METHOD DEVELOPMENT FOR MICROPLASTICS TOXICITY TESTING IN SOUTH AFRICAN FRESHWATER RESOURCES

Khaya Mgaba, Nelson Odume, Neil Griffin and Paul Mensah

Unilever Centre for Environmental Water Quality

Institute for Water Research

Rhodes University

South Africa

Introduction

- Plastic production increased dramatically worldwide
- Plastic is defined by its versatility, resistance and durability to degradation
- Degradation of plastic can take up to 100 years
 - It can vary due to typology
 - Oxygen availability
 - Presence of chemical addictive's
- Common polymer types: polypropylene (PP), polyethylene (PE), and polyvinyl chloride (PVC)

Lambert et al. 2017, Rist and Hartmann 2018

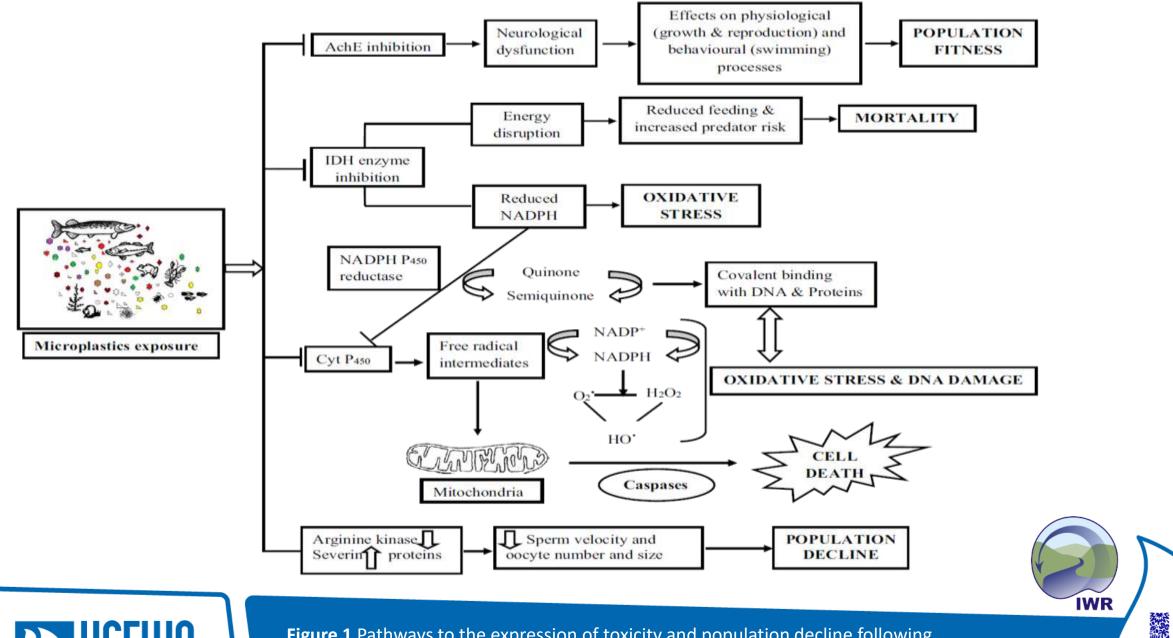
Introduction

- Plastic are found to be threat to freshwater and marine environment
 - Not recycled
 - Not properly disposed
- Up to 80% of litter is in plastic form, 10% of it end up to water resources annually
- Plastics can be extensively degraded and become brittle enough to fall apart into microsized powdery fragments

Microplastics in freshwater

- Microplastics are plastic particles with size range of 0.1 μm - 5 mm in size

- Types of microplastics:
 - Primary microplastics are introduced directly into the aquatic ecosystem via runoffs
 - Secondary microplastics are derived from degradation of fragmentation of mesoplastics or larger fragment



Microplastics in freshwater

- Microplastics are described as emerging pollutants, accumulating aquatic environment all over the world
- They affect aquatic life, ecological processes and food security
- There is a growing evidence about the possible ecological effects of microplastics in freshwater environments

UNILEVER CENTER FOR ENVIRONMENTAL WATER GUALITY

Figure 1 Pathways to the expression of toxicity and population decline following exposure to microplastics. Diagram taken from Anbumani and Kakkar (2018).

Unilever

Microplastics as stressors

- Microplastics as physical stressor
 - Ingestion and uptake
 - Abrasion of soft and fleshy tissue of organisms
 - Entanglements
 - Microhabitat damage (indirect impact)
- Microplastics as chemical stressors (plasticizers):
 - Leaching of potentially toxic plasticizers (additives)
 - Plasticizers such as dibutyl phthalates have been reported to cause deleterious effects in aquatic organisms

Size, shape

and type

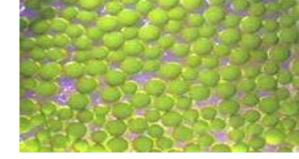
- Microplastics as vectors
 - Microplastics bind to potentially toxic chemicals and pathogenic micro-organisms
 - Aid the transport of such toxic chemicals and pathogens

Project aim

• To evaluate the impacts of microplastics as a physical and chemical stressors in freshwater environment.

Specific objectives

- To conduct ecotoxicity test to examine effect of different major plastic types, sizes and shapes found in SA on Zebra fish Danio rerio, shrimps *caridina nilotica* and freshwater snails, *Melanoides tuberculate* and Algae
- To conduct ecotoxicity test to assess effect of selected plasticizers to different aquatic organisms


 To develop methods for toxicity testing to studying microplastics in South African freshwater systems

Methodology

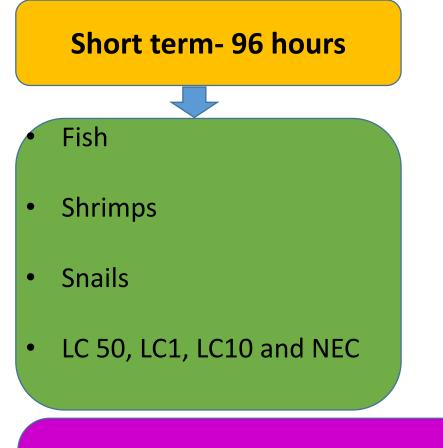
Methods for ecotoxicology

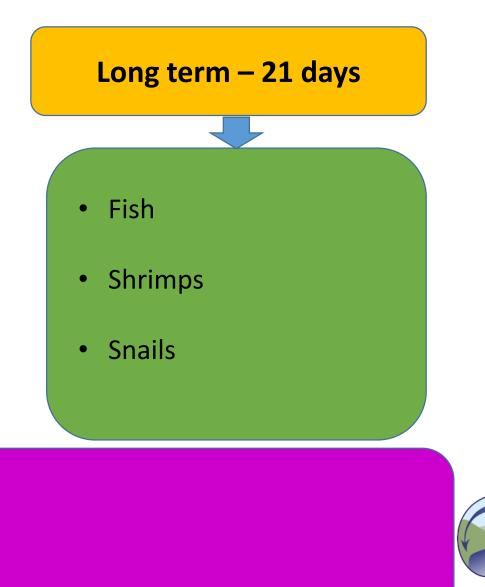
- Test species selection
 - Organisms selected from multiple trophic level: freshwater snail *Melanoides tuberculate,* freshwater shrimps Caridina nilotica, zebra fish Danio rerio, and algae Selenastrum capricornutum

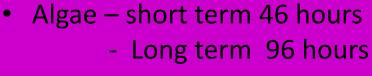
Methods for ecotoxicology – Objective 1

- Microplastics as a physical stressor
 - Microplastics size selection ($\leq 20\mu$ m)
 - Shapes fragments and beads
 - Plastic types: e.g. polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC)
 - Concentration solutions based on sizes and shapes and predominant plastic type in SA
 - Five concentration each in replicates

Methodology – objective 2


- Range finding concentration for plasticizers
- Addictive's types: e.g. Bisphenol A, Phthalate and Calcium stearate





Exposure duration

IWR Unilever

Methodology

End point selection: Chronic and acute effects

Methodology

Life stages (where applicable) of organisms to be exposed – Shrimp, Fish and Freshwater snails Embryo Neonate Juvenile Adult IWR

Unilever

Expected Outcomes

- Method to get microplastics in solution
- Develop appropriate toxicity end points
- To develop a protocol or procedures:
 - Microplastics particles
 - Plasticizer
- Methods for ecotoxicity testing of microplastics found in South African freshwater systems

THANK YOU

