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SYSTEM –WIDE WRRF MODELLING



Modelling Socially, Economically and 

Environmentally Sustainable Waste 

Treatment Systems of the Future:

Recovered Products (i.e., Nitrogen, 

Methane, Organic fertiliser, 

Phosphorus, Water, etc).

• Include, Evaluative Performance 

Indices for Effluent Quality 

(EQI) and Cost (OCI) at System-

Wide Level.



Generate experimental data that can answer questions raised 

from modelling of phosphorus (P) removal systems. 

Requires:

• PAO behaviour (mainly anaerobic polyphosphate release)

• Chemically dosed components

UCT plant wide dynamic model (PWM_SA) be utilised 

towards transforming WWTPs to WRRFs

• Review fate of WWTP products

• Develop evaluative protocol for entire system (including fate 

of products)

• Case Studies on evaluation of full scale systems

OBJECTIVES
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PAO BEHAVIOR IN AS AND AD SYSTEMS
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The AD system fed enhanced culture of 

PAO’s to (1) Identify correct AD 

stoichiometric Pathways for PAOs; 

(2) Measure PAO ER fraction; (3) 

Determine Kinetics of PAO 

breakdown in AD (4) Generate data to 

Validate AD model.

EXPERIMENTS TO MODEL P REMOVAL



Research Questions
•Are Mathematical models that include biological and chemical P removal 

sufficient to inform optimal design?

•Should chemical P removal using ferric and/or Aluminium ions be used to 

supplement biological P removal in activated sludge system?

•Is it cost effective and efficient to remove P biologically without chemical 

addition (ferric and/or Aluminium ions) in activated sludge system?

•What is the fate of the resulting chemicals binding phosphorus in the waste 

activated sludge?

Research Approach:
•Extend Model and utilize data from Literature to explore the chemical P 

removal via pre-precipitation, co-precipitation and post-precipitation

•Experiments used where research gaps identified (i.e., data unavailable)

Modelling Chemical Precipitation Processes
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Extension of PWMSA model to include above chemical precipitation 

model

Modelling Chemical Precipitation Processes



Calibrating Chemical Precipitation Processes

• Calibration of the model (E.M.) with 

data from (De Haas; FeCl co 

precipitation), (Power, 1991; AlSO4 ppt) 

• Evaluate model predictions of P removal, 

when done (i) biologically, (ii) chemically 

for co-precipitation, and (iii) when (i) and 

(ii) are combined

• Assess impact of pre-precipitation



Developing an Evaluative Protocol



𝑬𝑸𝑰𝒘𝒂𝒕𝒆𝒓
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𝜷𝑻𝑺𝑺 ∙ 𝑻𝑺𝑺 𝒕 + 𝜷𝑪𝑶𝑫 ∙ 𝑪𝑶𝑫 𝒕 + 𝜷𝑭𝑺𝑨 ∙ 𝑭𝑺𝑨 𝒕 + 𝜷𝑵𝑶

∙ 𝑵𝑶 𝒕 + 𝜷𝑶𝑷 ∙ 𝑶𝑷 𝒕 + 𝜷𝒙 ∙ 𝑿 𝒕 ∙ 𝑸𝒆(𝒕) ∙ 𝒅𝒕

Eq. 1

• X(t): Any other pollutant considered in future evaluations 

• Flexibility in the weighting factors

𝑬𝑸𝑰𝒈𝒂𝒔

=
𝟏

𝑻 ∙ 𝟏𝟎𝟎𝟎
න
𝒕𝟎

𝒕𝒆𝒏𝒅

𝜷𝑪𝑶𝟐 ∙ 𝑭𝑪𝑶𝟐 𝒕 + 𝜷𝑪𝑯𝟒
∙ 𝑭𝑪𝑯𝟒 𝒕 + 𝜷𝑵𝟐𝑶 ∙ 𝑭𝑵𝟐𝑶 𝒕 ∙ 𝒅𝒕

Eq. 2

𝑻 : Total length of evaluation period (days)

𝜷 : Pollutant weighting factor (𝜷𝑪𝑶𝟐 =1;𝜷𝑪𝑯𝟒
= 𝟑𝟐; 𝜷𝑵𝟐𝑶 = 𝟐𝟖𝟏)

𝑭 : Flux of gas evolved (kg/d)

Works in Progress: Formulation for EQI Sludge?

Effluent Quality Index



𝑶𝑪𝑰

= 𝑨𝑬 + 𝑷𝑬 −𝑴𝑷 +𝑴𝑬 + 𝑯𝑬 ∙ 𝑬𝒏𝒆𝒓𝒈𝒚 𝒄𝒐𝒔𝒕 + 𝑺𝑷 ∙ 𝑺𝒍𝒖𝒅𝒈𝒆 𝒅𝒊𝒔𝒑𝒐𝒔𝒂𝒍 𝒄𝒐𝒔𝒕 + 𝑬𝑪

∙ 𝑪𝒂𝒓𝒃𝒐𝒏 𝒄𝒐𝒔𝒕 + 𝑴𝒆𝒕𝒂𝒍𝒔 𝒅𝒐𝒔𝒆𝒅 ∙ 𝑴𝒆𝒕𝒂𝒍 𝒄𝒐𝒔𝒕 + 𝑳𝒊𝒎𝒆 𝒅𝒐𝒔𝒆𝒅 ∙ 𝑳𝒊𝒎𝒆 𝒄𝒐𝒔𝒕 − 𝑵𝑹

∙ 𝑴𝒂𝒓𝒌𝒆𝒕 𝒑𝒓𝒊𝒄𝒆 + 𝑭𝒊𝒏𝒆𝒔
Eq. 3

AE : Aeration energy (kWh/d)

PE : Pumping energy (kWh/d)

SP : Sludge produced (kgTSS/d)

EC : External carbon addition (kgCOD/d)

ME : Mixing energy (kWh/d)

MP : Energy from methane produced (kWh/d)

HE : Total heat energy required be anaerobic digester for sludge treatment (kWh/d)

NR : Nutrient recovered; e.g Struvite (kg/d)

Operational Cost Index



Demonstrating novel 

process simulation and 

scenario analysis options 

using full-scale case studies

Development and 

validation of engineering 

tools for resource recovery 

technologies for South 

African treatment plants

Interfacing engineering 

tools within system-wide 

modelling approaches

Promote the development of 

a WRRF mathematical 

modelling community

Delivering a new generation of engineering 

tools to simulate resource recovery options 

and to evaluate these novel technologies in 

line with the circular economy paradigm




