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ABSTRACT 

 

There is a need to update and modernise methods used for design flood estimation in South 

Africa as many of the methods were developed more than 40 years ago and hence there are 

longer hydrological records to use in the updating of the methods. The original aim of this 

study was to develop an improved and refined regionalised Probabilistic Rational Method 

(PRM) for South Africa, and this objective was expanded to include the development of a 

Regional Index Flood (RIF) method and a comparison of the performance of the two 

approaches was undertaken.  

 

A critical aspect of regional flood frequency analysis is the identification of homogeneous flood 

producing regions. Both Region of Influence and Clustering approaches were investigated and 

forty-two relatively homogeneous flood producing regions were identified using clustering and 

manual adjustments. The mean annual flood (MAF) and 10% Annual Exceedance Probability 

C-value (C10)  for the  Rational Method coefficient were selected as scaling variables to produce 

growth curves for both methods and regionalised regressions were developed to estimate the 

scaling factors, and hence estimate flood quantiles, at ungauged sites in South Africa.  

 

In order to estimate design peak discharges at gauged sites, a number of probability 

distributions were considered and the Generalised Pareto distribution was determined as the 

best distribution to estimate design peak discharges at a national scale.  

 

The CT and RIF were developed both at a National and homogeneous Cluster scale and were 

assessed using the ratio of modelled versus observed flows, Nash Sutcliffe model efficiency 

(NSE), slope of regression, bias and root mean squared error (RMSE). When considering the 

ratio, bias and RMSE the models perform similarly, however the cluster based RIF model 

performed best when reviewing the NSE and the regression slopes and is therefore 

recommended for application in South Africa. 

 

In a pilot study, a structure for a website was developed to make available the data used in the 

project, the catchment attributes generated and the application of the methods developed in the 

study. News on advancements on the development of the tool will be available on the NFSP 

website (https://www.nfsp.co.za) 

https://www.nfsp.co.za/
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EXECUTIVE SUMMARY 

 

Engineers rely on design hydrological information for the design of hydraulic structures, such 

as dams, bridges and drainage culverts (Smithers and Schulze 2003). This information is often 

estimated at ungauged sites using models to estimate flood frequencies (Schulze et al. 2004, 

Smithers et al. 2015). No single Design Flood Estimation (DFE) method has been identified as 

the most appropriate method and, in many texts and manuals the use of a combination of these 

are recommended (e.g. Pilgrim and Cordery 1993, Alexander 2002, Chadwick et al. 2004, 

SANRAL 2013). In South Africa some of the recommended methods were developed outside 

of South Africa with little or no local assessment, and most of the recommended methods were 

developed prior to 1990. The development of new and updated methods can therefore benefit 

from the use of much longer observed data sets and new approaches used internationally. 

 

Two DFE approaches widely used international are the Probabilistic Rational Method (PRM) 

and Regional Index Flood (RIF). The Standard Design Flood (SDF) method developed by 

Alexander (2002) is a locally developed PRM. However, the method has been recommended 

for review in a number of studies (Görgens 2002, Smithers and Schulze 2003, Van Bladeren 

2005, Gericke 2010, Van Vuuren et al. 2013). Both Kjeldsen et al. (2002) and Haile (2011) 

applied the RIF approach in South Africa and showed the potential for implementation at a 

national scale. The RIF approach is also favoured over the PRM approach internationally as is 

evident from the recent exclusion of the PRM in the revised Australian Rainfall and Runoff 

guidelines (Rahman et al. 2015). 

 

Aims and Objectives of Project 

The aim of this project was to develop and assess the PRM and RIF approaches for the 

estimation of design flood quantiles within South Africa utilising the most recently available 

data, which required the fulfilment of the following objectives: 

(a) Collation and quality control of selected gauged flow data in South Africa. 

(b) Produce at-site flood frequency curves for selected stations. 

(c) Compilation of catchment descriptors database. 

(d) Identify and verify homogeneous flood producing regions. 

(e) Calibration of the Rational Method within homogeneous regions. 

(f) Regional flood model development. 
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(g) Assessment of the performance of the proposed methodology. 

(h) Develop a DFE utility for application of the newly proposed methodologies by design 

practitioners  

(i) Development of a RIF method for DFE and comparison of performance with the 

regionalised PRM developed. 

 

Hydrological Descriptors and Streamflow Data 

DFE methods requires a range of catchment descriptors to be determined for use in models. 

Considering the requirement of ease of application by practitioners, the following descriptors 

that are readily available, or simple to estimate, were selected for inclusion in the study: 

(a) outlet location, 

(b) outlet elevation, 

(c) catchment area (A), 

(d) catchment centroid, 

(e) catchment perimeter, 

(f) rainfall region, 

(g) rainfall seasonality (Rs), 

(h) catchment runoff percentage (Cro), 

(i) SCS soil classifications (SCS), 

(j) distance from the coast (Dc), 

(k) longest flow path (L), 

(l) length to centroid (Lc), 

(m) slope (S10-85, Sea, Sc), 

(n) time of concentration (Tc), 

(o) Areal Reduction Factor (ARF), 

(p) Mean Annual Precipitation (MAP), and 

(q) Design rainfall depths (DR2-100yr). 

 

The Department of Water and Sanitation (DWS) is the custodian of the flow monitoring 

network in South Africa and currently has 1 458 streamflow gauging stations within South 

Africa. The data was screened by considering a minimum record length of 20 years, after which 

a total of 383 stations remained and were utilised in the study. The stations are divided into 296 

river gauges and 87 synthetic dam inflow records generated by the DWS flood studies group. 
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Identification of a Parent Distribution Suitable for Use in South African FFA 

SANRAL (2013) and Van der Spuy and Rademeyer (2018) provide methods to undertake FFA 

and provide the most commonly used Parent Distributions (PD) in South Africa. The PDs can, 

however, provide large variances in flood estimates and hence the selection of the most suitable 

PD for use in South Africa is required for FFA. Graphical, Goodness-of-fit (GOF), model fit 

criterion and model uncertainty were used for the selection of the most suitable PD out of the 

five PDs evaluated: (i) General Extreme Value (GEV), (ii) Generalised Pareto (GPA), (iii)  

3-parameter Kappa (KAP3), (iv) Log Pearson Type III (LP3) and (v) Pearson Type III (PE3).  

 

The graphical methods favoured the GPA, KAP3 and LP3 distributions equally, with the GOF 

methods ranking LP3 as the most suitable method. Conversely, the GPA was ranked highest 

for the model fit criterion and displayed the least model uncertainty. Given the overall ranking 

of the PDs, the GPA was selected to be the most suitable PD for use in South Africa.  

 

Regionalisation 

Two approaches were considered to undertake the formation of the homogeneous regions: (i) 

Clustering, and (ii) Region of Influence (RoI). Using the RoI approach resulted in only 51% of 

the regions to be relatively homogeneous when considering a single parameter set, however, 

when combining two parameter sets, this increased to 71%. For the remaining 29% of sites, 

equivalent to 111 sites, homogeneous regions could not be formed using a RoI approach. 

Conversely, the Clustering approach was able to identify 42 relatively homogeneous clusters. 

Initial clustering was performed using the outlet location (Latitude and Longitude) and the 

distance from the coast (Dc). 

 

Model Development and Assessment 

A scaled growth curve approach (Dalrymple 1960) was used to develop both the CT, a revised 

PRM, and RIF models. The Mean Annual Flood (MAF) and 10% Annual Exceedance 

Probability C-value (C10) were used as the Scaling Factors (SF) to develop the unitless regional 

FFA and C-value curves respectively. Regressions were developed, using Catchment Area, 

Mean Annual Precipitation and distance from the coast as predictor variables, to estimate the 

SFs on a national and cluster scale, with the cluster based estimates outperforming the national 

estimates. 
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To assess the quantile estimation performance of the developed models a Jack-knife resampling 

approach was adopted, which iteratively hides a site from the development of the regressions 

and unitless regional curves and compares the hidden estimates to observed values. The 

performance statistics included the ratio of modelled versus observed design values, Nash-

Sutcliffe model efficiency (NSE), slope of regression, bias and root mean squared error 

(RMSE). When considering the ratio, bias and RMSE the models perform similarly, however, 

the RIF model performed best when including the NSE and the regression slopes and is 

therefore recommended for application in South Africa. 

 

Development of a DFE Utility 

In a pilot study, a structure for a website was developed to make available the data used in the 

project, the catchment attributes generated and the application of the methods developed in the 

study. News on advancements on the development of the tool will be available on the NFSP 

website (https://www.nfsp.co.za) 

 

https://www.nfsp.co.za/
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1 INTRODUCTION 

 

Engineers rely on design hydrological information for the design of hydraulic structures, such 

as dams, bridges and drainage culverts (Smithers and Schulze 2003). This information is often 

estimated at ungauged sites using models to estimate flood frequencies (Schulze et al. 2004, 

Smithers et al. 2015). The over- or under-estimation of design floods could lead to significant 

economic losses, loss of lives or under of over design of a structure, which results in loss of 

critical resources if under designed or a waste of capital resources if over designed. Local 

financial implications of flooding have been reported to be up to R1 billion in regions such as 

the Western Cape in 2008 by Holloway et al. (2010). Table 1.1 contains selected statistics of 

damage caused by recent flood events in South Africa. 

 

Table 1.1 Social and monetary flood damages of recent flooding events in South Africa 

Year Region Estimated Damage Reference 

2016 
KwaZulu-Natal 7 Deaths 

Davies (2017) 
Western Cape 10 000-15 000 people displaced 

2011 

Northern Cape R50 Million 

Shiceka (2011)  North West R6 Million 

KwaZulu-Natal R300 Million 

2008 Western Cape R1 Billion 
Holloway et al. 

(2010)  

 

Rahman et al. (2009) identified that in 1985 the estimated cost of projects involving the 

determination of design floods for small to medium sized rural catchments was approximately 

AU$ 250 million per annum in Australia. This was estimated to be the equivalent of AU$ 600 

million (approximately R4 billion) in 2009 (Rahman et al. 2009). Stedinger and Griffis (2008) 

noted that the death toll caused by floods in the United States is approximately 140 per annum, 

with a financial cost of US$ 6 billion annually, excluding recent events such as Hurricane 

Katrina. 

 

Design Flood Estimation (DFE) techniques can be broadly categorised as analysis of 

streamflow data or rainfall based methods (Smithers and Schulze 2003), as indicated in Figure 

1.1. Streamflow analysis uses statistics of observed floods to derive estimation techniques such 
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as flood envelopes or empirical formulae. Alternatively, Flood Frequency Analysis (FFA) can 

be performed to fit a parent distribution to the observed data. Rainfall based methods use design 

rainfall and rainfall-runoff models to estimate design floods, which range from event-based 

models, which utilise design rainfall as input, to the use of continuous simulation modelling. 

 

 
Figure 1.1 Design flood estimation methods (after Smithers 2012) 

 

No single DFE method has been identified as the most appropriate method and, in many texts 

and manuals, the use of a combination of these are recommended (eg. Pilgrim and Cordery 

1993, Alexander 2002, Chadwick et al. 2004, SANRAL 2013). When estimating design floods 

for a site, although several methods might be applicable, they may produce vastly different 

results, which poses the practitioners with the dilemma of which results to use. Pilgrim (1989) 

identified the following four requirements of a DFE method to ensure the selection of the best 

possible approach to DFE: 

(a) needs to be based on observed flood data, 

(b) needs to be simple, lack ambiguity and have familiarity in its application, 

(c) should be probabilistic rather than deterministic, and 

(d) should incorporate regional differences in hydrological responses. 
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Where adequate observed flood data are available FFA is the recommended approach and can 

be implemented locally or regionally. Even if flow data are available at the site of interest, the 

augmentation of at-site information can be achieved through applying Regional Flood 

Frequency Analysis (RFFA), which can substantially improve the accuracy of the frequency 

analysis (Kjeldsen et al. 2014, Rahman et al. 2019).  In the UK and Europe, the use of 

regionalised approaches to flood frequency analysis is widely adopted (Castellarin et al. 2012). 

For ungauged sites, statistical approaches include regional methods (e.g. index flood method), 

direct regional regression of quantiles, and regional regression of distributional parameters 

(Aronica and Candela 2007) 

 

For RFFA homogeneous regions need to be identified based on contiguous fixed regions, non-

contiguous fixed regions, or on catchment and hydrologic similarity (Gado and Nguyen 2016). 

A region can have a fixed, common boundary for all sites within it, or the region can be flexible 

and be formed around the ungauged site of interest (Rahman et al. 2019). There is no clear 

consensus on the best method of regionalisation in hydrology (Oudin et al. 2008, He et al. 

2011, Blöschl et al. 2013) and is dependent on region and climate (Razavi and Coulibaly 2013), 

but spatial proximity has been found to offer the best solution for regionalisation (Merz and 

Blöschl 2005, Oudin et al. 2008).  

 

The index flood-based procedure developed by Hosking and Wallis (1993, 1997) and which 

utilises L-moments is a robust procedure and has been applied in a number of studies.  A cluster 

analysis of site descriptors is used to identify potential homogeneous regions, which allows for 

independent testing of the at-site data for homogeneity. Methods based on L-moments are used 

for frequency estimation, screening for discordant data and testing clusters for homogeneity 

(Hosking and Wallis 1993, 1997). The Index Flood method has been successfully applied in a 

number of studies including the UK Flood Estimation Handbook (Kjeldsen et al. 2008), South 

Africa (HRU 1972, Kovács 1988, Van Bladeren 1993, Mkhandi and Kachroo 1997, Kachroo 

et al. 2000, Mkhandi et al. 2000, Kjeldsen et al. 2001, 2002, Görgens 2007, Haile 2011) and 

Australia for data poor regions (Rahman et al. 2015) 

 

Where insufficient streamflow data are available for FFA, design rainfall with event-based 

methods are commonly used for DFE. The most widely used rainfall based method for DFE in 

small to medium sized catchments is the Rational Method (RM) (Hodgkins et al. 2007), which 

was originally developed by Mulvaney (1850, cited by Stephenson 1981, Shaw 1994, 
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Thompson 2007). The RM relies on the subjective estimation of a runoff coefficient (C-value) 

to estimate a design flood event. Van Vuuren et al. (2013) performed a survey of the DFE 

methods used in South African practice and, although the number of responses (35) was 

limited, the results provide valuable insight into the methodologies adopted in practice. The 

survey was circulated at several DFE related courses and conferences, with respondents 

varying in qualification and experience. It was found that the deterministic methods, and in 

particular the RM, is still the most widely used DFE method applied in South Africa. 

Deterministic methods, however, assume that the T% Annual Exceedance Probability (AEP) 

design rainfall will produce the T% AEP design flood event, which has been identified by Ben-

Zvi (1989), Pilgrim (1989) and Alexander (2002), to mention a few, as being incorrect as a 

number of additional factors, such as antecedent soil moisture, have a significant impact on 

catchment responses during extreme rainfall events. 

 

Several modifications have been made to the RM in attempts to reduce the deterministic nature 

of the model. These modifications range from the development of modified runoff coefficient 

tables (Caltrans 2006, Kasserchun 2008) to the development of probabilistic approaches to the 

use of the RM, such as the Probabilistic RM (PRM) (Pilgrim 1989) in Australia and the 

Standard Design Flood (SDF) (Alexander 2002) in South Africa. Many texts recommend 

maximum (approximately 15 km2) and minimum catchment areas when applying the 

deterministic RM (Caltrans 2006, Kasserchun 2008, SANRAL 2013). Pegram (2003) 

investigated the use of a Modified Rational Method (MRM) for catchments ranging from 100 

to 100 000 km2. Young et al. (2009) determined the RM C values for 72 gauged catchments in 

Kansas and identified that the C values did not exhibit dependence on the catchment areas, 

which further supports the use of the method for catchments exceeding 15 km2. 

 

Pilgrim (1989) recommends the use of probabilistic methods rather than deterministic methods 

for DFE. Probabilistic methods derive a direct link between the T% AEP design rainfall and 

the T% AEP design flood event. Pilgrim (1989) developed a PRM for Australia, which was 

included in the 1987 Australian Rainfall and Runoff (ARR) guide for flood estimation (Pilgrim 

2001) and became a widely recognised method for flood estimation in Australia. Probabilistic 

methods are generally not limited by catchment sizes and are recommended for large ranges of 

catchment areas. The latest revision of the ARR (Rahman et al. 2019) has, however, 

recommended an alternative approach based on a RFFA which yields improved results.  
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In the South African context, the SDF method developed by Alexander (2002) is a locally 

developed PRM. However, the method has been recommended for review in a number of 

studies (Görgens 2002, Smithers and Schulze 2003, Van Bladeren 2005, Gericke 2010, Van 

Vuuren et al. 2013). 

 

Görgens (2002) found that when estimating the 2% AEP floods the SDF estimates could be up 

to 210% of the observed estimates. In the development of the SDF, Alexander (2002) does 

state that conservative “upper envelope” coefficients were derived, which could cause the over-

estimation, but are within the uncertainty levels related to hydrological estimation. Smithers 

and Schulze (2003) expressed the need to assess the SDF method and provide further 

refinement. Van Bladeren (2005) proposed modifications to the SDF method, but in the C5 

secondary drainage region these only resulted in improved estimates in 26% of the catchments 

assessed. Gericke (2010) reviewed the SDF method and found that the SDF over-estimated 

design floods by up to 230% in the DWS C5 secondary drainage region. Gericke (2010) also 

determined correction factors for the SDF method. The corrected SDF method provided the 

most accurate results in the majority of the study area (Gericke 2010). The ratios of calibrated 

SDF:FFA ranged between 0.85 and 1.15, and resulted in a major improvement on the standard 

SDF results. Van Vuuren et al. (2013) identified inconsistencies in the estimation of catchment 

parameters during the development of the SDF as one of the potential problems that needs 

further research and refinement. 

 

For the SDF method, Alexander (2002) performed a subjective regionalisation based on the 

DWS drainage regions and climatic conditions. Smithers and Schulze (2003) and Van Bladeren 

(2005) both recommend that a more rigorous statistical based approach to regionalisation be 

adopted. Other attempts at regionalisation for floods in South Africa have been performed by 

HRU (1972), Kovács (1988), Mkhandi et al. (2000), Kjeldsen et al. (2001) for the KwaZulu-

Natal province and Haile (2011) but, with the exception of HRU (1972), have not been widely 

adopted for local use. The above highlight the need for a review of the SDF or the development 

of a new DFE approach for implementation in South Africa. 

 

Calitz (2016) developed a PRM for primary DWS Drainage Regions A, C and U in South 

Africa and successfully regionalised the flood distributions in ten homogeneous regions, which 

were used to derive PRM C value relationships for the estimation of the design floods. 
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From the above, the original aims of this study was to develop an improved and refined 

regionalised PRM for South Africa, and this objective was expanded to include the 

development of a Regional Index Flood (RIF) method and a comparison of the performance of 

the two approaches was undertaken. Specific objectives include the following: 

(a) Collation and quality control of selected gauged flow data in South Africa. 

(b) Produce at-site flood frequency curves for selected stations. 

(c) Compilation of catchment descriptors database. 

(d) Identify and verify homogeneous flood producing regions. 

(e) Calibration of the Rational Method within homogeneous regions. 

(f) Regional flood model development. 

(g) Assessment of the performance of the proposed methodology. 

(h) Develop a DFE utility for application of the newly proposed methodologies by design 

practitioners  

(i) Development of a RIF method for DFE and comparison of performance with the 

regionalised PRM developed. 

 

In this report Chapter 2 contains a review of literature on regionalisation for DFE, the general 

methodology is outlined in Chapter 3 and is followed by the development of a national 

parameter database in Chapter 4 and streamflow data used in the study is summarised in 

Chapter 5. The identification of the most suitable probability distribution for FFA in South 

Africa is detailed in Chapter 6. Chapter 7 contains details the regionalisation done for FFA and 

the model development and results of the application are reported in Chapter 8. The 

development of the draft design flood estimation utility is summarised in Chapter 9 and 

provides a link for users to follow the development of the utility. The study is discussed in 

Chapter 10 which includes conclusions and recommendations for future research. 
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2 REVIEW OF REGIONALISATION METHODS FOR DESIGN 

FLOOD ESTIMATION  

 

The reasoning for using a regional model is to have more reliable design events by 

supplementing at-site data with data from neighbouring or hydrologically similar catchments 

(Kjeldsen et al. 2014). A  Regional Flood Frequency Analysis (RFFA) requires the 

identification of hydrologically homogeneous regions, and the application of a regional 

estimation method within each delineated homogeneous group (Gado and Nguyen 2016). 

 

RFFA generally requires two steps. The first step is the identification of hydrologically 

homogeneous regions where the standardised flood frequency curves are similar and can be 

combined to improve estimates in the region. The second step is the application of the regional 

method in the regions (Gado and Nguyen 2016).   

 

2.1 Formation of Regions 

 

Contiguous fixed region, non-contiguous fixed region, and hydrologic neighbourhood type are 

approaches used for regionalisation (Gado and Nguyen 2016). Geographical locations and/or 

administrative and political boundaries have traditionally been used for regionalisation and 

more recent techniques include cluster analysis (e.g. Tasker 1982), discriminant analysis (e.g. 

Wiltshire 1986) and discordancy measures (e.g. Hosking and Wallis 1993), all of which require 

subjectivity in region formation and are dependent on the similarity measures and classification 

techniques employed (Ilorme and Griffis 2013, Gado and Nguyen 2016). Hydrological 

homogeneity is generally determined by statistical homogeneity (Ilorme and Griffis 2013). In 

order to overcome the subjectivity involved, Ilorme and Griffis (2013) introduced a new 

statistical metric to identify physically discordant sites and a new methodology to identify the 

physical attributes that are the most indicative of extreme hydrologic response. Sites which 

were both hydrologically discordant, as determined by the Hosking and Wallis (1993) H-test, 

and physically discordant, determined using principal component analysis performed on all 

available physical variables, were discarded from a region. A combination of cluster analyses, 

principal component analyses, canonical correlation analyses and multiple discriminant 

analyses applied to flood statistics and physical variables were used as an intermediary step to 

identify the most relevant physical variables to use in a cluster analysis for the regionalisation 
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process (Ilorme and Griffis 2013).  When this approach was compared to physically-based 

regionalisation procedures typically employed in practice, it resulted in more homogeneous 

regions and more efficient  quantile estimation at ungauged sites and also enabled the flood 

regime and estimated quantiles to be inferred at sites outside the extent of the area used for 

model development (Ilorme and Griffis 2013). 

 

When performing regionalisation, it is necessary to determine what information is best 

transferred, how to transfer the information and what catchments are used to derive the 

information. The selection of catchments to use is generally based on spatial proximity or 

hydrological similarity, which are often based on catchment descriptors (e.g. catchment size, 

land use, geology, elevation, soil characteristics as well as climate variables such as MAP)  as 

surrogates for hydrological response (Merz and Blöschl 2005).  However, a number of studies 

have shown that catchment descriptors are not necessarily a good indicator of hydrological 

response from a catchment. 

 

The formation of regions aims to group hydrologically similar catchments, using either fixed 

regions or varying regions. Conventional regionalisation techniques form groups of fixed 

regions that only have an interdependence with the catchments within their respective regions 

(Burn 1990). However, Burn and Goel (2000) investigated the use of overlapping fixed regions 

in areas with limited hydrological data availability with promising results.  

 

From a review of studies in the literature to approaches to regionalisation, Ridolfi et al. (2016) 

identify fixed region and region of influence as the most widespread approaches to 

regionalisation. However, there is no clear consensus on the best method of regionalisation in 

hydrology (Blöschl et al. 2013). Similarly, both Oudin et al. (2008) and He et al. (2011) 

concluded that no single method was the best solution to regionalisation, but studies have 

shown the need to improve both the understanding and quantification of catchment 

hydrological responses (He et al. 2011).  

 

Rahman et al. (2012) noted that the formation of regions can be performed on both geographic 

or attribute space proximity, indicating that geographic proximity may not equate to 

hydrological similarity. This was also identified by Dalrymple (1960) who highlights that 

within a single state in the United States there may be a number of homogeneous flood 

producing regions. However, these regions may be grouped across states and could potentially 
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lead to pockets of homogeneous regions spread across a large area. Non-contiguous 

regionalisation has also been adopted in the UK (Robson and Reed 1999, Kjeldsen et al. 2008). 

 

Rahman et al. (2012) found that when considering regionalisation using the attribute space 

approach the regional placement of an ungauged catchment may be difficult, however, the 

catchment can still be placed in a regional grouping based on the attribute space locality. Merz 

and Blöschl (2005) performed a comparison between the use of geographic and attribute space 

for use in regionalisation and found that the model which produced the most accurate results 

was when a combination of the geographic and attribute variables were used to form the 

regions. 

 

Rao and Srinivas (2008) list the following common approaches to regionalise catchments 

which are grouped according to space and regional definitions, as illustrated in Figure 2.1: 

(a) index flood method, 

(b) Method of Residuals (MOR), 

(c) Canonical Correlation analysis (CCA), 

(d) Region of Influence (RoI), 

(e) hierarchical, 

(f) cluster analysis, and 

(g) geostatistical methods. 

 

 
Figure 2.1 RFFA methods used in the formation of regions (after Rahman et al. 2012) 

 

The index flood method has been included as a regionalisation method as an index flood based 

method requires the identification of homogeneous regions, as presented by Langbein 
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(Dalrymple 1960). A number of RFFA studies that have been performed in Southern Africa 

based on different grouping regions.  (e.g. HRU 1972, Kovács 1988, Mkhandi and Kachroo 

1997, Mkhandi et al. 2000, Kjeldsen et al. 2001, Alexander 2002, Kjeldsen et al. 2002, Görgens 

2007, Haile 2011).  The majority of these regionalisation studies use regions identified in 

previous studies (HRU 1972, Kovács 1988) as a base or an initial regionalisation scheme. HRU 

(1972) and Kovács (1988) performed hydrological analysis on available data sets and derived 

dimensionless 1-h unit hydrographs and Franco-Rodier K values, respectively. These 

parameters were then utilised in conjunction with physiographical maps to manually delineate 

homogeneous flood regions. A number of studies have recommended that the number of 

regions be increased to accommodate for the hydrological diversity of South Africa (Van 

Bladeren 2005, Gericke 2010, Smithers 2012, Van Dijk et al. 2013). Hosking and Wallis (1997) 

identifies that a balance between the number of stations in a region or clusters must be found, 

as clusters that are too large may bias the data set, whereas too small a cluster may add little 

benefit over at-site FFA. 

 

The MOR, Hierarchical and CCA methods are not currently adopted in practice, nor have they 

been tested within Southern Africa and hence only brief descriptions of these methods are 

provided, with the remaining methods described in further detail in the following sections. 

 

2.1.1 Index flood 

 

Dalrymple (1960) describes the methodology for Index Flood regionalisation and divides the 

approach into two distinct parts: 

(a) the development of a dimensionless scaled growth curve for a hydrologically 

homogeneous region, which relates scaled at-site flood peaks to exceedance probability 

or return period, and 

(b) determining relationships between catchment descriptors and the scaling variable used, 

e.g. the Mean Annual Flood (MAF). 

 

The dimensional growth curve is derived by scaling the at-site values by an index flood. The 

scaling in the original Index Flood approach used the MAF and another commonly used index 

flood is the Median Flood (MEF) (Robson and Reed 1999, Kjeldsen et al. 2001, 2002, Nobert 

et al. 2014). 
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In terms of the Index Flood method, the approach groups at-site growth curves that have similar 

slopes or steepness. The homogeneity testing method uses the ratio between the 10% AEP and 

the MAFs as a slope and tests whether the range of slopes can be attributed to chance within 

the population. Dalrymple (1960) used the standard deviation of the Gumbel (GUM) 

distribution to estimate whether the variations were due to natural chance. Additional division 

of the population may be required should the range exceed two times the standard deviation, 

which was used as the homogeneous limits.  

 

The growth curve is used as shown in Equation 2.1, whereby the desired T% AEP flood event 

(QT) is related to the index flood (QIND) by means of a growth factor (GFT). Alternatively, a 

parameter estimation approach can be followed where the scaled regional descriptive statistics 

are estimated and which are used to estimate a site specific statistical growth curve (Rahman 

et al. 2015). 

 

 QT = QIND  x GFT (2.1) 

 

Relating the index flood to catchment descriptors enables the user to estimate the index flood 

at an ungauged site. The Index Flood method has been successfully applied in a number of 

studies including the UK Flood Engineering Handbook (Kjeldsen et al. 2008), South Africa 

(HRU 1972, Kovács 1988, Van Bladeren 1993, Mkhandi and Kachroo 1997, Kachroo et al. 

2000, Mkhandi et al. 2000, Kjeldsen et al. 2001, 2002, Görgens 2007, Haile 2011) and 

Australia for data poor regions (Rahman et al. 2015). A number of these studies adopted the 

estimation procedure as shown in Equation 2.1, but relied on more statistically robust methods 

than the method described by Langbein (Dalrymple 1960) for the identification of 

homogeneous regions. 

 

2.1.2 Method of residuals 

 

Choquette (1988) describes the MOR as a regionalisation method whereby a regression for the 

entire set of available records is performed as an initial step. Thereafter the residuals, i.e. the 

difference between the estimated flows calculated from the regressions and the actual flows, 

are investigated to identify any regions where consistent over- or under-estimation occurs. The 

regions that are deemed to be of similar over- or under-estimation are then isolated and the 

process is repeated on the separated regions until no further refinement can be achieved. 
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Thomas and Benson (1970), Glatfelter (1984) and Choquette (1988) are some of the studies 

that have used the MOR approach. 

 

2.1.3 Canonical correlation analysis 

 

GREHYS (Groupe de recherche en hydrologie (1996) provide an outline of the CCA method 

developed by Cavadias (1990), which is described as a multivariate statistical method used to 

reduce the dimensionality of linear dependence problems in two groups of variables. The 

hydrological parameters include quantiles or statistical information, and the catchment 

parameters. Ribeiro-Corréa et al. (1995), Cavadias et al. (2001), Ouarda et al. (2001) and 

Tsakiris et al. (2011) are some of the studies that used the CCA. 

 

2.1.4 Hierarchical 

 

Gabriele and Arnell (1991) proposed a hierarchical regionalisation approach for fixed regions. 

The approach assumes that growth curve parameters of a higher order require a larger set of 

donor catchments to improve the accuracy of the estimates. This was achieved by sub-dividing 

regions for estimation of the different order parameters.  

 

2.1.5 Region of influence 

 

Burn (1990) deviated from conventional fixed regions methods and details the RoI approach 

which produces a unique region for each catchment or station that is being assessed. The 

development of the RoI approach has also been attributed to Acreman (1987) and Acreman 

and Wiltshire (1987). The approach groups the regions based on a Euclidian distance (Djk), 

with the aim being to minimise the combined distance between p number of parameters (Ci) of 

different sites (j and k), be it geographical or attribute related. The Euclidian distance is 

estimated using Equation 2.2 

 

 𝐷𝑗𝑘 = √∑ (𝐶𝑗
𝑖 − 𝐶𝑘

𝑖 )
2𝑝

𝑖=1  (2.2) 

 

The region requires a threshold distance (THL), which provides an upper bound allowable 

distance to be accepted. Burn (1990) highlighted the importance of selecting an appropriate 
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THL as it affects the number, size and homogeneity of the proposed regions. Considering that 

the donor sites will not all be equally close in Euclidian measure to the site being considered, 

a weighting factor between sites j and k (WFjk) is proposed by Burn (1990) which considers a 

Djk  based weighting, as shown in Equation 2.3. 

 

𝑊𝐹𝑗𝑘 = 1 − (
𝐷𝑗𝑘

𝑇𝐻𝐿
)

𝑛

 (2.3) 

 

The value of WFjk can thus vary between zero and one. The n value can be used to control the 

rate of decreased influence based on the distance measure. Eng et al. (2005) investigated the 

use of an alternative approach whereby the number of closest stations was predetermined 

which, in some instances, allows for stations of a distance in excess of the initial THL to form 

part of the region. Robson and Reed (1999) recommend as a rule of thumb that the record 

length of the donor sites be five times the required AEP being estimated, i.e. a 1:20 year (5% 

AEP) flood estimate requires a donor set that has a combined record length of at least 100 

years. This is referred to as the 5T rule and, if it is not possible to achieve a data set of five 

times the return period, then a minimum of two times (2T) is recommended. Zrinji and Burn 

(1996) provide a revised RoI approach, combining it with the Hierarchical approach which 

uses a number of RoIs per catchment being investigated, depending on the variable being 

estimated. Haddad et al. (2015) compared the RoI approach to fixed region approaches in 

Tasmania and identified that the RoI methods generally presented improved results over the 

fixed region approaches. The methodology adopted by Haddad et al. (2015) is detailed by 

Haddad et al. (2012) and Reis et al. (2003). 

 

Noteworthy studies that use the RoI approach for the formation of homogeneous regions are 

the UK FEH (Robson and Reed 1999, Kjeldsen et al. 2008) and the ARR Regional Flood 

Frequency Estimation (RFFE) (Rahman et al. 2015), both of which have been adopted in 

national DFE guidelines. 

 

2.1.6 Cluster analysis 

 

Cluster analysis is one of the methods that does not require the restriction of contiguous 

regions. Both Hosking and Wallis (1997) and Blöschl et al. (2013) regard it as the most 

practical method of forming regions. Cluster analysis groups catchments that have similar 
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characteristics and hence is performed in the attribute space. Each cluster will therefore contain 

catchments with similar characteristics, which emphasises the importance of the selection of 

similarity parameters and their respective weighting. Cluster analysis aims to minimise the total 

Euclidian distance for the entire study by ensuring that the Euclidian distance for each region 

is minimised. The method can thus be seen as a fixed region approach to the RoI. 

 

Clustering aims to group stations with stations with similar traits into clusters.  Two commonly 

used approaches are hierarchical and k-means, both of which require the selection of an 

appropriate number of clusters (k). Hierarchical clustering initially assumes that each station 

being considered is its own cluster, after which clusters are grouped by Euclidian distance until 

only a single overall cluster remains. Due to the Euclidian distances remaining constant 

between sites the process is easily reproducible.  

 

Alternatively, k-means clustering requires the definition of the number of clusters prior to 

undertaking the division into clusters, the initial cluster centroids are randomly generated and 

iteratively refined until no further reduction in the overall Euclidian distance is achieved. Due 

to the random generation if the initial centroids the results of k-means clustering can vary 

between simulations. It is therefore common practice to use clusters defined through 

Hierarchical clustering as an initial estimate of the centroids, followed by refining the clusters 

through k-means clustering. 

 

Hosking and Wallis (1997) noted that the results from the clustering analysis should not be 

considered final and that subjective adjustments may improve the homogeneity of the identified 

regions, and listed potential subjective adjustments that can be made. Wiltshire (1986) used an 

iterative relocation algorithm to adjust the clusters, which iteratively increases or reduces the 

number of clusters and adjusts the included stations to achieve the lowest total Euclidian 

distance. Alternatively, Smithers (1998) and Smithers and Schulze (2003) used a more 

subjective approach to refine extreme rainfall clusters and Kjeldsen et al. (2002) recommends 

further investigation into the use of clustering for the formation of homogeneous regions in 

South Africa. 

 

The JPV method (Görgens 2007) uses a framework that is similar to both Clustering and RoI 

approaches. The stations used for the regionalisation were grouped based on the existing veld-

type regions (HRU 1972) and the Kovàcs (1988) RMF K-regions, which in the initial 
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estimation are treated as fixed regions. Should a practitioner wish to perform a more detailed 

analysis, Görgens (2007) suggests an approach similar to the RoI and provides the relevant 

catchment descriptors for use in a “narrow” pooling exercise which allows the selection of the 

most appropriate donor sites. 

 

2.1.7 Geostatistical methods 

 

Kottegoda and Rosso (2008) describe the function of spatial correlation as a technique for 

relating measured geographical data and using this relationship to estimate the variables at 

unmeasured locations. Tools such as a correlation function or a semi-variogram are used to 

form the required relationships.  

 

Pilgrim (1989) used Kriging analysis methods, attributed to DG Krige by Kottegoda and Rosso 

(2008), which is a form of spatial correlation multivariate geostatistical analysis and is widely 

accepted in Australia. In the PRM adopted methodology in Australia, Kriging was used as the 

preferred geostatistical method for application.  

 

In the South African context, Lynch (2004) investigated the use of Kriging, Inverse Distance 

Weighting (IDW), Thiessen polygons and regression techniques for the development of a 

national Mean Annual Precipitation (MAP) raster database. Lynch (2004) adopted the use of 

Geographically Weighted Regressions (GWR) due to the inclusion of further explanatory 

variables for use in the technique. 

 

2.1.8 Performance 

 

Merz and Blöschl (2005) evaluated the predictive performance of various flood regionalisation 

methods in 575 ungauged catchments in Austria and found that spatial proximity is a 

significantly better predictor of regional flood frequencies than catchment attributes and a 

combination of spatial proximity and catchment attributes yielded the best predictive 

performance. When comparing a regression-based approach, an approach based on physical 

similarity and the spatial proximity approach to regionalisation, it was found that the spatial 

proximity, offers the best solution for regionalization (Oudin et al. 2008), confirming the 

findings by Merz and Blöschl (2005). 
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Generally non-contiguous fixed region, and hydrologic neighbourhood type (RoI) 

regionalisation approaches provide more accurate flood estimation than contiguous fixed 

region approaches (Gado and Nguyen 2016). 

 

From a review of the literature in regionalisation in modelling, Razavi and Coulibaly (2013) 

conclude that variability in catchment physical attributes and climatic variability result in 

different performances for different regionalisation methods, but that generally spatial 

proximity and physical similarity have shown satisfactory performance in arid to warm 

temperate climate (e.g. Australia) and in cold and snowy regions (e.g. Canada), while spatial 

and regression-based methods have performed better in in warm temperate regions (e.g. most 

European countries).  

 

The performance of regionalisation using scaling of catchment area, RoI and canonical 

correlation analysis (CCA) approaches to regionalisation was assessed at 57 catchments in 

Québec, Canada and the results indicate that flood quantiles estimated using the scaling 

approach were more accurate and more robust than those estimated by the RoI or CCA methods 

(Gado and Nguyen 2016). 

 

2.2 Homogeneity Testing 

 

Homogeneity testing refers to the calculation of test statistics to validate the assumption of 

homogeneity for a grouping of donor catchments in a region or cluster. Hosking and Wallis 

(1993) provide test statistics that may be used during homogeneity testing, namely H and L-

moment Discordance (Di). The H statistics are derived using LMs (λr) and LM ratios (τr), of 

order r and the estimation procedures are detailed in Eqs 2.4-2.6 using an observation set X of 

length n, with an expected value E(X). 

 

 𝜆𝑟 =  𝑟−1  ∑ (−1)𝑗 (𝑟−1
𝑗

) 𝐸(𝑋𝑟−𝑗:𝑟)𝑟−1
𝑗=0  (2.4) 

  𝜏𝑟 =  
𝜆𝑟

𝜆2
, 𝑟 = 3, 4, … (2.5) 

  𝜏1 =  
𝜆2

𝜆1
 (2.6) 
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H, calculated using Eqs. 2.7 and 2.8, uses Monte Carlo simulations to create simulated 

homogeneous regions based on the Kappa distribution with regional record length weighted 

averaged LMs (𝜏�̅� ), which Hosking and Wallis (1997) use to emulate all distributions. H 

compares the observed weighted standard deviation (V) of the at-site (i) LM coefficient of 

variations (L-CV) (𝜏1
𝑖 ) with the mean (𝜇𝑉) and standard deviation (𝜎𝑉) of the L-CV of the 

simulated homogeneous regions. If the value of H is less than one, a region is considered to be 

homogeneous. A value between one and two is relatively heterogeneous and a value in excess 

of two is considered heterogeneous. The H statistic described below, however, does not provide 

insight into the homogeneity of individual sites within the proposed region. 

 

 V = 
∑ 𝑛𝑖(𝜏1

𝑖  − �̅�1)2
𝑘

𝑖=1

∑ 𝑛𝑖
𝑘
𝑖=1

 (2.7) 

 H = 
𝑉 − 𝜇𝑉

𝜎𝑉
 (2.8) 

 

Hosking and Wallis (1997) therefore, developed a discordancy measure, shown in Eqs  

2.9-2.11, as a means to screen the selected sites. Considering a group of n sites, the discordancy 

measure (Di) provides a parametric measure of relative proximity of an individual site, i, 

relative to the remaining sites by comparing the site specific LM vectors (Ui) with the regional 

mean matrix (Um) and the covariance matrix S. A site with a Di in excess of three is considered 

to be discordant. 

 

 Di = 
1

3
 (Ui – Um)TS-1(Ui – Um) (2.9) 

 Um = 
1

𝑛
∑ 𝑈𝑖

𝑛
𝑖=1  (2.10) 

 S = 
1

𝑛−1
∑ (𝑈𝑖 −  𝑈𝑚)𝑛

𝑖=1 (𝑈𝑖 − 𝑈𝑚)𝑇 (2.11) 

 

Kachroo et al. (2000) described a regional “graphical” homogeneity testing methodology used 

by Mkhandi et al. (2000) which, similar to the H statistics, relies on synthetically generated 

regions to test against. The simulated regions used by Kachroo et al. (2000), however, utilised 

the selected parent distributions rather than only the Kappa distribution. The “graphical” 

method identifies whether the regional t3 falls within the simulated maximum and minimum 

simulated values, and an additional more stringent check is to identify whether the historical 

data lies within the approximate 95% bounds, which are estimated using the standard deviation. 
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Kachroo et al. (2000) compared the proposed approach to that of Hosking and Wallis (1997) 

for twelve regions identified in Tanzania and found that the stringent “graphical” approach 

provided similar results. 

 

Viglione et al. (2007) compared some of the common homogeneity tests for RFFA, including  

H, the Bootstrap Anderson Darling (BAD) test (Scholz and Stephens 1987) and the Durbin and 

Knott test (Durbin and Knott 1972). It was suggested that the homogeneity testing be performed 

based on the location of a site and the L-moment t3 vs t4 plot. Where the t3
R value is less than 

0.23 the H measure is to be used for homogeneity testing, however, if t3
R is larger than 0.23, 

the bootstrap Anderson Darling test is to be used. The H measure was also noted for its 

performance and its extensive use in hydrology. 

 

2.3 Selection of an appropriate parent distribution 

 

Flood frequency analysis requires the selection and fitting of a probability distribution to an 

AMS of peak events (Stedinger et al. 1993), either graphically or analytically (Basson and 

Pegram 1994, Smithers and Schulze 2000, Alexander 2002, Smithers and Schulze 2003, 

Gericke 2010, SANRAL 2013, Van der Spuy and Rademeyer 2018). In order to perform FFA 

the following aspects need to be considered: 

(a) Selection of a parent distribution. 

(b) Selection of a parameter estimation method. 

(c) Validation of appropriateness of selections. 

 

The approach listed above has been adopted in this study, where a range of statistical measures 

are applied to judge the quality of distribution fits. Selection of a suitable distribution is a task 

that is often open to interpretation, even though there are numerous methods available to assess 

the quality of fit for different distributions. Similarly, validation of the appropriateness of the 

selected distribution is often difficult as multiple distributions may statistically fit the data but 

may appear less well suited when interpreted graphically and result in very different estimates 

of high return period floods. 
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2.3.1 Parent distributions  

 

The choice of distribution can have a considerable impact on the estimated peaks. For example, 

Alexander (2002) demonstrated that the design flood estimate of a 0.5% annual exceedance 

probability flood obtained using different distributions fitted to the same dataset could result in 

variations of up to 38%. For conducting flood frequency analysis in South African catchments, 

Alexander (1990, 2000) recommended using the Log-Pearson Type 3 (LP3) distribution. 

Gericke (2010) proposed that the best distributions for use in South Africa are the three 

parameter Log-Normal (LNO), LP3 and Generalised Extreme Value (GEV). Van der Spuy and 

Rademeyer (2018) describe the LNO, LP3 and GEV distributions as the most suitable 

distributions for FFA but provide no evidence to support these. Görgens (2007) used both the 

LP3 and GEV distribution in South Africa, simply stating that the methods are commonly used 

in practise, and no further motivation for their use is provided. Görgens (2007) found that the 

LP3 distribution showed significant variation in its estimation, whereas, the GEV provided 

improved results. In addition to these distributions, Haile (2011) found that the Generalised 

Pareto (GPA), LNO and Pearson Type 3 (PE3) distributions were the best suited distributions 

in South Africa. However, Haile (2011) only utilised 73 flow-gauging stations within South 

Africa, where the DWS currently has 1458 registered river gauges. Kjeldsen et al. (2002) found 

that the infrequent occurrence of very extreme events resulting from cyclone activity in the 

coastal region of KZN resulted in poor performance of standard distributions. However, for the 

inland region of KZN the Generalised Normal (GNO), PE3 and GPA distributions were all 

suitable candidates. Mkhandi et al. (2000) reviewed seven distributions and two parameter 

estimation methods in southern Africa and found that the most suitable distribution was PE3 

in 12 of the 13 regions considered, with LP3 being most suitable for the last remaining region. 

 

Internationally, numerous scientific studies have been undertaken to validate and substantiate 

the selection of suitable flood distributions, primarily in Europe, United States of America 

(USA), and Australia. Although the hydrological climates and responses vary significantly 

from prevailing conditions in South Africa, experience can still be drawn from the studies.  

 

Castellarin et al. (2012) compiled the first inventory of streamflow data and statistical methods 

used for FFA across Europe. The study compiled data received from 17 countries, which 

includes PD selection, FFA and regional FFA procedures. Across Europe, a number of different 

distributions are recommended, including: GEV, GPA, LP3, LNO, PE3, GUM, Weibull (WEI) 
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and Two Component Extreme Value (TCEV). Salinas et al. (2014) investigated the 

applicability of the GEV distribution as a pan-European distribution and found that the GEV 

cannot fully describe the differences in flood series characteristics between catchments. 

However, not enough statistical evidence was found to reject the hypothesis for general 

applicability of the GEV. Kjeldsen et al. (2017) tested the application of the four parameter 

Kappa (KAP) distribution at a regional scale in the UK, motivated by the fact that several of 

the commonly used three parameter distributions are special cases of the KAP distribution 

(Hosking 1994). Kjeldsen et al. (2017) proposed the application of a national KAP distribution, 

by reducing the KAP distribution to a 3-parameter distribution (KAP3) through estimation of 

a national shape parameter. The KAP3 improved the description of the regional distribution 

compared to both the GLO and GEV distributions. Given the high hydrological variability 

evident in South Africa, the use of distributions with increased flexibility may provide 

improved estimates. 

 

In the USA, two predominant studies focussed on the identification of a suitable distribution 

for design flood estimation. Benson (1968) details testing performed on six different 

distributions (LP3, GUM, Gamma (GAM), log-GUM, LNO, Hazen), these were tested at 10 

stations with record lengths ranging from 40 to 97 years. Recommendations of the methods 

were based on deviations between design flood estimates, as opposed to statistical methods. 

From the distributions reviewed, the LNO, LP3 and Hazen methods resulted in the smallest 

deviations and bias. The LP3 was, however, recommended based on popularity of use, the use 

of a skew parameter thus increasing its flexibility, and its rigorous mathematical backing. Six 

years later Beard (1974) tested eight distributions at 300 sites and the two distributions deemed 

to preform best were the LNO and LP3 with a regional skew (LPR). Apart from these studies 

there has been little further investigation into the selection of an appropriate PD in USA. 

Emphasis has rather been placed on improving the moment estimations for use with the LP3 

through the use of moment adjustments as presented by Cohn et al. (2013). 

 

South Eastern Australia presents the most climatologically similar region to South Africa. 

Haddad and Rahman (2008) investigated the performance of twelve distributions and fitting 

combinations at 18 sites in South-East Australia and concluded that GPA with the use of Linear 

moment (LM) fitting (Hosking 1990) (GPA-L) and the GEV with the use of LH-moments 

(LHM) (Wang 1997) (GEV-LH), a generalisation of LM (Wang 1997), fitting provided the 

best fits to the data, which was not consistent with the recommendations of the 1987 Australian 
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Rainfall and Runoff (ARR) manual (ARR 1987). Haddad and Rahman (2011) revisited the 

assessment of distribution selection in Tasmania to possibly modify the selection criteria. They 

considered seven distributions and identified that the most suitable model for use in Tasmania 

was the LNO distribution combined with Bayesian Markov Chain Monte Carlo (MCMC) 

fitting. The climate and hydrological responses in Tasmania are, however, different to 

conditions in most parts of South Africa. In the latest revision of the ARR guidelines, it is noted 

that the GEV and LP3 are reasonable initial choices for flood frequency analysis, and it is 

recommended that a single distribution is not prescribed due to the potential sampling 

variability of the relatively short record lengths (Rahman et al. 2019). In addition, it is 

recommended that a review of the data at a regional scale can be used to identify the best fit 

distribution through the use of an L-moment diagram (Rahman et al. 2019). 

 

2.3.2 Parameter estimation methods 

 

Some of the methods available for parameter estimation include: the Method of Moments 

(MM), LM (Hosking 1990), LHM (Wang 1997), Probability Weighted Moments (PWM) 

(Greenwood et al. 1979) and Maximum Likelihood procedure (ML) (R.A. Fisher 1912 as 

referenced in Aldrich 1997). In South Africa, Görgens (2007) used both the MM and PWM 

methods, whereas SANRAL (2013) and Van der Spuy and Rademeyer (2018) recommend the 

use of MM.  England et al. (2018) prescribes the use of MM in simple cases, where data are 

not censored, and where data censoring is present the Expected Moment Algorithm (EMA) is 

recommended. In Australia a number of studies were undertaken to identify both the best fit 

distribution and best fitting procedure. The most notable study was undertaken by Haddad and 

Rahman (2008), who reviewed twelve distribution/fitting combinations and the LP3, N, LNO, 

GUM, GEV and GPA were fitted using the MM, LM, LHM and Bayesian Maximum 

Likelihood (BML) fitting procedures and identified that the three top performing combinations 

are GPA-LM, GEV-LHM and LP3-BML. 

 

The method of L-moments (Hosking and Wallis 1993), detailed in Eqs. 2.4, 2.5 and 2.6, 

parameter estimation techniques have gained in popularity and proven successful locally and 

internationally (e.g. Pearson 1991, Vogel et al. 1993, Zrinji and Burn 1996, Mkhandi and 

Kachroo 1997, Kjeldsen et al. 2001, Smithers and Schulze 2003, Chen et al. 2007, Borujeni 

and Sulaiman 2009, Castellarin et al. 2011, Haile 2011, Hassan and Ping 2012, Rutkowska et 

al. 2016, Cassalho et al. 2018, Mostofi Zadeh and Burn 2019). In addition, the LM technique 
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is theoretically superior to the MM due to lower weighting being applied to the larger values 

within the dataset and LM are therefore more robust for use in the presence of high outliers.  

 

2.3.3 Validation of selections 

 

Selection of a distribution can be based on three types of assessment: (i) Goodness-of-Fit (GoF) 

tests, (ii) model selection criterion, and (iii) graphical methods. Based on the literature 

reviewed the most widely used approach for selection of distribution types in South Africa are 

graphical methods in isolation, whereas internationally graphical, GoF and model selection 

criterion are commonly applied in combinations.  

 

2.3.3.1 Graphical methods 

 

Graphical methods are often employed to identify the most suitable flood distributions. The 

simplest graphical test is the use of plotting positions for observed data on an at-site basis. The 

observed data is plotted against the calculated distributions to provide a graphical comparison 

of the distribution to the observed data. The plotting positions identified by DWS (Van der 

Spuy and Rademeyer 2018) and SANRAL (2013) are the Weibull, Blom, Gringörten, Cunane, 

Beard and Greenwood methods. SANRAL (2013) describe these in further detail. Bulletin 17C 

(England et al. 2018) proposes the use of the plotting positions described by Stedinger et al. 

(1993).  

 

Product Moment Diagrams (PMD) are an additional graphical measure that can be used; 

however, Vogel and Fennessey (1993) recommend the use of LM Ratio Diagrams (LMRDs) 

as developed by Hosking (1990) in favour of PMDs due to the LM being nearly unbiased. 

LMRDs have become a common method for the identification of best fit regional flood 

distribution and have been used by numerous authors for this purpose (e.g. Vogel et al. 1993, 

Zafirakou-Koulouris et al. 1998, Peel et al. 2001, Castellarin et al. 2012, Salinas et al. 2014, 

Kjeldsen et al. 2017). LMRDs are constructed by plotting the L-kurtosis (τ4) versus the L-skew 

(τ3).  

 

Predominantly the assessment of the most suitable distribution is undertaken using two 

methods: (i) plotting the mean of the LMs of the region, and (ii) plotting a best fit line and 
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comparing the result to the theoretical distributions for a set of standard 3 parameter 

distributions (GLO, GEV, GNO, LP3). Kjeldsen and Prosdocimi (2015) proposed a 

modification to the use of LMRD, referred to as KP test hereafter, by applying the assumption 

that τ3 and τ4 share a bivariate normal relationship, this allows for the derivation of a 90% 

confidence ellipse. The confidence ellipse identifies the suitable PDs for the estimated LMs, 

and a selection is then undertaken through the use of a Mahalanobis distance.  

 

2.3.3.2 Goodness-of-fit tests 

 

The purpose of a GoF test is to identify, in a statistical manner, the most suitable distribution 

for the data being fitted. Zeng et al. (2015) reviewed the Chi-squared (CS) (Pearson 1900), 

Kolmogorov-Smirnov (KS) (Massey 1951) and Anderson-Darling (AD) (Anderson and 

Darling 1952) GoF tests for use in flood frequency analysis considering the PE3, Uniform, 

GNO and Weibull distributions. Zeng et al. (2015) concluded that most powerful GoF tests for 

the PE3, GNO and Weibull are the AD, KS and AD. Haddad and Rahman (2008) applied two 

additional GoF tests, Cramer von-Mises (CvM) (Cramér 1928, von Mises 1928) and the 

Filliben Correlation Coefficient (FCC) test (Filliben 1975),. Laio (2004) tested the power of 

the AD, CS, CvM, KS, FCC and LM based GoF tests for the GUM, WEI, GNO, GEV, GAM, 

LNO, and LP3 distributions. For the GEV, GAM and GUM distributions the power of the GoF 

tests were consistently below 50%, whereas the AD and CvM had power exceeding 80% for 

the LP3 and LNO distributions. The variation in the power of the GoF tests can be attributed 

to the fact that the tests apply larger weighting to different components (tail, head or entire 

curve) of the distribution functions (Kottegoda and Rosso 2008) and it is therefore 

recommended that multiple GoF tests be considered simultaneously AD applies additional 

weighting to the tails of distributions, favouring the higher or lower observations, whereas CvM 

weights the centre of the distribution more heavily. Lastly KS can be considered an 

intermediate test between AD and CvM and weights the entire distribution more evenly. The 

GoF tests listed above are generally applied on an at-site scale, but when reviewing regional 

data, can be used to identify the distribution through identifying the percentage of sites that are 

accepted for each test. 

 

The Chi-Squared test, Eq. 2.12, is a measure of the difference between the observed (O) and 

the expected (E) frequencies of ordered observations (xi, …, xn) in a sample of size n. The KS 
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test indicated in Eq. 2.13 measures the GoF, in relation to a distribution with a parameter vector 

θ, through the maximum variance between the hypothetical (F(xi, θ)) and Empirical 

Distribution Functions (Fn(x)).  

 

 Χ2 =  ∑
(𝑂𝑖− 𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1  (2.12) 

𝐾𝑆 =  𝑚𝑎𝑥𝑥|𝐹𝑛(𝑥) −  𝐹(𝑥𝑖, 𝜃)| (2.13) 

 

Alternatively, quadratic statistics, Eq. 2.14, can be utilised, from which the AD and CvM, Eqs. 

2.15 and 2.16 respectively, are derived (Cramér 1928, von Mises 1928, Anderson and Darling 

1952). 

 

𝑄2 =  𝑛 ∫ [𝐹𝑛(𝑥) −  𝐹(𝑥𝑖 , 𝜃)]2Ψ(𝑥)𝑑𝐹(𝑥)
𝑎𝑙𝑙 𝑥

 (2.14) 

 𝐴𝐷 =  −𝑛 −  
1

𝑛
∑ [[𝐹(𝑥𝑖, 𝜃) − 

2𝑖−1

2𝑛
] +  (2𝑛 + 1 − 2𝑖)𝑙𝑛[1 −  𝐹(𝑥𝑖, 𝜃)]]𝑛

𝑖=1  (2.15) 

 𝐶𝑣𝑀 =  ∑ [𝐹(𝑥𝑖, 𝜃) −  
2𝑖−1

2𝑛
]

2

+ 
1

12𝑛

𝑛
𝑖=1  (2.16) 

 

where Ψ(𝑥) is a weighting function, which is 1 for CvM and [𝐹(𝑥𝑖 , 𝜃)(1 −  𝐹(𝑥𝑖, 𝜃))]−1 for 

AD. 

 

Hosking and Wallis (1993) also provide a regional GoF measure, Z, shown in Eq. 2.17. The 

test statistics Z is a measure of the difference between regional sample (𝑡4̅) and theoretical L-

kurtosis (𝜏4
𝐷), in relation to the standard deviation of theoretical L-kurtosis (σ4) estimated using 

Monte-Carlo simulations. An absolute value of less than 1.64 signifies a suitable distribution, 

and the distribution (Dist) with the lowest Z is often accepted.  

 

 𝑍𝐷𝑖𝑠𝑡 =  (𝑡4̅ −  𝜏4
𝐷𝑖𝑠𝑡) 𝜎4⁄  (2.17) 

 

The test relies on the assumption that the regional values used are from a homogeneous region. 
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2.3.3.3 Model selection criterion 

 

Laio et al. (2009) investigated the use of model selection criterion for use with flood frequency 

analysis, which was also adopted by Haddad and Rahman (2011). The criterion chosen were 

the Akaike Information Criterion (AIC, Eq 2.18) (Akaike 1974), second order AIC (AICc, Eq 

2.19) (Sugiura 1978), Bayesian Information Criterion (BIC, Eq 2.20) (Schwarz 1978), and a 

modified Anderson-Darling Criterion (ADC) (Laio et al. 2009). The ADC requires distribution 

dependent coefficients to be applied, however, these parameters have only been derived for 

seven of the more commonly used hydrological distributions and has therefore not been 

include. Model criterion consider relative fit of models to data by measuring the information 

lost in the process of fitting through the likelihood function (L(ϑ)). Models (j) are penalised for 

the number of parameters (p) utilised, and as such a lower value indicates a better model fit.  

 

 𝐴𝐼𝐶𝑗 =  −2𝑙𝑛 (𝐿𝑗(�̂�)) + 2𝑝𝑗 (2.18) 

𝐴𝐼𝐶𝑐𝑗 =  𝐴𝐼𝐶𝑗 +  
2𝑝𝑗

2+2𝑝𝑗

𝑛−𝑝𝑗−1
 (2.19) 

𝐵𝐼𝐶𝑗 =  −2𝑙𝑛 (𝐿𝑗(�̂�)) + ln (𝑛)𝑝𝑗 (2.20) 

 

The criterion are applied at an at-site level to identify the distribution that provides the best 

model fit per site. The at-site results are summarised at a regional scale by calculating the 

percentage of sites where each distribution provides the best fit providing an indication of the 

regional distribution. 

 

2.3.3.4 Model uncertainty 

 

In the application of FFA, it is generally assumed that the data being used, after pre-processing 

of the data, are free of errors. In contrast the model errors can be quantified and are represented 

by the error introduced by misrepresentation of the actual events by the fitted parent 

distribution. As such it is assumed that the sample data is accurate and that the selected 

distributions introduce uncertainty into the estimates, which can be determined. Typical 

approaches used to determine the uncertainty associated with distributions are, (i) Analytical 

methods (e.g. Kjeldsen and Jones 2006); (ii) Monte Carlo simulations (e.g. Silva et al. 2012); 

and (iii) Bootstrapping (e.g. Burn 2003). 
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Taylor approximations attempt to approximate non-linear functions with a linear function 

within a set of known parameters. The performance is linked with the degree of non-linearity 

of the function in question and a critical assumption for its use it that the known parameters are 

true reflections of the population parameters.  

 

Similarly, Monte Carlo (MC) simulations assume that the parameters estimated from the 

sample are a true reflection of the population parameters. However, instead of undertaking an 

analytical approach, a resampling approach is used. MC simulations resample from a known 

distribution and generate a number of iterations (N) of random samples with each sample 

containing the same record length as the original sample. The T-year runoff event is then 

generated for each of the N samples generated and the variance in relation to the original dataset 

calculated and used to estimate the confidence bands. 

 

Bootstrapping refers to a resampling method where N number of iterations are considered to 

identify the variation in estimates, whereby the confidence intervals (uncertainty) can be 

determined. To determine the variation of a T% event a synthetic record is created from the 

existing record using resampling with replacement. This process involves the random selection 

of flood events from the observed records until the synthetic record length matches the 

observed record length, and FFA of the synthetic record is performed, which is considered a 

single iteration. Bootstrapping can be undertaken in a balanced or an unbalanced approach. The 

balanced approach ensures that the mean of the overall sample set is maintained as each sample 

can only be reproduced N number of times, whereas for unbalanced bootstrapping no limitation 

is applied to the number of occurrences of any sample. When considering 5% and 1% 

confidence intervals it is recommended to use N=1000 and N=10000 respectively.  

 

2.4 Information transfer 

 

Reviewing the available literature has revealed that the most common method of regional flood 

information transfer is the use of regression analysis. Weisberg (2005) describes regressions as 

the “study of dependence”, i.e. the dependence of the response variable on predictor variables. 

Two regression techniques currently in use in a number of studies are the Quantile Regression 

Technique (QRT) and the Parameter Regression Technique (PRT) (e.g. Görgens 2007, Rahman 

et al. 2015).  
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QRT uses the catchment parameters as predictor variables to estimate the expected peak flow 

(Qx) event using predictor variables (B, C, D, …) and regression parameters (a, b, c, d, …). The 

regression equations generally take the form of Eqs. 2.21 or 2.22. 

 

 Qx = a Bb Cc Dd…. (2.21) 

 Qx = a + b*B + c*C + d*D…. (2.22) 

 

PRT estimates the descriptive statistics of the selected growth curve for the required site. For 

example, when considering the LP3 distribution, the standard deviation (S), mean (M) and 

coefficient of skewness (SK) are required and each of these parameters are individually 

estimated for a selected site using separate regressions. Rahman et al. (2012) list the following 

advantages that the PRT has over the QRT: 

(a) QRT may lead to an inconsistent curve. PRT eliminates this by estimating the entire 

growth curve, hence providing a smooth increase with increased AEP. 

(b) PRT can estimate floods for any AEP and is not limited to the derived QRT relationships. 

 

A number of methods exist for the estimation of the regression parameters, some of these 

methods are (Kottegoda and Rosso 2008, Rahman et al. 2009, Haddad et al. 2012): (i) Ordinary 

Least Squares (OLS); (ii) Weighted Least Squares (WLS); (iii) General Least Squares (GLS); 

and (iv) Bayesian GLS (BGLS). Rahman et al. (2015) recommend the use of BGLS and state 

that the method provides more accurate results in comparison to OLS and WLS.  

 

Comparisons between QRT and PRT was undertaken on 53 catchments in Tasmania (Haddad 

et al. 2012). Catchment area and design rainfall intensity were found to be the most important 

predictor variables in the QRT and four predictor variables were used in the PRT (Haddad et 

al. 2012). The QRT was found to provide more accurate flood quantile estimates for the higher 

return periods while the PRT resulted in relatively better flood estimates for smaller return 

periods (Haddad et al. 2012).  

 

A similar comparison between QRT and PRT was undertaken on 237 catchments in North-

Eastern USA and the PRT is recommended due to its accuracy, computational simplicity and 

ability to estimate design floods for any return period, even though the QRT gave a slightly 

better performance for all return periods (Ahn and Palmer 2016). From a study in 1 535 
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catchments in France, Odry and Arnaud (2017) found that inconsistencies between floods 

estimated for different return periods were possible when the QRT approaches was used and 

therefore recommend the use of the PRT. 

 

The assessment of the performance of different approaches to regionalisation found that the 

spatially smooth estimation approach where the parameters of the regional model vary 

continuously along the space was the most robust approach and less sensitive to different 

patterns of heterogeneity and the impacts of short records (Ganora and Laio 2016). 

 

Regionalised flood models can be developed that describe the flood producing characteristics 

in order to have the capability of transferring them to ungauged catchments. These models can 

take a number of forms, can be used to predict a number of variables and their development is 

based on the (i) the selection of response and predictor variables, and (ii) regional flood 

relationship identification (Kjeldsen et al. 2001, Nobert et al. 2014, Rahman et al. 2015). 

 

2.4.1 Response variable selection 

 

The response variable refers to the variable(s) required to apply the regional flood model and 

can vary depending on the application method of the RFFA. Some of the response variables 

used in flood studies include, but are not limited to: 

(a) peak flow (Riggs 1982), 

(b) growth curve Frequency |Factors (FFT) (Riggs 1982, Kjeldsen et al. 2002, Rahman et al. 

2015), 

(c) distribution descriptive statistics (Rahman et al. 2015), 

(d) MEF (Robson and Reed 1999), 

(e) MAF (Dalrymple 1960, Kjeldsen et al. 2001), and 

(f) average rainfall intensity (McDermott and Pilgrim 1982). 

 

The selection of appropriate predictor variables to estimate the ungauged site response 

variables are described in further detail in the following sections. 
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2.4.2 Predictor variables  

 

Predictor variables are used to establish the relationship between the response variable and the 

local catchment descriptors. McDermott and Pilgrim (1982) divided catchment descriptors into 

two groupings, natural and introduced. Natural variables refer to descriptors such as area, soil, 

rainfall and topography, whereas introduced variables consider man-made effects such as land 

use and urbanisation. Since introduced variables change more rapidly than natural variables, 

they are often difficult to quantify. It is evident from regionalisation studies that the use of 

natural variables is widely adopted (Dalrymple 1960, McDermott and Pilgrim 1982, Riggs 

1982, Pilgrim 1989, Mkhandi and Kachroo 1997, Mkhandi et al. 2000, Kjeldsen et al. 2001, 

2002, Smithers and Schulze 2003, Merz and Blöschl 2005, Görgens 2007, Rao and Srinivas 

2008, Rahman et al. 2015). Rahman et al. (2009, 2012) identified that increasing the number 

of predictor variables does not necessarily increase the accuracy of the flood model and has a 

diminishing returns effect. Out of a pool of ten potential predictor variables, five were used for 

the final RFFE and the selected variables are listed below (Rahman et al. 2015): 

(a) catchment area (A), 

(b) 6-hour 50% AEP (2-year return period) rainfall intensity at the catchment centroid (I6,2), 

(c) 6-hour 2% AEP (50-year return period) rainfall intensity at the catchment centroid (I6,50), 

(d) I6,2 / I6,50 ratio, and 

(e) shape factor (SHF) computed as shown in Equation 2.23, using A and the shortest 

distance between catchment centroid and outfall (Lc). 

 

 SHF = 
𝐿𝑐

√𝐴
 (2.23) 

 

Alexander (2002) utilised eight predictor variables to estimate the required design flood, as 

listed below: 

(a) catchment area (km2), 

(b) length of main channel (km), 

(c) average watercourse slope (m/m), 

(d) time of concentration, Tc estimated using the Bransby-Williams formula (hours), 

(e) point design rainfall (mm), 

(f) daily rainfall maxima (Adamson 1981) (mm), 

(g) number of days on which thunder was heard, and 



 

30 

(h) rainfall intensity (mm.h-1). 

 

Additional predictor variables that are utilised in other studies include, but are not limited to, 

the following: 

(a) MAP (Kjeldsen and Jones 2007),  

(b) upstream reservoir attenuation (Kjeldsen and Jones 2007), 

(c) runoff percentage (Kjeldsen and Jones 2007), 

(d) veld zone types (HRU 1972),  

(e) RMF K-regions (Kovács 1988),  

(f) potential evaporation (Mediero and Kjeldsen 2014), and 

(g) soil water retention capacity. 

 

2.5 Performance Assessment 

 

Rahman et al. (2012) detailed a number of statistics to assess the performance of the methods 

developed. Prior to application of the methods on a national scale, the method that yields the 

best performance statistics needs to be identified. The performance statistics to be utilised to 

assess the performance of the regionalisation methods are those adopted by Gado and Nguyen 

(2016). In addition to these statistics, Rahman et al. (2012) utilised the ratio of modelled vs 

estimated values and categorised the ratio of modelled and at-site values into the three distinct 

categories provided in Table 2.1. An additional measure used for the estimation of model 

accuracy is the Nash-Sutcliffe model efficiency coefficient (NSE) (Nash and Sutcliffe 1970). 

The NSE is generally used for the estimation of the efficiency of continuous models and when 

considering regression analysis is equivalent to the coefficient of determination (R2). Equations 

2.24-2.29 provide six performance statistics used in RFFA studies. 

 

Table 2.1 Categories of modelled vs at-site ratios Rahman et al. (2012) 

Category Under-estimation Acceptable Over-estimation 

Ratio < 0.5 0.5-2 > 2 

 

RMSE Cl,T = √(
1

𝑛
) ∑(𝑄𝑚  −  𝑄𝑜)2 (2.24) 
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RMSEr
 Cl,T = √(

1

𝑛
) ∑

(𝑄𝑚 − 𝑄𝑜)2

(𝑄𝑜)
 (2.25) 

 

BIAS Cl,T = (
1

𝑛
) ∑|𝑄𝑚  −  𝑄𝑜| (2.26) 

 

BIASr
 Cl,T = (

1

𝑛
) ∑ (

|𝑄𝑚 − 𝑄𝑜|

𝑄𝑜
) (2.27) 

 

NSE = 1 −  
∑ (𝑄𝑚

𝑖 − 𝑄𝑜
𝑖 )

2𝑛
𝑖=1

∑ (𝑄𝑜
𝑖 − �̅�𝑜)

2𝑛
𝑖=1

 (2.28) 

 

RatioS,T = 
𝑄𝑚𝑜𝑑

𝑄𝐴𝑀𝑆
 (2.29) 

where, 

 RMSECl,T = root mean squared error (m3.s-1) for each cluster/region (Cl) and AEP% (T), 

BIASCl,T = bias for each cluster/region (Cl) and AEP% (T), 

 RatioS,T = ratio of modelled and at-site values for each site (S) and AEP% (T), 

n = number of sites, 

r = indicates relative values (BIASr and RMSEr), 

Qm = modelled design peak flow (m3.s-1), and 

Qo = at-site design peak flow computed from the observed AMS (m3.s-1). 

 

Rahman et al. (2012) described the “Leave-one-out” (LOO) methodology, which is an 

alternative name for Jack-knife resampling, to assess the performance of models. This approach 

“hides” each gauging station from the model development for a single iteration per cluster, 

hence creating a number of models equal to the number of stations being considered, plus an 

iteration including all gauging stations (Overall). This facilitates a statistical test of proof of 

concept, which thereafter allows for the use of all sites in the final RFFA. After the LOO 

simulations, the evaluation statistics can be computed for the final QT values estimated using 

the developed models. 

 

Rahman et al. (2012) notes that the limits presented above are arbitrary limits but provide a 

guide with regards to relative accuracy between models, however Naidoo (In Preparation) 

proposed the refined set of categories shown in Table 2.2.  
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 Table 2.2 Revised categories of modelled vs at-site ratios 

Category Under-

estimation 

Potentially 

Acceptable 

Acceptable Potentially 

Acceptable 

Over-

estimation 

Ratio < 0.50 0.50-0.75 0.75 1.25 1.25-1.50 > 1.50 

 

2.6 Conclusions 

 

Generally non-contiguous fixed region, and hydrologic neighbourhood type (RoI) 

regionalisation approaches provide more accurate flood estimation than contiguous fixed 

region approaches, but spatial proximity has also been found in a number of studies to be 

important and the performance of the approaches has been found to be variable, dependent on 

the region and climate. In particular, the RoI approach has been found to be the preferred 

approach to regionalisation in recent studies. However, the subjectivity in regionalisation has 

also been highlighted as an issue which should be minimised. 

 

The above studies have also highlighted the general preference for PRT rather than QRT to 

transfer information from gauged to ungauged sites. 

 

Razavi and Coulibaly (2013) question the relevance and validity of regionalisation given the 

emerging issue of non-stationarity in hydrological time series and the impact of non-stationary 

data on regionalisation needs to be kept in mind. 
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3 METHODOLOGY 

 

Based on the literature reviewed in Chapter 2, the methodology adopted required the 

completion of: (i) collation and assessment of observed streamflow data, (ii) the formation of 

homogeneous flood producing regions, (iii) selection of an appropriate parent distribution for 

flood frequency analysis, (iv) RM calibration, and (v) regional model development and 

assessment. 

 

3.1 Streamflow Data Assessment and Screening 

 

The study utilised the stations identified by Nathanael (2015) and extended the data from 

December 2013 to September 2017 where possible. Primary flow data up to 2017 were 

obtained from the DWS. The data were then assessed both in terms of length of record and data 

quality using a number of criteria. In order to provide reliable design values, long records of 

data are required. Hence, selecting a minimum record length of 20 years for inclusion in the 

analysis reduced the number of stations that could potentially be utilised. The second screening 

process required the identification of human impacts on flow, such as dams, abstractions and 

urban development. Data from the WR2012 (de Groen et al. 2015) study, which contains 

registers of dams and abstractions, was used for the identification of potentially impacted 

stations, and secondary manual checks were also performed using aerial imagery to verify and 

supplement the WR2012 data. A number of dams that were not registered on the WR2012 

database were identified during the manual checks.  

 

The last criterion utilised was the quality of data. The DWS flow data contain many quality 

flags ranging from user errors to technical errors. Examples of this include the incorrect capture 

of data and hardware malfunction. The data set prepared by Van Bladeren (1993), which 

includes historical peak flow measurements, was included in the study and the data was 

extended to the 2017 hydrological year for the available sites and a combined data set was used 

in the study. Table 3.1 provides a summary of the screening criteria, similar to the methodology 

developed by described by Nathanael (2015), and data errors which were used to exclude 

stations from this study. 
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Table 3.1 Data errors and recommendations 

Screening Criteria and Data Error Recommendation* 

Records shorter than 20 years Exclusion of site for at-site FFA 

Negative/null records Exclusion of erroneous data 

Recorded depth of flow exceeded discharge 

rating table at flow-gauging station (i.e. 

“Over-topping”) 

Possible extension of the rating tables, 

otherwise exclusion of erroneous data 

Missing periods Annual records were assessed based on the 

number of records/days of missing data with 

possible exclusion of the year 

 

As the national available data sets contain many thousands of years data, it was deemed to be 

impractical to assess the screening criteria and data errors manually. Therefore, as part of the 

study the above selection and quality criteria were automated, and recommendations generated 

based on the data received from DWS.  

 

In some instances, the recorded river stage exceeded the available discharge rating curves for 

the flow-gauging stations. Where the rating curve of a station was exceeded, the viability of 

extending the existing rating curve was assessed. For example, as shown in Figure 3.1, the 

maximum rated level is 0.96 m, however, the maximum recorded water level for the station is 

approximately 3.20 m. In such cases simple extension of the rating curve could potentially 

produce major under- or over-estimation of peak flow events. Due to the nature of flow gauging 

weirs, as shown in Figure 3.2, an accurately extended rating curve would require an extensive 

survey and calibration beyond the structural limit. A general rule was therefore adopted that a 

rating curve may only be extended up to a maximum of 20% of the original maximum stage, 

as shown in Figure 3.1. In addition a limitation of 20% increase in flow discharge exceedance 

was adopted similar to Gericke and Smithers (2015). Where a rating curve is extended, a small 

grouping of 5% of the total number of points located at the upper end of the rating table was 

considered and a best-fit linear extension was applied. Although the number of stations that 

required extensions was not excessive, these values still need to be used with caution due to 

the uncertainty in the estimation of flow from the recorded stage. 
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Figure 3.1 Example of a rating curve exceedance and extension the adopted extension 

methodology 

 

 

Figure 3.2 Example of a flow gauging weir on the Tongati River at Riet Kuil (DWS 2015) 
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3.2 Selection of an Appropriate Parent Distribution 

 

As is evident from a review of the literature, both in South Africa and internationally there are 

numerous differences between the recommendations and applications of distributions and the 

parameters estimation methods for flood frequency analysis. The distributions most commonly 

recommended in literature for use in South Africa are the GEV and LP3, in addition the 

popularity of the GPA and PE3 internationally and the findings by Kjeldsen et al. (2002) and 

Haile (2011) substantiate further investigation into its application within South Africa. In 

addition Kjeldsen et al. (2017) have provided a methodology to utilise the KAP distribution on 

a regional scale by determining a regional h shape parameter value, reducing the four parameter 

distribution to the three parameter KAP3. The cumulative distribution function of the KAP 

distribution is given in Eq. 3.1. 

 

𝐹(𝑥) =  {1 − ℎ[1 − 𝑘(𝑥 −  𝜉)/𝛼] 
1

𝑘⁄ }
1

ℎ⁄
 (3.1) 

 

where 𝛼 is the scale parameter, 𝜉 the location parameter, and 𝑘 and ℎ are shape parameters. 

Eight other distributions are special cases of the KAP distribution for fixed values of the h and 

k parameters, including the GPA (h = 1), GEV (h = 0) and Generalised Logistic (GLO) (h =  

-1) distributions (Hosking 1994). The additional flexibility may be better suited to describe the 

hydrological variability of flood series across the contrasting geographical and climatological 

regions of South Africa. Thus, the KAP3 distribution utilising a national record length weighted 

mean h value was included in the assessment.  

 

South African guidelines recommend the use of MM for parameter estimation, which are 

sensitive to the presence of outliers in the data. LM are theoretically less sensitive to the 

presence of outliers and have been adopted in numerous studies. South African hydrology is 

highly variable, which results in the inclusion of potential outliers in the datasets. Hence a total 

of five PDs (GEV, GPA, KAP3, LP3and PE3) fitted using LM were assessed to identify the 

most suitable method in South Africa. 

 

It has been shown that the selection of a distribution can be based on three types of assessment: 

(i) graphical methods, (ii) Goodness-of-Fit (GoF) tests, and (iii) model selection criterion. The 

most widely used approach for selection of distribution types in South Africa are graphical 
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methods used in isolation, whereas internationally graphical, GoF and model selection criterion 

are commonly applied in combinations. In this study, the model uncertainty was used as an 

additional selection criterion. To assess the PD uncertainty the bootstrapping methodology was 

selected as it is not reliant on the assumption that the sample parameters represent the 

population and that no distribution needs to be assumed. Given that it is recommended that the 

tests are not used in isolation the following methods were selected for use: The adopted 

selection approach is summarised in Figure 3.3 

 

Table 3.2 List of test categories and the selected methods for selection of an appropriate 

Parent Distribution 

Test Category Methods 

Graphical KP method 

Goodness-of-fit AD, CS, CvM, KS 

Model Selection Criterion AIC, AICc, BIC 

Model Uncertainty Balanced bootstrapping 

 

3.3 Regionalisation 

 

Both RoI and K-means clustering were utilised for regionalisation. This allows for a 

comparison between the methods prior to implementation on a national scale. The methods 

utilise the Euclidian distance computed as shown in Equation 2.2, which is an indication of the 

relative distances between the stations in the attribute space. Given that the attributes utilised 

for the study vary in order of magnitude, parameter normalisation (xn) was undertaken to reduce 

the bias towards a single parameter. The normalisation adopted and used in Eq. 3.2 ensured 

that all parameters at site i (xi) were within the range of 0-1 by scaling them within the 

maximum and minimum range of each parameter (x). 
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Figure 3.3 Methodology flow diagram for the selection of a suitable parent distribution 

 

The location parameters, latitude and longitude were double weighted in comparison with the 

remaining catchment descriptors due to the findings by Merz and Blöschl (2005). 

 

 xn = 
𝑥𝑖−min (𝑥)

max(𝑥)−min(𝑥)
 (3.2) 

 

The clustering approach requires that the number of clusters be defined as one of the input 

parameters. The size of clusters was motivated by the 2/5T rule, with emphasis placed on the 

1% AEP. This ensures that each cluster has a combined minimum record length of 200 years, 

fulfilling the 2T rule for the 1% AEP. The RoI approach creates unique regions for each site 

PD with lowest overall 

cumulative rank is 

deemed most suitable 

Perform Goodness-of-fit, Model fit criterion and 

uncertainty analyses and rank the three PDs 

based on relative performance at an at-site scale 

 

Graphical L-moment Ratio 

Diagram goodness of fit 

Kjeldsen and 

Prosdocimi (2015) 

Identify the three most suitable PDs at a National Scale 

 

Refine selection of most suitable PDs at site scale 
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investigated, with the 2T rule applied to ensure that the defined region satisfies the 2T rule for 

the 1% AEP. 

 

The H testing statistic (Eq. 2.8) was used in conjunction with the discordancy measure, as 

described by Hosking and Wallis (1993), for homogeneity testing. Although the measure 

defined by Hosking and Wallis (1993) considers a region to be homogeneous if the value is 

less than one, it is considered relatively homogeneous with an H value of between one and two 

and relatively homogeneous regions are anticipated to provide more accurate DFE than single 

site FFA. As such an H value less than 2 was deemed suitable for application in this study. 

 

3.3.1 Clustering 

 

An iterative process was used in the identification of relatively homogeneous clusters, whereby 

the grouping of the full data set, and a set divided into the DWS regions were initially tested 

for homogeneity. The initial groupings were then assessed for homogeneity and adjusted as 

needed using the clustering of site descriptors, which allows for the formation of fixed clusters 

within which regional flood relationships can be developed. 

 

The clustering efficiency was tested by performing the clustering multiple times to assess the 

impact of the chosen descriptor(s). Nine descriptors, listed below, and further described in 

Section 4.2, were tested in an iterative fashion ensuring that every possible unique combination 

of descriptors was used. The entire data set was used for the clustering for each iteration by 

initially dividing the data set into a maximum of 90 clusters, which allows for an average cluster 

size exceeding 200 years. This process also included the use of a minimum record length of 

500 years, which equates to a maximum of 37 clusters. The descriptors used were: 

(a) outlet latitude, 

(b) outlet longitude, 

(c) outlet elevation, 

(d) catchment area, 

(e) areal mean SCS soil classification (SCSmean), 

(f) mean catchment runoff percentage (ROmean), 

(g) Mean Annual Precipitation (MAPmean) 

(h) 10-year design rainfall intensity (I10yr), and 

(i) 100 vs 2-year design rainfall depth ratio (DRR100-2). 
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The clustering process is outlined in a flow diagram shown in Figure 3.4. 

 

3.3.2 Region of influence 

 

Similarly, to the clustering approach adopted, the descriptors for formation of regions were not 

predetermined. Therefore, an iterative process of ensuring all parameter combinations were 

assessed using the H measure, was also applied. The RoI approach used by the UK FEH (1999), 

was applied and allows for the determination of regions based on the required record length, 

using the 2/5T rule. The RoI process is outlined in a flow diagram shown in Figure 3.5. 
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Figure 3.4 Clustering methodology flow diagram 
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Figure 3.5 Region of Influence methodology flow diagram 

 

3.4 Rational Method Calibration 

 

The RM takes the form shown in Eq 3.3 and relates the T% AEP peak flow (QT) to the A, design 

rainfall intensity for a known Tc (I(Tc, T)) and the runoff coefficient CT. A unit factor (UF) is also 

incorporated to convert peak flows to the desired units. To calibrate the RM, the relationship 

between the runoff coefficient CT and the remaining parameters needs to be defined for each 

AEP and is provided in Eq 3.4.  

 

 QT = UF CT I(Tc,T) A   (3.3) 

 CT = 
𝑄𝑇

𝑈𝐹 𝐴 𝐼(𝑇𝑐,𝑇 )
    (3.4) 

 

This allows for the derivation of a C value growth curve for each site being considered. 
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3.5 Model Development and Performance Assessment 

 

The model development and performance assessment process was coupled and undertaken 

using the LOO approach. This allowed for the calculation of the six performance statistics 

identified in Section 2.5 for each iteration of the LOO process.  

 

Two approaches to the model development have been implemented. Calitz (2016) showed that 

the use of a C-value index flood approach proved partially successful in Regions A, C and U. 

This approach utilises regressions to estimate C10, and a growth curve, scaled using C10, is used 

to estimate CT for the remaining AEPs utilising the median values of the sites in the clusters. 

The C10 growth curve is a series of growth factors (GFT) for AEP = T%. Considering that the 

approach has already proven partially successful locally, it was adopted for the study, with the 

intent to improve the estimates. This approach is a PRT that estimates the one of the parameters 

(CT values) used to estimate the design floods. In addition, a regional index flood approach, 

which has been widely adopted internationally, was investigated to identify whether not 

requiring the additional step of converting the design quantiles to C-values improves the 

estimates. 

 

Both of the model approaches were developed at two scales, National and homogeneous 

cluster. Kjeldsen et al. (2008) performed the development of a national scale model which 

increases the number of stations used in the development of the regressions, which theoretically 

provides an improved model for estimating ungauged catchments. Rahman et al. (2019), 

however, developed regional regression models for Australia due to the hydrological variability 

and variation in station density. 
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4 HYDROLOGICAL PARAMETER DATABASE 

 

The development of a unified hydrological parameter database for use across multiple studies 

is a critical requirement for the development and application of methods for DFE in South 

Africa. A unified database would move much of the focus of flood studies from the 

development of parameter sets to the methods to be applied, thus providing a standard basis of 

comparison. 

 

To ensure the reproducibility of the parameters, Python scripts were developed to extract the 

catchment parameters. This will also allow for the extraction of revised parameters as and when 

new datasets become available, e.g. improved Digital Elevation Model (DEM). All scripts and 

data utilised for the development of the database are open source and available on request. 

 

4.1 Base Data Collation 

 

Estimation of the hydrological parameters required the collection and collation of base datasets. 

The base datasets required for the derivation of the selected parameters are: 

(a) DEM, 

(b) rainfall data, and 

(c) DWS data. 

 

4.1.1 Digital elevation model 

 

The Shuttle Radar Topography Mission (SRTM) data was utilised for the development of the 

DEM. A hydrological conditioning process adjusts the DEM to ensure that flow directions 

derived from the surface define expected flow directions. A common methodology followed 

for hydrological conditioning is filling (Fernandez et al. 2016), whereby the DEM is assessed 

for any potential voids or impressions that could prevent the derivation of natural flow lines. 

After the voids or impressions have been identified, the elevations are increased until the water 

would flow along a natural pathway. Fernandez et al. (2016) identified that, although 

alternative methods are available for hydrological conditioning, the filling procedure 

maintained the slope descriptors of the catchment. 
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The 30 x 30 m SRTM grid was used and, where necessary, infilling was undertaken using the 

90 x 90m grid. Infilling was, however, limited to a small region in primary drainage Region J. 

Nine DEM regions were created which divides South Africa into distinct catchment 

boundaries. 

 

4.1.2 Rainfall 

 

Three sets of rainfall data were utilised for the study, the Mean Annual Precipitation (MAP), 

the patched daily rainfall dataset (Lynch 2004) and design rainfall depths (Smithers and 

Schulze 2003).  

 

The MAP dataset utilised was extracted from the Water Resources 2012 study (de Groen et al. 

2015) and consists of a national MAP depth grid with a minute by minute grid spacing. The 

minute by minute design rainfall grid developed by Smithers and Schulze (2003) was utilised 

to derive the design rainfall depths. 

 

4.1.3 DWS data 

 

The DWS data utilised in the study included river networks, primary to quaternary catchment 

boundaries and gauging station locations. This data was utilised for verification and location 

purposes. Flow data was also acquired from DWS, as detailed in Section 3.1. 

 

4.2 Parameter Estimation 

 

As identified in previous studies (McDermott and Pilgrim 1982, Robson and Reed 1999, 

Mkhandi et al. 2000, Alexander 2002, Van Bladeren 2005, Görgens 2007, Kjeldsen et al. 2008, 

Gericke 2010, Haile 2011, Rahman et al. 2015), the geographical location, rainfall intensity, 

MAP and catchment area are potential parameters used for the regionalisation of the peak flow 

estimation methods. Considering previous studies and the requirement of ease of application 

by practitioners, the following descriptors that are readily available, or simple to estimate, were 

selected for inclusion in the study: 

(a) outlet location, 

(b) outlet elevation, 

(c) catchment area (A), 
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(d) catchment centroid, 

(e) catchment perimeter, 

(f) rainfall region, 

(g) rainfall seasonality (Rs), 

(h) catchment runoff percentage (Cro), 

(i) SCS soil classifications (SCS), 

(j) distance from the coast (Dc), 

(k) hydraulic length / longest flow path (L), 

(l) length to centroid (Lc), 

(m) slope (S10-85, Sea, Sc), 

(n) time of concentration (Tc), 

(o) Areal Reduction Factor (ARF), 

(p) Mean Annual Precipitation (MAP), 

(q) Design rainfall depths (DR2-100yr). 

 

Further investigation identified that the use of catchment perimeter may lead to variability due 

to the fractal nature of the parameter. Bardossy and Schmidt (2002) highlight this and note that 

a number of methods to account for its fractal dimension have been proposed. The perimeter 

was therefore excluded from use but was still calculated for reference purposes.  

 

4.2.1 Catchment area 

 

The catchment areas were delineated using the TauDEM toolbox. The toolbox was chosen due 

to it being freely available and can be used outside of commercial GIS packages. 

 

A problem was encountered with the delineation of catchment areas for the DWS gauging 

station locations, where the gauging stations were not located on the drainage paths defined by 

the hydrological conditioning, as explained in Section 4.1.1. This was corrected by manual 

manipulation of the gauging station locations to coincide with the defined drainage paths. On 

a national scale this will, however, not be an issue as the parameters will be derived on a 30 x 

30 m grid. The drainage paths will be available for practitioners to assess the location of the 

ungauged site relative to the drainage path to ensure the correct catchment parameters can be 

extracted. A comparison of the catchment areas automatically calculated from the corrected 
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DEM and the catchment areas from DWS are shown in Figure 4.1. Due to the values ranging 

from 1 to 160 000 km2 the values are presented on a log scale. 

 

 

Figure 4.1 Catchment area comparison 

 

4.2.2 Longest flow path 

 

A custom Python script, which utilises the Geospatial Data Abstraction Library (Team 2017) 

was developed that traces the longest flow path along the contributing area raster developed as 

part of the hydrological DEM corrections. Comparisons to previous studies undertaken has yet 

to be performed. 

 

4.2.3 Slope 

 

SANRAL (2013) details three methods for the estimation of slope, all of which were calculated 

for each of the sites investigated: 

(a) 10-85 (S10-85); 

(b) equal area (Sea); and  

(c) average catchment (Sc). 
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S10-85 and Sea are considered average slope estimations, whereas Sc is considered a catchment 

slope estimator. S10-85 and Sea are recommended as alternative methods. A comparison of the 

slopes, as shown in Figure 4.2, was undertaken to assess the variability of the estimates. 

  

 

Figure 4.2 Average slope comparison 

 

What is evident from Figure 4.2 is that there is a large variation of up to 86% between the 

estimation methods, with S10-85 consistently estimating steeper slopes than Sea by an average of 

15%. This will lead to estimates of shorter Tc and increased peak flows, which could be 

considered a more conservative approach. Therefore, S10-85 was utilised in this study. 

 

A comparison of the slopes calculated in this study and slopes calculated in previous studies 

has not been undertaken. 

 

4.2.4 Time of concentration 

 

Similar to the estimation of ARF, studies are currently underway to derive local relationships 

for Tc estimation. The studies are yet to be finalised and thus the recommended SANRAL 

(2013) drainage manual methods were selected for use in this study. The method utilised was 

the defined watercourse method developed by the US Bureau of Reclamation (USBR 1973) 

and is shown in Equation 4.1  
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 Tc = (
0.87 𝐿2

1000 𝑆10−85
)

0.385

 (4.1) 

 

Although the USBR Tc method was not developed locally, the locally developed methods have 

been isolated to selected DWS drainage regions, as such the USBR method has been adopted 

for the estimation of Tc. 

 

4.2.5 Areal reduction factor 

 

Although work is currently being undertaken to develop new ARF relationships for South 

Africa, the results are not yet available for use in this study. Therefore, the method proposed 

by Alexander (2001), as shown in Equation 4.2, which relates the A and Tc to the ARF was 

adopted.  

 

 ARF = (90 000 – 12 800 lnA + 9 830 ln(60Tc))
0.4 (4.2) 

 

4.2.6 Rainfall based parameters 

 

The MAP and design rainfall values were calculated at a catchment scale by averaging the 

gridded values over the catchment. For smaller catchments which contained no grid points 

within the catchment, the grid point closest to the catchment centroid was utilised to estimate 

the rainfall parameters. 

 

Similarly, MAPmax, MAPmin and MAPmean, which represent the maximum, minimum and mean 

MAP values within the catchment, were derived. The use of the 30 x 30 m grid allows for the 

identification of the variation of the MAP within a catchment. 

 

Rainfall seasonality was estimated using circular statistics as described by Burn (1997), by 

developing a monthly rain rose, as shown in Figure 4.3, per rainfall station being considered. 

A national plot of the mean seasonality direction is shown Figure 4.4. For this study the Lynch 

(2004) dataset was adopted due to the data being patched, removing any additional pre-

processing.  
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Figure 4.3 Normalised rainfall seasonality for station 0004816AW indicating the monthly 

(blue) and average (red) rainfall seasonality  

 

 

Figure 4.4 National rainfall seasonality indicating the mean direction (radians) of each site 

investigated 

 

The rainfall regions utilised in the study consisted of the long term rainfall (Smithers and 

Schulze 2003), relatively homogeneous daily extreme rainfall (Smithers and Schulze 2000) 
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and short duration rainfall clusters (Smithers and Schulze 2000). The outlet position dictated 

the cluster for each gauging station considered. 

 

4.2.7 Catchment runoff 

 

Schulze (2011) developed catchment runoff percentages for naturalised land cover conditions 

using the ACRU model and simulating 50 years of runoff from daily rainfall data. The 

catchment runoff percentage was developed at a quinary level and incorporated into this study 

as a potential regionalisation parameter. Similarly, Schulze and Schütte (In Preparation)/. 

developed SCS soil characteristics for South Africa at a Terrain unit level. 
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5 STREAMFLOW DATA 

 

The DWS currently has 1 458 streamflow gauging stations within South Africa. A total of 383 

gauging stations remained after screening, assessment and cleaning and were utilised in the 

study. The gauging station locations are shown in Figure 5.1. The gauging stations are divided 

into 296 river gauges and 87 synthetic dam inflow records.  

 

Figure 5.1 Map indicating the DWS gauging stations (blue) and the synthetic dam stations 

(orange) selected for application  

 

5.1 Record Lengths 

 

Table 5.1 and Figure 5.2 contains the breakdown of records lengths per DWS drainage region 

before and after data cleaning. Figure 5.3 shows the distribution of the record lengths per 

gauging station. 
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Table 5.1 Number of DWS flow-gauging stations and record lengths 

DWS 

Drainage 

Region 

No. of 

Gauging 

Stations 

Cumulative Record 

Length  

(years) 

Average Record Length  

(years) 

Raw Cleaned Raw Cleaned 

A 62 3347 3314 54 53 

B 47 2265 2253 48 48 

C 34 1636 1432 48 42 

D 20 1147 981 57 49 

E 5 290 229 58 46 

G 21 868 800 41 38 

H 19 791 760 42 40 

J 19 1091 1043 57 55 

K 10 518 475 52 48 

L 5 263 252 53 50 

N 4 294 263 74 66 

P 2 99 92 50 46 

Q 14 635 628 45 45 

R 4 176 146 44 37 

S 3 179 171 60 57 

T 13 782 625 60 48 

U 12 619 570 52 48 

V 28 1297 1511 46 54 

W 19 916 890 48 47 

X 42 2039 1914 49 46 

TOTAL 383 19252 18349 50 48 

 

5.2 Station Information 

 

A summary of the raw data was generated for each station, as shown in Figure 5.4, which 

provides the DWS information for the station (Station number, catchment area, location, start 

and end date), a map layout of the station indicating the catchment boundary, longest flow path 

and the topography. In addition, the annual peak flow series available from DWS and the 

annual peak flow series generated from the primary flow data and the rating tables, including 

rating table extensions, are also shown. 
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Figure 5.2 Number of gauging stations per DWS primary drainage region across South Africa 

 

 

Figure 5.3 Histogram depicting the distribution of the station record lengths for the selected 

383 gauging and synthetic dam stations 
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Figure 5.4 Catchment information for Gauging Station A2H061 
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6 IDENTIFICATION OF A PARENT DISTRIBUTION SUITABLE FOR 

FLOOD FREQUENCY ANAYLSIS IN SOUTH AFRICA 

 

In order to estimate design floods using observed flow data, it is necessary to select the best 

parent probability distribution to use in a flood frequency analysis. The design value computed 

from the observed data is then the best estimate of the design flood at the site and the 

performance of the other methods of estimating design floods at the site can be assessed using 

the design flood estimated from the observed data. During the course of this study an 

investigation was undertaken to identify the most suitable parent distribution for FFA in South 

Africa. Four categories of model selection methods were applied: (i) Graphical methods, (ii) 

Goodness-of-fit tests, (iii) model selection criterion, and (iv) model uncertainty. 

 

6.1 National Kappa h Value Estimation 

 

Prior to undertaking the selection process the estimation of the national KAP3 distribution h 

value was required. Figure 6.1 shows the LMRD with the KAP h value contours, ranging from 

-1 to 1 at 0.25 intervals, and the record length weighted mean L-skew and L-kurtosis. From the 

mean coordinates the h value was estimated to be 0.77. Having established the national h value, 

the number of distributions being assessed increased to five: (i) GEV, (ii) GPA, (iii) KAP3 (h 

= 0.77), (iv) LP3, and (v) PE3.  

 

6.2 Graphical Methods 

 

When considering the graphical approach all PDs considered were ranked for the performance 

at a national scale. The ranked order of selection are the KAP3 (h = 0.77), GPA, LP3, GEV 

and PE3 distributions. When considering the graphical data representation using LMRD, as 

shown in Figure 6.2, the most suitable regional distributions are the LP3, GPA or KAP3 due 

to the close fit of the weighted moving average line to the theoretical lines. Table 6.1 provides 

the geometric rank of the GEV, GPA, KAP3, LP3 and PE3 distributions based on the KP test 

(Kjeldsen and Prosdocimi 2015). 
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Figure 6.1 L-moment ratio diagram for all 383 selected sites using untransformed data 

indicating the KAPPA distribution h value contours at 0.25 intervals and the 

record length weighted mean L-skew and L-kurtosis. 

 

 

Figure 6.2 L-moment ratio diagram for all 383 selected sites using untransformed (left) and 

log transformed (right) data. The record length weighted mean (red cross) and 

moving average line are indicated (solid) in relation to the GEV, GPA, GNO, 

PE3, LNO and LP3 distributions. 
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Table 6.1 Rank of distributions based on the KP test in relation to the theoretical GEV, GPA, 

KAP3 (h = 0.77), LP3, and PE3 distributions and the KP test 

Distribution Rank 

GEV 4 

GPA 2 

KAP3 1 

LP3 3 

PE3 5 

 

A LMRD indicating the DWS drainage region averages is presented in Figure 6.3, and it is 

evident that the regional averages are largely clustered around the GPA/KAP3 theoretical 

distributions for natural data, whereas the variation of the log transformed regional averages 

does not provide a clear fit around any distribution.  

 

 

Figure 6.3 L-moment ratio diagram indicating the position of the record length weighted 

mean L-skew and L-kurtosis per DWS drainage region, represented by the 

relevant alphabetic numeral, for natural (blue) and log transformed (black) data as 

well as the record length weighted means of the entire dataset 
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6.3 Goodness-of-fit 

 

The GoF tests applied consisted of the AD, CS, CvM and KS tests. Table 6.2 contains a 

summary of the number of sites (%) that were accepted for each GoF test and distribution 

considered. It is evident from the GoF test acceptance that the distribution that is accepted most 

frequently is the LP3. However, all distributions under consideration can be considered suitable 

options for the use in South Africa as an average GoF acceptance in excess of 80% is achieved 

by all distributions. The GPA and KAP acceptance levels are, however, only 49.9% and 68.4%, 

respectively for the AD test. 

 

Table 6.2 Summary of the Anderson-Darling, Chi-squared, Cramer-von-Mises and 

Kolmogorof-Smirnov GoF test results for 383 sites in South Africa*. 

Distribution 
GoF Test Acceptance (% of sites) 

Rank 
AD CS CvM KS Average 

GPA 49.9 81.5 91.9 98.2 80.4 3 

KAP3 68.4 79.4 90.6 98.2 84.2 2 

LP3 89.8 85.6 97.7 99.7 93.2 1 

*Distribution with the highest acceptance rate is highlighted in bold 

 

6.4 Model Uncertainty 

 

The final consideration for the selection of a suitable distribution was estimating the uncertainty 

associated with the distributions being considered. Figure 6.4 shows the 90% confidence limits, 

calculated as a percent variance in relation to the original flood frequency analysis using the 

original dataset. The assessment of the uncertainty associated with the distributions was based 

on the 1% AEP due to its common application in practice and requirement in regulatory 

documents and the rank of the distributions is shown in Table 6.4. 

 

6.5 Model Selection Criterion 

 

The next assessment utilised the model fit criteria, which provide selections based on the 

relative best fits by comparing the information lost in the model fitting procedure for each 

distribution. The model fit criteria considered were the AIC, AICc and BIC. Table 6.3 contains 

the results of the best relative fit test, undertaken in an iterative manner due to the criterion 

providing relative fit results. Each iteration eliminates the distribution/s that is selected for the 
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lowest percentage of sites. From the model fit criterion, it is evident that the GPA, KAP, KAP3 

and LP3 PDs are better suited for application in South Africa. The KAP was applied in the 

four-parameter format and hence was penalised more harshly by the model fit criterion, yet 

still retained a high selection rate. However, KAP could not be fitted to approximately 10% of 

sites considered, which eliminated the distribution in the penultimate iteration. Similar to the 

KAP distribution, the LNO distribution could also not be fitted to the all the stations. Based on 

the process undertaken, the GPA and LP3 distributions are selected for 54.2% and 45.8% of 

sites respectively. An investigation into the relationship between catchment descriptors and 

selected distribution provided no suitable descriptor to describe the variance in selection. In 

addition, the GPA distribution selection is only 10% more than the LP3 selection, which does 

not suggest that either of the distributions out performs the other at a national scale. 

 

Table 6.3 Summary of iterations of model criterion test selections for South Africa, the 

distribution with the highest selection rate for each iteration is indicated in bold 

Iteration Distribution 
Model Fit Criteria Selection (% of sites) 

Rank 
AIC AICc BIC 

1 

GPA 55.1 55.1 55.4 - 

KAP3 0.3 0.3 0 3 

LP3 44.6 44.6 44.6 - 

2 
GPA 55.4 55.4 55.4 1 

LP3 44.6 44.6 44.6 2 

* KAP eliminated due to lack of fit at 10% of sites considered 

 

6.6 Distribution Ranking 

 

Each distribution was ranked based on the performance for each test undertaken and is shown 

in Table 6.5. The GPA ranks highest in two of the approaches undertaken, followed by the 

KAP3 and LP3 both performing best in one of the two remaining approaches. 

 

Table 6.4 Rank of distributions based on the uncertainty associated with the 1% AEP for 383 

sites in South Africa 

Distribution Rank 

GPA 1 

KAP3 2 

LP3 3 
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Figure 6.4 Variation of the 90% confidence bands presented as percentage variance of the 

balanced bootstrap confidence bands for the GPA, KAP3 (h = 0.77), and LP3 

distributions 

 

Table 6.5 Rank of distributions for the Goodness-of-fit, model fit criterion, graphical and 

uncertainty tests. The best performing distribution is highlighted in bold. 

Distribution Graphical GoF 
Model Fit 

Criterion 
Uncertainty 

Total 

GPA 2 3 1 1 7 

KAP3 1 2 3 2 8 

LP3 3 1 2 3 9 

 

6.7 Discussion and Conclusions 

 

The literature indicates that a large number of distributions for FFA are available and are 

prescribed internationally. However, in South Africa, little scientifically justifiable 

investigation has been undertaken into the most suitable distributions to use. This identified the 

need for a detailed scientific investigation in order to identify the most suitable distribution for 

use based on South African flow data.  
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Four separate approaches were applied at 383 locations, consisting of 296 river gauges and 87 

synthetic dam inflows, for the selection of the most suitable distributions using graphical 

LMRD, GoF tests, model fit criterion and model uncertainty. The GoF tests indicated that the 

distribution with the highest acceptance rate is the LP3. However, given the high acceptance 

rates of all of the candidate distributions, little clarity was provided as nearly all the candidate 

distributions considered were accepted at the majority of the sites for all tests applied (AD, CS, 

CvM, and KS). To refine the results, model fit criterion (AIC, AICc, and BIC) were utilised to 

identify the relative best fit of the distributions under consideration. The model fit criterion 

refined the results, and the best fit models were the GPA and LP3. 

 

The graphical method employed LMRDs and GoF was based on the KP test. Assessing the 

distributions using the KP test identified that the KAP3 was most suitable, followed by the 

GPA and LP3 distributions.  

 

The final consideration for distribution selection was the estimation of the uncertainty 

associated with the distributions. Although the uncertainty is not traditionally used for the 

selection of a distribution, it has become an important consideration in hydrological modelling. 

Balanced bootstrapping was used to determine the uncertainty bands associated with each 

distribution for each site considered and it was evident that the most uncertain distribution was 

the LP3. The least uncertain distributions were the GPA, GEV and KAP3 respectively. 

 

Based on the assessment undertaken it is recommended that the GPA, which is a special case 

of the KAP, is the most suitable PD to use when applying FFA on a national scale in South 

Africa.  
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7 REGIONALISATION 

 

A summary of the regionalisation undertaken is presented in this chapter. Based on the 

literature reviewed, RoI and clustering methods were identified as applicable approaches to 

regionalisation for application in South African conditions. Each method has a unique set of 

benefits, e.g. the RoI method is often used in data rich regions, whereas clustering is often 

utilised in data poor regions. 

 

7.1 Region of Influence 

 

At each site being analysed the full set of potential descriptor combinations were tested in order 

to identify the best parameters for use in the selection of donor catchments in the RoI Approach. 

Enforcing the 5T rule, reduced the homogeneity of the regions in many instances and resulted 

in an increase of H beyond the adopted maximum value of 2. The best performing single 

parameter set was the Latitude, Longitude, Distance from the Coastline and mean runoff 

percentage which generated 16% and 51% homogeneous regions for 500- and 200-year 

minimum record lengths approaches, respectively. 

 

In an attempt to increase the number of relatively homogenous regions identified through the 

use of the RoI the best combination of two parameter sets was considered. The best performing 

combination of two parameter sets was the combination of Area, Elevation, 24-hour 10-year 

design rainfall, latitude, longitude, mean SCS value and MAP combined with Distance from 

the coastline, Kovacs region, latitude, longitude and mean runoff percentage. By combining 

the two sets, 71% of regions formed were deemed to be relatively homogeneous. 

 

7.2 Clustering 

 

As an initial approach to cluster size selection, an analysis was undertaken to identify the 

relative homogeneity of all the stations used in the study and for stations per primary drainage 

regions. Table 7.1 indicates the improvement of the H measure when discordant sites have been 

removed from the data sets. However, it is still evident that even with the removal of the 

discordant stations the homogeneity requirement (H < 2) is generally not met. The number of 
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discordant sites removed was determined by iteration after each exclusion, which required the 

further exclusion of additional sites. 

 

Removal of the discordant sites from the entire data set and from Regions A and B caused 

additional sites to become discordant, doubling the required number of sites to be excluded. 

With the exception of Regions L, N, P, R and S, the regions were heterogeneous.  Due to the 

lack of homogeneity in the remaining regions, and the need to exclude sites to achieve 

homogeneity, further division of the clusters was performed. All sites were considered for the 

cluster analysis in an attempt to maximise the number of sites used and ensure that cross 

catchment homogeneity was considered.  

 

As highlighted in Section 2.4.2, various catchment parameters have been used in different 

studies as clustering variables. It is important to note that the growth curve descriptive statistics 

were excluded from the regionalisation to ensure that the homogeneity testing and cluster 

formation remain independent. All potential combinations of clustering variables were 

investigated and the combination that generated the largest number of homogeneous regions 

without manual intervention was adopted. The parameter combination used for further 

investigation was therefore Latitude, Longitude and Distance from the Coastline, which 

generated relatively homogeneous clusters in 44.4% of clusters as indicated in Table 7.2. 

 

Table 7.3 provides the final accepted clusters. Clusters were adjusted using a combination of 

manual adjustments such as: (i) further clustering within clusters, (ii) merging of clusters, (iii) 

manual adjustment of clusters to improve spatial variations, and (iv) exclusion of sites. The 

final number of sites utilised in the relatively homogeneous clusters is 332. The formation of 

the relatively homogeneous clusters therefore required the exclusion of 51 sites (13%). 

 

It is evident that a total of 42 relatively homogeneous clusters were created that all satisfy the 

H < 2 requirement, however, in some instances the minimum record length of 200 years was 

relaxed with a minimum accepted record length of 129 in Cluster 18. The spatial representation 

of the accepted clusters is shown in Figure 7.1. 
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Table 7.1 Homogeneity testing for national and drainage regions 

Region 
No. of 

Stations 

Cumulative 

Record Length 

(years) 

H 

(Including 

Discordant 

Sites) 

H 

(Excluding 

Discordant 

Sites) 

Total No. of 

Discordant 

Sites Removed 

National 411 18965 36.33 28.01 42 

A 66 3626 10.87 8.64 4 

B 52 2548 9.38 6.89 7 

C 37 1679 5.62 5.62 0 

D 20 1148 4.66 4.66 0 

E 5 247 9.16 9.16 0 

G 21 850 10.99 9.13 1 

H 23 899 15.44 15.44 0 

J 21 1083 6.99 4.95 3 

K 10 504 10.18 10.18 0 

L 6 295 0.25 0.25 0 

N 6 326 0.00 0.00 0 

P 2 100 0.29 0.29 0 

Q 16 722 5.80 5.80 0 

R 4 166 1.81 1.81 0 

S 4 214 0.23 0.23 0 

T 13 676 5.37 5.37 0 

U 14 636 4.72 4.72 0 

V 28 1554 3.36 2.60 2 

W 20 957 4.91 4.91 0 

X 43 2045 6.38 6.38 0 
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Table 7.2 Initial clustering 

Cluster No. No. of Stations No. of Discordant Sites H1* 
Record Length 

(years) 

1 29 1 9.1 1445 

2 4 0 4.6 172 

3 8 0 1.1 340 

4 8 0 2.9 457 

5 12 0 1.5 540 

6 4 0 2.4 230 

7 9 0 1.4 437 

8 14 0 6.3 685 

9 17 1 10.6 775 

10 5 0 7.3 217 

11 7 0 1.6 393 

12 7 0 2.9 264 

13 13 0 1.8 660 

14 8 0 1.8 405 

15 15 1 1.3 777 

16 4 0 0.3 199 

17 10 0 0.8 424 

18 7 0 1.2 296 

19 6 0 0.4 254 

20 18 0 4.2 959 

21 14 1 7.8 634 

22 11 0 4.0 482 

23 19 0 10.7 648 

24 2 0 0.9 124 

25 3 0 1.5 219 

26 12 0 3.0 718 

27 9 0 1.1 407 

28 15 0 9.0 841 

29 19 0 4.5 1043 

30 28 0 6.7 1279 

31 10 0 1.5 371 

32 9 0 5.2 456 

33 8 0 8.2 297 

34 5 0 0.9 136 

35 6 0 1.9 368 

36 8 0 2.3 397 

* Shaded cells indicate relatively homogeneous clusters 
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Table 7.3 Accepted relatively homogeneous clusters  

Cluster No. No. of Stations No. of Discordant Sites H1 
Record Length 

(years) 

1 10 0 1.5 357 

2 15 0 1.6 860 

3 5 0 1.0 325 

4 11 0 1.9 530 

5 12 0 1.5 540 

6 6 0 1.2 329 

7 5 0 1.8 184 

8 7 0 1.5 431 

9 10 0 0.8 424 

10 8 0 1.9 424 

11 9 0 1.8 389 

12 6 0 1.3 198 

13 8 0 1.8 405 

14 12 0 1.3 517 

15 8 0 1.1 340 

16 7 0 0.6 276 

17 3 0 0.6 191 

18 4 0 1.0 129 

19 7 0 1.2 296 

20 6 0 0.4 240 

21 8 0 1.8 230 

22 8 0 1.9 263 

23 5 0 1.3 182 

24 5 0 1.0 192 

25 6 0 1.9 368 

26 5 0 1.5 299 

27 6 0 1.9 280 

28 5 0 0.2 252 

29 8 0 2.0 400 

30 5 0 1.9 241 

31 8 0 0.1 374 

32 7 0 1.5 317 

33 11 0 1.4 507 

34 9 0 2.0 387 

35 18 0 0.7 1015 

36 6 0 1.6 301 

37 9 0 1.1 407 

38 3 0 0.2 192 

39 8 0 2.0 440 

40 9 0 1.4 437 

41 13 0 1.8 660 

42 10 0 1.5 371 
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Figure 7.1 Distribution of the 42 relatively homogeneous clusters identified 

 

7.3 Discussion and Conclusions 

 

The RoI approach is flexible to the needs of the user, however once the rules of application are 

defined adjusting regions becomes difficult due to each site defining a unique region. The rigid 

nature, coupled with the low level of identification of homogeneous regions, in particular when 

considering the use of a single parameter set, results in a difficult to apply method, which could 

limit the uptake of the developed models. 

 

In contrast, the Clustering approach has developed 42 relatively homogeneous regions that are 

distributed geographically. The simpler definition and geographic distribution of the regions 

provide an approach that has a higher probability of acceptance with practitioners. The 42 

homogeneous clusters have therefore been adopted for the RM calibration and model 

development.
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Figure 7.2 Delineation of national cluster association based on location and distance in relation to the DWS primary drainage regions (green) 

from the sea at a scale of 0.1 degrees 
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8 MODEL DEVELOPMENT AND ASSESSMENT 

 

This chapter contains a summary of the development of models to for DFE at ungauged sites 

and assessment of the performance of the models.  

 

Two distinct approaches were adopted for the development of models for the estimation of 

design floods at ungauged sites: (i) Regional Index Flood approach (RIF), and (ii) Calibrated 

PRM (CT) method. The RIF approach was adopted in an attempt to reduce the uncertainty 

identified when using the Calibrated CT approach by Calitz (2016). It is believed that the 

conversion from quantile estimates to the CT-values introduces additional uncertainty due to an 

increase in the number of parameters being considered, as well as the increase in complexity 

of the estimation of the CT values. The CT value approach is retained due to the simplicity of 

the application and current level of integration into current practice within South Africa. 

 

The modelling process therefore follows the following steps: 

(a) identify the cluster that the sites belong to, 

(b) estimate the scaling factor based on the developed regressions, and  

(c) estimate the QT values using the regional dimensionless growth curves. 

 

8.1 Regional Growth Curve Development 

 

Utilising the 42 relatively homogeneous clusters developed in Chapter 6, regional growth 

curves were developed for each cluster. This required that the growth curves for each station 

in each cluster be converted to a dimensionless growth curve for the sites within the cluster, 

and this required the selection of a suitable scaling factor, commonly referred to as an index 

flood. This was followed by calculating the representative scaled (dimensionless) growth curve 

for each cluster. Thereafter, regressions were developed to estimate the scaling factor (index 

value) at ungauged sites in each cluster. 
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8.1.1 Quantile Growth Curves 

 

Considering the results presented in Chapter 6, the GPA distribution was utilised for the 

estimation of the design values using the observed data and hence quantile growth curves at 

each site. 

 

8.1.2 RM Calibration 

 

The calibrated CT values were found to have varied properties, as summarised in Table 8.1 for 

each relatively homogeneous cluster. Similar to the findings of Parak and Pegram (2006), the 

calibrated CT values were found at some sites to not be consistent with the assumption that the 

CT values should increase with a decrease in AEP. This occurred at 79 of the sites investigated. 

Parak and Pegram (2006) identified that the calibrated CT values used in their study were within 

reasonable bounds when compared to Chow et al. (1988) and hence tentatively included the 

inconsistent results for the remainder of the study. Similarly, the sites with a decrease of CT 

with AEP have been tentatively included in this study. It should also be noted that AEP’s lower 

than 5% contain CT values in excess of 1 at six sites for the 0.5% AEP and at a single site for 

5% AEP. These values could have been the result of design rainfall estimates being restricted 

to use of the median values. Smithers and Schulze (2003) do, however, provide upper and lower 

90% confidence bounds for estimates and these bounds could be investigated to restrict the C-

values to not exceed 1. 

 

Table 8.1 Summary of calibrated CT values per AEP for the 42 homogeneous clusters 

Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

1 

Max 0.326 0.327 0.345 0.377 0.402 0.412 0.415 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.167 0.217 0.234 0.237 0.205 0.184 0.178 

Average 0.166 0.211 0.219 0.218 0.210 0.202 0.192 

2 

Max 0.052 0.094 0.124 0.152 0.212 0.273 0.350 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.030 0.060 0.082 0.109 0.137 0.166 0.201 

Average 0.031 0.060 0.081 0.104 0.138 0.168 0.202 

3 

Max 0.030 0.063 0.097 0.143 0.230 0.326 0.462 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.028 0.048 0.072 0.092 0.120 0.144 0.171 

Average 0.025 0.049 0.070 0.095 0.140 0.187 0.251 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

4 

Max 0.036 0.080 0.118 0.161 0.230 0.294 0.372 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.025 0.063 0.078 0.096 0.109 0.117 0.123 

Average 0.023 0.050 0.069 0.091 0.123 0.152 0.188 

5 

Max 0.135 0.247 0.299 0.391 0.533 0.663 0.818 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.030 0.062 0.087 0.114 0.165 0.215 0.266 

Average 0.047 0.090 0.120 0.152 0.201 0.248 0.307 

6 

Max 0.084 0.174 0.237 0.300 0.385 0.454 0.528 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.054 0.099 0.129 0.157 0.196 0.220 0.251 

Average 0.055 0.107 0.141 0.173 0.215 0.248 0.283 

7 

Max 0.146 0.182 0.176 0.162 0.157 0.158 0.156 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.082 0.112 0.115 0.111 0.102 0.094 0.088 

Average 0.089 0.120 0.123 0.121 0.114 0.108 0.101 

8 

Max 0.062 0.119 0.159 0.199 0.254 0.298 0.345 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.040 0.072 0.100 0.130 0.172 0.207 0.247 

Average 0.044 0.080 0.104 0.127 0.158 0.183 0.211 

9 

Max 0.123 0.181 0.194 0.195 0.186 0.178 0.213 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.050 0.078 0.090 0.111 0.142 0.162 0.164 

Average 0.055 0.088 0.104 0.117 0.130 0.138 0.146 

10 

Max 0.226 0.361 0.413 0.440 0.451 0.446 0.434 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.060 0.106 0.134 0.152 0.173 0.186 0.198 

Average 0.070 0.118 0.145 0.165 0.188 0.202 0.216 

11 

Max 0.071 0.150 0.207 0.268 0.358 0.437 0.655 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.024 0.053 0.074 0.104 0.140 0.171 0.208 

Average 0.030 0.060 0.084 0.112 0.158 0.206 0.270 

12 

Max 0.160 0.314 0.434 0.567 0.772 0.960 1.185 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.065 0.123 0.161 0.198 0.251 0.292 0.322 

Average 0.071 0.138 0.184 0.231 0.296 0.353 0.417 

13 

Max 0.238 0.397 0.462 0.499 0.519 0.521 0.515 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.080 0.151 0.198 0.239 0.266 0.307 0.377 

Average 0.116 0.196 0.238 0.271 0.308 0.334 0.361 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

14 

Max 0.123 0.252 0.343 0.434 0.561 0.663 0.776 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.045 0.083 0.101 0.118 0.143 0.170 0.186 

Average 0.054 0.106 0.138 0.168 0.205 0.233 0.263 

15 

Max 0.435 0.632 0.712 0.786 0.885 0.945 0.996 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.115 0.180 0.211 0.233 0.258 0.274 0.299 

Average 0.172 0.276 0.329 0.368 0.408 0.432 0.454 

16 

Max 0.114 0.239 0.343 0.459 0.638 0.801 0.995 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.081 0.139 0.177 0.213 0.263 0.309 0.360 

Average 0.082 0.146 0.192 0.238 0.304 0.361 0.426 

17 

Max 0.150 0.266 0.365 0.478 0.660 0.830 1.036 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.084 0.145 0.170 0.208 0.290 0.366 0.458 

Average 0.095 0.173 0.230 0.290 0.381 0.463 0.562 

18 

Max 0.068 0.135 0.184 0.236 0.316 0.387 0.469 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.021 0.049 0.074 0.105 0.159 0.216 0.293 

Average 0.033 0.070 0.098 0.129 0.178 0.226 0.286 

19 

Max 0.041 0.065 0.075 0.089 0.107 0.120 0.132 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.032 0.058 0.074 0.080 0.091 0.098 0.103 

Average 0.035 0.060 0.073 0.083 0.094 0.100 0.106 

20 

Max 0.425 0.534 0.552 0.546 0.519 0.494 0.467 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.166 0.204 0.205 0.198 0.183 0.172 0.161 

Average 0.208 0.265 0.276 0.274 0.263 0.251 0.239 

21 

Max 0.388 0.501 0.544 0.585 0.673 0.733 0.787 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.098 0.124 0.141 0.153 0.170 0.184 0.197 

Average 0.162 0.226 0.258 0.283 0.306 0.321 0.332 

22 

Max 0.059 0.134 0.187 0.242 0.321 0.387 0.460 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.025 0.049 0.073 0.098 0.122 0.160 0.209 

Average 0.030 0.057 0.078 0.101 0.139 0.174 0.219 

23 

Max 0.107 0.161 0.174 0.177 0.172 0.165 0.157 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.047 0.063 0.069 0.071 0.072 0.071 0.069 

Average 0.062 0.085 0.089 0.089 0.086 0.082 0.077 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

24 

Max 0.159 0.251 0.312 0.391 0.534 0.665 0.819 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.117 0.218 0.284 0.303 0.312 0.310 0.304 

Average 0.089 0.153 0.192 0.229 0.277 0.316 0.359 

25 

Max 0.225 0.401 0.479 0.528 0.565 0.578 0.682 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.050 0.102 0.142 0.185 0.228 0.301 0.379 

Average 0.072 0.130 0.166 0.199 0.245 0.282 0.325 

26 

Max 0.112 0.203 0.266 0.328 0.412 0.481 0.602 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.045 0.118 0.177 0.221 0.238 0.245 0.248 

Average 0.059 0.118 0.156 0.195 0.249 0.297 0.352 

27 

Max 0.264 0.388 0.453 0.500 0.546 0.571 0.588 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.140 0.212 0.240 0.253 0.259 0.256 0.249 

Average 0.167 0.236 0.262 0.275 0.280 0.279 0.274 

28 

Max 0.392 0.707 0.879 1.021 1.176 1.276 1.365 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.123 0.216 0.267 0.310 0.358 0.390 0.420 

Average 0.148 0.272 0.345 0.411 0.491 0.551 0.611 

29 

Max 0.074 0.114 0.155 0.213 0.312 0.414 0.547 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.046 0.085 0.115 0.136 0.157 0.173 0.194 

Average 0.050 0.087 0.111 0.136 0.171 0.203 0.241 

30 

Max 0.072 0.164 0.248 0.345 0.506 0.662 0.859 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.045 0.106 0.153 0.219 0.325 0.390 0.518 

Average 0.048 0.115 0.170 0.235 0.343 0.451 0.590 

31 

Max 0.060 0.110 0.143 0.173 0.210 0.238 0.267 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.039 0.064 0.083 0.098 0.126 0.146 0.163 

Average 0.039 0.067 0.085 0.103 0.127 0.145 0.165 

32 

Max 0.128 0.180 0.235 0.289 0.362 0.419 0.481 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.081 0.149 0.142 0.164 0.199 0.227 0.255 

Average 0.081 0.130 0.154 0.174 0.197 0.213 0.230 

33 

Max 0.293 0.413 0.461 0.487 0.498 0.502 0.583 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.148 0.200 0.211 0.209 0.213 0.216 0.235 

Average 0.151 0.219 0.250 0.270 0.287 0.295 0.301 
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Cluster Statistic 
AEP (%) 

50 20 10 5 2 1 0.5 

34 

Max 0.137 0.294 0.429 0.589 0.853 1.109 1.430 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.053 0.101 0.108 0.124 0.154 0.214 0.286 

Average 0.075 0.135 0.176 0.217 0.278 0.333 0.400 

35 

Max 0.256 0.361 0.397 0.411 0.410 0.471 0.574 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.108 0.177 0.220 0.245 0.268 0.307 0.339 

Average 0.116 0.173 0.206 0.233 0.266 0.291 0.318 

36 

Max 0.179 0.266 0.300 0.318 0.325 0.323 0.317 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.104 0.152 0.176 0.194 0.211 0.213 0.211 

Average 0.109 0.158 0.178 0.190 0.198 0.201 0.201 

37 

Max 0.217 0.445 0.614 0.793 1.060 1.296 1.569 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.086 0.139 0.174 0.215 0.280 0.360 0.461 

Average 0.093 0.173 0.234 0.300 0.401 0.494 0.606 

38 

Max 0.103 0.157 0.177 0.187 0.190 0.187 0.189 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.050 0.078 0.094 0.106 0.121 0.129 0.138 

Average 0.053 0.081 0.095 0.106 0.117 0.125 0.132 

39 

Max 0.124 0.216 0.297 0.394 0.558 0.715 0.914 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.049 0.082 0.110 0.129 0.165 0.194 0.226 

Average 0.057 0.096 0.125 0.155 0.202 0.246 0.302 

40 

Max 0.099 0.159 0.207 0.256 0.320 0.368 0.419 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.036 0.065 0.093 0.124 0.149 0.167 0.186 

Average 0.045 0.081 0.105 0.128 0.159 0.186 0.216 

41 

Max 0.048 0.063 0.071 0.078 0.085 0.090 0.093 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.015 0.023 0.025 0.025 0.030 0.034 0.039 

Average 0.020 0.028 0.032 0.035 0.038 0.040 0.042 

42 

Max 0.049 0.096 0.131 0.166 0.218 0.260 0.308 

Min 0.003 0.008 0.012 0.015 0.019 0.019 0.018 

Median 0.033 0.070 0.091 0.118 0.164 0.194 0.227 

Average 0.035 0.067 0.089 0.112 0.145 0.173 0.204 

 

8.1.3 Scaling factor 

 

For both adopted modelling approaches, a choice had to be made for the selection of the most 

appropriate scaling variable for the developed regional growth curves. The ARR (Pilgrim 2001) 
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and Calitz (2016) both adopted the C10 value to scale the RM growth curves, which proved 

successful, and was therefore adopted in this study for the calibrated CT  method. For the 

development of a regional index flood approach, the use of the MAF or MEF, as defined in 

Section 2.1.1, are widely reported in the literature. Hence, both the MAF and MEF values were 

assessed for use in the study, however, the MAF value proved to be most representative and 

reduced the spread of the dimensionless growth curves within a cluster.  

 

8.1.4 Dimensionless growth curves 

 

Having calibrated the RM at each site, cluster based dimensionless growth curves were 

developed using the C10 value to scale the individual at-site curves. Similarly, the at-site growth 

curves and the site MAF were used to derive at-site dimensionless growth curves for the 

development of the RIF approach. An example of the dimensionless growth curves for a cluster 

is shown in Figure 8.1 and the growth curves for all clusters are included in Appendix A, 

reference can be made to Figure 7.2 to identify curves. Table 8.2 and Table 8.3 show the cluster 

based CT and RIF dimensionless growth factors, respectively.  

 

 

Figure 8.1 Dimensionless Peak flow (left) and Scaled CT growth curves (right) for Cluster 42 

indicating the record length weighted average curves (red dash) in relation to the 

sites within the cluster (coloured lines) 
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Table 8.2 Dimensionless CT curves for each relatively homogeneous cluster 

Cluster 
Growth Factor (GFT) per AEP (%) 

50 20 10 5 2 1 0.5 

1 0.75 0.96 1.00 1.00 0.97 0.93 0.89 

2 0.39 0.74 1.00 1.27 1.68 2.03 2.45 

3 0.37 0.71 1.00 1.34 1.93 2.54 3.36 

4 0.31 0.70 1.00 1.33 1.85 2.34 2.97 

5 0.39 0.74 1.00 1.28 1.72 2.13 2.65 

6 0.40 0.77 1.00 1.22 1.50 1.72 1.94 

7 0.72 0.97 1.00 0.98 0.93 0.89 0.84 

8 0.44 0.78 1.00 1.20 1.48 1.70 1.95 

9 0.51 0.83 1.00 1.14 1.28 1.38 1.47 

10 0.46 0.80 1.00 1.17 1.37 1.51 1.65 

11 0.38 0.73 1.00 1.31 1.83 2.35 3.05 

12 0.40 0.77 1.00 1.21 1.50 1.72 1.97 

13 0.46 0.80 1.00 1.18 1.40 1.58 1.77 

14 0.39 0.77 1.00 1.21 1.47 1.66 1.87 

15 0.49 0.81 1.00 1.17 1.37 1.52 1.67 

16 0.44 0.77 1.00 1.23 1.54 1.81 2.12 

17 0.41 0.76 1.00 1.24 1.60 1.92 2.30 

18 0.32 0.71 1.00 1.32 1.83 2.33 2.97 

19 0.47 0.82 1.00 1.14 1.29 1.38 1.45 

20 0.76 0.97 1.00 0.99 0.94 0.89 0.84 

21 0.61 0.86 1.00 1.11 1.24 1.33 1.41 

22 0.40 0.73 1.00 1.31 1.81 2.30 2.92 

23 0.71 0.95 1.00 1.00 0.96 0.91 0.86 

24 0.42 0.77 1.00 1.23 1.54 1.81 2.11 

25 0.43 0.78 1.00 1.21 1.50 1.74 2.01 

26 0.37 0.75 1.00 1.26 1.64 1.97 2.36 

27 0.67 0.92 1.00 1.03 1.03 1.00 0.97 

28 0.41 0.77 1.00 1.22 1.51 1.74 1.99 

29 0.43 0.77 1.00 1.23 1.56 1.85 2.18 

30 0.28 0.67 1.00 1.39 2.06 2.73 3.62 

31 0.47 0.79 1.00 1.20 1.45 1.66 1.88 

32 0.55 0.86 1.00 1.11 1.22 1.30 1.37 

33 0.61 0.88 1.00 1.08 1.16 1.20 1.24 

34 0.48 0.80 1.00 1.19 1.48 1.73 2.05 

35 0.56 0.83 1.00 1.15 1.34 1.49 1.65 

36 0.64 0.90 1.00 1.06 1.09 1.10 1.10 

37 0.41 0.75 1.00 1.27 1.67 2.03 2.47 

38 0.52 0.83 1.00 1.15 1.33 1.47 1.62 

39 0.46 0.79 1.00 1.22 1.53 1.82 2.19 

40 0.43 0.77 1.00 1.23 1.55 1.82 2.14 

41 0.60 0.86 1.00 1.11 1.22 1.29 1.36 
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Cluster 
Growth Factor (GFT) per AEP (%) 

50 20 10 5 2 1 0.5 

42 0.41 0.75 1.00 1.25 1.60 1.89 2.23 

 

Table 8.3  Dimensionless RIF growth curves for each relatively homogeneous cluster 

Cluster 
Growth Factor (GFT) per AEP (%) 

50 20 10 5 2 1 0.5 

1 0.85 1.54 1.95 2.28 2.63 2.83 2.99 

2 0.53 1.41 2.28 3.38 5.30 7.20 9.61 

3 0.44 1.27 2.19 3.45 5.89 8.57 12.28 

4 0.45 1.40 2.38 3.66 5.96 8.32 11.40 

5 0.50 1.40 2.31 3.48 5.56 7.65 10.33 

6 0.59 1.52 2.35 3.30 4.76 6.07 7.56 

7 0.83 1.67 2.15 2.52 2.89 3.10 3.27 

8 0.56 1.44 2.29 3.32 5.04 6.69 8.69 

9 0.70 1.55 2.21 2.89 3.81 4.54 5.29 

10 0.64 1.53 2.28 3.11 4.33 5.37 6.51 

11 0.44 1.32 2.27 3.56 5.98 8.57 12.09 

12 0.56 1.55 2.44 3.47 5.11 6.58 8.29 

13 0.63 1.52 2.28 3.14 4.42 5.53 6.77 

14 0.59 1.59 2.44 3.39 4.81 6.01 7.35 

15 0.64 1.51 2.25 3.08 4.33 5.40 6.59 

16 0.62 1.49 2.25 3.13 4.50 5.72 7.11 

17 0.55 1.45 2.30 3.35 5.10 6.77 8.82 

18 0.44 1.41 2.40 3.69 6.01 8.38 11.46 

19 0.69 1.61 2.31 3.02 3.97 4.70 5.44 

20 0.92 1.52 1.80 1.99 2.14 2.22 2.27 

21 0.78 1.46 1.97 2.46 3.09 3.56 4.02 

22 0.52 1.40 2.29 3.40 5.35 7.30 9.76 

23 0.88 1.58 1.94 2.21 2.45 2.57 2.66 

24 0.57 1.46 2.30 3.32 4.99 6.56 8.46 

25 0.55 1.49 2.37 3.42 5.14 6.75 8.68 

26 0.46 1.39 2.34 3.59 5.86 8.20 11.26 

27 0.76 1.56 2.12 2.64 3.29 3.74 4.16 

28 0.56 1.50 2.37 3.39 5.03 6.54 8.32 

29 0.54 1.42 2.29 3.37 5.23 7.04 9.31 

30 0.34 1.20 2.20 3.65 6.62 10.06 15.05 

31 0.64 1.49 2.23 3.07 4.37 5.50 6.79 

32 0.69 1.58 2.27 2.97 3.94 4.68 5.45 

33 0.76 1.50 2.05 2.60 3.32 3.86 4.39 

34 0.56 1.40 2.21 3.23 4.99 6.71 8.86 

35 0.71 1.45 2.06 2.74 3.73 4.56 5.47 

36 0.80 1.52 2.01 2.44 2.94 3.27 3.57 

37 0.47 1.32 2.23 3.45 5.74 8.17 11.45 
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Cluster 
Growth Factor (GFT) per AEP (%) 

50 20 10 5 2 1 0.5 

38 0.67 1.49 2.19 2.95 4.07 5.01 6.05 

39 0.61 1.45 2.23 3.14 4.61 5.96 7.56 

40 0.55 1.42 2.27 3.31 5.09 6.81 8.94 

41 0.72 1.47 2.08 2.71 3.61 4.32 5.08 

42 0.54 1.43 2.30 3.38 5.22 7.00 9.22 

 

8.2 Model Development 

 

For both the C10 and the MAF the development of regressions for the estimation of the scaling 

parameters utilised three of eight catchment descriptors considered. The three parameters were 

selected by developing ordinary least squares models using all the available catchment 

descriptors and iteratively eliminating the descriptors with the highest p-values until only three 

descriptors remained. In addition to the removal of the highest p-values, only descriptors with 

p-values less than 0.05 were retained. For both the C10 and MAF the most significant, and 

therefore adopted, descriptors were the catchment area, MAP and the distance from the 

coastline and the adopted model equation is provided in Equation 8.1. 

 

 Ln(SF) = a * Ln(A) + b * Ln(MAP) + c * Ln(Dc) + Const (8.1) 

where  

 SF  = Scaling Factor (MAF or C10) 

 a, b, c = model coefficients, and 

 Const = intercept (constant). 

 

Two approaches were used for the development of the regressions, one at a national scale 

estimation and the other a cluster based approach. The national approach pools all the data (332 

sites) to develop the model for estimating the scaling variable. A review of the required number 

of stations to improve the overall model estimates was undertaken and it was found that using 

less than 30 sites affected the estimation of the scaling factor, whereas exceeding 30 sites 

reduced the benefit gained from increasing the number of sites. Thus the cluster based approach 

utilises a minimum of 30 stations for the development of the scaling variable model. Where 

clusters contain less than 30 stations, the closest geographic clusters were included until a 

minimum of 30 sites was reached. Geographic proximity was defined by the distance between 

cluster centroids. The adopted scaling variable model coefficients are contained in Table 8.4 
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and a comparison between the observed and estimated values are shown in Figure 8.2 and 

Figure 8.3 for the C10 and MAF models, respectively. 

 

Similarly, plots were developed for the QT estimation of both the RIF and CT approaches when 

estimating the SF using national- and a cluster based scales and are shown in Figure 8.4 to 

Figure 8.7. 

 

 

 

Figure 8.2 Observed versus estimated C10 for the national- (left) and cluster based (right) 

models 
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Figure 8.3 Observed versus estimated MAF for the national- (left) and cluster based (right) 

models 
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Table 8.4 Scaling parameter model coefficients 

Model 
MAF C10 

Constant Area MAP Distance from Coast R2 Constant Area MAP Distance from Coast R2 

National -5.88 0.69 0.90 -0.24 0.79 -4.26 0.11 0.24 -0.26 0.13 

Cluster 1 -18.32 0.49 3.19 -0.82 0.76 -12.99 -0.11 2.09 -1.39 0.33 

Cluster 2 2.34 0.50 0.43 -2.52 0.68 12.02 -0.14 -1.37 -2.82 0.45 

Cluster 3 2.34 0.50 0.43 -2.52 0.68 12.02 -0.14 -1.37 -2.82 0.45 

Cluster 4 -39.34 0.63 6.03 0.23 0.83 -39.39 0.06 5.67 -0.10 0.34 

Cluster 5 -6.01 0.64 1.00 -0.30 0.64 -5.78 0.13 0.51 -0.71 0.13 

Cluster 6 -21.52 0.66 3.09 1.13 0.85 -8.92 0.08 0.85 0.65 0.11 

Cluster 7 -18.34 0.70 2.60 0.79 0.86 -11.35 0.10 1.21 0.46 0.15 

Cluster 8 -35.46 0.64 5.10 1.96 0.85 -18.84 0.02 2.32 1.24 0.29 

Cluster 9 -6.40 0.80 0.76 0.52 0.83 3.67 0.19 -1.08 0.02 0.40 

Cluster 10 -8.67 0.85 1.08 0.28 0.79 -6.82 0.29 0.29 1.02 0.30 

Cluster 11 -6.01 0.64 1.00 -0.30 0.64 -5.78 0.13 0.51 -0.71 0.13 

Cluster 12 -5.23 0.74 0.73 0.16 0.73 -3.47 0.16 0.05 -0.12 0.16 

Cluster 13 -10.59 0.51 1.77 0.20 0.59 -5.55 -0.03 0.51 0.65 0.05 

Cluster 14 -8.95 0.62 1.41 -0.17 0.90 4.82 0.04 -0.79 -1.52 0.21 

Cluster 15 -8.45 0.63 1.37 -0.15 0.75 -0.17 0.09 -0.29 -0.17 0.09 

Cluster 16 -8.38 0.57 1.40 0.02 0.69 1.06 0.04 -0.44 -0.06 0.05 

Cluster 17 -11.82 0.70 1.83 -0.03 0.74 -7.39 0.07 0.82 -0.01 0.03 

Cluster 18 -9.27 0.82 1.37 -0.32 0.80 -9.08 0.24 0.90 -0.40 0.28 

Cluster 19 -3.36 0.66 0.54 -0.52 0.89 -4.76 0.06 0.38 -0.35 0.22 

Cluster 20-24 -13.04 1.02 1.87 0.39 0.88 -11.03 0.36 1.16 0.08 0.45 

Cluster 25 -5.17 0.74 0.77 -0.32 0.85 -4.81 0.14 0.27 -0.50 0.37 

Cluster 26-27 -2.16 0.69 0.30 -0.50 0.82 -2.56 0.08 -0.03 -0.55 0.29 

Cluster 28 -3.21 0.67 0.50 -0.38 0.84 -3.97 0.08 0.22 -0.38 0.30 

Cluster 29 0.15 0.47 0.17 -0.41 0.71 3.53 -0.21 -0.65 -0.36 0.15 
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Model 
MAF C10 

Constant Area MAP Distance from Coast R2 Constant Area MAP Distance from Coast R2 

Cluster 30-32 -7.48 0.68 1.16 -0.16 0.84 -3.44 -0.01 0.26 -0.13 0.02 

Cluster 33 -2.45 0.67 0.45 -0.05 0.74 4.72 0.10 -1.03 -0.05 0.13 

Cluster 34 4.42 0.68 -0.55 -0.05 0.80 8.71 0.09 -1.60 -0.08 0.21 

Cluster 35 2.34 0.61 -0.20 -0.02 0.70 10.03 0.03 -1.75 -0.02 0.13 

Cluster 36 -6.21 0.60 1.06 0.10 0.70 2.85 0.04 -0.71 -0.01 0.10 

Cluster 37 4.15 0.66 -0.50 -0.06 0.79 8.23 0.07 -1.52 -0.08 0.16 

Cluster 38-39 -4.41 0.77 0.53 0.05 0.82 5.48 0.17 -1.30 -0.34 0.35 

Cluster 40 -7.92 0.78 1.05 -0.09 0.85 -6.23 0.20 0.36 -0.26 0.32 

Cluster 41 -10.56 0.90 1.38 -0.22 0.79 -9.58 0.34 0.75 0.06 0.32 

Cluster 42 -11.46 0.85 1.48 0.32 0.83 -10.36 0.27 0.88 0.20 0.28 
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Figure 8.4 Estimated vs observed QT using the CT National based approach for the 50, 20, 10, 

5, 2, 1 and 0.5% annual exceedance probabilities 
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Figure 8.5 Estimated vs observed QT using the CT Cluster based approach for the 50, 20, 10, 

5, 2, 1 and 0.5% annual exceedance probabilities 
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Figure 8.6 Estimated vs observed QT using the RIF National based approach for the 50, 20, 

10, 5, 2, 1 and 0.5% annual exceedance probabilities 
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Figure 8.7 Estimated vs observed QT using the RIF Cluster based approach for the 50, 20, 10, 

5, 2, 1 and 0.5% annual exceedance probabilities 
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8.3 Performance Assessment 

 

Having developed both regional dimensionless growth curves and models to estimate the 

scaling factors for the CT and RIF approach (Eq 8.1 and Table 8.4), an assessment of the model 

performance could be undertaken. All results presented in this section are based on the LOO 

analyses, as described in Section 3.5. Figure 8.8 and Figure 8.9 provides a breakdown of the 

percentage of estimates that are within, under or in excess of the desirable ratio prescribed by 

Rahman et al. (2012) and Naidoo (In Preparation) respectively. It is evident that the RIF model, 

at a cluster scale, marginally outperforms the remaining models when considering only the 

ratios. The percentage of sites within the desirable range varies between 69 and 74%. The worst 

performing model was the CT based national model achieving a minimum percentage within 

the desirable ratio of 62%. 

 

When considering the RMSE and BIAS values presented in Table 8.5, on a national scale the 

RIF approach outperforms the CT approach. However, when performing the modelling at a 

cluster level the models perform equally well with the RIF approach outperforming the CT 

approach by only 0.4%. 

 

However, when considering the NSE values, shown in Table 8.6, the results are significantly 

different. The National based models are outperformed by the cluster based models for both 

the RIF and CT approaches, where the national models score negative NSE values. The RIF 

approach outperforms the CT approach, where the CT approach scored maximum values of  

-0.27 and 0.41 for the national- and cluster based approaches respectively. The RIF approach 

was the best performing model with the cluster based approach scoring a maximum NSE of 

0.72.  

 

As an additional check, the slopes of the regressions of the estimated versus observed QT values 

were calculated. The slopes were estimated forcing the regression intercept to zero. The slopes 

indicate that the national approaches tend to over-estimate the QT, whereas the cluster based 

CT approach over-estimates the higher AEPs and are within reasonable bounds for the 1% and 

0.5% AEPs. The cluster based RIF approach is within reasonable bounds for all AEPs, except 

for the 0.5% AEP, which tends to an under-estimation. 
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Figure 8.8 Percentage of QT estimates within the desirable ratio defined by Rahman et al. (2012) using the RIF (top) and CT (bottom) approaches for 

both Cluster based and National based scaling factor estimation methods 
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Figure 8.9 Percentage of QT estimates within the desirable ratio defined by Naidoo (In Preparation) using the RIF (top) and CT (bottom) approaches 

for both Cluster based and National based scaling factor estimation methods 



 

91 

Table 8.5 Performance statistics of QT estimation using the RIF and CT approaches* for 10% and 1% AEP  

  

RIF CT 

10% AEP 1% AEP 10% AEP 1% AEP 

RMSE RMSEr BIAS BIASr RMSE RMSEr BIAS BIASr RMSE RMSEr BIAS BIASr RMSE RMSEr BIAS BIASr 

National 516.07 22.72 191.56 0.69 1181.06 34.37 509.55 0.77 663.51 25.76 210.53 0.67 1541.53 39.26 572.40 0.79 

Cluster 1 80.57 8.98 62.67 0.41 109.38 10.46 86.78 0.36 87.34 9.35 67.72 0.43 117.62 10.85 88.96 0.37 

Cluster 2 111.03 10.54 67.69 0.39 335.33 18.31 230.78 0.50 102.61 10.13 58.33 0.42 361.81 19.02 227.32 0.52 

Cluster 3 63.71 7.98 55.79 0.46 307.72 17.54 270.53 0.92 40.09 6.33 33.07 0.21 402.36 20.06 350.37 0.58 

Cluster 4 60.50 7.78 35.31 0.78 282.26 16.80 160.42 0.70 76.90 8.77 49.59 0.91 321.37 17.93 197.75 0.83 

Cluster 5 387.30 19.68 262.59 0.75 1444.60 38.01 993.64 1.00 310.61 17.62 203.09 0.55 1165.82 34.14 801.84 0.76 

Cluster 6 141.41 11.89 122.75 0.79 481.08 21.93 422.07 0.96 122.70 11.08 111.91 0.63 373.15 19.32 301.33 0.74 

Cluster 7 110.85 10.53 89.26 0.44 205.42 14.33 135.49 0.45 95.80 9.79 84.53 0.43 185.22 13.61 143.84 0.33 

Cluster 8 230.50 15.18 174.68 0.52 578.20 24.05 476.83 0.82 192.44 13.87 169.66 0.56 609.42 24.69 498.61 0.87 

Cluster 9 81.68 9.04 53.59 0.41 147.66 12.15 99.63 0.45 77.32 8.79 53.36 0.41 157.42 12.55 104.67 0.46 

Cluster 10 117.65 10.85 85.27 0.43 235.59 15.35 178.34 0.40 125.28 11.19 86.06 0.39 235.13 15.33 178.14 0.39 

Cluster 11 103.90 10.19 58.95 0.57 440.94 21.00 314.67 1.04 80.49 8.97 44.54 0.39 340.97 18.47 246.95 0.81 

Cluster 12 317.37 17.81 277.76 0.80 1146.97 33.87 974.08 0.98 287.21 16.95 221.16 0.66 1302.24 36.09 1085.67 0.94 

Cluster 13 358.98 18.95 328.29 0.68 709.98 26.65 633.09 0.55 260.80 16.15 237.09 0.57 411.21 20.28 372.20 0.41 

Cluster 14 357.12 18.90 272.45 0.32 900.40 30.01 685.08 0.36 497.76 22.31 346.52 0.34 1230.28 35.08 867.91 0.36 

Cluster 15 428.86 20.71 300.70 0.85 817.02 28.58 610.29 0.72 474.77 21.79 343.65 0.95 892.36 29.87 641.87 0.72 

Cluster 16 224.20 14.97 189.26 0.41 773.32 27.81 647.79 0.55 195.86 14.00 163.35 0.37 786.61 28.05 631.50 0.56 

Cluster 17 268.79 16.39 191.53 0.30 1141.70 33.79 798.53 0.34 582.92 24.14 367.50 0.40 2075.78 45.56 1347.47 0.48 

Cluster 18 234.97 15.33 155.32 0.71 680.69 26.09 550.31 1.14 104.86 10.24 80.44 0.50 403.79 20.09 367.32 0.88 

Cluster 19 896.07 29.93 863.48 0.22 1780.00 42.19 1469.06 0.19 3028.13 55.03 3019.28 0.75 6491.66 80.57 6406.33 0.79 

Cluster 20 176.56 13.29 107.93 0.32 262.82 16.21 158.96 0.33 180.61 13.44 100.41 0.36 249.40 15.79 147.01 0.38 

Cluster 21 54.64 7.39 32.68 0.38 71.82 8.47 47.06 0.35 55.14 7.43 36.26 0.39 77.89 8.83 50.11 0.43 

Cluster 22 9.75 3.12 6.56 0.94 38.72 6.22 19.87 0.81 6.89 2.62 4.07 0.69 46.38 6.81 23.60 0.82 

Cluster 23 12.41 3.52 9.64 0.33 17.96 4.24 14.68 0.38 16.46 4.06 12.16 0.45 22.74 4.77 16.93 0.47 

Cluster 24 22.73 4.77 19.88 1.08 171.41 13.09 115.07 0.84 131.78 11.48 83.60 1.76 527.92 22.98 295.09 1.45 
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RIF CT 

10% AEP 1% AEP 10% AEP 1% AEP 

RMSE RMSEr BIAS BIASr RMSE RMSEr BIAS BIASr RMSE RMSEr BIAS BIASr RMSE RMSEr BIAS BIASr 

Cluster 25 525.36 22.92 245.35 0.83 1696.30 41.19 864.75 1.00 531.41 23.05 242.27 0.90 1844.62 42.95 891.35 1.18 

Cluster 26 80.29 8.96 59.85 0.40 141.30 11.89 103.15 0.34 147.63 12.15 92.66 0.51 404.70 20.12 246.75 0.51 

Cluster 27 55.14 7.43 34.38 0.59 113.71 10.66 74.89 0.77 65.10 8.07 36.48 0.41 130.85 11.44 78.56 0.57 

Cluster 28 104.78 10.24 79.97 0.34 360.97 19.00 307.83 0.39 113.17 10.64 90.53 0.33 157.52 12.55 127.87 0.21 

Cluster 29 110.42 10.51 82.40 0.20 706.77 26.59 444.05 0.41 91.89 9.59 73.85 0.39 671.67 25.92 377.05 0.64 

Cluster 30 83.61 9.14 68.58 0.40 340.84 18.46 283.35 0.28 84.49 9.19 66.54 0.40 330.25 18.17 254.42 0.28 

Cluster 31 141.88 11.91 106.05 0.50 257.26 16.04 200.63 0.39 559.35 23.65 349.76 1.47 1515.96 38.94 898.37 1.79 

Cluster 32 85.08 9.22 59.46 0.42 298.52 17.28 201.48 0.75 89.85 9.48 56.84 0.42 261.91 16.18 202.58 0.86 

Cluster 33 242.49 15.57 183.08 0.30 760.20 27.57 514.72 0.38 310.00 17.61 257.02 0.43 873.98 29.56 663.57 0.51 

Cluster 34 400.78 20.02 262.53 0.95 1520.18 38.99 986.35 1.50 370.11 19.24 233.99 0.85 1487.41 38.57 930.69 1.43 

Cluster 35 245.12 15.66 173.92 0.47 352.95 18.79 193.90 0.31 255.84 15.99 160.08 0.38 351.59 18.75 255.88 0.35 

Cluster 36 451.08 21.24 250.56 0.67 806.75 28.40 437.63 0.90 423.44 20.58 226.46 0.61 769.64 27.74 412.62 0.86 

Cluster 37 342.62 18.51 203.69 0.93 1531.57 39.14 895.58 1.22 326.72 18.08 182.80 0.90 1442.19 37.98 838.54 1.30 

Cluster 38 67.19 8.20 54.42 1.11 153.59 12.39 92.22 0.73 52.69 7.26 41.59 0.79 115.23 10.73 78.58 0.58 

Cluster 39 435.22 20.86 214.04 0.59 1197.92 34.61 683.92 0.69 216.46 14.71 112.45 0.38 730.47 27.03 463.64 0.59 

Cluster 40 483.54 21.99 381.58 0.72 1451.23 38.09 1083.67 0.75 428.57 20.70 321.67 0.60 1283.05 35.82 906.72 0.61 

Cluster 41 27.00 5.20 19.50 1.05 56.06 7.49 38.63 1.02 33.87 5.82 22.75 1.15 75.84 8.71 52.27 1.26 

Cluster 42 88.51 9.41 58.33 0.35 321.75 17.94 220.11 0.42 75.05 8.66 52.38 0.32 270.23 16.44 201.89 0.41 

* Shaded blocks indicate best performance of the two methods 
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Table 8.6 NSE and regression slope of observed and estimated QT for the RIF and CT 

approaches at national and cluster scale. 

AEP (%) 50 20 10 5 2 1 0.5 

RIF 

National 
NSE -0.07 -0.06 -0.02 0.04 0.12 0.19 0.25 

Slope 1.38 1.46 1.45 1.41 1.32 1.23 1.12 

Cluster 
NSE 0.70 0.72 0.72 0.70 0.66 0.62 0.58 

Slope 1.03 1.07 1.06 1.04 0.99 0.94 0.87 

CT 

National 
NSE -0.75 -0.74 -0.69 -0.61 -0.48 -0.38 -0.27 

Slope 1.55 1.61 1.59 1.55 1.45 1.36 1.26 

Cluster 
NSE 0.37 0.40 0.41 0.41 0.40 0.38 0.36 

Slope 1.25 1.28 1.26 1.23 1.16 1.09 1.02 

 

Figure 8.10 indicates the reason for the low NSE values achieved by the National models, using 

the C10 approach. What is evident is that there are three sites (D7H002, D7H005, D7H008) that 

are significantly over estimated by the approach, which negatively affect the results. 

 

 

Figure 8.10 Estimated vs observed QT using the C10 approach for the 50% AEP 
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Given the above results of the performance assessment of the RIF and CT methods, it is 

recommended that the RIF cluster based approach be adopted. 

 

8.4 Comparison to Standard Design Flood Method 

 

Considering that the purpose of the project was the development of an improved PRM for 

South Africa, a comparison to the SDF method was undertaken using the same performance 

metrics to compare the RIF and CT approaches. Figure 8.11 and Figure 8.12 compares the 

spread of the estimated vs observed ratios for the cluster based RIF and CT, and the SDF. It is 

evident that the SDF estimation method over estimates the design flood values. 
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Figure 8.11 Comparison of the percentage of QT estimates within the desirable ratio defined by Rahman et al. (2012), between the RIF (top left), CT (top right) 

and the SDF (bottom left) approaches 
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Figure 8.12 Comparison of the percentage of QT estimates within the desirable ratio defined by Naidoo (In Preparation), between the RIF (top left), CT (top right) 

and the SDF (bottom left) approaches 
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9 DEVELOPMENT OF A DESIGN FLOOD ESTIMATION UTILITY 

 

Accessibility to design flood data and hydrological parameters is limited in South Africa, with 

both practitioners and students often having difficulty obtaining, cleaning and compiling 

datasets. This leads to duplication of effort and inconsistent estimation of model input 

parameters by practitioners working in the same catchment. Similarly, for researchers and 

students, there is much duplication of effort to access data required for different research 

projects and consequently less time is spent on the research. The National Flood Studies 

Programme (NFSP) has identified the need for the development of a freely available 

hydrological database containing information pertinent to national flood studies (Smithers et 

al. 2014). 

 

The National Flood Studies Application (NaFSApp) which has been developed is considered 

a pilot study for the development of an online database which contains an interface to extract 

catchment data and parameters for design flood estimation, thus limiting duplication of effort 

and improving consistency in application of the methods.  

 

The interface was developed with the “Three-click-rule” in mind, which attempts to ensure that 

the users are able to access the desired information within three clicks. Additionally, a mobile 

first approach was adopted, whereby the application was developed with accessibility in mind. 

 

9.1 Technical specifications 

 

The Interface was developed using the following technologies: 

(i) Web framework: Python 3.7 and Django 2.2 

(ii) Server Provider: Heroku 

(iii) Database: PostgreSQL + PostGIS 

(iv) Mapping: Leaflets 

(v) Basemaps: OpenStreetMaps, ESRI Imagery and Stamen Design Terrain 

(vi) Graphing: Bokeh – Interactive graphing functionality 

(vii) Progressive Web App functionality, as shown in Figure 9.1. 
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Progressive web app functionality has been integrated into the application which allows mobile 

users to save an app-like shortcut to their mobile phones. This allows for the use of the entire 

screen as well as the use of push notifications. Web app functionality is currently limited on 

iOS devices due to technical requirements of the SSL certificates, however, it is anticipated 

that this functionality will become available in the near future.  

 

 

Figure 9.1 Progressive web app 

 

9.2 User guide 

 

The NaFSApp is currently hosted on the NFSP website (https://www.nfsp.co.za). Please refer 

to the NFSP website for the user guide and any future developments. 

https://www.nfsp.co.za/
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10 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

 

The aim of this study is to develop a refined regionalised, probabilistic approach to the 

application of the RM for design flood estimation in South Africa. The objectives of the study 

listed in Chapter 1 can be summarised as follows: 

(a) Collation and quality control of selected gauged flow data in South Africa. 

(b) Produce at-site flood frequency curves for selected stations. 

(c) Compilation of catchment descriptors database. 

(d) Identify and verify homogeneous flood producing regions. 

(e) Calibration of the Rational Method within homogeneous regions. 

(f) Regional flood model development. 

(g) Assessment of the performance of the proposed methodology. 

(h) Develop a DFE utility for application of the newly proposed methodologies by design 

practitioners  

(i) Development of a RIF method for DFE and comparison of performance with the 

regionalised PRM developed. 

 

10.1 Data Collection and Screening 

 

The collection of the required data for the study was considered to be a two phased approach, 

whereby both the catchment specific parameters, and the hydrological streamflow data were 

collated. 

 

10.1.1 Catchment specific parameters 

 

The methods used in this study are based on internationally accepted DFE procedures. This 

was used to ensure familiarity in the approach and ease of application. These methods require 

nearly identical catchment parameters to be estimated for use in the two DFE methods 

developed and range from meteorological parameters to topographic and land use parameters.  

 

The SDF method (Alexander 2002), which is a PRM, has been criticised for the use of an 

outdated rainfall data set and broad regionalisation  (Smithers and Schulze 2003) and the use 

of incorrect catchment parameters (Van Vuuren et al. 2013). In this study, the derived 
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catchment parameters were verified against DWS data sets. The selected catchment parameters, 

including the estimation method, for inclusion into the study were: 

(a) outlet location (from DWS), 

(b) outlet elevation (derived from DEM), 

(c) catchment area (derived from DEM), 

(d) catchment centroid (derived from area), 

(e) longest flow path (L), 

(f) length to centroid (Lc), 

(g) distance from the coast (Dc), 

(h) slope (S10-85, Sea, Sc), 

(i) time of concentration (Tc), 

(j) Areal Reduction Factor (ARF), 

(k) catchment runoff percentage (Cro), 

(l) SCS soil classifications (SCS), 

(m) arid region, 

(n) Mean Annual Precipitation (MAPmax, MAPmin and MAPmean), 

(o) rainfall region, 

(p) rainfall seasonality (Rs), 

(q) design rainfall depths (2 to 200-year return period), and 

(r) Design rainfall intensities (2 to 200-year return period). 

 

A number of Python scripts were developed to automate the process of determining the 

catchment parameters on a national scale. In addition, the conditioning of the DEM data has 

been undertaken for South Africa.  

 

10.1.2 Development of a quality-controlled streamflow dataset 

 

The DWS is the custodian for streamflow data for all of the sites across South Africa. In 

addition, the data set compiled by Van Bladeren et al. (2007) was used to supplement the 

available data. Considering that the entire data set received consisted of 474 flow-gauging 

stations with a total record length exceeding 15 000 years, Python scripts were developed to 

process the point source data, identifying potential errors and to summarise the primary data 

into annual, monthly, weekly and daily peak values. This processing procedure allowed for the 
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inclusion of additional years that would conventionally have been excluded due to the extent 

of missing information and the time at which these occurred. 

 

The screening process considered multiple steps. Firstly, the selection of a minimum record 

length of 20 years, secondly, identifying stations impacted by upstream developments and, 

lastly, data quality assessment. The quality assessment included the identification of missing 

data, verification of the regional occurrence of floods, error identification and quality control. 

Some of the stations considered also required rating curve extensions to be performed, and this 

was limited to a maximum of 20% increase in the currently maximum rated stage and flow. 

After the screening, a total number of 383 sites remained for further processing and calibration 

of the model. 

 

10.2 Selection of Parent Distribution 

 

At-site design peak discharges were required to form the basis of the calibration and 

performance assessment processes. It was identified that a number of methods have been 

suggested to fit probability distributions to the data in South Africa, ranging from standard 

Method of Moments estimation techniques to L-moments. The wide use of L-moments both 

locally (Smithers and Schulze 2003) and internationally (Kjeldsen et al. 2008, Castellarin et al. 

2012) resulted in the adoption of L-moments to fit probability distribution to the data used in 

this study.  

 

An integral part of the FFA is the selection of an appropriate parent distribution. The 

importance of this selection is highlighted by Smithers and Schulze (2000). A review of the 

literature indicated that the distributions most commonly applied in South Africa for design 

flood estimation are the GEV and LP3 distributions. Calitz (2016) found that the LP3 

distribution had a larger variation in the calibrated CT values and over-estimated flood events 

compared to the GEV distribution. Calitz (2016) also considered the GPA as a potential 

distribution due to the preferential fit to the overall data set. GOF, model fit criterion and L-

moment ratio diagrams, as developed by Hosking and Wallis (1997), were applied for the 

selection of the most suitable PD. On a national scale it was identified that when considering 

the entire data set, the best-fit distributions is the GPA followed by the KAP3 and LP3 

distributions. Hence the GPA distribution was utilised for the study. 
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10.3 Regionalisation 

 

Clustering and RoI regionalisation approaches were applied, with both methods requiring 

multiple adjustments and further refinement of the regional delineation. The regionalisation, 

modification and recommendations are discussed below. 

 

10.3.1 Region of Influence 

 

A RoI approach which enforces a minimum required record length was investigated, which 

allowed for an assessment of whether the enforcement of the 2/5T rule generates homogeneous 

flood regions. Initial investigations using the minimum record length requirement of 500 years 

indicated that the majority of the regions formed are not homogeneous, with a maximum of 

195 homogeneous regions expected out of 383.  

 

Using a single parameter set approach resulted 16% and 51% homogeneous regions for 500- 

and 200-year minimum record lengths approaches respectively. With a combination of two 

parameter sets, 71% of regions formed were deemed to be relatively homogeneous. Further 

manual adjustment of regions for the RoI approach is not practically feasible due to each site 

generating a unique region and as such no further adjustments were undertaken. 

 

10.3.2 Clustering 

 

K-means clustering aims to estimate the minimum overall Euclidian distance for all clusters 

being considered. The identified clusters were also required to adhere to homogeneity 

requirements as stipulated by Hosking and Wallis (1997) as well as the 2T or 5T rule. The 

homogeneity measures adopted in the study were the H1 statistic and the discordancy measure 

(D). 

 

Using the overall and primary drainage regions as a starting point, the homogeneity testing 

identified that three of the regions contained discordant sites, which would need to be moved, 

replaced or excluded to improve the homogeneity. After removing the discordant sites for the 

entire data set, homogeneity was still not achieved. Following the same approach further 

discordant sites were excluded when the primary drainage regions were considered 

independently of each other. Removal of the discordant sites did not improve the homogeneity 
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of the primary drainage regions. Therefore, a re-clustering approach was adopted in order to 

identify relatively homogeneous clusters within the entire data set. 

 

The clustering was performed in the attribute space and the attributes were normalised to a 

range of 0 to 1. This reduced the bias of large values such as the MAP that may unduly influence 

the clustering. An iterative cluster analysis process was followed, whereby each potential 

parameter combinations was included for a cycle of cluster analyses. The homogeneity 

measures were also calculated for each iteration and each iteration ranked based on the level 

of homogeneity achieved. Clustering was performed using site descriptors, whereas the 

homogeneity of the clusters was assessed using the site specific quantitative FFA descriptive 

statistics.  

 

The parameter sets that were able to identify the highest percentage of homogeneous clusters 

were largely meteorological and geographical parameters, with the combination of latitude 

longitude and distance from the coastline being deemed as the most suitable parameters for 

clustering. It should be noted that the additional rainfall descriptive statistics can be used, such 

as the growth curve slope, rainfall seasonality, and rainfall clusters, and further investigation 

is required into the validity of their use. 

 

The preferred number of clusters was determined using the 2/5T approach adopted by Robson 

and Reed (1999) as a minimum criteria for the sizing of clusters. This specifies the absolute 

minimum required record length for RFFA as two times the design event being estimated, with 

five times being preferable. As an initial estimate a maximum of 36 clusters was adopted, which 

provides an average of approximately 500 years per cluster. The initial clustering identified 17 

homogeneous clusters. The remaining heterogeneous clusters were further analysed using the 

same clustering approach to ensure continuity and prevent any potential subjectivity. The initial 

selection of the number of clusters was such that the clusters varied in size from two to twenty-

nine sites. Hosking and Wallis (1997) noted that there is no set standard for the selection of the 

cluster sizes and that the size will affect the model’s capabilities to identify regional differences 

or bias.  

 

A total of 42 relatively homogeneous clusters were identified through adjusting the initial 36 

clusters. The process, however, required the exclusion of 51 sites due to discordancy and 

inconsistencies with geographic variance. 
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The use of the quantitative FFA for the homogeneity testing produced additional uncertainty 

as the aim of the regionalisation was the estimation of calibrated CT values. The calibration of 

CT values was only performed after the homogeneity verification and site clustering.  

 

10.4 RM Calibration 

 

The calibrated CT-values, derived from the design rainfall determined by Smithers and Schulze 

(2003) and design peak discharges determined from the observed flow data using the GPA 

parent distribution, resulted in some CT-values in excess of one, with a maximum and minimum 

of 1.569 and 0.002, respectively. In theory the CT value will increase as the AEP% decreases. 

Twenty sites, however, had negative CT value growth curves after the regional calibration 

process was undertaken. Although the stations potentially introduce errors into the derived 

models, it is anticipated that due to the use of regional analysis that the effect will be limited. 

However, further investigation is necessary to resolve this inconsistency. 

 

10.5 Model Development 

 

Two distinct approaches were adopted for the estimation of QT, i.e. the CT and the RIF 

approaches, in addition each approach was developed on a national- and a cluster based scale. 

The national- and cluster based scale models refer to the estimation of the SF, with the CT and 

RIF approaches having adopted the C10 and the MAF as scaling values, respectively. Models 

were developed for the estimation of the SF at a national and a cluster scale. 

 

10.6 Model Performance 

 

The models were assessed using the BIAS, RMSE, ratio and the NSE values. The cluster based 

approaches performed best for both the CT and the RIF approaches and when, excluding the 

NSE results, the cluster based approaches performed at a similar level. However, the cluster 

based RIF approach significantly outperformed the other approaches when considering the NSE 

results.  
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Additionally the ratio for the cluster based CT and RIF approaches were compared to the SDF 

estimates. It was evident that the SDF method consistently over-estimated peak flows, which 

confirms the findings in the literature reviewed. 

 

Given the overall performance of the RIF cluster based approach, it is recommended for 

application in South Africa. 

 

10.7 Conclusions 

 

Reviewing the objectives of the study it is evident that the study was capable of collating and 

undertaking quality control on the 411 selected sites. FFA was undertaken at each of the 383 

sites deemed adequate for use utilising tools developed during the course of the study. 

Additionally, to identify homogeneous flood regions the RoI approach was investigated for use 

in South Africa with limited success, however, a clustering approach resulted in the 

identification of 42 relatively homogeneous clusters. In addition, the RM was successfully 

calibrated at the 332 sites that encompass the 42 relatively homogeneous clusters.  

 

Two modelling approaches were adopted, the use of a PRM, referred to as CT hereafter, 

approach and a Regional Index Flood (RIF) approach, which required the identification of 

suitable SF for application with the dimensionless growth curves. The C10 value was used for 

the CT approach and both the MAF and MEF were investigated for use with the RIF approach, 

however the MAF was used due to the reduction in variance in the dimensionless growth curves 

when using the MAF. Regressions were developed for the estimation of the SFs at national and 

cluster scale, however the cluster scale regression development outperformed the national scale 

as is evident from the NSE scores achieved. The SF regressions were used to estimate QT.  

 

When comparing the QT estimated on a LOO basis a minimum number of thirty sites was used 

for the development of the regressions, which reduced the BIAS and RMSE for the SF estimates. 

The best performing model was the cluster based RIF approach, although the cluster based CT 

and national based CT and RIF models performed at a similar level when considering only the 

BIAS, RMSE and ratio. The NSE value and regression slopes favoured the cluster based RIF 

approach and it is therefore recommended for application. 
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The final objective of the study was the development of a design flood estimation utility. The 

structure of an on-line system has been developed that will allow users to seamlessly apply the 

developed methods on a national scale. News on advancements on the development of the tool 

will be available on the NFSP website (https://www.nfsp.co.za) 

 

10.8 Recommendation for Future Research 

 

The following recommendations for future research and development are made: 

1. Investigation into the impacts of non-stationarity on regionalisation 

2. Investigation into the applicability of Bayesian statistics in South African hydrology 

3. Compilation of a national hydrological descriptor database, beyond flood estimation, 

similar to the databases implemented internationally, 

4. Further development of the NaFSApp to integrate additional models and techniques 

currently available, 

5. Refinement of the estimation of aerial reduction factors,  

6. Improvement of time of concentration estimation at a national scale 

 

https://www.nfsp.co.za/
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