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Modelling Socially, Economically and
Environmentally Sustainable Waste
Treatment Systems of the Future:
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Include, Evaluative Performance

Indices for Effluent Quality

(EQI) and Cost (OCI) at System-

Wide Level.
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Recovered Products (i.e., Nitroge

Methane, Organic fertiliser,
Phosphorus, Water, etc).
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G@Cm OBJECTIVES

Generate experimental data that can answer questions raised
from modelling of phosphorus (P) removal systems.
Requires:

e PAO behaviour (mainly anaerobic polyphosphate release)

e Chemically dosed components

towards transforming WWTPs to WRRFs

e Review fate of WWTP products

e Develop evaluative protocol for entire system (including fate
of products)

e Case Studies on evaluation of full scale systems

UCT plant wide dynamic model (PWM _SA) be utilised \




BPO Biogas (CH, & CO,)
(biodegradable)

‘ Biomass _
: (organic) Ammonia (NH,*)
: ER Phosphates
; (unbiodegradable) (H,PO,, HPO,?2,
etc.)
Metals (i.e., Mg, K,
Polyphosphate Ca, etc.)
< (MchdcaePO3,
: Inorganic)

Mineral Precipitates,
Stoichiometric i.e. Struvite, ACP, etc

AD biomass pathway?

Anaerobic Digester

System Products



PAO BEHAVIOR IN AS AND AD SYSTEMS
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PAO’s to (1) Identify correct AD

(2) Measure PAO ER fraction
Determine Kinetics of PAO

Validate AD model.

The AD system fed enhanced culture of

stoichiometric Pathways for PAQs;
; (3)
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S Modelling Chemical Precipitation Processes

Research Questions
«Are Mathematical models that include biological and chemical P removal
sufficient to inform optimal design?

*Should chemical P removal using ferric and/or Aluminium ions be used to
supplement biological P removal in activated sludge system?

*Is it cost effective and efficient to remove P biologically without chemical
addition (ferric and/or Aluminium ions) in activated sludge system?

*\What is the fate of the resulting chemicals binding phosphorus in the waste
activated sludge?

Research Approach:
*Extend Model and utilize data from Literature to explore the chemical P
removal via pre-precipitation, co-precipitation and post-precipitation

*Experiments used where research gaps identified (i.e., data unavailable)
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Modelling Chemical Precipitation Processes

2/1 Precipitation Processes

Simplified model

Chemical equilibrium Chemical equilibrium dissociation
Fe3*[~] Fe(OH)?* [=] Fe(OH),* H,P0,[=] H,PO, [5] HPO, > [=] PO,>
N re(UH), :
precipitation 'ASFHFOH adsorption
X HFO H

—> Fe3*+P03— FePO, - - Lasr nron — Lask nroL

LasF HFOH
X_HFO,_H,PO, > :
—> Fe(OH),*+OH" — Fe(OH);,, QXX .
. L LyskrroL

Active Site Factor: Yaging,HFOH Coagulation  Gaging,HFoH,b
ASE nb sites N : :
= S TAsF, HFOL <1 ASF,HFOH *
nb Fe Q?Qi:r : ’ X_HFO, _H
P ¢ X_HFO__H,PO,
5 Proton () A5 + 0, 10> &

* H,PO, *%& **: Yy = Lasenror

o SHE© *’ flocculati
e A Qaging,HFOL occulation Ggging HroL b

> {H;PO,

‘ X_P_HFO,old
+*‘ Entrapped phosphates

Extension of PWMSA model to include above chemical precipitation
model




Calibrating Chemical Precipitation Processes

Metal Sa?t o =2 - Metal Salt
Pre-precipitation Metal Salt wvietar alt Post-precipitation
Co-precipitation Co-precipitation )

Polished
Effluent (Q.)

Any Filtration technology can be

Calibration of the model (E.M.) with

data from (De Haas; FeCl co m

precipitation), (Power, 1991; AISO, ppt) g Prich i

Evaluate model predictions of P removal,
when done (i) biologically, (ii) chemically
for co-precipitation, and (ii1) when (i) and
(i1) are combined

Assess impact of pre-precipitation
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ARG NE Effluent Quality Index

EQIwater

1 tend
=0 -TSS(t -COD(t - FSA(t
T-1000 '[to (Brss (t) + Bcop (t) + Brsa (t) + Bro Eq. 1

*NO(t) + Bop - OP(t) + B, - X(t)) - Q.(¢) - dt

« X(t): Any other pollutant considered in future evaluations
 Flexibility in the weighting factors

EQI 445

1 tend
T 1000L (Bco, - FCO5(8) + Ben, - FCH(®) + Bryo - FN20(®)) -dt | g
0

T [ Total length of evaluation period (days)

: Pollutant weighting factor (B¢o, =1;Bcn, = 32; Bn,0 = 281)

: Flux of gas evolved (kg/d)

Works in Progress: Formulation for EQI Sludge?




Operational Cost Index

ocClI
= (AE + PE — MP + ME + HE) - Energy cost + SP - Sludge disposal cost + EC
- Carbon cost + Metals dosed - Metal cost + Lime dosed - Lime cost — NR

- Market price + Fines

: Aeration energy (kWh/d)

: Pumping energy (kWh/d)

: Sludge produced (kgTSS/d)

EC : External carbon addition (kgCOD/d)

: Mixing energy (kWh/d)

: Energy from methane produced (kWh/d)

: Total heat energy required be anaerobic digester for sludge treatment (kWh/d)

: Nutrient recovered; e.g Struvite (kg/d)




Delivering a new generation of engineering
tools to simulate resource recovery options

WWWWW

RESTARCH

and to evaluate these novel technologies in
line with the circular ecgg@my paradigm
X
Y 4
Development and

8k
.
S
validation of engineering
tools for resource recovery
technologies for South
African treatment plants

Interfacing engineering
tools within system-wide
modelling approaches

Demonstrating novel
process simulation and
scenario analysis options
using full-scale case studies

Promote the development of
a WRRF mathematical
modelling community
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