
The development of a preliminary approached to sediment site evaluation and associated risk

PROJECT NO. K5/2754

BRIDGET SHADDOCK, PHD

12 September 2019

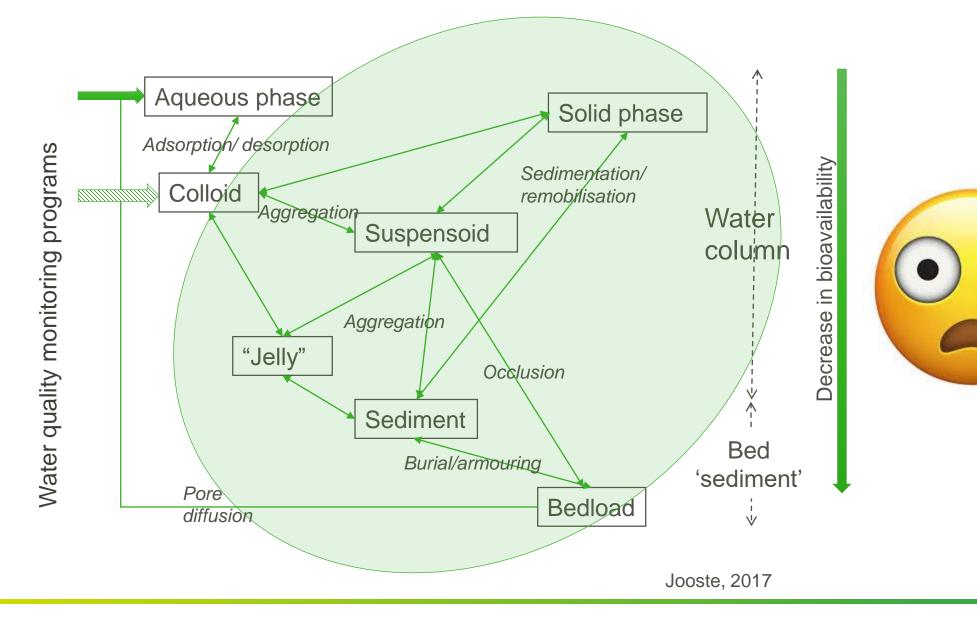
PROJECT OVERVIEW

- Contaminated sediments as well as storm-water run-off have been identified as long-term pollutant sources in the aquatic environment
- Contaminated sediment \rightarrow Source and Sink (known and emerging contaminants of concern)
- Large portions of sediments in industrialised countries have metal and organic contaminants at levels that are hazardous to the aquatic ecosystem and ultimately humans. → The magnitude is unknown.
- Without a correct and standardised approach to sampling, risk evaluations will remain in the "grey" unobtainable abyss.
- The inherent complexity of sediments remains the biggest challenge when assessing the impact of contaminated sediments in the aquatic environment (Burton and Landrum, 2003).

SEDIMENT COMPLEXITIES

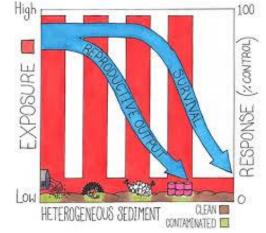
Sediments contain both natural and anthropogenic components

A variety of organic and inorganic contaminants bind to sediment


Sediments get disturbed through natural and anthropogenic means

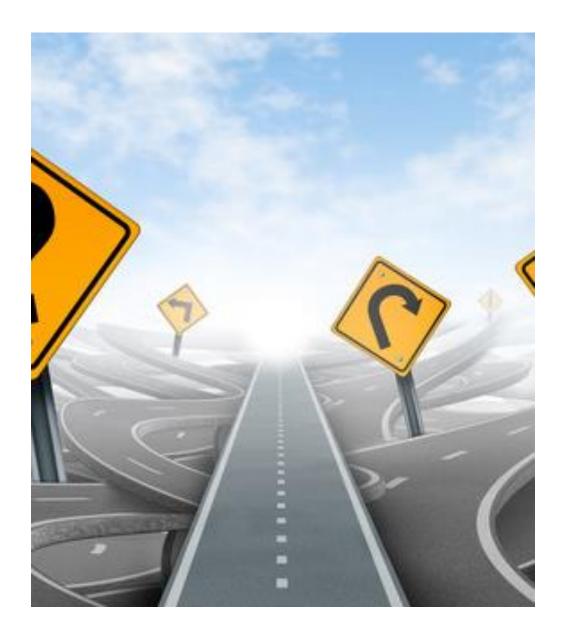
The bioavailability of contaminants is determined by dynamic processes:

- Chemical availability (adsorption/desorption): determined by hydrophobicity, Redox, solubility, pH, sediment particles <63 µm, organic material content
- Biological availability (Species specific): determined by feeding mechanisms and strategies, habitat preferences
- Toxicological bioavailability (Organism specific): determined by metabolic rates, detoxification abilities and excretion rates



SEDIMENT COMPLEXITIES

- Difficult and confusing problems when attempting to evaluate quality, quantity and <u>risk</u>.
- Water quality criteria only protects organisms living in the water column, these criteria fail to provide protection for the sediment dwelling organisms.
- Contaminants can accumulate to high concentrations bound to sediments even when the water concentrations are at or below acceptable water quality guidelines
- Sediments are heterogeneous and disperse based on size, density and porosity


THE APPROACH

TWO CHOICES:

Ignore it \rightarrow Historical, too complex

Take it one step at a time \rightarrow Gather information (international, multidisciplinary), get feedback, field data, compile, improve

Project K5/2754: The development of a preliminary approached to sediment site evaluation and associated risk

PREVIOUS ASSOCIATED PROJECTS

- WRC Project No. K8/793 → the development of sediment quality guidelines for South Africa
- WRC Project No. K8/946 → the identification of suitable test organisms to assess sediment contamination
- WRC Project No. K5/2160 → the selection and validation of sediment toxicity test methods

- Shortfalls Identified:
 - RSA does not currently have standard methods to collect and analyse sediment (comparative information which can be used to integrate chemical and biological effects) and guidelines.
 - Need for an approach to differentiate anthropogenic contamination sources versus naturally occurring deposits → limit the overestimation of risk.
 - Need for approach to link chemical concentrations to bioavailable concentrations
 - No approach to identify risk

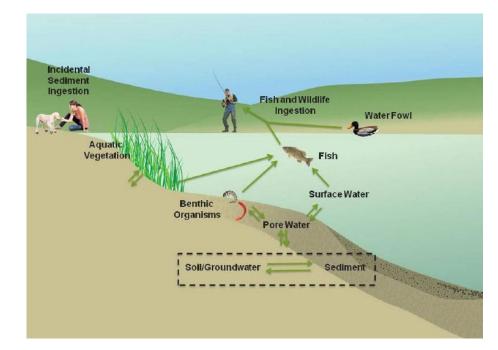
STUDY APPROACH

- Review international literature on methods, contributing factors, procedures
- Identify potential study areas with anthropogenic influences
- Compile a simplified study design to be applied at study sites
- Conduct selected toxicity bioassays, sediment physical characterisation and contaminant analysis
- Compile a technical brief to function as a guided standard operating procedure
- Use gathered information to identify preliminary linkages to focus on developing an approach for risk assessment.

PROJECT STRATEGY AND DESIGN

WHY - WHERE - WHEN - WHAT - HOW \rightarrow

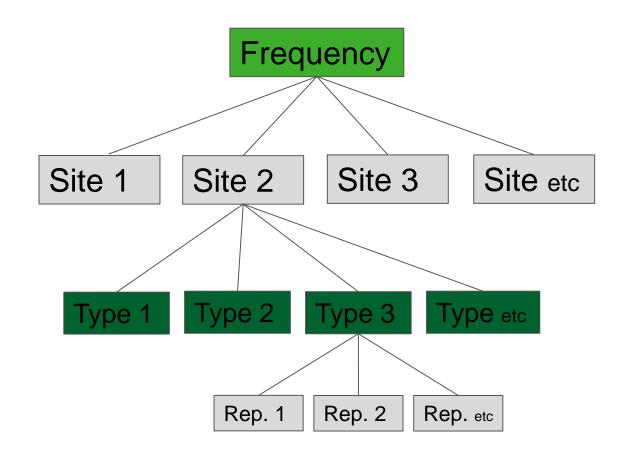
- Sampling program
- Frequency
- Sample types (Grab, composite, core)
- Procedures
- Data interpretation and integration



IDENTIFY THE WHY?

Based on site specific conditions

- Area of concern
- Problem statement
- End user and contaminant source
- What end point needs to be quantified



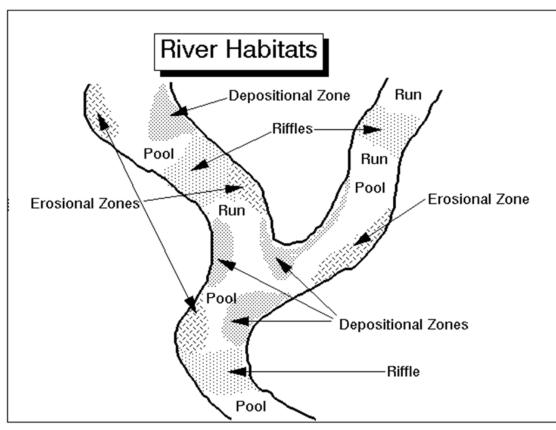
Source: EPA Office of Research and Development.

SAMPLE DESIGN

• Seasonality, Sedimentation rate, Biannual etc

- Point source / Non-point source
- Impoundment / River
- Assessment / Historical

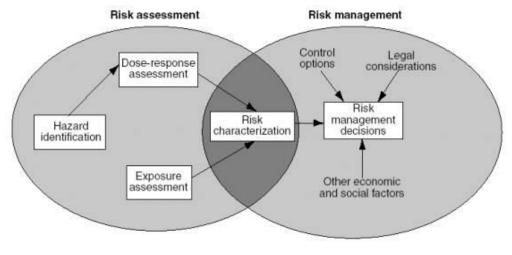
- Chemistry, Physical, Toxicity etc
- Sampler, Container, sample integrity, sample preparation
- Statistics, quantity



SITE SELECTION

Based on site specific conditions as well as purpose of sampling:

- Area of concern
- Problem statement
- End user and contaminant source
- What end point needs to be quantified
- Prior history
- Visual judgement



SAMPLING METHOD

Based on what needs to quantified:

- Grain size distribution and Total organic content
- Organic and Inorganic components
- Radionuclides
- Microbiology
- Toxicity, Biological availability and potential effects of contaminants
- Benthic biota
- Magnitude and fate of contaminants
- Contaminant source and pathways

Source: EPA Office of Research and Development.



SAMPLE REQUIREMENTS FOR ANALYSIS

Sampling requirements (e.g. plastic, glass) as well as recommended transport and holding times

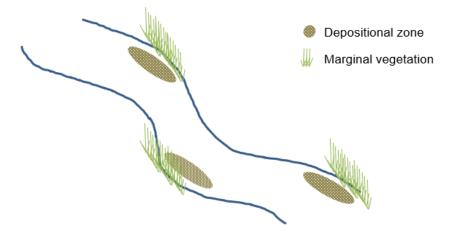
- Trace metals
- Organics
- Bioassays
- Microbiology (Sterile containers)
- Radionuclides
- Microplastics

Current standard analysis approaches available.

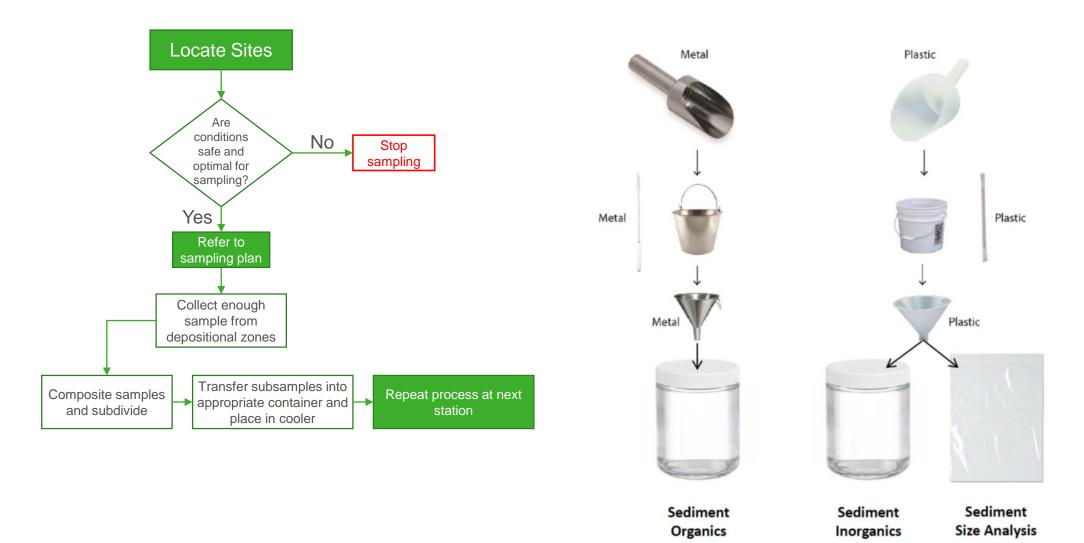
SAMPLE INTEGRITY

- Labels
- In field manipulations
- Sample container → determined by analysis (Glass versus plastic)
- Transport to the laboratory

Sample ID:			
Date and Time:			
Collected By:			
Sample Analysis	Inorganic	Organic	Physical
Туре:	Toxicity	Other	
Sampling zone	-		
Sampling Depth			


SOP - TECHNICAL DOCUMENT

Equipme	Equipment checklist example	—
<u> </u>	nt ed documentation:	+
	Yermits and approvals Contact information for person on site	
	contact information for person on site Background information regarding the collection, quantity and preservation of	
	ediment and samples	
	plan and map of area	+
GPS		\square
Single or	multi-parameter water quality meter (pH, EC, REDOX)	
Field dat	a sheets, notebook or field computer	
Camera /	Cell phone	
Labelling	equipment (e.g. stickers, tags and/or permanent markers)	
	Protective Equipment (PPE):	
	afety boots, high visibility vest, long pants, long-sleeved shirt, hardhat (for	1
	ndustrial sites); Vaders, gumboots, broad-brimmed hat or similar PPE (shore-based sampling).	1
	ife jacket (boat sampling)	1
	ny required safety equipment	1
	non-powdered latex free (e.g. nitrile) which correspond to the potential chemical	+
risk		
	lection containers appropriate to the required chemical analysis (e.g. bottles, zip-	
	, cable ties, buckets for samples/mixing, sterile containers if collecting microbial	
samples)		
	diment sampling equipment for collection of surficial layers (<10cm depth):	
	tainless steel (organics or metals) or plastic (ultra-trace metals) trowel/spade if	
	ollecting dry sediments or exposed sediments;	
	tainless steel benthic grab sampling equipment (e.g. Ekman, <u>Ponar</u> or Van Veen) rab sampler for deployment from a boat or jetty.	
	nd corer for sediment collection or profiling	+
	inless-steel sieve (10mm) if removal of stones, plant material or fauna is required	+
	nination supplies (e.g. reagent water, solvent)	+
Spatula	······································	+
	ox with ice bricks or portable refrigerator	+
	custody forms	+
		+
		+
		\uparrow
		+
		+


Field equipment check-list may be updated to comply with company or project specific requirements as well as required quantities of consumables to ensure smooth sampling where possible.

S GOLDER

SOP - TECHNICAL DOCUMENT

SAMPLING RECORD - AQUATIC SEDIMENTS

Project Name: Sampling Date: Weather:	Sampling Date: Sampling Time:										
Field conditions an	d general c	omments:	_								
Province:				Mur	nicipality:						
Site name:				San	nple Location	:					
Name of River, Lak	ce, Pond etc	5									
Latitude:				Lon	gitude:						
Altitude:				Rive	er Order:						
Water Gouge No.:				Water	Gouge Mea	surement					
In Field measurem	onts										
Air Temperature:	0		°C	Water	Temperature	c		°C			
Electrical Conductiv	vity:			pH:							
Dissolved Oxygen:		9	6	- · -	mg	/1					
REDOX Potential:	Reducin	g Oxi	idising		In Field Mea			mV			
Comments:			-								
Sampling Data											
Grab sample		site sample			r of Replicate						
Sample Depth:					pecific depth:						
Sample Equipment				orer	Other:						
Sediment Characte						Silt-Clay					
Smell: Yes	No			_	No						
Colour:		Additional (Observa	tions:							
Sediment samples,			-								
In-field Sample pre	paration:	Yes No		Sieving	Horr	ogenising)				
Sample container	Quantity	Replicates	Subsa	ampled		Ste	orage]			
Glass			Yes	No	Room T°	Fridge		Darkness			
Plastic Bottle			Yes	No	Room T°	Fridge	Freezer	Darkness			
Plastic Ziploc			Yes	No	Room T°	Fridge		Darkness			
Aluminium			Yes	No	Room T°	Fridge		Darkness			
Other			Yes	No	Room T°	Fridge	Freezer	Darkness			
	1	1									
Analysis Requirem	ents										
Chemistry	_			T							
Physical Character	istics										

Table **8**: General guide to preservation and holding times for sediment analyses (<u>Abia</u> *et al.* 2015; DES. 2018b)

rate <6°C, metals ted with acid sulphide (AVS) contaminants sst. rate at <6°C and the dark. Analyse as soon as practical, but generally within 7 days. 28 days.
rate at <6°C and the dark. Analyse within 7 days for volatile compounds or those prone to microbial degradation. Analyse within 8 weeks for stable organics such as organochlorine pesticides, dioxins/furans, polychlorinated biphenyls (PCB), polycyclic aromatic hydrocarbons (PAH).
28 days
rate at <6°C and Analyse as soon as possible the dark.
rate at <6°C and Analyse as soon as possible, no storage ti stipulated

Ecotoxicity

ANALYSIS PROCEDURES

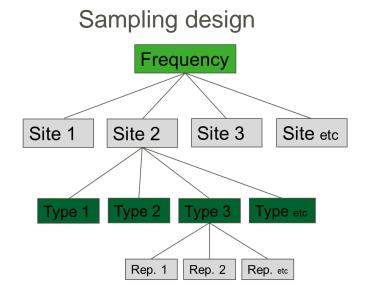
Physical

Toxicity

- Particles Size Determination
- Total Organic Carbon
- Moisture Content

- Whole sediment (Ostracod)
- Soluble fraction (Phytotoxkit)
- Acute vs Chronic effects

Laboratory Analysis


- Total Concentrations
- Elutriates (1:20, 1:10)
- Acid Extractable Metals
- Pore Waters
- Acid-Volatile Sulphides
- Metals
- Organics
- Redox
- Microbiology

Taking into account appropriate QA/QC through all stages

SO WHAT?

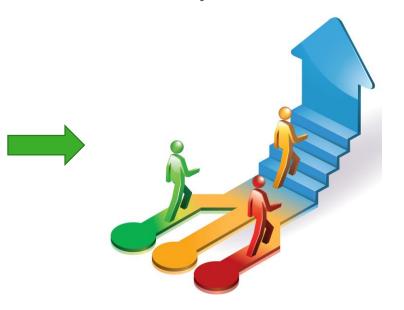
Sample collection and analysis

SAMPLING RECORD - AQUATIC SEDIMENTS

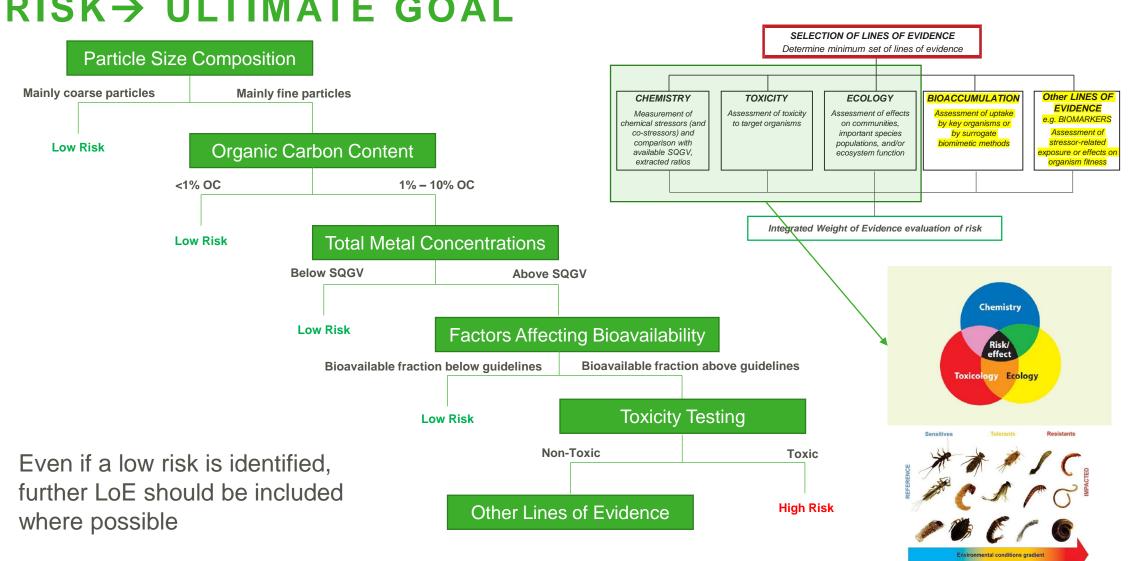
Project Name:	Project/Contract. No.
Sampling Date:	Sampling Time:
Weather:	
Field conditions and general comments:	
Province:	Municipality:
Site name:	Sample Location:
Name of River, Lake, Pond etc:	
	Longitude:
Name of River, Lake, Pond etc:	Longitude: River Order:

In Field measurements Air Temperature:		°C	Wate	r Temperature:		°C
Electrical Conductivity:			pH:			
Dissolved Oxygen:		%		mg/l		
REDOX Potential: R	educing	Oxidising		In Field Measur	ement:	mV
Comments:						

Sampling Data Grab sample C

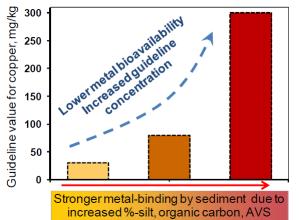

Sediment samples, preparation and transport In-field Sample preparation: Yes ____ No ____ Sieving ____ Homogenising

Sample container	Quantity	Replicates	Subsa	mpled	Storage							
Glass			Yes	No	Room T ^o	Fridge	Freezer	Darknes				
Plastic Bottle			Yes	No	Room T ^o	Fridge	Freezer	Darknes				
Plastic Ziploc			Yes	No	Room T°	Fridge	Freezer	Darknes				
Aluminium			Yes	No	Room T°	Fridge	Freezer	Darknes				
Other			Yes	No	Room T°	Fridge	Freezer	Darknes				


Analysis Requirements		
Chemistry		
Physical Characteristics		
Ecotoxicity		

Way forward

RISK→ ULTIMATE GOAL


DATA INTERPRETATION AND INTEGRATION → RISK

Risk	1	2	3	4	5
Particle size		Substrate composed mainly of gravel, coarse and medium sand	Substrate composed mainly of fine sand, silt and clay		
Organic Carbon		<1% or >10%			
SQGV	<sqgv< td=""><td>>SQGV<high g<="" td=""><td>>High G</td><td></td><td></td></high></td></sqgv<>	>SQGV <high g<="" td=""><td>>High G</td><td></td><td></td></high>	>High G		
Bioavailability	<1%	>1%-<10%	>10%-<30%	>30%<50%	>50%-100%
Pesticides	<sqgv< td=""><td>>SQGV<high g<="" td=""><td>>High G</td><td></td><td></td></high></td></sqgv<>	>SQGV <high g<="" td=""><td>>High G</td><td></td><td></td></high>	>High G		
Toxicity Testing	<spe< td=""><td>>SPE<50%</td><td>>50%<100%</td><td>100%</td><td></td></spe<>	>SPE<50%	>50%<100%	100%	

mg/l	G-value	SQG-High
Antimony	2	25
Arsenic	20	70
Cadmium	1.5	10
Chromium	80	370
Copper	65	270
Lead	50	220
Mercury	0.15	1
Nickel	21	52
Silver	1	4
Zinc	200	410

ANZECC/ARMCANZ, 2013

Risk Assessment Code	%			
l i i i i i i i i i i i i i i i i i i i	<1	No Biolog	gical risk	
II	>1<10	Low biolo	ogical risk	
III	>10<30	Moderat	e biological risk	
IV	>30<50	High biol	ogical risk	
V	>50<100	Very high	n biological risk	
Li <i>et al.</i> , 2018				
Bioassay			Statistical	Acute effect
			percentage effect	t
Phytotox germination			30%	
Phytotox root inhibition			20%	F.0%
Heterocypris incongrue	ns mortality		20%	50%
Heterocypris incongrue	nsgrowth in	hibition	20%	

WATER

RESEARCH COMMISSION

CHEMISTRY

- Total (10 SQGV's available from ANZECC for comparison to Total concentrations)
- 1:20 (ASLP, distilled water) Compare to aquatic guidelines for LoE Criteria
- 1:10 (EPA, INERIS, distilled water) Compare to aquatic guidelines for LoE Criteria
- Acid Extractible Metals (Acetic acid : HCI)
- The comparison of results will look for correlations and similarities in order to identify associations with identified risk.

WEIGHT OF EVIDENCE DATA EVALUATION

Total	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Sb	Zn	Total	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Sb	Zn	Ave
1	0.20	2.64	0.20	302.60	40.66	0.20	46.93	9.19	0.20	37.95	1	-	1		2	1	-	2	1	-	1	1.3
2	0.20	4.35	0.20	274.53	45.98	0.20	39.91	18.74	0.20	37.55	2	-	1	-	2	1	-	2	1	-	1	1.3
3	0.20	7.77	0.20	620.01	25.55	0.20	26.82	13.86	0.20	36.19	3	-	1		3	1		2	1	-	1	1.5
4	0.20	2.77	0.20	458.67	22.98	0.20	37.78	8.57	0.20	37.32	4	-	1		3	1		2	1	-	1	1.5
5	0.20	2.54	0.20	341.25	14.70	0.20	24.95	7.49	0.20	23.78	5	-	1	-	2	1		2	1	-	1	1.3
6	0.20	2.56	0.20	401.40	23.44	0.20	43.27	11.12	0.20	29.66	6	-	1		3	1		2	1	-	1	1.5
7	0.20	1.88	0.20	468.31	8.13	0.20	14.94	7.27	0.20	14.44	7	-	1	-	3	1		1	1	-	1	1
8	0.78	6.65	0.20	516.01	18.72	0.20	22.65	7.82	1.15	30.25	8	1	1	-	3	1		2	1	1	1	1.4
9	2.39	4.79	0.20	628.82	17.44	0.20	21.48	9.97	0.43	22.61	9	2	1	-	3	1		2	1	1	1	1.5
10	1.79	12.91	0.20	314.71	45.73	0.20	42.94	28.55	0.77	43.16	10	2	1	-	2	1		2	1	1	1	1.4
11	0.97	6.73	0.20	383.57	22.87	0.20	30.70	13.63	0.82	28.70	11	1	1	-	3	1		2	1	1	1	1.4
12	0.85	2.23	0.20	394.56	40.85	0.20	21.73	10.74	0.40	18.10	12	1	1	-	3	1		2	1	1	1	1.4
13	0.70	14.79	0.20	538.70	49.84	0.20	48.67	36.80	0.61	51.51	13	1	1		3	1		2	1	1	1	1.4
Total vs											Total											
AEM	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Sb		vs AEM	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Sb	Zn	Ave
1	12.50	3.93	12.50	9.55	18.38	12.50	10.70	9.92	12.50	14.86	1		2	-	2				2	-		2.6
2	12.50	1.84	12.50	8.19	21.43	12.50	14.54	10.53	12.50	14.24	2		2	-	2					-		2.7
3	44.93	1.67	12.50	8.27	19.41	12.50	20.35	6.87	12.50	12.55	3	4	2	-	2				2	-		2.7
4	151.70	0.90	12.50	6.82	4.45	12.50	24.02	5.99	12.50	14.01	4		1		2	2			2			2.2
5	66.93	0.98	12.50	12.57	22.03	12.50	18.04	19.19	12.50	10.93	5	5	1	- 7			1.1					
6	45.61	0.98	12.50	10.03	15.30	12.50	13.26	12.75	12.50	5.22	6	4	1	- 7			1.1			- 7	2	2.7
7	26.67	1.33	12.50	9.51	27.13	12.50	26.36	16.57	12.50	2.12	7	3	2	- 7	2		1.1		3	-	2	2.6
8	3.19	0.38	12.50	12.16	16.12	12.50	29.05	7.23	2.17	38.88	8	2	1	-			1.1		2	2	4	2.5
9	1.05	0.52	12.50	10.10	21.24	12.50	26.69	14.62	5.81	18.27	9	2	1	-	3		1.1	3	3	2		2.5
10	1.39	0.19	12.50	8.34	17.78	12.50	9.92	35.16	3.26	11.16	10	2	1	- 7	2		1.1	2	4	2	3	2.4
11	2.57	0.37	12.50	11.26	20.00	12.50	14.24	17.04	3.04 6.25	4.59	11	2	1	-	3	3	1.1		3	2	2	2.4
12	2.95	1.12	12.50	5.84	1.21	12.50	26.23	3.13	6.25	3.74	12		2	1	2	2 2	1.1		2	2	2	2.1 2.1
13	11.64	0.83	12.50	1.62	2.73	12.50	10.58	4.03	4.08	8.64	13	3	1	-	2	2	-	5	2	2	2	2.1

WEIGHT OF EVIDENCE DATA EVALUATION

	Lepidium sativum			Sina	pus alk	oa	Sorghum	saccharatum	Н	eterocypris incongruens	s incongruens		
	% effect % Geri		ation	% effect %		ermination	% effect	% Germination	%Mortality	% effect			
1	-34.4 90			-46.93		90	8.8	95	96.67	-121.16			
2	19.17	100		10.09	100		7.45	95	26.67	-25.93			
3	-12.56	90		33.72		100	8.85	95	36.67	-45.1			
4	-23.04	95		-41		95	-17.02	85	80	-90.77			
5	-6.58	85		11.49		95	9.03	95	70	-46.49			
6	9.18	100		45.95	95		-6.58	90	100	-150.44			
7	-1.38	95		34.78	100		8.98	100	20	-37.81			
8	-7.92	100		34.24	95		-2.96	100	26.67	-27.97			
9	-33.99	100		6.65	100		27.37	90	46.67	-56.31			
10	22.21	100		49.2	95		-7.23	100	6.67	-9.99			
11	24.12	100		32.19	85		23.61	95	3.33	-20.37			
12	-20.39	-20.39 95		-38.09	85		20.95	100	80	-46.54			
13	17.07 100			55.15	100		-2.52	80	3.33	-2.29			
	Lepidium sativum		Sir	napus alba		Sorghun	n saccharatum	Heterocypris incongruens					
	% effect	% Germination	% effect	% Germin	ation	% effect	% Germination	%Mortality	/	% effect	AVE		
1	2	1	2	1		1	1	3		4	1.9		
2	1	1	1	1		1	1	2		2	1.3		
3	1	1	2	1		1	1	2		2	1.4		
4	2	1	2	1		1	1	3		3	1.8		
5	1	1	1	1		1	1	3		2	1.4		
6	1	1	2	1		1	1	4		4	1.9		
7	1	1	2	1		1	1	2		2	1.3		
8	1	1	2	1		1	1	2		2	1.3		
9	2	1	1	1	1		1	2		3	1.5		
10	2	1	2	1		1	1	1		1	1.0		
11	2	1	2	1		2	1	1		2	1.2		
12	2	1	2	1		2	1	3		2	1.7		
13	1 1 2		2	1		1	1	1		1	1.0		

RISK POTENTIAL

Equal weighting of components

Site	Particle size	Organic Carbon	SQGV	Bioavailability	Pesticides	Toxicity Testing	Risk Potential evaluation
1	2	3	1.3	2.6	1	1.9	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Ag, Cu, Ni, Zn, Low potential risk from pesticides, Moderate impacts on higher plant germination and growth, High risk potential for benthic invertebrates
2	3	3	1.3	2.7	1	1.3	High potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Ag, Cu, Ni, Zn, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Moderate risk potential for benthic invertebrates
3	2	3	1.5	2.7	1	1.4	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cu, Ni, Zn, High biological risk from Ag, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Moderate risk potential for benthic invertebrates
4	3	2	1.5	2.2	1	1.8	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Ni, Zn, Low potential risk from pesticides, Moderate impacts on higher plant germination and growth, High risk potential for benthic invertebrates
5	2	3	1.3	3	1	1.4	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cr, Cu, Pb, Ni, Zn, High biological risk from Ag, Low potential risk from pesticides, Low impacts on higher plant germination and growth, High risk potential for benthic invertebrates
6	3	3	1.5	2.7	1	1.9	High potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cr, Cu, Pb, Ni, High biological risk from Ag, Low potential risk from pesticides, Low impacts on higher plant germination and growth, High risk potential for benthic invertebrates
7	2	3	1	2.6	1	1.3	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Ag, Cu, Ni, Pb, Low potential risk from pesticides, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Moderate risk potential for benthic invertebrates
8	2	3	1.4	2.5	1	1.3	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cr, Cu, Ni, High biological risk from Zn, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Moderate risk potential for benthic invertebrates
9	3	3	1.5	2.5	1	1.6	High potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cr, Cu, Ni, Zn, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Moderate risk potential for benthic invertebrates
10	3	3	1.4	2.4	1	1.0	High potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cu, Zn, High biological risk from Pb, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Low risk potential for benthic invertebrates
11	2	3	1.4	2.4	1	1.2	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cr, Cu, Pb, Ni, Low potential risk from pesticides, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Low risk potential for benthic invertebrates
12	3	2	1.4	2.1	1	1.7	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Ni, Low potential risk from pesticides, Low impacts on higher plant germination and growth, High risk potential for benthic invertebrates
13	2	2	1.4	2.1	1	1.0	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Ni, High biological risk from Ag, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Moderate risk potential for benthic invertebrates

RISK POTENTIAL

Equal weighting of components

Site	Particle size	Organic Carbon	SQGV	Bioavailability	Pesticides	Toxicity Testing	Risk Potential evaluation
1	2	3	1.3	2.6	1	1.9	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Ag, Cu, Ni, Zn, Low potential risk from pesticides, Moderate impacts on higher plant germination and growth, High risk potential for benthic invertebrates
6	3	3	1.5	2.7	1	1.9	High potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cr, Cu, Pb, Ni, High biological risk from Ag, Low potential risk from pesticides, Low impacts on higher plant germination and growth, High risk potential for benthic invertebrates

Site	Particle size	Organic Carbon	SQGV	Bioavailability	Pesticides	Toxicity Testing	Risk Potential evaluation
10	3	3	1.4	2.4	1	1.0	High potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cu, Zn, High biological risk from Pb, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Low risk potential for benthic invertebrates
11	2	3	1.4	2.4	1	1.2	Moderate potential for contaminant binding, Moderate risk of sediment contamination, Moderate biological risk from Cr, Cu, Pb, Ni, Low potential risk from pesticides, Low potential risk from pesticides, Low impacts on higher plant germination and growth, Low risk potential for benthic invertebrates

A lack of data or knowledge increases uncertainty which translates to increased risk

Acknowledgements

Water Research Commission Golder Associates Khume Mtshweni (MSc Student UJ) Golder Associates Research Laboratory staff (Mahadi Motsumi, Claire Volschenk, Yolandi Cloete)

Thank You

Golder Associates Research Laboratory Florida, Johannesburg T: [+27] (11) 672 0666 <u>bshaddock@golder.co.za</u> <u>www.golder.com</u>