

Water Resources Accounting

David Clark

WRC Symposium: 12 September 2019

INSPIRING GREATNESS

Acknowledgements

- Initiative in taking water accounting forward in South Africa
- Research funding
- Mr Nomquphu Project Manager
- Members of the WRC Reference Groups
- Colleagues in the CWRR

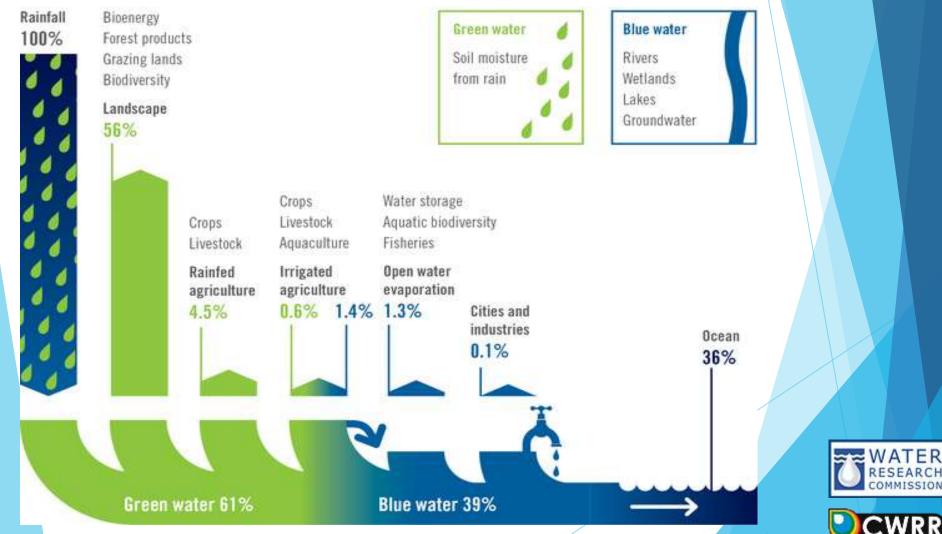
Natural Capital Accounting

Gross Domestic Product (GDP)

- Monetary value of goods and services
- Use of natural resources?
- Environmental sustainability?

Natural Capital Accounting (NCA)

- Stocks and flows of natural resources and services
- Physical or monetary terms
- Informs government, corporate, consumer decision making


Water Accounting (WA)

- Water is one component of NCA
- Quantity and quality
 - Domestic Purposes
 - Economic production
 - Environmental sustainability

Water Accounting

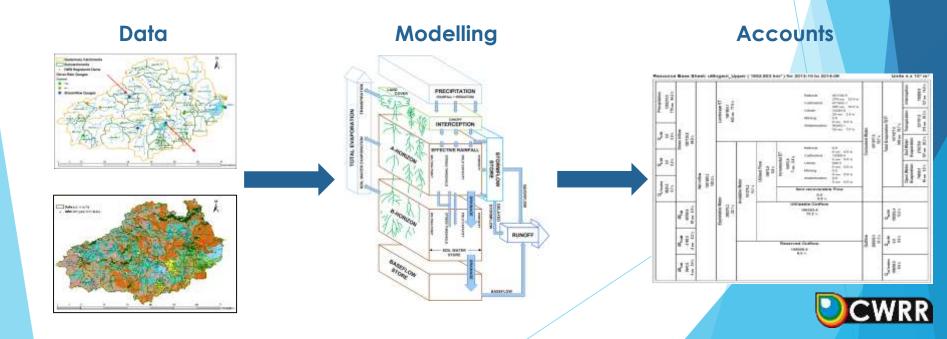
http://www.globalagriculture.org/report-topics/water.html based on Molden (2007)

Water Accounting

Definition

- An analytical framework within which stocks, flows, fluxes and consumption of water are quantified within a defined spatial and temporal domain"
- Where, when, how, who, what for

Purpose


- Quantification
- Better understanding
- Communication

Research Objectives

Review water accounting frameworks

- Develop an integrated water resources accounting methodology
- Apply and evaluate the methodology

Water Accounting Frameworks

- System of Environmental-Economic Accounting for Water (SEEA-Water)
 - National water accounts
 - United Nations standard
 - Strong economic emphasis

Australian Water Accounting Standard (AWAS)

- General Purpose Water Accounts
- Financial accounting procedures
- Water auditing

Water Accounting Plus (WA+)

- Catchment water availability and depletions
- Land and water management

Challenges

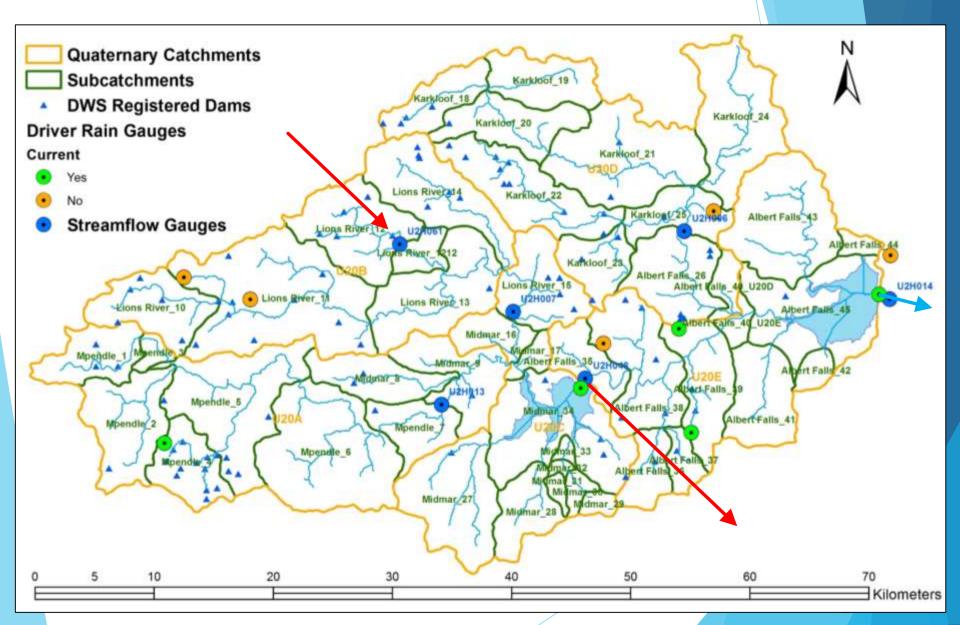
Climate - high spatial and temporal variability

- Complex systems natural and engineered flows
- Scale influences the story: cause and effect
- How much detail? Value for effort?
- Data availability
 - Some good datasets
 - Monitoring network: sparse, declining
 - Monitoring mostly at a point scale
 - Urban, irrigation, mining abstractions and return flows

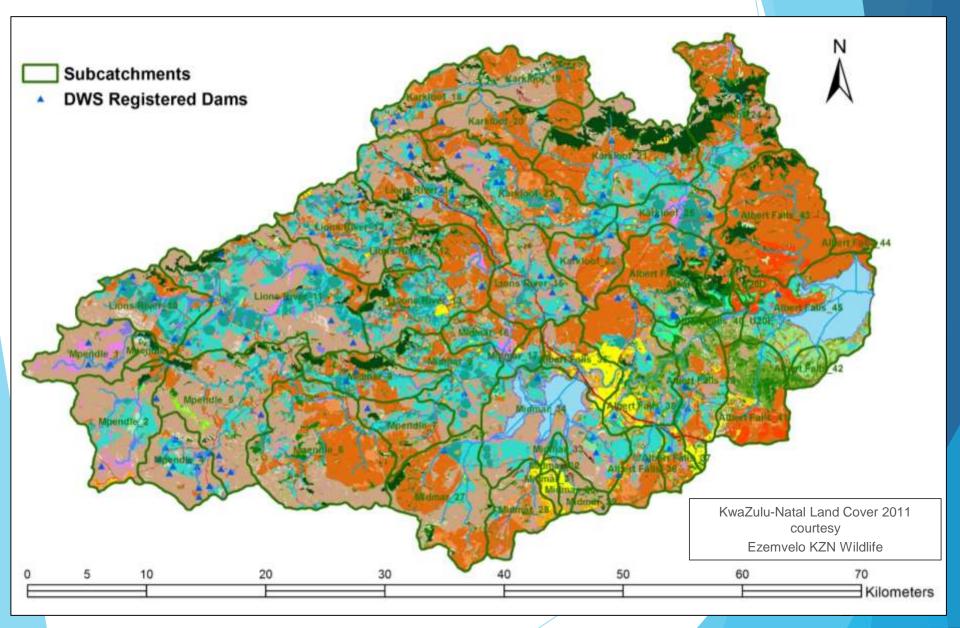
Key Decisions

- Use WA+ framework
- Use hydrological modelling approach
 - Not possible to measure everything everywhere
 - Innovative data sources (remote sensing)
 - Scenario analysis and forecasting
- Spatial domain
 - Accounts at Quaternary catchment scale (aggregate up)
 - Model land use HRUs within sub-Quaternary catchments

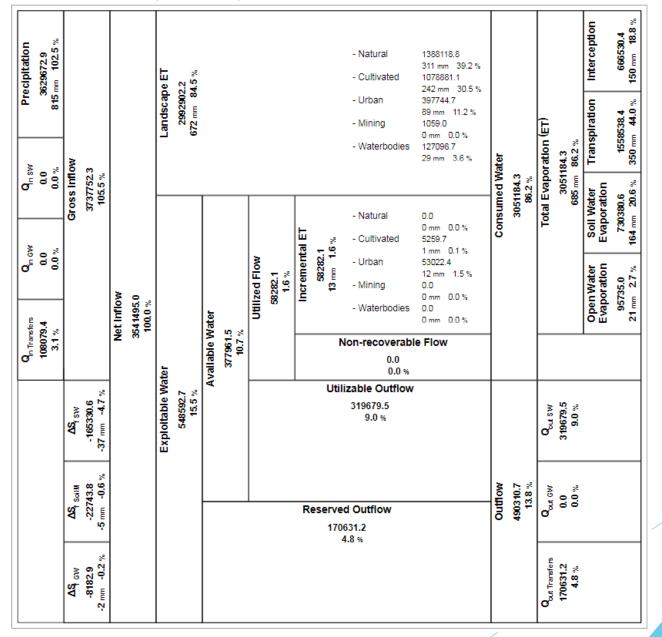
Temporal domain


- Annual accounts
- Model at daily time step (aggregate up)

Strong land cover/use focus


- Hierarchy of land cover/use classes
- Focus on water quantity accounts

Example – upper uMngeni


Example – upper uMngeni

Resource Base Sheet

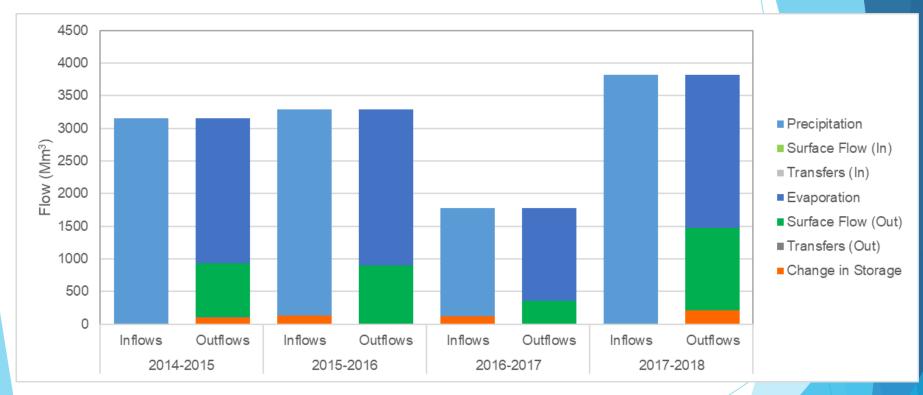
Resource Base Sheet: U2 (4456.256 km²) for 2017-10 to 2018-09

Units = x 10³ m³

	Area	Rainfall	Interception Evaporation	Transpiration	Soil Water Evaporation	Open Water Evaporation	Total Evaporation
Natural	43.2	43.2	45.4	45.0	51.6	0.0	44.3
Intact	92.1	92.1	95.5	95.7	83.1	0.0	92.1
Coastal Tropical Forest	19.9	18.9	17.8	20.1	16.5	0.0	18.8
Karoo and Karroid	25.5	24.0	29.9	25.0	19.7	0.0	24.6
Temperate and Transitional Forest and Scrub	41.9	44.1	40.2	41.7	51.4	0.0	43.8
False Grassveld	12.6	12.8	12.1	13.3	12.2	0.0	12.8
Bare	0.1	0.1	0.1	0.0	0.1	0.0	0.0
Degraded	7.9	7.9	4.5	4.3	16.9	0.0	7.9
Coastal Tropical Forest	15.8	15.2	13.9	15.8	14.1	0.0	14.6
Karoo and Karroid	22.2	21.0	28.0	22.1	20.0	0.0	21.4
Temperate and Transitional Forest and Scrub	45.9	47.4	42.8	45.9	49.5	0.0	47.8
False Grassveld	15.6	15.9	15.2	16.1	15.8	0.0	15.8
Bare	0.5	0.5	0.0	0.0	0.7	0.0	0.4
Cultivated	34.7	35.1	38.8	44.2	34.1	1.4	38.6
Agriculture	52.1	51.8	37.4	48.1	75.3	100.0	52.1
Commercial	85.9	86.5	90.6	90.9	77.3	100.0	86.7
Dryland	85.2	84.6	87.2	87.8	75.1	0.0	83.9
Irrigated	14.8	15.4	12.8	12.2	24.9	100.0	16.1
Subsistence	14.1	13.5	9.4	9.1	22.7	0.0	13.3
Forest Plantations	47.9	48.2	62.6	51.9	24.7	0.0	47.9
Urban/Built-up	18.7	18.3	15.2	9.8	11.8	7.1	11.1
Industrial/Transport	11.7	11.9	9.5	0.0	0.0	0.0	2.3
Residential	86.9	86.7	89.0	97.2	97.3	100.0	95.4
Open Spaces	1.4	1.4				0.0	2.3
Mines and Quarries	0.1	0.1	0.0	0.0	0.0	0.0	0.0
Waterbodies	3.3	3.4	0.5	1.0	2.5	91.5	6.0
Artificial	61.4	60.7	0.0			89.0	70.4
Natural	38.6	39.3	100.0	100.0	100.0	11.0	29.6

Utilized Flows Sheet

Utilized Flows Sheet: uMngeni for 2017-10 to 2018-09


Units = x 10³ m³

Gross Withdrawal 139100.0	Surface Water 139100.0	Natural 0.0 0.0 %	Returned 0.0 0.0 %	Total Consumed		
139100.0 100.0 %	139100.0 100.0 %	Cultivated 5260.4 3.8 %	Consumed 4165.5 79.2 % Returned 15.13 0.3 %	50774.7 36.5 %		
	Groundwater 0.0 0.0 %	Urban 133830.2 96.2 %	Consumed 46599.9 34.8 % Returned 80788.7 60.4 %	Total Returned 80803.8 58.1 %	Surface Water 80726.9 99.9 %	
	Transfers 0.0	Mining 0.0 0.0 %	Consumed 0.0 0.0 % Returned 0.0 0.0 %		Groundwater 76.9 0.1 %	
	0.0 %	Waterbodies 9.3 0.0 % Hydropower 0.0 0.0 %	0.0 % Consumed 9.3 0.0 % Returned 0.0 0.0 %		Transfers 0.0 0.0 %	

Data Visualisation

Example from the Breede Catchment



Vision

- Water resource accounts
 - For the whole of South Africa
 - Annually (possibly monthly)
 - Quaternary catchment scale (or smaller)
- An operational water resource accounting system that provides spatially and temporally consistent summaries of the country's water resources, based on measured and modelled data, to promote informed, sustainable and equitable use of these resources

Conclusions

Good data for good management

- Availability and accessibility
- Integrated view of water resources within a catchment
 - Promotes understanding
 - Promotes communication
 - Information tool for management
- Way forward?
 - Critical to continue monitoring
 - Provide access to data
 - Funding to operationalize
 - Build capacity in compiling and interpreting

