy saucepan combine the amaranth and water and bring the mixture to 

a boil. 

2. Whisking or stirring occasionally, reduce the heat to low and continue to simmer 

for about 20 minutes, until the liquid is absorbed. 

3. Remove the pan from the heat and stir in salt (if adding) and sugar to attain 

preferred consistency. 

4. Divide the mixture among bowls and top with nuts and fruit. 
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Nutritional Value per serving 

Energy: 266 calories 

Total Carbohydrates: 41 g 

Total protein: 7.1 g 

Total fat: 7.9 g 

Fibre: 5.1 g 
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