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INTRODUCTION

High seasonal rainfall variability, delays in onset and irregular 
distribution of rainfall, and occasional dry spells within seasons 
negatively impact cereal yields and household livelihoods in 
sub-Saharan Africa (SSA) (Fjelde and Von Uexkull, 2012). 
The impact is exacerbated under rainfed agriculture, where 
rainfall is the sole water input into the agriculture system. 
Variability in rainfall affects timing and location of planting, 
as onset, cessation and amount of rainfall affect farmers’ 
planting decisions. Cereal crops are a major contributor to 
food security and economy in arid and semi–arid regions. In 
SSA, a region where 95% of agriculture is rainfed (Singh et 
al., 2011), and arid and semi-arid areas account for 43% of 
total area (FAO, 2008), rainfall is a major limitation to cereal 
yields. Sorghum is predominantly grown in semi-arid and arid 
agro-ecologies of SSA, under rainfed conditions. This makes 
sorghum production highly susceptible to rainfall amount 
and distribution.

Examining yield response to rainfall amount and 
distribution under rainfed environments is both laborious and 
expensive. In consideration of such limitations, the use of crop 
models is useful. Crop models are valuable prediction tools 
where environments, soils, genotypes and climatic conditions 
vary. For increased accuracy of model predictions, models 
have to be parameterized, calibrated and tested before use. For 
model calibration, one changes model parameters and even 
coding in order to obtain accurate prediction versus observed 
data. On the other hand, testing is the process whereby 
the model is run against independent data, without any 
modification of model parameters or code. AquaCrop is a crop 

water productivity model developed by the Land and Water 
Division of FAO that simulates crop yield response to water 
(Raes et al., 2009b; Steduto et al., 2009). AquaCrop predicts 
crop productivity, water requirement, and water use efficiency 
and is particularly suited to address conditions where water is a 
key limiting factor in crop production. 

Application of models by non-research end users (farmers, 
policy makers and extension services) remains a key challenge 
as models usually require extensive and difficult to obtain 
datasets for calibration (Hoogenboom et al., 2012). A major 
distinguishing feature of AquaCrop is its simplicity, the 
ability to use minimum data inputs during calibration to 
produce reliable estimates of crop growth and yield response 
to water availability (Raes et al., 2009b; Steduto et al., 2009). 
This procedure is termed ‘minimum data input calibration’. It 
requires a relatively low number of intuitive, easy-to-obtain 
parameters and can be used when a crop has previously been 
calibrated for AquaCrop (Hsiao et al., 2012). The use of the 
minimum data input for calibration was an attempt to improve 
uptake and use of crop models, particularly in developing 
countries where access to extensive datasets is limited.

AquaCrop has been parameterized and tested for a wide 
range of crops (Farahani et al., 2009; Geerts et al., 2009; Hsiao 
et al 2009; Karunaratne et al., 2011; Steduto et al., 2009) under 
different environmental conditions, illustrating that the model 
could accurately simulate yield response to water. AquaCrop 
has already been parameterized for sorghum using data from 
Bushland, Texas, field trials in 1993 (FAO, 2012). However, 
there is a need to perform a local calibration for sorghum 
genotypes under production in SSA. This study aimed to 
calibrate and test AquaCrop for hybrid, open-pollinated and 
landrace sorghum genotypes. In this study, the minimum data 
input calibration procedure was used to calibrate sorghum 
genotypes, and subsequently test model performance under 
variable climatic conditions. In part, this study aimed to 
investigate whether minimum data input calibration (Hsiao 

*To whom all correspondence should be addressed. 
Tel: +27 (33) 260-5447; Fax: +27 (33) 260-6094; e-mail: hadebesta@gmail.com.
Received 8 July 2016; accepted in revised form 3 March 2017  

ABSTRACT
Predicting yield response to water is important in rainfed agriculture. The objective of this study was to calibrate and test 
AquaCrop for simulating yield of 3 sorghum genotypes (PAN8816, a hybrid; Macia, an open-pollinated variety; and Ujiba, 
a landrace) grown during the 2013/14 and 2014/15 planting seasons (early, optimal and late planting dates). Variables 
considered during model evaluation included canopy cover (CC), biomass (B) and yield (Y). The model was able to simulate 
CC (R2 ≥ 0.710; root mean square error (RMSE) ≤ 22.73%; Willmott’s d-index (d) ≥ 0.998), biomass accumulation (R2 ≥ 
0.900; RMSE ≤ 10.45%; d ≥ 0.850), harvest index (R2 ≥ 0.902; RMSE ≤ 7.17%; d ≥ 0.987) and yield (R2 ≥ 0.945; RMSE ≤ 
3.53%; d ≥ 0.783) well for all genotypes and planting dates after calibration. AquaCrop over-estimated biomass and crop 
yield. The relatively good simulations produced by the minimum data input calibration confirm AquaCrop’s simplicity and 
suitability for use in places where extensive datasets may be unavailable. Biomass and yield overestimation resulting from the 
use of the minimum data input calibration suggests that other parameters (water productivity, canopy sensitivity to water 
stress and water stress coefficient) are required to improve canopy and yield predictions for sorghum genotypes.

Keywords: modelling, parameterization, minimum data input calibration, sorghum, water availability. 
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et al., 2012) proposed for non-research AquaCrop users 
was sufficient in predictions of sorghum yield response to 
water. To our knowledge, no published materials exist on 
the effectiveness of minimum data input calibration, making 
this the first study to do so. The choice of genotypes used is 
explained in the materials and methods section.

MATERIALS AND METHODS

Model description 

The FAO AquaCrop crop model is a water-driven simulation 
model (generic crop water productivity model) (Raes et al., 
2009a; Steduto et al., 2009). It requires relatively few input 
parameters to simulate yield response to water of most major 
field and vegetable crops. Its parameters are explicit and mostly 
intuitive and the model maintains a sufficient balance between 
accuracy, simplicity and robustness (Raes et al., 2009a; Steduto 
et al., 2009). 

The features that distinguish AquaCrop from other crop 
models are its focus on water, the use of canopy ground cover 
instead of leaf area index, and the use of water productivity 
values normalized for climate (atmospheric evaporative 
demand and carbon dioxide concentration). This confers the 
model an extended extrapolation capacity to diverse locations 
and seasons (Steduto et al., 2007), including future climate 
scenarios. The model uses canopy ground cover (CC) instead 
of leaf area index (LAI) as the basis to calculate transpiration 
and to separate soil evaporation from transpiration. Biomass 
is then calculated as the product of transpiration and a water 
productivity parameter (Eq. 1).

B = WP x Σ Tr   (1)

where:  B = aboveground biomass (t·ha-1), WP = water 
productivity (biomass per unit of cumulative transpiration), 
and Tr = crop transpiration.

 Crop yield is then calculated as the product of above-
ground dry biomass and harvest index (HI): 

Y = B x HI       (2)

where: Y = crop yield, HI = harvest index.

Although the model is simple, it gives particular attention 
to the fundamental processes involved in crop productivity and 
in the responses to water, from a physiological and agronomic 
perspective (Raes et al., 2009a). The FAO AquaCrop model 
predicts crop productivity, water requirement, and water use 
efficiency under water-limiting conditions (Raes et al., 2009a). 
AquaCrop considers the soil, with its water balance; the plant, 
with its development, growth and yield processes; and the 
atmosphere, with its thermal regime, rainfall, evaporative 
demand and carbon dioxide concentration. 

Minimum data input calibration requires a relatively low 
number of parameters compared to full calibration, and is 
used when a particular crop has previously been calibrated 
for AquaCrop. These are fairly intuitive input variables, either 
widely used or largely requiring simple methods for their 
determination. Minimum input data consist of weather data, 
crop and soil characteristics, and management practices that 
define the environment in which the crop was cultivated, and 
are described in Hsiao et al. (2012). In this study, user-defined 
model inputs were used to describe soil physical and hydraulic 
properties, and daily weather, and user-specific crop parameters 
for each sorghum genotype obtained from field trials were used 
to describe crop growth and development. The crop description 
parameters (Table 2) were taken from Hsiao et al. (2012), in 
which minimum datasets required for calibration were described. 
Additionally, the model also considers some management 
aspects such as irrigation and fertility, as they affect the soil 
water balance, crop development and therefore final yield. Pests, 
diseases, and weeds are not considered (Raes et al., 2009b).

Plant material

Three sorghum genotypes, a hybrid (PAN8816), an open-
pollinated variety (Macia) and a landrace (Ujiba), were selected 
for this study. This reflected the range of germplasm typically 
used by farmers for sorghum production in southern Africa. 
PAN8816 and Ujiba are grown in South Africa in sorghum-
growing regions. Macia, was developed by the International 
Crop Research Institute for the Semi-Arid Tropics (ICRISAT), 
and is produced in most sorghum-growing regions across SSA 
(Charyulu et al., 2014; Takele and Farrant, 2013). Additional 
information on genotype characterisation is as defined 
in Table 1.

TABLE 1
Seed, growth and development characteristics of 3 sorghum genotypes used in this study

Characteristics
Genotype

PAN8816 Macia Ujiba

Source Pannar Seeds, seed 
company Capstone, seed company Smallholder farmers in Tugela Ferry, 

South Africa (28°44’S, 30°27’E)

Cultivar Type Hybrid Open-pollinated variety Landrace

Seed colour Bronze White/ Cream white Dark brown

Tannin content Low Low High

Birdproof tolernace Low Low High

Maturity characteristics Medium-late maturing Early-medium maturing Medium-late maturing

Height Semi-dwarf (1.3–1.5 m) Semi-dwarf (1.3–1.5 m) Tall (1.5–2 m)

Farmer group preference Commercial farmers Commercial and smallholder farmers Smallholder farmers
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Site description

Field trials were planted at Ukulinga Research Farm (30°24’S, 
29°24’E, 805 m amsl) over 2 planting seasons (2013/14 
and 2014/15). The farm is situated in Pietermaritzburg in 
the subtropical hinterland of KwaZulu-Natal Province and 
represents a semi-arid environment characterized by clay-loam 
soils (USDA taxonomic system). Rain falls mostly in summer, 
between September and April. Rainfall distribution varies during 
the growing season (Swemmer et al., 2007) with the bulk of rain 
falling in November, December and early January. Occasionally 
light to moderate frost occurs in winter (May – July).

Trial layout and design

Field trials planted at Ukulinga on 17 January during the 
2013/14 planting season were used for model calibration. 
The experimental design used was a randomized complete 
block design with 3 replications. Independent field trials 
planted during the 2014/15 planting season were used to test 
model performance. The experimental design was a split-plot 
design with planting date as the main factor and genotype 
as the sub-factor laid out in randomised complete blocks 
with 3 replications. The planting dates (3 November 2014, 17 
November 2014, and 26 January 2015) represented early, optimal 
and late planting dates for sorghum. Early planting reflected 
onset of rainfall at Ukulinga in the 2014/15 season. The early 
planting date can be defined as the first rainfall event capable 
of supporting germination. In this study the early planting 
date was defined according to the Agricultural Research and 
Extension (AREX) criterion (Raes et al., 2004) which defines 
a planting date as the occurrence of 25 mm rainfall in 7 days 
before planting. This ensures there is enough soil water, not 
only for germination but also to sustain the crop through the 
early development stage (Moeletsi and Walker, 2012). Optimal 
planting date was based on Department of Agriculture, Forestry 
and Fisheries (DAFF) (2010) recommendations and historical 
weather data at Ukulinga. Late planting date represented latest 
planting from which seasonal rainfall can sustain 120–140 day 
growing season (Table 3). This was determined from historical 
weather data, where onset of winter season and cessation of 
rainfall usually occurs in May at Ukulinga. 

All trials comprised of 3 sorghum cultivars, namely: 
PAN8816, Macia and Ujiba. The trials measured 310 m2, with 

individual plot size of 6 m x 4.5 m (18 m2), with 1 m interplot 
spacing between the plots. Final inter-row spacing was 0.75 m 
with 0.30 m intra-row spacing, amounting to 21 plants per row 
and 63 experimental plants per plot. Each individual plot had 7 
rows with the 3 innermost rows as the experimental plants, and 
the remaining rows reserved for destructive sampling.

Agronomic practices

Soil samples were collected and analysed for fertility before 
land preparation. Before planting, fallow land was mechanically 
ploughed, disked and rotovated. A pre-emergence herbicide, 
Round-up (glyphosate at 10 mL·L-1 water) was applied to 
control weeds 2 weeks before planting. A deficit of fertilizer 
requirements (Smith, 2006) was applied using Gromor 
Accelerator (30 g·kg-1 N, 15 g·kg-1 P and 15 g·kg-1 K), a slow 
release organic fertilizer, at 14 days after sowing (DAS). 
Planting rows were opened by hand 25 mm deep and seeds 
were hand-sown in the ground. Planting was conducted by 
drilling sorghum seeds. Thereafter, at crop establishment (14 
DAS), seedlings were thinned to the required spacing. Scouting 
for pests and diseases was done weekly. Cypermethrin (15 
mL per 10 L knapsack) was applied to control insect pests 1 
month after planting. Weeding was done using hand-hoes at 
frequent intervals.

Input data 

Soil 

Important soil input parameters required by AquaCrop model 
are: soil texture, volumetric water content at field capacity 
(FC), at permanent wilting point (PWP), and at saturation 
(SAT), saturated hydraulic conductivity (Ksat), and soil 
thickness (depth of soil profile). The soil textural class was 
described as clay (USDA Taxonomic System). Soil physical 
and hydraulic properties were obtained from classification 
and characterisation of experimental site soils by Mabhaudhi 
(2012). Soil hydraulic and physical properties were used to 
develop a soil (.SOL) file in the model. The soil was classified 
as clay, with 0.6 m soil depth. Other values used to describe the 
soil file were: PWP = 28.3%, FC = 40.6%, SAT = 48.1%, TAW = 
123.0 mm·m–1, and Ksat = 25.0 mm·d–1.

TABLE 2
User-specific crop parameters used in minimum data input calibration of 3 sorghum genotypes (PAN8816, Ujiba and Macia) 

plus the original AquaCrop default sorghum crop file values

Parameter
Genotype

PAN8816 Ujiba Macia Default sorghum 
crop file

Planting date 17 January 2014 17 January 2014 17 January 2014
Planting density (plants·ha-1) 44 444 44 444 44 444 44 444
Time to crop establishment (days) 14 14 14 14
Maximum canopy cover (%) 89.1 80.3 80.3 89
Time to maximum canopy cover (%) 70 77 84 84
Time to flowering (days) 70 77 79 70
Duration of flowering (days) 14 14 14 27
Time to canopy senescence (days) 126 126 126 98
Time to physiological maturity (days) 140 140 140 140
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Meteorological data

The climate file in AquaCrop is defined using maximum 
temperature (°C), minimum temperature (°C), rainfall (mm) 
and reference evapotranspiration (mm). Meteorological data 
for Ukulinga were obtained from an automatic weather station 
(within 100 m radius), courtesy of the Agricultural Research 
Council – Institute for Soil, Climate and Water (ARC–ISCW). 
Reference evapotranspiration was obtained from the weather 
station and was based on the FAO Penman-Monteith equation 
from full daily weather datasets, as described by Allen et al. 
(1998). Carbon dioxide concentration was obtained from 
AquaCrop’s default Maunalua file. Daily meteorological data 
from 1 January 2014 until 31 August 2015 were used to develop 
the climate (.CLI) file in the model.

Crop growth and development parameters 

Crop parameters were used to calibrate AquaCrop’s default 
sorghum file (Raes et al, , 2012) for the three sorghum genotypes 
as part of the minimum data input calibration procedure. 
The minimum data input procedure includes providing input 
data for the following: planting date, planting density, time 
to crop establishment, time to flowering, flowering duration, 
maximum canopy cover, time to maximum canopy cover, time 
to senescence, time to physiological maturity, and harvest 
index (Table 2). The minimum data input calibration procedure 
includes rooting depth; however, in this study, we used the 
default depth in the default sorghum file.

Date of planting was recorded as the actual day when seeds 
were sown in the soil. Planting density was calculated as number 
of plants per given area based on row spacing and plant spacing. 
Area measurements were converted from m2 to hectares and 
planting density was reported in plants·ha-1. Time taken to reach 
phenological stages was recorded in days until ≥ 50% of planting 
population exhibited diagnostic signs of that particular stage. 
Canopy cover was measured using the LAI2200 canopy analyser 
(Li–Cor, USA) at midday (12:00 – 14:00), and calculated as 
described by Mabhaudhi et al. (2014). Maximum canopy cover 
was recorded as the highest recorded canopy cover measurement 
over the growing season. Time to maximum canopy cover was 
taken as time from sowing until maximum canopy cover was 
observed for each genotype. Flowering duration described 
time from when at least half the experimental population 
exhibited flower inflorescence to the time when at least half the 
experimental population exhibited anthesis. 

To quantify effective rooting depth, an area around a plant 
root zone was dug out 1 m deep and 0.5 m from the main stem at 
physiological maturity, after which the soil around the roots was 
brushed off, and root length was measured from exposed roots. 
The model is capable of simulating the presence of an impeding 
layer. Soil profiling at the experimental site revealed that the 
effective rooting depth of the soil was 0.6 m which was then 
inputted to the soil file, while for the crop it was maintained as 
the default 2 m. During model runs, root growth will be limited 
by the depth of the soil profile, while the value of 2 m represents 
the crop’s potential in the absence of an impeding layer or a 
shallow soil. This feature then allows for the same crop file to 
be used for different soils without the need to change the crops’ 
effective rooting depth whenever the soil file is changed. Soil 
water content was measured weekly using a PR2/6 profile probe 
(Delta–T, UK), and used test model estimation of soil moisture.

Flowering was observed as time taken for 50% of 
experimental plant population to panicle bloom. Duration 

of flowering was recorded as time taken from flowering 
until 50% of experimental population exhibited anthesis. 
Physiological maturity was observed when a dark spot appeared 
on the opposite side of the kernel from the embryo, signalling 
completion of dry matter accumulation. However, physiological 
maturity in model simulations was observed when dry matter 
accumulation (biomass and yield) ceased. Since all trials were 
under sub-optimal rainfall, reference harvest index could not be 
calculated for sorghum genotypes. Therefore, the default harvest 
index was used for all genotypes. Crop growth and development 
parameters were specified as inputs in genotype crop (.CRO) in 
the model. 

Model calibration

Observations from field trials planted at Ukulinga on 17 January 
during 2013/14 were used to calibrate each of the three sorghum 
genotypes. Minimum data input calibration was used, using 
parameters outlined in Table 2. Simulations were performed 
with the AquaCrop model (Version 4.0) as described by Raes 
et al. (2009a) and Steduto et al. (2009). Key inputs in the model 
included: climate file, soil file, and crop files (2 crop files, 1 file 
per genotype, which were calibrated using minimum data input 
calibration). Calibration of the model was conducted using 
2013/14 data from rainfed trials conducted at Ukulinga. Since 
AquaCrop is a canopy-level model where biomass and yield are 
calculated based on transpired water from the canopy, simulated 
canopy cover values first needed to be matched to observed 
values. Upon good agreement between simulated and observed 
canopy cover, agreement in soil water content, biomass, yield 
and harvest index were then compared. Data used for calibration 
were not used for testing.

Model testing

Testing is an important step of model verification. It involves a 
comparison between independent field measurements (data) and 
simulated output created by the model. Testing confirms whether 
or not results obtained from the model can be relied on and if 
they compare well with experimental results. Model testing in 
this study was done by comparing canopy cover, biomass, yield 
and harvest index simulated by the model with that from the 
observed field experiments planted at different planting dates 
during the 2014/15 season. 

Statistical analysis

Different statistical indices, including coefficient of 
determination (R2), root mean square error (RMSE) and its 
systematic (RMSES) and unsystematic components (RMSEU), 
as well as the index of agreement (d-index), were used for 
comparison of simulated against observed data. Systematic 
RMSE was calculated (Loague and Green, 1991) as follows:

  (3)

where: n is the number of observations, Pi and Oi refer 
to simulated and observed values of the study variables, 
respectively. 

The RMSE is a good overall measure of model 
performance. It indicates the absolute fit of a model to 
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Figure 1
Simulated vs. observed canopy cover, biomass, yield, and harvest index for PAN8816, Macia and Ujiba sorghum genotypes 

for the calibration model run using 2013/14 Ukulinga growing season data
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observed field data, and evaluates the closeness between the 
two values. The RMSE was normalized by expressing it as a 
percentage of data range to remove scale dependency. The 
simulation is considered excellent with a normalized RMSE 
less than 10%, good if the normalized RMSE is greater than 
10% and less than 20%, fair if normalized RMSE is greater 
than 20% and less than 30%, and poor if the normalized 
RMSE is greater than 30% (Jamieson et al., 1991).
Systematic root mean square error (RMSES) was calculated as 
the square root of the mean squared difference in regressed 
prediction–observation pairings within a given analysis 
region and for a given period (Loague and Green, 1991).

 (4)

where: Pij is the individual predicted quantity at site i and time j, 
is the least square aggression, Oij is the individual quantity at site 
i and time j, and the summations are over all sites (I) and over 
time periods (J). And the least square aggression () is:

 (5)

where: a is the y-intercept, and b is the slope of the resulting 
straight-line fit. 

The RMSES estimates the model’s linear (or systematic) 
error; hence, the better the regression between predictions and 
observations, the smaller the systematic error.

Unsystematic root mean square error (RMSEU) was 
calculated as the square root of the mean squared difference in 
prediction-regressed prediction pairings within a given analysis 
region and for a given time period. 

Figure 2
AquaCrop simulated and field-observed soil water content for PAN8816, Macia and Ujiba sorghum genotypes planted at 3 different planting dates 

(early, optimal and late) within the 2014/15 growing season at Ukulinga
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   (6)

The unsystematic difference is a measure of how much of the 
discrepancy between estimates and observations is due to 
random processes or influences outside the legitimate range of 
the model.

The index of agreement (d-index) proposed by Willmott 
et al. (1985) was estimated using Eq. 7. The d-index 
condenses all of the differences between model estimates and 
observations within a given analysis region and for a given 
time period (hourly and daily) into one statistical quantity. 
It is the ratio of the total RMSE to the sum of 2 differences 
– between each prediction and the observed mean, and each 
observation and the observed mean. Viewed from another 
perspective, the index of agreement is a measure of the match 
between the departure of each prediction from the observed 
mean and the departure of each observation from the 
observed mean. Thus, the correspondence between predicted 
and observed values across the domain at a given time may 
be quantified in a single metric and displayed as a time series. 
The index of agreement has a theoretical range of 0 to 1. 
According to the d-index, the closer the index value is to 1, 
the better the agreement between the two variables that are 
being compared and vice versa.

    (7)

where: n is the number of observations, Pi the predicted 
observation, Oi is a measured observation, ΙPiΙ = Pi − M and 
ΙOiΙ = Oi − M (M is the mean of the observed variable). The 
simulated model results were compared statistically to observe 
experimental measurements using Microsoft Excel.

RESULTS AND DISCUSSION

Calibration 

Since AquaCrop simulates crop growth and yield response to 
water availability, it is important to establish a good goodness of 
fit between model simulated and field observed soil water content. 
AquaCrop simulated soil water content (R2 ≥ 0.901; RMSE ≤ 
13.32%; d ≥ 1.000) very well (Fig. 1), which gave confidence that 
other water-based crop processes were simulated based on good 
water availability prediction. 

AquaCrop is a canopy level model (Mabhaudhi et al. (2014). 
As such, the canopy, through its expansion, ageing, conductance 
and senescence, is central to the model as it determines the 
amount of water transpired, which in turn determines the amount 
of biomass produced (Raes et al., 2009b). AquaCrop simulated 
canopy cover (R2 ≥ 0.659; RMSE ≤ 14.35%; d ≥ 0.999), biomass 
(R2 ≥ 0.79; RMSE ≤ 10.14%; d ≥ 0.908), harvest index (R2 ≥ 0.967; 
RMSE ≤ 3.55%; d ≥ 0.998) and yield (R2 ≥ 0.923; RMSE ≤ 3.82%; 
d ≥ 0.770) satisfactorily for all three genotypes during calibration 
(Fig. 2). Root mean-square error was low, with high goodness of 
fit (n = 16), and Willmot’s d–index values were close to 1 implying 
that model-predicted values were close to observed values. This 
gave confidence in calibration of the model and allowed model 
testing using independent data.

TABLE 3
AquaCrop simulated (Sim.) and experimentally observed (Obs.) time to physiological maturity in 3 sorghum genotypes 

planted at different planting dates.  MOM: model overestimation margin

Planting 
date Genotype

Time to physiological maturity Biomass Yield

Obs. 
(days)

Sim. 
(days)

MOM 
(%)

Obs. 
(t·ha-1)

Sim. 
(t·ha-1)

MOM 
(%)

Obs. 
(t·ha-1)

Sim. 
(t·ha-1)

MOM 
(%)

Early

PAN8816 133 140 5.3 10.95 25.14 129.6 5.31 11.28 112.42

Macia 140 140 0 11.70 23.47 100.6 6.38 9.93 55.64

Ujiba 140 140 0 9.80 23.50 139.8 4.07 10.47 157.25

Mean 138 140 1.8 10.82 24.04 122.2 5.25 10.56 101.14

Default sorghum file 10.82 19.54 80.6 5.25 6.68 27.2

Optimal

PAN8816 126 133 5.6 9.87 21.54 118.2 4.99 9.97 99.80

Macia 140 134 –4.3 11.28 20.19 79.0 6.79 9.30 36.97

Ujiba 126 135 7.1 9.93 20.30 104.4 4.16 9.78 135.1

Mean 131 134 6.35 10.36 20.68 99.6 5.31 9.68 82.30

Default sorghum file 10.36 18.67 80.2 5.31 6.53 23.0

Late

PAN8816 126 135 7.1 5.00 20.44 308.8 2.71 10.50 287.45

Macia 133 140 5.3 6.33 20.27 220.2 3.26 9.83 201.53

Ujiba 126 140 11.1 6.93 21.38 208.51 3.50 10.14 189.71

Mean 128 138 7.8 6.09 20.70 240.0 3.16 10.16 221.52

Default sorghum file 6.09 18.67 206.6 3.16 6.61 109.2
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Testing

There was good agreement between observed and simulated 
soil water content (R2 ≥ 0.710; RMSE ≤ 22.73%; d ≥ 0.998) and 
crop canopy cover (R2 ≥ 0.710; RMSE ≤ 22.73%; d ≥ 0.998) 
for all genotypes and planting dates. This showed that the 
model was capable of simulating water availability and canopy 
development under different environments (Fig. 3). This implies 
that the separation of soil evaporation from crop transpiration 
was captured well by the model. The result confirmed model 
robustness and consistency across environments. Once canopy 
senescence was triggered, the model simulated rapid canopy 
decline whereas in reality sorghum’s canopy decline was 

moderate. This is because sorghum genotypes evaluated in the 
study employed osmotic adjustment and quiescence strategies 
which allowed for moderate canopy decline. The limitations of 
the model in capturing this aspect of sorghum resulted in a low 
goodness of fit between model simulated and observed values, 
especially under water stress. 

With respect to the planting dates, the model simulated 
canopy cover well for early planting (R2 ≥ 0.843; RMSE ≤ 13.91%; 
d ≥ 0.999) and late planting (R2 ≥ 0.873; RMSE ≤ 12.07%; d 
≥ 0.999) (Fig. 3). Model performance was satisfactory (R2 ≥ 
0.710; RMSE ≤ 22.73%; d ≥ 0.998) for the optimal planting. 
Model performance for the optimal planting date was affected 
by observed low emergence at optimal planting due to low soil 

Figure 3
AquaCrop simulated and field observed canopy cover for PAN8816, Macia and Ujiba sorghum genotypes planted at 3 different planting dates (early, 

optimal and late) within the 2014/15 growing season at Ukulinga
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Figure 4
AquaCrop simulated and field observed aboveground dry biomass for PAN8816, Macia and Ujiba sorghum genotypes planted at 3 different planting 

dates (early, optimal and late) within the 2014/15 growing season at Ukulinga 

water availability during and shortly after sowing. This resulted 
in observed low canopy cover compared to model-simulated 
canopy cover (Fig. 3). In this instance, the model could be used 
to assess gaps between actual and potential canopy cover under 
field conditions.

In field trials, time to physiological maturity was observed 
when a dark spot appeared on the opposite side of the 
kernel from the embryo, signalling completion of dry matter 
accumulation (Eastin et al., 1973). However, physiological 
maturity in model simulations was observed when dry matter 
accumulation ceased. Under field conditions, physiological 
maturity occurred when canopy cover was relatively high, while 
for model simulations it coincided with relatively low or zero 

canopy cover. This resulted in a slight overestimation (≤ 7.8%) 
of time to physiological maturity in the model (Table 3). Since 
AquaCrop uses canopy cover to estimate transpiration and 
calculate biomass accumulation, this potentially led to a carry-
over error in simulated biomass and yield. This would account 
for the overestimation of the two parameters. Adjusting canopy 
sensitivity to water stress (canopy expansion, stomatal closure, 
early senescence and harvest index) could potentially improve 
model simulation, especially during canopy senescence where 
model simulations were less than satisfactory. However, the 
relatively satisfactory performance of the model with minimum 
data input calibration confirms model simplicity and robustness 
and its suitability for use in areas with limited datasets.
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Figure 5
AquaCrop simulated and field observed panicle yield for PAN8816, Macia and Ujiba sorghum genotypes planted at 3 different planting dates (early, 

optimal and late) within the 2014/15 growing season at Ukulinga

AquaCrop separates the yield into biomass and harvest index 
(Raes et al., 2009b), where harvest index is the ratio of economic 
yield over total aboveground biomass. Biomass accumulation 
is calculated as a product of WP and transpiration. Thereafter, 
biomass partitioning into yield is a function of harvest index. 
Prediction of biomass (R2 ≥ 0.900; RMSE ≤ 10.45%; d ≥ 0.850) 
and yield (R2 ≥ 0.945; RMSE ≤ 3.53%; d ≥ 0.783) was very good 
(Figs 4 and 5). However, the model significantly over-estimated 
both biomass and yield, to generally be twice the observed 
values. On average, total biomass simulated by the model was 
24.04, 20.68 and 20.70 t·ha-1, whereas observed biomass was 
10.82, 10.36 and 6.09 t·ha-1, for early, optimal and late planting 
dates, respectively. Total yield simulated by AquaCrop was 12.24, 
9.8 and 10.79 t·ha-1, whereas observed yield was 5.25, 5.31 and 
3.16 t·ha-1, for early, optimal and late planting dates, respectively 

(Table 3). Expected sorghum yields are 3–8 t·ha-1 for genotypes 
used in the study. This implies that observed biomass and yield 
were within expected yields, whilst confirming that the model 
simulations over-estimated these variables. Good canopy 
simulation by the model resulted in confidence in transpiration 
predictions used in biomass calculation. Model simulations 
exhibited differential water stress levels across planting dates, 
with highest water stress levels during the late planting date for 
all genotypes. This implies that water stress played a major role 
in biomass and yield determination. Determining the genotype-
specific water stress coefficients (Ks) could potentially improve 
model yield simulations. A default sorghum WP parameter 
(33.3 g·m-2) was used in simulations. Water productivity for C4 
cereal crops is generally accepted to be 30–35 g·m-2 (Raes et al., 
2010). However, this conservative parameter may need to be 
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determined for local genotypes, as it is a potential source of error 
in model overestimation of yield.

In the interest of comparison with previous work, 
simulations obtained from experimental sorghum genotypes 
were compared to those obtained from simulations using the 
AquaCrop default sorghum file. In comparison, simulations 
using the default file instead of three study genotypes exhibited 
excellent predictions of yield (R2 ≥ 0.816; RMSE ≤ 1.90%; d ≥ 
0.900) with relatively high overestimation error (23.0–109.2%). 
Yield overestimation error was low (23.0% and 27.2%) for early 
and optimal planting dates, respectively, where rainfall was 

relatively high and well distributed across planting season. For 
the late planting date, when relatively low, highly irregularly 
distributed rainfall was observed, yield overestimation was high 
(109.2%). Canopy cover was poorly simulated (R2 ≥ 0.11; RMSE 
≤ 41.03%; d ≥ 0.995) suggesting that canopy characteristics of 
local genotypes differ significantly from those of the AquaCrop 
default crop file. This highlights the need to perform additional 
experiments to determine canopy sensitivity to water stress 
for calibration of the three genotypes used. Since AquaCrop is 
a canopy-level, yield response to water model, it is of primary 
importance to accurately predict canopy cover in order to 

Figure 6
AquaCrop simulated and field observed harvest index for PAN8816, Macia and Ujiba sorghum genotypes planted at 3 different planting dates (early, 

optimal and late) within the 2014/15 growing season at Ukulinga
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predict biomass and yield. Therefore, improved yield and 
biomass estimations by the default file are pointless without a 
corresponding improvement in canopy cover predictions. 

Despite the limitations in calculating biomass, the model 
was able to capture the build-up of harvest index (Fig. 6) 
very well (R2 ≥ 0.902; RMSE ≤ 7.17%; d ≥ 0.987). This implies 
that the contribution of harvest index as a source of error in 
over-estimation of yield was minimal. Model over-estimation 
of biomass and yield increased for late-planted sorghum 
genotypes, where water stress was observed to be relatively high 
in comparison to other planting dates under experimental field 
trials and simulations. This suggests that canopy sensitivity 
to water stress should also be accurately described when 
calibrating the model for local sorghum genotypes. Developing 
genotype specific Ks values for the sorghum genotypes used 
in this study could improve model simulations of biomass 
and yield. Overall, canopy cover, biomass, harvest index and 
yield model simulations were very good for all genotypes and 
planting date environments. 

CONCLUSION

The model was able to simulate canopy cover, biomass 
accumulation, harvest index and yield relatively well for all 
sorghum genotypes and planting dates. The model did not 
accurately capture sorghum canopy decline as it did not 
consider sorghum’s quiescence growth habit which allows for 
delayed canopy senescence under water-limited conditions. 
Conservative parameters in the default sorghum crop may 
not necessarily represent those of local genotypes, and this 
potentially contributes to overestimation of biomass and 
yield in the model. Despite model calibration simulating 
canopy cover relatively well, overestimation of biomass and 
yield suggests that conservative parameters, such as water 
productivity (WP), canopy sensitivity to water stress and 
water stress coefficient, additionally require calibration for 
local genotypes in order to improve calibration. Where water 
conservation and crop growth characteristics are of primary 
importance, the use of minimum data input calibrated files is 
recommended due to very good simulations of crop canopy 
and phenological development. In cases where biomass and 
yield simulation is important, the use of the default file is 
recommended to reduce overestimation error. The results of 
this study suggest that where local sorghum genotypes differ 
significantly in growth and development characteristics from 
the default file, the use of minimal data input calibration 
potentially compromises prediction of crop yield. In terms 
of model application where extensive data is absent, it is 
recommended that users add the parameters (WP, canopy 
sensitivity to water stress, and water stress coefficient) that 
are suggested in this study to improve calibration. For new 
sorghum cultivars that differ significantly in growth and 
development characteristics from the default crop file, it may be 
necessary to do a full calibration where possible to achieve good 
overall predictions of crop response to water availability.
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