ETHERWINI MUNICIPALITY- HITACHI

HITACHI Inspire the Next

SEA WATER

DESALINATION AND REUSE PROJECT

Presented by : Lalitha Moodley

BACKGROUND

- Current studies underway by EWS to assess Inner City Water Demands indicate an non-peaked demand of approximately 65 Ml/day
- This demand outstrips the supply of 50 Ml/day and thus the need to augment the supply by 15 Ml/day by 2020. This is to be done in a phased approach as the demand grows with development in the Inner City.
- Hitachi has been in discussion with eThekwini Municipality for since 2013.
- A visit in March 2013 by EWS and Umgeni Water to Japan to see the RW technology, led to a general MOU between Hitachi and EWS.

Hitachi in the Water Business

From System and EPC *1 to BOT*2/BOO*3/Concession

*4. MWSC : Male' water and sewerage company *5. HSWS : Hi Star Water Solutions LLC *6. RO: Reverse Osmosis

The Long Road to Project Inception

What Now?

Sought and obtained Council Resolution to enter into negotiations with Hitachi on a Project with "no Cost to Council"

- Hitachi in the meantime approached various funding agents to fund the project including JICA and NEDO
- New Energy Development Organization (of Japan) agreed to fund the Project
 - EThekwini signed a MoU with NEDO
- An "Implementation Document" was discussed and Developed with Hitachi

High Level Technical comparison of Energy-saving desalination and conventional desalination

Conventional & Remix Desalination

- Hitachi to **DEMONSTRATE** that the concept would work for South Africa by building a Pilot Scale plant with an Outflow Capacity of 6.25 MLD .
- They would have a demonstration period of 1 year to prove that the plant could meet SANS 241 quality standard for drinking water.
- During the "Demonstration phase" all water would be discarded to the outfall.
- All costs to be borne by NEDO (or Hitachi)

THE PROJECT TEAM

PRE FEASIBILITY AND SITE SELECTION

- AURECON were the consultants selected to undertake the Pre Feasibility for Hitachi
- They also looked at several different sites for a location for the Project .
- These included : Northern WWTW , Kwa Mashu WWTW , Tongaat WWTW and Central WWTW
- Looked for sites with :
 - Low Industrial Effluent in the incoming sewage
 - Close to the ocean
 - An easy discharge for the Brine
- Central WWTW ticked all the boxes

PROJECT SITE

PROJECT PLANNING PHASE

• Necessary Site data collected :

- Drawings
- Effluent Quality
- Effluent Quantity
- Sampling
- Permission to Occupy
- Authorizations ?? ??

DESIGN AND PROCUREMENT PHASE

- SUB COMMITTEE FORMED not to be confused with the Steering committee
- CHARTER OF VALUES spelt out:
 - Purpose of the Committee Primary
 Functions and Approval Responsibilities
 - Membership & Roles of Members
 - Meetings Schedule and Process

HIGH LEVEL SCHEDULE

EIA /SITE INVESTIGATION TEAMS

- AURECON CONTRACT MANAGEMENT SERVICES
- GIBB ENVIRONMENTAL AUTHORISATIONS :
 - EIA ,WUL , CWDP
- WSP MARINE INVESTIGATIONS
- Many other sub consultants perform Specialist studies

MARINE INVESTIGATION SCOPE

Field Investigations WHY

- Understand the surrounds and environment
- Inform designs
- Option study on intake
- Old site with substantial unknown services
- Reduce risk

MARINE INVESTIGATION

Marine Work

- A-1 Bathymetric survey (multi-beam)
- A-4 Geophysical survey (pinger)
- A-5 Diver survey:
 - Intake route
 - CWWTW outfall
 - Harbour mouth
- A-6 ROV survey CWWTW Diffuser
- A-7 Current and Wave measurement via ADCP
- A-8 Seawater quality sampling and analyses

Onshore Work

- B-1 & B-4 Topographical survey
- B-2 & B-5 Geotechnical investigation
 - For foundations (boreholes and trail pits)
 - For HDD
 - Groundwater yield testing (CWWTW CP System influence)
- B-3 & B-5 Geophysical investigation (GPR)
- B-6 Sewage quality sampling and analyses

B-2 & B-5 Geotechnical investigation (For foundations)

B-2 & B-5 Geotechnical investigation (For foundations)

B-2 & B-5 Geotechnical investigation (Groundwater yield testing)

LOCATION OF INTAKE INFRASTRUCURE

Intake structure & HDPE intake pipeline:

- 4.3m water depth
- 16m from quay
 - 225mm (OD)

HDPE Delivery feedline:

- 1.35km long trenched
- 200mm (OD)

Pump station:

- 2No. Self priming pumps with vacuum pump
- hydroburst equipment
- chlorine dosing equipment

Google earth

WATER QUALITY ANALYSIS

SD

DESIGN OF WASTEWATER REUSE

- Understanding what is existing and how to use it
- Designing for tertiary treatment of wastewater
 - Process technology selection
- Blending into the Remix System

REMIX WATER TECHNOLOGY

EXISTING INFRASTRUCTURE :

= 130 Ml/day

CENTRAL WWTW

- DESIGN INFLOW
- AVERAGE DRY WEATHER FLOW = 60.4 Ml/day
- ➢ AVERAGE INFLUENT COD = 495 mg/L
- ➢ AVERAGE INFLUENT PH = 7.2
- ➢ OUTFALL LENGTH = 3160m

EXISTING INFRASTRUCTURE

Infrastructur e Component	Unit Number and Size/Volume	Process Capacity	Status of Current Operation	Notes	
Inlet Works: Screens	2No. 2m wide Mechanical Front Raked Screens. Space for 3 rd screen used as bypass channel	Detailed hydraulic capacity not checked. Reports suggest that the inlet works sized for 130 Ml/d peak	One screen operational	Inlet Works constructed over 50 years ago. Requires civil, mechanical and electrical refurbishment	
Inlet Works: Degritters	4No. 6m diameter vortex-type degritters	hydraulic flow.	Operational		Contraction of the second
PSTs	10 No. rectangular PSTs Each PST 32x12m Total Weir Length of 180 m currently	Based on current Weir Length, capacity of 73 Mℓ/d peak flow is possible.	PSTs are currently undergoing refurbishment	Weir lengths of PSTs can be extended to increase capacity. PSTs are over 50 years old and require civil, mechanical and electrical refurbishment	
Final Balancing Tank	Rectangular Balancing Tank 85x30m ~3m deep	Volume of roughly 7.6 Ml, could potentially provide 2.4 hours storage	Operational. Used to balance flows at high tide when sea level too high to discharge directly	Appears to be in good condition. Joints and concrete would need to be inspected to assess whether it can be reused in any future upgrades.	
Sludge Gravity Thickeners	2No. 17m diameter. ~4m high. Elevated	-	Decommissioned. Not good state of repair.	No plans to be reinstated	
Sludge Incineration Plant	Housed in 3 Storey Building	-	Decommissioned	No plans to be reinstated	

DESIGNING FOR TERTIARY TREATMENT OF WASTEWATER – PROCESS TECHNOLOGY SELECTION

Process objectives What are we taking out of the water?

- Salinity (TDS)
- Nitrates
- Iron Fe & Manganese Mn
- Total organic carbon (TOC)
- Aluminium
- Pathogens
- Hormones
- Pharmaceuticals

DESIGNING FOR TERTIARY TREATMENT OF WASTEWATER – WHAT ABOUT PATHOGEN REMOVAL ?

- No South African Standard for Reuse water
- Look for Strictest world wide standard. E.g. California , Australia, Texas etc.
- Use a Multi barrier Approach to attain standard

	Cryptosporidium	Giardia	Virus	Total Coliform
log ₁₀ removal	10	10	12	9
Raw -> Secondary/ Tertiary Treatment	Advanced Water Treatment	Conventional Water Treatment	->	Community

DESIGN OF SEAWATER DESALINATION

DESIGN OF SEAWATER DESALINATION

- What is in SEA Water ?
- Sea water is considered Saline .
- Saline : Water containing a mixture of salts in the region of 30 to 50 ppt
- Non Ionic Species
- Suspended Solids
- Dissolved Organic Compounds

DESIGNING FOR SEAWATER ULTRAFILTRATION

1 Angstrom Unit = 10-10 Meters = 10-4 Micrometers (Microns)

© Copyright 1998, 1996, 1993, 1990, 1984 Osmonics, Inc., Minnetonka, MN, USA

DESIGNING FOR REVERSE OSMOSIS

• What is Osmosis and Reverse Osmosis?

DESIGNING FOR REVERSE OSMOSIS

MEMBRANE TECHNOLOGY

PROPOSED LAYOUT OF 6.25 M&/DAY (DEMONSTRATION PLANT)

Layout (basic design phase)

HIGH LEVEL SCHEDULE

CONSTRUCTION PROCUREMENT PHASE

- NEDO Proviso No work to begin until all authorizations received.
 - EIA
 - CWDP
 - WUL

- Hitachi appointed WSP as Construction Management Services
- Stefanutti Stocks were appointed to undertake Construction Activities

CONSTRUCTION PROGRESS

LIEB

SUB UNITS

INTAKE PIPELINE

DEMO PLANT: SCHEDULE

Milestone	Year of Commission
Phase 1 (6.25 MLD)	2019

QUESTIONS

Thank You

Sydney Masha Civil Engineer EWS : Commercial & Business 031 311 8641 Sydney.Masha@durban.gov.za

Lalitha Moodley Pr Eng Senior Chemical Engineer 3 031 322 0994 0 073 521 4760

lalitha.moodley@durban.gov.za

HITACHI Inspire the Next